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ABSTRACT

Thermomechanical Constitutive Modeling of Viscoelastic Materials undergoing

Degradation. (May 2011)

Satish Karra, B. Tech., Indian Institute of Technology, Madras;

M. S., Texas A&M University

Chair of Advisory Committee: Dr. Kumbakonam R. Rajagopal

Materials like asphalt, asphalt concrete and polyimides that are used in the

transportation and aerospace industry show viscoelastic behavior. These materials in

the working environment are subject to degradation due to temperature, diffusion of

moisture and chemical reactions (for instance, oxidation) and there is need for a good

understanding of the various degradation mechanisms. This work focuses on: 1) some

topics related to development of viscoelastic fluid models that can be used to predict

the response of materials like asphalt, asphalt concrete, and other geomaterials, and

2) developing a framework to model degradation due to the various mechanisms (such

as temperature, diffusion of moisture and oxidation) on polyimides that show non-

linear viscoelastic solid-like response. Such a framework can be extended to model

similar degradation phenomena in the area of asphalt mechanics and biomechanics.

The thermodynamic framework that is used in this work is based on the notion

that the ‘natural configuration’ of a body evolves as the body undergoes a process

and the evolution is determined by maximizing the rate of entropy production.

The Burgers’ fluid model is known to predict the non-linear viscoelastic fluid-

like response of asphalt, asphalt concrete and other geomaterials. We first show that

different choices for the manner in which the body stores energy and dissipates energy

and satisfies the requirement of maximization of the rate of entropy production that
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leads to many three dimensional models. All of these models, in one dimension,

reduce to the model proposed by Burgers.

A thermodynamic framework to develop rate-type models for viscoelastic fluids

which do not possess instantaneous elasticity (certain types of asphalt show such a

behavior) is developed next. To illustrate the capabilities of such models we make

a specific choice for the specific Helmholtz potential and the rate of dissipation and

consider the creep and stress relaxation response associated with the model.

We then study the effect of degradation and healing due to the diffusion of a

fluid on the response of a solid which prior to the diffusion can be described by the

generalized neo-Hookean model. We show that a generalized neo-Hookean solid -

which behaves like an elastic body (i.e., it does not produce entropy) within a purely

mechanical context - creeps and stress relaxes when infused with a fluid and behaves

like a body whose material properties are time dependent.

A framework is then developed to predict the viscoelastic response of polyimide

resins under different temperature conditions. The developed framework is further

extended to model the phenomena of swelling due to diffusion of a fluid through a

viscoelastic solid using the theory of mixtures. Finally, degradation due to oxidation

is incorporated into such a framework by introducing a variable that represents the

extent of oxidation. The data from the resulting models are shown to be in good

agreement with the experiments for polyimide resins.
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CHAPTER I

INTRODUCTION

Viscoelastic response is shown by a wide range of materials that are used in the areas

of civil engineering (e.g., asphalt and asphalt mixtures), aerospace engineering (e.g.,

polyimides and their composites), biomechanics (e.g., tissues, tendons, cartilages,

blood), and geomechanics (e.g., molten lava). Polymers and polymer composites that

are extensively used in the automobile, appliance, and electronic industries also show

such a behavior (see [1] for the extensive list of examples). Viscoelastic response can be

viewed as a response that is in between elastic and viscous responses. Such a behavior

shows simultaneous elastic and viscous characteristics. These viscoelastic materials

that show time-dependent behavior are capable of storing as well as dissipating energy.

Initial linear one-dimensional models were proposed by Maxwell [2], Kelvin [3],

Voigt [4], to describe the behavior of viscoelastic materials. Later on, one-dimensional

models were developed by assuming that the microstructure of the viscoelastic mate-

rial is mechanically equivalent to a network of linear viscous and elastic elements (see

Chapter II in [5]). With the introduction of various frame-indifferent rates in the con-

tinuum mechanics literature (like Oldroyd derivatives (upper- and lower-convected),

Jaumann derivative, Truesdell derivate etc.), these one-dimensional models were gen-

eralized to three dimensional rate-type models. This extension to three dimensions

makes the models non-linear as these frame-indifferent derivatives are non-linear in

nature [6].

Some of these rate-type models can be integrated to express in an integral form.

Using the linearity in response and by approximating that the stress at a given time is

The journal model is IEEE Transactions on Automatic Control.
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by a superposition of responses to step strain histories, the linear viscoelastic model is

developed [7], [8], [9], [10], [11], [12], [13]. These ideas have been extended by Pipkin

and Rogers [14] to develop a single intergral non-linear viscoelastic solid model. To

model the non-linear viscoelastic response of biological materials, Fung [15] modified

the linear viscoelastic model by choosing a non-linear strain measure. Such a model

can be shown to be a special case of the Pipkin-Rogers model. Unfortunately, these

integral models were not derived based on any thermodynamic basis. See the review

articles by Drapaca et al. [16] and Wineman [17] for further discussion on the non-

linear integral models. In the area of viscoelastic fluids, the K-BKZ integral model

[18], [19] has been extensively used.

Recently, a thermodynamic framework has been developed by Rajagopal and

co-workers [20], [21] that has been shown to model a variety of responses including

viscoelasticity, classical plasticity, superplasticity, twinning, phase-phase transforma-

tion and so on. In the area of viscoelasticity, it has been shown that using such

a framework various three-dimensional models like the Maxwell model, Oldroyd-B

model, Kelvin-Voigt model etc., can be derived. Our work is this dissertation is

based upon such a framework. Details of such a framework is given in the later

chapters.

This dissertation addresses topics related to: a) development of viscoelastic fluid

models that can be used to predict the behavior of materials like asphalt, asphalt

mixtures, soil, and other geomaterials, and b) modeling the non-linear viscoelastic

behavior of polyimides and their response under various degradation processes.

The following sub-problems relevant to thermomechanical modeling of viscoelas-

tic fluids are addressed in the first part of the dissertation:

1. As discussed previously, a thermodynamic framework has been put to place to
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model viscoelasticity and other phenomenon that uses the notion of maximizing

the rate of entropy production (or rate of dissipation in case of isothermal

processes). In Chapter I, by choosing four different combinations of specific

Helmholtz potential and the rate of dissipation, and by imposing this stronger

condition that the rate of dissipation is to be maximum (see Fig. (1)), we

derive four different models. All of these models in one-dimension reduce to

the model proposed by Burgers. Since, typically, three-dimensional models are

corroborated by using one- and two-dimensional experimental data, it is not

clear as to which of these three-dimensional models is the correct model. Thus,

it is imperative to develop better experimental techniques, so that one can

isolate the correct three-dimensional model. Burgers’ fluid model is used to

model asphalt mixtures [22] and other geomaterials [23], and hence our three-

dimensional models in Chapter I can be applied to predict the behavior of such

materials.

2. Although there have been several rate-type fluid models like the Maxwell model,

Oldroyd-B model, Burgers’ model, etc., that can be used to predict the re-

sponse of viscoelastic fluids that show instantaneous elasticity under creep (see

Fig. (2)), there is no framework to develop rate-type models that capture the

response of those without instantaneous elasticity. In Chapter II, we develop

a thermodynamic framework to address this issue. The models developed us-

ing such a framework can be used to predict the behavior of certain kinds of

asphalt that do not show instantaneous elasticity as recorded by Cheung and

Cebon [24].

Polyimides due to their excellent mechanical, thermal, electrical, adhesive prop-

erties are used in a plethora of applications including gas separation, electronic pack-
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All models

ζ > 0

ζ is maximum

Fig. 1.: Venn diagram showing that the class of models considered in our framework

are the ones obtained by using a much stricter condition of maximization of rate of

entropy production.

ε

te
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elasticity
t

permanent set

Fig. 2.: Illustration of a viscoelastic fluid that shows instantaneous elasticity in creep.
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aging, semiconductor, and automobile industries. In the aerospace industry, due to

their extreme stability under high temperatures (> 300oC), they are used as resins

for advanced composites in the propulsion and engine components as well as in some

of the body parts of an aircraft [25], [26]. Due to exposure to high temperatures,

moisture and oxygen during the service conditions of an aircraft, these polyimide

composites undergo degradation [27]. The second part of the dissertation focuses on

developing a systematic thermodynamic framework to model the various degradation

mechanisms on polyimides (specifically degradation due to temperature, moisture dif-

fusion and oxidation as shown in Fig. (3)). The following relevant sub-problems are

dealt in this part:

1. We first consider degradation due to diffusion of fluid through a solid, in order

to understand how its load bearing capacity is affected by such a phenomenon.

The solid is considered to be a generalized neo-Hookean elastic body, and the

concentration of the fluid is assumed to follow an advection-diffusion equation.

We solve the problem of torsion of a cylindrical annulus coupled with advection-

diffusion equation for the concentration of a fluid under different boundary

conditions. We also consider the case when the body is healing due to diffusion

of a fluid.

2. In order to model the various degradation mechanisms mentioned above on

polyimides, our next aim is to develop a model that can predict the mechanical

response of a polyimide. Since, experimental data for polyimides suggests that

these materials show non-linear viscoelastic solid-like response, to this end, a

viscoelastic solid model is developed in Chapter V. Degradation due to temper-

ature is also included in such a model, and results from our model are compared

with experimental data for PMR-15 and HFPE-II-52.
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viscoelastic solid

diffusion of fluid

temperature

chemical reactions (oxidation)

Fig. 3.: Illustration of the various degradation mechanisms on a polyimide (that shows

viscoelastic solid-like behavior).

3. In Chapter VI, the framework built to develop the viscoelastic solid model in

Chapter V is extended to include diffusion of a fluid, using ideas from mixture

theory, in addition to the notion of maximization of rate of entropy production.

The phenomena of free swelling of a viscoelastic solid and stress-assisted swelling

are studied. Numerical results using our model are compared with experimental

data for free swelling of PMDA-ODA and HFPE-II-52 due to diffusion of various

solvents.

4. Finally in Chapter VII, degradation due to oxidation on polyimide is modeled by

extending the framework in Chapter V by introducing a variable that represents

the extent of oxidation. The forms for the Helmholtz potential and the rate of

dissipation used in Chapter V are modified to include oxidative degradation.

The model developed in this chapter is compared with the experimental data

for creep of PMR-15 that is aged in air for various amounts of time.

Details of the literature, preliminaries, constitutive assumptions, solution method-
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ology, results, and conclusions concerning to each of the sub-problem are given in the

respective chapters. Summary of all the chapters, and a discussion on directions for

future research is given in Chapter VIII.
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CHAPTER II

DEVELOPMENT OF THREE DIMENSIONAL CONSTITUTIVE THEORIES

BASED ON LOWER DIMENSIONAL EXPERIMENTAL DATA*

Most three dimensional constitutive relations that have been developed to describe

the behavior of bodies are correlated against one dimensional and two dimensional

experiments. What is usually lost sight of is the fact that infinity of such three dimen-

sional models may be able to explain these experiments that are lower dimensional.

Recently, the notion of maximization of the rate of entropy production has been used

to obtain constitutive relations based on the choice of the stored energy and rate of

entropy production, etc. In this chapter, we show different choices for the manner in

which the body stores energy and dissipates energy and satisfies the requirement of

maximization of the rate of entropy production that leads to many three dimensional

models. All of these models, in one dimension, reduce to the model proposed by

Burgers to describe the viscoelastic behavior of bodies.

