
 

 

 

 

 

 

RECEPTIVITY STUDIES ON A SWEPT-WING MODEL 

 

 

A Thesis 

by 

MATTHEW JEFFERY WOODRUFF  

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

May 2011 

 

 

Major Subject: Aerospace Engineering 

 

 



 

 

 

 

 

 

RECEPTIVITY STUDIES ON A SWEPT-WING MODEL 

 

A Thesis 

by 

MATTHEW JEFFERY WOODRUFF  

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  William Saric 

Committee Members, Edward White 

 Andrew Duggleby 

Head of Department, Dimitris Lagoudas 

 

May 2011 

 

Major Subject: Aerospace Engineering 



 

 

 

iii 

ABSTRACT 

 

Receptivity Studies on a Swept-Wing Model. (May 2011) 

Matthew Jeffery Woodruff, B.S., Milwaukee School of Engineering 

Chair of Advisory Committee: Dr. William Saric 

 

A series of flight tests was performed using a swept-wing model mounted on a Cessna 

O-2 aircraft. The crossflow waves on the airfoil were excited by pneumatic spanwise-

periodic distributed roughness elements (DREs). The objective of the experiment was to 

determine the roughness receptivity i.e. the relationship between roughness height and 

the amplitude of the unstable crossflow wave. The local skin-friction variation was 

measured using an array of calibrated and temperature-compensated hotfilm sensors. 

The amplitudes of the disturbance shear stress were compared to the amplitudes of the 

DREs. It was found that there is a relationship between the shear stress and DRE 

amplitude that needs to be studied more before any definitely conclusions can be made. 

It was also found that the sensitivity of the crossflow to DREs is highly dependent on the 

freestream turbulence levels. 
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NOMENCLATURE 

 

Rec chord Reynolds number 

Λ leading edge sweep 

α aircraft angle of attack 

β aircraft sideslip angle 

AoA SWIFT model angle of attack 

KIAS knots indicated airspeed 

KTAS knots true airspeed 

x/c percent chord location 

p static pressure 

q dynamic pressure 

Cp coefficient of pressure 

DRE discrete roughness element 

PDRE pneumatic discrete roughness element 
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CHAPTER I 

INTRODUCTION AND PREVIOUS WORK 

 

MOTIVATION 

The crossflow instability is the last major hurdle in swept-wing laminar flow control 

(SWLFC) (Saric & Reed 2003) in controlling the amplitude of disturbances that cause 

transition to turbulence, and progress has been made recently in developing distributed 

roughness element (DRE) technology (Carpenter et al. 2009) to delay the transition to 

turbulence on swept wings. One large hurdle still standing is understanding the 

receptivity step in the process of laminar to turbulent transition i.e. how micron-sized 

surface roughness creates the initial amplitudes of unstable crossflow waves. When the 

relationship is established between leading-edge roughness and crossflow waves, 

nonlinear stability calculations can be validated for the prediction of amplitude growth. 

 

Currently, linear stability theory is used to design natural laminar flow airfoils. While 

both the linear Orr-Sommerfeld equation and linear parabolized stability equations 

provide a good estimate to the disturbance amplitude, it has been shown (as seen in 

Figure 1) that the non-linear parabolized stability equations (NPSE) provide a much 

better estimate of the disturbance level as compared to experiments. However, in order 

to use NPSE, it is required to know the coupling between leading edge roughness and  

____________ 
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the crossflow amplitude downstream. It is easy to do this in a wind tunnel with detailed 

leading edge boundary layer scans, but in flight a different method must be used.  

 

 

Figure 1: Linear and non-linear solvers compared to experimental results 

 

 

It is well known that laminar flow over a wing produces less drag than a turbulent 

boundary layer. With less drag comes reduced fuel consumption and higher efficiency, 

bringing down operating costs for aircraft, especially long-haul cargo and passenger 

aircraft. The tools for analyzing laminar to turbulent transition are not completely 

accurate, as there are many different factors that affect the transition location. Knowing 
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more about one such factor (leading edge surface roughness), puts us one step closer to 

understanding the physics behind laminar to turbulent transition. 

 

The ideal environment for experimenting with laminar to turbulent transition work is a 

low disturbance environment, and it has been found that flight disturbance levels are on 

the order of 0.05%, and are therefore ideal for this type of research. There are 

approximately 6 wind tunnels in the world that are low disturbance as well, but all are 

low Reynolds number.  

