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ABSTRACT 

 

Conserved and Unconventional Responses to 

DNA Damage in Tetrahymena. (May 2011) 

Pamela Yohanna de Lourdes Sandoval Oporto, B.S., Universidad Austral de Chile 

Chair of Advisory Committee: Dr. Geoffrey M. Kapler 

 

 Here the ciliate protozoa Tetrahymena thermophila was used as a model system to 

study the DNA damage response. Tetrahymena enclose nuclear dimorphism, a polyploid 

somatic macronucleus (MAC), which is transcriptionally active and maintains vegetative 

growth, and a diploid germline micronucleus (MIC) responsible for the transmition of 

genetic information during conjugation. Previous studies have identified Tif1p, a novel 

protein involved in the regulation of rDNA replication in Tetrahymena. TIF1 

hypomorphic strains acquire spontaneous DNA damage during vegetative cell cycle and 

are hypersensitive to DNA damaging agents. TIF1-deficient strains acquire DNA 

damage in both nuclear compartments, suggesting a global role of Tif1p in the 

maintenance of genomic stability. 

 In my dissertation research, I studied the role of Tif1p during the cell cycle 

progression. To this end, I generated tagged-Tif1p strains, which revealed that the 

subcellular localization of Tif1p is dynamic throughout the cell cycle. However, the 

addition of epitope tag to this protein generated phenotypes analogous to ones observed 

in a TIF1-deficient strain. This suggested that the addition of epitope tag to Tif1p 
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severely affects the properties of Tif1p and hence the overall integrity of the cell. To 

overcome these limitations, a peptide antibody specific to Tif1p was generated to study 

the endogenous protein. This work revealed that the abundance of Tif1p protein is not 

cell cycle regulated and that Tif1p is absent in starved cells. Furthermore, the specific 

binding of TIf1p to rDNA minichromosome was studied during vegetative cell cycles. 

Chromatin immunoprecipitation studies revealed that the specific binding of Tif1p 

extends beyond the cis-acting determinant of replication present at the rDNA origin and 

promoter. This suggests that coding regions may be targeted for the binding of Tif1p to 

previously uncharacterized sequences, and that Tif1p preferentially localizes on the 

rDNA minichromosome. 

 I also studied the induction of DNA damage response, demonstrating that 

Tetrahymena activates a checkpoint response mediated by an ATR-like pathway. Studies 

with a hypomorphic TIF1 strain revealed that Tif1p mediates proper activation of the 

DNA damage response. Further characterization of the response to genotoxic agents 

showed that Tetrahymena is able to activate a G1/S and intra-S phase DNA damage 

response. The results presented here suggest that a caffeine-dependent checkpoint 

activator protein modulates the response to DNA damage. In addition, a subunit of the 

replicative helicase, Mcm6p, is directly affected by the induction of DNA damage. This 

suggests that Tetrahymena uses a novel mechanism to halt the progression of DNA 

replication forks during genotoxic stress through degradation of Mcm6p. 
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CHAPTER I 

 

INTRODUCTION  

 

 This work addresses several mechanisms common to the control of eukaryotic 

DNA replication. To provide a framework for my research, a general overview of the 

cell cycle will be presented first. A detailed description of the checkpoint pathways that 

are activated following DNA damage and initial steps in replication will be provided. 

Finally, I will discus unconventional cell cycles, since they are integral part of the life 

cycle of the eukaryotic model I have been working with, Tetrahymena thermophila. 

 

Cell cycle and DNA damage response  

 Classical studies where synchronized cells in different stages of the cell cycle 

were fused revealed that cell cycle progression is tightly regulated. Heterophasic S/G2 

cells divide earlier than homophasic S/S cells, indicating that factors presents in G2 cells 

were able to promote early entry of S phase nuclei to mitosis. However, in heterophasic 

G1/ G2 cells the G1 nuclei was not affected in their progression through S phase or 

mitosis (Rao & Johnson, 1970). Research over the past 30 years has elucidated 

regulatory factors that are responsible for restricting entry or exit from a given stage of 

the cell cycle (Figure 1.1), these factor are organized in several biochemical mechanisms 

that we recognize as checkpoints (Hartwell & Weinert, 1989). 

____________ 
This dissertation follows the style of The EMBO Journal. 



 

 

2 

2 

Cell cycle regulation  

 In unperturbed cells, the transition between different phases of the cell cycle is 

mainly controlled by the cyclin dependent kinases (CDK) that phosphorylate 

downstream effector proteins to promote cell cycle progression. CDK catalytic activity 

and substrate selection depends on its capacity to form a complex with cyclins, which act 

as a regulatory subunit. CDK-cyclin complexes are responsible for activation of 

transcription, control cell morphogenesis, promote the initiation of DNA replication, 

prevent DNA re-replication, support accurate chromosome segregation, control the exit 

from mitosis, and regulate DNA damage checkpoint activation and DNA repair 

(Enserink & Kolodner, 2010). 

 Several CDKs have been described in S cerevisiae, however a single CDK (Cdk1) 

is necessary and sufficient to control cell cycle progression (Figure 1.1A). Cln1, Cln2 

and Cln3 are G1 cyclins, the protein level of Cln3 is the first to increase in middle G1 

phase (Figure 1.1A). Cdk1-Cln3 promotes transcription of multiple factors involved in 

DNA metabolism, including the expression of Cln1, Cln2 during late G1 phase (Dirick et 

al., 1995; Spellman et al., 1998; Tyers & Futcher, 1993). Furthermore, G1 cyclins 

promote efficient initiation of DNA replication, but the entry to S phase is marked by the 

increase abundance of early expressed B-type cyclins (Figure 1.1A). 

 B-type cyclins (Clb1-6) are necessary for S phase and mitotic progression. Cdk1-

Clb5 and Cdk-Clb6, promote DNA replication and are the most active complex in 

regulating DNA synthesis, their levels are highly maintained until the end of the cell 
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Figure 1.1 Cyclin-CDK regulation of the cell cycle. Cell cycle progression in eukaryotic model systems 

consists in four faces. The DNA synthesis (S) phase and mitotic (M) phase, separated by two gap phases 

(G1 and G2). The abundance of cyclin-CDK complexes in relationship to the cell cycle progression is 

showed. Black arrows indicate checkpoints. A. In yeast B. In mammals. Diagram modified from 

http://studentreader.com. 

A.

B. 
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cycle (Mendenhall & Hodge, 1998; Schwob & Nasmyth, 1993). Clb3 and Clb4 

abundance increases late in S phase and are maintained until anaphase; they are 

responsible for progression of DNA replication and for the G2/M transition (Richardson 

et al., 1992). Clb1 and Clb2 are the mitotic cyclins. Their increased abundance marks the 

entry into G2 phase, and, they are responsible for promoting mitosis by regulating 

chromosome segregation (Enserink & Kolodner, 2010).  

 Prior to triggering a cell cycle transition, CDK is accumulated in an inactive state. 

The synthesis of cyclins is cell cycle regulated, and all are degraded by ubiquitylation 

during anaphase, providing an effective mechanism to regulate CDK activity (Amon et 

al., 1994). Furthermore, the presence of specifics CDK-inhibitors, such Sic1 and Far1 

during G1 phase, promote the accumulation of high levels of inactive CDK prior to 

triggering a cellular transition and offers an aditionalregulation of CDK (Alberghina et 

al., 2004; Schwob et al., 1994). These inhibitors are degraded as soon S phase starts but 

their abundance increases in anaphase to prepare the cell for a new cycle. During the 

G2/M transition phosphorylation of CDK by Cdk-inhibitory kinases, such a Swe1p and 

Mih1p, also contribute to the inactivation of CDK (Russell et al., 1989). 

 To ensure cell cycle transitions, the Cdc25 phosphatase is responsible for removing 

inhibitory phosphorylations in cyclin-CDK complexes. CDK is also activated by the 

phosphorylation induced by CAK (CDK activating kinase), and its activity is maintained 

high until anaphase (Diffley, 2004; Mandal et al., 1998).  

 In metazoans at least four CDKs (Cdk1-4) have been described as necessary to 

maintain normal cell cycle progression (Nurse, 2000). However, Santamaria and 
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colleagues showed that Cdk1 was sufficient to promote normal cell cycle in a triple 

knockout in mice suggesting functional redundancy in higher eukaryotes (Santamaria et 

al., 2007). Nevertheless, four classes of cyclins (A, B, C, D) are required to drive cell 

cycle progression (Figure 1.1B)(Malumbres, 2005).  

 Cyclin D in association with Cdk4 or Cdk6 (Figure 1.1B) regulates events in G1 

phase, such as phosphorylation of Rb (retinoblastoma) proteins which leads to 

derepression and activation of E2F target genes that includes E-type cyclins (Kozar & 

Sicinski, 2005). Through this mechanism cyclin D-CDK complex is able to promote the 

transition to S phase. Cyclin E-Cdk2 is essential for the irreversible transition to S phase 

by directly affecting DNA replication, histone biosynthesis and control of centrosome 

duplication (Hinchcliffe & Sluder, 2002; Sclafani & Holzen, 2007). Cyclin E levels are 

cell cycle regulated and cyclin E is degraded shortly after the initiation of S 

phase(Hwang & Clurman, 2005). Cyclin A is responsible for the progression of 

replication, completion of S phase and entry to G2 (Suryadinata et al., 2010). Cyclin B is 

the mitotic cyclin and along with cyclin A promotes the entry into mitosis and regulate 

the segregation of chromosomes (Figure 1.1B)(Jackman et al., 2003). Here, to facilitate 

the general description in common mechanisms of eukaryotes, those cyclin-CDK 

complexes that are actively controlling S phase are collectively called S phase specific 

CDKs (S-CDK), as was previously used in Masumoto et al., 2002 (Masumoto et al., 

2002). 

 Similar to the regulation of CDK in yeast, CDK in mammals can be targeted for 

degradation by ubiquitin-mediated proteolysis, specific inhibitors may regulate their 
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abundance and be targeted by inhibitory phosphorylation (Peters, 2006). Animals 

contain three isoforms of Cdc25 (A, B and C). Cdc25a is responsible for activation of 

both S-CDK during G1/S transition and CDK1-cyclinB in mitosis (Karlsson-Rosenthal 

& Millar, 2006). 

 

Activation of DNA damage checkpoint and DNA repair pathways 

 Intracellular metabolic processes (stalled replication fork or reactive oxygen 

species) and exogenous insults (UV, ionizing radiation (IR) or other genotoxic agents) 

can induce DNA damage. In order to prevent loss or instability of the genetic material, 

these lesions need to be repaired. The phase in the cell cycle when the lesion occurred 

and the type of damage trigger specific checkpoint responses and determine which repair 

mechanism will be utilized (Figure 1.2). 

 DNA lesions include double-stranded breaks (DSBs), single-stranded breaks 

(SSBs), formations of DNA adduct by intra and inter-strand crosslink, and DNA 

mismatches. Once the lesion is detected, transducers amplify and transmit the checkpoint 

signal to downstream targets through a phsphorylation cascade (Abraham, 2001). The 

downstream effectors are responsible for the regulation of cell cycle progression, this 

can be modulated by the activation of the G1/S checkpoint that blocks entry into S phase, 

triggering of the intra-S checkpoint that promote a delay in S phase progression; or 

activation of a G2/M checkpoint to prevent mitotic entry (Bolderson et al., 2009b). 
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Figure 1.2 Mechanism for checkpoints activation. Showing a DSB (double strands break) as initial lesion 

that is initially recognized and resolved in ssDNA (single stranded DNA). Factors involved in the 

recognition, transduction and activation of the checkpoint are described in the text. Diagram modified 

from Bolderson et al., 2009. 
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 The sensor serine-threonine kinases ATR (ataxia talangiectasia and Rad3 related), 

ATM (ataxia talangiectasia mutated) and DNA-PK (DNA-ativated protein kinase), are 

crucial transducers of the DNA damage response. ATM and DNA-PK are activated in 

response to DSB and they are recruited via Nbs1 and Ku80 respectively to sites of 

damage (Falck et al., 2001; Uziel et al., 2003; You et al., 2005). ATR respond mainly to 

ssDNA RPA (replication protein A) coated ssDNA stimulates the recruitment of ATR to 

the lesion by its direct interaction with ATRIP (ATR interacting protein) (Zou & 

Elledge, 2003). 

 During S phase the DNA is particularly vulnerable to insults. When damage is 

induced during replication, the replicative DNA polymerase stalls while helicase 

continues to unwind DNA, generating long stretches of ssDNA (Petermann & Helleday, 

2010). The coated RPA-ssDNA recruits ATR-ATRIP and Rad17-RFC, the later of 

which functions as a loader for the Rad9-Rad1-Hus1 (9-1-1) clamp complex that is 

necessary for the activation of ATR (Ellison & Stillman, 2003; Zou et al., 2003). In 

mammals the activation of ATR also requires TopBP1, that directly stimulates kinase 

activity of ATR (Delacroix et al., 2007; Kumagai et al., 2006). Once activated, ATR 

phosphorylates several adaptor proteins in order to drive the signal to the effector kinase 

Chk1 (Jazayeri et al., 2006). In yeast Rad9 is required to supply this role, however, in 

mammals several adaptor proteins have been identified, suggesting a grand array of 

mechanisms for the activation of Chk1 (Choi et al., 2007; Kumagai et al., 2004; 

Sweeney et al., 2005; Wilson & Stern, 2008). Chk1 acts as an effector kinase, and is 

mainly activated via ATR-dependent phosphorylation of the C-terminal residue S317-
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S345, this blocks intramolecular interactions, exposing the N-terminal kinase domain 

(Jazayeri et al., 2006; Tapia-Alveal et al., 2009). 

 On the other hand, DSB are detected by MRN complex (Mre11-Rad50-Nbs1) that 

recruit ATM that in turn induces the phosphorylation of H2A variant, H2AX at the site 

of damage(Burma et al., 2001). The phosphorylation of H2AX acts as a signal to recruit 

the adaptor protein MDC1 (mediator of DNA damage checkpoint 1) that promotes the 

ATM-dependent phosphorylation of H2AX in long stretches of DNA surrounding the 

DSB (Rogakou et al., 1998; Stucki et al., 2005). MDC1 also promotes the binding of the 

several ubiquitin E3-ligase factors that ubiquitylate of histone H2A and H2AX. This 

serves as a signal for the recruitment of adaptors 53BP1 (p53-binding protein1) and 

BRCA1 that further promote the activation of p53 and the effector kinase Chk2 (Pinato 

et al., 2009; Wilson & Stern, 2008) (Mailand et al., 2007). ATM predominantly 

phosphorylates Chk2 at Thr68, promoting activation via intramolecular trans-

autophosphorylation at Thr383-387 (Lee & Chung, 2001; Matsuoka et al., 2000; 

Melchionna et al., 2000). Furthermore, the Mre11 subunit of MRN supports 

endonuclease activity that may be responsible for mediating the resection of DSB to 

generate ssDNA. The ssDNA is recognized and activate the ATR signaling pathway to 

reinforce repair of the lesion (Williams et al., 2008). 

 Activated effectors kinases Chk1 and Chk2 are able to promote the 

phosphorylation and inactivation of Cdc25, this prevent further activation of CDKs to 

promote cell cycle progression (Figure 1.2). Phosphorylated Cdc25a is targeted for 

ubiquitination and proteosomal degradation (Mailand et al., 2000; Molinari et al., 2000). 
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The inhibition of Cdc25a prevents the activation of cyclin E and cyclin A-CDK 

complex, promoting the arrest in G1/S transition and S phase, respectively(Bolderson et 

al., 2009a). In contrast, phosphorylated Cdc25c is excluded from the nuclear 

compartment and sequestered in the cytoplasm through the binding to 14-3-3 proteins 

(Peng et al., 1997; Sanchez et al., 1997; Zeng & Piwnica-Worms, 1999). The absence of 

Cdc25c prevents the activation of cyclin B-CDK, promoting the G2/M checkpoint 

(Bolderson et al., 2005). In addition, Chk1 activation via ATR also plays a dominant role 

in response to replication stress (intra-S checkpoint). Chk1 directly phosphorylates S 

phase kinases DDK (Abf4 Cdc7 dependent kinase) and Tlk1 (tousled-like kinase). The 

phosphorylation of DDK prevents efficient initiation of DNA replication (Liu et al., 

2006). Tlk1 phosphorylation induces inhibition of its activity, which is required for 

chromatin assembly and elongation of DNA replication (Beckerman et al., 2009). Also, 

Chk1 phosphorylates histone H3, responsible for DNA damage induced transcriptional 

repression of cell cycle regulatory genes (like cyclin B1 and Cdk1) through loss of 

histone acetylation (Shimada et al., 2008). 

 Furthermore, ATM and effector kinases directly phosphorylate p53 and its ligase 

Mdm2, which promote p53 stabilization. The accumulation of p53 induces the 

transcription of p21. P21 acts as a CDK inhibitor (Chehab et al., 1999; Hirao et al., 2000; 

Shieh et al., 2000). The inactivation of Cdc25 and p21 prevents the entry to S phase 

(Figure 1.2).  

 The activation of checkpoints induce delays in the progress of cell cycle by 

preventing the activation of CDKs, these delays give the necessary time to promote 
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DNA repair pathways. The two major strategies to repair damaged DNA are the non-

homologous end joining (NHEJ) and the homology bases recombination repair (HR) 

pathways (Harper & Elledge, 2007). In human cells, NHEJ is active during all the phases 

of the cell cycle, but is the preferred mechanism for repair during G1. DSB, induced 

during G1 are recognized by the heterodimer Ku70-Ku80, Ku80 by direct interaction 

recruit DNA-PK to the break (Falck et al., 2005). The further recruitment of ligase IV-

XRCC4 complex is responsible for the direct ligation of the two ends of DNA (Barlow 

et al., 2008). Since the repair mediated by NHEJ does not require a template for the 

ligation of two ends some loss or translocation may occur. 

 During S and G2 phase the presence of sister chromatids promote repair mediated 

by HR. The major difference between HR and NHEJ is the fidelity of the repair. HR 

uses undamaged DNA template to restore the integrity of the damaged region without 

any loss of genetic information (Moynahan & Jasin, 2010). DSB are recognized by 

MNR that recruits ATM and starts the resection of the lesion to form ssDNA. The 

recruitment of Sgs1 helicase and Exo1 extends the stretch of ssDNA (Mimitou & 

Symington, 2008; Zhu et al., 2008). RPA coated-ssDNA stabilizes ssDNA, however 

Rad52 promotes the exchange of RPA for Rad51 (Moynahan & Jasin, 2010). BRCA2 is 

recruited by Rad51 and acts as an accessory factor to overcome the inhibitory effect of 

RPA and promote the formation of Rad51 filaments (Carreira et al., 2009; Yang et al., 

2005). Once the filaments are formed, several orthologs of Rad51 are recruited to 

promote the strand invasion. DNA synthesis is primed from the invading strand, branch 
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migration occur to form Holliday junctions. Holliday junctions are resolved and the 

distal ends are ligated together (Liberi & Foiani, 2010). 

 Once checkpoints are activated, the phosphorylation cascade also promotes repair 

pathways. As an example, Chk1-dependent phosphorylation of Rad51 is required for the 

replacement of RPA on ssDNA, and facilitates the further formation of Rad51 filaments 

(Sleeth et al., 2007; Sorensen et al., 2005).  

 Since complete and precise DNA duplication is essential to maintain fidelity of 

genetic information, S phase is the most susceptible stage to experience catastrophic 

insults. When DNA damage is induced during replication, the intra-S phase checkpoint 

is activated and several responses are triggered in order to prevent further synthesis. The 

direct modulators of this response are components of the replication machinery. Below I 

present a detailed view of how the initiation for DNA replication (replication origins) are 

organized in different eukaryotes. 

 

Replication initiation in eukaryotic systems 

 Jacob and Brenner (1963) postulated the classic replicon hypothesis, this is the 

principal concept behind the study of the control of DNA replication. This hypothesis, 

propose that specific DNA sequences serve as origins of replication which are activated 

by factors called initiators (Jacob & Brenner, 1963). Based on this, a replicon is a 

distinct stretch of DNA that replicates from a single origin. This hypothesis was rapidly 

corroborated in prokaryotes. However, eukaryotic chromosomes contain multiple origins 

and only in few model systems are these origins defined by specific DNA sequences. 
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Furthermore, trans-acting factors or initiators of DNA replication are very well 

conserved in most eukaryotes, suggesting that they can play a stronger role in the 

regulation of DNA replication than sequences alone. Also, replication initiation is 

affected by structural chromatin contexts and other processes intrinsic to the cell cycle, 

suggesting that the control of DNA replication is more intricate than was originally 

envisioned. 

 

Basic determinants of DNA replication in budding yeast  

 Replicons were formerly identified by an assay first described by Struhl and 

colleagues (1979) where specific sequences confer the ability to promote autonomous 

replication of transformed plasmids (autonomous replication sequences -ARS- assay) 

(Struhl et al., 1979). In the budding yeast, S. cerevisiae, replicons are comprised of AT-

rich sequences (Newlon & Theis, 1993). The most studied origin, ARS1, consist of only 

150 base pairs of DNA and linker scanning mutations identified cis-acting elements that 

co-localize with the site of replication initiation (Marahrens & Stillman, 1992). These 

elements include the essential ARS consensus sequence (ACS), that is an 11 bases pair 

long AT-rich sequence that is necessary but not sufficient for ARS1 activity. Additional 

elements B1, B2, and B3 were also identified, individually these elements are not 

essential, but they are required for functional origins (Figure 1.3A) (reviewed in 

Aladjem et al., 2006). However, genome-wide analysis revealed that from all the ACS 

sequences predicted in budding yeast, only a fraction represents active origins. This 
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Figure 1.3 Functional elements in eukaryotic replicons. A. ARS1 replicon in budding yeast. Showing 

different cis-acting elements important for replication that are described in the text (ACS, B1, B2 and B3); 

(DUE) DNA unwinding element ; (ORC) origin recognition complex and showing its binding region; 

(OBR) represent the exact point where bidirectional replication start. The region protected by ORC and 

pre-RC is indicated. B. ARS1 replicon in fission yeast. Strongly required regions are marked by a 

numbered box. ORC binding seqiences are indicated by small box. Scale for each replicator is indicated. 

C. DHFR replicator regions. Bulk arrow indicates the initiation region. (Pro) gene promoter. Arrows 

indicate the direction of transcription. The structural detail of DHFR ori-β is indicated. (AT) indicates AT-

rich stretches; (AG) indicates asymmetric purine:pyrimidine tracks. (BEND) indicate regions where the 

DNA is bent. (filled triangle) mark the initiation site. Diagram modified from Aladjem et al., 2006. 

 

A. S. cerevisiae

B. S. pombe

C. DHFR
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suggests that the ACS alone cannot be used to predict origin location (MacAlpine & 

Bell, 2005).  

 The eukaryotic chromosomal initiator, ORC is the six subunit origin of 

recognition complex first identified as nuclear binding activity that specifically 

associates with double stranded ARS1 A element, and corroborated by protection assay 

in presence of ATP (Bell & Stillman, 1992)ORC is a trans-acting factor essential for 

origin site selection and the nucleation of the replication machinery(Liang et al., 1995). 

The ATP-dependent binding of ScORC complex to ARS is directed to sequences present 

at ACS and B1. ACS is directly bound by Orc1, Orc2 and Orc4 subunits, while B1 is 

recognized by Orc5(Lee & Bell, 1997). The B2 element is proposed to function as a 

DNA unwinding element (DUE) since it has a low DNA helical stability and mutation of 

its sequences induce reduction in the origin activity (Huang & Kowalski, 2003; Lin & 

Kowalski, 1997). The B3 element is directly bound for an ARS binding factor 1, Abf1 

(Diffley & Stillman, 1988). Abf1 is a multifunctional factor; whose role in replication is 

to act as boundary element for chromatin structure, preventing the spread of 

nucleosomes toward ACS and in this way facilitating ScORC binding (Li et al., 1998; 

Marahrens & Stillman, 1992; Venditti et al., 1994).  

 

Fission yeast: first challenge for the replicator hypothesis  

 Like in S. cerevisiae, replicons were also identified by ARS assays in 

Schizosaccharomyces pombe (Sp). However, the sequences involved are considerably 

larger (500 to 1000 bases) than those identified in budding yeast (Figure 1.3B)(Okuno et 
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al., 1999). While they are composed of AT-rich DNA, they do not contain highly 

specific consensus sequences(Kim & Huberman, 1998). Genetic dissection of origins 

showed the presence of multiple redundant elements, which have an additive functional 

contribution to plasmid stability; moreover these determinants can be replaced with 

random AT-rich sequences without substantially affecting origin activity(Okuno et al., 

1997). The only conserved characteristic of S. pombe origins is the presence of clusters 

of A residues with the complementary T-rich sequences; these regions are essential to 

form a functional origin (Okuno et al., 1999). Furthermore, genome-wide analysis 

revealed that the 90% of these AT-rich clusters (also called AT-islands) co-localize with 

active origins(Segurado et al., 2003).  

 The binding of SpORC complex is direct to origin sequences but it is not ATP-

dependent(Lee et al., 2001). Since there is no ACS, SpORC utilizes a particular feature 

of one of its subunits in order to bind origins specifically. The SpOrc4 subunit contains 

an AT-hook domain that is known to mediate DNA binding to the minor groove of AT-

rich sequences (Chuang & Kelly, 1999; Kong & DePamphilis, 2001). Replicons in S. 

pombe contain multiple AT-islands and it has been shown that ORC complexes are 

associated with all of them (Ogawa et al., 1999).  

 As described below, the actual activation of the origin occurs when a helicase is 

loaded onto the origin sequences. In S. pombe, this activation depends in the number of 

ORC complexes bound to AT-islands, and suggests that the lack of consensus sequences 

is compensated by the presence of multiple binding sites for ORC at each replicon 
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(Figure 1.3B) (reviewed in Aladjem et al., 2006). To date no non-ORC DNA binding 

protein, analogous to ABF1, has been show to play a role in S. pombe origin activation. 

 

An example of origins of replication in metazoan 

 Replicons in higher eukaryotes share some similarities with those of S. pombe. 

Cis-acting regulatory sequences are spread in long chromosomal regions (up to 5.8 Kb 

for DHFR replicon). Replicators lack an apparent consensus sequence for ORC 

recognition and have higher AT-rich sequences content. However, the action of trans-

acting factors, chromatin structure and transcriptional activity may have a key role in the 

determination of an origin than the DNA sequence alone (reviewed in Aladjem et al., 

2006). Most of the origins in metazoans have been identified by ectopic replicator 

assays, where putative origin sequences are removed from their native environment and 

inserted into an ectopic chromosomal region that is then tested for the ability to support 

initiation of DNA replication.  

 The origin of replication of the dihydrofolate reductase (DHFR) in chinese 

hamster ovary methotrexate-resistant cells, is one of the most studied metazoan replicons 

and was the first mammalian origin identified (Heintz & Hamlin, 1982). In contrast to 

the budding yeast, S. cerevisiae, replication of the DHFR locus occurs within a very 

broad initiation zone of about 55 kb (Figure 1.3C). DNA replication starts from three 

major origins, called ori-β, ori-β‟ and ori-γ (Heintz & Hamlin, 1982; Ma et al., 1990). 

Ori-β is approximately 17 kb downstream from the DHFR gene, closely followed by ori-

β‟, while ori-γ is more distally placed at 23 kb downstream of the gene (Figure 1.3C). 
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Ori-β region is necessary and sufficient for the initiation of DNA replication in ectopic 

chromosomal locations (Altman & Fanning, 2001). However, analysis by two 

dimensional gel electrophoresis from the endogenous chromosome, showed that most 

initiation events occur within a 12.5 kb region that contains both ori-β, ori-β‟ (Kobayashi 

et al., 1998). Also, in the endogenous locus, a 3.2 kb fragment present at the 3‟ end of 

DHFR gene is required for all initiation activity in the 55 kb DNA region (Altman and 

Fanning, 2004). Similar to other eukaryotic replicons, DHFR ori-β present asymmetrical 

AT-rich stretches and contains a stably bent DNA sequence necessary for origin activity 

(Altman & Fanning, 2004; Caddle et al., 1990). 

The binding of metazoan ORC complexes to DNA is ATP-dependent, but it 

exhibits no specificity for DNA binding(Chesnokov et al., 1999). However, non-ORC 

DNA binding factors can play an important role in the recruitment of ORC to origins in 

metazoans. In Drosophila, the binding of a multiprotein complex (DmMyb) that contains 

the Myb protein is required for the recruitment of ORC to chorion gene origins and 

subsequent amplification of this region in differentiated follicle cells (Beall et al., 2002). 

Also, AIF-C a transcriptional repressor in rat, recognizes a specific sequence at the 

aldolase B origin, and is able to recruit ORC to this origin by direct physical interaction. 

Since rat ORC binds DNA non-specifically, the loss of AIF-C or elimination of the AIF-

C DNA binding site prevents ORC recruitment and origin activation, the binding of AIF-

C is necessary for replication from this origin (Minami et al., 2006).  

 Moreover, it has been described that the presence of unusual DNA structures, as 

a negatively supercoiled fragments, favors ORC binding to partially unwound AT-rich 
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sequences (Remus et al., 2004). Furthermore, factors that contribute to the formation of 

an “open” chromatin also contribute to origins activation and ORC binding. In 

Drosophila melanogaster (Dm), the ORC complex localizes to sequences enriched in 

histone variant H3.3 that is a characteristic replacement in nucleosomes of regions that 

are transcriptionally active (MacAlpine et al., 2010). Also in Drosophila, the tethering of 

Chameau acetyltransferase to origins at the chorion gene promotes the recruitment of 

ORC complex, suggesting that histone acetylation modulates the binding or activation of 

ORC in follicle cells (Aggarwal & Calvi, 2004). In humans, a genome-wide analysis 

showed that almost half of the origins are localized within or near CpG islands (Cadoret 

et al., 2008). All these data support the idea that the epigenetic chromatin environment 

strongly influences the binding of ORC, and primary DNA sequence, plays a minor, if 

any, role in defining active sites for replication initiation in higher eukaryotes.  

 

Formation and regulation of pre-replication complex (pre-RC)  

 The pre-RC is a multiprotein complex that is assembled at all potential origins of 

replication. Pre-RC were first described by DNase protection assays in S. cerevisiae, as a 

complex that protect origins in a cell cycle regulated manner (Diffley et al., 1994). 

 The assembly of pre-RC is limited to late M and G1 phases, when S-CDK levels 

are low (Figure 1.4). This mechanism ensures that the genome replicates only once in 

every cell cycle. Once ORC is bound to origins, Cdt1 is recruited to chromatin which in 

turn binds directly to Cdc6 (Figure 1.4) (Cook et al., 2004; Maiorano et al., 2000). In 

metazoan the recruitment of Cdt1 is negatively modulated by geminin, as an additional
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Figure 1.4 Model for the regulation of DNA replication. Origins of replication are recognized by ORC 

follow by the loading of Cdt1, Cdc6 and MCM helicase. In protozoans geminin inhibit Cdt1 and pre-RC 

formation. CDK and DDK are activated in the transition G1/S phase to promote the loading of DNA 

polymerases. Additionally CDK prevent any further activation of pre-RC. CDK also induce 

phosphorylation of Sld2, Sld3 and Mcm5 that promotes the initiation of DNA synthesis. Diagram 

modified from Sclafani and Holzen (2007). 
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mechanism to restrict pre-RC formation to only once per cell cycle (Lutzmann et al., 

2006). Cdc6 in budding yeast stimulates the Abf1 binding activity (Feng et al., 1998). 

These events promote the recruitment of MCM2-7 complex, the replicative helicase, to 

all the origins and complete the pre-RC assembly conferring replication competency or 

licensing to the origin (Figure 1.4).  

 In the transition to S phase, S-CDK and DDK, two key kinases are universally 

required for the regulation of replication (Figure 1.4). DDK (Dbf4 dependent kinase) is 

composed of the Cdc7-Dbf4 heterodimer, where Dbf4 acts as regulatory subunit of Cdc7 

kinase (Sclafani, 2000). S-CDK promotes the phosphorylation of Sld2 and Sld3 inducing 

their binding to Dpb11. The interaction between Dpb11 and phosphorylated Sld2 

induces the formation of a pre-loading complex (pre-LC), which also includes Cdc45 

(Figure 1.4) (Kanemaki & Labib, 2006; Tanaka et al., 2007; Zegerman & Diffley, 2007). 

The formation of the pre-LC complex is S-CDK dependent, but independent of the pre-

RC formation and DDK activity (Muramatsu et al., 2010). It has been proposed that pre-

LC is responsible to deliver GINS to pre-RC in order to promote helicase activity of 

MCM2-7 (Muramatsu et al., 2010). 

 On the other hand, DDK induces the phosphorylation of the amino terminus of 

Mcm4 (Figure 1.4), stimulating a change in the structural conformation of MCM 

complex (most likely dependent on Mcm5). This promotes the interaction of MCM 

complex with Cdc45, which is essential for the subsequent recruitment of polymerase 

α/primase (Sheu & Stillman, 2010). 
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 Furthermore, in the transition to S phase different strategies are applied in order to 

avert pre-RC re-assembling. Between the initial events, S-CDK phosphorylate Orc2 and 

Orc6 subunits to prevent them from interacting with other pre-RC components. Also, S-

CDK alters phosphorylation of Cdc6 which is targeted for proteolysis, as well S-CDK 

phosphorylate Mcm2-7 and Cdt1 which prevents their nuclear accumulation (McGarry 

& Kirschner, 1998; Wohlschlegel et al., 2000). Simultaneously, DDK reinforce the 

action of S-CDK by phosphorylating Mcm2, Mcm4 and Mcm6 preventing the 

interaction with other pre-RC components (reviewed in Sclafani and Holzen, 2007). 

 

Initiation of DNA replication 

 During S phase the activation of origins (firing) is asynchronous during S phase, 

the timing at which origins are activated will define them as early, middle or late origins 

(Tanaka & Araki, 2010). The timing of replication initiation reflects the activation of the 

replicative helicase (Figure 1.4). The recruitment of pre-LC to licensed origins promotes 

the actual activation of the Mcm2-7 that consists in the direct interaction of Mcm2-7 

with Cdc45 and GINS to promote helicase activity (Gambus et al., 2006; Ilves et al., 

2010). 

 Pre-LC is associated during G1 to early firing origins and loaded to late origins 

during S phase (Tanaka & Araki, 2010). As was already mentioned, pre-LC includes 

Sld2 and Sld3, multiple phosphorylation sites in this two factors suggested that they 

could act as sensors for S-CDK activity and trigger replication initiation (Tanaka et al., 

2007; Zegerman & Diffley, 2007). Particularly Sld3, which is required for initiation but 
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not for elongation of replication and has been proposed that its release from the origin, 

may promote recruitment of factors necessary for elongation of replication forks (Tanaka 

& Araki, 2010). 

 Furthermore, it has been suggested that chromatin structure might be one of  the 

determinant factors (Wu & Nurse, 2009). However, heterochromatin at the silent 

mating-type locus and pericentromeric regions is replicated during early S phase in S. 

pombe (Kim et al., 2003; Kim & Huberman, 1998). Recently it has been showed that 

heterochromatic factor Swi6 is responsible for the recruitment of Sld3 to 

heterochromatic origins via interaction with a DDK subunit and promoting its activation 

(Hayashi et al., 2009). 

 From all the origins licensed during G1, only a fraction fire during S phase. Origins 

that fire every cell cycle are called constitutive, but most of the origins are flexible or are 

maintained in dormant state and passively replicated (Blow & Ge, 2008). In budding 

yeast, early firing origins are efficiently utilized in consecutives cell cycles, suggesting a 

strong correlation between timing and origin efficiency (Heichinger et al., 2006). 

Flexible origins are those that can be used stochastically, in case the cell is under 

unfavorable growth conditions or under genotoxic stress. Beside S-CDK and DDK 

modulation of origin firing, in presence of DNA damage or replication fork stalling, 

checkpoint kinases are also able to regulate origin activation (Santocanale & Diffley, 

1998). Origin firing is inhibited by checkpoint kinases, allowing more time for pre-RC 

assembly increasing the efficiency of flexible origins, and activating dormant origins. 
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These allow completion of DNA replication during S phase when the re-licensing of 

origins is inhibited (Santocanale et al., 1999). 