A. Introduction

An observation of a phenomenon or a set of phenomena leads one to conjecture as

to its cause and forms the basis for the crude first step in the development of a

model. An experiment is then deliberately and carefully fashioned to test and refine

the conjecture. Unfortunately, this procedure is rendered most daunting as one is

not usually accorded the luxury of being able to perform sufficiently general three

dimensional experiments while the models that one would like to develop are fully

*With kind permission from Springer Science + Business Media: Applications
of Mathematics, Development of three dimensional constitutive theories based on
lower dimensional experimental data, 54(2), 2009, 147–176, Satish Karra and K. R.
Rajagopal.
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three dimensional models. Most of the general three dimensional constitutive models

that are being used in continuum mechanics have been developed on the basis of

information gleaned from one or two dimensional special experiments. It does not take

much mathematical acumen to recognize the dangers fraught in the process of such

generalizations as infinity of three dimensional models could be capable of explaining

the lower dimensional experimental data. Of course, one does not corroborate a three

dimensional model by merely comparing against data from a single one dimensional

experiment. One tests the model against several different experiments, but these

experiments tend to be simple experiments in view of the extraordinary difficulties in

developing an experimental program that can truly test the full three dimensionality

of the model, especially when the response that is being described is complex. In

order to obtain a meaningful three dimensional model on the basis of experimental

data in lower dimensions, one needs to be guided by enormous physical insight and

intuition. This is easier said than done and in fact most models that are currently in

use are based on flimsy and tenuous rationale.

One might be tempted to think that the dictates of physics would greatly aid

in the development of models from experimental data. For instance, the second law

of thermodynamics could play a stringent role in the class of admissible models.

Similarly, invariance requirements such as Galilean invariance could also provide re-

strictions on the class of allowable models. Unfortunately, the sieve provided by all

such restrictions is far too coarse as it permits several models to go through that

exhibit undesirable properties.

While modeling, one might start directly by assuming a constitutive relation

between the stress and other relevant quantities. This relation could be an explicit

expression (function) for the stress in terms of kinematical variables as in the case

of Hooke’s law or the Navier-Stokes model, or it could be an implicit relation as in
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the case of many rate type non-Newtonian fluid models. Assuming such constitu-

tive relations implies six scalar constitutive relations (in the case of the stress being

symmetric). One could also assume forms for the manner in which energy is stored

and entropy is produced by the body and determine the constitutive relation for the

stress by appealing to a general thermodynamic framework that has been put in place

(see the review articles by Rajagopal and Srinivasa [20], [21] for details of the frame-

work). The framework casts the second law as an equation that defines the rate of

entropy production (see Green and Naghdi [28], Rajagopal and Srinivasa [29]) and

appeals to the maximization of the rate of entropy production (while Ziegler [30] had

appealed to such a requirement, the context within which he made such an appeal

is different from that required by Rajagopal and Srinivasa [20], [21]). The general

thermodynamic framework has been used to describe a plethora of disparate material

response: viscoelasticity, inelasticity, twinning, phase transition in solids, behavior of

single crystals super alloys, mixtures, inhomogeneous fluid, etc. While the method

seems exceedingly powerful, there are some interesting nuances concerning its applica-

tion that the modeler should be aware of, and in this chapter by constructing explicit

examples we illustrate these delicate issues. It is important to recognize that one can

obtain the same constitutive relations for the stress by choosing different forms for the

stored energy functions and the rate of entropy production (see Rao and Rajagopal

[31] who develop the non-linear three dimensional Maxwell model by choosing two

different sets of stored energy and rate of dissipation). In fact, it is possible that

several sets of stored energy and rate of dissipation function can lead to the same

model. We illustrate this by considering four different sets of stored energy and rate

of dissipation to obtain the model developed by Burgers [32], and these four choices

are different from a previous choice made by Murali Krishnan and Rajagopal [33]. It

is interesting to note that by making the choice of two scalar functions, we can arrive
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at a constitutive relation for the stress, a tensor with six scalar components. Many of

the one-dimensional models that have been developed to describe the response of vis-

coelastic materials was by appealing to an analogy to mechanical systems of springs

(means for storing energy), and dashpots (means for dissipating energy/ producing

entropy), though in his seminal paper on viscoelasticity Maxwell [2] did not appeal

to such an analogy. Within the context of these mechanical systems, it becomes clear

how one can get the same form for the stress by choosing different stored energy and

rate of entropy production functions as one can choose different networks of springs

and dashpots to effect the same response.

In 1934 Burgers [32] developed the following one-dimensional model by appealing

to a mechanical analog:

σ + p1σ̇ + p2σ̈ = q1ε̇+ q2ε̈, (2.1)

where p1 and p2 are relaxation times, q1 and q2 are viscosities, and σ and ε denote

the stress and the linearized strain respectively. A three dimensional generalization

of that was provided by Murali Krishnan and Rajagopal [33], within the context of

a thermodynamic basis that requires that among an admissible class of constitutive

relations that which is selected is the one that maximizes the rate of entropy produc-

tion. The second law merely requires that the entropy production be non-negative

and one would expect the requirement of maximization of the rate of entropy to cull

the class of rate of entropy production functions. As we shall restrict our analysis to

a purely mechanical context, instead of making a choice for the rate of entropy pro-

duction we shall make a choice for the rate of dissipation (the rate at which working

is converted to heat) which is the only way in which entropy is produced within the

context of interest.

We shall assume that the class of bodies we are interested in modeling are vis-
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coelastic fluids that are capable of instantaneous elastic response. A body that exists

in a configuration κt under the action of external stimuli, on the removal of the ex-

ternal stimuli could attain a configuration κp(t), which is referred to as a natural

configuration corresponding to the configuration κt. However, more than one natural

configuration could be associated with the configuration κt based on how the external

stimuli is removed, whether instantaneously, slowly, etc. The natural configuration

that is accessed depends on the process class allowed. In this study, we shall assume

the natural configuration that is achieved is that due to an instantaneous unloading

to which the body responds in an instantaneous elastic manner. A detailed discussion

of the role of natural configurations can be found in Rajagopal [34] and the review

article by Rajagopal and Srinivasa [20]. Even within the context of an instantaneous

elastic unloading, it might be possible that the body could go to different natural

configurations κpi(t), i = 1, ...., n.

When one provides a spring-dashpot mechanical analogy for a viscoelastic mate-

rial one obtains a constitutive equation that holds at a point, i.e., the point is capable

of storing energies like the various springs and dissipate energy as the dashpots, but

it also has to take into account the arrangement of the springs and the dashpots.

The central idea of Mixture Theory is that the various constituents of the mixture

co-exist. That is, in a homogenized sense at a point, the model has to reflect the

combined storage of energies in the springs and the dissipation of the dashpots based

on the way in which they are arranged. Of course, a point is a mathematical creation

that does not exist, and what is being modeled is a sufficiently small chunk in the

body. This chunk can store and dissipate energy in different ways. The point of

importance is various arrangements of springs and dashpots can lead to the same

net storage of energy of the springs and the dissipation by the dashpots. Put differ-

ently, the chunk can respond in an identical manner for different ways in which the
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springs and dashpots are put together. This is essentially the crux of the work in this

chapter. We have five different three dimensional models, four that are developed in

this chapter and one that was developed by Murali Krishnan and Rajagopal [33] and

all five three dimensional models could claim equal status as generalizations of the

one dimensional model developed by Burgers. Recently, Málek and Rajagopal [35]

used the thermodynamic framework that we have discussed to obtain a model for two

viscous liquids. In this chapter, we have a more complicated mixture in that we have

two different elastic solids coexisting with two different dissipative fluids. We do not

allow for relative motion between the constituents, we assume they coexist and move

together.

The organization of the chapter is as follows. In section (B), we introduce the

kinematics that is necessary to the study and the basic balance laws for mass, linear

and angular momentum. We also introduce the second law of thermodynamics. This

introduction is followed by a discussion of four different models which all reduce to

Burgers’ one dimensional model in sections (C)–(F). We make a few final remarks in

the last section.

B. Preliminaries

Let κR(B) and κt(B) denote, respectively the reference configuration of the body, and

the configuration of the body B at time t. Let X denote a typical point belonging to

κR(B) and x the same material point at time t, belonging to κt(B). Let χκR denote a

sufficiently smooth mapping that assigns to each X ∈ κR(B), a point x ∈ κt(B), i.e.,

x := χκR (X, t) . (2.2)
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The velocity v, the velocity gradient L and the deformation gradient FκR are defined

through

v :=
∂χκR
∂t

, L :=
∂v

∂x
, FκR :=

∂χκR
∂X

. (2.3)

It immediately follows that

L = ḞκRF
−1
κR
. (2.4)

We denote the symmetric part of the velocity gradient by D, i.e.,

D :=
1

2

(
L + LT

)
. (2.5)

The left and right Cauchy-Green stretch tensors BκR and CκR are defined through

BκR := FκRF
T
κR
, CκR := FT

κR
FκR . (2.6)

Let κp(t) denote the preferred natural configuration associated with the configu-

ration κt. We define Fκp(t) as the mapping from the tangent space at a material point

in κp(t) to the tangent space at the same material point at κt (see Fig. 4). We then

define

Bκp(t) := Fκp(t)F
T
κp(t)

, Cκp(t) := FT
κp(t)

Fκp(t) . (2.7)

The mapping G is defined through (see Fig. 4)

G := FκR→κp(t) := F−1
κp(t)

FκR . (2.8)

We can then define the tensor CκR→κp(t) in a manner analogous to CκR through

CκR→κp(t) := GTG, (2.9)

and it follows that

Bκp(t) = FκRC
−1
κR→κp(t)F

T
κR
. (2.10)

We shall also record balance of mass (assuming incompressibity), balance of linear
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κR

κp(t)

κt

Fκp(t)

FκR

G

Fig. 4.: Schematic of the natural configuration κp(t) corresponding to the current

configuration κt and the relevant mappings from the tangent spaces of the same

material point in κR, κt and κp(t).

and angular momentum (in the absence of body couples):

div(v) = 0, ρv̇ = div(TT ) + ρb, T = TT , (2.11)

where ρ is the density, v is the velocity, T is the Cauchy stress tensor, b is the specific

body force, div(.) is the divergence operator with respect to the current configuration

and (.)T denotes transpose. In addition, the local form of balance of energy is

ρε̇ = T.L− div(q) + ρr, (2.12)

where ε denotes the specific internal energy, q denotes the heat flux vector and r de-

notes the specific radiant heating. We shall invoke the second law of thermodynamics

in the form of the reduced energy dissipation equation, for isothermal processes:

T.D− ρψ̇|isothermal := ξ ≥ 0, (2.13)
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where ψ is the specific Helmholtz potential, ξ denotes the rate of dissipation (specif-

ically rate of entropy production).

When one works with implicit constitutive models of the form

f (T,D) = 0, (2.14)

where T is the Cauchy stress, or more general models of the form

f

T,
∇
T, . . . ,

(n)

∇
T,D,

∇
D, . . . ,

(n)

∇
D

 = 0, (2.15)

where the superscript
(n)

∇ stands for the n Oldroyd derivatives [36], and where T and

D seem to have the same primacy in that the maximization could be with respect to

T or D. However, the superficial assumption that T and D have the same primacy

is incorrect as T (or the applied traction which leads to the stresses) causes the

deformation (the appropriate kinematic tensor). In order to get sensible constitutive

equations one ought to keep D fixed and vary T to find how a body responds to

the stress that is a consequence of the applied traction. This comes up naturally in

the development of implicit constitutive theories (see Rajagopal and Srinivasa [37],

Rajagopal and Srinivasa [38]). More recently, Rajagopal [39] has discussed at length

the implicit nature of constitutive relations. When one thinks explicitly along classical

terms of the stress being given explicitly in terms of the kinematical variables, it is

natural to hold T fixed and maximize with respect to the kinematical variable, in our

case D. This is what is followed in this work.
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C. Model 1

1. Preliminaries

Let κR denote the undeformed reference configuration of the body. We shall assume

that the body has associated with it two natural configurations i.e., configurations to

which it can be instantaneously elastically unloaded and corresponds to two mecha-

nisms for storing energy (within one dimensional mechanical analog – two springs).