 

LITERATURE REVIEW 

As the airflow around an airfoil passes over the leading edge, the process by which 

disturbances enter the boundary layer is known as receptivity. Receptivity is the least 

understood step in the process to transition to turbulence, and also has many benefits 

from being understood. One aspect of receptivity that can be measured is the crossflow 

amplitude related to the roughness height on the leading edge. 

 

Work has been performed to measure the crossflow spacing by analyzing the RMS 

voltage of hotfilm sensors, as in Mangalam et al. (1990) and Agarwal et al. (1992). 

However, the amplitude of the crossflow is not able to be compared between sensors, as 

the resistance of each sensor is different, and to accurately analyze the amplitude, the 

hotfilm must be calibrated. 
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Reibert et al. (1996) measured crossflow amplitudes in the ASU Unsteady Wind Tunnel, 

and found that saturation occurs independently of roughness height, which was backed 

up by the calculations of Haynes & Reed (2000). This work did not measure the 

amplitude of the crossflow in the unsaturated region of the airfoil, which is the main 

component of understanding receptivity. 

 

Carpenter et al. (2009) laid the ground work necessary to conduct experiments to 

determine receptivity coefficients in the unsaturated crossflow region. Hotfilms were 

used to measure the shear stress variations from crossflow in the saturated region of a 

laminar flow airfoil, and a calibration scheme was created to determine the amplitude of 

the crossflow. This calibration scheme is used in this thesis to measure amplitude against 

roughness height. 

 

PREVIOUS WORK 

Carpenter et al. (2009) discusses the work previously done with the SWIFT model, 

including determining the test conditions in flight, going through the airfoil design, and 

completing preliminary receptivity measurements in the crossflow saturated region. This 

chapter discusses the work relevant to the current experiment. 

 

The Swept-Wing In Flight Testing (SWIFT) model is an airfoil that has been designed to 

be subcritical to all instabilities except for crossflow, and due to the low-disturbance 

environment of flight, is an ideal test platform for receptivity measurements. A system 
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was developed to actively control DRE height along the leading edge, and measure the 

resultant crossflow vortices generated by the DREs.  

 

TEST CONDITIONS 

In order to determine the feasibility of a crossflow experiment and to determine the 

initial conditions for calculations, a series of flights were conducted to measure the 

freestream disturbance levels in flight. The crossflow disturbance is very sensitive to 

freestream turbulence, so before experiments could commence, the conditions of the 

atmosphere needed to be measured.  

 

A hotwire mount was manufactured and mounted on the Cessna O-2 in the proposed 

location of the test airfoil on the port wing, as seen in Figure 2. This mount was a 

symmetric airfoil with four available supports for hotwires, along with an RTD for total 

temperature measurements. On the starboard wing, an air data boom was mounted to 

measure α, β, p and q, which could then be used to calculate KTAS.  
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Figure 2: Hotwire sting mount on port wing and air data boom on starboard wing 

 

 

Two hotwires were mounted to the sting mount and connected to a constant temperature 

anemometer and filter in the aircraft. A flight was performed to gather data at four 

different altitudes. In order to compensate for the different temperatures at the different 

altitudes, calibration data was recorded in the climb at each altitude, and the freestream 

measurement data was recorded in a high speed dive. 

 

The freestream disturbance level was measured to be 0.05% to 0.07% of the freestream 

velocity between 158 and 168 KTAS. These values include turbulence and electronic 

noise, and were considered to be low enough to quantify the flight environment as low-

disturbance. 
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Cp MEASUREMENTS 

Along with the experimental work documented in Carpenter et al. (2009), extensive 

CFD work was completed as documented in Rhodes et al. (2008). Before testing could 

being, the flow over the test airfoil had to be verified with CFD, so detailed boundary 

layer stability computations could be completed with the basic state of the airfoil. Also, a 

proper AoA was needed that provided sufficient crossflow for the research to be done on 

the airfoil. A pressure minimum at 70% with accelerated flow to that point was desired 

for ideal testing conditions.  

 

The Swept-Wing In Flight Testing (SWIFT) model is an airfoil that has been designed to 

be subcritical to all instabilities except for crossflow, and due to the low-disturbance 

environment of flight, is an ideal test platform for receptivity measurements. A system 

was developed to actively control DRE height along the leading edge, and measure the 

resultant crossflow vortices generated by the DREs.  