 Finally, the recruitment of pre-LC also promotes the loading of Pol ε by direct 

interaction with Dpb11 (Masumoto et al., 2000). The loading of Mcm10 is necessary for 

the stable association of polymerase to chromatin (Ricke & Bielinsky, 2004; 

Wohlschlegel et al., 2002). Once helicases are activated double stranded DNA is 

unwound, polymerases α and δ and accessory proteins are loaded to form the replisome. 

This include replicator factor C (RFC) clamp loader, clamp proliferating cell nuclear 

antigen (PCNA) and replication protein A (RPA) for stabilization of local ssDNA and 

the establishment of bidirectional replication.  

 

Replicative checkpoint response 

 The intra-S phase checkpoint is responsible for regulating DNA replication in cells 

that are under replication stress, blocking the advance of ongoing replication forks and 

inhibiting the firing of late replication origins (Machida & Dutta, 2005). During S phase 

damage may be accumulated endogenously when replication forks are stalled by the 

block of polymerase progression. As was previously described, DSB or exposed ssDNA 

may initiate a signal cascade that culminates with the activation of effectors kinases 

Chk1 and Chk2, which directly prevent the progression of the cell cycle by regulation of 

CDK activity. 

 Also several mediators are necessary for the activation of effector kinases. Besides 

their roles as mediators, some of them play an active role in the DNA damage response.
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Figure 1.5 Regulation of origin firing during replicative checkpoint response. (Normal S) Shows the 

regulation of origin firing in unperturbed S phase with two replications forks progressing from each 

extreme. A (P) dormant origin that is passively replicated and a (L) Late firing origin. Pre-RC components 

(blue ovals) and components of replisome (green circles). Also showing (red circles) representing factors 

involved in the activation of checkpoint that are constitutively associated to chromatin during unperturbed 

S phases (like claspin, ATR and Chk1). Also illustrating the mechanism of origin interference, where the 

active origins inhibit the firing of redundant origins (red inhibitory arrows). (DNA damage) showing S 

phase in presence of genotoxic stress. The (P) dormant origin is fired before the threshold that activates the 

checkpoint is reached. Once intra-S phase checkpoint is activated, other components of the checkpoint 

(red circles) are recruited to the site of damage (red and yellow arrow). Activation of the checkpoint 

promotes strong inhibition of redundant origins. Diagram modified from Grallert and Boye (2008). 
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One of these mediators, claspin, is localized at replication forks in unperturbed cells and 

is necessary for normal rates of fork progression during active DNA synthesis by direct 

binding to two of the subunits of polymerase Pol ε (Osborn & Elledge, 2003; Petermann 

et al., 2008; Tourriere et al., 2005). During activation of the intra-S checkpoint, claspin 

is phosphorylated by Chk1, this promotes the dissociation of one of the subunits of Pol ε 

(Chini & Chen, 2006). Since claspin also binds Mcm2-7 it has been proposed that 

claspin may be able to sense the separation between helicase and polymerase activity 

and this way inhibit further replication (Figure 1.5) (Katou et al., 2003; Lou et al., 2008; 

Osborn & Elledge, 2003; Petermann et al., 2008; Tourriere et al., 2005) 

 Furthermore, ATR is also an integral component of replisomes. In Xenopus ATR 

associates with chromatin after initiation of replication and dissociates upon completion 

of replication (Hekmat-Nejad et al., 2000). This explains why the disruption of ATR 

causes chromosomal fragmentation and promotes lethality in embryos and somatic cells 

(Brown & Baltimore, 2000; Cortez et al., 2001). During genotoxic stress ATR is 

accumulated at the damaged site as discuses above.  

 Chk1 is also an essential gene in embryos and necessary for normal proliferation of 

somatic cells (Lam et al., 2004; Takai et al., 2000). In addition, Chk1 is required for the 

activation of origins and for the normal progression of forks in unperturbed cells (Maya-

Mendoza et al., 2007; Petermann et al., 2006). During genotoxic stress the activation of 

Chk1 responds to a threshold sufficient for checkpoint activation, Chk1 activation 

induces inhibition of S-CDK that reduces to minimal the firing of origins and only 

dormant origins may fire when replication proceed in suboptimal conditions and before 
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checkpoint activation (Figure 1.5) (Ge et al., 2007; Grallert & Boye, 2008) (Shechter et 

al., 2004; Shimada et al., 2002).  

 The phosphorylation of S-CDK, also induces the activation and the 

phosphorylation of the Cdc25a phosphatase. As a result, Cdc25a is targeted for 

degradation and unable to promote the loading of Cdc45 for the initiation of DNA 

synthesis (Sorensen et al., 2004; Suryadinata et al., 2010). However, late firing origins 

and dormant origins are bound by pre-RC, dormant origins that are not activated during 

normal S phase are trigger in presence of DNA damage (Doksani et al., 2009; 

Santocanale et al., 1999). Recently, Petermann and colleagues (2010) suggested that 

Chk1 directly regulate the speed of replication forks in normal cell cycles by acting as an 

inhibitor of excessive origin firing. The observation that depletion of Chk1 increased 

origin firing but at the same time reduces the speed of replication forks, suggest that 

Chk1 dependent phosphorylation of Cdc25a promotes fork progression in order to revert 

the effect of low frequency of firing origins (Petermann et al., 2010) . 

 Furthermore, the activation of the intra-S phase checkpoint induces Chk2 activity. 

Chk2 induces the direct phosphorylation of Dbf4 (the regulatory subunit of DDK) and 

also the phosphorylation of replication initiation protein Sld3, preventing this way the 

formation of pre-RC at origins that already were fired (Lopez-Mosqueda et al., 2010; 

Zegerman & Diffley, 2010).  
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DNA synthesis with different set of rules 

 Re-replication and endoreplication are examples of deviations from strict 

regulation of replication that exist during mitotic cell cycles. 

  Endoreplication is a variation of the normal cell cycle that result in the generation 

of polyploid cells, which are required to support growth and development at early 

embryonic stages in metazoans. Endocycles consist of a synthesis (S) phase followed by 

a gap phase without cell division; this generates a cell with a single polyploid nucleus 

(Lee et al., 2009). Endocycling require pre-RC assembly at origins and is governed by 

the activation and inactivation of cyclin E, which is necessary for licensing of origins 

(Muramatsu et al., 2010). In addition, endoreplicating cells do not express cyclin B, 

cyclin A or Cdc25c, essential regulators of G2 and mitosis (Figures 1.1 and 1.2), 

suggesting that polyploidization is under a tight control of S-CDK, but subjected to a 

different set of rules than mitotic cell cycles. An ongoing controversy is the role of 

Orc1p in endocycles. Recent studies in Drosophila salivary glands deficient in Orc1p 

showed that Orc1p is dispensable for endoreplication since this mutants complete 

endocycles as efficiently as wild type cells (Park & Asano, 2008). This opens the 

possibility of an alternative mechanism for the regulation of DNA replication during 

endocycles.  

 Polyploidization by endoreplication is also a characteristic feature of cancer cells, 

where polyploids cells are considered intermediates between normal cells and cancer-

associated aneuploids (). Early lesions are often characterized by transient activation of 

DNA damage that fails to respond to genotoxic stress, polyploidy and genetic instability 
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(Ganem et al., 2007). In fact recently it has been established that the simultaneous 

elimination of p53 and telomerase mimics the tetraploidization by endoreplication 

observed in epithelial cancer cells, suggesting a possible mechanism for the 

transformation of humans cells(Davoli et al., 2010). 

 Another alternative replication process includes the re-amplification of specifics 

sites in chromosomes. This occurs in terminally differentiated cells such as Drosophila 

follicle cells that amplify genes necessaries for the egg shell formation (Tower, 2004). 

Re-replication was originally defined by an aberrant process characterized by 

uncontrolled continuous re-initiation of DNA synthesis at individual origins within a 

single S phase (Blow & Dutta, 2005). This lead to DNA damage, checkpoint activation, 

aneuploidy, genomic instability and tumor formation(Hook et al., 2007). In metazoans 

the recruitment of Cdt1 is negatively modulated by geminin as a primary mechanism to 

restrict the pre-RC formation to only once per cell cycle and to prevent re-replication 

(Lutzmann et al., 2006; Saxena & Dutta, 2005). In humans and Drosophila the depletion 

of geminin promote re-replication during early S phase (Ding & MacAlpine, 2010; Dorn 

et al., 2009). However, a recent genome-wide analysis showed that pericentromeric 

heterochromatin was preferentially re-replicated in the absence of geminin (Ding & 

MacAlpine, 2010), suggesting that re-replication is not a totally uncontrolled process. 

Furthermore, Gomez and Antequera (2008) showed that short regions that overlap origin 

are re-replicated several times when the origin fired during S phase. The re-replicated 

fragments are double stranded 200 base pairs long, have an RNA primer attached and are 

derived from nucleosome free regions (Gomez & Antequera, 2008). The authors suggest 
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that the level of these short controlled re-replicated fragments is not high enough to 

activate intra-S checkpoint. It is not known whether this over-replication plays any role 

in the control of DNA synthesis, but clearly has changed our notion of re-replication in 

mitotic cell cycles.  

  

Biology of Tetrahymena thermophila 

 Tetrahymena thermophila is one the most well characterized species in ciliate 

protozoans. As most ciliates, Tetrahymena contains two nuclei within the same 

cytoplasm, which are genetically related but differ in structure and function. The 

micronucleus (MIC) contains five metacentric chromosomes and divides by 

conventional mitosis during vegetative cell cycles and meiosis during development 

(Gorovsky & Woodard, 1969; Mayo & Orias, 1981; Yao & Gorovsky, 1974). The 

micronucleus plays an important function acting as the reservoir of genetic material that 

is exchanged during conjugation. It is actively transcribed during a brief period during 

development and considered transcriptionally inactive during the vegetative life cycles 

(Jahn & Klobutcher, 2002; Karrer, 2000; Prescott, 1994).  

 The macronucleus (MAC) serves as the somatic nucleus; it is transcriptionally 

active during vegetative growth, responsible for expressing all genes necessary for 

vegetative growth and initiation of the conjugation program (Bruns & Brussard, 1974; 

Mayo & Orias, 1981). The macronucleus contains ~280 autonomously replicating 

chromosomes ranging from 20 kb to over 2 Mb long. These chromosomes are derived 
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from site-specific fragmentation and rearrangement of the five micronuclear 

chromosomes during sexual development (Coyne et al., 1996; Woodard et al., 1972).  

 The macronucleus divides amitotically during vegetative cell division and is not 

transmitted to progeny following conjugation. The amitotic transmission of MAC 

chromosomes does not use any visible mitotic spindle. Indeed the macronucleus 

elongates and constricts to generate two daughter nuclei with approximately half of the 

parental macronuclear DNA, when the cell divides by binary fission during vegetative 

growth (Orias et al., 1991). Microtubules invade the dividing MAC, but appear 

principally to establish the plane for MAC division (Katz, 2001). The unequal division 

of the MAC generates two heterozygous daughter cells, the vegetative propagation of 

these cells generate subclones with macronucleus functionally haploid. This 

phenomenon, denominated macronuclear phenotypic assortment, is a random and 

stochastic process that promotes the elimination of one of the two alleles from the MAC 

(Merriam & Bruns, 1988; Prescott, 1994; Sonneborn, 1974).  

 Tetrahymena sexual phase is called conjugation (Martindale et al., 1982). In 

order to initiate conjugation cells must first be starved for at least one nutrient, be of 

different mating types and have reached sexual maturity, which occur ~70 cell divisions 

after the previous conjugation (Allewell et al., 1976). Cells conjugate by generating 

temporary junctions and forming mating pairs, allowing for the reciprocal exchange of 

gametic pro-nuclei (Wolfe, 1982). Exchange is followed by fertilization and nuclear 

differentiation during which the old parental macronucleus is destroyed and replaced by 
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a new macronucleus that is derived from the new micronucleus of progeny (Karrer & 

VanNuland, 1999).  

 In detail, once two Tetrahymena cells have formed mating pairs (Figure 1.6a) the 

micronucleus moves away from the macronucleus and elongates increasing its length by 

over 50-fold, forming a structure called crescent. This micronuclear crescent, stretches 

the entire length of the cell and curves around the macronucleus (Figure 1.6b) (Wolfe et 

al., 1976). Following crescent formation chromosomes condense (Figure 1.6c) and 

undergo two rounds of meiosis (Figure 1.6d). After meiosis one of the nuclei is selected 

and moves to the anterior portion of the cell while the other nuclei are degraded (Figure 

1.6e) (Gaertig & Gorovsky, 1992). The selected micronucleus then undergoes mitosis 

forming two genetically identical pronuclei (Figure 1.6f). One of these pronuclei will 

migrate to the fusion point of the mating pair and be transferred to the mating partner 

while the other pronucleus remains in the cell of origin (Kaczanowski et al., 1991). After 

pronuclear exchange the two pronuclei will fuse to form the fertilized micronucleus 

(Figure 1.6g). This micronucleus undergoes two postzygotic rounds of mitosis (Figure 

1.6h) (Kaczanowski et al., 1991). Two of the nuclei are selected which chromatin 

decondenses and initiate the macronuclear developmental process, at this point the new 

macronuclei is called anlagen (Figure 1.6i) (Martindale et al., 1982). During the second 

stage of macronuclear development, the two micronuclei and anlagen macronuclei move 

to the center of the cell while the old macronucleus moves to the posterior of the cell 

where it undergoes condensation and apoptotic DNA fragmentation (Figure 1.6j) 

(Mpoke & Wolfe, 1996). The mating pair then separates and one of the micronuclei will
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Figure 1.6 Nuclear events during conjugation of Tetrahymena. 
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also be degraded (Figure 1.6k). Finally the remaining micronucleus undergoes mitosis 

and the cell divide by binary fission to produce two cells which are the progeny of the 

mating pair.  

 During macronuclear differentiation (Figure 1.6i) developmentally programmed 

DNA rearrangements occur. One of these DNA rearrangements involves the elimination 

of internal DNA fragments following ligation of the flanking sequences (Karrer, 2006). 

The internal eliminated sequences (IES) are most likely removed by a scan mechanism 

that involves synthesis of small RNAs, denominated scnRNA (Yao & Chao, 2005). This 

scnRNA (28-29 bases) are synthesized in the MIC during meiosis and are processed by a 

dicer-like protein Dcl1p followed by association with an Argonaut protein Twi1p 

(Malone et al., 2005; Mochizuki & Gorovsky, 2004; Mochizuki & Gorovsky, 2005). 

Dcl1p and Twi1p are conserved essential components of the RNA interference 

machinery and involved in transcriptional and post-transcriptional gene silencing in 

several eukaryotes (Chu and Rana, 2007). IES are repetitive elements that close 

resemble transposons and their deletion eliminates about 15% of the MIC sequence 

(Cherry & Blackburn, 1985; Patil et al., 1997).  

 A second rearrangement is the site specific fragmentation of the five MIC 

chromosomes at the chromosome breakage sequences (Cbs, Figure 1.7) that generate 

~280 minichromosomes. Telomeres are added de novo to the new chromosomes end and 

these minichromosomes are amplified to ~45 copies (Figure 1.7) (Coyne et al., 1996; 

Fan & Yao, 1996; Yao, 1982; Yao et al., 1987). 
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Figure 1.7 Differential DNA replication and developmentally programmed DNA rearrangement during 

macronuclear development. Left panel is a composite representation of bi-nucleate Tetrahymena cell. 

Macronuclear development key steps are shown in the right panel, during macronuclear development, 

(Cbs), chromosome breakage, (IES) internally eliminated sequences. Endoreplication of the non-rDNA 

minichromosomes occurs to generate 45 copies. Locus specific amplification of the rDNA increase the 

copy number in the developing macronucleus up to 10,000 copies. The number of copies is maintained in 

every vegetative cell cycle. 
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 Another programmed DNA rearrangement that occurs during macronuclear 

development is the rearrangement and amplification of the rDNA minichromosome. 

During this process the single copy of the Tetrahymena gene for the 35S ribosomal RNA 

precursor is excised from the MIC genome (Figure 1.7). This 10.5 kilobase fragment 

then undergoes head-to-head palindrome formation resulting in a 21 kilobase inverted 

repeat to which telomeres are added de novo (Gall, 1974; Yasuda & Yao, 1991) The 

rDNA is amplified to 10,000 copies in the developing macronucleus (Yao & Gorovsky, 

1974). Developmental amplification of Tetrahymena differs from gene amplification in 

other model organism in that it does occur in the normally differentiated cells. 

Endoreplic cycles precede to rDNA gene amplification during development. 

Furthermore, all the replic origins are subsequently utilized during vegetative cell 

division. Hence, non-rDNA replicons that are silenced during vegetative cell cycle need 

to be reactivated during conjugation. As for the previously described chromosomes 

rDNA amplification occurs during a single S phase and the resulting minichromosomes 

are maintained at this level during subsequent vegetative division (Karrer and 

Blackburn, 1989).  

 

The rDNA replicon in Tetrahymena 

 The ribosomal minichromosome (rDNA) is a 21 kilobase palindromic sequence 

that is maintained vegetatively in 10,000 copies in the macronuclear nucleus and 

replicated only once every cell cycle. It contains two distinct sites for DNA replication 

initiation localized in two 430 base pair tandem imperfectly duplicated direct repeats at
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Figure 1.8 Schematic of the Tetrahymena rDNA minichromosome. The 2.1 Kb macronuclear rDNA 

minichromosome consisted a palindromic arrangement of two copies of the rDNA gene (in green) that 

encode for 17S, 5.8S and 26S ribosomal rDNA. The region encompassing the 5‟NTS is expanded and 

includes cis-acting determinants for DNA replication. Type I, II, III and pause site elements are 

phylogenetically conserved sequences. Type I elements are showing in red, Type III in yellow, replication 

fork barrier (RFB) in purple and pause site elements (PSE) in blue. The locations of the seven positioned 

nucleosomes are depicted by black ovals.  
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the 1.9 kilobase of the 5' non-transcribed spacer (5' NTS, Figure 1.8) (Zhang et al., 

1997). These replication origins are designated Domains 1 and 2 and reside in two of 

three nucleosome-free regions in the 5' NTS (Palen & Cech, 1984). D1 and D2 are part 

of a single replicon that contains several reiterated cis-acting regulatory elements 

essential for DNA replication (Figure 1.8) (Reischmann et al., 1999).  

  The type I element is a 33 base pair sequence that is phylogenetically conserved 

in the rDNA of tetrahymenid species (Challoner et al., 1985). There are four type I 

elements in the 5‟ NTS of Tetrahymena, one in each replication origin (type IA and IB) 

and two situated at the promoter region (type IC and ID; (Figure 1.8). It has been shown 

that mutations within or downstream of a type element cause rDNA minichromosome 

maturation or maintenance defects (rmm mutant). Strains containing rmm mutant alleles 

present single base mutations and are defective in one of these two mechanisms but not 

both(Kapler & Blackburn, 1994; Yaeger et al., 1989) As example, rmm3 mutant is able 

to complete development, but exhibit defects in vegetative propagation of the rDNA 

chromosome (Gallagher & Blackburn, 1998). This phenotype is only evident when rmm 

mutants are placed in competition with wild-type rDNA alleles. Some of these mutations 

(rrm1, rmm4, and rmm7) map to the type IB element found in the D2 region (Larson et 

al., 1986; Yaeger et al., 1989) while others (rmm3 and rmm8) are found in the type IC 

and ID elements in the promoter region (Gallagher & Blackburn, 1998). 

 Analysis of mutants with alteration at the promoter proximal type I elements 

reveal that type IC and ID elements are part of the rDNA promoter, and consequently 

regulate rRNA transcription as well as rDNA replication (Gallagher & Blackburn, 1998; 
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Pan & Woodson, 1998). However, mutations in this region affect either replication or 

transcription suggesting that these processes may be controlled by different DNA 

binding factors.  

 Type I elements have also been shown to regulate DNA replication fork 

movement by causing forks to arrest transiently at specific, conserved nearby PSEs 

(MacAlpine et al., 1997). This arrest in replication fork movement occurs in an 

orientation-dependent manner. Together these results indicate that type I elements 

regulate replication initiation, elongation of replication forks, and rRNA transcription.  

 Other phylogenetically conserved sequences are the pause site elements (PSE). 

Three PSE are found in the rDNA replicon and coincide with sites of transient 

replication fork arrest (MacAlpine et al., 1997). PSE is a 52 base pair sequence and 

contain three blocks of conserved sequence separated by two spacers. PSE1 and PSE2 

reside in D1 and D2 respectively and map to the 5'-border of the nucleosome-free 

regions of the two DNA replication origins (Figure 1.8), while PSE3 is promoter-

proximal, but is not part of the minimal rRNA promoter (Miyahara et al., 1993). 

However, PSE3 has been shown to be essential for DNA replication since the 

replacement of its sequences disrupts the ability to maintain rDNA molecules that are 

transformed into the developing Tetrahymena (Saha et al., 2001).  

 Recently, the first two non-rDNA replicon were described in Tetrahymena and 

named ARS1-A and ARS1-B of 700 and 1,200 base pair respectively (Donti et al., 

2009). Non-rDNA ARS lacks the phylogenetically conserved sequences present at the 

rDNA. Furthermore, no significant sequence similarity exists between ARS1-A and –B, 
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resembling somehow the case in higher eukaryotes, where no sequences are conserved 

between origins. 

 

Trans-acting factors for Tetrahymena rDNA replication  

 Tetrahymena thermophila (Tt) ORC is a high molecular multisubunit complex 

which binds to type I elements in an ATP dependent and sequence specific manner 

(Mohammad et al., 2003; Mohammad et al., 2007). One of the unique features of TtORC 

is that it contains an integral RNA subunit that uses Watson-Crick base pairing to bind to 

the T-rich strand of the type I element (Mohammad et al., 2003; Mohammad et al., 

2007). The ORC RNA subunit, 26T RNA, corresponds to the terminal 282 nucleotides 

(nt) of 26S rRNA, and mutations that perturb RNA-DNA base pairing disrupt rDNA 

origin recognition and activation (Mohammad et al., 2003; Mohammad et al., 2007). 

Furthermore, TtORC also regulates activation of non-rDNA origins (Donti et al., 2009). 

Since non-rDNA origins do not contain sequences similar to type I element, this suggest 

that TtORC utilizes a different mechanism for targeting to non-rDNA origins in 

Tetrahymena.  

 Type I elements are also recognized by other single-stranded binding factors, 

called TIFs, three distinct type I element binding factors (TIF1-3) have been identified in 

Tetrahymena extracts using electrophoretic mobility shift assays (Mohammad et al., 

2000; Mohammad et al., 2003). Each of these binding activities appears to be 

independent, since those binding activities are differentially regulated during 

development and the cell cycle. Furthermore, the differentially regulated expression of 
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these factors suggests that they compete for type I binding in vivo (Mohammad et al., 

2000).  

 Tif2p is an 85 kDa protein that binds to both the A-rich and T-rich strands of the 

type I element. The binding activity of Tif2p increases in cells undergoing vegetative 

replication or rDNA gene amplification (Mohammad et al., 2000). Tif3p is a 32 kDa 

protein that also binds to both the A-rich and T-rich strands of the type I element. 

Binding activities of Tif3p increase notably in extract prepared from starved cells. 

However, binding activity of Tif3p is lost when cells are growing vegetatively, 

suggesting that it may play a role as a negative regulatior of rDNA replication in adverse 

environmental conditions (Mohammad et al., 2000; Saha et al., 2001).   

 Tif1p is a 21 kDa protein that forms a homotetramer in vivo. Tif1p binds 

independently A-rich or T-rich single-strand DNA of the type I element, suggesting that 

it may stabilize unwound DNA in these regions (Saha & Kapler, 2000). Tif1p also binds 

the essential PSE, suggesting an important role in the regulation of DNA replication. 

Furthermore, in vivo footprinting analysis revealed that Tif1p regulates the occupancy of 

origin and promoter proximal type I element in vivo, consistent with a role in the 

regulation of replication initiation and possible rRNA transcription (Saha et al., 2001). 

Additionally, strains that are depleted from TIF1 replicate the rDNA precociously in S 

phase. These findings suggest that Tif1p play an inhibitory role in the replication of 

rDNA minichromosome (Morrison et al., 2005). Morrison and colleagues also showed 

that Tif1p serves a more global role in both MIC and MAC and is required to maintain 

the integrity of the mitotic MIC chromosomes and for proper division of the amitotic 
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MAC (Morrison et al., 2005). The remaining chapters will form my dissertation studies 

of Tif1p and unexpected features of Tetrahymena DNA damage response. 
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CHAPTER II 

 

TIF1 ACTIVATES THE INTRA-S PHASE CHECKPOINT RESPONSE IN THE 

DIPLOID MICRONUCLEUS AND AMITOTIC POLYPLOID 

MACRONUCLEUS OF TETRAHYMENA* 

 

Overview 

 The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA 

replication and is required globally for proper S phase progression and division of 

the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards 

chromosomes from DNA damage in the mitotic micronucleus and amitotic 

macronucleus. Tif1p localization is dynamically regulated as it moves into the micro- 

and macronucleus during the respective S phases. TIF1 disruption mutants are 

hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage 

and intra-S phase checkpoint arrest in all examined eukaryotes. TIF1 mutants 

incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing 

all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S phase 

____________ 
*Reprinted with permission from “Tif1 Activates the Intra-S Phase Checkpoint response 
in the Diploid Micronucleus and Amitotic Polyploid Macronucleus of Tetrahymena” by 

J. Sebastian Yakisich, Pamela Y. Sandoval, Tara L. Morrison and Geoffrey M. Kapler, 
2006. Molecular Biology of the Cell, 17, 5185-5197, Copyright [2006] by Molecular 
Biology of the Cell. 



 

 

44 

44 

checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an 

inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-

challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 

overexpression, indicating the involvement of TIF1 in checkpoint activation. Although 

aberrant micro- and macronuclear division occurs in TIF1mutants and caffeine-treated 

wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose 

that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint 

responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus. 

 

Introduction 

 The coordinate regulation of nuclear and cytoplasmic cell cycles ensures that 

daughter cells receive a complete complement of chromosomes. Consequently, 

perturbations in DNA replication, chromosome segregation, or nuclear division arrest the 

cell cycle before cytokinesis. Recent studies have identified an intra-S phase DNA 

damage checkpoint that protects chromosomes from lesions associated with the 

elongating replication fork (for review, see Lambert and Carr, 2005). Sources of 

genotoxic stress, such as the chemical mutagen methylmethanesulfonate (MMS) or 

depletion of DNA precursors with hydroxyurea (HU), trigger the activation of the 

damage sensor/transducer protein Ataxia Telangectasia and RAD3-related (ATR) 

(MEC1 in Saccharomyces
 
cerevisiae). This phosphatidylinositol 3 (PI3)-kinase–

related protein kinase initiates a signaling cascade by phosphorylating downstream 

effector kinases Chk1p (in mammals), Rad53p (Chk2p) in budding yeast, and additional 
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regulatory proteins (Foss, 2001; Gilbert et al., 2001; Tanaka and Russell, 2001). 

Uninitiated replication origins are repressed, and elongating replication forks are 

stabilized until the impediment to DNA replication is resolved by recombination or 

repair. Inactivation of the damage checkpoint is lethal in all examined eukaryotes. 

 The coordinate regulation of nuclear and cytoplasmic cell cycles is subjected to 

unusual challenges in ciliated protozoa, such as Tetrahymena thermophila, because 

members of this ancient lineage contain two nuclei within a single cytoplasm. 

These nuclei serve nonoverlapping roles and harbor chromosomes that are organized and 

segregated in fundamentally different ways (for review, see Karrer, 2000). The 

transcriptionally silent, diploid micronucleus functions as the germline nucleus and 

contains five chromosome pairs that are transmitted by conventional mitosis and meiosis. 

In contrast, the transcriptionally active, polyploid ( 45 C) macronucleus has >250 

distinct chromosomes that lack centromeres and segregate by a poorly understood 

amitotic mechanism.The macronuclear genome is not inherited after 

conjugation. Instead, a new macronuclear "anlage" is generated by differentiation of a 

toti-potent postzygotic micronucleus in progeny cells. Macronuclear chromosomes are 

produced by site-specific fragmentation and rearrangement of their micronuclear 

precursors. With the exception of the 21-kilobase rDNA minichromosome, which is 

amplified to 9000 copies, macronuclear chromosomes attain a copy number of 45 C. 

 Once macronuclear development is complete, T. thermophila divides by binary 

fission. Because the timing of micro- and macronuclear DNA replication and division 

are offset in the cell cycle, these nuclei must respond to different cell cycle cues. 
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Although macronuclear chromosomes segregate randomly, chromosome copy number is 

maintained in a manner somewhat analogous to bacterial plasmids (for review, see 

Dobbs et al., 1994). The imprecision of amitotic macronuclear division raises the 

possibility that an ATR-like intra-S phase checkpoint is dispensable for macronuclear 

chromosome homeostasis. Furthermore, unconventional mechanisms have evolved to 

compensate for the associated genic imbalances. Partial endoreplication cycles and the 

elimination of "excess DNA" in the form of macronuclear extrusion bodies maintain 

macronuclear DNA content and gene copy number within a narrow range (Cleffmann, 

1968; Doerder and Debault, 1975; Bodenbender et al., 1992). 

 Because these compensating pathways do not operate in the diploid, mitotic 

micronucleus, one would predict that the micronucleus uses conventional DNA damage 

checkpoint pathways to maintain genome stability. One argument against this idea is the 

fact that micronuclear aneuploidy does not arrest vegetative cell cycle progression. 

"Functionally amicronucleate," hypo-diploid "star" strains divide normally and have an 

unlimited life span (Allen, 1967), and some related tetrahymenid species lack 

a micronucleus. The integrity of the micronucleus only comes into play during 

conjugation, because it contains the sole source of transmitted nuclear genes. 

 We obtained preliminary evidence for a macronuclear S phase checkpoint during 

our analysis of tif1-1::neo mutants, which among other things are partially defective in 

macronuclear S phase progression (Morrison et al., 2005). TIF1-deficient cells exhibit a 

prolonged macronuclear S phase, that once complete, is followed by a further delay in 

macronuclear division and cytokinesis (Morrison et al., 2005). Whereas macronuclear 
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divisions are frequently aberrant in TIF1 mutants, the observed defect in S phase 

progression and subsequent delay in macronuclear division and cytokinesis argue that 

macronuclear and cytoplasmic cell cycles are coordinately regulated. Tif1p binds 

essential cis-acting replication determinants in the rDNA origin, in vitro and in vivo 

(Saha and Kapler, 2000; Saha et al., 2001) and was recently shown to regulate rDNA 

origin activation, functioning in a repressive capacity to prevent precocious initiation 

during macronuclear S phase (Morrison et al., 2005). Because macronuclear S phase is 

prolonged in Tif1p-deficient strains, Tif1p might regulate initiation and/or the elongation 

of replication forks in other (non-rDNA) macronuclear chromosomes. 

 Here, we show that Tif1p is required to maintain genome integrity in the mitotic 

germline micronucleus. We demonstrate that wild-type 
T. thermophila elicits an intra-S 

phase DNA damage checkpoint response that has the hallmarks of the highly conserved 

ATR-dependent pathway. Furthermore, we show that the intra-S phase 

checkpoint pathway promotes chromosome homeostasis in both the diploid mitotic 

micronucleus and the polyploid amitotic macronucleus. Most significantly, we 

demonstrate that Tif1p is required to activate the intra-S phase checkpoint response in 

both nuclear compartments. These observations, in conjunction with the 

previously described role for Tif1p at the rDNA origin (Morrison et al., 2005), suggest 

that this protein contributes to chromosome homeostasis through its action at origins and 

at elongating replication forks. 
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Material and methods 

Manipulation of T. thermophila strain 

 The relevant features of the micro- and macronucleus in wild-type and TIF1-

deficient strains are listed in Table 2.1. Standard methods were used for strain 

propagation, mating, and selection or screening for drug-resistant markers [100 µg/ml 

paromomycin (pm), 12.5% (wt/vol) 2-deoxygalactose (2-dgal), or 15 µg/ml 

cycloheximide (cycl); Sigma-Aldrich, St. Louis, MO] (Orias and Bruns, 1976). The 

homozygous tif1-1::neo null strain (TXk202), macronuclear TIF1/tif1-1::neo knockdown 

mutant (TXh48), and heterozygous TIF1/tif1-1::neo germline disruption strains (TXh102 

and TXh106) were generated previously by biolistic transformation with the tif1-1::btu1-

neo (neomycin phosphotransferase) disruption cassette (Morrison et al., 2005). The latter 

three strains were serially propagated in increasing concentrations of pm to obtain 

phenotypic assortants with elevated levels of the tif1-1::neo disruption and diminished 

amounts of the wild-type gene in the transcribed polyploid macronucleus (wild-type 

macronuclear TIF1 DNA copy number relative to untransformed control: TXh48, 

25%;TXh102, 20%; and TXh106, 20%). The homozygous null strain TXk202 

eventually senesced and repeated attempts to generate another homozygous null strain 

were unsuccessful. The macronuclear anlage cotransformant TAM101 is heterozygous 

for the tif1–2allele that contains 6xhis/5xmyc epitope tag on its carboxy terminus (Brown 

et al., 1999). Cotransformation of the developing macronucleus and screening for partial 

replacement of wild-type macronuclear TIF1 were performed as described previously 

(Morrison et al., 2005). 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#T1
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Table 2.1 T. thermophila strains used. chx1-1, cycloheximide-resistance; gal1-1, 2-deoxygalactose-

resistance; tif1-1::neo, paromomycin resistance conferred by cadmium-inducible neomycin 

phosphotransferase transgene targeted to the TIF1 locus; and ts29, recessive temperature-sensitive allele at 

locus of unknown function.a TIF1gene disruption: the MTT1neoBTU1transgene was introduced into the 

macronuclear anlagen or premeiotic germline micronucleus (note the micronuclear genotype indicates 

whether the strain is a [germline] micronuclear and macronuclear anlagen transformant). Partial 

replacements contain wild-type TIF1 macronuclear gene dosages that are 20–25% relative to wild type 

(macronucleus = 45 C). b Macronuclear anlagen cotransformants carrying his-myc epitope-tagged TIF1 

and MTT1neoMTT1 at the respective TIF1 and MTT1 loci. c Heterokaryon strains. 
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Micronuclear cytology in mating cells  

 For mating experiments, wild-type strains (CU427 and CU428) were 

distinguished from TIF1 knockout (TXk202), knockdown (TXh48), or A* strains by 

incorporation of MitoTracker dyes (Invitrogen, Carlsbad, CA). Starved vegetative cell 

cultures were incubated overnight with 0.1 µg of MitoTracker Green FM (wild type) or 

MitoTracker Red-CMXRos (mutants). Cells were subsequently mated at a concentration 

of 2 x 105 cells/ml. One-milliliter aliquots were harvested at defined intervals, stained 

with 0.1 µg/ml 4',6'-diamidino-2-phenylindole (DAPI; Sigma-Aldrich), and examined by 

fluorescence microscopy (Morrison et al., 2005). The functionally amicronucleate A* 

strain served as a reference strain for aberrant development. This strain contains a DAPI-

staining micronucleus that fails to transmit genetic information to progeny. Vegetative 

nuclei were also visualized in living cells withApoFluor (0.001% acridine orange and 5 

µg/ml Hoechst 33342; Sigma-Aldrich). 