Interestingly, one can get from the reference configuration to the two evolving natural

configurations denoted by κpi(t), i = 1, 2 (see Fig. 5), via two dissipative responses.

Let Fi, i = 1, 2, 3, denote the gradients of the motion1 from κR to κp1(t), κp1(t) to κp2(t),

and κp2(t) to κt respectively. Also, we shall define the left Cauchy-Green stretch ten-

sors,

Bi := FiF
T
i , i = 1, 2, 3, (2.16)

and the velocity gradients with their corresponding symmetric parts,

Li := ḞiF
−1
i , Di :=

1

2

(
Li + LTi

)
, i = 1, 2, 3. (2.17)

Also, we note that2

F = F3F2F1. (2.18)

Let us denote the gradient of the motion from κp1(t) to κt by Fp; then,

Fp = F3F2, (2.19)

and

F = FpF1. (2.20)

1In general, these are appropriate mappings of tangent spaces containing the same
material point in different configurations.

2Henceforth, we shall denote FκR by F.
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κR
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κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

Fp = F3F2

dissipative response
elastic response

elastic response

dissipative response

Fig. 5.: Schematic to illustrate the natural configurations for model 1. κR is the

reference configuration, κt denotes the current configuration, and κp1(t), κp2(t) denote

the two evolving natural configurations. The body dissipates energy like a viscous

fluid as it moves from, κR to κp1(t), and κp1(t) to κp2(t). Also, as shown, the body

stores energy during its motion from, κp2(t) to κt, and κp1(t) to κt.

The left Cauchy-Green stretch tensor, the velocity gradient with its symmetric part,

corresponding to Fp are

Bp := FpF
T
p , Lp := ḞpF

−1
p , Dp :=

1

2

(
Lp + LTp

)
, (2.21)

respectively.

Now, taking the time derivative of Eq. (2.20) we get:

Ḟ = ḞpF1 + FpḞ1

⇒ LF = LpFpF1 + FpL1F1

⇒ L = Lp + FpL1F
−1
p .

(2.22)
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Similarly, taking the time derivative of Eq. (2.19), we arrive at

Lp = L3 + F3L2F
−1
3 . (2.23)

Now,

Ḃp = FpḞ
T
p + ḞpF

T
p

= FpF
T
pL

T
p + LpFpF

T
p

= BpL
T
p + LpBp.

(2.24)

Post-multiplying Eq. (2.22) by Bp, pre-multiplying the transpose of Eq. (2.22) by Bp,

and adding, we obtain
∇
Bp= −2FpD1F

T
p , (2.25)

where
∇
Bp:= Ḃp −BpL

T − LBp is the Oldroyd derivative of Bp. In a similar fashion,

using Eq. (2.23) and the relation Ḃ3 = B3L
T
3 + L3B3, we get

∇p

B3= −2F3D2F
T
3 , (2.26)

where
∇p

B3:= Ḃ3−B3L
T
p −LpB3. This is same as the Oldroyd derivative of B3, when

the natural configuration κp1(t) is made the reference configuration.

We also note from Eq. (2.18) that

Ḟ = Ḟ3F2F1 + F3Ḟ2F1 + F3F2Ḟ1

⇒ L = L3 + F3L2F
−1
3 + F3F2L1F

−1
2 F−1

3 .

(2.27)
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and hence

I.Ḃ3 = I.
(
L3B3 + B3L

T
3

)
= I.

(
LB3 − F3L2F

T
3 − F3F2L1F

−1
2 FT

3 + B3L
T − F3L

T
2 F

T
3 − F3F

−T
2 LT1 F

T
2 F

T
3

)
= 2B3.D− 2C3.D2 −C3.

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)
.

(2.28)

The relations derived, in this sub-section, are sufficient for the purpose of analyz-

ing this model. In the following sub-section, we shall constitutively specify the forms

for storage and rate of dissipation functions, and then we shall maximize the rate

of dissipation subject to appropriate constraints (incompressibility and the energy

dissipation equation), to determine the constitutive relation.

2. Constitutive assumptions

Let us assume the specific stored energy ψ and the rate of dissipation ξ of the form3

ψ ≡ ψ(B3,Bp), ξ ≡ ξ(D1,D2). (2.29)

In particular, assuming that the instantaneous elastic responses from κp1(t) and

κp1(t) are isotropic, and in virtue of incompressibility of the body, we choose

ψ(B3,Bp) =
µ3

2ρ
(I.B3 − 3) +

µp
2ρ

(I.Bp − 3), (2.30)

3One can also choose the rate of dissipation function to depend on the stretch
i.e., of the form ξ ≡ ξ(D1,D2,B3,Bp). The resulting constitutive relations will
be a variant of the relations obtained when ξ is of the form given in Eq. (2.29).
The constitutive relations obtained by using ξ(D1,D2,B3,Bp) have relaxation times
which depend on the stretch. Upon linearization, the two constitutive relations take
the same form. Rajagopal and Srinivasa have discussed this issue for the Maxwell
fluid in [6].
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and

ξ(D1,D2) = η′1D1.D1 + η′2D2.D2. (2.31)

The above assumption means that the body possesses instantaneous elastic re-

sponse from the two evolving natural configurations (κp1(t), κp2(t)) to the current con-

figuration κt (Fig. 5); the body stores energy like a neo-Hookean solid during its

motion, from κp1(t) to κt, and from κp2(t) to κt. In addition, the response is linear

viscous fluid-like, as the body moves from κR to κp1(t), and from one natural config-

uration (κp1(t)) to the other (κp2(t)).

Also, since we have assumed that the material’s instantaneous elastic response

is isotropic, we shall choose the configurations κp1(t), κp2(t) such that

F3 = V3, Fp = Vp, (2.32)

where V3,Vp are the right stretch tensors in the polar decomposition i.e., the natural

configurations are appropriately rotated.

Finally, using Eqs. (2.28) and (2.32), we get

I.Ḃ3 = 2B3.

[
D−D2 −

1

2

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)]
, (2.33)

and similarly

I.Ḃp = 2Bp.(D−D1). (2.34)

Substituting Eqs. (2.30), (2.31) into (2.13) and using the relations in Eqs. (2.33), (2.34),

T.D− µ3B3.

[
D−D2 −

1

2

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)]
− µpBp.(D−D1)

= η′1D1.D1 + η′2D2.D2, (2.35)
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which on further simplification leads to

(T− µ3B3 − µpBp) .D + µ3B3.D2 + µpBp.D1 +
µ3

2
B3.

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)
= η′1D1.D1 + η′2D2.D2.

(2.36)

We shall assume that the body can undergo only isochoric motions and so

tr(D) = 0. (2.37)

Also, since the body can actually attain the two natural configurations, the incom-

pressibility constraint implies that

tr(D1) = 0, tr(D2) = 0, (2.38)

where tr (.) is the trace of second order tensor.

Since the right hand side of Eq. (2.36) does not depend on D, along with

Eq. (2.37), we have

T = −pI + µ3B3 + µpBp, (2.39)

where −pI is the reaction stress due to the constraint of incompressibility. Hence,

Eq. (2.36) reduces to

µ3B3.D2 +µpBp.D1 +
µ3

2
B3.

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)
= η′1D1.D1 + η′2D2.D2. (2.40)

Following Rajagopal and Srinivasa [6], we maximize the rate of dissipation in

Eq. (2.31) along with the constraints in Eq. (2.38), (2.40), by varying D1,D2 for
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fixed B2,B3. We maximize the auxiliary function Φ defined by

Φ := η′1D1.D1 + η′2D2.D2

+ λ1

[
η′1D1.D1 + η′2D2.D2 − µ3B3.D2 − µpBp.D1 −

µ3

2
B3.

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)]
+ λ2I.D1 + λ3I.D2

(2.41)

Now, setting ∂Φ/∂D2 = 0, ∂Φ/∂D1 = 0, and dividing the resulting equations by λ1

and λ2 respectively, for λ1, λ2 6= 0, we get (also see appendix)

µ3B3 =

(
λ1 + 1

λ1

)
2η′2D2 +

λ3

λ1

I,

µpBp +
µ3

2

(
FT

2 B3F
−T
2 + F−1

2 B3F2

)
=

(
λ1 + 1

λ1

)
2η′1D1 +

λ2

λ1

I.

(2.42)

Using Eq. (2.42) in Eq. (2.40), we get

λ1 + 1

λ1

=
1

2
− µ3B3.F2W1F

−1
2

2η′1D1.D1 + 2η′2D2.D2

, (2.43)

where W1 := 1
2

(
L1 − LT1

)
. Hence,

T = −pI + µ3B3 + µpBp,

µ3

2

(
FT

2 B3F
−T
2 + F−1

2 B3F2

)
+ µpBp = −p′I + η1D1,

µ3B3 = −p′′I + η2D2,

(2.44)

where p′, p′′ are the Lagrange multipliers with

−p′ = 1

3
[µ3tr(B3) + µptr(Bp)] , −p′′ = 1

3
µ3tr(B3),

η1 = 2

(
λ1 + 1

λ1

)
η′1, η2 = 2

(
λ1 + 1

λ1

)
η′2.

(2.45)

Now, Eqs. (2.25), (2.26) can be re-written as

D1 = −1

2
V−1
p

∇
Bp V

−1
p , D2 = −1

2
V−1

3

∇p

B3 V
−1
3 . (2.46)
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Using Eq. (2.46)b in Eq. (2.44)c, and post-multiplying and pre-multiplying with V3,

we have

µ3B
2
3 =

1

3
µ3tr(B3)B3 −

η2

2

∇p

B3 . (2.47)

In addition, using Eq. (2.46)a in Eq. (2.44)b, post-multiplying and pre-multiplying

with Vp, and using Eq. (2.19), we get

µ3

2
(BpB3 + B3Bp) + µpB

2
p =

1

3
[µ3tr(B3) + µptr(Bp)]Bp −

η1

2

∇
Bp . (2.48)

Notice, from Eqs. (2.47), (2.48), that the evolution of the natural configurations

κp1(t) and κp2(t) are coupled. These two equations are to be solved simultaneously to

determine their evolution. We shall denote µ3B3, µpBp by S1,S2 respectively. Then,

the final constitutive relations – Eqs. (2.44)a, (2.47), (2.48) – reduce to

T = −pI + S1 + S2,

S2
1 =

1

3
tr(S1)S1 −

η2

2

∇p

S1,

1

2
(S2S1 + S1S2) + S2

2 =
1

3
[tr(S1) + tr(S2)]S2 −

η1

2

∇
S2 .

(2.49)

In the next sub-section, we shall show that the above constitutive model reduces

to Burgers’ model in one dimension.