 

 



 

 

 

8 

 

Figure 3: Pressure port locations on the SWIFT model 
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The SWIFT model has two rows of 32 pressure ports each, one located 13 inches from 

the root, and the other located 29 inches from the root as seen in Figure 3. This left a 16 

inch region that was designated the area of focus for the research conducted on the 

model. The ports were of the highest density at the leading edge, and increased the 

spacing as the chord location increased. 

 

Cp values were recorded at test points between AoA = -5° and AoA = 2°. Figures 4 and 5 

show three different angles of attack – the two extreme cases and an intermediate case. 

The highest angle of attack tested was 2°. At this test point, the Cp distribution was 

starting to show a suction peak near the leading edge and a generally flat profile, both of 

which are not conducive to crossflow dominated flow. The lowest angle of attack shown 

is of great interest to the testing, as it has a strong accelerated pressure gradient back to 

the pressure minimum, and also showed strong crossflow growth in calculations. The 

intermediate angle of attack was shown to demonstrate the trend of the Cp distribution as 

the AoA was decreased. 
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Figure 4: Cp data for root pressure row at three different AoAs 
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Figure 5: Cp data for tip pressure row at three different AoAs 

 

 

Two test points were compared with the CFD work, one at -2.6°, and the other at -4.7°. 

These test points showed very good agreement between experimental and computational 

results, as seen in Figure 6 through 9.  
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Figure 6: Root pressure port row Cp distribution at AoA = -2.6° 
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Figure 7: Tip pressure port row Cp distribution at AoA = -2.6° 
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Figure 8: Root pressure port row Cp distribution at AoA = -4.7° 
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Figure 9: Tip pressure port row Cp distribution at AoA = -4.7° 

 

 

A comparison between the root and tip pressure ports was also completed. These data 

show a difference in Cp distribution between the root and the tip (as seen in Figures 10 

and 11), which was taken into consideration by placing the DREs at the calculated 

neutral point, which varied along the span of the model. 
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Figure 10: Root and tip Cp comparison at AoA = -2.61° 
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Figure 11: Root and tip Cp comparison at AoA = -4.69° 

 

 

RECEPTIVITY MEASUREMENTS AT 34% x/c 

Prior to installing the hotfilm array at 15.4% x/c, an array was tested at 34% x/c. This 

work was in the saturated region of crossflow, and was partly a feasibility study of 

detecting crossflow amplitudes with a hotfilm array. Also detailed in Carpenter is the 

procedure for calibrating the hotfilm sensors, including temperature compensation.  

Because the temperature is changing during the data collection during the dive, there is a 

hysteresis loop with the hotfilm voltages. Carpenter solved this hysteresis loop using 
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Radeztsky et al. (1993), in which the hotfilm voltage is linearly dependant on 

temperature. A slope for each hotfilm channel is calculated and applied to the hotfilm 

voltages. Once this temperature compensation is applied, the hysteresis loop is removed. 

Figure 12 shows the raw hotfilm data, and Figure 13 shows the data after it has been 

compensated for.  

 

 

 

Figure 12: Raw hotfilm data 
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Figure 13: Temperature compensated hotfilm data 

 

 

The calibration used in Carpenter is derived from Bellhouse & Schultz (1966). The shear 

stress can be related to the output voltage of the anemometer by a third order polynomial 

(as seen in Figure 14), after the voltage has been temperature compensated. These 

calibration curves are derived from data which is within ± 0.1° of the test angle of attack, 

and while the pneumatic DREs are not activated. This condition is met during the initial 

acceleration and final deceleration before the dive, and during the calibrations during the 

flight. 
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Figure 14: Calibration curve for a single hotfilm channel 

 

 

Two angles of attack were tested in this initial phase, -2.6° and -4.7°. At -2.6°, it was 

found that there is very little crossflow growth, potentially because at 34% chord, the 

crossflow has not had time to grow enough to be detected by the hotfilm sensors. 