 Immunocytological studies were performed using antibodies directed against 

human Rad51p, 5'-bromo-2'-deoxyuridine (BrdU), or the myc-epitope tag in the Tif1-2p 

fusion protein. Fixed cells were incubated with antibodies before mounting onto slides 

(Morrisonet al., 2005) or mounted before antibody incubation (Loidl and Scherthan, 

2004). For cell cycle studies, vegetative cultures were starved, refed, and harvested at 

30-min intervals as described previously (Mohammad et al., 2003). 
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Molecular biology techniques 

 Standard molecular biology techniques, including genomic DNA isolation, 

polymerase chain reaction (PCR), and Northern blottingwere performed as described 

previously (Mohammad et al., 2000; Saha et al., 2001). Micronuclear genome instability 

was examined with PCR primers that span chromosome breakage sequence elements that 

demarcate the sites of chromosome fragmentation in the developing macronucleus 

(Hamilton et al., 2005; Yakisich and Kapler, 2006). Total cellular RNA was prepared 

using an RNAeasy mini-kit (QIAGEN, Valencia, CA) according to the manufacturer's 

recommendations, resolved on formaldehyde agarose gels, and hybridized to random 

primer radiolabeled RAD51 or TIF1 coding region probes (Morrison et al., 2005). 

 For Western blot analysis, protein samples were prepared by direct lysis in 1x 

Laemmli buffer (5 x 104 cells), resolved on a 12% SDS-PAGE gel, and transferred to a 

polyvinylidene difluoride membrane (Millipore, Billerica, MA) according to the 

manufacturer'srecommendations. Blocked membranes were incubated overnight at 4°C 

with mouse anti-human Rad51p polyclonal antiserum (1:2500 dilution; NeoMarkers, 

Fremont, CA) or rabbit polyclonal antiserum directed against the myc epitope tag 

(1:2500 dilution;Delta Biolabs, Gilroy, CA) to monitor Tif1p. Membranes were washed 

and then incubated with secondary anti-mouse (1:3000) or anti-rabbit (1:5000) antibody 

coupled to horseradish peroxidase (Jackson ImmunoResearch Laboratories, West Grove, 

PA) for 3 h at 4°C. After washing twice with H2O and once with phosphate-buffered 

saline/0.05%Tween 20 (15 min each) and five times with H2O (5 min each), the 

membranes were developed using enhanced chemiluminiscence (Millipore). Human 
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Rad51p antibody detects a single DNA damage-inducible polypeptide of the size 

predicted for T. thermophila Rad51p (34 kDa; EMBL accession no.AF064516) 

(Campbell and Romero, 1998; Loidl and Scherthan, 2004). 

 

DNA damage and S phase checkpoint analysis 

 For studies involving the DNA-damaging agent MMS, wild type (CU428) or 

TIF1 knockdown (TXh48) cultures were grown to a concentration of 1 x 105 cells/ml. 

Cultures (30 ml) were treated with varying concentrations of MMS (Sigma-Aldrich). 

Cells were grown at 30°C for 1 h before a 30-min pulse labeling with 100 µg/ml BrdU. 

Samples (15 ml) were harvested and prepared for BrdU immunofluorescence analysis 

with mouse monoclonal anti-BrdU antibody (GE Healthcare, Little Chalfont, 

Buckinghamshire, United Kingdom), and rhodamine-conjugated goat anti-mouse 

antibody (Jackson ImmunoResearch Laboratories) (Morrison et al., 2005). Secondary 

antibody treatment and DAPI staining were performed as noted above. MMS time 

courses were also used to examine Tif1p and Rad51p localization and abundance. 

 The intra-S phase checkpoint was examined by treating cells with HU and/or 

caffeine (Sigma-Aldrich). HU inhibits ribonucleotidereductase and depletes dNTP stores 

in S phase, whereas caffeine inhibits the G1 checkpoint kinase Ataxia Telangectasia 

Mutated(ATM) and intra-S phase checkpoint kinase ATR in all examined eukaryotes 

(for review, see Lambert and Carr, 2005). The effectof wortmannin (WM), which 

preferentially inhibits conventional (non-ATM/ATR) PI3-kinases, was also tested 

(Yakisich and Kapler, 2004). Stock solutions of HU and caffeine were prepared in water. 

http://www.molbiolcell.org/cgi/external_ref?access_num=AF064516&link_type=GEN
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Wortmannin stocks were prepared in dimethyl sulfoxide. Mock treatments involved the 

addition of drug vehicle alone to culture media. HU dose–response curves were 

generated by measuring tritiated thymidine incorporation into trichloroacetic acid-

insoluble material and by assessing cell cycle progression with flow cytometry to 

determine the ID50 (Morrison et al., 2005). 

 Log phase cultures were subsequently grown for 12 h in HU-containing media to 

induce cell cycle S phase arrest (or HU + caffeine), washed twice with 10 mM Tris, pH 

7.5, and then resuspended in drug-free media to measure culture outgrowth, viability of 

treated cells, and cell division during the first cell cycle after drug removal. Cell viability 

was determined by serially diluting cells into 100 µl of growth media in 96-well 

microtiter dishes immediately after drug treatment. The number of confluent wells 

(clonally derived lines) was recorded 4 d later in plates that contained <33% positive 

wells and related to the number of input cells in the relevant dilution. For cell division 

analysis, DAPI-stained cells were examined microscopically at defined intervals after 

drug treatment and removal. The input cells for the latter analysis were synchronized by 

starvation and refeeding before the addition of HU and/or caffeine (Mohammad et al., 

2003). The cell division index corresponds to the percentage of cells exhibiting a 

cytokinetic furrow, as determined by light microscopy. 
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Results 

Tif1p is required for the maintenance of a functional micronucleus 

 The previously described array of macronuclear aberrations associated with 

Tif1p-deficient Tetrahymena (Morrison et al., 2005) indicates that this protein plays a 

global role in macronuclear chromosome biology. Preliminary studies suggested that 

Tif1p functions in the diploid micronucleus as well, because the intensity of 

micronuclear DAPI staining was reduced in Tif1-1::neo mutant strains (Morrison et al., 

2005). To investigate the contribution of Tif1p to micronuclear chromosome stability, 

we monitored the transmission of genetic markers from TIF1-deficient parents to 

progeny. First, we mated two heterozygous tif1-1::neo/TIF1 mutants to one another. 

Before mating, strains TXh102 and TXh106 were propagated in pm for >100 fissions to 

allow cells to reach sexual maturity and to select for phenotypic assortants with high 

levels of the tif1-1::neo disruption allele in the amitotic polyploid macronucleus. Mature 

cells were mated, and 48 clonal lines were established by plating cells at limiting 

dilutions 24 h after initiating the mating. 

 If the micronucleus of tif1-1::neo/TIF1 mutants is intact and low levels of Tif1p 

expression do not effect meiotic chromosome transmission, then one of four progeny 

should be homozygous wild type (12/48clones). However, because the pairing efficiency 

of this mating was 80%, the predicted frequency of pm-sensitive progeny is 20% (9.6 

clones). The 48 lines were expanded and tested for pm resistance and sexual immaturity. 

None of the clonal lines were pm sensitive (Table 2.2, cross 1), suggesting that

http://www.molbiolcell.org/cgi/content/full/17/12/5185#T2
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Table 2.2 Chromosome transmission in TIF1 heterozygote and heterokaryon strains. Resistance to 2-

deoxygalactose, cycloheximide, or paromomycin is encoded in the micronucleus of SB210 (gal1-1), 

SB1969 (chk1-1), and TIF1:tif1-1::neo heterozygotes, respectively. For cross 1, n is the number of clonal 

progeny tested for pm resistance. For cross 2, n is the number of small-scale matings in which the 

nonclonal progeny pool was tested for pm resistance. a The predicted frequency for pms progeny is 25%. 

However, because the pairing efficiency in this cross was 80%, the expected frequency of pms clones is 

20% (9.6 clones of 48 rather than 12 of 48). 
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they failed to transmit the wild-type allele or had aborted development altogether and 

consequently retained their parental macronucleus. The second prediction was confirmed 

in a subsequent cross, in which a tester strain was immediately mated to the presumed F1 

progeny (at 20–30 fissions) to determine whether they were juveniles or sexually 

mature. True progeny require at least 70 fissions before they can form mating pairs (for 

review, see Karrer, 2000). All 48 clones formed mating pairs in this cross, indicating that 

they did not contain a new macronucleus. These results are consistent with the presence 

of a severely compromised micronucleus in heterozygous TIF1/tif1-1::neo mutants. An 

alternative possibility is that the observed macronuclear retention reflects a maternal 

requirement for Tif1p during new macronuclear anlage development. To distinguish 

between these possibilities, we directly mated TIF1/tif1-1::neo mutants to a wild-type 

tester strain. Because genetic exchange is reciprocal, half of the progeny that inherit the 

tif1-1::neo allele will undergo macronuclear development in a wild-type cytoplasm. 

Eighty clonal lines were established from two different heterozygous tif1-1::neo/TIF1 

transformants (TXh102 and TXh106), and subsequently mated to the wild-type 

heterokaryon strain SB210, which contains a 2-deoxygalactose (2-dgal)–sensitive 

macronucleus and is homozygous for 2-dgal resistance in the transcriptionally silent 

micronucleus (1000 cells/mating). True progeny were selected en mass for 2-dgal 

resistance and then screened for pm resistance, conferred by the introduced tif1-1::neo 

disruption allele. Because many progeny were generated in each cross, all of the cultures 

should include pm-resistant progeny if micronuclear chromosomes from the tif1-

1:neo/TIF1 parent were successfully transmitted. This was not the case, because all of 
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the 2-dgal–resistant progeny died in pm (Table 2.2, crosses 2a and 2b). This result, in 

conjunction with the aborted development observed in cross 1, argues that the TIF1/tif1-

1-1::neo micronucleus underwent extensive genome instability during vegetative 

propagation. 

 

Aberrant meiosis in Tif1p-deficient cells 

 As cells enter meiosis, the spherical micronucleus migrates away from the 

macronucleus and elongates into a crescent that encircles a significant portion of the 

macronucleus. TIF1 mutants generate a very small crescent micronucleus that stains 

weakly with DAPI relative to wild-type controls (Morrison et al., 2005). Although these 

observations and genetic studies (Table 2.2) suggest that micronuclear DNA is lost, 

examination of the meiotic program provides more definitive information on the fate of 

germline chromosomes. Consequently, we mated homozygous tif1-1::neo and 

heterozygous TIF1/ tif1-1::neo mutants with a wild-type strain and compared meiotic 

progression, mating pair synchrony and chromosome composition to a control mating 

involving two wild-type strains. Cells were examined by DAPI staining, before prophase 

I through anaphase II. 

 In contrast to a mating involving two wild-type strains (our unpublished data), 

the progression of tif1-1::neo/TIF1 mutants through meiosis frequently lagged behind the 

wild-type partner (Figure 2.1A, micrographs i–iii). In mating pairs in which the wild-type 

micronucleus revealed multiple, extended metaphase or anaphase chromosomes, the tif1-

1::neo/TIF1 partner displayed one or two condensed micronuclear DNA masses (Figure 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#T2
http://www.molbiolcell.org/cgi/content/full/17/12/5185#T2
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
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2.1A, micrographs i and ii, arrows). The scarcity of anaphase structures in Tif1p-

deficient mating partners suggested that the residual chromosomes failed to segregate. 

 Asynchronous meiosis and the apparent loss or fusion of micronuclear 

chromosomes is a hallmark of micronuclei derived from the functionally amicronucleate 

star strains, which contain a cytologically visible, but genetically compromised 

micronucleus that fails to transmit genetic information to progeny (Allen, 1967). Both 

tif1-1::neo/TIF1 and A* strains exhibited this phenotype in crosses with wild-type tester 

strains (our unpublished data). In rare instances where a tif1-1::neo/TIF1 mutant 

micronucleus seemed to complete meiosis II, qualitative differences in the DAPI staining 

intensity of the four postmeiotic pronuclei were evident, suggesting that meiotic 

chromosome segregation was impaired (Figure 2.1A, micrograph iv, arrows). Whereas 

DAPI is not ideally suited for quantification, the often diminutive and highly variable 

size of micronuclei (crescents and pronuclei) and meiotic chromosomal masses supports 

the notion that micronuclear DNA content is diminished in the TIF1 mutant background. 

This prediction was subsequently borne out at the molecular level (see below). 

 Progressive micronuclear genome instability was evident in cytological studies of 

siblings derived from freshly established clone lines of the homozygous knockout strain 

TXk202. For example, when clonal line KO-C2 was mated with a wild-type partner 

(CU428), one mutant cell exhibited two large globular DNA masses during meiosis, 

whereas a sibling produced a single, more compact DNA mass (Figure 2.1B, 

micrographs i and ii).  

 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
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Figure 2.1 Cytogenetic evidence for micronuclear genome instability, developmental delay, and/or meiotic 

arrest in TIF1-deficient strains. The wild-type strain (CU428) was mated with TIF1mutants (TXh48 [KD, 

knockdown]; TXk202 [KO, knockout/null]), and mating pairs were examined at various times during 

development by DAPI fluorescent staining. Wild-type and mutant strains were prelabeled with 

MitoTracker Red and Green dyes, respectively, to identify each partner. (A) Meiotic aberrations in TIF1-

deficient strains. Meiotic stages: i, wild type: metaphase, mutant: prophase (?); ii, wild type: anaphase, 

mutant: prophase (?); iii, wild type: postmeiotic pronuclei, mutant: meiotic crescent or aberrant anaphase 

(?); and iv, wild type and mutant: postmeiotic pronuclei. Arrows point to mutant nuclei. (B) Comparative 

cytogenetic analysis of siblings cells in subcloned parental lines KO-C2 and KO-C3 derived from the tif1-

1::neo knockout strain TXh202. The newly generated clonal lines were briefly expanded and then mated 

with the wild-type strain CU428 to examine meiosis. Arrows point to condensed, micronuclear-derived 

DAPI-staining chromosomes in siblings within the same mating culture. Micrographs i and ii, 

representative tif1-1::neo/TIF1 knockout clone C2 siblings; micrographs iii and iv, representative tif1-

1::neo knockout clone C3 siblings.  
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 All siblings from the KO-C3 clone contained a single DAPI-staining 

micronuclear mass; however, the DAPI-staining intensity varied considerably (Figure 

2.1B, micrographs iii and iv). Thus, the sterility of TIF1 mutants is reflected by an 

apparent diminution in DNA mass, chromosome number, and aberrant meiotic cell cycle 

progression. It should be noted that the homozygous null strain TXh202 eventually 

senesced, suggesting that the long-term absence of Tif1p affects macronuclear genic 

balance as well. Repeated attempts to generate new homozygous null strains failed with 

freshly generated heterozygous germline transformants, even when selective pressure for 

the disruption allele was removed immediately after identifying transformants (our 

unpublished data). We conclude that partial Tif1p depletion has a greater effect on the 

function of the diploid micronucleus relative to the polyploid macronucleus. 

 

Molecular analysis of micronuclear chromosomes reveals ongoing genome 

instability 

 The genetic and cytological studies described above indicate that Tif1p is 

required for micronuclear chromosome transmission. To gain insight into the fate of 

chromosomes at the molecular level, we subjected 10 freshly generated subclones of 

strain Txh48 to PCR analysis with primer combinations that span sites for programmed 

DNA fragmentation of the five germline chromosomes in the developing macronucleus 

(Hamilton et al., 2005). These primer sets will only amplify products derived from intact 

micronuclear chromosomes. 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F1
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 All 10 examined subclones failed to amplify markers derived from the left (L) 

and right (R) arms of chromosomes 4 and 5 (Figure 2.2, early). The chromosome 2L 

marker was absent from all 10 clones as well; however, the 2R marker was retained, 

consistent with the formation of a double-strand break (DSB). These results suggest that 

chromosome arms and possibly entire chromosomes are missing. Heterogeneity was 

detected among the subclones for other markers (1L, 2R, and 3R), indicating that the 

stochastic loss of these markers occurred after the parental TXh48 strain was generated. 

When these lines were reexamined 250 fissions later, additional markers were missing 

(Figure 2.2, late). These results indicate that the micronucleus of sterile Tif1p-deficient 

strains is hypodiploid and undergoes progressive and massive DNA loss during 

vegetative cell divisions. 

 

Elevated levels of DNA damage in MMS-treated TIF1 mutants 

 The micronuclear and macronuclear chromosome transmission defects associated 

with a Tif1p deficiency suggest that both nuclei accumulate DNA damage at an elevated 

rate, even in the absence of exogenous genotoxic stress (Morrison et al., 2005; this 

work).To test this prediction, we first asked whether tif1-1 mutants were hypersensitive 

to the alkylating agent MMS, which mutagenizesDNA and promotes activation of the 

intra-S phase checkpoint response (Chang et al., 2002; Lupardus et al., 2002). BrdU 

incorporation was used to monitor the DNA damage response (Liu et al., 2003).  Log 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F2
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F2
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Figure 2.2 Micronuclear genome instability in TIF1-deficient T. thermophila. Ten clonal lines derived 

from the tif1-1::neo/TIF1 knockdown strain TXh48 were established and subjected to PCR analysis with 

primers sets that span sites for chromosome breakage sequence (CBS)-mediated chromosome 

fragmentation in the developing macronucleus. PCR primers derived from the right (R) and left (L) arms 

of all five micronuclear chromosomes were tested. 1–10, clonal TXh48 knockdown lines; WT, CU428. 

Early, 150 fissions after conferring resistance to high concentrations of pm (encoded by thetif1-1::neo 

disruption); late, 250 fissions later than "early". 
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phase wild-type and mutant cultures were exposed to various concentrations of MMS for 

1 h, pulse labeled for 30 min with BrdU, and examined by indirect immunofluorescence. 

Due to the close physical association of micro- and macronuclei throughout most of the 

vegetative cell cycle, definitive information was not obtained for the micronucleus. 

Therefore, we focused our attention on the macronucleus. 

 Untreated wild-type and mutant strains exhibited a comparable percentage of 

BrdU-positive macronuclei in log phase cultures,indicating a similar cell cycle 

distribution in asynchronous populations (Table 2.3). MMS treatment inhibited BrdU 

incorporation in a dose-dependent manner in both genetic backgrounds; however, partial 

and complete inhibition occurred at lower MMS concentrations in the tif1-1::neo/TIF1 

mutant background (Table 2.3). For example, Tif1p-deficient cells showed a marked 

decrease in BrdU-positive macronuclei in 0.06% MMS, whereas comparable inhibition 

occurred at a threefold higher concentration in the wild-type strain (0.18% MMS). This 

concentration abolished BrdU labeling in the mutant. These results raise several 

nonmutually exclusive possibilities. First, the elevated basal level of DNA damage in the 

TIF1 mutant lowers the threshold for exogenous damaging agents. Second, the TIF1 

mutant fails to activate a checkpoint response, leading to the collapse of replication forks 

at DNA adducts. Third, the TIF1 mutant is defective in a repair or recombination 

pathway that removes or bypasses the lesion. 

 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#T3
http://www.molbiolcell.org/cgi/content/full/17/12/5185#T3
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Table 2.3 MMS DNA damage response. 
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Differential regulation of TIF1 and RAD51 in MMS-treated cells 

 Intrinsic and MMS-induced DNA damage can lead to the formation of DSBs 

during S phase. ATR activates the double-strand break repair response by 

phosphorylating Rad52p, which acts in concert with replication protein A (RP-A) and 

the RecA homologue Rad51p to promote homology-mediated repair at DSBs or stalled 

replication fork (for review, see Lambert and Carr, 2005). Romero and colleagues 

previously showed that RAD51 gene expression is induced by MMS and UV light 

(Campbell and Romero, 1998; Smith et al., 2004a), and heterologous antibodies have 

been used to monitor T. thermophila
 Rad51p abundance and localization (Loidl and 

Scherthan, 2004). 

 To assess DNA damage in tif1-1 mutants and examine the integrity of the repair 

response, we first assayed the accumulation ofRAD51 mRNA and protein in MMS-

treated cells. The basal levels of RAD51 mRNA were barely detectable by Northern blot 

analysis in untreated wild-type and mutant strains (Figure 2.3A). The steady-state RNA 

level increased in response to MMS in both backgrounds and was approximately twofold 

higher in the tif1-1 mutant (range 0.03–0.18% MMS). RAD51 mRNA levels dropped 

precipitously at high MMS concentrations (0.24% MMS and above) (Figure 2.3A); 

however, microscopic examination revealed that most cells had lost motility and were 

dying. Similar responses were observed at the protein level: Rad51p was induced by 

MMS and consistently higher in the mutant (Figure 2.3B, 1-h induction). 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
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Figure 2.3 Regulation of RAD51 and TIF1 by MMS. (A) RAD51 Northern blot analysis after a 1-h 

exposure to MMS [0–0.24% (vol/vol)]. Top left, hybridization with a RAD51coding region probe. Bottom 

left, ethidium bromide staining of total RNA before transfer to GeneScreen Plus membranes (New 

England Biolabs, Beverly, MA). Right, graphic representation of RNA hybridization signals quantified on 

a PhosphorImager (Bio-Rad, Hercules, CA). Dotted line, wild type (CU428); solid line, TIF1 knockdown 

mutant (TXh48). (B) Western blot analysis of Rad51p in wild-type and mutant whole cell lysates (1-h 

MMS treatment). (C) Northern blot analysis of TIF1 mRNA in MMS-treated wild-type cells. Strain 

CU427, same MMS treatment regimen as in C. Probes, TIF1 and origin recognition complex, subunit 2 

(ORC2) protein-coding regions. Bottom, ethidium bromide staining of RNA preparations for 

normalization. (D) Rad51p and Tif1p levels in mock and MMS-treated cells (0.06% MMS; 1–4 h). The 

Tif1p Western blot probe was directed against the myc epitope in the tif1-2–tagged strain TAM101. 

Membranes were stained with Ponceau S to compare the amount of total protein loaded in each lane. 

RAD51 transcript level
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 Because 0.06% MMS induced the most robust RAD51 response, we examined 

TIF1 mRNA and protein levels across a 4-h interval at this MMS concentration. 

Northern blot analysis showed a rapid and substantial decline in TIF1 mRNA following 

the addition of MMS, whereas ORC2 mRNA levels were unaffected (Figure 2.3C). This 

decline may reflect the arrest of cell cycle progression,because TIF1 mRNA levels peak 

before the onset of macronuclear S phase, well before the peak for maximal TIF1 in vitro 

DNAbinding activity (Morrison et al., 2005). 

 To monitor Tif1p, we transformed Tetrahymena with a TIF1 derivative encoding 

a reiterated his-myc epitope tag on the carboxy terminus (tif1-2). The tagged allele was 

targeted to the endogenous TIF1 locus during macronuclear development (Cassidy-

Hanleyet al., 1997), generating a partial gene replacement in which the transgene was 

under the control of its native promoter. Transformants expressing an unlinked marker 

were screened for epitope-tagged tif1-2 by PCR and by Western blotting (our 

unpublished data). Cotransformant strain TAM101 was analyzed further. 

 To best compare the TIF1 and RAD51 S phase responses, we synchronized wild-

type and TIF1-tagged strains by growing cultures to stationary phase and briefly starving 

cells for 8 h before refeeding in the absence or presence of MMS (0.06%, 0- to 4-h time 

course). Western blot analysis showed modest and comparable increases in Rad51p and 

Tif1-2p protein levels over time in mock-treated cells, consistent with a single round of 

cell division and hence a doubling in cell number (Figure 2.3D, compare signal to mock 

controls). Whereas Rad51 protein levels increased significantly over this time interval in 

MMS-treated cells, Tif1-2 protein levels remained constant. A doublet was detected at 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
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the expected molecular weight for tagged Tif1-2p, suggesting that this protein is 

subjected to posttranslational modification. 

 Indirect immunofluorescence was then used to examine the subcellular 

localization of Tif1p. Concurrent staining of the macronucleus and cytoplasm was 

observed in a subpopulation of wild-type cells; however, Tif1p was markedly diminished 

in the macronucleus in most cells (Figure 2.4B and C). To our surprise, the Tif1p 

immunofluorescence signal was significantly reduced in MMS-treated cells (Figure 

2.4B, 0.06% MMS for 4 h). In contrast, Rad51p, which was not detected in untreated 

cells, produced a robust micro- and macronuclear immunofluorscence signal in MMS-

treated cells (Figure 2.4A). Because Tif1p levels do not decline (Figure 2.3D), this result 

raises the possibility that the myc epitope tag might be partially masked after DNA 

damage. 

 Localization of Rad51p to the micronucleus was previously reported during 

meiosis (Loidl and Scherthan, 2004), whereas a separate study of vegetative cells 

reported Rad51p staining of just the macronucleus in MMS-treated cultures (Campbell 

and Romero, 1998). The discrepancy in vegetative micronuclear staining between our 

work and the previous study may reflect the more robust reactivity of heterologous 

antibodies that were used in our analysis. The cumulative RAD51 data suggest that 

MMS promotes the formation of DSBs in both nuclear compartments and indicate that 

the micro- and macronucleus elicit comparable responses. 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
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Figure 2.4 Immunolocalization of Rad51p and Tif1p in control and MMS-treated cells. (A) Rad51p 

immunolocalization in wild-type cells (0.06% MMS; 4 h). Red, Rad51p immunofluorescence; blue, DAPI. 

Small arrow, micronucleus, large arrow, macronucleus. (B) Immunolocalization of Tif1p in asynchronous 

control and MMS-treated cultures (strain TAM101; 0.06% MMS, 4 h). Red, Tif1p immunofluorescence; 

blue, DAPI. (C) Cell cycle localization of Tif1p. Strain TAM101 was synchronized by starvation and 

refeeding and assayed at 30-min intervals for TIF1p localization (red, TIF1p immunofluorescence; blue, 

DAPI) and DNA content (flow cytometry). Alternating time points are shown. (D) Immunolocalization of 

Tif1p late in the cell cycle (240 min). Note the micronuclear localization of Tif1p in micrographs i and iii 

and exclusion from dividing macronuclei in micrograph ii. 
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Cell cycle regulated localization of Tif1p 

 The heterogeneous pattern of Tif1p staining in asynchronous cultures raised the 

possibility that nuclear localization of this protein might be cell cycle regulated. To 

address this possibility, TAM101 cells were synchronized by starvation and refeeding, 

and then they were harvested at 30-min intervals for flow cytometry and 

immunofluorescence analysis (Figure 2.4C). Dynamic changes in micro- and 

macronuclear localization were observed across the cell cycle. Tif1p localized 

exclusively to the cytoplasm in starved cells. Before the onset of macronuclear S phase 

(Figure 2.4C, 60 min), a fraction of Tif1p associated with the macronucleus, forming 

intensely staining perinuclear foci. Diffuse, homogeneous macronuclear staining was 

observed during the peak interval for macronuclear DNA replication (Figure 2.4C, 120–

180 min), and a return to punctate perinuclear staining was seen in a subpopulation at 

late S phase cells (Figure 2.4C, 180 min), suggesting that Tif1p relocalizes to the 

periphery in G2. The mixed localization and heterogeneous flow cytometry profiles at 

240 min are indicative of increased asynchrony. 

 Previous studies showed that micronuclear and macronuclear S phases are offset, 

with micronuclear DNA replication occurring later in the cell cycle (for review, see 

Karrer, 2000). Tif1p localized to the micronucleus at late time points in the cell cycle 

(i.e., 240 min), consistent with a role during micronuclear S phase. Cells that displayed 

intense micronuclear staining exhibited punctate perinuclear staining of the replicated 

but an undivided macronucleus (Figure 2.4D, micrograph i). Tif1p was present in both 

postmitotic micronuclei, indicating that this association persists through mitosis. In 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
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contrast, macronuclear staining was generally lost before or during macronuclear 

division (Figure 2.4D, micrograph ii). The localization of Tif1p to S phase micro- and 

macronuclei suggests that its primary role occurs when chromosomes are actively 

replicating. 

 

Identification of a macronuclear intra-S phase checkpoint 

 The elongated macronuclear S phase of TIF1 mutants could result from damage-

induced activation of an intra-S phase checkpoint. However, the elevated rate of aberrant 

macronuclear division suggests that this checkpoint can be overridden in Tif1p-deficient 

Tetrahymena (Morrison et al., 2005). A bioinformatics search of the T. thermophila 

genome database (http://tgd.org) identified putative orthologues of the three intra-S 

phase checkpoint kinases: ATR, CHK1, and CHK2, but it failed to yield a candidate 

orthologue for the G1 checkpoint kinase ATM. The e values for the predicted 

Tetrahymena proteins relative to humans were very high: ATR, 2.0–40; CHK1, 2.0–29; and 

CHK2, 2.0–61. Consequently, we asked whether wild-type and Tif1p-deficient 

Tetrahymena elicit a classical intra-S phase checkpoint response. To do so, we used the 

ribonucleotide reductase inhibitor HU, which induces S phase arrest and activates the 

intra-S phase checkpoint in all reported eukaryotes. We then tested the effect of caffeine, 

a potent inhibitor of the phosphatidylinositol kinase-related protein kinases ATM and 

ATR, on HU-arrested Tetrahymena (for review, see Abraham, 2001). 

 HU dose–response curves were generated by using tritiated thymidine and flow 

cytometry to monitor DNA synthesis and cell cycle progression. Pulse labeling with 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
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thymidine revealed no substantive difference in the rate of DNA synthesis in wild-type 

and Tif1p-deficient strains. HU inhibited thymidine incorporation in a concentration-

dependent manner, with the majority of cells arresting with a G1 DNA content (tested 

HU concentrations 0.1–20 mM, ID50 = 10 mM; flow cytometry). The recovery from HU 

arrest was subsequently assessed in cultures treated with increasing concentrations of HU 

and then reseeded at a fixed cell density in drug-free media. No lag in the outgrowth of 

wild-type cells was observed at all tested HU concentrations, indicating that HU-induced 

cell cycle arrest is reversible (Figure 2.5A). 

 Caffeine was added to the HU regimen to determine whether S phase arrest can 

be reversed by inhibition of an ATR-like protein kinase. Caffeine alone (0.3 or 1 mM) 

was not toxic and did not induce cell cycle arrest or aberrant macronuclear division 

(Figure 2.5A and B, wild type, 0.3 mM caffeine; 1 mM caffeine). The addition of 

caffeine to wild-type cells partially reversed HU inhibition (Figure 2.5B) and caused a 

modest lag in outgrowth of the culture upon removal of both drugs (Figure 2.5B). To 

assess whether this lag corresponds to a recovery period for the resumption of replication 

or reflects a decrease in cell viability, HU + caffeine-treated cells were plated into 96-

well dishes at limiting dilutions, and the outgrowth of clonal lines was quantified relative 

to mock and single drug regimens. The exposure to caffeine + HU did not decrease cell 

viability (Figure 2.5C, wild type). However, this regimen greatly perturbed DNA 

partitioning during macronuclear division (Figure 2.5D). 

 Grossly abnormal macronuclear divisions were observed in dividing wild-type 

cells examined 7 h after removal of HU and caffeine (Figure 2.5D, penetrance 40%).

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F5
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Figure 2.5 Response of wild-type and tif1-1::neo mutants to HU and caffeine. (A) Wild-type (CU428) and 

tif1-1::neo/TIF1 mutant (TXh48) strains were grown to a density of 3x 104/ml and incubated for 12 h in 

growth media containing a range of HU concentrations (0–20 mM, +HU; stock solution in water) to 

induce S phase–specific cell cycle arrest. Outgrowth of cultures after removal of the drug (–HU), refed 

cells were adjusted to a density of 1 x 105/ml and counted at 3-h intervals. The mean and SEs for three 

experiments are shown. (B) Outgrowth of cultures treated for 12 h with 20 mM HU and/or 0.3 mM 

caffeine (stock solution in water) and released into drug-free media. Cell densities were adjusted to 1 x 

105/ml after washing out the drug(s), and the cultures were counted at 3-h intervals. The mean and SE for 

two experiments are shown. (C) Cell viability analysis in cultures treated with HU and/or caffeine. Wild-

type and TIF1-deficient strains were incubated for 12 h in media containing no drug, 0.3 mM caffeine, 20 

mM HU, or both. Cells were washed repeatedly to remove the drugs and plated out at decreasing 

concentrations into two 96-well dishes/dilution. For comparative analysis, the percentage of wells that was 

positive for growth in mock-treated cultures (plating density 0.3 cells/well) was normalized to 20 for each 

of the three experiments. The representative data for drug-treated strains were similarly normalized and 

correspond to the mean and SE of the three experiments. (D) Examples of macronuclear division defects 

in wild-type cells treated for 12 h with 20 mM HU and 0.3 mM caffeine and then propagated for 7 h in 

drug-free media. 
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The most frequently observed phenotype consisted of dividing cells that had two 

properly partitioned daughter macronuclei and contained an additional large bolus of 

DNA at the cleavage furrow (Figure 2.5D, middle and right micrographs; note the wisp 

of DNA connecting the two daughter cells in the micrograph in the right micrograph 

[arrow]). The small fraction of wild-type cells that failed to arrest in HU exhibited 

similarly severe macronuclear division defects (our unpublished data). Amacronucleate 

cells were occasionally observed, along with dividing cells with large differences in 

macronuclear DAPI staining (Figure 2.5D, left micrograph). The severity of these 

phenotypes lessened at later times during the recovery, and normal macronuclear 

division was restored by 36 h (our unpublished data). 

 To further investigate the effect of caffeine on the intra-S phase checkpoint 

response, we synchronized wild-type cells by starvation and refeeding and examined 

cytokinesis and nuclear division during the first cell cycle in the presence of HU or HU + 

caffeine. As expected, the majority of the synchronized wild-type cells arrested cell 

division in HU-supplemented media (Figure 2.6A, WT, open triangles). Rare escapees 

divided >1.5 h later than untreated controls. Furthermore, the addition of caffeine after 

the onset of S phase (150 min postrefeeding) suppressed cell cycle arrest in a significant 

fraction of HU-treated cells (Figure 2.6A, wild type, closed squares) and accelerated the 

timing of cytokinesis relative to HU treatment alone. Whereas the appearance of dividing 

cells during the 150- to 300-min interval after refeeding was reduced to 14% in cultures 

treated with HU alone, the addition of caffeine largely reversed the HU inhibition (HU + 

caffeine: 60%). 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F5
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F5
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6


 

 

76 

76 

 Caffeine-induced suppression of HU cell cycle arrest was similarly observed 

when both drugs were added at the time of refeeding, with HU + caffeine-treated cells 

divided later than mocked-treated and earlier that cells treated with HU alone. The 

cumulative data indicate that macronuclear S phase progression is mediated by a 

caffeine-sensitive factor, a hallmark of ATR. Abrogation of the intra-S phase checkpoint 

allows macronuclear division and cytokinesis to occur in the absence of 

completereplication of macronuclear chromosomes. 

 

The caffeine sensitive intra-S phase checkpoint is active in the mitotic micronucleus 

 Previous studies revealed that the mitotic micronucleus is dispensable to 

vegetative Tetrahymena (for review, see Karrer, 2000). However, the micronucleus 

contains all of the nuclear genes that are transmitted during conjugation. Because 

amicronucleate strains fail to undergo cell cycle arrest, it was unclear whether the intra-S 

phase checkpoint pathway described above regulates micronuclear genome stability. To 

best address this question, we examined micro- and macronuclear division during the 

first cell cycle of synchronized cultures in the presence of HU + caffeine. Microscopic 

examination of dividing cells (Figure 2.6B) revealed defects in micronuclear division. 

The micronucleus normally divides and is partitioned to daughters before the onset of 

macronuclear division (Figure 2.6B, left panels and accompanying schematic). In 

contrast, micronuclear division was delayed in cells treated with HU + caffeine and 

frequently occurred concurrently with macronuclear division and cytokinesis (Figure 

2.6B, right panel,bottom three micrographs). In these instances, segregating daughter 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6
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micro- and macronuclei were typically connected by an extended segment of DAPI-

staining material (Figure 2.6B, bottom micrograph). These results indicate that an ATR-

like factor regulates the micronuclear cell cycle. Inhibition of this pathway eliminates the 

temporal regulation of micronuclear division and cytokinesis. 