3. Reduction of the model to one dimensional Burgers’ model

In this sub-section, we shall first linearize the constitutive model given by Eq. (2.44)

(we shall use Eq. (2.44), here, instead of Eq. (2.49), for the sake of simplicity) by

assuming the elastic response is small (we shall define what we mean by small, pre-

cisely, later). Then we shall show that, in one dimension, the equations reduce to the

one dimensional linear model due to Burgers (see Eq. (2.1)).
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Now, Eq. (2.44)c can be re-written as

µ3 (B3 − I) = µ3

[
1

3
tr(B3)− 1

]
I + η2D2. (2.50)

If the displacement gradient with elastic response is small, i.e.,

max
X∈B
t∈R

‖∂u (X, t)

∂X
‖ = O(γ), γ � 1, (2.51)

then

‖Bi − I‖ = O(γ), γ � 1, i = 3, p, (2.52)

and hence

tr(Bi) = 3 + O(γ2), i = 3, p, (2.53)

and so the first term on the right hand side of Eq. (2.50) can be dropped for small

strain and Eq. (2.50) reduces to

µ3 (B3 − I) = η2D2. (2.54)

If λi (i = 1, 2, 3, p or no subscript) is the stretch, in one dimension, corresponding

to the deformation gradient Fi, then λ2
i and λ̇i/λi are the equivalent values in one

dimension, corresponding to Bi and Di. If εi is the true strain for the stretch λi, then

εi = lnλi and so, ε̇i = λ̇i/λi. Hence, Eq. (2.54) reduces to

µ3

(
λ2

3 − 1
)

= η2
λ̇2

λ2

(2.55)

or

µ3

(
e2ε3 − 1

)
= η2ε̇2, (2.56)

which under the assumption of small strain (i.e., ε3 � 1), reduces to

2µ3ε3 = η2ε̇2. (2.57)
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Following a similar analysis, in one dimension, Eq. (2.44)b becomes

2µ3ε3 + 2µpεp = η1ε̇1, (2.58)

and Eq. (2.44)a reduces to

σ = 2µ3ε3 + 2µpεp, (2.59)

where σ is the one dimensional stress. In addition, Eq. (2.18), reduces to

λ = λ1λ2λ3, (2.60)

and so

ε = ε1 + ε2 + ε3. (2.61)

Similarly, Eqs. (2.19), (2.20) reduce to

ε = εp + ε1, εp = ε2 + ε3. (2.62)

The Eqs. (2.57–2.59), (2.61), (2.62) are, in fact, the equations obtained if we have the

spring-dashpot arrangement shown in Fig. 6(a).

We shall now show that these equations (i.e., Eqs. (2.57–2.59), (2.61), (2.62))

reduce to the form of Eq. (2.1). Now, differentiating Eq. (2.62)b with respect to time

and using Eq. (2.57), we obtain

ε̇p =
2µ3

η2

ε3 + ε̇3. (2.63)

Also, differentiating Eq. (2.59) with respect to time and dividing by η2, we find

σ̇

η2

=
2µ3

η2

ε̇3 +
2µp
η2

ε̇p, (2.64)
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and differentiating Eq. (2.59) twice with respect to time and dividing by 2µ3 leads to

σ̈

2µ3

= ε̈3 +
µp
µ3

ε̈p. (2.65)

We add Eqs. (2.64), (2.65) and use Eq. (2.63), to get

σ̇

η2

+
σ̈

2µ3

=
2µp
η2

ε̇p +

(
1 +

µp
µ3

)
ε̈p. (2.66)

From Eqs. (2.58), (2.59)

σ = η1ε̇1 = η1 (ε̇− ε̇p) , or, ε̇p = ε̇− σ

η1

. (2.67)

Using Eq. (2.67) in Eq. (2.66) leads to

2µp
η1η2

σ +

(
1

η1

+
µp
µ3η1

+
1

η2

)
σ̇ +

σ̈

2µ3

=
2µp
η2

ε̇+

(
1 +

µp
µ3

)
ε̈, (2.68)

which can be re-written as

σ +

(
η2

2µp
+

η2

2µ3

+
η1

2µp

)
σ̇ +

η1η2

4µpµ3

σ̈ = η1ε̇+
η1η2

2µp

(
1 +

µp
µ3

)
ε̈. (2.69)

Eq. (2.69) is in the same form as Eq. (2.1), with

p1 =
η2

2µp
+

η2

2µ3

+
η1

2µp
, p2 =

η1η2

4µpµ3

, q1 = η1, q2 =
η1η2

2µp

(
1 +

µp
µ3

)
. (2.70)

D. Model 2

1. Preliminaries

Once again, let κR denote the reference configuration of the body. We shall assume

that the body has two evolving natural configurations (denoted by κp1(t), κp2(t)), but

the manner in which they store the energy is different from that considered previously,

with Fi, i = 1, 2, 3, being the gradients of the motion as discussed in model 1. We



28

Fig. 6.: Various spring-dashpot arrangements which reduce to the one-dimensional

Burgers’ fluid model (Eq. (2.1)).

shall also use the definitions in Eqs. (2.16), (2.17). Thus, Eq. (2.18) applies here too.

In addition, let us call the gradient of the motion from κR to κp2(t) by FG (see Fig. 7).

It immediately follows that

FG = F2F1. (2.71)

We shall denote the velocity gradient and its symmetric part corresponding to FG by

LG := ḞGF
−1
G , DG :=

1

2

(
LG + LTG

)
. (2.72)

Also, from Eqs. (2.18), (2.71),

F = F3FG. (2.73)

Following a procedure similar to the one followed previously for model 1, it can be

shown that

DG = D2 +
1

2
(F2L1F

−1
2 +F−T2 LT1 F

T
2 ), D = D3 +

1

2
(F3LGF

−1
3 +F−T3 LTGF

T
3 ), (2.74)
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κR
κt

κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

disspative response elastic response

elastic response

dissipative response

FG = F2F1

Fp

Fig. 7.: Schematic to illustrate the natural configurations for model 2. The body

dissipates like a viscous fluid during its motion from, κR to κp2(t), and κR to κp1(t).

The body stores energy like a neo-Hookean solid during its motion from κp1(t) to κp2(t)

and κp2(t) to κt.

along with
∇
B3= −2F3DGF

T
3 ,

∇G

B 2= −2F2D1F
T
2 , (2.75)

where
∇G

A := Ȧ−ALTG−LGA is the Oldroyd derivative when the natural configuration

κp2(t) is the current configuration. In addition, from Eqs. (2.74) and (2.75), along with

the assumption that F2 = V2, F3 = V3 in virtue of the body being isotropic, we get

I.Ḃ2 = 2B2.(DG −D1), I.Ḃ3 = 2B3.(D−DG). (2.76)

These relations should suffice for our calculations for studying the response of model

2.
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2. Constitutive assumptions

In this model, we shall assume ψ, and ξ, to be of the form

ψ ≡ ψ(B2,B3), ξ ≡ ξ(D1,DG). (2.77)

Now, assuming that the instantaneous elastic responses are isotropic and the

body is incompressible, we choose

ψ(B2,B3) =
µ2

2ρ
(I.B2 − 3) +

µ3

2ρ
(I.B3 − 3), (2.78)

and

ξ(D1,DG) = η1D1.D1 + ηGDG.DG. (2.79)

The above assumption implies that the body possesses instantaneous elastic re-

sponse from the current configuration κt to the natural configuration κp2(t) and from

the natural configuration κp1(t) to the other natural configuration κp2(t). It stores

energy like a neo-Hookean solid during these two motions. In addition, the responses

from the two natural configurations (κp1(t), κp1(t)) to the reference configuration κR

are purely dissipative, similar to a linear viscous fluid. In fact, the response of the

body as it moves from κR to κp2(t) is similar to that of a “variant” of an Oldroyd-B

fluid (see Rajagopal and Srinivasa [6]) i.e., the natural configuration κp2(t) evolves like

that of an Oldroyd-B fluid with respect to the reference configuration κR.

On substituting Eqs. (2.78), (2.79) in (2.13), using Eq. (2.76) and simplifying,

we get

(T− µ3B3).D + (µ3B3 − µ2B2).DG + µ2B2.D1 = η1D1.D1 + ηGDG.DG. (2.80)

Since, the right hand side of Eq. (2.80) does not depend on D, the incompressibility
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constraint, tr(D) = 0, leads to

T = −pI + µ3B3, (2.81)

where −pI is the reaction stress due to the incompressibility constraint. Using,

Eq. (2.81) in (2.80), we must have

(µ3B3 − µ2B2).DG + µ2B2.D1 = η1D1.D1 + ηGDG.DG. (2.82)

Now, we maximize the rate of dissipation by varying D1,DG for fixed B2,B3

with the constraints

tr(D1) = 0, tr(DG) = 0. (2.83)

Finally, we arrive at the following set of equations:

T = −pI + µ3B3,

µ3B3 − µ2B2 = −p′I + ηGDG,

µ2B2 = −p′′I + η1D1,

(2.84)

where p, p′, p′′ are the Lagrange multipliers with

p′ = −1

3
[µ3tr(B3)− µ2tr(B2)] ,

p′′ = −1

3
µ2tr(B2).

(2.85)

Pre-multiplying and post-multiplying Eqs. (2.84)b, (2.84)c by V3 and V2 respec-

tively, Eq. (2.84) reduces to

T = −pI + µ3B3,

µ3B
2
3 − µ2V3B2V3 = −p′B3 −

ηG
2

∇
B3,

µ2B
2
2 = −p′′B2 −

η1

2

∇G

B2,

(2.86)

with Eq. (2.85). If we denote µ2B2, µ3B3 by S1,S2 respectively, then the final con-
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stitutive relations for this model are

T = −pI + S2,

S2
1 =

1

3
tr(S1)S1 −

η1

2

∇G

S1 ,

S2
2 −

√
S2S1

√
S2 =

1

3
[tr(S2)− tr(S1)]S2 −

ηG
2

∇
S2 .

(2.87)

3. Reduction of the model to one dimensional Burgers’ model

For simplicity, we shall use Eq. (2.84) for the reduction. Now, Eqs. (2.84)b,c can be

re-written as

µ3 (B3 − I)− µ2 (B2 − I) =
1

3
[µ3 (tr(B3)− 3)− µ2 (tr(B2)− 3)] I + ηGDG,

µ2 (B2 − I) =
1

3
µ2 (tr(B2)− 3) I + η1D1.

(2.88)

Assuming that the displacement gradient associated with elastic response is small,

leads to

‖Bi − I‖ = O(γ), γ � 1, i = 2, 3. (2.89)

The first term on the right hand sides of Eq. (2.88)b,c can be neglected. Then,

Eq. (2.88) reduces to

µ3 (B3 − I)− µ2 (B2 − I) = ηGDG,

µ2 (B2 − I) = η1D1.

(2.90)

In one dimension, Eq. (2.90) becomes

µ3(λ2
3 − 1)− µ2(λ2

2 − 1) = ηG
λ̇G
λG
, µ2(λ2

2 − 1) = η1
λ̇1

λ1

, (2.91)

where λi (i = 1, 2, 3, G or no subscript) is the stretch, in one dimension, corresponding

to the right stretch tensor Vi. Using lnλi = εi (ε is the true strain), with the
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assumption of εi � 1, Eq. (2.91) reduces to

2µ3ε3 − 2µ2ε2 = ηG ˙εG, 2µ2ε2 = η1ε̇1. (2.92)

In addition, Eq. (2.84)a reduces to

σ = 2µ3ε3. (2.93)

Eq. (2.73) together with Eq. (2.71), in one dimension, reduces to

ε = εG + ε3, or, εG = ε2 + ε1. (2.94)

The spring-dashpot arrangement in Fig. 6(b) also yields Eqs. (2.92), (2.93) along

with Eqs. (2.61), (2.94). These equations on simplification reduce to

σ +

(
η1

2µ2

+
η1

2µ3

+
ηG
2µ3

)
σ̇ +

η1ηG
4µ2µ3

σ̈ = (η1 + ηG) ε̇+
η1ηG
2µ2

ε̈, (2.95)

which is same as the Burgers’ one dimensional model (Eq. (2.1)), with

p1 =
η1

2µ2

+
η1

2µ3

+
ηG
2µ3

, p2 =
η1ηG
4µ2µ3

, q1 = η1 + ηG, q2 =
η1ηG
2µ2

. (2.96)

E. Model 3

1. Preliminaries

As with models 1 and 2, for this model we shall assume that the body has two

evolving natural configurations (κp1(t), κp1(t), see Fig. 8). We shall also use the defi-

nition of Fi, i = 1, 2, 3 used for the previous models in addition to the definitions in

Eqs. (2.16), (2.17) and the relation Eq. (2.18). Further, we shall also choose F2 = V2

and F3 = V3. We recall from the preliminary discussion concerning models 1 and 2,
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κR
κt

κp1(t) κp2(t)

F1

F2

F3

F = F3F2F1

dissipative response elastic response

F3F2

elastic response

Fig. 8.: Schematic to illustrate the natural configurations for model 3. The body’s

response is viscous fluid-like and elastic solid-like, during its motion from, κR to

κpt(t), and κp2(t) to κt respectively. From κp1(t) to κp2(t), the response is Kelvin-Voigt

solid-like.

that

D2 = −1

2
V−1

3

∇p

B3 V
−1
3 , D1 = −1

2
V−1

2

∇G

B 2 V
−1
2 . (2.97)

These definitions and relations shall be used in the following analysis.