However, at -4.7°, the crossflow can be clearly seen, both with and without the 

pneumatic DREs. This structure shows the 4.5 mm spacing of the crossflow, and also 

shows that there is crossflow coming from the pneumatic DREs even when they are not 

pressurized, due to residual pressure in the chamber from the pressure regulator. These 

results can be seen in Figure 15. 
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Figure 15: Crossflow amplitudes with a hotfilm array at 34% x/c 
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CHAPTER II 

EXPERIMENTAL SETUP 

 

TEST PLATFORM 

The 1968 Cessna O-2A Skymaster (seen in Figure 16) that was used for this series of 

flight tests was chosen primarily for the hard points on the wings upon which test airfoils 

were mounted out of the propeller wash. The aircraft has sufficient payload capacity for 

three people (pilot, safety observer, and flight test engineer), twenty channels of 

anemometry, flight-conditions instrumentation, data-acquisition equipment, test airfoil, 

and fuel for a one-hour flight plus reserves. The O-2 also adds numerous safety aspects 

to the flight. One of these is the push-pull configuration of the engines. If one engine 

were to lose power in flight, there is no yaw to overcome from the single engine still 

running and the aircraft is able to maintain a safe altitude above ground. Since it was 

used as an observation aircraft, there is superb visibility to better aid in looking for 

traffic.  
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Figure 16: 1968 Cessna O-2A – N630AM 

 

 

Instrumentation racks have been installed into the rear of the cabin in order to facilitate 

the flight testing, as seen in Figure 17. A pure sine-wave inverter supplies power to data-

acquisition systems, all instrumentation, and a data recording laptop. The 

instrumentation racks also provide an easy way to interchange instrumentation for 

different research missions. The standard rack size provides easy mounting for almost 

any instrumentation module available. 
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Figure 17: Instrumentation rack 

 

 

A typical flight profile begins with a climb to 10,500 feet, followed by collecting hotfilm 

voltage data at a constant altitude and different airspeeds for shear stress calibration. 

Once this is complete, there is a dive at 175 KIAS from 10,500 feet down to 

approximately 3,000 feet. This speed and altitude range allows approximately two 

minutes of conditions at chord Reynolds number, Rec, of 7.5x10
6
. Upon leveling off, 

another data collection is performed at a constant altitude and different airspeeds in order 

to obtain another calibration at a different temperature for temperature compensation.  

 

Two different test areas are utilized for flights. These test areas are in between victor 

airways and away from populated areas in order to minimize the risk of an encounter 

with another aircraft. During the flight, air traffic control is contacted to obtain flight 

following, which allows for another safety factor in avoiding other aircraft. Each of the 
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test areas has alternate airports that could be used in case of an emergency. The main test 

area that was used can be seen in Figure 18. College Station can be seen in the lower 

right of the figure circled in red. 

 

 

 

Figure 18: Test area 2 

 

 

The crew for each flight includes the pilot, a co-pilot/safety observer, and a flight test 

engineer. During the dive, the pilot is focused on the instruments to maintain a constant 

flight condition, and the FTE focused on the laptop, so the safety observer is looking 
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outside the aircraft to make sure there is no other traffic in the area. Moreover, one or 

more ground personnel are part of the flight operations. They are responsible for making 

sure nothing appears out of place on the exterior of the aircraft during start and taxi and 

maintain radio contact with the flight crew during flight operations. 

  

TEST AIRFOIL 

The Swept Wing In Flight Testing (SWIFT) model used for these series of tests is a 30° 

swept wing with a laminar flow airfoil custom designed at Texas A&M. The pressure 

minimum on the airfoil is at 70% chord, and it does not have any concave structure, so it 

is ideal for studying the crossflow instability. The model can be seen in Figure 19 along 

with the Cp distribution in Figure 20. 

 

 

 

Figure 19: SWIFT model in flight 
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Figure 20: Suction-side pressure coefficient distribution 

 

 

The airfoil is a precision-machined shell of aluminum, with two halves for the main 

section of the airfoil, and an interchangeable leading edge, as seen in the exploded view 

in Figure 21. The shelled interior saves weight and is used for instrumentation, such as 

pressure transducers. Two leading edges are available – the polished leading edge with 

pneumatic insert used for this series of tests, and a painted leading edge that is used for 

laminar flow control research.  
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Figure 21: Exploded model view 

 

 

HOTFILM ARRAY DESIGN AND PLACEMENT 

The hotfilm array used was custom designed by Texas A&M and built by Tao Systems. 

This specific array is designed with minimum spacing and a sensor length of 500 µm in 

order to obtain the highest possible resolution. The array is designed to have 

approximately 9 sensors per one wavelength of the crossflow wave being measured. 

Because of the inclination of the stationary crossflow wave, the array is oriented at 42° 

with respect to the freestream, rather than matching the 30° sweep of the leading edge. 