 

Tif1-1:neo mutants fail to activate the intra-S phase checkpoint response 

 The previously documented defect in macronuclear S phase progression, "cut" 

macronuclear division phenotype (Morrison et al., 2005), and hypersensitivity of tif1-

1::neo/TIF1 mutants to MMS (Table 2.2) are consistent with a role for Tif1p in the S 

phase DNA damage checkpoint response, similar to the caffeine-sensitive ATR-like 

target. To explore this possibility, we examined the response of tif1-1::neo mutants to 

HU and caffeine. tif1-1::neo mutants were slightly more sensitive to HU than wild type, 

and they displayed a modest, but reproducible dose-dependent lag in outgrowth after 

removal of the drug (Figure 2.5A). Although HU treatment alone slowed the outgrowth 

of tif1-1::neo mutants, this lag period was not extended when the presumed ATR 

response was blocked with caffeine (Figure 2.5B). By comparison, HU + caffeine 

generated a lag in outgrowth and slower doubling time in wild-type cells.Furthermore, 

macronuclear division defects were not exaggerated in HU + caffeine-treated tif1-1::neo 

mutants. Although the incidence of aberrant macronuclear division was 40% in HU + 

caffeine-treated wild-type cells, the severity of the cell division defect did not increase in 

frequency ( 20%) or magnitude in HU + caffeine-treated tif1-1::neo/TIF1 mutants 

relative to mock controls (our unpublished data). 
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 Similar to HU + caffeine-treated wild-type cells, examination of synchronized 

tif1-1::neo/TIF1 cultures revealed simultaneous defects in micro- and macronuclear 

division, even in the absence of HU (Figure 2.6F). Because the ATR-dependent RAD51 

responseis muted in TIF1 mutants (Figure 2.6D) and Rad51p is targeted to both the 

micro- and macronucleus after genotoxic stress (Figure 2.4B), this result suggests that 

Tif1p is a component of the micronuclear S phase checkpoint. Finally, similar to wild-

type cells, tif1-1::neo mutant cell viability was not decreased after HU and/or caffeine 

exposure (Figure 2.5C), supporting the contention that the polyploid macronucleus is 

largely buffered from the effects of genotoxic stress. 

 The most compelling evidence for the involvement of Tif1p in the S phase 

checkpoint response came from the analysis of cultures that were synchronized by 

starvation and then released into media containing HU, caffeine or HU + caffeine. As 

reported previously (Morrison et al., 2005), cytokinesis is delayed in tif1-1::neo mutants 

relative to wild-type controls (Figure 2.6A, filled diamonds). In contrast to wild-type 

cells, a significant fraction of TIF1p-deficient cells continued to divide in the presence of 

20 mM HU (Figure 2.6A, open triangles). These cells divided earlier than the rare wild-

type cells that escape the HU block. Caffeine treatment alone had no effect on the 

incidence or timing of cell division in wild-type or mutant strains. Furthermore, the 

addition of caffeine at the beginning of S phase (Figure 2.6A; T = 150 min, filled 

squares) or immediately upon refeeding of the mutant did not generate an increase in the 

percentage of dividing HU-treated cells. The failure to arrest in HU or exhibit and more 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6
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pronounced defect in HU + caffeine argues that Tif1p is required to activate the intra-S 

phase checkpoint response. 

 The final marker that we examined for S phase checkpoint activation was 

Rad51p, which participates in recombination-mediated repair at stalled forks or 

replication-induced DSBs (for review, see Lambert and Carr, 2005 ). As noted, the basal 

levels of RAD51mRNA and protein are elevated in tif1-1::neo mutants (Figure 2.3 A and 

B). To examine the contribution of Tif1p and the ATR-like checkpoint to the Rad51p 

response, synchronized cells were released into media containing HU and/or caffeine. 

HU-treated wild-type cells exhibited a dramatic increase in Rad51 protein levels (Figure 

2.6C). The majority of this response was eliminated by the addition of caffeine, 

consistent with inactivation of the checkpoint target. In contrast, HU generated a very 

modest increase in the Rad51p level in the tif1-1::neo mutant. Caffeine had minimal 

effect on the Rad51p level, indicating a central role for Tif1p in the DNA damage 

checkpoint response. The absence of homology between TIF1p and ATR orthologues 

argues that TIF1p is not the caffeine-sensitive target. In support of this contention, 

caffeine did not alter Tif1 protein levels or the relative abundance of the two Tif1 protein 

isoforms (Figure 2.6D). 

 To verify that caffeine was not targeting a previously documented wortmannin- 

sensitive non-ATM/ATR PI3-kinases (Smith et al.,2004b; Yakisich and Kapler, 2004),

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F3
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Figure 2.6 Identification of an intra-S phase checkpoint defect in Tif1p-deficient T. thermophila. (A) 

Wild-type (CU428) and tif1-1::neo/ TIF1 mutant (TXh48) strains were grown to saturation, starved, and 

then released into drug-free media (filled diamonds) or media containing 20 mM HU (open triangles and 

filled squares). Caffeine (1 mM) was added before the onset of macronuclear S phase (T = 150 min) (filled 

squares), and cell division was monitored by light microscopy. The cell division index corresponds to the 

percentage of cells with a cytokinetic furrow. (B) DAPI analysis of micro- and macronuclear division in 

mock and HU + caffeine-treated wild-type cells (same treatment as in A). (C) Rad51p Western blot 

analysis in synchronous wild-type and TIF1 mutant cultures, 5 h after refeeding with media containing 

HU, caffeine, or both. (D) Tif1p Western blot analysis of untreated and caffeine-treated wild-type strain 

(CU428; 1 mM caffeine for 4 h). (E) Rad51p Western blot analysis in synchronous wild-type cultures, 5 h 

after refeeding with media containing WM, HU, or both. (F) DAPI analysis documenting aberrant micro- 

and macronuclear division in tif1-1::neo mutant cells (TXh48) grown in normal culture media (no HU 

added). Arrow: cytokinetic furrow. 
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we tested whether WM could suppress HU-induced activation of the intra-S phase 

checkpoint response by monitoring the production of Rad51p in wild-type cells treated 

with HU, WM, or both, under the same conditions used for Figure 2.6C. WM at 250 nM 

failed to repress the induction of Rad51p (Figure 2.6E). This concentration exacerbates 

nuclear division defects in cells expressing paclitaxel-hypersensitive -tubulin 

allele btu1-1 (Smith et al., 2004b), and it inhibitsprogrammed nuclear death 

during Tetrahymena development (Yakisich and Kapler, 2004). Conversely, 1 mM 

caffeine did not block acidification of the old parental macronucleus in mating progeny, 

as is observed in WM-treated cells (our unpublished data). We conclude that the 

caffeine-sensitive intra-S phase checkpoint is activated by an ATR-like protein kinase. 

Consistent with this model, we have identified a strong candidate ATR orthologue in 

the T.
 
thermophila genome database as well as other conserved components of this 

checkpoint pathway. 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6
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Discussion 

 DNA damage checkpoints facilitate the repair of potentially catastrophic lesions 

before DNA replication. ATR is an S phase–specific sensor/transducer kinase that 

activates downstream targets that stabilize stalled replication forks and inhibit initiation 

from late firing origins (for review, see Abraham, 2001). Although this pathway is 

conserved from yeast to human, it is unclear whether the demands on this pathway are 

diminished in polyploid organisms or tissues. Members of the ancient eukaryotic 

branch, the Ciliophora, are unusual in that they contain two nuclei within a single 

cytoplasm, the diploid micronucleus and polyploid macronucleus. In this study we 

provide evidence that a common S phase checkpoint pathway functions in both types of 

nuclei. One component of the T. thermophila checkpoint seems to be functionally 

analogous to mammalian ATR, because its ability to induce S phase arrest is inhibited by 

caffeine. The second component, Tif1p,has no obvious homologue in yeast and higher 

eukaryotes; however, we have identified a candidate orthologue in a distantly related 

ciliate, Paramecium tetraurelia (e value 6–13, 27% sequence identity, 56% sequence 

similarity; Kapler and Sperling, unpublisheddata). Sequence conservation outside of 

ciliates is limited principally to the carboxy terminus of Tif1p, which resembles the 

oligomerization domain of whirly transcription factors in plants, that like Tif1p, 

assemble into homotetramers and bind single-strand DNA in a sequence-specific manner 

(Desveaux et al., 2000, 2002). It is plausible that Tif1p functions in the intra-S phase 

checkpoint pathway are broadly conserved. 
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Tif1p and the cell cycle 

 TIf1p undergoes dynamic relocalization during normal cell cycles (Figure 2.4C 

and D). It is exclusively in the cytoplasm of G1
 phase cells. Intense localization to the 

macronuclear periphery occurs before and during early macronuclear S phase. This 

distribution suggests that Tif1p may initially be targeted to rDNA-containing nucleoli. 

Tif1p is found throughout the macronucleus later in S phase, and it relocalizes to the 

periphery or is excluded from the macronucleus before cytokinesis. Tif1p is 

similarly targeted to the micronucleus during S phase, and it is transiently retained in 

postmitotic micronuclei. It is unclear how Tif1p is differentially localized to distinct 

nuclei that inhabit the same cytoplasm. By analogy, the subcellular localization of the 

TIF4 Orc2p cross-reactive subunit Tt-p69 is similarly regulated (Mohammad et al., 

2003). We speculate that these proteins are imported into micro- and macronuclei by 

nucleus-specific "licensing factors." Whatever the mechanism, we show that Tif1p is 

most prominently associated with replicating nuclei, suggesting that its primary role 

occurs during S phase. 

 One well-defined role for Tif1p is to regulate the timing of rDNA replication 

initiation (Morrison et al., 2005). Several lines of investigation illustrate a more global 

role for Tif1p in the macronucleus, because it is required for normal macronuclear S 

phase progression, the coordinate regulation of macronuclear division and cytokinesis 

(Morrison et al., 2005), and functions in the checkpoint response to intrinsic or extrinsic 

inhibitors of DNA replication (this work). tif1-1::neo mutants contain elevated basal 

levels of Rad51p (Figure 2.3) and are hypersensitive to external sources of genotoxic 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F4
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stress (Table 2.3 and Figures 2.5 and 2.6), arguing that tif1-1::neo mutants accumulate 

DNA damage in unperturbed cell cycles. Moreover, because MMS and HU 

destabilize elongating replication forks and Tif1p localizes to the micro- and 

macronucleus during S phase, we speculate that the role of Tif1p in checkpoint 

activation occurs at the replication fork. By analogy, yeast and metazoan checkpoint 

sensor and effector proteins, such as Xenopus laevis ATM and ATR (Shechter et 

al., 2004), and S. cerevisiae Mrc1 (Szyjka et al., 2005), are targeted to elongating 

replication forks during unperturbed cycling cells. 

 Macronuclear genome stability is influenced by many factors, some of which 

efficiently compensate for the aberrant amitotic divisions associated with the loss 

of TIF1 or natural fluctuations in chromosome transmission. However, the conventional 

mitotic micronucleus lacks these compensatory mechanisms and is more dependent on 

Tif1p. Nine of 10 chromosomal markers were absent from the micronucleus in 

unselected TIF1/tif1-1::neo mutant cell populations (Figure 2.2). Although the 

micronuclear chromosome loss leads to germline sterility, TIF1/tif1-1::neo mutants 

fail to undergo cell cycle arrest. One possible reason is that Tif1p is required to activate 

the intra-S phase checkpoint (Figure 2.6). 

 

Induction of the intra-S phase checkpoint by genotoxic stress 

 Our studies indicate that wild-type Tetrahymena elicits a classic intra-S phase 

checkpoint response. Cell cycle arrest is induced by HU and suppressed by further 

addition of caffeine, a known inhibitor of ATM and ATR kinases (Figure 2.6A; see
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 model in Figure 2.7). Cells that escape HU arrest undergo aberrant micro- and 

macronuclear division (Figures 2.5D and 2.6B), indicating that both nuclei are regulated 

by the caffeine-sensitive factor. Tif1p functions in S phase checkpoint activation as 

well. tif1-1::neo mutants are hypersensitive to MMS and HU (Table 2.3 and Figure 

2.5A) and fail to arrest in the presence of HU (Figure 2.6A). Aberrant macronuclear 

division occurs frequently, producing a cut phenotype, in which the macronucleus is 

bisected by the cleavage furrow (Morrison et al., 2005). Aberrant micronuclear division 

is also observed in the absence of exogenous genotoxic stress (Figure 2.6F). 

Micronuclear genome instability is rampant as no chromosome is spared (Figure 2.2). 

 Several lines of evidence argue that Tif1p and the presumed ATR kinase function 

in the same epistatic pathway (Figure 2.7). First, HU blocks cell cycle progression in 

wild-type cells, but it fails to induce cell cycle arrest in a significant fraction of tif1-

1::neo mutant cells. Caffeine suppresses HU-induced cell cycle arrest in wild cells, but it 

fails to do so in the mutant, suggesting a role for TIF1 in the ATR response (Figures 

2.6A and 2.7, bottom schematic). Second, HU-treated tif1-1::neo cells and HU + 

caffeine-treated wild-type cells divide with similar kinetics (Figure 2.6A). Cell division 

is associated with aberrant micro- and macronuclear division in both situations (Figure 

2.6B and F). Third, the induced expression of RAD51, a marker for checkpoint 

activation, is largely suppressed intif1-1::neo mutants (Figure 2.6C). HU-treatment leads 

to a substantive increase in RAD51 mRNA and protein in wild-type cells, the majority 

of which is suppressed by caffeine (Figure 2.7). In contrast, TIF1 mutants exhibit a very 

modest increase in Rad51 protein, and this induction is refractory to the addition
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Figure 2.7 Proposed models for the epistatic relationship between TIF1p and caffeine-sensitive intra-S 

phase checkpoint protein. 
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of caffeine. 

 Rad51p interacts with the ATR substrate Rad52p in a recombination pathway 

that repairs DSBs and lesions ahead of stalled replication forks (for review, see Lambert 

and Carr, 2005). Although Rad51p has not been commonly used to assess checkpoint 

activation, we show that the up-regulation of RAD51 mRNA and protein is induced by 

HU and suppressed by further addition of caffeine. Consequently, robust expression of 

RAD51 is part of the Tetrahymena
 intra-S phase checkpoint response. RAD51 induction 

served as a reliable marker that illustrated the contribution of  TIF1 to checkpoint 

activation. 

 It remains to be determined whether Tif1p acts upstream or downstream of ATR 

in the intra-S phase checkpoint pathway (Figure 2.7). Bioinformatic analyses suggest the 

presence of ATR, CHK1, and CHK2 orthologues in the T. thermophila genome. We 

predict that Tif1p is not a direct substrate of ATR, because it lacks the clustered SQ/TQ 

motifs present in most ATM/ATR substrates (Traven and Heierhorst, 2005). Consistent 

with this prediction, caffeine does not alter the abundance or stoichiometry of Tif1p 

isoforms (Figure 2.6E). Because Tif1p does not display homology to other downstream 

mediator or adapter proteins, we propose that it serves a novel role in the intra-S phase 

checkpoint response. The propensity of Tif1p for single-stranded DNA raises the 

possibility that it might act in concert with persistent chromatin-bound replication 

protein A to recruit ATR to sites of DNA damage (Figure 2.7) (Zou and Elledge, 2003). 

Furthermore, because Tif1p represses early initiationfrom the rDNA origin during 

http://www.molbiolcell.org/cgi/content/full/17/12/5185#F7
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F6
http://www.molbiolcell.org/cgi/content/full/17/12/5185#F7
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normal cell cycles (Morrison et al., 2005), this repressive function might be extended to 

other origins during normal cell cycles and/or in response to genotoxic stress. 

 

Chapter II Addendum 

 The work described in Chapter II, was published in Molecular Biology of the 

Cell (Vol. 17, 5185–5197, December 2006) and I was a co-first author. Here I 

summarize my specific contribution to the published work and their significance.  

In the work described in Chapter II, I generated the strain TAM101 that 

expresses an epitope-tagged TIF1 allele containing a 6xHis-5xMyc at the carboxy 

terminus (Tif1p-HM-C) to study the cell cycle-regulated localization of Tif1p. The 

intracellular localization of Tif1p was dynamic throughout the cell cycle with a strong 

perinuclear staining immediately prior to S phase. This perinuclear staining was present 

in macro nuclei in cultures synchronized at the G1/S border (71% in G1 and 28% in S 

phase). Since rDNA is mostly encapsulated in nucleoli, which are evenly distributes 

around the macronucleus throughout the cell cycle, we speculated that this staining 

correlates with the binding of TIF1p to type I elements at the rDNA origin. The timing 

of this binding is consistent with the idea that Tif1p acts as an inhibitor of rDNA 

replication during early S phase. In general, Tif1p localizes to the cytoplasm during G1, 

followed by a peripherical staining of the macronucleus and later relocalization 

throughout the macronucleus during S phase. Tif1p localization to the macronucleus is 

lost before cytokinesis, arguing that the main role for this protein occurs before and 

during S phase. Micronuclear localization of Tif1p was also observed prior and 
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throughout micronuclear S phase, suggesting that Tif1p is involved in DNA replication 

in the micronucleus as well. 

 I also characterized the macronuclear response of wild-type and TIF1-

knockdown strains to hydroxyurea (HU) and caffeine. HU is an inhibitor of 

ribonucleotide reductase, which induces depletion of deoxynucleotides precursors from 

the cell (Slater 1973). The absence of these precursors during S phase induces 

replication fork stalling and activates an ATR-dependent response that inhibits further 

DNA synthesis (Santocanale and Diffley 1998). Treatment with 20mM HU inhibits the 

growth of wild type unsynchronized cultures and this arrest is reversible upon removal 

of the drug. This ability to recover from the depletion of deoxynucleotide suggests that 

stalled forks are stabilized during treatment, a key feature of the intra-S phase 

checkpoint response. Caffeine acts as inhibitor of ATR/ATM kinases (Sarkaria et al., 

1999). The addition of caffeine to wild type cultures is not toxic and reversed the effect 

of hydroxyurea, suggesting that Tetrahymena uses an ATR-like pathway to regulate the 

response to genotoxic stress. TIF1 mutants are hypersensitive to HU during vegetative 

growth and also show a delay in the recovery from HU-induced genotoxic stress during 

the recovery time (5- 20mM HU). This delay suggests that the intra-S phase checkpoint 

response is defective in these mutants, and that Tif1p could play an important role in the 

ATR-like pathway of Tetrahymena. 
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                                                                    CHAPTER III

 
  

                                                                                      THE IN VIVO ASSOCIATION OF TIF1P WITH rDNA 

                                                                                              MINICHROMOSOMES DOES NOT REQUIRE SPECIFIC TARGET 

                                                                                            SEQUENCES 

 Overview 

 Previous studies using TIF1 knockdown strains showed that Tif1p has a global 

role in the maintenance of genome stability in Tetrahymena. Tif1p preserves the 

integrity of chromosomes in the micronucleus and macronucleus, and prevent aberrant 

nuclear division by activation of the intra-S phase checkpoint response to genotoxic 

stress. Tif1p also regulates the timing of ribosomal DNA (rDNA) replication, suggesting 

that it acts directly on the rDNA origin. The mechanisms for activation of rDNA 

replication and the checkpoint response have not been elucidated. In my initial efforts to 

study Tif1p function, different epitope tags were placed at either the amino or carboxyl 

terminus of the preotein. In all cases, Tif1p function was compromised, highlighting the 

essential role of structure at both the amino and carboxy terminus. Whereas the amino 

terminus is predicted to be involved in DNA binding, epitope tags added to the carboxy-

terminal oligomerization domain affected Tif1p binding to rDNA minichromosomes. 

These data argue that the overall architecture of TIF1 homotetramer is important for 

DNA binding. The altered phenotypes include defects in macronuclear development, 
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aberrant amitotic macronuclear division and macronuclear genomic stability. This data 

further illustrate the global role for Tif1p in genome maintenance. 

 Since epitope tags perturbed Tif1p functions, heterologous antiserum was 

generated against an exposed peptide loop in Tif1p. In chromatin immunoprecipitation 

experiments I determined that Tif1p association with the rDNA minichromosome 

extends beyond the replication origin. Tif1p binding was observed throughout the rDNA 

coding region. Furthermore, Tif1p was largely excluded from non-rDNA chromosomes. 

These findings suggest that mechanism for targeting Tif1p to rDNA and non-rDNA 

minichromosomes is fundamentally different.  

 

Introduction 

Accurate replication and segregation of chromosomes is essential for the 

successful completion of the cell cycle and cell viability. In order for a replication origin 

to be competent to initiate DNA replication, it minimally needs to be populated by the 

essential origin recognition complex (ORC) (Bell & Stillman, 1992). The six subunits of 

ORC are highly conserved among eukaryotes (Gavin et al., 1995). ORC is responsible 

for nucleation of pre-replication complexes (pre-RCs) at specific sites in chromosomes. 

This occurs during late mitosis and early G1 when the levels of kinases that promote 

replication initiation are low (Diffley et al., 1994; Okuno et al., 2001; Zou & Stillman, 

2000). ORC recruits the pre-RC that contains Cdc6, Cdt1 and MCM2-7, the hetero-

hexameric replicative helicase. After MCM2-7 is loaded, the pre-RC is competent 

(licensed) for initiation. Conversion of the pre-RC into a pre-initiation complex (Pre-IC) 
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occurs at the G1/S phase transition, and is promoted by the kinases Cdk2/cycE and 

Cdc7/Dbf4 (Walter, 2000; Zou & Stillman, 2000). At this time Mcm10 is loaded and 

recruits Cdc45, which is essential for DNA unwinding (Gregan et al., 2003). Cdc45 acts 

as a physical link between initiation and elongation factors (DePamphilis, 2005). The 

loading of replication protein A (RPA) stabilizes single-stranded DNA and promotes 

DNA unwinding (Walter & Newport, 2000). In order to initiate replication polymerases 

are loaded and replication proceeds in a semi-continuous manner from bidirectional 

origins. 

Replication origins are also bound by non-ORC proteins; however their 

contribution to replication initiation is less well understood and can differ from one 

protein to the next. The most extensively studied non-ORC origin binding protein is S. 

cerevisiae ARS binding factor 1 (Abf1,(Diffley, 1998; Diffley & Stillman, 1988). Abf1 

serves many roles in the nucleus. It promotes replication initiation and is involved in 

transcriptional regulation, DNA repair and gene silencing (McBroom & Sadowski, 1995; 

Reed et al., 1999; Trawick et al., 1992). Abf1 is a site-specific DNA binding protein, and 

facilitates replication initiation by functioning as barrier for nucleosome occupancy, 

creating a nucleosome-free structure at the ARS1 origin that favors ORC binding to 

adjacent sequences (Lipford & Bell, 2001; Rhode et al., 1992; Venditti et al., 1994).  

Studies in higher eukaryotes revealed that non-ORC DNA binding proteins can 

facilitate ORC recruitment by physically interacting with ORC and tethering ORC to 

origins. In Drosophila melanogaster, binding of a multiprotein complex (DmMyb) to the 

chorion gene replication origin is required for recruitment of ORC to ACE3 and 
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subsequent amplification of this region in differentiated follicles cells (Beall et al., 

2002). Another recently described protein, AIF-C, recognizes a specific sequence at the 

rat aldolase B origin, and is able to recruit ORC to this origin through protein:protein 

interactions (Minami et al., 2006). The binding of AIF-C to this origin is required to 

initiate replication from this site. Since rat ORC binds DNA non-specifically, the loss of 

AIF-C or elimination of the AIF-C DNA binding site prevents ORC recruitment and 

origin activation. Whereas metazoan ORC complexes exhibit no specificity for DNA 

binding in vitro, tethering provides a mechanism for bringing ORC to specific 

chromosomal sites in vivo. The current data do not provide a compelling argument that 

this is the sole mechanism for recruiting ORC to metazoan origins. 

Mutations in ORC or non-ORC proteins not only promote the failure to support 

replication initiation but also compromise other cellular mechanisms. For example, the 

depletion of S. cerevisiae Orc6 does not affect the binding of ORC to origins, but 

strongly impairs the maintenance of pre-RC and S phase progression, leading to the 

activation of the intra-S phase DNA damage checkpoint response (Chen et al., 2007). In 

human cells, depletion of Orc2 induces a decrease in the level of other ORC subunits, 

thereby preventing the initiation of DNA replication. However, low levels of ORC do 

not activate the intra-S phase DNA damage checkpoint signal (Machida et al., 2005). 

These differences not only reflect the intricate regulation of replication initiation, but 

also reveal the diversity between different model systems. There are several examples in 

which mutations of replication factors compromise other cellular processes. Mutations in 

Orc2p and Orc5p subunits, have revealed their role in transcriptional gene silencing, 
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cohesion of sister chromatids and assembly of mitotic chromosomes in yeast and 

Drosophila (Dillin & Rine, 1998; Kato et al., 2008; Pflumm & Botchan, 2001; Suter et 

al., 2004).  

In Tetrahymena the 5‟ non-transcriptional sequences (NTS) of the rDNA 

minichromosomes contains three evolutionarily conserved, repeated sequences, referred 

to as Type I, II, and III elements (Figure 3.1) (Challoner et al., 1985). Type I elements 

reside in two nucleosome-free regions where origins of replication have been mapped, as 

well as the nucleosome-free rDNA promoter (Zhang et al., 1997). Promoter-proximal 

type I element regulate both replication initiation and transcription of the 35S ribosomal 

RNA precursor (Tower, 2004). Type I elements are recognized in vitro by factors 

designated Type I Factors 1 through 4 (Tif1p through 4). Tif1p was shown to bind to 

single-stranded DNA in a sequence-specific manner (Hou et al., 1995). Electrophoretic 

mobility shift assays (EMSAs) showed that S100 extracts from wild type Tetrahymena 

contains a DNA binding activity (Tif1p/ssA-TIBF) that strongly binds to the central A-

rich portion of the Type I element (Umthum et al., 1994). Tif1p also binds specifically to 

the type I element T-rich strand, as well as pause site elements (PSE), which were 

previously shown to regulate rDNA origin activation (Saha et al., 2001). Using in vivo 

footprinting of wild type and TIF1-depleted Tetrahymena, our laboratory demonstrated 

that Tif1p regulates the occupancy of type I and PSE elements in vivo. Specifically, 

partial depletion of Tif1p affects the occupancy of the type I element A-rich strand and 

PSE element at the rDNA origin, and the complementary T-rich strand at the promoter 

(Saha & Kapler, 2000). The most parsimonious model is that Tif1p specifically and 
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Figure 3.1 Schematic of the Tetrahymena rDNA minichromosome. The 2.1 Kb macronuclear rDNA 

minichromosome consisted a palindromic arrangement of two copies of the rDNA gene (in green) that 

encode for 17S, 5.8S and 26S ribosomal rDNA. The region encompassing the 5‟NTS is expanded and 

includes cis-acting determinants for DNA replication. Type I, II, III and pause site elements are 

phylogenetically conserved sequences. Type I elements are showing in red, Type III in yellow, replication 

fork barrier (RFB) in purple and pause site elements (PSE) in blue. The locations of the seven positioned 

nucleosomes are depicted by black ovals.  
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 directly associates with these sequences in vivo. The work described in this chapter 

challenges this model. 

Orthologs of Tif1p belong the whirly protein family in plants. Tif1p homology to 

members of this family is restricted to the whirly domain (Saha et al., 2001). Like Tif1p, 

plant transcription factor, Stwhy1 is a sequence-specific single-strand DNA binding 

protein (Desveaux et al., 2002). The crystallographic structure of Stwhy1 has been 

determined, providing significant information for the study of Tif1p (Desveaux et al., 

2002; Saha et al., 2001).  

Saha and Kapler determined that the oligomeric status of purified native Tif1p is 

a homotetramer, yet Tif1p binds just one molecule of DNA per homotetramer in vitro 

(Saha & Kapler, 2000). Studies in a mutant strain expressing low levels of TIF1 revealed 

that Tif1p acts as an inhibitor of rDNA origin firing in early S phase (Morrison et al., 

2005). Furthermore, this protein is essential for accurate macronuclear S phase 

progression; TIF1 mutants exhibit an elongated macronuclear S phase that is associated 

with a reduced rate of DNA synthesis (Morrison et al., 2005). This finding suggests that 

Tif1p has a global role in macronuclear DNA replication that extends beyond its 

function at the rDNA origin. 

Recently studies revealed that the multi-subunit TIF4 complex is Tetrahymena 

ORC (Mohammad et al., 2007). Like other type I binding factors, Tetrahymena ORC 

(TtORC) recognizes and binds in a sequence-specific manner to single-strand DNA 

(Mohammad et al., 2000). In contrast to TIF1, TtORC binding activity is ATP-

dependent and specific for the T-rich strand only. The most unusual characteristic of 
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TtORC is that it is a ribonucleoprotein (RNP) complex. Tetrahymena ORC uses an 

integral RNA subunit to facilitate rDNA origin recognition by RNA:DNA base pairing 

(Mohammad et al., 2007). Since footprint analysis revealed that Tif1p interacts at the 

rDNA origin A-rich strand and TtORC is targeted to the complementary T-rich strand, it 

has been proposed that Tif1p regulates the timing of rDNA replication by directly 

affecting TtORC binding or regulation.  

Several mechanisms can be envisioned for how Tif1p might repress rDNA origin 

firing (Figure 3.2). One possibility is that Tif1p inhibits the assembly of pre-RCs by 

physical obstruction of the rDNA origin (Figure 3.2, Model 1). If this were the case, we 

predict that Tif1p and ORC would not coexist at the rDNA origin at any point during the 

cell cycle. Alternatively, Tif1p and ORC might coexist at rDNA origins either 

transiently or stably. In one scenario (Figure 3.2, Model 2) Tif1p would prevent pre-RC 

activation by blocking recruitment of the MCM complex to the origin. Subsequent 

modification of the ORC-origin-Tif1p complex, such as phosphorylation of Tif1p, would 

release Tif1p from the DNA and render the origin competent for loading of the MCM 

complex and further pre-RC activation. Alternatively, Tif1p would not leave the origin, 

and the phosphorylation of Tif1p would allow for the recruitment of MCM to origins. In 

this case, Tif1p would be included in the activated pre-RC complex (Figure 3.2, Model 

3).  

To better understand how Tif1p regulates rDNA replication; I generated strains 

expressing epitope-tagged versions of TIF1. The present work shows that the addition of 

small peptide tags to Tif1p largely recapitulates the phenotypes associated with TIF1
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Figure 3.2 Proposed models for the negative regulation of rDNA replication by Tif1p. 
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knockdown mutants. Cultures with tagged Tif1p showed defects during macronuclear 

development. Defects during vegetative growth were also observed, including abnormal 

macronuclear division and genomic instability. Recruitment of Tif1p to the rDNA origin 

was also altered in tagged TIF1 strains. To overcome these problems, I designed a 

peptide antibody against Tif1p, and used this antibody to study the in vivo binding of 

Tif1p to chromosomes by chromatin-immunoprecipitation (ChIP) analysis. My results 

suggest that the binding of Tif1p to rDNA minihromosome goes beyond the type I 

element sequences during the cell cycle. However, this binding is limited to the 21 kb 

rDNA minichromosome, since no significant binding was observed in a 60 kb interval of 

a non-rDNA chromosome that includes a bonafide non-rDNA replication origin, 

TtARS1A. 

 

Material and methods 

Tetrahymena thermophila culture methods and transformation 

Cultures were grown at 30°C in 2% PPYS (2% proteose peptone, 0.2% yeast 

extract, 0.003% sequestrine) supplemented with 250 μg/ml penicillin, 100 μg/ml 

streptomycin and 250 ng/ml amphotericin B.  

To prepare cells for mating cultures were starved in 10 mM Tris-HCl (pH 7.4) 

for 20 h. Mating was induced between wild type strains CU428 and CU427 by mixing 

equal number of each strain at a density of 2x10e5 cells/ml. Acridine orange (0.001%) 

was used to stain mating pairs and monitor developmental stages with a fluorescence 

microscope to determine the timing for transformation.  
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Germline transformation was achieved by bioballistic bombardment 4 h after 

initiation of mating. Macronuclear anlagen transformation was performed at 8 h. For 

transformation, mating cultures were harvested by centrifugation at 4000 rpm for 5 min 

and resuspended in 1 ml of 10 mM Tris-HCl (pH 7.4). A 100 mm diameter petridish was 

used to support a sterile Whatman filter paper saturated with 1 ml of 10 mM Tris-HCl 

(pH 7.4) onto which the concentrated suspension of cells was transferred. The 

macrocarrier used for transformation (0.6 μm gold particles, Biorad) was coated with a 

DNA mixture containing 35 μg of the MTT1-neo-MTT1 plasmid and 35 μg of the 

experimental plasmid carrying a tagged version of TIF1. Restriction digested DNA 

fragments were then introduced into Tetrahymena by bioballistic transformation 

according to the manufacturer‟s instructions (Biorad). Homologous recombination 

between the end of the inserts and endogenous target sequences was used to integrate 

both the MTT1-neo-MTT1 and tagged-Tif1p fragments into their respective 

chromosomes. The expression of the neo-cassette (neomycin phosphotransferase 

provides drug resistance to the transformed cells) was driven by the MTT1 promoter 

which was induced by the addition of cadmium in form of cadmium chloride (CdCl2) to 

the media. 

 After transformation, the cells were transferred into 500 ml flasks containing 50 

mls of 10 mM Tris-HCl (pH 7.4) and incubated under stationary conditions at 30°C for 

18 h to complete the developmental cycle. The cells were then refed with 5% PPYS to a 

final concentration of 2% supplemented with 1.2 μg/ml final concentration of CdCl2 and 

incubated in a 30°C shaker for 6 h. Next, paromomycin (100 μg/ml final concentration) 
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was added to the transformed culture. To identify MTT1-neo transformants, cells were 

plated out in 96 well dishes, undiluted or diluted 1:10 or 1:100, and incubated in a dark, 

moist chamber at 30 °C for 4 days in the presence of paromomycin. Paromomycin-

resistant wells were identified by light microscopy. Further screening for co-

transformants that contained the epitope-tagged TIF1 transgene was achieved by PCR 

amplification or by western blotting with antibodies directed against the TIF1 epitope 

tag. 

 

Synchronization of Tetrahymena culture 

Synchronization of Tetrahymena cultures was achieved by starvation or 

centrifugal elutriation. To synchronize log phase cultures by starvation, cells were 

harvested by centrifugation and washed twice with 10 mM Tris-HCl (pH 7.4), and 

incubated in 10 mM Tris-HCl (pH 7.4) for 8 h at 30°C shaking at 100 rpm. This culture 

was synchronized in G1 phase. Synchronized cells were refeed with 5% PPYS to a final 

concentration 2% at a density of 2.5x10e5 cells/ml and incubated at 30°C with gently 

agitation (100 rpm). The refed cells reached early S phase 2.5 h after refeeding. The 

subsequent G1 phase was evident by the end of 4 h, as confirmed by flow cytometry 

analysis. 

To synchronize cultures by elutriation, three flasks of 2 L each with 500 mL of 

2% PPYS were inoculated with 10 ml of a log phase culture (1x10e5 cells/ml) and 

incubated for 14 h at 30°C with 100 rpm, and grow to a density of 1x10e5 cells/ml. The 

culture was pumped into an elutriation chamber mounted onto a Beckman J6M/E 
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centrifuge at a rotor speed of 850 rpm and flow rate of 50 ml/min. Two hundred 

milliliters of a synchronized G1 cell population was recovered by increasing the pump 

flow rate to 65 ml/min. This fraction contains a cell population synchronized in G1 

phase of the cell cycle. The elutriated culture reached early S phase after 1 h and the next 

G1 phase was evident at 3 h post-elutriation upon incubation at 30°C with shaking (100 

rpm). 

 

Flow cytometry 

To determine the DNA content within a cell population at least 2.0x10e5 cells/ml 

were collected by centrifugation at 4000 rpm for 4 min. Cells were washed with 5 ml of 

cold phosphate buffer saline (PBS) re-centrifuged and the supernatant was aspirated. 