2. Constitutive assumptions

For this model, we shall assume the specific stored energy, ψ and the rate of dissipa-

tion, ξ to be of the form

ψ ≡ ψ(B2,B3), ξ ≡ ξ(D1,D2). (2.98)

Specifically, in virtue of the body being incompressible and isotropic, we choose,

ψ(B2,B3) =
µ2

2ρ
(I.B2 − 3) +

µ3

2ρ
(I.B3 − 3), (2.99)
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and

ξ(D1,D2) = η′1D1.D1 + η′2D2.D2, (2.100)

i.e., the body possesses instantaneous elastic response from the current configuration

κt to the natural configuration κp2(t) and stores energy like a neo-Hookean solid. Also,

the response of the body between κp1(t) to κp2(t) is similar to that of a Kelvin-Voigt

solid. The body also dissipates like a linear viscous fluid during its motion from κR

to κp1(t).

On substituting Eq. (2.99) into Eq. (2.13) and using Eq. (2.33) we get,

T.D−µ2B2.D2−µ3B3.

[
D−D2 −

1

2

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)]
= η′1D1.D1+η′2D2.D2,

(2.101)

which reduces to

(T−µ3B3).D+(µ3B3−µ2B2).D2+
µ3

2
B3.

(
F2L1F

−1
2 + F−T2 LT1 F

T
2

)
= η′1D1.D1+η′2D2.D2.

(2.102)

Using Eq. (2.102), we maximize the rate of dissipation with incompressibility as a

constraint, i.e.,

tr(D) = tr(D1) = tr(D2) = 0, (2.103)

by varying D,D1,D2 for fixed B2,B3 and get:

T = −pI + µ3B3,

µ3B3 − µ2B2 = −p′I + η2D2,

µ3

2

(
FT

2 B3F
−T
2 + F−1

2 B3F2

)
= −p′′I + η1D1,

(2.104)

where p, p′, p′′ are the Lagrange multipliers with

−p′ = 1

3
[µ3tr(B3)− µ2tr(B2)] ,

−p′′ = 1

3
µ3tr(B3),

(2.105)
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and

ηi = η′i

(
1− µ3B3.F2W1F

−1
2

η′1D1.D1 + η′2D2.D2

)
, i = 1, 2. (2.106)

Pre-multiplying and post-multiplying Eq. (2.104)b by V3, pre-multiplying and

post-multiplying Eq. (2.104)c by V2 and using Eq. (2.97), we find that

T = −pI + µ3B3,

µ3B
2
3 − µ2V3B2V3 = −p′B3 −

η2

2

∇p

B3,

µ3

2
(B2B3 + B3B2) = −p′′B2 −

η1

2

∇G

B2,

(2.107)

along with Eq. (2.105).

If we call µ3B3, µ2B2 by S1,S2 respectively, then, the final form for the consti-

tutive relation can be given as

T = −pI + S1,

S2
1 −

√
S1S2

√
S1 =

1

3
[tr(S1)− tr(S2)]S1 −

η2

2

∇p

S1,

1

2
(S2S1 + S1S2) =

1

3
tr(S1)S2 −

η1

2

∇G

S2 .

(2.108)

3. Reduction of the model to one dimensional Burgers’ model

Following the method used in D.3, Eq. (2.104), in one dimension, reduces to

σ = 2µ3ε3,

2µ3ε3 − 2µ2ε2 = η2ε̇2,

2µ3ε3 = η1ε̇1.

(2.109)

The above set of equations, can also be obtained from the spring-dashpot arrangement

in Fig. 6(c).
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Now, Eq. (2.109) can be re-written as

σ = 2µ3ε3, σ = 2µ2ε2 + η2ε̇2, σ = η1ε̇1. (2.110)

Also, differentiating Eq. (2.61) with respect to time and using Eqs. (2.110)a,c, we

obtain

ε̇ =
σ

η1

+
σ̇

2µ3

+ ε̇2. (2.111)

Now, multiplying Eq. (2.111) with 2µ2, multiplying the derivative of Eq. (2.111) with

respect to time with η2; then, adding these two equations, along with Eq. (2.110)b,

we get

2µ2

η1

σ +

(
1 +

η2

η1

+
µ2

µ3

)
σ̇ +

η2

2µ3

σ̈ = 2µ2ε̇+ η2ε̈, (2.112)

re-written as

σ +

(
η1

2µ2

+
η2

2µ2

+
η1

2µ3

)
σ̇ +

η1η2

4µ2µ3

σ̈ = η1ε̇+
η1η2

2µ2

ε̈. (2.113)

Thus, Eq. (2.113) has the same form as Eq. (2.1), with

p1 =
η1

2µ2

+
η2

2µ2

+
η1

2µ3

, p2 =
η1η2

4µ2µ3

, q1 = η1, q2 =
η1η2

2µ2

. (2.114)

F. Model 4

1. Preliminaries

Once again, we shall assume that the body has two natural configurations associated

with it, denoted by κp1(t), κp2(t). However, in this model, the evolution equations of

the two natural configurations are not coupled and they evolve independently (see

Fig. 9). We shall denote the gradients of the motion from κR to κp1(t) and from κp1(t)

to κt by F1,F2. We shall also denote the gradients of the motion from κR to κp2(t)
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κR
κt

κp1(t)

κp2(t)

F1 F2

F4

F = F2F1 = F4F3

dissipative response

elastic response

elastic response

dissipative response

F3

Fig. 9.: Schematic to illustrate the natural configurations for model 4. The body’s

response is similar to that of a “mixture” of two Maxwell-like fluids with different

relaxation times.

and from κp2(t) to κt by F3,F4. It follows that

F = F2F1 = F4F3. (2.115)

The left stretch tensor, velocity gradient and its corresponding symmetric part are

denoted by

Bi := FiF
T
i , Li := ḞiF

−1
i , Di :=

1

2

(
Li + LTi

)
, i = 1, 2, 3, 4. (2.116)

Also, a straightforward calculation leads to

∇
B2= −2F2D1F

T
2 ,

∇
B4= −2F4D3F

T
4 . (2.117)
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2. Constitutive assumptions

Here, we shall assume the specific stored energy, ψ and the rate of dissipation, ξ to

be of the form

ψ ≡ ψ(B2,B4), ξ ≡ ξ(D1,D3). (2.118)

As the material is isotropic and incompressible, we choose,

ψ(B2,B4) =
µ2

2ρ
(I.B2 − 3) +

µ4

2ρ
(I.B4 − 3), (2.119)

and

ξ(D1,D3) = η1D1.D1 + η3D3.D3. (2.120)

This means that the response of the natural configurations (κp1(t), κp2(t)) from the

current configuration is like that of a neo-Hookean solid and the response from the ref-

erence configuration to the natural configurations is similar to that of a linear viscous

fluid. Thus, Burgers’ fluid can also be perceived as a “mixture” of two Maxwell-like

fluids with different relaxation times.

We shall set

F2 = V2, F4 = V4, (2.121)

where V2,V4 are the right stretch tensors in the polar decomposition of F2,F4,

based on the assumption of isotropic elastic response. Hence, from Eq. (2.117) and

Eq. (2.121), we have

I.Ḃ2 = 2B2.(D−D1), I.Ḃ4 = 2B4.(D−D3). (2.122)

On entering Eqs. (2.119), (2.120) in Eq. (2.13) and using Eq. (2.122), we get

(T− µ2B2 − µ4B4).D + µ2B2.D1 + µ4B4.D3 = η1D1.D1 + η3D3.D3. (2.123)
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Using the constraint of incompressibility

tr(D) = tr(D1) = tr(D3) = 0, (2.124)

and Eq. (2.123), we maximize the rate of dissipation by varying D,D1,D3 for fixed

B2,B4 and get:

T = −pI + µ2B2 + µ4B4,

µ2B2 = −p′I + η1D1,

µ4B4 = −p′′I + η3D3,

(2.125)

where p, p′, p′′ are the Lagrange multipliers with

−p′ = 1

3
µ2tr(B2), −p′′ = 1

3
µ4tr(B4). (2.126)

Pre-multiplying and post-multiplying, Eq. (2.125)b by V2, and Eq. (2.125)c by V4;

then, using Eq. (2.117), we arrive at

µ2B
2
2 = −p′B2 −

η1

2

∇
B2,

µ4B
2
4 = −p′′B4 −

η3

2

∇
B4,

(2.127)

Eqs. (2.127)a,b represents the evolution equations of the natural configurations (κp1(t), κp2(t)

respectively). If we denote µ2B2, µ4B4 by S1,S2 respectively, then the final constitu-

tive relations, for model 4, are

T = −pI + S1 + S2,

S2
1 =

1

3
tr(S1)S1 −

η1

2

∇
S1,

S2
2 =

1

3
tr(S2)S2 −

η1

2

∇
S2 .

(2.128)

This model is a variation of the model proposed by Murali Krishnan and Rajagopal

[33]. They considered stretch dependent dissipation, in contrast to our linear viscous
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fluid type dissipation.

3. Reduction of the model to the one dimensional Burgers’ model

For this model, we shall once again assume that the displacement gradient associated

with the elastic response is small, and thus

‖Bi − I‖ = O(γ), γ � 1, i = 2, 4. (2.129)

Then, Eq. (2.125) becomes

T = −pI + µ2B2 + µ4B4,

µ2 (B2 − I) = η1D1,

µ4 (B4 − I) = η3D3,

(2.130)

which in one dimension reduces to

σ = 2µ2ε2 + 2µ4ε4,

2µ2ε2 = η1ε̇1,

2µ4ε4 = η3ε̇3.

(2.131)

Further, Eq. (2.115), in one dimension, reduces to

ε = ε2 + ε1 = ε3 + ε4. (2.132)

In fact, the spring-dashpot arrangement Fig. 6(d) leads to Eq. (2.131), (2.132). We

shall now show that these two equations, on simplification lead to Eq. (2.1). Differ-

entiating Eq. (2.132) with respect to time and using Eq. (2.131)b,c, we have

ε̇ =
2µ2

η1

ε2 + ε̇2,

ε̇ =
2µ4

η3

ε4 + ε̇4.

(2.133)
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Eliminating ε4 from Eq. (2.131)a and Eq. (2.133)b leads to

ε̇ =
σ

η3

+
σ̇

2µ4

− 2µ2

η3

ε2 −
µ2

µ4

ε̇2. (2.134)

Solving Eq. (2.133)a and Eq. (2.134) simultaneously, we get

ε2 =

(
1 + µ2

µ4

)
ε̇− σ

η3
− σ̇

2µ4

2µ2
η1

(
µ2
µ4
− η1

η3

) ,

ε̇2 =

(
1 + η1

η3

)
ε̇− σ

η3
− σ̇

2µ4

η1
η3
− µ2

µ4

.