At the same time, the difference in chord location between the first and last sensor is 

negligible, and can be ignored. The design of the array can be seen in Figure 22. 
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Figure 22: Hotfilm array layout and dimensions 

 

 

The hotfilm array was applied to the wing at 15.4% x/c, which is the location of the 

farthest forward static port available on the model. Along with the array, a 320 µm 

diameter Preston tube and T-type thermocouple are applied along the same chord line, 

but with enough spacing that there is no interference in the flow between the sensors. 

This setup provides the Preston tube shear stress reference, static port reference, and 
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temperature for the calibration of the hotfilm voltages, all at the same chord location on 

the airfoil, as seen in Figures 23 and 24. 

 

 

 

Figure 23: Hotfilm array at 15.4% chord with Preston tube, static port, and thermocouple 

 

 

 

Figure 24: Hotfilm array sensors applied to the airfoil 
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The anemometers used for the hotfilm array are A.A. Systems AN-1003 units with ten 

channels each. Each of these units is 50 pounds, and therefore the O-2 is limited to 

carrying twenty channels without reducing the flight time. The anemometers are 

installed next to the flight test engineer’s seat, where each channel can be adjusted 

easily, as seen in Figure 25.  

 

 

 

Figure 25: Anemometer installed in the aircraft 

 

 

INSTRUMENTATION AND DATA ACQUISITION 

The airfoil model is instrumented with a five-hole probe (seen in Figure 26) and an RTD 

temperature sensor on the wing of the aircraft. The five-hole probe measures local pitch 

angle, α, and yaw angle, β, which is translated to model sweep angle, Λ, and model 

angle-of-attack, AoA. Static pressure, p, and dynamic pressure, q, are also measured. 
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Using these data, the altitude, Mach number, true airspeed, and chord Reynolds number 

are calculated and recorded.  

 

 

 

Figure 26: Five-hole probe attached to the SWIFT model 

 

 

There are two displays for the pilot on the instrument panel of the aircraft. One shows 

Rec of the airfoil, while the other shows the AoA of the model. These values are 

displayed in real time, updating continuously. Using these displays, the pilot is able to 

keep constant flight conditions throughout the duration of the testing.  
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Figure 27: Rec and β display 

 

 

In conjunction with the two main displays seen in Figure 27, a small LCD screen is 

mounted on the yoke of the aircraft to show more information to the pilot as seen in 

Figure 28. This display offers slider representations of Rec and β, along with derivatives 

of each to provide the pilot with more information. Using this information, the pilot is 

able to keep control of the flight conditions much better than just the digital display. 
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Figure 28: LCD display 

 

 

All data are recorded in flight in real time by a laptop controlled by the flight test 

engineer. A Labview program is used that can simultaneously record parameters and 

display essential parameters for the FTE to monitor. The laptop acquires the signals 

through three National Instruments DAQ boards – a PCI-6071E, a PCI-6723, and a 

USB-9211A. The 6071 is used as the primary input board, with enough analog inputs to 

record the hotfilm voltages and all air data parameters with a 12-bit resolution. The 6723 

is used to output the Rec and β values to the pilot display with a 13-bit resolution. The 

9211 is a thermocouple input board, which monitors four different thermocouples in and 

on the SWIFT model with a resolution of 24 bits. 
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MEASUREMENT UNCERTAINTY 

Four Honeywell Sensotech FP2000 pressure transducers were used to measure the 

parameters from the five-hole probe, three differential for α, β, and q, and one absolute 

for p. The differential transducers were all ±2 psid with an accuracy of 0.002 psid. The 

absolute transducer had a maximum pressure of 15 psia with an accuracy of 0.015 psia. 

The pressure transducers provided a greater accuracy than was possible to align the 

probe with the airfoil, so the overall uncertainty in model AoA and Λ was determined by 

the alignment procedure. Despite best efforts in the alignment procedure, the accuracy of 

the alignment for AoA is estimated to be ±0.2°, while the accuracy of Λ is ±0.1°. These 

uncertainties are only introduced when the five-hole probe is removed and replaced on 

the model, so all flights in this set of experiments have the same uncertainty, and are 

directly comparable. 

 

Two Honeywell Sensotech FP2000 pressure transducers were used to measure the 

Preston tube parameters, one absolute gauge connected to the static port on the model, 

and one differential between the Preston tube total pressure and the static port pressure. 

These transducers have the same accuracy of the five-hole probe transducers.  