Cells were resuspended in a minimal volume (~10 μl) and fixed with 5 ml of ice cold 

70% ethanol by incubating for 2 h on ice. Samples were stored at 4°C or stained 

immediately with propidium iodide (PI). Fixed samples were washed twice with PBS 

and resuspended in 0.4 ml of propidium iodide staining solution (PBS containing 0.1% 

Triton X10E0, 0.002% propidium iodide and 0.2 mg/ml RNase A). The samples were 

protected from the light and incubated at RT for at least 1 h. Stained samples were 

collected on BD FACSCaiburTM flow cytometer and cell cycle progression was 

determined by monitoring DNA content. Thirty thousand cells were analyzed for each 

sample and plotted as a function of the PI intensity, which reflects the DNA content of 

each cell. 
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Cryogenic preservation of Tetrahymena 

Cells from 0.1 L of log phase culture (2.5x10e5 cells/ml) were harvested, washed 

twice, resuspended in the original volume with 10 mM Tris-HCl (pH 7.4) and starved for 

three days by incubation at 30°C (100 rpm) in a 500 ml flask. For cryogenic 

preservation, cells were concentrated by centrifugation and recovered in 10 ml of 8% 

DMSO in 10 mM Tris-HCl. Aliquots of 0.5 ml were dispensed in cryovials and slow 

frozen for 20 h at -80°C (Burns et al., 2000). The vials were transferred to a liquid 

nitrogen tank for permanent storage.  

 

Immunoprecipitation and chromatin-immunoprecipitation 

Ten ml of cell cultures (2x10e5 cells/ml) were crosslinked for 10 min at room 

temperature with 1% formaldehyde (270 μl from 37% stock). The crosslinking was 

stopped by adding 0.125 mM glycine (513.5 μl of 2.5 M stock) and mixed for 5 min. 

Next the samples were washed twice with PBS (pH 7.4) supplemented with a 1x 

protease inhibitor (complete EDTA free cocktail, #1873580, Roche); each wash was 

done by mixing for 5 min and centrifuging at 2,000 rpm for 1 min. The final pellet was 

resuspended in 0.6 ml of SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl 

(pH 8.1) plus protease inhibitor) and incubated for 10 min in ice. The lysate was 

sonicated to shear DNA to a length of 200 and 1000 base pairs. Five pulses of 10 

seconds were applied each with 10% duty in a Misonix Sonicator 3000. Samples were 

centrifuged at 17000xg for 10 min. An aliquot of 200 μl was stored at -20°C to test the 

input material. The remaining sample (400 μl) was diluted ten-fold with ChIP dilution 
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buffer (0.01% SDS, 0.01% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.1, 

167 mM NaCl and protease inhibitor). To reduce non-specific background the sample 

was pre-cleared with 120 μl of a 50% slurry Protein A agarose coated with salmon 

sperm DNA (catalog #16-157, Millipore), and incubated for 30 min at 4°C with constant 

agitation in a small rotisserie rotator at 8 rpm. To pellet the agarose beads, the sample 

was centrifuged 2,000 rpm for 2 min. The supernatant was recovered and divided in to 

two aliquots. One aliquot was incubated overnight with 1:200 dilution of specific 

antibody at 4°C and constant gentle agitation. The other aliquot was used as control with 

no antibody added, but incubated under the same conditions. To collect the antibody-

proteinchromatin complex, 60 μl of Protein A agarose was added to each aliquot; 

incubated for 1 h at 4°C and constant agitation. After centrifugation (1,000 rpm for 1 

min) the supernatant was discarded and the beads were washed consecutively with 1 ml 

of low salt immunocomplex wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 

20 mM Tris-HCl pH 8.1, 150 mM NaCl and protease inhibitor); high salt 

immunocomplex wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl pH 8.1, 1.5 M NaCl and protease inhibitor); LiCl immunocomplex wash buffer 

(0.25 mM LiCl, 1% NP40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.1 and 

protease inhibitor) followed by two washes with TE buffer (pH 8.0). All the washes 

were done for 5 min at constant agitation and samples were subsequently centrifuged at 

1,000 rpm for 1 min.  

To check for immunoprecipitation of proteins the beads were recovered in 25 μl 

of Laemmli buffer (2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.002% 
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bromophenol blue, 60 mM Tris-HCl (pH 6.8), boiled, loaded on a 12% or 6% SDS-

polyacrylamide gel for Tif1p or Mcm6p examination, respectively, and analyzed by 

western blotting. 

Alternatively, to elute the chromatin-crosslinked complexes from the antibody 

the samples were incubated twice with elution buffer (1% SDS, 0.1 M NaHCO3) for 15 

min at room temperature and constant agitation. Next, samples that contained protein-

DNA complexes were treated in parallel to the input sample previously collected. To 

reverse protein-DNA crosslinking, 0.2 M NaCl was added, and the samples were 

incubated for 4 h at 65°C. Samples were deproteinized and phenol/chloroform extracted. 

The DNA was precipitated, washed and finally resuspended in 50 μl of Tris-HCl pH 8.0 

for analysis by PCR or hybridization with radioactive probes. 

 

Antibodies  

To immunoprecipitate acetylated histone H3 a rabbit polyclonal antibody was 

used (06-599 Millipore, Billerica, MA). For immunoblotting detection of the Myc 

epitope tag a rabbit polyclonal antibody was used in at 1:2500 dilution (DB061CMyc-

C10, Delta Biolabs, Gilroy, CA). For detection of Tif1p-FLAG-C tag a mouse 

monoclonal ANTI-FLAG® M2 affinity purified antibody was used at a 1:5000 dilution 

(F1804, Sigma, Saint Louis, MI). Anti-pan-MCM polyclonal antiserum against a 

synthetic peptide from hMcmc3p (residues 405 to 421) (a gift from Dr. MacAlpine) was 

used at a 1:1000 dilution. 
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Horseradish peroxidase-conjugated secondary antibodies for western blotting 

were used at a 1:5000 dilution and purchased from Jackson ImmunoResearch 

Laboratories (West Grove, PA). 

 

Results 

Amino terminal tagging of TIF1 affects vegetative growth and induces mutant 

phenotype 

To create tools to explore the role Tif1p in rDNA origin regulation and 

checkpoint activation several strategies were use to generate a tagged Tif1 protein 

(Tif1p). In general, tagged transgenes ware targeted by homologous recombination to the 

endogenous TIF1 locus during macronuclear development (Cassidy-Hanley et al., 1997). 

Strains with a partial gene replacement were generated, and in all cases the TIF1 

transgene was under the control of the endogenous promoter. These strains were 

generated by co-transformation with an unlinked selectable MTT1-neo transgene to first 

select cells that incorporated and expressed exogenous DNA during the initial screening 

of bioballistic transformants. TIF1 co-transformants were subsequently identified by 

PCR and western blotting analysis. The various tagged TIF1 alleles that were used in 

this study are described in Table 3.1. 

To initiate these studies, a tag consisting of 6 histidine residues combined with 5 copies 

of C-myc tag was attached to the amino terminus of Tif1p (Tif1p-HM-N-tag). Anlagen 

co-transformants were screened by PCR using primers that flank the insertion site at the 

endogenous locus. Several Tif1p-6xHis-5xMyc amino tagged clonal
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Table 3.1 Genetic and biochemical analysis of epitope-tagged TIF1 alleles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Developmental 

defects

yesGermlineCarboxyFLAGTif1p-FLAG-CTF005

Loss of specific 

binding to 

origins

yesAnlagenCarboxyHis-MycTif1p-HM-C

TAM101/Yakisich 

et al. 2006

TM002

Abnormal mac

division and 

macronuclear 

extrusion bodies

yesAnlagenAminoHis-MycTif1p-HM-NTM001

DefectTetramer 

formation 

EMSA assay

Transformants

Type

Insertion 

site

TagOther name/

reference

Strain 

name

Developmental 

defects

yesGermlineCarboxyFLAGTif1p-FLAG-CTF005

Loss of specific 

binding to 

origins

yesAnlagenCarboxyHis-MycTif1p-HM-C

TAM101/Yakisich 

et al. 2006

TM002

Abnormal mac

division and 

macronuclear 

extrusion bodies

yesAnlagenAminoHis-MycTif1p-HM-NTM001

DefectTetramer 

formation 

EMSA assay

Transformants

Type

Insertion 

site

TagOther name/

reference

Strain 

name

(EMSA) electrophoretic mobility shift assay.
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Figure 3.3 The replacement of the endogenous TIF1 gene by an TIF1-HM-N tagged transgene is not stably 

maintained in clonal lines. Negative image of an agarose gel stained with ethidium bromide showing PCR 

products. These fragments were amplified by primers that anneal with endogenous TIF1 sequences and 

that flank the side of the tag insertion. The tagged allele can be discriminated from the endogenous gene 

by the size of the amplified fragment. Tetrahymena genomic DNA was used as template. (WT) Wild type 

strain, (-) is a PCR reaction without template DNA, (C) control strain transformed with the MTT-neo-

MTT transgene only, clonal lines 2-4-5-7-12-18 contain different amounts of the tagged TIF1 transgene. 

A. The genomic DNA used in these amplifications was prepared immediately after the clonal lines were 

isolated. B. Genomic DNA prepared after the clonal lines were grow for 168 generations. 
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cotransformants were generated, each one with different degree of gene replacement 

(Figure 3.3A). These clonal line cultures were propagated for 168 generations and a 

subsequent analysis by PCR revealed that the amino tagged-Tif1p was difficult to 

maintain in the amitotic macronucleus (Figure 3.3). Since macronuclear chromosomes 

segregate randomly, the rapid loss of the transgene from the entire population suggested 

that the tag was interfering with Tif1p function. Nevertheless, TIF1-HM-N-A4, one of 

the strains with highest gene replacement in the macronucleus, was selected for further 

experiments.  

To asses whether the tag affect oligomerization and DNA recognition, in vitro 

DNA binding activity was analyzed. Since Tif1p was originally identified in crude 

cytosol S100 extracts as an activity that binds specifically to the single A-rich strand 

DNA sequence from rDNA type I binding element and pause site elements (PSE) 

(Mohammad et al., 2000; Saha & Kapler, 2000; Umthun et al., 1994), I decided to test 

this activity in cultures from Tif1p-HM-N-tag strain (Figure 3.4). No defect in DNA 

binding activity was noticeable in the tagged strain compared to wild type. Since the 

replacement of the endogenous TIF1 for the tag version was high, I suspected that the 

tagged version was responsible for most of the Tif1p binding activity. The mobility of 

the DNA:protein complex was identical to wild type suggesting that the protein exists as 

a homotetramer. 

The expression of tagged-Tif1p was analyzed throughout the cell cycle by 

western blotting in synchronized cell cultures. Synchronization in G1 phase was 

achieved by starvation-refeeding protocol and the cell cycle progression monitored by
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Figure 3.4 Tif1p-HM-N tag is able to bind to type I and PSE sequences of rDNA. The binding activity of 

Tif1p in S100 extracts from wild type and amino terminal tagged-Tif1p strains were compared by EMSA 

asay. Single stranded DNA (ssDNA) oligos representing different length of the A-rich strand of type I 

element were assayed (A37, A53, A54). The binding to an oligo corresponding to pause site element 

(PSE) was also analyzed. The migration of the TIf1p-DNA complex is indicated, as well as the free 

oligonucleotide substrate. The sequence of each oligonucleotide is showed in the bottom. 
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PSE 5’-AAAAAATGAATGAAAACTGAAAAATTTACAAGGGATTGAAAATTTTGGC-3’
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flow cytometry (Figure 3.5A). Similar to wild type, S phase was detectable by 3 h after 

refeeding and a peak for G2 was observed at 4 h. Tagged Tif1p was detected using an 

antibody against the myc-epitope tag (Figure 3.5C). Considering that the tag itself is 

about 10 KDa, the predicted size for the tagged Tif1p is around 34 KDa. Unexpectedly, 

two bands were detected with this antibody (45 and 55 KDa), strongly suggesting the 

presence of posttranslational modification. When the signals were normalized by total 

protein loaded in a parallel SDS-PAGE gels, (Figure 3.5B), no significant change in the 

level of Tif1p was observed across the cell cycle. By contrast, the abundance of the wild 

type TIF1 transcript was previously shown to be cell cycle regulated, with a increase 

during S phase (Mohammed et al., 2000; Saha & Kapler, 2000). These differences raised 

the possibility that addition of this tag to the N-terminus prevents cell cycle regulated 

turnover of TIF1 protein. 

 The primary indication that the amino terminal tag compromised Tif1p function 

was the high frequency of macronuclear extrusion bodies observed by direct microscopy 

of non-dividing cells (as shown in the figure on p.137, panel A). Extrusion bodies are 

extranuclear bodies of chromatin that are positively stained with acridine orange. 

Extrusion bodies were previously described as a mechanism to reduce macronuclear 

DNA content in normal cycling cells (Cleffmann, 1980). However, an excessive number 

of extrusion bodies that contain fragmented DNA has been reported in knockdown 

strains for genes involved in the maintenance of nuclear integrity (Wiley et al., 2005). As 

expected extrusion bodies were occasionally detected by direct microscopic observation 

in logarithmic growing cultures of a wild type strain. An excessive number extrusion
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Figure 3.5 Cell cycle analysis of Tif1p-HM-N tag. A. Cell cycle progression was measured by flow 

cytometry. Synchronization was achieved by the starvation–refeeding protocol. Histograms showing 

number of cells (counts, ordinate) as a function of the DNA content (1C and 2C, abscissa). Wild type and 

tagged Tif1p strains were compared at indicated time after refeeding. B. 12% SDS-PAGE stained with 

Coomassie blue showing total protein loaded for each sample. C. SDS-PAGE and western blot analysis of 

whole cell lysates with α-myc antibody; this antibody recognize two distinct bands of Tif1p-HM-N tag (*). 

No detectable signal in wild type sample (WT). 
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bodies were present in Tif1p-HM-N strain, occurring in 80% of the TIF1-tagged cells 

(Figure 3.6A). Furthermore, abnormal macronuclear division was elevated in the tagged 

strain (Figure 3.6B). Cells undergoing cytokinesis without completion of division of the 

macronucleus were commonly observed in the tagged strain. In general these phenotypes 

are analogous to the ones observed in TIF1 knockdown strains (Morrison et al., 2005), 

suggesting that the addition of the tag to Tif1p severely affects the properties of Tif1p, 

and hence the overall integrity of the cell. 

 

Initial characterization of the His-myc carboxy terminal-tagging of Tif1p  

 Since placement of the his-myc tag at the amino terminal of TIF1 was 

deleterious, a second construct was generated with the tag at the carboxy end of Tif1p. 

Since the carboxy terminus contains the oligomerization domain of Tif1p, we were not 

sure whether this tagged variant would form homotetramers. The observation that 

placements of a His tag at the carboxy terminus of whirly proteins did not affect 

crystallization of tetramers, suggested that insertion of the tag should not be an issue 

(Desveaux et al., 2002). An epitope-tagged TIF1 gene with 6xHis-5xMyc added at the 

carboxyl terminus (TIF1-HM-C-tag) was introduced to Tetrahymena. The ability of this 

tagged variant to form homotetramers and bind DNA was corroborated by EMSA (data 

not shown). Careful examination revealed no significant increase in the frequency of 

extrusion bodies or aberrant macronuclear division in this strain, suggesting that this tag-

Tif1p was stable and maintained in the cell. Western blots analysis was used to
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Figure 3.6 Insertion of tag at the amino terminus of TIF1 induce abnormal phenotype in Tetrahymena 

cells. Acridine orange stained cells. A. Log phase cultures from wild type and Tif1p-HM-C tagged TIF1 

strain are compared. Arrows indicate extrusion bodies in the cells. B. Dividing cells from wild type and 

tagged Tif1p are compared. Progression of cytokinesis without complete macronuclear division is 

observed in tagged Tif1p strains. Acridine orange staining turns red in acid pH; I assume that the red spot 

presents in the wild type strain correspond to lysosomes. 
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determine the levels of TIF1-HM-C-tag proteins using an α-myc antibody. As for amino-

terminal tagged Tif1p, the levels of the carboxy terminal tagged Tif1p did not oscillate 

across the cell cycle (Figure 3.7A). The temporal localization of Tif1p in both the 

micronucleus and macronucleus during vegetative cell division was determined and 

presented in Chapter II. The intracellular localization of Tif1p was dynamic throughout 

the cell cycle with a strong perinuclear staining immediately prior to S phase. This 

perinuclear staining was present in macro nuclei in cultures synchronized at the G1/S 

border. Since rDNA is mostly encapsulated in nucleoli, which are evenly distributes 

around the macronucleus throughout the cell cycle, we speculated that this staining 

correlates with the binding of TIF1p to type I elements at the rDNA origin. Furthermore, 

the timing of this binding was consistent with the idea that Tif1p acts as an inhibitor of 

rDNA replication during early S phase (Yakisich et al., 2006).  

 As a first attempt to distinguish between the proposed models for how Tif1p 

regulates rDNA origin activation (Figure 3.2), I tested for the loading of Tif1p into 

chromatin, and for physical interactions between Tif1p and ORC or the MCM complex. 

Crosslinked chromatin was used for this analysis. Consequently, direct interaction 

between Tif1p and ORC or MCM2-7 would be detected, as well as co-occupancy of a 

DNA fragment. Since ORC and MCM2-7 are high molecular weight complexes (~500 

KDa Mohammad et al., 2003) and Tetrahymena ORC contains an integral RNA subunit 

(Mohammad et al., 2007), it was essential to include formaldehyde in the chromatin 

precipitation to preserve DNA-protein, RNA-protein and protein-protein interactions.
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Figure 3.7 Detection of C-terminal tagged Tif1p. A. Myc antibody was used to monitor tagged TIf1p 

during cell cycle. Culture was synchronized by starvation-refeed protocol. Samples were collected every 

30 min after refeeding. Logarithmically growhing wild type strain was used as a negative control. Ponceau 

S stained membrane is showing the comparable loading of total protein B. Tif1p-HM-C-tag is effectively 

immunoprecipitated by myc antibodies. Whole cell extract from a wild type and TIf1p-HM-C strains were 

subjected to IP. Immunoprecipitates from samples treated with (+) or without (-) myc antibody were 

compared. The IP antibody against myc epitope was used for western blotting. HRP-goat anti rabbit was 

used for detection. 
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 To determine whether the C-terminal epitope tag in Tif1p was accessible to the 

antibody, Tif1p-HM-C-tag was immunoprecipitated using antibodies against Myc and 

the imunoprecipitated fraction was assayed by western blot using the same antibody  

 (Figure 3.7B). The antibody specifically recognize tagged-Tif1p in the fraction 

immunoprecipitated which contained soluble and chromatin bound Tif1p. Having 

established the parameters for immunoprecipitation and western blotting, I proceed to 

test the models for the role of Tif1p in the regulation of replication. 

The models proposed in Figure 3.2 predict that Tif1p is loaded onto the rDNA 

origin during the stage of the cell cycle where Tif1p is known to inhibit rDNA 

replication. If Tif1p is interfering with the formation of pre-RC by preventing the 

loading of ORC (Figure 3.2, model 1), then origin sequences should be 

immunoprecipitated by Tif1p mainly during G1 and early S phase when the rDNA origin 

is repressed by Tif1p. Additionally, Tif1p is not expected to be present at the origin once 

ORC is loaded or when pre-RCs are activated at the G1/S border (MCM loading, Figure 

3.2, model 1). As a first step in this analysis, a ChIP assay was performed on 

synchronized starvation-refed cultures to examine the temporal association of Tif1p with 

rDNA origins across the cell cycle. Following formaldehyde crosslinking and 

fragmentation of the chromatin, Tif1p-HMC-tag was immunoprecipitated with α-myc 

polyclonal antibody. Segments spanning known in vitro and presumed in vivo binding 

sites for Tif1p (type I element at the origin and at the rRNA promoter) were amplified. 

Additional segments of the 5‟ NTS were also amplified to serve as negative controls. No 

enrichment for known target sequences for Tif1p or negative controls was
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Figure 3.8 Binding of Tif1p to rDNA origin sequences. Top panel showing a schematic representation of 

the 5‟NTS of the rDNA. Cis-acting elements (Type I in red, Type II in purple, Type III in yellow, pulse 

site elements in blue and replication fork barrier in waved pattern) and nucleosome position (black ovals) 

are indicated. Amplified fragment are also indicated. A. ChIP with α-myc antibody on wild type and 

Tif1p-HM-C-tag strain was compared. Starvation-refeed protocol was used to synchronize the cells in G1 

phase. Formaldehyde (HCHO) alone or plus a homobifunctional amine (HCHO+EGS) was used as a 

crosslinker. PCR products for indicated regions are shown. Input (I), plus antibody (+) and no antibody (-) 

as indicated. B. Control ChIP assay using synchronized cultures of wild type strain. Antibodies against 

acetylated histone H3 were used. (N4 and N7) fragments where nucleosome 4 and 7 are respectively 

positioned in the 5‟ NTS. 
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observed (Figure 3.8A). To improve protein-protein crosslinking before the pull down, 

the homobifunctional amine, EGS, was added (Pierce, Rockford, IL). Still no enrichment 

was evident for type I and PSE sequences. To check whether the ChIP protocol was 

suitable for Tetrahymena, the binding of acetylated histone H3 to specific sequences in 

the rDNA 5‟ NTS was assayed. ChIP was performed in a starved culture, where 

acetylation is expected to be minimal, and on S phase cells, plus an S phase control 

where hyperacetylation of histones was enriched by inhibiting histone deacetylases with 

sodium butyrate. Binding sequences were pulled down with antibodies against acetylated 

histone-H3 and enrichment was evident in both S phase cultures, arguing that the 

protocol was appropriate for our objective (Figure 3.8B). These data suggest that either 

Tif1p does not maintain a direct association with rDNA origin and promoter sequences, 

or that addition of the tag was interfering with the function of Tif1p. 

 The interaction of Tif1p with ORC or MCM complexes was also assayed. Myc 

antibody was used to pull down complexes that include Tif1p-HM-C-tag in starvation-

refed synchronized cultures of TM002 strain (Table 3.1). The immunoprecipitated 

fraction was assayed by western blotting to detect the co-occupancy of Tif1p with ORC 

or MCM. However, no interaction between Tif1p and Mcm2-7 or ORC was observed 

(data not shown). This suggested either that no interaction between Tif1p and pre-RC 

complexes occur, or an obstruction of these interactions produced by the adition of the 

tag to Tif1p. The possibility that the carboxy terminal tag in Tif1p was modulating the 

interactions between Tif1p and pre-RC was a concern. Furthermore, based in the 

crystallographic data, Desveaux and colleagues predicted that mutating one specific 



 

 

122 

122 

residue at the carboxy-terminus (Lys 188) would interfere with the ssDNA binding 

activity. Their experimental data suggests that the carboxy terminus modulates the 

affinity of whirly proteins for DNA (Desveaux et al., 2002).  

The first approach to address whether this tag interferes with Tif1p function was 

to replace his-myc tag with a smaller peptide. Three copies of FLAG tag were added at 

the carboxyl terminus of Tif1p. The size of this tag was considerably smaller compared 

with the previous one (3 vs 10 KDa). However, preliminary screening of transformants 

expressing FLAG-tagged Tif1p demonstrated that the addition of FLAG tag induced 

genome instability in the micronucleus. Specifically, in a test cross between wild type 

and TF005 strains (Table 3.1), the progeny failed to complete macronuclear 

development. This reinforced the idea that the addition of tags to the carboxyl terminus 

interferes with functions of Tif1p. Induction of genomic instability in the 

transcriptionally silent micronucleus is another characteristic of TIF1-depleted strains 

(Morrison et al., 2005). 

 

Design of a peptide antibody to study endogenous Tif1p 

In silico analysis showed that the predicted isoelectric point for Tif1p of 9.17 

(using ProtParam at http://ca.expasy.org), which is consistent with that of a DNA-

binding protein. This parameter changed to 7.61 and 5.51 in Tif1p-FLAG-tag and Tif1p-

HM-C-tagged, respectively. Furthermore, the instability index based on statistical 

predictions (ProtParam) suggests that the tags may induce some instability in Tif1p 

particularly when the His-Myc tag was added (Table 3.2).  
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Table 3.2 Instability index based on statistical predictions (ProtParam). This software predicting in vivo 

stability of a protein from its primary sequence by the overall charges of the protein and its dipeptide 

composition (Guruprasad et al., 1990). Stable proteins are designated as those that show instability index 

lower than 40. Protein sequences from Tif1p wild type and carboxy terminal tagged Tif1p either with 

FLAG or his-myc tag were compared.  
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To overcome these shortcomings, a peptide antibody was designed to study the 

endogenous TIF1 protein. As was previously reported, the alignment of Tif1p and 

StWhy1 (former P24, Desveaux et al., 2000) revealed a high degree of sequence 

similarity (Saha et al., 2001). Crystallographic evidence showed that four StWhy1 

molecules are most likely organized into a homotetramer, and the tetramerization is 

mediated by α-helixes 2 and 3 in the C-terminal portion of the protein (Figure 3.9B, 

Desveaux et al., 2002). To model Tif1p tertiary structure, the Swiss Model Software 

(htt://swissmodel.expasy.org) was used to compare the solved structure of StWhy1 with 

Tif1p (Figure 3.9A). The three-dimensional model of Tif1p predicts structural 

conservation with StWhy1. For StWhy1, it is known that the C-terminal helix mediates 

tetramer formation. Taking in to account peptide recommendations from in silico 

analysis, 16 residues (Ac-CSKDNTGKVNIDYSKR-Amide) were selected as an 

immunogen for rabbit antibody production using services offered by COVANCE 

laboratories. This peptide is present in the exposed unstructured loop between β3 and β4 

that forms part of the whirly domain (Figure 3.9A and B indicated by an arrow).  

The affinity-purified antibody recognized a single protein band of the expected 

size (24 KDa) in western blot analysis of wild type strain (Figure 3.10A). As expected, 

the intensity of this band was diminished in the TIF1 knockdown strain (Figure 3.10A), 

suggesting that endogenous Tif1p was specifically detected by the peptide antibody. 

Immunoprecipitation of tagged Tif1p from Tif1p-HM-C-tag strain with α-myc antibody 

was recognized by Tif1p peptide antibody (Figure 3.10B). As a control, a strain that 

contain Mcm6-myc tag was also immunoprecipitated with α- myc antibody. 
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Figure 3.9 Three-dimensional model of Tif1p is related to the solved structure of StWHY1. A. Ribbon 

representation of StWHY1 (panel i) from Desvaux e al., 2002 and Tif1p (panel ii) modeled by Swiss 

Model Software (htt://swissmodel.expasy.org). The arrow demarcates the location of the sixteen residues 

between β3 and β4 to which Tif1p-peptide polyclonal antiserum was raised against. B. Illustration of 

tetrameric structure formed by StWHY1 from Desvaux et al. 2002. Each StWHY1 is represented in a 

different color. The arrow indicates the exposed loop to show the region recognized by Tif1-peptide 

antibody.  
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Figure 3.10 Detection of Tif1p with peptide antibody. A. Western blot analysis of whole cell lysate from 

log phase cultures of wild type (WT) and TIF1-knockdown (KD) strains. Ponceau S was used to stain 

PVDF membranes and shows the uniform loading of total proteins (left panel). Tif1p-peptide-antibody 

identified a single band of 24 KDa that correspond to the predicted size for endogenous Tif1p (right 

panel). B. Immunoprecipitation of myc-tag proteins in S phase synchronized cultures. Samples were 

crossinked with formaldehyde. Wild type, Tif1p-HM-C-tag and Mcm6p-myc-tag were IP with α-myc 

antibody. Tif1p was detected pull down in samples by western blot using the Tif1p-peptide-antibody. 
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 No major background was detected with the Tif1p peptide antibody in this strain 

(Figure 3.10B). Unexpectedly, antibodies against the endogenous  

Tif1p only recognize a single band in wild type protein extracts compared with two 

bands revealed in the tagged Tif1p. This raised two possibilities: (1) that a modified 

TIF1 protein was not detected by the peptide antibody in the wild type strain, or (2) that 

a truncated version of Tif1p was expressed in the tagged strain.  

To better resolve Tif1p, wild type cytosolic proteins extracts were analyzed on 

two-dimensional gel electrophoresis (isoelectric focusing pH 6-11 SDS-PAGE). Tif1p 

peptide antibody recognizes at least three possible isoforms of the native Tif1p which 

suggested some post-transcriptional modifications (Figure 3.11A). Two of this isoform 

contain the same molecular weight but slightly different isoelectric points. Using 

NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos) twelve possible sites for 

phosphorylation in Tif1p were predicted (seven serines, three tyrosines and two 

threonines). One of the threonine is included in the sequence of the peptide that is 

recognized by the antibody against Tif1p opening the possibility that this antibody only 

recognizes the unphosphorylated isoform of this protein. In order to determine whether 

Tif1p is phosphorylated at this site, mock and phosphatase treated samples were 

compared. Alkaline phosphatase was used specifically to release phosphate groups from 

phosphorylated tyrosine, serine and threonine residues in Tif1p. Also, sodium 

orthovanadate was used in higher concentrations as a phosphatase inhibitor. Since 

orthovanadate (0.1-0.5 mM) causes a defect ciliary movement and interferes with 

elongation of the dividing macronucleus in Tetrahymena (Nilsson 1999), the assays to

http://www.cbs.dtu.dk/services/NetPhos
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Figure 3.11 Tif1p isoforms. Cytoplasmic extract from wild type strain was analyzed by two-dimensional 

isoelectric focusing gel (15 % SDS-PAGE pH 6-11). A. Mock treated sample. B. Sample treated with 

alkaline phosphatase to remove phosphate groups. White dashed lines were addd to help the visualization 

of the molecular marker. Dashed square are showing the area that was amplified for better visualization. 

C. Cropped areas showing in detail the changes in pH for Tif1p in the different treatments. Sodium 

orthovanadate was used as phosphatase inhibitor. D. Analysis of the impact of Tif1p phosphorylation in 

changes of isoelectric point. This prediction was obtained by submitting the primary sequence of Tif1p in 

ScanSite pI/Mw (expasy.org/tools). Multiple phosphorylation states are listed and the predicted effect in 

the molecular weight and isolelectric point of Tif1p. 
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determine phosphorylation were limited to in vitro approaches.  

If phosphorylation of Tif1p blocks its detection by the peptide antibody, the 

elimination of a phosphate group in Tif1p should increase the signal for the 

desphosphorylated form. Mock, phosphatase and phosphatase plus inhibitor treated 

samples were subjected to two dimensional gel electrophoresis and endogenous Tif1p 

was detected by western blotting. Phosphatase treatment did not increase the western 

blot signal for Tif1p, arguing against the idea that a phosphorylation prevent the 

detection of Tif1p. Furthermore, an adjustment of the pH occurred under alkaline 

phosphatase treatment due to the dephosphorylation of Tif1p (Figure 3.11C). The 

dephosphorylation was prevented by the addition of orthovanadate to alkaline 

treatments. The shift in the pH occurs within pHs 8 and 9 (Figure 3.11C) and ScanSite 

pI/Mw prediction site was used to estimate the number of phosphate groups presents in 

Tif1p. The addition of three phosphate groups is predicted to change the isoelectric point 

of Tif1p from pH 9.17 to pH 8.03 (Figure 3.11D). This suggests that Tif1p is potentially 

phosporylated in three different sites and that phosphorylation does not prevent the 

detection of Tif1p by the peptide antibody. 

 

Tif1p abundance during vegetative cell growth and macronuclear development 

As previously described TIF1 mRNA levels are cell cycle regulated, showing a 

maximal signal during macronuclear S phase, that is approximately seven-fold greater 

than the abundance of this transcript during development where TIF1 mRNA transcripts 

levels are constant (Morrison et al., 2005). 
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Taking advantage of the antibody against the endogenous Tif1p, I followed Tif1p 

during the vegetative and developmental cycle. Up to this point, I used starvation-

refeeding protocol to synchronize cultures for cell cycle studies. However, by using 

Tif1p-peptide antibody I noticed that starvation treatments leads to a decrease in Tif1p 

(Figure 3.12A). To avoid this situation, centrifugal elutriation protocols were used to 

obtain synchronized G1 cultures for further experiments during vegetative cell cycles.  

Wild type cultures were synchronized by elutriation and the abundance of Tif1p 

was followed by western blotting throughout the cell cycle (Figure 3.12B). Early in the 

cell cycle low levels of Tif1p were detected (Figure 3.12B, 0 and 30 min after 

elutriation). At the G1/S transition Tif1p levels increased, suggesting that the protein was 

directly reflecting the abundance already described for TIF1 transcript. However, the 

down regulation observed at the beginning of the cell cycle was not reproducible in the 

second cell cycle (Figure 3.12B, 150, 180 or 210 min after elutriation). This data suggest 

that Tif1p was stabilized after elutriation, but does not necessarily cycling during 

synchronized vegetative growth. I speculate that Tif1p may be sensing mechanical 

damage imposed during elutriation, but indeed the origin of this down regulation is 

unknown. The abundance of Mcm6p was used to show its cell cycle regulated levels 

during this experiment (Figure 3.12B). Mcm6 is highly abundant during G1 phase and 

G1/S, followed by a decrease during S phase and its low level is maintained until next 

G1. For better comparison between Tif1p and Mcm6p during the cell cycle, the 

abundance of each protein was quantified directly from the western blot signal by using 

ImageJ (Figure 3.12B). The collective data show no evidence of cyclic pattern for Tif1p
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Figure 3.12 Tif1 protein levels during starvation and the vegetative cell cycle of elutriated log phase cells. 

A. Tif1p peptide antibody was used to monitor endogenous Tif1p in a starved wild type culture (top 

panel). Samples from log phase culture and different times point samples during starvation were 

compared. Ponceau S stained membranes (total protein) showing the even loading of protein for different 

time points. B. Cell cycle analysis of wild type Tetrahymena synchronized by elutriation. Histograms 

showing cell cycle progression in samples taken every 30 min until 210 min. Cell cycle detection of Tif1p 

and Mcm6p by western blot using the corresponding peptide antibody. Synchronized samples were 

compared. PVDF membranes were stained with ponceau S to show equal loading of total proteins (left 

panel).  
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during the vegetative cell cycle. 

The transcription profile for TIF1 extracted from a genome-wide analysis of 

Tetrahymena during starvation and macronuclear development (Miao et al., 2009) was 

compared with the protein abundance (TGED, TTHERM_00048810; Figure 3.13A). 

During starvation TIF1 transcript decreased, supporting the results obtained with Tif1p-

peptide-antibody that show a gradual decrease in the Tif1p levels during starvation. 

However, a contradictory piece of data was observed during conjugation. Here the TIF1 

transcript shows a prominent increase in expression at two hours, probably associated 

with meiosis and a shoulder of expression between 10 and 14 h post mating when 

macronuclear anlagen are developing. These observations correlate with the increased 

TIF1 binding activity observed in extract from cells undergoing macronuclear 

development (Mohammad et al., 2000), but disagree with previous mRNA data obtained 

in our lab where the TIF1 mRNA was present at constant low levels throughout 

development (Morrison et al. 2005). To address this discrepancy western blotting was 

performed with Tif1p peptide antibody to directly monitor the levels of Tif1p during 

development. Tif1p was not detected during the pre-meiotic and post-zygote S phases 

(2-6 h) or during macronuclear development (9-24 h) (Figure 3.13B). In case that Tif1p 

is actually expressed during development Tif1p levels are very low compared to 

vegetative growth and the detection by western blotting was not sensitive enough. These 

data indicate that Tif1p is down regulated in mating cells and exconjugant progeny.
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Figure 3.13 Expression profile for TIF1. A. Microarray data for TIF1 (gene ID TTHERM_00048810 from 

http://tged.ihb.ac.cn). Growing cells, L-l, L-m and L-h correspond respectively to ~1105 cells/ml, 

~3.5105 cells/ml and ~1106 cells/ml. For starvation, ~2105 cells/ml were collected at 0, 3, 6, 9, 12, 15 

and 24 hours (referred to as S-0, S-3, S-6, S-9, S-12, S-15 and S-24). For macronuclear development, 

equal volumes of B2086 and CU428 cells were mixed, and samples were collected at 0, 2, 4, 6, 8, 10, 12, 

14, 16 and 18 hours after mixing (referred to as C-0, C-2, C-4, C-6, C-8, C-10, C-12, C-14, C-16 and C-

18). B. TIF1 protein is not detected during macronuclear development. Western blotting showing the 

abundance of Tif1p every 3 h for 24 h during macronuclear development. A logarithmically growing 

culture and a starved-refed synchronized culture sample taken at 120 min after refeeding are shown as 

positive controls. 
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Analysis of chromatin binding sites for Tif1p using peptide antibody 

 ChIP assays were used to examine the specific binding of Tif1p to type I element 

in a log phase culture (Figure 3.14A). After crosslinked chromatin was sheared the 

native Tif1p bound to DNA was immunoprecipitated with αTif1p peptide antibody. 