(2.135)

Now, differentiating Eq. (2.135)a with respect to time and equating it to Eq. (2.135)b,

we get

σ +

(
η1

2µ2

+
η3

2µ4

)
σ̇ +

η1η3

4µ3µ4

σ̈ = (η1 + η3) ε̇+
η1η3

2µ2

(
1 +

µ2

µ4

)
ε̈. (2.136)

This is of the same form as Eq. (2.1) with

p1 =
η1

2µ2

+
η3

2µ4

, p2 =
η1η3

4µ3µ4

, q1 = η1 + η3, q2 =
η1η3

2µ2

(
1 +

µ2

µ4

)
. (2.137)

G. Final remarks

We have shown four sets of energy storage and rate of dissipation which lead to

four different three dimensional constitutive relations, which reduce in one dimension

to the model developed by Burgers (Eq. (2.1)). Each of these three dimensional

models can claim equal status as representing the three dimensional generalization of

Burgers’ model. We have chosen two natural configurations instead of one in all of

these models. This is to incorporate two relaxation times possessed by Burgers-like

fluid bodies. For example, in an asphalt concrete mixture (which has been shown

to exhibit Burgers-like fluid behavior), the aggregate matrix has a small relaxation

time whereas the asphalt mortar matrix has relatively larger relaxation time (see
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[33]) and the choice of two natural configurations seems natural. It is possible that

several other choices for the stored energy and the rate of dissipation could lead to

the same one dimensional model due to Burgers. Interestingly, the structure of the

three dimensional models that we have developed are quite distinct.
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CHAPTER III

A THERMODYNAMIC FRAMEWORK TO DEVELOP RATE-TYPE MODELS

FOR FLUIDS WITHOUT INSTANTANEOUS ELASTICITY*

In this chapter, we apply the thermodynamic framework recently put into place by

Rajagopal and co-workers, to develop rate-type models for viscoelastic fluids which do

not possess instantaneous elasticity. To illustrate the capabilities of such models we

make a specific choice for the specific Helmholtz potential and the rate of dissipation

and consider the creep and stress relaxation response associated with the model.

Given specific forms for the Helmholtz potential and the rate of dissipation, the rate

of dissipation is maximized with the constraint that the difference between the stress

power and the rate of change of Helmholtz potential is equal to the rate of dissipation

and any other constraint that may be applicable such as incompressibility. We show

that the model that is developed exhibits fluid-like characteristics and is incapable

of instantaneous elastic response. It also includes Maxwell-like and Kelvin-Voigt-like

viscoelastic materials (when certain material moduli take special values).

A. Introduction

Recently, a thermodynamic framework has been put into place to describe the re-

sponse of dissipative bodies that includes a large class of viscoelastic bodies (see

Rajagopal and Srinivasa [40, 29], for details of the framework). With regard to the

response of viscoelastic bodies, they consider the response to be that of a class of

elastic bodies from an evolving set of configurations which they refer to as natural

*With kind permission from Springer Science + Business Media: Acta Mechanica,
A thermodynamic framework to develop rate-type models for fluids without instan-
taneous elasticity, 205(1), 2009, 105–119, Satish Karra and K. R. Rajagopal.
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configurations (also see Eckart [41], Rajagopal [34]). The evolution of the natural

configuration is determined by the rate of dissipation, or to be more precise, the

maximization of the rate of dissipation. In a purely mechanical context, the response

of the material is characterized by constitutively prescribing the stored energy (or

Helmholtz potential) and the rate of dissipation functions. Since in a closed system

the entropy increases to achieve its maximum equilibrium value, the quickest way in

which the maximum could be reached is by maximizing the rate of dissipation. Of

course, this is a plausible assumption and not a “principle”. Also, to require such a

criterion for an open system is not on very sound footing. However, it is surprising

how well such a requirement works. Using such a thermodynamic framework a variety

of material responses such as viscoelasticity [6, 20], twinning [42], solid-solid phase

transition [43], plasticity [44], crystallization of polymers [45, 46], single crystal super

alloys [47, 48], response of multi-network polymers [49] and anisotropic liquids [50]

have been modelled. Particularly in viscoelasticity, this framework has been used to

generalize one dimensional models due to Maxwell [2], Kelvin [3] and Voigt [4], Burg-

ers [32], and the standard linear solid to three dimensions [6, 51, 33, 52]. Moreover,

recently, it has been shown within the context of Maxwell fluid [31] that by choos-

ing different forms for the stored energy and the rate of dissipation, one can obtain

the same constitutive relation for stress. It has also been shown (see [53]) that this

framework leads to more than one three dimensional model that reduce within the

context of one dimension to Burgers’ fluid model.

Based on the aforementioned general framework, Rajagopal and Srinivasa [6]

have developed a methodology to obtain rate-type models for fluids which possess

instantaneous elasticity and in particular have derived a three dimensional gener-

alization for the one dimensional Maxwell model (with the mechanical analog – a

spring and a dashpot in series). When one assumes that the displacement gradients
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are small, this non-linear model leads to the classical upper convected Maxwell model.

The aim of this chapter is to use the framework to develop rate-type models for fluids

which do not possess instantaneous elasticity. Specifically, we shall assume that the

response from the natural configuration to the current configuration is akin to that

of a generalized Kelvin-Voigt solid. Upon removal of external load, the body moves

to the natural configuration with some “relaxation time” which is greater than the

intrinsic time tm (also see [38]). By setting this relaxation time to a value less than

tm, one can obtain the class of models that can be generated using the framework in

[6] and thus our work here can be viewed as a generalization of the analysis in [6].

As an example, using our framework, we develop constitutive relations which in one

dimension reduces to a dashpot and a Kelvin-Voigt element (which is a spring and a

dashpot in parallel), in series (see section (E)). In carrying out the maximization of

the rate of entropy production, one needs to decide what one maximizes with respect

to. In most of the studies that have been cited, the maximization is with respect to

appropriate kinematical variables and determining a constitutive representation for

the stress. On the other hand, one could maximize with respect to the stress. In all

the problems considered thus far, both methods lead to the same answer in explicit

constitutive theories. However, it is possible to obtain a much larger class of consti-

tutive relations following the latter procedure (see [37]). Also, from a philosophical

perspective it is preferable to use the latter procedure. We shall not get into these

issues here. In this chapter we maximize with respect to the kinematical variables

and obtain a constitutive expression for the stress.

While the idea of maximizing the rate of dissipation was also enunciated by

Ziegler [54], Wehrli and Ziegler [55] our philosophy, interpretation and use of the

maximization of the rate of entropy production is quite different, and the difference is

not minor. We have discussed the differences in our approach in some detail in [37].
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In fact, Ziegler’s approach cannot be used to obtain a whole host of models including

a whole class of implicit constitutive relations (see [37]). Also, the original work of

Ziegler contains certain mathematical errors as pointed out in [29].

It is appropriate to remark that the procedure adopted here, namely maximiz-

ing the rate of entropy production does not stand in contradiction with the proce-

dure of minimizing entropy production that was introduced by Onsager [56] (see also

Glansdorff and Prigogine [57], Prigogine [58]) as they refer to totally different cir-

cumstances. Maximization of the rate of entropy production leads to a constitutive

choice amongst a competing class of constitutive relations. It leads to a rate of en-

tropy production that is non-negative that can be viewed as a Lyapunov function. In

time, this Lyapunov function reaches a minimum as the system or body under con-

sideration tends towards equilibrium in time. It is this latter minimum that Onsager

appeals to and is referred to as Onsager’s “principle”. This “principle” is however

not a general principle and holds for special materials undergoing special processes.

Rajagopal and Srinivasa [38] discuss how the ideas of Onsager can be generalized to

include non-linear phenomenological laws.

After a discussion of the preliminaries in the next section, we develop a general

framework for the development of constitutive models for viscoelastic bodies that do

not possess instantaneous elastic response in sub-section (C.1). Within our general

framework, we derive a specific model in sub-section (C.2) which stores energy like a

neo-Hookean solid with a rate of dissipation which depends on the stretching tensor of

the natural configuration and the stretching tensor between the natural configuration

and the current configuration. In sub-section (C.3), we show that our model reduces to

either the Maxwell-like fluid or the Kelvin-Voigt-like solid under certain restrictions on

the material parameters. We shall solve the problem of uniaxial extension in section

(D), followed by some remarks on the application of our framework to develop models
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for visco-elasto-plastic response in section (F).

B. Preliminaries

Let κR(B) and κt(B) denote the reference configuration and the configuration of the

body B at time t (or the current configuration), respectively. Let X denote a typical

point belonging to κR(B) and x the same material point at time t, belonging to

κt(B). Let χκR denote a one to one mapping that assigns to each X ∈ κR(B), a point

x ∈ κt(B), i.e.,

x := χκR (X, t) . (3.1)

We shall assume that χκR is a sufficiently smooth mapping. The velocity v, the

velocity gradient L and the deformation gradient FκR are defined through

v :=
∂χκR
∂t

, L :=
∂v

∂x
, FκR :=

∂χκR
∂X

. (3.2)

It immediately follows that

L = ḞκRF
−1
κR
, (3.3)

and the symmetric part of the velocity gradient D is given by

D :=
1

2

(
L + LT

)
, (3.4)

where (.)T denotes transpose of a second order tensor. The left and right Cauchy-

Green stretch tensors BκR and CκR are defined through

BκR := FκRF
T
κR
, CκR := FT

κR
FκR . (3.5)

Let κp(t) denote the natural configuration associated with the configuration κt.

We define Fκp(t) as the mapping from the tangent space at a material point in κp(t)

to the tangent space at the same material point at κt (see Fig. 10). Similar to



49

Eq. (3.5), we can also define the left and right Cauchy-Green tensors from the natural

configuration to the current configuration1

Bκp(t) := Fκp(t)F
T
κp(t)

, Cκp(t) := FT
κp(t)

Fκp(t) . (3.6)

The mapping G is defined through (see Fig. 10)

G := FκR→κp(t) := F−1
κp(t)

FκR . (3.7)

Fκp(t) and hence Bκp(t) can be determined if one knows the current configuration

and the natural configuration corresponding to the current configuration. This natu-

ral configuration is attained by removing the external stimuli present in the current

configuration. For instance, in classical plasticity where one has infinity of natural

configurations from which one has a one-parameter family of elastic responses, the

natural configuration and hence Fκp(t) is determined by instantaneously elastically

unloading. The same can be done for viscoelastic fluids which are capable of instan-

taneous elastic response. In our case, the material does not posses an instantaneous

elastic response and the natural configuration is obtained by removing the external

stimuli consistent with the class of thermodynamic processes that are allowable.

We define the tensors BG, LG and DG through

BG := BκR→κp(t) = GGT , LG := ĠG−1, DG :=
1

2

(
LG + LTG

)
. (3.8)

In addition, let the tensors Lp(t) and Dp(t) be defined by

Lp(t) := Ḟκp(t)F
−1
κp(t)

, Dp(t) :=
1

2

(
Lp(t) + LTp(t)

)
. (3.9)

1In this chapter, henceforth we shall suppress κ and denote Bκp(t) by Bp(t).



50

κR

κp(t)

κt

reference configuration current configuration

natural configuration

dissipative response Kelvin-Voigt -like solid response

Fig. 10.: Schematic of the natural configuration κp(t) corresponding to the current

configuration κt and the relevant mappings from the tangent spaces of the same ma-

terial point in κR, κt and κp(t) (above). The response from the natural configuration

κp(t) is like a Kelvin-Voigt solid and the response of κp(t) from the reference config-

uration κR is purely dissipative. The corresponding one-dimensional spring dashpot

analogy where a dashpot is in series with a Kelvin-Voigt element (below).
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Also, the principal invariants of Bp(t) are denoted by

IBp(t)
= tr(Bp(t)), IIBp(t)

=
1

2

[
(tr(Bp(t)))

2 − tr(B2
p(t))

]
, IIIBp(t)

= det(Bp(t)),

(3.10)

where tr(.) is the trace operator for a second order tensor and det(.) is the determinant

of a second order tensor.