 

PNEUMATIC DREs 

In order to excite the crossflow, a system to vary the height of a row of spanwise-

periodic discrete roughness elements (DRE) was used. The system is made up of a 

chamber with 2 mm diameter holes on 4.5 mm centers along approximately 2% x/c 
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covered with a polyester tape, as seen in Figure 29. The chamber is then pressurized 

from a tank in the cabin of the aircraft. Before the system is installed in the airfoil, a 

confocal laser is used to calibrate the height of the roughness element with respect to the 

differential pressure between the chamber and a static port on the airfoil. Using this 

calibration, the height of the roughness element can be measured within 0.1 µm, with a 

maximum height of approximately 50 µm. The inflated DREs can be seen in Figure 30. 

 

 

 

Figure 29: Pneumatic DRE system 
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Figure 30: Pneumatic DREs 

 

 

APPLIQUÉ DREs 

Appliqué DREs were used in conjunction with the pneumatic DREs to amplify the 

desired wavelength, but still allowing for a varying of height. These DREs are 

approximately 6 µm high, and can be printed in any desired distribution and shape. A 

sample of the DREs can be seen in Figure 31. 
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Figure 31: Appliqué DREs superposed on pneumatic DREs 

 

 

Different batches of applique DREs have been measured, and were found to vary 

between 6 and 10 µm high. The applique DREs also have a different profile from the 

pneumatic DREs, as seen in Figure 32. The appliqué have more of a sharp profile while 

the pneumatic DREs have a more rounded distribution of heights. The overall height of 

the pneumatic DREs was measured at the top of the profile, in the center of the circle. 
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Figure 32: Pneumatic dimple and bump, and applique DRE profiles 

 

 

VERIFICATION OF FLOW OVER HOTFILM ARRAY 

In order to verify that the flow over the hotfilm array is laminar, a FLIR Thermacam 

SC3000 Infrared (IR) Camera with a 20° lens is pointed at the array on the airfoil. The 

aircraft climbs to 10,500 ft and cold soaks the model for approximately 20 minutes 

before initiating at dive at 170 KIAS to get to 7.5 million Rec. During the dive, as the 

temperature of the outside air is increasing, the IR camera is able to detect transition 

between laminar and turbulent due to the different heat transfer properties of the flow. 

As can be seen in Figure 33, the flow over the front of the hotfilm array is laminar. 

There are turbulent wedges created by the thermocouple, Kapton tape on the hotfilm 
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array behind the sensors, and a wedge off of the Preston tube. None of these wedges 

interfere with the array.  

 

 

 

 
 

Figure 33: IR image of hotfilm array 
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CHAPTER III 

 

THEORY 

 

INSTABILITIES 

There are four main types of instabilities that can cause transition to turbulence – 

crossflow, Tollmien-Schlichting waves, Görtler vortices, and attachment line 

contamination. Attachment line contamination can be easily controlled by keeping the 

leading edge radius below a critical value (Pfenninger 1977). Görtler vortices are 

destabilized in boundary layer flows by concave curvature (Saric 1994), and can be 

avoided by choosing an appropriate airfoil profile. T-S waves can be controlled by a 

favorable pressure gradient. Crossflow is destabilized by a favorable pressure gradient, 

and is therefore the last big hurdle in laminar flow control (Saric & Reed 2003).  

 

CROSSFLOW AND ROUGHNESS 

Radeztsky et al. (1999) gives a good overview of the effect of roughness on crossflow. 

Freestream turbulence has a large effect on the type of crossflow seen in transition. 

When tested in a high turbulence wind tunnel vs. a low turbulence wind tunnel (Bippes 

and Müller 1990; Bippes 1991), the traveling crossflow dominated transition in the high 

turbulence environment, while the stationary crossflow dominated the low turbulence 

wind tunnel. As flight is a low turbulence environment, the stationary crossflow will 

dominate.  
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Surface finish also had a large effect on transition. Radeztsky et al. (1999) started with a 

painted surface with a RMS roughness of 3.30 μm, and worked towards a highly 

polished aluminum surface with a RMS roughness of 0.121 μm. The transition location 

moved significantly back with the polished aluminum surface compared with the painted 

surface.  

 

The next experiment conducted concerned isolated roughness elements, and their effect 

on transition. It was found that when roughness elements were placed at or near the 

neutral stability location of the most unstable waves, it decreased the transition Reynolds 

number, but had no effect when placed further forward or aft. This indicates that the 

critical portion of the airfoil is within the first few percent of chord, and any roughness 

beyond that (within certain bounds) should have little or no effect on transition.  