Standard PCR with specific set of primers were used to determine the enrichment of 

specific DNA fragments in the immunoprecipitated fraction. A marginal but 

reproducible enrichment of type I elements present at the origin was observed (Figure 

3.1, domain 1), arguing that specific binding occurred. However, no enrichment of the 

type I element at the promoter was detected (Figure 3.14A). As a negative control, the 

binding of Tif1p to the coding region of β-tubulin was analyzed and no enrichment was 

detected suggesting that the binding of Tif1p was specific for type I elements. Since the 

macronucleus contains only 45 copies of non-rDNA chromosome versus 10,000 copies 

of the rDNA, these data opened the possibility that the absence of enrichment of the β-

tubulin locus could be a detection issue due to the difference in the copy number. To 

resolve this, a sequence analogous to type I element present in the RAD51 promoter was 

analyzed and added as a second ChIP control. Type I-like sequence at RAD51 promoter 

showed enrichment similar to the rDNA origin. These results suggest that Tif1p binding 

is specific to type I element.  

 Given that Rad51 mRNA is induced by DNA damage and the fact that Tif1p is 

able to bind to RAD51 promoter, suggested that Tif1p could be modulating RAD51 

expression during genotoxic stress. The binding of Tif1p to RAD51 promoter sequence 
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was further analyzed by in vitro assay and the collective data will be shown in the 

Chapter IV of this dissertation. 

 The modest enrichment observed at the rDNA origin in log phase cultures 

(Figure 3.14A) suggested that the binding of Tf1p might be transient during the cell 

cycle. Since Tif1p acts as repressor of replication, it was expected that its binding would 

be high to origins in G1, and low in late S phase. To address this possibility, ChIP assays 

were used to analyze the binding of Tif1p in synchronized cultures. A G1 population of 

wild type cells obtained by centrifugal elutriation was cultivated and samples of the 

synchronized early and late S phase were compared to a G1 culture. Since the levels of 

Tif1p were low in recently elutriated cells (Figure 3.12B), samples representing G1 

phase were obtained at the beginning of the second cell cycle (Figure 3.14A, 180 min). 

As a negative control the binding of Tif1p to non-rDNA sequences was analyzed, here 

TIF1 coding region did not present any evidence of Tif1p binding. Segments spanning 

type I elements at the origin and rDNA promoter were amplified (Figure 3.14A). A very 

modest enrichment of the rDNA origin and promoter regions was detected (Figure 

3.14A). No evidence for cell cycle regulation was observed.  

 Since Tif1p is permanently bound to rDNA origins throughout the cell cycle, 

models 1 and 2 (Figure 3.2) cannot explain the inhibitory effect of Tif1p in the 

regulation of DNA replication. However, model 3 suggests that Tif1p is always bound at 

the origin and the activation of origins is controlled by a modification in Tif1p which 

promote the recruitment of the MCM complex (Figure 3.2, model 3). In this case Tif1p 

should be included in the activated pre-RC complex. 
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Figure 3.14 In vivo association of Tif1p with the rDNA minichromosome. A. ChIP analysis of wild type 

strain in log phase culture (right panel) and synchronized cultures (left panel) using Tif1p-peptide 

antibody. Crosslinked, sheared chromatin was immunoprecipitated with Tif1p-peptide antibody. After 

reverse the crosslinking, immunoprecipitated DNA was amplified using primer sets specific to the regions 

indicated. (1:100) dilution of total input DNA (I), immunoprecipitated samples with (+) or without (-) 

antibody. B. (right panel) Binding of Tif1p to rDNA sequences in synchronized vegetative cells. Wild type 

culture was synchronized by elutriation and samples from G1, early S and late S phase of the cell cycle 

were compared. (Left panel) diagram of one copy of rDNA minichromosome showing regulatory elements 

in the 5‟ NTS and coding regions fragments that were amplified. 
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Figure 3.15 Cell cycle associate binding of Tif1p to non-rDNA sequences. A. Diagram showing 60Kb 

spanning the non-rDNA origin of replication, ARS1, in the endogenous macronuclear chromosome. 

Sequences detected by PCR are indicated (A1 to A12) B. ChIP analysis of the ARS1 surrounding 

sequences (showed in A) with tif1p peptide antibody. (1:1000) dilution of total input DNA (I), 

immunoprecipitated samples with (+) or without (-) antibody. 

I        - +     I         - +       I        - + 

70                       100                    180         minutes after elutriation

Early S               Late S                   G1

A3

A2

A1

A5

A6

A7

A9

A11

B.

A.



 

 

138 

138 

 Along with the origin regions rDNA intervals where the binding of Tif1p was not 

predicted to occur were tested by PCR from the immunoprecipitated fractions as controls 

(Figure 3.14B): these segments included developmentally regulated replication fork 

barrier (RFB, Zhang et al., 1997), sequences close to the promoter (previously showed to 

be occupied by nucleosome 6 (N6)), and randomly chosen sequences in the rDNA 

coding region (R2-6) (Figure 3.14B). An unexpected extremely robust enrichment of 

sequences from coding region of rDNA was observed (Figure 3.14B, R2, R3, R4, R5, 

R6). These fragments did not contain a type I-like sequences suggesting that the binding 

of Tif1p to rDNA coding region is not sequence specific. 

To test whether the enrichment seen at rDNA coding region was common to 

other macronuclear chromosomes a 60 Kb segment encompassing the 0.9 Kb non-rDNA 

origin of replication, ARS1, was analyzed by ChIP (Figure 3.15A, A1-12). ARS1A and 

B are the only non-rDNA origins of replication described for Tetrahymena (Donti et al., 

2009). In contrast to rDNA coding sequences no strong enrichment was observed in this 

interval. Modest enrichment was detected for regions A3 and A5, similar to the signal 

for rDNA origin and promoter (Figure 3.15B). However, neither of these segments 

functions as a replication initiation site in endogenous non-rDNA chromosome.  

To better compare these results, amplified PCR products were quantified using 

ImageJ program. The same area for each amplified fragment was quantified. No 

antibody treated samples count as a background signal and the values were subtracted 

from the immunoprecipitated sample. Enrichment was normalized to the input and 

plotted as a function of the phase in the cell cycle (Figure 3.16). In general, rDNA 
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coding regions (CR2-6) were highly enriched in the immunoprecipitated fraction, 

suggesting they are preferred binding sites for Tif1p. Surprisingly the expected binding 

sites for Tif1p, the origin and rDNA promoter, were not enriched greater than 15% of the 

input. Randomly chosen non-rDNA sequences from the ARS1 replicon were enriched up 

to a 25%, which is higher than rDNA regulatory sequences.  

These results revealed that the binding of Tif1p extends beyond the A- and T-rich 

sequences present at the rDNA origin and promoter, suggesting that rDNA coding 

regions may be targeted for the binding of Tif1p. These unexpected findings rise the 

possibility that Tif1p is preferentially sequestered in the rDNA minichromosome. 

 

Discussion 

Tif1p is a non-ORC protein originally characterized as a single-strand binding 

protein that interact specifically with type I elements at the 5‟ NTS of the rDNA 

minichromosome in Tetrahymena (Umthun et al., 1994; Saha & Kapler, 2000). In vivo 

footprinting assays revealed that Tif1p was responsible for the occupation of the A-rich 

strain at the origin and T-rich strand at the promoter region of rDNA, suggesting that 

Tif1p might play a role in the recruitment of machineries for replication and 

transcription initiation, respectively (Saha et al., 2001). Furthermore, in vivo binding 

assays also revealed that Tif1p was able to protect sequences corresponding to PSE, 

emphasizing the idea that Tif1p plays a role in the regulation of replication.  

 Studies with TIF1 hypomorphic strain revealed that the deficiency of Tif1p 

resulted in early firing of the rDNA origin, suggesting that Tif1p acts as an inhibitor of 
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Figure 3.16 Quantification of the binding of Tif1p to rDNA and non-rDNA regions. 
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replication initiation (Morrison et al., 2005). In addition, mutant strains displayed defects 

in the progression through macronuclear S phase and cell division, loss of micronuclear 

chromosomes and defects during macronuclear development (Morrison et al., 2005, 

Yakisich et al., 2006). Furthermore, TIF1 mutants accumulate double strand break the in 

absence of genotoxic stress and present hypersensitivity upon DNA damage induction, 

suggesting that Tif1 is necessary for the activation of the DNA damage response 

(Yakisich et al., 2006). These collective experimetns revealed that Tif1p is responsible 

for the maintenance of genome integrity in the micro- and macronucleus  

To monitor Tif1p during cell cycle progression, I used several strategies to 

generate a tagged Tif1p. The addition of small epitopes to Tif1p has a profound impact 

on cells. Similar to the depletion of wild type Tif1p in TIF1 knockdown strains, the 

addition of a FLAG tag to the carboxy terminus of Tif1p prevents successful completion 

of macronuclear development. Cellular phenotypes associated with TIF1 knockdown 

strains were also seen during vegetative growth of cells expressing N-terminal tagged 

TIF1. These phenotypes include the presence of numerous macronuclear extrusion 

bodies and abnormal macronuclear division in vegetative growing cells. These findings 

confirm that Tif1p is crucial for micro- and macronuclear genomic stability. The 

addition of a his-myc tag to the C-terminus of Tif1p did not arouse afore mentioned 

abnormal phenotypes or defects in the oligomerization of Tif1p. However, the Tif1p-

HM-C tagged protein failed to interact with rDNA origins as determined by ChIP. Since 

untagged Tif1p binds to origin and promoter in vivo, we conclude that the C-terminus of 

Tif1p plays a role in DNA recognition. 



 

 

142 

142 

Tif1p is a non-ORC protein that regulates the timing for rDNA replication and is 

involved in the checkpoint response. Non-ORC proteins play a key role in the 

establishment of initiation of replication in eukaryotic chromosomes. Two common 

features of non-ORC initiation proteins are their multifunctional roles and the fact that 

are essential for cell viability (Mucenski et al., 1991). The S. cerevisiae transcription 

factor, Abf1, is one of the best studied non-ORC origin binding factors. Abf1 originally 

described as a sequence specific DNA binding protein, is responsible for promoting the 

correct nucleosome positioning at sequences adjacent to the origin to favor ORC 

binding. A recent genome-wide analysis that combined computational predictions of 

Abf1 binding sequences with DNA binding assays, revealed that Abf1 associates with 

numerous DNA sequences that were previously uncharacterized (Schlecht et al., 2008). 

Furthermore, surprising results showed that Abf1 had two-fold higher affinity for 

sequences that deviate significantly from the consensus binding site (Beinoraviciute-

Kellner et al., 2005). These data suggest that Abf1 has considerable flexibility in the 

recognition of target sequences (Diffley & Stillman, 1988; Marahrens & Stillman, 1992; 

Schlecht et al., 2008).  

Tif1p shares sequence similarities with a nuclear transcription factor in the plant, 

S. tuberosum, StWhy1. Like Tif1p, StWhy binds to single-stranded DNA and form 

homotetramers by the association of a 24 KDa subunit. StWhy1 belongs to such called 

whirly family due to the whirling appearance of its quaternary structure (Desveaux et al., 

2002). Whirly proteins have been characterized as transcriptions factor in different 

plants systems (Desveaux et al., 2004; Xiong et al., 2009). A. thaliana codes for three 
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homologues of StWhy1 (AtWhy1-3), which have been implicated in modulation of 

telomere length, and promote genomic stability of circular plastids and mitochondrial 

genomes (Cappadocia et al., 2010; Marechal et al., 2009; Yoo et al., 2007). A recent 

detailed report of the crystal structure of DNA-Why2 complex in Arabidopsis showed 

that single-stranded DNA is preferentially bound in a sequence-independent manner 

(Cappadocia et al., 2010). Cappadocia and colleagues showed that the mechanism for 

this binding is dominated by hydrophobic interactions between adjacent nucleotides and 

aromatic/hydrophobic interaction between protein residues. They also propose that the 

binding of whirly proteins to single stranded DNA in the nucleus is limited by the low 

concentration of this protein in this organelle relative to plastids and mitochondria 

(Krause et al., 2005).  

Since Tif1p and ORC bind to complementary DNA sequences at the origin it has 

been suggest that Tif1p directly affects the binding or activation of TtORC at the rDNA 

origin. In this Chapter I set out to analyze how Tif1p regulates initiation of rDNA 

replication. The works presented here show that the binding of Tif1p extends beyond 

rDNA origin and promoter. Chromatin-immunprecipitation with a Tif1p specific 

antibody was used to examine Tif1p occupancy of binding sites at the rDNA origin and 

promoter during G1, early S and late S phase. To our surprise only modest enrichment of 

type I element-containing fragments at the rDNA origin and promoter was observed. 

Furthermore, the binding of Tif1p to rDNA origin is not cell cycle regulated, suggesting 

that Tif1p is a component of pre-RC and the activation of these origins occur while 

Tif1p is bound (Figure 3.2, model 3).  



 

 

144 

144 

 Interestingly, a much stronger enrichment of chromatin was detected in randomly 

chosen sequences in the rDNA coding region and 5‟ NTS (RFB). Considering the high 

content of AT-rich sequences in Tetrahymena, it would be easy to imagine that Tif1p 

could be distributed throughout the whole genome. However, the in vivo chromatin 

binding of Tif1p appears to predominantly involve the rDNA minichromosome. Binding 

of Tif1p to non-rDNA minichromosomes was assayed by chromatin-

immunoprecipitation across a 60 kb segment spanning the endogenous ARS1 

chromosomal locus. Minor enrichment was observed in sequences that flank ARS1A 

replicon (Figure 3.15), fragments A3 during late S phase and A5 in early S phase and a 

very marginal G1 phase binding was detected in A6, which include the non-rDNA origin, 

ARS1A. These ChIP signal were comparable to those observed for the rDNA origin and 

promoter and markedly lower than enrichments of rDNA coding region sequences. 

Donti and colleagues (2009) showed that ORC1p binds to A6 segment in synchronized 

G0/G1 cultures and dissociates during S phase when TtORC is degraded. This implies 

that ORC and Tif1p populate non-rDNA origins simultaneously. These suggest that the 

model proposed to explain how Tif1p inhibit rDNA replication (Figure 3.2, model 3) can 

be generalized for non-rDNA origins. 

With respect to the cellular distribution of Tif1p, no mitochondrial targeting 

peptide signal can be predicted from Tif1p sequence (data not shown). However, the 

alignment of the original peptide sequence of Tif1p obtained by Edman degradation with 

the predicted protein sequence shows differences at the amino terminus (23 residues) 

suggesting that some transit peptide sequences might be lost during the purification of 
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Tif1p (Saha et al., 2001). Considering that Tif1p was purified from a S100 extract, this 

opens the possibility that Tif1p may be targeted to a specific subcellular region before it 

accumulates in the cytoplasm. If this was the case, the binding of Tif1p in the 

macronucleus could be also limited by the accessibility of Tif1p, as was proposed for 

whirly proteins in plants. However, once in the nuclear compartment Tif1p would need 

to find several unwound segments in the rDNA in order to bind to. Could this mean that 

the rDNA in the macronucleus is intrinsically unwound, and that Tif1p has a protective 

role to ensure genomic stability, especially to the rDNA? 

 Recent studies have shown that structural components of the nucleolar 

remodeling complex (NoRC) and the number of rDNA arrays in higher eukaryotes, 

mediate the establishment of rDNA silencing and the formation of heterochromatin in 

the nucleus (Guetg et al., 2010; Paredes & Maggert, 2009), reinforcing the idea that 

genomic stability is highly dependent of the formation and maintenance of 

heterochromatic regions (Peng & Karpen, 2008). In Tetrahymena, the macronucleus is 

responsible for gene expression during vegetative cell cycles; it is amitotically 

maintained during vegetative growth and its chromosomes lack any apparent 

chromosome condensation (Tucker et al., 1980; Karrer, 2000). The rDNA 

minichromosomes are contained in approximately 100 nucleoli distributed around the 

macronuclear periphery, and are physically isolated from other chromosomes (Nilsson & 

Leick, 1970). Nucleoli segregation during macronuclear amitotic division is independent 

of the bulk chromosomes (Cervantes et al., 2006). Little is known about classical 

heterochromatin formation in fully developed macronuclei compared to the detailed 



 

 

146 

146 

studies of micronuclei developing macronucleus (Chalker, 2008). In fact, the best 

recognized factor involved in chromatin organization in macronuclear chromosomes is 

the linker histone H1. Histone H1 is dephosphorylated during development when the old 

macronucleus turns into a highly condensed structure and averts transcription, priori to 

its complete degradation (Lin et al., 1991). Macronuclear histone H1 is phosphorylated 

in macronuclear chromatin of vegetative growing cultures, suggesting a link to 

chromatin decondensation and gene transcription (Allis et al., 1980). Macronuclear 

histone H1 is not essential for viability, but the chromatin of this nucleus in H1 knockout 

strains is less condensed than in wild type cells (Mizzen et al., 1999; Shen et al., 1995). 

The evidence that a TIF1-deficient strain conveys global defects in Tetrahymena cells 

(Morrison et al., 2005) and the observation of a homogeneous binding of Tif1p to rDNA 

minichromosome support the idea of Tif1p being responsible for protection of rDNA 

minichromosomes.  

 



 

 

147 

147 

CHAPTER IV 

        
CHARACTERIZATION OF THE DNA DAMAGE RESPONSE DURING S 

PHASE IN TETRAHYMENA TERMOPHILA 

 

Overview 

Tetrahymena thermophila has been the source of many paradigm shifting 

discoveries that have changed our understanding of fundamental molecular biological 

processes, such as the maintenance of chromosome ends, epigenetic remodeling of 

chromatin and the catalytic capacity of RNA. However, the mechanisms that regulate 

Tetrahymena cell cycle are poorly understood. Tetrahymena contains two functionally 

distinct nuclei that replicate and divide at different stages of the cell cycle, and partition 

daughter chromosomes by remarkably different mechanisms. Despite these differences, 

our previous studies revealed that Tetrahymena elicits a DNA damage cell cycle 

checkpoint response in both the diploid mitotic micronucleus and polyploid amitotic 

macronucleus, and that this pathway shares common characteristics with checkpoint 

signaling in other eukaryotes.  

Induction of DNA damage with the alkylating agent, MMS, or depletion of DNA 

precursors with hydroxyurea, HU, triggers S phase checkpoint-induced cell cycle arrest 

in Tetrahymena that is most likely mediated by an ortholog of the human ATR/budding 

yeast Mec1 kinase. Furthermore, mutations in factors that directly regulate replication 

initiation or elongation (ORC1, MCM6, TIF1) activate this checkpoint response. 
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Abrogation of the checkpoint with the inhibitor caffeine leads to elevated levels of DNA 

damage, aberrant macronuclear division and micronuclear genome instability. 

Several features of the Tetrahymena macronucleus suggest that the requirements 

for accurate and complete duplication of the genome may be more relaxed compared to 

other eukaryotes. They include the polyploid composition of the somatic macronuclear 

chromosomes, and the absence of a mitotic mechanism for segregation of daughter 

chromosomes. In this chapter I studied the DNA damage response to replication stress. 

To distinguish between G1 and S phase checkpoint responses, DNA damaging agent 

MMS and HU were added before and during periods for macronuclear DNA synthesis. 

Here I provide evidence that HU and MMS elicit different checkpoint responses that 

differentially impact on the fate of Mcm6p, a subunit of the DNA helicase, present at all 

replication forks. Mcm6p was stabilized in cells treated with MMS at G1 or S phase, 

presumably allowing for the rapid resumption of DNA replication once DNA damage is 

repaired. In sharp contrast, treatment with the second agent, HU, resulted in the 

degradation of Mcm6p when the drug was added at G1 or S synchronized cells. The 

removal of HU from S phase arrested cells resulted in the resumption of DNA 

replication, macronuclear division and cytokinesis after a brief lag. Aberrant 

macronuclear division was not elevated in recovered cells compared to wild type 

controls, suggesting that the integrity of macronuclear chromosomes was not 

compromised. 

 To obtain a better understanding of the G1 and S phase checkpoint response, flow 

cytometry and fluorescence microscopy were used to assess cell cycle progression in 
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genotoxic stressed cells, monitoring DNA content of the polyploid macronucleus, 

cellular and macronuclear division, and the potential formation of macronuclear 

extrusion bodies. These studies uncovered a novel response to DNA damage induced 

during S phase, in which the S phase DNA content returns to a G1/1N DNA level 

without the completion of DNA replication (formation of G2/2N peak) and/or cell 

division. The formation of the new G1/1N peak was not associated with the biogenesis of 

macronuclear extrusion bodies, previously shown to remove “excess DNA” that arises 

from asymmetric macronuclear division. While the mechanism for re-establishing a 

G1/1N DNA content remains to be determined, we predict that ATR is not directly 

involved, since this apparent cell cycle regression in not inhibited by caffeine. Pulse 

chase experiments with tritiated thymidine suggest that the newly synthesized DNA is 

actively degraded in MMS-treated S phase cells. 

The role of ATR in checkpoint activation was further investigated in wild type 

and ATR-mutant strains and similar to higher eukaryotes, ATR is required during 

unperturbed vegetative cell cycles in Tetrahymena. Compared to wild type, ATR-

deficient cells contained elevated levels of the DNA repair protein, Rad51p, when 

cultured in the absence of exogenous genotoxic stress. Studies with synchronized 

cultures suggest that DNA damage occurs predominantly during macronuclear S phase. 

 Finally, in vitro analysis of kinase activity in extracts from mock and HU-treated 

Tetrahymena revealed that DNA damage stimulates a response distinct from that 

described in other eukaryotes. Budding yeast and mammalian cells induce a 

characteristic and prominent autophosphorylation of the ATR/Mec1 substrate, Chk1 
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following activation of the intra-S phase checkpoint. While Tetrahymena contains a 

bona fide ATR ortholog and several candidate Chk1 genes, in vitro kinase assays of HU-

treated Tetrahymena leads to a decrease in the phosphorylation state of unidentified 

protein compared to mock-treated controls. Our findings on the differential regulation of 

Mcm6p, unprecedented cell cycle response to S phase-induced DNA damage, and 

protein phosphorylation in stressed cells, collectively illustrate that Tetrahymena has 

developed novel strategies to cope with DNA stress and the failure to completely 

duplicate chromosomes in the polyploid amitotic macronucleus.  

 

Introduction 

 In response to exogenous and endogenous genotoxic stress, cells have evolved 

mechanisms to coordinate cell cycle progression, DNA replication, DNA repair and 

chromosome segregation to maintain genome integrity. When the level of DNA damage 

exceeds a threshold, cell cycle progression is arrested to allow more time for repair. The 

DNA damage response includes an intricate association of proteins that can be regulated 

at multiple levels. 

The intra-S phase DNA damage checkpoint maintains genome integrity by 

sensing replication stress. Activation of effectors proteins arrests cell cycle progression 

by blocking the firing of late replication origins, stabilizing stalled replication forks, and 

recruiting DNA repair proteins to arrested forks (Abraham, 2001; Cortez, 2005). In the 

presence of DNA damaging agents, such as methyl-methanesulphonate (MMS) (Tercero 

& Diffley, 2001) or inhibitors of DNA replication, such as aphidicolin or hydroxyurea 
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(HU) (Santocanale & Diffley, 1998), the activity of the MCM2-7 replicative helicase 

and DNA polymerase are uncoupled at replication forks, generating long stretches of 

single-stranded DNA (Byun et al., 2005). Replication protein A (RPA) coats the exposed 

single-stranded DNA and recruits the apical checkpoint protein kinase, ATR (ataxia 

telangiectasia and Rad3 related protein), to activate the checkpoint signaling pathway. 

ATR is loaded onto stalled replication forks in a complex with ATRIP (ATR interacting 

protein) (Cortez et al., 2001; You et al., 2002; Zou & Elledge, 2003). A parallel event 

that is essential for optimal ATR activation is the formation of a complex between Rad9, 

Rad1 and Hus1 (9-1-1) that is recruited to DNA damage foci by Rad17 (Zou et al., 

2002). The 9-1-1 complex facilitates the phosphorylation and recruitment of several 

other factors that are required to promote phosphorylation of downstream ATR targets, 

such Chk1 kinase (Byun et al., 2005; Delacroix et al., 2007; Liu et al., 2000; Roos-

Mattjus et al., 2003; Zou et al., 2002) Chk1 represses initiation of replication from late 

origins by phosphorylating Cdc25 inducing its degradation and preventing activation of 

Cdk2, thereby blocking progression though S phase (Mailand et al., 2002; Shirahige et 

al., 1998). Activation of ATR and ATM can be inhibited by the addition of caffeine to 

the growth media, and this effect is conserved in all examined eukaryotes (Sarkaria et 

al., 1999). Following repair, stalled replication forks must be re-activated, and late firing 

origins must be rendered competent to assure that each chromosome is fully replicated 

once during cell cycle.  

 In addition to their roles in the DNA damage checkpoint response ATR, ATM 

(apical checkpoint kinases) and Chk1 (effector kinase) regulate the activation of 
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replication origins in unperturbed S phases. In higher eukaryotes cells ATR and Chk1 

are essential for normal cell growth and maintenance of genomic stability (Brown & 

Baltimore, 2000; Liu et al., 2000; Wakabayashi et al., 2010). 

In several model systems, mutations that compromise the function of MCM 

complex are associated with genome instability and an increased level of DNA damage, 

suggesting that MCM complex is essential for an adequate response. In mammalian cells 

Mcm 2 and 3 are phosphorylated in response to treatments with DNA damaging agents 

(Cortez et al., 2004). Also, in mammalians cells, another member of the putative 

helicase, Mcm 7, has been shown to be directly associated with ATRIP. Furthermore, in 

yeast the C-terminal domain of Mcm 4 is essential to prevent excess of single strand 

DNA formation during HU treatment (Nitani et al., 2008). All these observations suggest 

a key role for the MCM complex during the DNA damage response.  

 Tetrahymena thermophila has been used as a model system to study the DNA 

damage response during the vegetative cell cycle. Like most ciliated protozoa, 

Tetrahymena contains two genetically related, but functionally distinct nuclei within a 

common cytoplasm: the diploid micronucleus and the polyploid macronucleus (Figure 

4.1B). The micronucleus plays important functions acting as the reservoir of genetic 

material that is exchanged during conjugation. It is actively transcribed during a brief 

period during development and exists as transcriptionally inactive heterochromatin 

during the vegetative cell cycle. Accordingly, micronuclear chromatin is enriched with 

histone modifications largely associated with heterochromatic DNA, like methylation of 

histone H3-K9 and H3-K27 (Chalker, 2008). 



 

 

153 

153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Vegetative cell cycle in Tetrahymena. A. Illustration for the cell cycle in Tetrahymena. 

Representation of events during vegetative cell cycle for micronucleus (inner circle) and macronucleus 

(outer circle), modified from Flickinger, 1965. (G) gap phase, (S) synthesis phase, (D) cell division B. 

Composite of Tetrahymena cell division. C. Micrograph extracted from Morrison et al., 2005. Showing 

DNA stained with Dapi (blue staining) and BrdU incorporation (red staining, white arrow) during (i) 

macro and (ii) micronucleus replication period. 
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 The macronucleus serves as the somatic nucleus, it is transcriptionally active 

during vegetative growth and contains all the features of euchromatin, such as 

acetylation and phosphorylation of specifics residues in histone H3 and H4, methylation 

of histone H3 (K4), and the presence of histone variants H3.3 and H2A.Z (Lin et al., 

1991; Stargell et al., 1993; Strahl et al., 1999; Vavra et al., 1982a; Vavra et al., 1982b).  

 These profound differences in chromatin structure and function suggest that the 

packaging, replication and repair of DNA in the micronucleus and macronucleus may be 

differentially regulated. In support of this, micro- and macronuclear S phases are offset 

in the cell cycle, as was demonstrated by the incorporation of base analogs in vegetative 

growing cells (Figure 4.1A and C). The micronucleus starts DNA replication as soon as 

cell division is complete, while macronuclear division is coupled to cytokinesis (Figure 

4.1A and C-ii). Relative to micronuclear events, G1 is absent and G2 takes place during 

the most part of the cell cycle. On the other hand, macronuclear G1, S and G2 phases are 

equally distributed across the vegetative cell cycle (Figure 4.1A).  

 More profoundly, micro- and macronuclei use unrelated strategies to transmit 

their chromosomes. The micronucleus is diploid and contains five metacentric 

chromosomes that condense and divide by conventional mitosis during vegetative cell 

cycle. In contrast, the 280 distinct chromosomes in the polyploid (45C) macronucleus 

lack centromeres. They show no evidence for condensation during macronuclear 

division and are randomly segregated without spindle formation to daughter cells via a 

poorly understood amitotic mechanism (Orias et al., 1991). Microtubules and 

components of the condensin complex can be found within the macronuclear 
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compartment, and are essential for the distribution of chomosomes during cell division; 

however, no mechanism has been described for their exact roles in this process 

(Cervantes et al., 2006; Numata et al., 1999).  

 The micronucleus lies in a depression in the macronucleus during most of the cell 

cycle and its detachment is the first visible sign of commitment to cell division (Figure 

4.1B, a). Micronuclei increase in size and elongate while mitosis occurs (Figure 4.1B, b-

c). Once mitosis is complete the two daughter micronuclei migrate to opposite poles in 

the cell (Figure 4.1B, d-e). Macronuclei elongate and divide amitotically, the elongation 

is progressive towards each pole of the cell until two new discrete macronuclei are 

formed (Figure 4.1B, d-e-f). As soon cytokinesis is complete the macronucleus recovers 

its spherical shape and the micronucleus returns to the depression at the macronucleus 

(Figure 4.1B, g). 

 Remarkably, the copy number of macronuclear chromosomes is relatively stable. 

The high copy number of each chromosome suggests that DNA damage checkpoints 

might play little if any role in maintenance of chromosomes in the polyploid amitotic 

macronucleus. However, we discovered that DNA damaging agents activate a caffeine-

sensitive checkpoint response that regulates S phase progression and nuclear division of 

both the micro- and macronucleus (Yakisich et al., 2006). We further identified a 

candidate ATR ortholog in the Tetrahymena genome database that was subsequently 

shown to be required for meiotic transmission of micronuclear chromosomes (Loidl & 

Mochizuki, 2009). Furthermore, we determined that the novel Tetrahymena gene, TIF1, 

plays a global role in the ATR-like checkpoint response in both the micro- and 



 

 

156 

156 

macronucleus (Yakisich et al., 2006). TIF1p was originally identified biochemically as a 

macronuclear rDNA origin binding factor and shown to regulate the timing of rDNA 

origin activation (Mohammad et al., 2000; Morrison et al., 2005; Saha & Kapler, 2000). 

TIF1-depleted cells are hypersensitive to MMS and HU, exhibit an elongated 

macronuclear S phase, undergo aberrant macronuclear division and exhibit extensive 

micronuclear genome instability (Morrison et al., 2005; Yakisich et al., 2006). 

Since MMS can induce cell cycle arrest in G1 or S phase through different 

checkpoint activators (ATM/G1 and ATR/S) in other systems, we developed an 

approach to specifically study the macronuclear S phase checkpoint response. In the 

work presented here we used flow cytometry to monitor cell cycle progression in wild 

type Tetrahymena that were exposed to DNA replication stress priory and during S 

phase. These studies not only reveal differences in the response to genotoxic stress, they 

suggest the existence of a novel pathway for the removal of incompletely replicated 

chromosomes from the macronucleus. 

 

Material and methods 

Tetrahymena strains, culturing and cell cycle synchronization 

To synchronize log phase cultures by starvation cells were harvest by 

centrifugation and washed twice with 10 mM Tris-HCl (pH 7.4). The cells were diluted 

with10 mM Tris-HCl (pH 7.4) and incubated for 8 hours at 30°C shaking at 100 rpm. 

This culture was synchronized in G0/G1 border. The synchronized culture was refed 

with 5% PPYS to a final concentration 2% at a density of 2.5x105 cells/ml and 
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incubated at 30°C with 100 rpm. This synchronized culture reach early S phase after 2.5 

hours. The subsequent G1 phase was evident by the end of 4 hours as was confirmed by 

flow cytometry analysis. 

To synchronize cultures by elutriation three flasks of 2 L each with 500 mL of 

2% PPYS were inoculated with 10 ml of a log phase culture (1x10e5 cells/ml) and 

incubated for 14 hours at 30°C with 100 rpm to a density of 1x10e5 cells/ml. The culture 

was pumped into an elutriation chamber mounted onto a Beckman J6M/E centrifuge at a 

rotor speed of 850 rpm and flow rate of 50 ml/min. Two hundred milliliters of a 

synchronized G1 cell population was recovered by increasing the flow rate of the pump 

to 65 ml/min. This fraction corresponds to a population synchronized in the G1 phase of 

the cell cycle. The elutriated culture reach early S phase after 1 hour and the next G1 

phase was evident at 3 hours post-elutriation upon incubation at 30°C with 100 rpm. 

 

Flow cytometry 

To determine the DNA content within a cell population at least 2.0x105 cells/ml 

were collected by centrifugation at 4000 rpm for 4 min. Cells were washed with 5 ml of 

cold PBS and centrifuged again and the supernatant was aspirated. Cells were 

resuspended in a minimal volume (~10 μl) and fixed with 5 ml of ice cold 70% ethanol 

by incubating for 2 hours on ice. Samples were stored at 4°C or stained immediately 

with propidium iodide. Fixed samples were washed twice with PBS and resuspended in 

0.4 ml of propidium iodide staining solution (PBS containing 0.1% Triton X100, 0.002% 

propidium iodide and 0.2 mg/ml RNase A). The samples were protected from the light 
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and incubated at room temperature for at least 1 hour. Stained samples were collected on 

BD FACSCalaiburTM flow cytometer and cell cycle progression was determined by 

monitoring DNA content. Thirty thousand cells were collected from each sample and 

plotted as a function of the PI intensity which reflects the DNA content in each cell. 

 

Drugs and chemicals 

 Caffeine, hydroxyurea (HU) and methylmethanesulophonate (MMS) were 

purchased from Sigma-Aldrich (Saint Louis, MI) and used at a final concentration of 1 

mM, 20 mM and 0.06% respectively.  

 

Western blot analysis  

One ml of culture was collected and washed with 0.5 ml of 10 mM Tris-HCl (pH 

7.4). The samples were finally resuspend in 40 ul of 10 mM Tris-HCl and kept at -70°C. 