Now, from Eq. (3.7):

ḞκR = Ḟκp(t)G + Fκp(t)Ġ

⇒ ḞκRF
−1
κR

= Ḟκp(t)GG−1F−1
κp(t)

+ Fκp(t)Ġ

⇒ L = Lp(t) + Fκp(t)LGF
−1
κp(t)

.

(3.11)

where ˙(.) is the material time derivative of the second order tensor given by

Ȧ :=
∂(A)

∂t
+ grad(A)[v], (3.12)

for a second order tensor A with grad(.) being the gradient of a second order tensor

with respect to the current configuration κt. Hence, from Eq. (3.11),

LT = LTp(t) + F−Tκp(t)L
T
GF

T
κp(t)

, (3.13)

and so

D = Dp(t) +
1

2

[
Fκp(t)LGF

−1
κp(t)

+ F−Tκp(t)L
T
GF

T
κp(t)

]
. (3.14)

Further, we note that the upper convected Oldroyd derivative [36] (also see [44]

for the interpretation of Oldroyd derivative within the context of theory of multiple

natural configurations) of Bp(t) can be related to DG through (see [6])

∇
Bp(t):= Ḃp(t) − LBp(t) −Bp(t)L

T = −2Fκp(t)DGF
T
κp(t)

. (3.15)

Assuming that the body under consideration is incompressible, we shall record
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the balance of mass, and the balance of linear and angular momentum (in the absence

of body couples):

div(v) = 0, ρv̇ = div(TT ) + ρb, T = TT , (3.16)

where ρ is the density, v is the velocity, T is the Cauchy stress tensor, b is the specific

body force and div(.) is the divergence operator with respect to current configuration

κt. In addition, the local form of balance of energy is

ρε̇ = T.L− div(q) + ρr, (3.17)

where ε denotes the specific internal energy, q denotes the heat flux vector and r

denotes the specific radiant heating.

Finally, we shall assume that the body under consideration undergoes isothermal

processes. It is easy to modify the procedure to take into account non-isothermal

processes. We shall invoke the second law of thermodynamics in the form of the

reduced energy dissipation equation, given by (see [29]):

T.D− ρψ̇ = ρθζ := ξ ≥ 0, (3.18)

where T is the Cauchy stress, ψ is the specific Helmholtz free energy, ζ is the rate of

entropy production and ξ is the rate of dissipation2.

2The terminology rate of dissipation usually refers to the conversion of working into
energy in thermal form (heat). However, while considering general non-isothermal
processes one uses the term to the product of the density, temperature and entropy
production.
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C. Constitutive assumptions

1. General framework

In this sub-section, we shall first constitutively specify general forms for the specific

Helmholtz potential ψ and the rate of dissipation ξ. Using Eq. (3.18) and incom-

pressibility as constraints, we shall maximize the rate of dissipation ξ, to obtain our

constitutive relations.

We shall assume that during its motion from κp(t) to κt, the body stores energy

as well as dissipates. The storage is due to elongation of the polymer networks. Now,

assuming that the response of the body from κp(t) to κt is that of an isotropic body

along with the assumption of incompressibility, we shall choose the specific Helmholtz

free energy to be a function of the Cauchy-Green left stretch tensor Bp(t), i.e.,

ψ = ψ(Bp(t)) = ψ̂(IBp(t)
, IIBp(t)

). (3.19)

The prescription of the stored energy as shown in Eq. (3.19) is no different for

instance from finite plasticity theory wherein the stored energy of the elastic response

has such a form. Of course, one cannot determine the exact form of any function

from any number of experiments as infinity of function could pass through any finite

number of points, and it is only this information one can obtain from experiments.

All one can do is to make a reasonable choice based on experimental data.

Eq. (3.19) implies that,

ψ̇ = 2

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
.Dp(t). (3.20)

Also, we shall assume the rate of dissipation to be a function of the stretching tensor

and Cauchy-Green left stretch tensor between the κp(t) to κt, the stretching tensor
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between κR and κp(t), i.e.,

ξm = ξm(Bp(t),Dp(t),DG). (3.21)

In other words, the body dissipates energy during its motion from κp(t) to κt (due

to continuous scission and healing of polymer networks) and also dissipates energy

during its motion from κR to κp(t) (due to sliding of polymer strands over one another).

Due to the assumption of isotropic elastic response, the stored energy remains

unchanged under any rotation. Hence, for our calculations, we shall assume that the

natural configuration is rotated such that3

Fκp(t) = Vκp(t) , (3.22)

and therefore

Dp(t) =
1

2

(
V̇κp(t)V

−1
κp(t)

+ V−1
κp(t)

V̇κp(t)

)
=

1

2
V−1
κp(t)

Ḃp(t)V
−1
κp(t)

.

(3.23)

On substituting Eq. (3.20) into Eq. (3.18), we get

T.D−Tp(t).Dp(t) = ξm(Bp(t),Dp(t),DG), (3.24)

where

Tp(t) := 2ρ

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
. (3.25)

3For the application of this thermodynamic framework to anisotropic fluids the
reader should refer to [50].
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Substituting Eq. (3.14) into Eq. (3.24), we obtain that

1

2
T.
(
Fκp(t)LGF

−1
κp(t)

+ F−Tκp(t)L
T
GF

T
κp(t)

)
+
(
T−Tp(t)

)
.Dp(t) = ξm(Bp(t),Dp(t),DG).

(3.26)

Since T is symmetric, Eq. (3.26) reduces to

FT
κp(t)

TF−Tκp(t) .LG +
(
T−Tp(t)

)
.Dp(t) = ξm(Bp(t),Dp(t),DG). (3.27)

Also the assumption of incompressibility leads to

tr(D) = tr(Dp(t)) = tr(DG) = 0. (3.28)

Now, following Rajagopal and Srinivasa [6], we maximize the rate of dissipation

ξm by varying LG,Dp(t) for fixed Bp(t) with Eqs. (3.27), (3.28) as constraints. We

maximize the auxiliary function Φ given by

Φ := ξm + λ1

[
ξm − FT

κp(t)
TF−Tκp(t) .LG −

(
T−Tp(t)

)
.Dp(t)

]
+ λ2(I.DG) + λ3(I.Dp(t)),

(3.29)

where λ1, λ2, λ3 are Lagrange multipliers. By setting, ∂Φ/∂Dp(t) = 0 and ∂Φ/∂LG =

0, we get

T = Tp(t) +
λ3

λ1

I +

(
λ1 + 1

λ1

)
∂ξm
∂Dp(t)

, (3.30)

and

T =
λ2

λ1

I +

(
λ1 + 1

λ1

)
F−Tκp(t)

∂ξm
∂LG

FT
κp(t)

. (3.31)

At this juncture it is worth recalling the comments in the introduction con-

cerning maximization with respect to the kinematical quantities. On substituting in

Eq. (3.27), we finally obtain(
λ1 + 1

λ1

)
=

ξm
∂ξm
∂LG

.LG + ∂ξm
∂Dp(t)

.Dp(t)

, (3.32)
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Hence, from Eqs. (3.30), (3.31), the final constitutive equations reduce to

T = pI + 2ρ

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]

+

(
ξm

∂ξm
∂LG

.LG + ∂ξm
∂Dp(t)

.Dp(t)

)
∂ξm
∂Dp(t)

,

T = λ̂I +

(
ξm

∂ξm
∂LG

.LG + ∂ξm
∂Dp(t)

.Dp(t)

)
F−Tκp(t)

∂ξm
∂LG

FT
κp(t)

,

(3.33)

where λ̂ := λ2
λ1
, p := λ3

λ1
are Lagrange multipliers due to the constraint of incom-

pressibility. At this point it appears that there are two constitutive relations –

(3.33)a, (3.33)b – for stress instead of just one! We would like to note that the

two expressions – (3.33)a, (3.33)b – have to be equated and simplified to obtain one

expression for stress and an evolution equation for Bp(t). This will become clear within

the context of the specific choices of ψ and ξ that are made in the next sub-section.

Furthermore, expression (3.33)b appears at first glance non-symmetric but is in fact

symmetric for the specific form chosen for ξ as we shall show in the next sub-section.

2. Specific model

We now derive constitutive expression for the stress by choosing the stored energy to

be

ψ̂(IBp(t)
, IIBp(t)

) =
µ

2ρ

(
IBp(t)

− 3
)
, (3.34)

and rate of dissipation to be of the form

ξm(Bp(t),Dp(t),DG) = ηpDp(t).Bp(t)Dp(t) + ηGDG.Bp(t)DG. (3.35)

The stored energy chosen here is that for a neo-Hookean material with µ being its

elastic modulus, whereas the rate of dissipation is similar to that of a “mixture” of two

Newtonian-like fluids (in the sense that the dissipation is quadratic in the symmetric
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part of velocity gradient), whose dissipation also depends on the stretch (specifically

the stretch from the natural configuration to the current configuration), with viscosi-

ties ηG and ηp
4. The former term on the right hand side of expression (3.35) is due

to the dissipation during the motion from κR to κp(t) and the latter term is due to

dissipation during the motion from κp(t) to κt. Note that with the above choices for

ψ and ξ, as the body moves from the κp(t) to κt, there is both storage (like a neo-

Hookean solid) and dissipation (like a Newtonian-like fluid) of energy simultaneously

and hence, κp(t) evolves like the natural configuration of a Kelvin-Voigt-like solid

(also see [51]) with respect to κt. Now, with this choice for ψ and ξ, the constitutive

relations given by Eq. (3.33) reduce to

T = pI + µBp(t) +
ηp
2

(
Bp(t)Dp(t) + Dp(t)Bp(t)

)
, (3.36)

and

T = λ̂I +
ηG
2
F−Tκp(t)

(
Bp(t)DG + DGBp(t)

)
FT
κp(t)

. (3.37)

Now, from Eq. (3.36) and Eq. (3.37)

(
p− λ̂

)
I + µBp(t)+

ηp
2

(
Bp(t)Dp(t) + Dp(t)Bp(t)

)
=

ηG
2
V−1
κp(t)

(
Bp(t)DG + DGBp(t)

)
Vκp(t) , (3.38)

and using Eq. (3.15) and Eq. (3.23) in Eq. (3.38), we get

(
p− λ̂

)
I+µBp(t) +

ηp
4

(
Vκp(t)Ḃp(t)V

−1
κp(t)

+ V−1
κp(t)

Ḃp(t)Vκp(t)

)
=

ηG
4
V−1
κp(t)

[
−Vκp(t)

∇
Bp(t) V

−1
κp(t)
−V−1

κp(t)

∇
Bp(t) Vκp(t)

]
Vκp(t) . (3.39)

4Of course, one can choose the rate of dissipation to be quadratic in the sym-
metric part of velocity gradient without any stretch dependence, for example, ξ =
ηpDp(t).Dp(t) + ηGDG.DG. The resulting model would be a variation of the current
model.
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Pre-multiplying and post-multiplying Eq. (3.39) by Vκp(t) , we have

(
p− λ̂

)
Bp(t)+µB

2
p(t) +

ηp
4

(
Bp(t)Ḃp(t) + Ḃp(t)Bp(t)

)
=

ηG
4
V−1
κp(t)

(
−Bp(t)

∇
Bp(t) −

∇
Bp(t) Bp(t)

)
Vκp(t) . (3.40)

Also, from Eq. (3.39)

(
p− λ̂

)
= −1

3

[
ηG
2
tr

(
∇
Bp(t)

)
+
ηp
2
tr
(
Ḃp(t)

)
+ µtr

(
Bp(t)

)]
. (3.41)

Eq. (3.37) can be re-written as

T = λ̂I +
ηG
4
V−1
κp(t)

[
−Vκp(t)

∇
Bp(t) V

−1
κp(t)
−V−1

κp(t)

∇
Bp(t) Vκp(t)

]
Vκp(t) . (3.42)

Eq. (3.40) and Eq. (3.42) are the final constitutive relations with Eq. (3.40) together

with Eq. (3.41) being the evolution equation for the natural configuration κp(t).