 

HOTFILM MEASUREMENTS 

Multi-element surface-mounted hotfilm sensors are used in a variety of applications of 

flow sensing. They can be used for transition location detection by analyzing the spectral 

content of the voltage signal, and also for shock detection. In the past, they have also 

been used for crossflow vortex identification (Magalan et al. 1990, Agarwal et al. 1992), 

but in these instances, only voltages were recorded, not actual shear stress values. 

Recently, Carpenter et al. (2009) developed a calibration scheme using a preston tube, 

static port and thermocouple in conjunction with the hotfilm sensors. This calibration 
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also temperature compensates the voltages, as the temperature is continually changing as 

the aircraft descends in the atmosphere.  
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CHAPTER IV 

 

RESULTS, DISCUSSION AND CONCLUSIONS 

 

Three different leading edge conditions were tested during this experiment. All three 

conditions included the pneumatic DREs in varying heights, but all had different 

appliqué DREs applied to the leading edge. Initially, just the pneumatic DREs were 

tested, but it was found that a 2.25 mm wave was dominating over the 4.5 mm wave of 

the pneumatic DREs. Different amplitudes of circular appliqué DREs were superposed 

on the pneumatic DREs and tested with no excitation of the 4.5 mm wave. Finally, an 

array of elongated DREs was applied, and successfully excited the 4.5 mm wavelength. 

 

TEST CONDITIONS 

All flights were conducted at the same test conditions, with an AoA = -4.7° and a Rec = 

7.5x10
6
. These conditions promoted strong crossflow growth as compared to higher 

AoA. Seen in Figures 34 and 35 are two charts comparing N-factors of the control and 

critical wavelength of crossflow being studied at two different AoA. As can be seen, the 

lower angle of attack has higher N-factors, indicating more crossflow growth. 
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Figure 34: N-factors for Rec = 7.1x10
6
 and AoA = -4.7° 
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Figure 35: N-factors for Rec = 7.1x10
6
 and AoA = -2.6° 

 

 

During the duration of collecting data, the pneumatic DREs are able to be continually 

adjusted in height. The initial flights were conducted with steps of approximately 15-20 

µm, going up to a maximum of 45 µm. A typical DRE height profile can be seen in 

Figure 36. The final three flights were each flown at a different height through the dive – 

20 µm, 35 µm, and 45 µm – in order to find an average over the entire range of the dive, 

and to determine the effect on shear stress by the freestream conditions. 
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Figure 36: Typical DRE height during a flight 

 

 

PNEUMATIC DREs ONLY 

The first flights were conducted with pneumatic DREs only. The results from these 

flights were dominated by a 2.25 mm wave (as seen in Figure 37), which was thought to 

be coming from a different row of pneumatic holes at the 2.25 mm wavelength that had 

been plugged with epoxy, but still created a small non-uniformity on the surface of the 

leading edge. Based on these results, it was decided to add appliqué DREs to the surface 

of the pneumatic DREs to amplify the desired wavelength. 
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Figure 37: Cf distribution with pneumatic DREs only 

 

 

  

0.00105

0.0011

0.00115

0.0012

0.00125

0.0013

0.00135

0 2 4 6 8 10 12

C
f 

Span (mm) 

Rec = 7.44x106, AoA = 4.7°, DRE height = 35 μm  



 

 

 

49 

CIRCULAR APPLIQUÉ DREs 

The first attempt at exciting the 4.5 mm wavelength was to apply 1 mm diameter, 6 μm 

height appliqué DREs over the center of the pneumatic DREs. The results of these 

flights appeared the same as the previous flights. Both one and two layers of appliqué 

DREs were attempted, but neither successfully excited the proper wavelength. Seen in 

Figure 38 is a representative chart of the shear stress distribution along the span with 

these conditions. 

 

 

 

Figure 38: Cf distribution with 10 μm of circular appliqué DRE applied 
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ELONGATED APPLIQUÉ DREs 

Based on Kosinov et al. (2009) a potential solution was to apply elongated DREs to the 

pneumatic DREs, as seen in Figure 39. The appliqué were tested in increments of 10 µm 

(one layer), and with 40 µm applied, a 4.5 mm wave was observed at each increment of 

pneumatic inflation as seen in Figure 40. As can be seen, there is still a component of the 

2.25 mm wave coming through, but the 4.5 mm wave can be clearly seen and analyzed. 