Once all the samples were collect 10 ul of SDS-loading buffer (Laemmli 1970) were add 

to each sample and boiled for 5 min. After a short spin the samples were load in a SDS-

PAGE. SDS-polyacrylamide gels of 12% and 7% were use for the analysis of Rad51p 

and Mcm6p respectively. Samples were then transfer to a nylon membrane. The 

membranes were stained with Ponceau S (Sigma-Aldrich) for visual analysis of the 

loading and transference control. Later membranes were blocked with 10% low fat milk 

in PBS solution containing 0.1% Tween 20. Antibodies for Rad51p were obtained from 

NeoMarkers (51RAD01, Fremont, CA) Mcm6p antiserum was generated as was 

previously described in Donti et al., 2009. 
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Results 

DNA replication factor reveal two alternatives pathways in response to DNA damaging 

agents 

To better understand how activation of the intra-S checkpoint affects replication 

factors in Tetrahymena, the level of MCM6p was monitored following treatment with 

two different DNA damaging agents. In order to activate checkpoint response, we 

initially treated asynchronous logarithmically growing cultures with HU and MMS, 

which induce G1 arrest via ATM and S phase arrest via ATR/Mec1 in yeast and other 

eukaryotes. Caffeine, HU + caffeine and MMS + caffeine treatments were added in order 

to determine if apical checkpoint activators, ATM and ATR, were involved. It is known 

that Rad51p plays an active role during recombination mediated repair at stalled forks or 

replication induced DSB, and is directly regulated by Chk1 in mammalian 

cells(Sorensen et al., 2005). Consequently, the activation of this intra-S phase checkpoint 

was followed by western blotting using specific antibody against Rad51p. As expected, 

both inducers of genotoxic stress, HU and MMS, caused Rad51p levels to increase 

(Figure 4.2A). When caffeine was added in combination with HU or MMS, the levels of 

Rad51p were similar to mock treatment, revealing the inactivation of the ATR-like 

pathway in both HU and MMS-treated cells. Caffeine alone did not have a major effect 

in Rad51p levels (Figure 4.2A).  

At the same time we monitored the levels of Mcm6p. HU treatment decreased 

the levels of MCM6p and the addition of caffeine to HU-treated samples did not 

maintain Mcm6p mock-treated levels. These data indicate that a component of the 
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Mcm2-7 helicase is degraded rather than reversible phosphorylated in response to DNA 

damage, unlike other models systems. Next, Mcm6p was monitored in the presence of 

MMS. Unexpectedly we observed an increase in Mcm6p; the abundance was about 6-

fold greater in the MMS-treated samples compared with mock (Figure 4.2A). Despite 

this MMS was able to arrest cell division (see below). The addition of caffeine did not 

suppress the MMS induction of Mcm6p, suggesting that this MMS response is regulated 

by an ATR-independent pathway (Figure 4.2A).  

 

Induction of the DNA damage response in synchronized cultures 

In order to better study the DNA damage response, HU and MMS were added at 

specific times to synchronized cell cultures. Since Mcm6p plays a key role in the 

activation of pre-RCs and acts at the replication fork, we decided to induce damage 

during S phase when DNA molecules were being actively replicated. 

Previous studies in yeast showed that the activation of the intra-S phase 

checkpoint can be achieved by adding HU to G1 synchronized cultures (Santocanale & 

Diffley, 1998). To address this, mock-treated Tetrahymena cultures were synchronized 

by centrifugal elutriation. Flow cytometry of elutriated cultures reveal a very sharp peak 

that represents a well synchronized G1 population of cells (Figure 4.2B, 0 h post 

elutriation, mock treatment). The synchronization was well maintained for at least two 

cell cycles, where 1N and 2N peaks of DNA content are clearly measured by flow 

cytometry (Figure 4.2B, mock treatment).  
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Figure 4.2 Responses to HU and MMS. A. Log phase cultures treated for 4 h with caffeine (caff, 

1mM), HU (20mM), MMS (0.06%) or in combination. Western blots showing the abundance of Rad51p 

as a marker for the activation of the intra-S checkpoint and the differential regulation of MCM6p under 

DNA damage agents. B. Flow cytometric analysis of synchronized cultures treated with mock, HU (20 

mM) or MMS (0.06%). All the treatments were added as soon the cells were collected from elutriator. 

Each histogram represents the number of counted cells versus DNA content (1 and 2). Samples were taken 

every hour after addition of the treatments. C. Western blotting showing checkpoint activation by 

abundance of Rad51p. Genotoxic agents (HU and MMS) were added to G1 synchronized cells, which were 

analyzed after 4 h of incubation with the respective treatments. Also inhibition of the ATR-like pathway 

was assayed by adding caffeine to the treatments. Samples correspond to the 4 h post drug addition 

showed in panel B. D. Comparison of the abundance of Mcm6p and Rad51p by western blotting. Samples 

from mock, HU and MMS-treated cultures taken every hour after addition to G1 cells (as panel B). Total 

protein loading is showed by Ponceau S stained membrane. 

 

1     2    3    4           1     2    3     4     1    2     3 4        hours

Mock                    HU             MMS

Mcm6p

Rad51p

Total

protein

A. B. 

Rad51p

Mcm6p

Total

protein

M
o

c
k

C
a
ff

H
U

H
U

+
C

a
ff

M
M

S

M
M

S
+

C
a
ff

Rad51p

Mcm6p

Total

protein

M
o

c
k

C
a
ff

H
U

H
U

+
C

a
ff

M
M

S

M
M

S
+

C
a
ff

M
o

c
k

C
a

ff

H
U

H
U

+
C

a
ff

M
M

S

M
M

S
+

C
a
ff

M
o

c
k

C
a

ff

H
U

H
U

+
C

a
ff

M
M

S

M
M

S
+

C
a
ff

Rad51p

Total

protein

C. D.  

Hours post

elutriation

4

3

2

1

0

4

3

2

1

0

Hours post 

drug addition1         2 1         2 1         2 

Hours post

elutriation

4

3

2

1

0

4

3

2

1

0

Hours post 

drug addition1         2 1         2 1         2 

Mock                 HU            MMS

hours post 

drug addition

DNA content



 

 

162 

162 

 To study the activation of the intra-S checkpoint response, elutriated cells were 

treated with HU and MMS as soon as they were recovered from the elutriator. According 

to other systems we expect to see a G1 arrest for MMS and intra-S phase arrest for HU 

treated cultures. The DNA content was monitored by flow cytometry every one hour. 

Surprisingly, the initial peak was maintained showing an arrest in G1 phase after 

treatment with both HU and MMS (Figure 4.2B). In order to confirm that the treatments 

were effectively inducing DNA damage, Rad51p was monitored at hourly intervals by 

western blotting (Figure 4.2C). After 4h of treatment, the level of Rad51p was elevated 

by at least ten-fold for HU and two-fold for MMS compared to mock treated cultures. 

HU treatment induced a stronger response and since HU mainly affect the elongating 

forks, we presumed that this may reflect a greater fraction of cells that enter S phase. 

Caffeine treatment did not induced changes in the levels of Rad51p compared to 

mock treatment (Figure 4.2C). As was expected, when caffeine was used in combination 

with HU or MMS, inactivate the ATR-like pathway, reversing the induction of Rad51p 

in presence of either toxic agent. Since caffeine was efficiently blocking the activation of 

the checkpoint, we expect to see a progression in the cell cycle reflected by an 

incremental increase in DNA content, primary in MMS-treated cells where Mcm6p was 

present. However, caffeine did not have any effect in the flow cytometry histogram (data 

not shown), suggesting that the genotoxic agents was activating more than one response 

pathway. One of these pathways is modulated by caffeine and responsible for activation 

of repair mechanisms, most likely through the previously described ATR-like pathway. 

 The second pathway is unresponsive to caffeine, and closely monitors the DNA 
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content of damaged cells. When Rad51p was monitored every hour after HU addition, 

clearly showed that the level of Rad51p is elevated by the first hour of treatment and this 

induction was proportionally increased with the length of the treatment. In contrast, the 

induction of Rad51p by MMS was maximal by the end of the first hour of treatment. By 

the end of the 4 h of treatment with MMS, Rad51p did not present major variation 

compared with the levels induced during the first hour of treatment (Figure 4.2D). 

To determine how Mcm6p abundance was affected by the genotoxic treatment in 

synchronized cells, samples were taken every hour after the addition of HU or MMS and 

analyzed by western blotting (Figure 4.2D). Similar to the asynchronous cultures (Figure 

4.2A), HU treatment induced the gradual degradation of Mcm6p. By the end of 3 h post 

HU addition undetectable signal for Mcm6p was observed (Figure 4.2D). In contrast, 

MMS treated cells showed a modest increase in the level of Mcm6p 1 h post treatment, 

and the level was maintained (Figure 4.2D). Furthermore, both treatments were 

insensitive to caffeine (data not shown). These result support the idea that two different 

pathways are activated during the DNA damage response in Tetrahymena, one affecting 

Rad51p and another affecting Mcm6p. 

 

Activation of the intra-S phase checkpoint in Tetrahymena 

From the above experiments I speculate that adding DNA damaging agents in G1 

phase induces a caffeine-sensitive pathways (induction of Rad51p) as well as a caffeine-

insensitive pathway (affecting Mcm6p). Alternatively, the different effects of HU and 

MMS on Mcm6p reflect arrest at different stages of the cell cycle. To better focus 
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attention on the intra-S phase DNA damage response, drugs were directly added after 

synchronized cultures had clearly progressed into S phase. 

Elutriated cultures were collected and cultured for 1h to reach S phase (Figure 

4.3A, 1h post elutriation). Once in S phase, cultures were treated with HU or MMS (0 h 

post drug addition). Mock-treated samples show a mix population of G2/dividing and a 

new G1 by 2 h post elutriation. As was expected, 1h after HU treatment the culture was 

efficiently arrest in S phase (Figure 4.3A, HU 1h post drug addition). However, the flow 

cytometry profile contained cells with a small 1N DNA (G1) content peak 2 h after HU 

addition (Figure 4.3A, HU, arrow). This G1 peak became prominent when cells were 

further incubated in HU. By 4 hours cultures treated with HU partitioned in two clear 

peaks; one corresponding to the initial S phase population and a second population with 

a 1N DNA content. In MMS-treated samples the original S phase peak was not 

maintained 1 h post treatment and did not progress towards G2 content. Instead the S 

phase peak gradually shifted towards a 1N/ G1 DNA content without progressing 

towards G2/2N. Similar responses were obtained when cells were synchronized by 

starvation-refeeding. While the synchrony obtained by starvation-refeeding was not as 

good as for elutriation. The absence of an obvious G2 (2N) DNA content peak was 

evident in HU and MMS treated cells. Furthermore the cells treated with HU revealed 

two DNA content populations (G1 and S). These results suggest that the HU and MMS 

treatments were having a similar effect on DNA content. 

The increased abundance of Rad51p confirmed that the DNA damage response 

was activated when HU or MMS were added to S phase cultures (Figure 4.3B). 



 

 

165 

165 

Furthermore, Mcm6p levels were regulated in the same fashion observed when HU and 

MMS were added in G1 (Figure 4.3B). Furthermore, the addition of caffeine, as in G1 

checkpoint activation, repressed the ATR-dependent increased in Rad51p but was unable 

to reverse the effect of HU or MMS on Mcm6p levels (Figure 4.3C). Since MMS affects 

both G1 and S phase checkpoints responses these data suggest that G1 and S phase 

regulation of Mcm6p may be governed by a common mechanism. 

Treatment of budding yeast with HU results in the very slow progression of 

replication forks and activation of Mec1 (ATR) checkpoint (Alvino et al., 2007). The 

shift in DNA content from S phase values to G1 without progression to G2 DNA content 

in HU and MMS treated cells has not been previously described in Tetrahymena or any 

other eukaryote. I decide to follow the nature of such phenomena, focusing in HU-

treated cells which generated a more distinct G1-like peak in response to genotoxic 

stress. Several mechanisms can be envisioned for how the G1 population was generated. 

The simplest explanation is that cultures treated with HU were induced to divide without 

completion of macronuclear S phase. This model makes two predictions: (1) there 

should be a significant increase in cell number and (2) a significant formation of a sub 

G1 peak should also occur. To better interpret the flow cytometry data, histograms 

representing an S phase culture and a culture with a mix population of G1 and G2 phase 

cells were simultaneously overlaid to provide references for the analysis of HU-treated 

samples. A synchronized S phase culture was treated with HU, samples were collected
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Figure 4.3 DNA damage responses during S phase. A. Flow cytometry outputs of cultures synchronized by 

elutriation, DNA damaging agents were added during S phase and samples analyzed ever hour. Arrow 

showing a new 1N peak in HU treated samples. B. Comparison of the abundance of Mcm6p and Rad51p 

by western blotting. Samples from mock, HU and MMS-treated cultures were taken every hour after 

addition to cells in S phase (as panel A). Total protein loading is showed by Ponceau S stained membrane. 

C. Comparison of the abundance of Mcm6p and Rad51p in cells treated with caffeine alone or in 

combination with HU or MMS, samples collected as in B. 
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every hour after drug addition for 6h. Flow cytometry histograms were overlapped with 

the controls already mentioned (Figure 4.4A). After 1 h of HU treatment a small 

shoulder was noticeable on left side of the curve. However, the right side of the curve 

did not shift to a higher DNA content. The 1N peak becomes more prominent during 

prolonged incorporation of HU. Moreover the leading shoulder of the S phase peak did 

not shift further to the right. Thus no increase in DNA content was observed during 6 h 

of treatment (Figure 4.4A, pink curve). Furthermore, when a G1 synchronized culture 

was added to the overlapped histograms obtained after 4 h HU treatment, it was apparent 

that the new 1N peak falls within the DNA range of the control G1 peak, suggesting that 

this profile was not generated by cell death or macronuclear division (Figure 4.4A, 

bottom). Additional experiments support this conclusion (see below).  

In order to better resolve the accumulation of the 1N peak, samples from mock 

and HU treatments were collected every 10 min (Figure 4.4B). The presence of the 

shoulder for 1N peak was consistent in all the experiments. Furthermore, no evidence for 

the transient accumulation of a 2N/ G2 DNA content was detected. 

 

The new 1N peak is not the product of cell division  

Previous work with starved/refeed cultures revealed that 10% of HU-treated cells 

escape cell cycle arrest (Yakisich et al., 2006). If the prominent 1N peak in HU treated S 

phase cultures was the product of dividing cells, an increase in the culture density or at
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Figure 4.4 Detection of 1N population by flow cytometry. A Cultures synchronized by elutriation. S phase 

synchronized cultures were treated with HU, samples were taken every one hour after HU treatment for 

six consecutives hours. Overlays of a mock treated culture synchronized in S phase is showed in black, a 

mix population of G1/G2 in green and the corresponding HU treated cultures in pink. The bottom panel 

shows a summary with the overlapping curves corresponding to a G1 elutriated culture (grey background), 

S phase cultures showed in a red curve, G1/G2 mix population showed in green and culture treated for 4 h 

with HU is showed in blue. B. Flow cytometry analysis for mock-treated cultures every 30 min up to 120 

min is show. DNA content was measured every 10 min for 260 min in S phase cultures treated with HU.  
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least an increase in the percentage of dividing cells should be detected when genotoxic 

agents were added to the cultures. 

To address this, S phase synchronized cultures were treated with HU or MMS 

and the density of the cultures were measured every two hours and compared with the 

density of a mock-treated sample (Figure 4.5A). The result indicate that while the 

density of mock treated cells increased exponentially over time, S phase cultures treated 

with HU or MMS were maintained at a constant cell density for the 8 hours duration of 

experiment. To assess the percentage of dividing cells in mock, HU and MMS treated S 

phase cultures, cells were stained with acridine orange and quantified by direct 

microscopic observation (Figure 4.5B). Vegetative division (Figure 4.1B, b-g) was 

quantified in three independent experiments for each treatment. One hour after S phase, 

~40% of the cells in mock-treatment were undergoing cell division (Figure 4.5B), 

correlating with the appearance of the G2 phase peak detected by flow cytometry (Figure 

4.3A, 2 h post elutriation). Out of 300 cells scored at every time point in each 

independent experiment (n=3), less that 5% of the population of HU or MMS treated 

cells showed evidence of cell division. This frequency is too low to account for the 

predominant 1N peak. 

A second possible explanation for the shift in DNA content is that cells under 

genotoxic stress induced the elimination of macronuclear DNA, through the formation of 

macronuclear extrusion bodies. Extrusion bodies are extranuclear vesicles that contain 

chromatin and are positively stained with acridine orange. Extrusion bodies were 

previously described as a mechanism to reduce DNA content in normal cycling cells
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Figure 4.5 Determination of cell density, number of dividing cells and presence of extrusion bodies in 

synchronized cultures. A. Showing the density of synchronized cultures treated with HU or MMS. 

Cultures were synchronized by elutriation and allowed to reach S phase (arrow) at that point all the 

treatments were added and the density of the cultures were follow over time. B. Evaluation of the number 

of cell in division present in each treated culture. S phase cultures were treated and the number of dividing 

cells was quantified every hour up to the end of 4 h of treatment. C. Extrusion bodies were quantified in 

the same cultures used in B. 
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following asymmetric amitotic macronuclear division (Cleffmann, 1980). Recently, 

extrusion bodies were described as a mechanism for eliminating fragmented DNA in 

mutant strains that undergo macronuclear instability (Wiley et al., 2005). The percentage 

of extrusion bodies was measured by microscopic observation of cells stained with 

acridine orange in mock, HU and MMS treated cultures. As expected extrusion bodies 

were detected in a very small percentage of mock-treated cells, 2% by the end of 4 h 

post S phase. HU and MMS treated samples contained a similarly small percentage of 

cells with extrusion bodies (ranging from 1% to 3.5%).  

The collective quantitative measurements of density and dividing cells do not 

support the idea that HU and MMS-treated S phase cells are dividing with less DNA or 

eliminating DNA via previously described and poorly understood mechanism. The data 

suggest that in the presence of HU or MMS, S phase synchronized cultures employed a 

different mechanism to establish a 1N DNA to S phase arrested cells. 

 

Dissection of the 1N peak by flow cytometry  

Since this G1/1N, S and G2/2N flow cytometry peak was could be resolved, it 

was possible to compare flow cytometry parameters of different cell cycle populations in 

mock- and HU-treated cells. Cells synchronized, by elutriation were cultured until they 

reached S phase and left untreated (mock) or treated with HU, and samples were 

collected every thirty minutes. First, DNA content was monitored by the propidium 

iodide (PI) staining (Figure 4.6A). As was expected mock treated samples showed the 

highest DNA content 30 min after S phase (maroon triangle), where the DNA in the 
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macronucleus had completed replication and cells were preparing to divide (Figure 

4.6A). At 60 min after S phase, the lowest DNA content was observed suggesting that 

cells had divided. From this point DNA content gradually increased and a second cell 

division was evident at 240 min. The amount of DNA seems to be higher in dividing 

cells for the second cell cycle, however, this could also reflect a decrease in the 

synchrony of the culture. HU-treated synchronized S phase cells exhibited a gradual 

decrease in PI signal starting 30 min after drug addition (Figure 4.6, red X) 

Forward scatter (FSC) was used to compare the relative size of mock and HU-

treated cells. This parameter assesses the amount of laser beam signal that passes around 

each cell and is ideally suited for spherical cells. Since Tetrahymena are usually oblong 

(50 μm long and 30 μm wide), it remained to be determined whether this parameter 

could detect differences between mock and HU-treated cells. However, when these 

cultures were compared by FSC, a clear difference in the average FSC was evident. FSC 

in mock treated samples decrease at 60 min post S phase correlating with cell division, 

suggesting that the average FSC could be used to monitor the size of Tetrahymena 

(Figure 4.6A, dark blue diamonds). HU-treated samples exhibit a constant increase FSC 

values compared to mock (Figure 4.6A, light blue boxes), suggesting that cells with 

decreased DNA content had increased in size rather than divided. 

Another parameter obtained by flow cytometry is the amount of the laser beam 

signal that refracts off of particles inside the cell. This signal is collected and scored as 

SSC (side scatter), and represents cell complexity. In mock treated samples SSC is fairly 

consistent across the cell cycle, and the lowest value was detected in recently divided 
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Figure 4.6 Flow cytometry analysis of HU-treated cells A. Detailed analyses of the DNA content (PI), 

forward scatter (FSC) and side scatter (SSC) in mock and HU-treated cells. S phase synchronized cells 

were treated with HU (arrow). Samples were collected every 30 min and 30.000 counts were scored at 

each time point. B. and C. Statistical comparison of forward scatter (FSC) and side scatter (SSC) 

respectively, between mock and HU-treated cells. HU treatment was added during S phase and samples 

collected every hour. Plot was generated by the results of three independent experiments (n=3). D. (left 

panel) Representative micrograph illustrating the difference in size between an untreated cell in S phase 

and HU-treated cell for 8 h. (right panel) The area of n=100 cells mock or HU-treated was measured and 

plotted to stress the statistical differences between the size upon treatment. 
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 cells (60 min after S phase, dark black starts). In HU treated samples, SSC showed a 

constantly increasing signal during the time of treatment (Figure 4.6A, green circles). 

To determine if the average differences in SSC and FSC were statistically 

significant, three independent experiments were used to compare mock and HU treated 

samples (Figure 4.6B and C). The collective data revealed that FSC in HU-treated 

samples is not significantly different from the values found in mock-treated samples 

(Figure 4.6B). In contrast, in HU-treated cells exhibit clear increase in SSC values 

compared to mock, arguing that treated cells were „more complex‟ than mock (Figure 

4.6C). To determine whether increased SSC in HU-treated samples could be related not 

only to activation of intracellular machineries, but also to size, direct microscopic 

measurements of the size of cell in different treatments was registered. Since mock-

treated cells did not suffer major variation in SSC across the cell cycle, representative S 

phase cells were compared with HU treated cells. Since SSC increases proportionally to 

the time in HU treatment, cells treated with HU for 8 h were used to stress the difference 

when compared with S phase culture (Figure 4.6D). This analysis shoe that HU treated 

cells are bigger than those present in S phase cultures. The area of 100 cells in S phase 

was measured and compared to the area of the same number of HU treated cells (Figure 

4.6D). This suggested that SSC could be use as parameter for size in Tetrahymena. 

In general HU induced an increase in the cellular size as the 1N peak appeared in 

the culture. This 1N peak is gradually generated concomitant with a decrease in the 

amount of DNA in the macronucleus. 

 



 

 

175 

175 

Identification of higher SSC population in HU-treated G1 and S phase cells 

 Since the increase in SSC correlates with an enlarge in cell size, I decide to 

monitored the population with higher SSC in HU-treated cells and determine whether 

the increased complexity was a common factor between G1 and S phase treated cells in 

response to DNA damage. 

 Cells were synchronized by elutriation and cultivated for 7 h, mock-treated 

cultures, DNA content as well as the change of SSC in function of the FSC was 

monitored. Mock-treated cells showed a well synchronized initial G1 population (Figure 

4.7, A, left panel), a prominent 2N peak was evident by 2 h after elutriation, 

corresponding to cells in G2. As noted above, SSC in mock-treated cells did not present 

any major variation in the 7 h analysis (Figure 4.7, A, right panel).  

 Hydroxyurea was added either to G1 or S phase synchronized cells (Figure 4.7B 

and C respectively). HU addition to G1 synchronized cells induced the activation of the 

checkpoint and inhibits synthesis of DNA, as confirmed by the maintenance of the 1N 

DNA content for the 7 h of treatment (Figure 4.7, B, left panel). However, a noticeable 

change in SSC occurred over time, the whole G1 population gradually acquires a more 

homogeneous FSC and a higher SSC (Figure 4.7, B, right panel).  
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Figure 4.7 HU treatments induce an increase in the SSC of the cells. Flow cytometry analyses. (Left panel) 

showing number of events scored (counts) versus the DNA content (PI intensity). (Right panel) SSC 

versus FSC for cells synchronized by elutriation and cultivated in mock (A), HU added in G1 phase (B) or 

HU added in S phase (C). Numbers indicate the hours of incubation with the corresponding treatment. D. 

Showing a detail for better comparison of cells in G1, S phase and after 7 h of treatment with mock, HU 

added in G1 and HU added in S phase. 

7

6

5

4

3

2

1

G1

6

5

4

3

2

1

S

G1

7

6

5

4

3

2

1

G1

A.                                           B.                 C.

D.                                           

G1                            S-phase                  7h mock                    7h HU/G1      7h HU/S-phaseG1                            S-phase                  7h mock                    7h HU/G1      7h HU/S-phase

D
e

n
s

ity

DNA content

A.                                            B. C.DNA content               Cell size DNA content               Cell size DNA content               Cell size



 

 

177 

177 

 After HU addition to synchronized cells in S phase the expected 1N peak 

appeared as a shoulder beginning 1 h after HU addition (Figure 4.7, C, left panel). This 

1N peak, as was showed before, became more prominent while the HU treatment was 

maintained, by the end of 6 h of treatment a clear 1N peak was generated. Similar to G1 

HU-treated cells, the addition of HU to S phase synchronized cells induced a gradual 

shift to a higher SSC in the population (Figure 4.7, C, right panel).  

 These data showed that HU-treated cells are clearly different from normally 

dividing cells. They also illustrate the increase in SSC is shared between HU-treated 

cells either during G1 or S phase. Since G1 HU-treated cells are clearly not increasing 

their DNA content while increasing in size.  

 

Recovery from HU-induced genotoxic stress  

Treatment with HU promotes the stalling of replication forks due to depletion of 

dNTPs and activation of the DNA damage response. Once the damage is eliminated or 

damaging agent removed, arrested cells should resume cell cycle progression. The 

resetting of the cell progression during recovery from HU is associated with the 

inactivation of Chk1 kinase (Pellicioni et al., 1999) and the maintenance of the activated 

and hyperphosphylated state of Chk1 depends on ATR (Lopez eta al, 2001). 

To address the recovery from inhibition of DNA replication, synchronized S 

phase cultures were treated with HU for 8 h, following by the removal of HU and further 

culturing of the cells in fresh media. To assess the effect of premature inactivation of the 

ATR-like pathway, a fraction of the HU-treated culture was recovered in the presence of 
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caffeine. Samples from these cultures were analyzed by flow cytometry to determine the 

DNA content and progression through the cell cycle. The levels of Rad51p were 

determined by western blotting to monitor the status of the DNA damage response. 

Since we speculated that the activation of the DNA damage response is dependent on the 

ATR-like pathway, the addition of caffeine should decrease the levels of Rad51p early 

during recovery time. Furthermore, since Mcm6p was degraded in HU-treated cells the 

fate for this protein was also monitored during recovery period. 

As we already noticed, HU-treatment added to S phase synchronized cells 

induces the formation of a well synchronized 1N peak (Figure 4.8A, 0 h). Cells that 

recovered in the absence of caffeine progressed through the cell cycle with less 

synchrony, however a clear S/G2 peak is detected by the end of 2 h after recovery. 

Evidence for a new cell cycle was observed 3 h post HU release. These data suggest that 

replication forks were competent to initiate a normal cell cycle as soon as the HU was 

removed from the culture. Furthermore, this timing is coincident with the completion of 

a normal cell cycle, suggesting that after 8 hours of HU treatment cells were 

synchronized in G1 phase. Cultures released in the presence of caffeine clearly attempt 

to progress through the cell cycle, however no clear 2N content peak is observed and a 

population with a sub-G1 DNA content indicate a provable effect in the viability of the 

culture (Figure 4.8A, +caffeine).  

The saturating Rad51p signal after 1h of recovery suggest that cells undergo a 

great deal of repair in order to maintain viability after 8 h of HU treatment (Figure 4.8B). 

The levels of Rad51p are only decreased after 5 h in recovery media. However, the
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Figure 4.8 Recovery from HU-treatment added in S phase synchronized cells and maintained for 8 h. A. 

Flow cytometry analysis showing number of event scored (counts) versus DNA content in recovery media 

supplemented (+) or not (-) with caffeine. Dotted line indicating the synchronized peak obtained after 8 h 

of treatment with HU added in S phase synchronized cells. B. Comparison of Mcm6p and Rad51p level in 

recovery media by western blotting. The samples were collected every hour upon incubation in recovery 

media supplemented (+) or without caffeine. 
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addition of caffeine induces a early reduction in the Rad51p levels suggesting that ATR-

like pathway was responsible for the activation of the DNA damage response. 

The levels of Mcm6p after HU treatment are completely depleted from the cell 

and are initially recovered 2 h after HU removal (Figure 4.8B). In unperturbed cell 

cycles the levels of Mcm6p are low during S phase, and this correlate well with the 1 

and 2 h in recovery media, when the recovered cell undergo S phase (Figure 4.8A). 

What is not clear is how these cells are able to complete S phase during recovery period 

without Mcm6p, this open few possibilities. (1) Mcm6p is not necessary for the first 

cycle after genotoxic stress. (2) The levels of Mcm6p are very low and escape from our 

detection method. Interestingly, the presence of caffeine in the recovery media promote 

an early increase in the levels of Mcm6p corroborating the idea that activation of the 

DNA damage response is directly modulating the levels of Mcm6p in absence of 

genotoxic agent in Tetrahymena. 

 

Formation of the new 1N peak in relation to incorporation of base analogs 

The fact that the total DNA content in HU treated samples was decreasing, 

suggested the presence of a DNA elimination mechanism was active. This mechanism of 

DNA elimination was not related to the formation of extrusion bodies but probably more 

relate to degradation of the DNA. To study this possibility, the incorporation of 3H-

methylated-thymidine was measured in treated cultures. In case that the newly 

synthesized DNA in synchronized cultures where degraded upon HU treatment, a 

decrease in the tritiated thymidine should be observed in HU-treated cells compared to 
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the initial incorporation (control). Since the DNA damage response is activated a minor 

background corresponding to DNA repair mechanisms was expected. However, the 

addition of caffeine to HU or MMS-treated samples prevents that activation of the ATR-

like pathway, promoting further incorporation of thymidine. 

To evaluate the DNA synthesis due to replication and/or repair G1 phase cells 

synchronized by elutriation were cultured, 50 min after elutriation tritiated-thymidine 

was added to the culture in order to label newly synthesized DNA. After 10 min of 

incorporation, an aliquot was saved as control and the culture at this point reached S 

phase was subjected to different treatments (Figure 4.9A). HU, MMS, caffeine or a 

combination of HU-caffeine, MMS-caffeine treatments were added and maintained for 4 

h. Tritiated-thymidine was still present in the culture to monitor further incorporation. 

Finally samples were collected and TCA precipitable thymidine was quantified. Each 

treatment was evaluated by five independent aliquots (Figure 4.9A). The control sample 

corresponded to the amount of thymidine incorporated into newly synthesized DNA 

during the 10 min prior to the addition of different treatments (Figure 4.9A). As 

expected, mock-treated samples incorporated significant amounts of thymidine during 

the 4 h incubation. As previously shown, caffeine did not affect the cell cycle 

progression and the amount of thymidine incorporated was similar to mock-treated cells. 

Furthermore, HU and MMS-treated cells incorporated low levels of thymidine, probably 

due to repair mechanism. The addition of caffeine to MMS-treated cells did not impact 

in the level of thymidine incorporated. Interestingly, the addition of caffeine to HU-

treated samples showed a minor increase in the incorporation of thymidine, supporting
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Figure 4.9 Incorporation of tritiated thymidine. A. Incorporation of activity for 10 min of pre-labeled 

period (control). Treatments were added to S phase cell and cultured for 4 h in presence of thymidine. 

Graphs are representing the radioactivity incorporated through the length of the treatments. B. Newly 

synthesized DNA was labeled with thymidine (control), which was removed before addition of the 

treatments to S phase synchronized cultures. Treatments were maintained for 4 h. Graphs representing the 

residual amount of tritiated thymidine upon treatment were added and maintained for 4 h. 
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the idea that the activation of DNA damage response is differential between these two 

genotoxic agents (Figure 4.9A). 

To address the possibility of DNA degradation during genotoxic stress, G1 phase 

cells synchronized by elutriation were cultured for 30 min before tritiated-thymidine was 

added. After 30 min of incorporation, the thymidine was removed and labeled cells 

resuspended in fresh media. An aliquot of the labeled newly synthesized DNA was 

saved as a control and the culture that at this point reached S phase was subjected to 

different treatments which were maintained by 4 h (Figure 4.9B). The initial levels of 

thymidine incorporated were maintained in caffeine-treated cells. Minor decrease in the 

thymidine incorporation was observed in HU and HU-caffeine-treated cultures. 

Interestingly, MMS-treated cells presented an important decrease in the incorporated 

thymidine, suggesting that a significant fraction of the newly synthesized DNA was 

undergoing degradation (Figure 4.9B). The addition of caffeine to MMS-treated samples 

partially prevents decrease of thymidine initially incorporated. These results suggested 

that the activation ATR-like pathway induce degradation of the newly synthesized DNA 

in MMS-treated samples but not in HU-treated cells.  

 

Tetrahymena ATR mutants accumulate DNA damage during S phase and are 

hypersensitive to genotoxic stress 

To better understand the DNA damage response in Tetrahymena and to clarify 

the difference in the response to different genotoxic agents I decide to study the response 

to HU and MMS in ATR-deficient strains. 
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Figure 4.10 Expression profile for TtATR. Gene ID TTHERM_01008650. Growing cells, L-l, L-m and L-

h correspond respectively to ~1105 cells/ml, ~3.5105 cells/ml and ~1106 cells/ml. For starvation, 

~2105 cells/ml were collected at 0, 3, 6, 9, 12, 15 and 24 hours (referred to as S-0, S-3, S-6, S-9, S-12, S-

15 and S-24). For macronuclear development, equal volumes of B2086 and CU428 cells were mixed, and 

samples wer e collected at 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 hours after mixing (referred to as C-0, C-2, 

C-4, C-6, C-8, C-10, C-12, C-14, C-16 and C-18). 

ATR transcript expression 
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 We previously identified a candidate ATR gene in the T. thermophila genome 

database (TTHERM_01008650). The transcription profile for ATR extracted from a 

genome-wide analysis of Tetrahymena during logarithmically growing phase, starvation 

and macronuclear development (Miao et al., 2009) showed that macronuclear ATR 

expression is marginal in logarithmically growing cultures compared to the expression 

during development (Figure 4.10). However, ATR expression might be transient during 

the cell cycle.  

 Recent deletion of the macronuclear copy of ATR suggests that it is not required 

for viability during vegetative cell cycles, but necessary for the elongation of 

micronucleus in early stages of Tetrahymena conjugation (Loidl and Mochizuki, 2009). 

We obtained the ATR mutant strains (ATR/KO-CU428(8)4 and ATR/KO-B2086(2)3) 

and assayed for defects in vegetative cell cycle progression and the DNA damage 

response. In the absence of exogenous DNA damage, ATR mutants exhibited a dramatic 

activation of the DNA damage response as monitored by the levels of Rad51p (Figure 

4.11A, log phase samples). This suggests that ATR is actively utilized during normal 

vegetative growth and that the absence of ATR leads to the accumulation of DNA 

damage.  

 Examination of synchronize cultures of the ATR-mutant strain did not revealed 

major defects in progression through the cell cycle (Figure 4.11B). ATR-mutant showed 

a major peak corresponding to a new G1 phase 3 h after elutriation. The time that ATR-

mutants took to complete one cell cycle was comparable to wild type. However, a
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Figure 4.11 ATR-mutants accumulate DNA damage but do not show major delay during cell cycle. A. 

Log phase wild type and ATR-mutant strains were compared. DNA damage response was monitored by 

the levels of Rad51p in log phase cultures treated with increasing amounts of HU (mM). B. Wild type and 

ATR-mutant cultures were synchronized by elutriation and cell cycle progression was monitored by flow 

cytometry. C. Genotype for ATR-mutant culture. Wild type (WT), ATR-mutant strain a log phase (log) 

and elutriated (E) cultures were compared. Fragment from ATR locus were amplified by PCR and then 

digested with PvuII, which only cut wild type sequences.  
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small population of cells in ATR-KO strain were delayed in the cell cycle progression 

(Figure 4.11B arrow at 3 h after elutriation).  

 To test the level of replacement of the wild type ATR gene with the disruption 

allele, the genotype of the ATR-KO strain was checked by PCR combined with 

restriction digestion (Figure 4.11C). Primers that anneal to the ATR locus were used to 

amplify a 3.5 Kb fragment and the PCR product was digested with PvuII which only 

cleaves the wild type allele. This revealed that ATR strain hold a complete replacement 

with the disrupted allele. This suggests that the polyploid nature of macronuclear 

chromosomes and the random segregation of the minichromosomes allowed the cell to 

be propagated without defect in the viability of cells that hold a great level of DNA 

damage.  

 In order to determine the ability of ATR mutant strains to respond genotoxic 

stress, log phase culture was treated with different concentrations of HU (Figure 4.11A). 