 

 

 

Figure 39: 3 mm x 1 mm appliqué DREs applied to 2 mm diameter pneumatic DREs 
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Figure 40: Cf distribution with elongated appliqué DREs 

 

 

The next step was to fly three flights with three different pneumatic DRE heights in 

order to fully understand what is happening to the crossflow at 15.4% relative to the 

pneumatic height. 

 

For each of these flights, the dive data was filtered to be within 0.1° of the target beta, 

within 1 µm of the target pneumatic DRE height, and above 7.0x10
6
 chord Reynolds 

number. Once the data were filtered, sections of data that were on condition for more 

than approximately 5 seconds were analyzed.  
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SPECTRAL ANALYSIS 

During the last flights, one anemometer was not working correctly, so only ten channels 

of hotfilm voltage were recorded. Because a traditional FFT would not reveal much 

information on the spectral content of only ten data points, the Lomb method (Press 

1992) was used to draw out more information. To obtain a good overall picture of the 

content of each section of data, the Fourier coefficients were found for each time step, 

and then averaged to form the final data set of the spectral content. 

 

 

 

Figure 41: Section 204 – 20 µm pneumatic DRE height 
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Figure 42: Section 352 – 35 µm pneumatic DRE height 
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Figure 43: Section 455 – 45 µm pneumatic DRE height 

 

 

As can be seen in Figures 41 through 43, a 4.5 mm wave is present, along with two of its 

harmonics - 2.25 mm and 1.125 mm.  

 

RECEPTIVITY 

At each different DRE height, the RMS average of the shear stress was calculated and 

plotted. As can be seen in Figure 44, the shear stress is changing with respect to the input 

amplitude. 
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Figure 44: Shear stress at three different DRE heights 

 

 

Due to the large size of the Preston tube used to calibrate the hotfilms relative to the size 

of the boundary layer, the value of shear stress is not accurate, but the differences at the 

same chord location are valid. As can be seen in Figure 45, the shear stress at 34% is 

saturated, and not dependent on the input amplitude of the pneumatic DREs. In contrast 

of this, the shear stress at 15.4% is not constant with respect to the input roughness.  
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Figure 45: Comparison of 15.4% and 34% 

 

 

EFFECT OF FREESTREAM CONDITIONS 

As the aircraft descends in the atmosphere, the air gets denser, so the pilot slows the 

aircraft down to maintain a constant Reynolds number. It was noticed that the shear 

stress as measured by the hotfilms was jumping slightly around with variations in angle 

of attack and Reynolds number. Figures 46 and 47 compare the RMS Cf with different 

parameters during flight. 
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Figure 46: Altitude comparison 

 

 

 

Figure 47: True airspeed comparison 
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The above two figures show a difference over the course of the flight, but due to the 

resolution of the data, it is not clear what is happening with the shear stress. More work 

needs to be done to better analyze the effect that freestream conditions have on the sehar 

stress. 

 

CONCLUSIONS 

An experiment was performed to gather data on the relationship between roughness 

height and crossflow disturbance amplitude. These data were found in flight, in a low-

disturbance environment on a natural laminar flow airfoil. This airfoil had periodic 

roughness placed on the leading edge, and the shear stress from the crossflow off of the 

roughness was measured with a set of hotfilm gauges placed downstream in the 

unsaturated region of the disturbance.  

 

It was found that DREs are dependent on the freestream turbulence level on how 

effective they are. In wind tunnel tests at ASU in the Unsteady Wind Tunnel, it was 

found that applique and pneumatic DREs were quite effective in delaying transition in a 

turbulence level of 0.04%. However, when the wind tunnel was moved to Texas A&M, 

modifications were made to reduce the turbulence level to 0.02%, and with the 

modification, it was found that the applique DREs were not as effective at delaying 

transition. In the initial flight tests with the O-2, it was found that the applique DREs 

were effective at delaying transition, but the pneumatic DREs did almost nothing to the 

transition location.  
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More work needs to be done to fully understand what is happening with the shear stress 

due to the crossflow. Detailed leading edge boundary layer scans are needed from the 

Klebanoff-Saric Wind Tunnel to determine what is happening at the leading edge. Once 

that is understood, more flight tests are needed to fully understand the receptivity in 

flight conditions. 
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