The activation of the DNA damage response measured by the levels of RAD51p was 

difficult to assess due to saturation of the Rad51p signal in the mutant strain compared 

with wild type (Figure 4.11A). These data suggest that as in other eukaryotes, in 

Tetrahymena ATR is necessary for the normal progression of S phase in unperturbed 

cells cultures. 

 To better study the DNA damage response, cell cultures synchronized by 

elutriation were treated with HU and MMS (Figure 4.12A). The induction of Rad51p in 

mock-treated samples after 4 h of treatment was 6-fold higher in ATR-mutant strain 

compared to elutriated samples and 5-fold higher than the signal detected in wild
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 Figure 4.12 Induction of Rad51p in ATR-mutant strains. (A) Abundance of Rad51p in wild type and 

ATR-mutant strains in logarithmical phase compared with ATR-mutant strain synchronized by elutriation 

in G1 (0h). Also showing mock, caffeine, HU, HU-caffeine, MMS, MMS-caffeine treatment for 1, 2, 3or 4 

h. Bottom panel showing total protein as a loading control by membranes stained with Ponsoe S. (B) 

Quantification of the abundance of Rad51p in wild type and ATR-mutant cultures. Cultures were 

synchronized by elutriation (0 h) and cultured for 4 h, the level of Rad51p was detected by western 

blotting and quantified with ImageJ (http://rsbweb.nih.gov/ij/). 
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type strains (Figure 4.12B). Since elutriated samples reach S phase 1 h after elutriation 

(Figure 4.12B), these data suggest that the accumulation of damage in the ATR-mutant 

strain originates during S phase and could be the product of defects in the progression of 

DNA replication. Treatments with HU and MMS produced a robust increase in the level 

of Rad51p indicating the activation of DNA damage response mechanism (Figure 

4.12A). The fact that cells are able to detect the genotoxic stress and respond by 

increasing the abundance of Rad51p in a total absence of a functional ATR kinase, 

suggest that an alternative mechanism is activated in order to response to DNA damage. 

This alternative response also detect the damage induced by HU and MMS treatments, 

as is revealed by the induction of Rad51p (Figure 4.12A). 

 Surprisingly, caffeine treatment decreased the levels of Rad51p in the ATR-

mutant strain (Figure 4.12A). As was noticed above, caffeine-treated wild type cells 

progressed normally (as mock) through the cell cycle, the ability of caffeine to reduce 

the abundance of Rad51p in ATR-mutant strains suggest that the alternative pathway is 

governed by other kinase activity that is also sensitive to caffeine. This is also observed 

in HU-caffeine and MMS caffeine-treated cells, were the presence of caffeine revert the 

induction of Rad51p caused by HU and MMS (Figure 4.12A). 

 The caffeine-sensitivity of the macronuclear ATR-mutant strain raised three 

possibilities; (1) the disrupted gene in the mutant strain is not ATR, (2) in addition to 

ATR, caffeine regulates checkpoint at a downstream step (Chk1 and/or Chk2), as has 

been proposed in mammals (Cortez, 2003), (3) Tetrahymena contains another caffeine
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sensitive pathway that is independent of ATR. Since orthologues sequences for ATM 

have not been detected in Tetrahymena genome (Yakisich et al., 2006) the other 

caffeine-sensitive pathway is provably independent of ATM as well. 

 

An alternative phosphorylation state in response to DNA damage in Tetrahymena  

 To determine whether the caffeine-sensitivity of the macronuclear ATR-mutant 

strain was modulated by a downstream effector kinase, I decide to follow the ability of 

Chk1 of autophosphorylation in the response to DNA damage.  

 One of the most studied targets of ATR in S. cerevisiae is the effector kinase 

Rad53p, which is directly phosphorylated and activated by ATR. The functional 

homolog of Rad53 in mammals is Chk1. Once activated, Chk1/Rad53 undergoes 

autophosphorylation necessary for complete activation (Feijoo et al., 2001; Walworth & 

Bernards, 1996) In yeast and higher eukaryotes, the basal levels of autophosphorylated 

Rad53 are undetectable, however the exposure to genotoxic agents (like HU and MMS) 

increases the levels of autophosphorylated Rad53 (Pellicioli et al., 1999). 

 In Tetrahymena, five Chk1 candidate genes with E values ranging from 10e-20 to 

10e-29 can be found. Since gene duplication is not common in Tetrahymena genome the 

possibility that these genes are redundant is low, however, no clear candidate has been 

yet identified. 

 To examine the phosphorylation of Chk1 in Tetrahymena, I used a renaturation 

assay to measure autophosphorylation in situ. This assay was previously applied in yeast 

to identify autophosphorylated Rad53 (Pelliconi et al., 1999). Autophosphorylation is
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  measured by the incorporation of 32P from radioactively label ATP. There are several 

proteins that could be autophosporylated in this assay, however when Rad53p is 

specifically activated its molecular weight increase. Furthermore, the identity of 

autophosphorylated Rad53 was corroborated by western blotting using specific 

antibodies against Rad53 (Pelliconi et al., 1999). Since Chk1 have not been 

characterized in Tetrahymena, I cannot directly relate the incorporation of 32P to this 

kinase. However, the activation of the DNA damage response initiates a phosphorylation 

cascade in all characterized eukaryotes, and in the absence of ATR this signal can be 

used to evaluate mechanism of activation of DNA damage response independent of 

ATR. 

 As a control for the activation of Chk1, extracts from logarithmically growing 

wild type yeast strain 14WW (MATa ade2 trp1 leu2 ura3-52 cit1::LEU2) cultured for 3 

h in the presence of mock or HU were used. As was expected, phosphorylated Chk1 was 

undetectable in mock-treated cells (Figure 4.13A). HU-treated yeast cells incorporate a 

significant amount of radioactivity in the 95 KDa band, that corresponds to the 

hyperphosphorylated form of Chk1 in yeast (Figure 4.13A, arrow head). Once the 

phosphorylated form of Chk1 in yeast was clearly identified, logarithmically growing 

wild type Tetrahymena strain mock and HU-treated for 3 h were subjected to the same 

assay. Surprisingly, mock-treated Tetrahymena cells present a large amount of 

phosphorylated proteins ranging from 43 to 56 KDa. Furthermore, HU-treatment induces 

a reduction of the phosphorylated signal (Figure 4.13A). These data are extraordinarily 

opposite to what was expected, first suggest that logarithmically growing Tetrahymena 
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cells contain a great number of proteins that are autophosphorylated in comparison to 

yeast. Second, Tetrahymena phosphorylation level is down regulated in response to 

DNA damage. 

 To determine whether the phosphorylation in mock-treated cells was dependent 

of ATR, logarithmically growing ATR-mutant strain were left untreated or treated with 

HU for 3 h. The ability of ATR-mutant mock-treated extract of incorporate radioactive 

label was mostly eliminated, suggesting the presence of a second kinase responsible for 

this residual phosphorylation. These data also suggest that the majority of the cells 

phosphorylated during vegetative growth are target of ATR, this is consistent with the 

role of ATR in other eukaryotes where is regulating the progression of DNA replication 

in unperturbed cell cycles. Furthermore, the residual phosphorylation present in mock-

treated ATR-mutant extracts was completely eliminated upon HU treatment, this suggest 

that in contrast to yeast response to HU where the phosphorylation state increase in 

damaged cells, in Tetrahymena the tendency is to dephosphorylation in response to DNA 

damage. 

 Since logarithmically growing mock-treated Tetrahymena extract present a 

unique high level of kinase activity, I decide to analyze kinase activity of proteins in 

Tetrahymena during vegetative cell cycles. Wild type Tetrahymena culture synchronized 

be elutriation was cultured and samples were collect every hour post elutriation for 4h 

(Figure 4.13B). In synchronized Tetrahymena G1 cultures, a high incorporation of 32P 

was detected ranging from 43 to 72 KDa. The lower portion of this range was 

permanently phosphorylated across the cell cycle, as was evidenced by the 32P
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Figure 4.13 Autophosphorylation assay. Protein extracts of yeast (25 ug) and Tetrahymena (50 ug) were 

loaded in a 10% SDS-PAGE and blotted into PVDF membranes. After denaturation/renaturation 

treatments the membrane was incubated with 10μCi of [ϒ-32P]ATP and after 1h of incubation membranes 

were exposed. Arrow-head showing the hyperphosphorylated form of Rad53 in yeast. (A) Logarithmically 

growing yeast and Tetrahymena (wild type and ATR-mutant) strains, mock and HU-treated were 

compared by its ability of incorporation of 32P-radioctively labeled ATP. (B) Logarithmically growing 

yeast was compared to synchronized wild type Tetrahymena cultures. Samples taken every hour after 

elutriation (0 h). (C) Logarithmically growing yeast used as control was compared with synchronized wild 

type Tetrahymena treated with HU or MMS. Treatments were added during G1 or S phase, aliquots were 

saved every hour after treatment. Top panel showing the phosphorylation level and bottom panel total 

protein as a loading control. (D) Quantification of the 32P incorporation in (C) by using ImageJ. 
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incorporation in samples from 1, 2, 3 and 4 h post elutriation. Elutriated cultures usually 

evidenced a G1 peak from a second cell cycle by 3 h after elutriation, however the higher 

level of phosphorylation observed in 0 h was not reproduced by the end of 3 h.  

 This in vitro phosphorylation assay showed that Tetrahymena proteins decrease 

their level of phosphorylation in response to DNA damage. To determine how this 

kinase activity was modulated by genotoxic agents synchronized G1 and S phase wild 

type Tetrahymena cultures were treated with HU or MMS (Figure 4.13C). The level of 

phosphorylation in Tetrahymena extracts was compared to the autophosphorylated 

Rad53 band in yeast. HU-treated cells synchronized in G1 present a low and persistent 

signal through the 4 h of treatment, however when the signal for the incorporation of 32P 

was quantified, normalized against the yeast control and plotted, a minor increment was 

observed at 2h of treatments (Figure 4.13D). When HU was added to cell synchronized 

in S phase, almost no detectable signal was observed, the quantification of these samples 

indicate a signal above background was detected 2 h after the HU was added (Figure 

4.13D). Treatments with MMS added to G1 synchronized cells show and transient 

increased level of 32P incorporated by 2 h of treatments, during the 3 and 4 h post 

treatment the levels are decrease similar to levels detected at 1 h post treatment. These 

signals were also quantified by using ImageJ and plotted for further comparison (Figure 

4.13D). Finally, when MMS was added to S phase synchronized cells no detectable 

incorporation of 32P was observed by the end of the first hour of treatment. However, an 

important increase in the 32P incorporation was detected 2 h post treatment, this level of 

incorporation did not persist in the following time points (Figure 4.13C and D). These 
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data suggest that the ability of phosphorylation revealed by this kinase assay is down 

regulated in response to DNA damage. Furthermore, mechanisms that regulate this 

decreased ability to uptake 32P are coordinated and they are also able to rearrange this 

response as is suggested by the collective increased incorporation of 32P at 2 h post 

treatment. 

 

Discussion 

 Tetrahymena contains two functionally distinct nuclei, micro- and macronucleus. 

The S phases and division of these nuclei are offset in the cell cycle, indicating that 

mitosis is not coordinated with division as in other eukaryotes. Checkpoint proteins 

shape cell cycle progression by monitoring the presence of DNA damage and 

coordinating cell propagation. Tetrahymena can survive to aberrant division due to the 

polyploid character of the macronucleus. Despite this, Tetrahymena contain checkpoint 

factors that modulate cell cycle progression. 

  In this work, DNA damage was induced in G1/S boarder or S phase to study 

specifically the intra-S phase damage response. In addition, two different genotoxic 

agents were used, HU and MMS, and the origin of the damage differentially impact on 

the fate of Mcm6p. Furthermore, during the recovery from genotoxic stress Mcm6p were 

undetectable suggesting that resumption of replication involve novel mechanisms in 

Tetrahymena. 

 In general, the features for the control of cell cycle progression in ciliates had not 

been studied in detail. The progression through cell cycle events is strictly regulated by 
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machinery that is common between eukaryotes systems. Opportune initiation of DNA 

synthesis, accurate chromosome segregation, recognition of DNA damage and activation 

of appropriated DNA damage responses must all be coordinated to maintain genomic 

stability  (Eserink and Kolodner, 2010).  

 Regulation of the cell cycle is mostly controlled by cyclin dependent kinases 

(CDK) and their association with specifics cyclins, which act as regulatory subunit. 

Little is known about cell cycle regulation in ciliated protozoa. Tetrahymena and 

Paramecium are the most studied members of this protozoa family. Regarding to the 

regulation of the cell cycle, Paramecium contains at least three different CDKs, two 

CDK1s with different molecular masses (34 and 36 KDa) and are activated at different 

points in the cell cycle (Tang et al., 1994). The smaller CDK1 is maximally active at the 

end of the cell cycle, suggesting its involvement in the control of cell division (Tang et 

al., 1994). The 36KDa-CDK1 probably regulates progression at earlier stages of the cell 

cycle; its peak of activity is broad and overlaps with DNA replication of the 

macronucleus (Tang et al., 1995). The other identified CDK, designated as CDK2, is 

also associated with the regulation of cytokinesis (Zhang & Berger, 1999). Furthermore, 

two distinctive cyclins have been described in Paramecium (PtCyc1 and PtCyc2,(Zhang 

et al., 1999). These cyclins contain the characteristic cyclin box and destruction domain, 

necessary for regulation of cyclins during the cell cycle. However, Paramecium cyclins 

show no further similarities with cyclins previously described in other eukaryotes 

suggesting that the control of cell cycle in ciliates is mediated by a divergent CDK-

cyclin duo (Zhang et al., 1999). Nevertheless, it is known that small-CDK1 binds to 
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PtCyc1 and CDK2 forms complex with PtCyc2 and this binding correlates with the 

maximal activity of the respective CDKs during cell division (Zhang et al., 1999). This 

suggests that Paramecium cell cycle regulation better resembles the situation in higher 

eukaryotes where several CDKs exist and more than one cyclin is responsible for cell 

cycle regulation (Nurse, 2000; Tang et al., 1994). 

 After this detailed description it was expected that the regulation of cell cycle 

progression was similar for all the members of this class of protozoa. However, in 

Tetrahymena only one CDK has been identified (Zhang et al., 2002). Tetrahymena CDK 

is cell cycle regulated and accumulates in later stages of G2, which is one of the most 

remarkable characteristics of this CDK in comparison to other eukaryotes where CDKs 

are constantly expressed throughout the cell cycle (Zhang et al., 2002, Nurse, 2000). 

This argues that Tetrahymena cell cycle is regulated in a novel fashion.  

 Recently, the control of the cell cycle has been simplified to a basic component 

in fission yeast, Schizosaccharomyces pombe. Coudreuse and Nurse (Coudreuse & 

Nurse, 2010) were able to engineer a strain in which the mitotic cycle was modulated 

only by a single CDK-cyclin pair (Cdc2-L-Cdc13); under normal conditions the pair 

CDK-Cdc13 promotes mitosis in fission yeast. The abundance of the CDK-cyclin 

oscillated during the cell cycle, was accumulated at the end of G2 and eliminated at the 

end of mitosis. This study showed that a single oscillating CDK-cyclin pair provides the 

regulation necessary for cell cycle progression. Furthermore, the authors suggested that 

this system could resemble cell cycle regulation in primitive eukaryotes. Could 

Tetrahymena be an example of such eukaryotic system? 



 

 

199 

199 

 A further unusual characteristic in Tetrahymena is that no homolog for Cdc25 

phosphatase family has been identified. Cdc25 is essential activator of CDK1 at the 

G2/M transition in other eukaryotes (Honda et al., 1993). It is worth to mention that 

plants also lack Cdc25. However, it has been postulated that the lack of Cdc25 has been 

substituted by a modified CDK during evolution (Boudolf et al., 2006). Plants-specific 

CDK (B-type CDK) accumulates at the end of the cell cycle, during G2/M transition 

where it shows a peak of activity (Porceddu et al., 2001). Furthermore, Coudreuse and 

Nurse (2010) with their model of minimal control network have shown that Cdc25 and 

other regulatory factors are dispensable for cell cycle progression. Also, members of the 

Cdc25 family are key components in the response to genotoxic stress, by modulating the 

activation of checkpoint pathways that ensure genetic stability. This suggests that the 

regulation of Tetrahymena cell cycles notably differ from other eukaryotes, but that the 

response to genotoxic stress may also differ.  

 In this chapter, I have used several strategies for the study of the activation of 

DNA damage response in Tetrahymena. In all studied eukaryotic systems the DNA 

damage response pathway triggers activation of a phosphorylation cascade. The intra-S 

phase checkpoint pathway maintains genome integrity by sensing replication stress. The 

main kinase responsible for these phosphorylation cascades are ATR and Chk1 kinases, 

which activate multiple strategies to slow down the cell cycle and allow time for DNA 

repair.  

 In Chapter II, I showed that the DNA damage response in Tetrahymena is 

mediate by an ATR-like pathway, basically defined by its inactivation in presence of 
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caffeine. To have a more clear view of the activation of the intra-S phase checkpoint, I 

subsequently induced a genotoxic response during early and late S phase. To directly 

link this response to progression of DNA synthesis I used flow cytometry to monitor 

DNA content. I also followed the fate of one subunit of the replicative helicase, Mcm6p. 

Cellular and macronuclear division, and the potential formation of macronuclear 

extrusion bodies were also assayed by microscopy. These studies revealed a novel 

response to DNA damage that is induced during S phase, in which the S phase DNA 

content is reset to a G1/1N DNA level without the completion of DNA replication 

(formation of G2/2N peak) and/or cell division. In an attempt to conclusively determine 

whether the generation of the new 1N peak was independent of cell cycle progression, a 

specific inhibitor of cytokinesis, W7, was used. W7 was previously tested in 

Tetrahymena (Numata et al., 1999). However, treatments with W7 itself activated the 

DNA damage response and cellular death in a concentration dependent manner. A 

further characterization of this new 1N peak generated in response to HU treatments 

revealed that HU-treated cells increase their size and this parameter is detectable by flow 

cytometry and by direct microscopic analysis. 

 These experiments also revealed that Mcm6p protein levels are differentially 

regulated in response to HU and MMS induced DNA damage, suggesting that more than 

one pathway is responsible for DNA damage response in Tetrahymena. This may be due 

to the origin of the damage; HU deplete the cells of endogenous precursor, while MMS 

induce DSB. The common point in both responses is that the regulation of Mcm6p is 

independent of the ATR pathway. 
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 This contrasts with the situation in the budding yeast, S. cerevisiae, where the 

binding of Mrc1 to Mcm6p is essential for the activation of DNA damage response 

induced by MMS (Komata et al., 2009). Mrc1 is the homolog for claspin in metazoans 

and acts as a transducer of the phosphorylation signal from Mec1 to Rad53 (ATR to 

Chk1 in metazoans). The elimination of the interaction between Mcm6p to Mrc1 

prevents activation of the DNA replication checkpoint after MMS treatment, but does 

not affect the response to DNA replication checkpoint induced by HU treatment 

(Komata et al., 2009). This placed MCMs as checkpoint sensor for MMS-induced 

damage and suggested an alternative pathway for HU activation of the DNA damage 

response. In Tetrahymena, previous studies in our lab have shown that Mcm6p is an 

intrinsic member of the pre-RC and binds specifically to origins of replication(Donti et 

al., 2009) (Donti et al., 2009).  Furthermore, this work suggests that the role of Mcm6p 

in response to MMS is conserved, as well as the differential regulation in response to 

HU treatments.  

 Most interestingly, whereas HU induced the phosphorylation of Mcm4p in other 

eukaryotes (Ishimi et al., 2003), in Tetrahymena when added to either G1 or S phase 

synchronized cells. The decrease in the abundance of Mcm6p during HU treatment may 

be used as a strategy to inactivate or stabilize the progression of the MCM helicase 

during the treatments. This will suggest that degradation of the protein is favored over 

phosphorylation in Tetrahymena. In other eukaryotes systems, MCM-helicase activity is 

inactivated by ATR specific phosphorylation of Mcm4 in response to HU treatments 

(Forsburg, 2004; Ishimi et al., 2003). An alternative explanation for the gradual decrease 
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in the abundance of Mcm6p during HU treatment is that Mcm6p is averted from the 

macronuclei during replication stress and its cytoplasmic accumulation results in the 

degradation of the protein. In yeast, due to the closed mitosis character, peptide signal 

for nuclear localization are essential to regulate the nuclear abundance of proteins 

involved in replication. Nuclear signaling peptides have been described in S. cerevisiae 

for Mcm5p, Mcm2p and Mcm3p (Forsburg, 2004). As in yeast, in Tetrahymena the 

nuclear envelope of the micronucleus is maintained intact throughout the cell cycle 

(Davidson & LaFountain, 1975). Furthermore, studies in Paramecium showed that no 

fragmentation of the nuclear envelope occurs during macronuclear amitotic division 

(Jurand & Selmann, 1970). This suggests that a closed mitosis and amitosis might be a 

common feature between ciliates. Strongly basic peptides rich in arginines and lysines 

are widely recognized as nuclear localization signals among eukaryotes (Boulikas, 

1994). However, no clear nuclear targeting peptide sequences have been described for 

(White et al., 1989). Also common for all eukaryotes is the regulation of nuclear pore 

complex that mediate the import and the export of proteins across the nuclear envelope 

(Strambio-De-Castillia et al., 2010). In Tetrahymena, specific peptides contained in 

components of the nuclear pore (nucleoporine, Nup98) precisely guide proteins to either 

macronucleus or micronucleus (Iwamoto et al., 2009). These determine a nuclear 

selective transport system for specific factors required in each nucleus. It is not clear 

whether Mcm6p requires a peptide signal for specific localization, but its high molecular 

mass and the fact that Mcm6p is cell cycle regulated in vegetatively growing 

Tetrahymena cultures suggest that some regulatory signal may be required. 
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 A remarkable finding of my work is the indication of the plasticity of the 

amitotic macronucleus during the execution of the cell cycle immediately following HU-

induced arrest. The doubling of DNA content and macronuclear division occur with no 

indication of replication stress. Yet, Mcm6p levels are not restored prior to the first S 

phase and cell division during the recovery. The absence of Mcm6p implies that an 

alternative helicase or MCM subunit is sufficient to unwind the parental DNA duplex 

and support DNA replication during recovery period. This alternative Mcm6p could be a 

protein encoded by an alternative gene that is expressed in response to replication stress 

and is responsible for helicase activity during the first cycle of recovery.  

 The Mcm2-7 proteins are each encoded by a single copy gene in all eukaryotes 

with the exception of a duplicated gene for Mcm6p and Mcm3p in Xenopus (Liu et al., 

2009; Sible et al., 1998). During Xenopus development a switch from maternally 

synthesized Mcm6p to an Mcm6p form synthesized by the zygote occurs at the time of 

extensive cell cycle remodeling (midblastula transition) (Sible et al., 1998). This 

suggested that the replacement of Mcm6p contributes to the establishment of normal cell 

cycles in Xenopus. Here, since the recovery from HU arrest will include a re-setting of 

the normal cell cycle, the possibility of a replacement of Mcm6p will provide a nice 

model. However, in silico analysis of Tetrahymena macronuclear genome showed that, 

as in most of other eukaryotes, only a single ortholog sequence for Mcm6p can be found. 

 At this point it is not clear whether the decrease in the abundance of Mmc6p is 

common to all MCM subunits during HU treatments. If only the abundance of Mcm6p is 

affected during HU treatments, an alternative subunit might substitute for Mcm6p during 
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early recovery. In pea plants, a single Mcm6p subunit is able to form homohexamers that 

contain intrinsic helicase activity (Tran et al., 2010). This suggests that MCM-complex 

formation and helicase activity is not limited by the classical heterohexameric formation 

and opens the possibility that any other of the MCM subunits may substitute Mcm6p 

function during recovery from HU treatments in Tetrahymena. 

 The analysis of a hypomorphic ATR-mutant strain revealed that ATR, as in other 

eukaryotic systems, plays an important role DNA synthesis in unperturbed cell cycles. In 

order to determine downstream activation of the ATR pathway, I used an in situ assay 

previously characterized in yeast that measured the level of phosphorylation of 

Rad53/Chk1 (Pellicioli et al., 1999). The evaluation of kinase activity revealed that the 

response to DNA damage in Tetrahymena is completely different to most eukaryotic 

systems. While in yeast the autophosphorylation of Rad53 is promoted during DNA 

damage response, in Tetrahymena genotoxic stress induces a decrease in the 

phosphorylation state of the cell. A previous example of the lack of phosphorylation was 

shown in studies of CDK, which present no phosphorylation during the progression of 

cell cycle suggesting that phosphorylation is not one of the major mechanisms for 

regulatory pathways in ciliated protozoa (Tang et al., 1997). These findings situate 

Tetrahymena as one of the most intriguing models for the study of cell cycle regulation. 
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CHAPTER V 

 

SUMMARY AND DISCUSSION 

 

 Maintenance of the genome integrity is essential for successful cell cycle 

progression. Genotoxic stress is constantly induced to the cell by endogenous or 

exogenous sources and the ability to repair the damage is vital for completion of cellular 

process like DNA replication and cell division. Following detection of the damage, the 

cell activates mechanisms that induce inhibition of the cell cycle progression and 

promotes the repair of damaged DNA. DNA damage responses include several pathways 

that are common to all eukaryotes studied to date.  

 In my dissertation research I set out to study how Tetrahymena acts in response to 

DNA damage. The work presented in Chapter II showed that induction of DNA damage 

with the alkylating agent (MMS) or depletion of DNA precursors with hydroxyurea 

(HU) triggers S phase arrest in Tetrahymena. This DNA damage response can be 

modulated by the addition of caffeine, suggesting that is most likely mediated by an 

ortholog of the human ATR/budding yeast Mec1 kinase. Furthermore, cellular depletion 

of a novel factor that regulates replication initiation, TIF1, activates this checkpoint 

response. 

 Further studies, described Chapter IV, revealed that the addition of HU to 

synchronized S phase cell cultures induces a decrease in the abundance of Mcm6p, a 

factor associated with the initiation of DNA replication and elongation of DNA 
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replication forks. However, the abundance of Mcm6p is stabile in MMS-treated S phase 

cultures, indicating that the modulation of this component of replicative helicase 

depends on two different pathways. Furthermore, this work revealed an unusual response 

to DNA damage induced during S phase, in which the S phase DNA content is reset to a 

G1/1N DNA level without the completion of DNA replication (formation of G2/2N peak) 

and/or cell division. Furthermore, the formation of the new G1/1N peak was not 

associated with the elimination of macronuclear DNA through the formation of extrusion 

bodies a known pathway for adjusting DNA content following asymmetric macronuclear 

division. Analysis for the recovery from genotoxic stress showed that cells were 

competent to initiate a normal cell cycle as soon as the HU was removed from the 

culture. However, in the first S phase DNA replication occurred in absence of Mcm6p, 

which is an essential subunit of the heterohexameric MCM2-7 complex in all organisms 

studied to date. This data suggests that Tetrahymena uses novel mechanisms to repress 

DNA replication forks during genotoxic stress, deal with stalled forks, avert cellular 

catastrophe due a failure to complete DNA replication and replicate their genome when 

genotoxic stress is removed. 

 Also, in Chapter III, I designed a peptide antibody that recognizes specifically 

Tif1p and allowed its detection in normal cell cycles. Further analysis of the Tif1p 

binding showed that Tif1p association with the rDNA minichromosome extends beyond 

the replication origin. Tif1p binding was observed throughout the rDNA coding region. 

However, Tif1p was largely excluded from non-rDNA chromosomes. These findings
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Figure 5.1 Regulation of Tif1p during genotoxic stress revealed by Tif1-peptide antibody in wild type 

strain. (A) G1 synchronized cultures were treated with mock, MMS or HU and samples collected every 

hour post treatment. The abundance of Tif1p and Mcm6p where compared by western blot. (B) S phase  

synchronized cultures were treated with mock, HU, MMS, caffeine, caffeine and HU or caffeine and 

MMS. The abundance of Tif1p and Rad51p where compared by western blot. Rad51p showed as a marker 

for the activation of the DNA damage response. 
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suggest that mechanism for targeting Tif1p to rDNA and non-rDNA minichromosomes 

is fundamentally different. 

 In addition, I generated data that indicate that the fate of Tif1p parallels Mcm6p 

abundance when cells are exposed to HU-induced genotoxic stress (Figure 5.1A). The 

abundance of Tif1p decreases after 2h in HU-treated cells suggesting that this genotoxic 

stress affect factors involved in replication in a similar fashion. This decrease in Tif1p 

levels was also observed in treatment with MMS, this did not correlate with the Mcm6p 

levels, which are maintained during DNA damage induced by MMS. A further 

difference between Tif1p and Mcm6p abundance during genotoxic stress was their 

modulation in the presence of caffeine. While the addition of caffeine was not able to 

reverse the effect of HU or MMS in Mcm6p (Chapter IV, Figure 4.3C) a complete 

release of down regulation imposed to Tif1p was observed (Figure 5.1B). This data 

further supports evidence provided in Chapter II, which suggests that Tif1p and ATR 

kinase function in the same epistatic pathway. Additionally, they further promote the 

idea that Mcm6p is specially modulated by two different pathways depending of the 

origin of the induced damage.  

 In order to expand the lines of this study and further characterize DNA damage 

response in Tetrahymena several approaches can be use. One of the few orthologs of 

Tif1p in plants, Why2, was recently described as playing a primary role in organellar 

DNA repair in Arabidopsis (Cappadocia et al., 2010). Why2 was preferentially bound to 

single-stranded DNA in a sequence-independent manner during genotoxic treatments 

suggesting a role in the maintenance of genome integrity. The global defect present in 
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TIF1-hypomorphic strain (Morrison et al., 2005) and the strong binding of Tif1p to 

rDNA segments other than replication origins like coding regions in unstressed cells, 

supports the idea of Tif1p being responsible for the protection of rDNA 

minichromosomes. 

 Since TIF1-deficiet strain is hypersensitive to genotoxic stress (Morrison et al., 

2005) and Tif1p appeared to be part of the ATR pathway (this work) is crucial to 

determine how the binding of Tif1p to rDNA is modulated under genotoxic stress and 

whether the preference of Tif1p for non-rDNA sequences increases during the induction 

of DNA damage. Furthermore, determine if there is any variation in the specificity of 

Tif1p binding to rDNA related with the time at which damage is induced. At the G1/S 

border vs. middle S phase, and its correlation to the generation of the new 1N peak. In 

addition, since caffeine suppresses the modulation of Tif1p abundance in presence of 

genotoxic stress, give us the opportunity to determine whether caffeine treatment alter as 

well the binding of Tif1p. Taking advantage of the Tif1p peptide antibody, ChIP assay 

can be used to determine how the induction of DNA damage alters the binding of Tif1p 

to macronuclear minichromosomes. This analysis must be done within 2h of genotoxic 

treatment since cells treated longer present a decrease in the abundance of Tif1p.  

 A cloning strategy is currently in progress to generate an overexpression transgene 

for Tif1p. In this overexpression construct, Tif1p will be placed under the control of an 

inducible promoter allowing modulation of Tif1p levels at any phase of the cell cycle 

and will provide an elegant tool to better understand the role of Tif1p in Tetrahymena 

during normal cell cycles and in response to genotoxic stress. Since the main role 
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described so far for Tif1p is as inhibitor of the initiation of rDNA replication, the 

increase in the cellular levels of Tif1p should further prevent initiation of replication and 

lead to late recruitment of pre-RC components (Orc1p and Mcm6p). Two dimensional 

electophoretic analysis of replication intermediates could be use to determine how the 

timing of rDNA replication is affected by an excess of Tif1p in the cell. Recruitment of 

Orc1p and Mcm6p will be assayed by ChIP and compared between strains (wild type, 

TIF1-hypomorphic, TIF1-overexpression and TIF1-overexpression in a TIF1-

hypomorphic background). 

 Also, with this system will be possible determine whether the Tif1p macronuclear 

overexpression is able to rescue micronuclear chromosome instability induced in the 

TIF1-hypomorphic strain. In Chapter II, I showed by PCR analysis that 10 different 

clonal lines of the TIF1-hypomorphic strain presented genome instability and that these 

progressive loss occurred during vegetative cell divisions (250 fissions). The 

transformation of TIF1-hypomorphic strains with the overexpression construct will 

allow us to assay by conventional PCR whether Tif1p can rescue the defect by 

comparing clonal lines over time. 

 Given that Tif1p is downregulated during treatment with genotoxic agents, the 

overexpression of Tif1p offers the opportunity of better characterize the role of Tif1p in 

the DNA damage response. Since Tif1p acts as a repressor of replication initiation, this 

may as well decrease the ability to respond genotoxic stress and induce aberrant 

phenotypes or affect the viability of the cell. The analysis of the activation of DNA 

damage response and its modulation by caffeine in presence of an excess of Tif1p can be 
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analyzed by the approaches used in this work. Flow cytometry to examine cell cycle 

progression, abundance of Rad51p to monitor activation of genotoxic response and 

microscopic examination to determine abnormal phenotypes. 

 Another relevant result in my dissertation was the unexpected finding that the first 

S phase following the recovery from HU treatment occurs in the absence of Mcm6p. It is 

not clear how these cells are able to recover and complete S phase. Furthermore, it is 

unknown how other proteins involved in replication initiation (Orc1p and Tif1p) are 

modulated during recovery periods. Also a major question is how arrested replication 

forks are elongated during recovery in absence of Mcm6p or whether new origins of 

replication are activated. In order to begin answering this question, ChIP assay could be 

used to study how the origins are being populated by Mcm6p, Orc1p and Tif1p during 

recovery. This will allow us to determine whether alternative origins are activated or if 

halt forks are been re-activated during this period. As alternative approach, molecular 

combing technique is being developed in our lab to determine the distance between 

activated origins of replication and this could also be used to address the fate of origin 

firing in recovery periods. In this approach, DNA molecules are stretched and bound to a 

silanized coverslip, the posterior detection of base analogs incorporated in the DNA 

allow to measure significant features of chromosome replication as inter-origin distance, 

fork velocity and fork pausing. By taking advance of this technique the inter-origin 

distance during recovery time can be determined and compared to normal cell cycle of 

wild type, Tif1p-hypomorphic and partially-depleted-Orc1p strains are already available 
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in our lab. This will allow us to determine whether alternative origins are activated or if 

the halted forks are been re-activated during recovery period. 

 Also, it will be possible to examine protein binding by molecular combing. A 

modified protocol where chromatinized and fully proteinated fibers are stretched in a 

coverslip has been recently developed (Bailis et al., 2008). This allows distinguishing the 

direct binding of proteins to DNA combined with the direct visualization of DNA 

synthesis monitored by incorporation of base analogs. It has been shown that in cells 

where intra-S checkpoint is activated components of the MCM helicase are stabilized at 

halted replication forks (Cobb et al., 2005). We have raised antibodies that specifically 

recognize Mcm6p, Orc1p and TIF1p and strains deficient in Tif1p and Orc1p are 

available. With all these tools we will be able to determine whether replication factors 

follow the same fate during recovery or whether their association is different in 

comparison to normal cell cycles. This approach will allow monitoring the binding of 

Mcm6p and other components of the MCM helicase during recovery and follow they 

participation in DNA synthesis. Since Tif1p is an inhibitor of replication initiation, 

determine how an increase in Tif1p levels affect replication during recovery periods. 

 Since DNA repair act as a background signal of genomic DNA synthesis during 

recovery periods, different strategies can be follow to decrease the contribution of DNA 

repair. First, in case that newly activated origins can be fired during recovery the need of 

short RNA primers for replication of the lagging strand can be used as a technical 

advantage. Here, the identification of newly fired origins can be done by using RNA 

probes for FISH analysis combined with molecular combing. On another hand, 
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polymerases involved in repair (beta and gamma) are more sensitive to 

dideoxythymidine phosphate (ddTP) (Dresler & Kimbro, 1987). Treatments with ddTP 

can be added during recovery periods in order to decrease the background DNA 

synthesis induced by repair. These experiments will give us the opportunity for a further 

understanding of DNA damage response in Tetrahymena.  
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