In what follows, we shall also show that our model can be reduced to both the

Maxwell-like fluid model and Kelvin-Voigt-like solid model under certain assumptions

for the material parameters that are involved. We shall solve the problems of creep

and stress relaxation by considering homogeneous uniaxial extension. Based on the

results for creep and stress relaxation, and following the definitions given in [11] for

a fluid-like body and a solid-like body, we shall show that our model is a fluid-like

model when none of the material parameters are ignored.

3. Limiting cases

By setting ηp to zero, one can see from Eq. (3.38) that Bp(t) and DG have the same

eigen-vectors and hence commute. Using this fact, Eq. (3.36) and Eq. (3.40) reduce

to the Maxwell-like fluid model developed by Rajagopal and Srinivasa (see Eqs. 40–42

in [6]). On the other hand, if we assume ηG goes to infinity, with ηp, µ and all other
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kinematical quantities remaining finite, then as the deviatoric part of Eq. (3.37) is

finite, from Eqs. (3.37), (3.28), we must have DG → 0. This also implies that G is

pure rotation and hence Bp(t) → BκR , Dp(t) → D. Thus, Eq. (3.36) reduces to

T = pI + µBκR +
ηp
2

(BκRD + DBκR) . (3.43)

This is a generalized Kelvin-Voigt solid model.

D. Application of the model

1. Creep

In this sub-section we shall solve the problem of homogeneous extension under con-

stant stress and show that our model is a fluid-like model when none of the material

moduli are ignored. Before we go into the details of the problem, we would like to

note that for steady problems wherein the deformation is homogeneous, the results

for our model would be same as that for a Maxwell-like fluid with stretch dependent

relaxation as formulated in [6]. This is because Ḃp(t) = 0 (since
∂Bp(t)

∂t
= 0, due to

the assumption that the deformation is steady and grad(Bp(t)) = 0 as the deforma-

tion is homogeneous) and the constitutive relations in Eqs. (3.40), (3.42) reduce to

Eqs. (36), (39) in [6].

Now, in the case of time dependent homogeneous extension:

x = λ(t)X, y =
1√
λ(t)

Y, z =
1√
λ(t)

Z, (3.44)

the deformation gradient with respect to the reference configuration is given by

FκR = diag

{
λ(t),

1√
λ(t)

,
1√
λ(t)

}
. (3.45)
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Hence, the velocity gradient is given by

L = diag

{
λ̇

λ
,− λ̇

2λ
,− λ̇

2λ

}
. (3.46)

Now, we shall assume that

Bp(t) = diag

{
B(t),

1√
B(t)

,
1√
B(t)

}
, (3.47)

and hence

Ḃp(t) = diag

{
Ḃ(t),− Ḃ(t)

2B3/2(t)
,− Ḃ(t)

2B3/2(t)

}
, (3.48)

∇
Bp(t)= diag

{
Ḃ(t)− 2B(t)λ̇(t)

λ(t)
,− Ḃ(t)

2B3/2(t)
+

λ̇(t)√
B(t)λ(t)

,− Ḃ(t)

2B3/2(t)
+

λ̇(t)√
B(t)λ(t)

}
,

(3.49)

and

Vκp(t) = diag

{√
B(t),

1

B1/4(t)
,

1

B1/4(t)

}
. (3.50)

For the case of homogeneous extension, Eq. (3.36) and Eq. (3.37) reduce to

T = pI + µBp(t) + ηpBp(t)Dp(t),

T = λ̂I + ηGBp(t)DG, (3.51)

and the final constitutive relations Eq. (3.40) and Eq. (3.42) become

T = λ̂I− ηG
2
Vκp(t)

∇
Bp(t) V

−1
κp(t)

, (3.52)

(p− λ̂)I + µBp(t) = −ηG
2

∇
Bp(t) −

ηp
2
Ḃp(t), (3.53)

where

(p− λ̂) = − 3µ

tr(B−1
p(t))

. (3.54)
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On substituting Eqs. (3.48), (3.49) into Eq. (3.53), we arrive at

Ḃ(t) =
2ηG

ηG + ηp

B(t)λ̇(t)

λ(t)
− 4µ

ηG + ηp

[
B5/2(t)−B(t)

1 + 2B3/2(t)

]
. (3.55)

Using Eqs. (3.49), (3.50) in Eq. (3.52) and using the fact that lateral surfaces are

traction free, we find that

T11 =
ηG
2

(
1 +

1

2B3/2(t)

)(
2B(t)λ̇(t)

λ(t)
− Ḃ(t)

)
. (3.56)

Solving Eqs. (3.55), (3.56) simultaneously, we obtain

Ḃ(t) =
2T11

ηp

(
1 + 1

2B3/2(t)

) − 4µ

ηp

(
B5/2(t)−B(t)

1 + 2B3/2(t)

)
, (3.57)

λ̇(t)

λ(t)
=

2 (ηp + ηG)

ηGηp

(
T11B

1/2(t)

1 + 2B3/2(t)

)
− 2µ

ηp

(
B3/2(t)− 1

1 + 2B3/2(t)

)
, (3.58)

which can be re-written as

dB

dt̄
=

2T̄11(
1 + 1

2B3/2(t)

) − 4

(
B5/2(t)−B(t)

1 + 2B3/2(t)

)
, (3.59)

1

λ

dλ

dt̄
= 2

(
1

η̄
+ 1

)(
T̄11B

1/2(t)

1 + 2B3/2(t)

)
− 2

(
B3/2(t)− 1

1 + 2B3/2(t)

)
, (3.60)

where t̄ = tµ
ηp

is a non-dimensional time, T̄11 = T11
µ

is a non-dimensional stress, and

η̄ = ηp
ηG

is the ratio of viscosities (ηp, ηG). With known values for T̄11 and η̄, the ODEs

– Eqs. (3.59), (3.60) – were solved simultaneously using “ode45” solver in Matlab.

The initial conditions B(0) = λ(0) = 1 were used for the loading process. In the case

of unloading, the initial values were set to the values of B, λ evaluated at the end of

loading process. Before we discuss our results, the reader should note that B is the

square of the stretch from the natural configuration to the current configuration and

λ is the stretch from the reference configuration to the current configuration or the
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total stretch.

We shall now discuss the numerical results obtained for the problem of creep.

Fig. (11) portrays the results (specifically, B as a function of t̄ and λ as function of

t̄) for T̄11 = 1 for various values of η̄. For all the cases of η̄, the evolution of the

natural configuration with respect to the current configuration (or B as a function of

t̄) is the same. This can also be seen from Eqs. (3.59),(3.60) as the evolution of B in

time depends only on the value of T̄11, and does not depend on η̄. Also, as seen in

Fig. (11)(a), on removal of the load, the stretch in the body does not return to unity

but exhibits a permanent residual stretch, which is the typical behavior of a fluid-like

body (see [11]). In addition, from Fig. (11) and Fig. (12), by increasing T̄11 (from

1 to 5) for fixed η̄ (here the value is 10) – the maximum value of B increases, the

maximum value for λ increases and the permanent residual stretch also increases.

Now, as discussed earlier in section 2, the natural configuration evolves like a

Kelvin-Voigt-like solid with respect to the current configuration. Fig. (11)(b) reiter-

ates this fact since B varies with t in a fashion similar to the stretch as a function of

time for a Kelvin-Voigt solid in a creep experiment. Fig. (11)(a) also shows that, as

η̄ increases, the maximum value for total stretch (λ) decreases. This shows that for

a fixed amount of loading time (for instance for t̄ = 10) as the value for η̄ increases,

the value for maximum total stretch decreases and so the rate of relaxation decreases.

As η̄ increases one would expect that our model would tend to a solid model in the

limit of η̄ → ∞. To see this, in our numerical simulations, we set η̄ to a very large

number (specifically η̄ = 100000), with T̄11 = 1, and we found
√
B and λ to follow the

same trend in time (see Fig. 13). This is an extreme case when the natural configu-

ration and the reference configuration tend to being the same, reducing our model to

Kelvin-Voigt-like solid model.
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Fig. 11.: Overall stretch of the current configuration from the reference configuration

(λ) and square of the stretch from the natural configuration to the current configu-

ration (B) as a function of non-dimensional time t̄ for the creep experiment. For the

loading process, T̄11 = 1 and the unloading starts at t = 10. Plots for η̄ = 5, 10, 20

are shown.
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Fig. 12.: Overall stretch of the current configuration from the reference configuration

(λ) and square of the stretch from the natural configuration to the current configu-

ration (B) as a function of non-dimensional time t̄ for the creep experiment. For this

case, the non-dimensional stress T̄11 = 5 and the ratio of the viscosities η̄ = 10. The

unloading for the creep experiment starts at t = 10.



65

0 5 10 15 20 25 30 35 40
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

t̄

λ

0 5 10 15 20 25 30 35 40
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

t̄

√
B

Fig. 13.: Overall stretch of the current configuration from the reference configuration

(λ) and stretch from the natural configuration to the current configuration (
√
B) as

a function of non-dimensional time t̄ for the creep experiment. For this case, the

non-dimensional stress T̄11 = 1 and the ratio of the viscosities η̄ = 100000. Unloading

for the creep experiment starts at t = 10.



66

2. Stress under constant strain rate

If we define ε := lnλ as our strain measure, then Eq. (3.55) reduces to

Ḃ(t) =
2ηG

ηG + ηp
B(t)ε̇− 4µ

ηG + ηp

[
B5/2(t)−B(t)

1 + 2B3/2(t)

]
. (3.61)

Using Eq. (3.61) in Eq. (3.56), we get

T11 = ηG

(
1 +

1

2B3/2(t)

)[
ηp

ηp + ηG
B(t)ε̇+

2µ

ηG + ηp

B5/2(t)−B(t)

1 + 2B3/2(t)

]
. (3.62)

Upon non-dimensionalizing Eqs. (3.61), (3.62), we arrive at

dB

dt̄
=

2η̄B

η̄ + 1

dε

dt̄
− 4

η̄ + 1

(
B5/2 −B
1 + 2B3/2

)
, (3.63)

T̄11 =

(
1 +

1

2B3/2

)[
Bη̄

1 + η̄

dε

dt̄
+

2

1 + η̄

(
B5/2 −B
1 + 2B3/2

)]
. (3.64)

With known values for dε
dt̄

, B can be evaluated using Eq. (3.63) and then from

Eq. (3.64), T̄11 can be calculated. For stress relaxation, we set dε
dt̄

to zero and solved

the ODEs – Eqs. (3.63), (3.64) – numerically using the solver “ode45” in Matlab.

Fig. (14) displays the plots for B, and T̄11 as functions of t̄ for various values of η̄.

The initial condition for B was chosen to be 2. Fig. (14)(b) also shows that the stress

finally relaxes to zero. This is a characteristic of a fluid-like material. In addition,

one can also see from Fig. (14) that as the ratio of viscosities η̄ increases, the time

of relaxation increases. Also from Eq. (3.64), as η̄ → ∞, T̄11 → 0 and hence cannot

stress relax. This is because as η̄ → ∞, the model behaves like a Kelvin-Voigt-like

solid model as can be gleaned from the creep response discussed in section (1) . In

addition, one can also notice from Fig. (14)(b) that the initial value for T̄11 decreases

as η̄ increases.
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Fig. 14.: Square of the stretch from the natural configuration to the current configu-

ration (B), non-dimensional stress (T̄11) plotted as functions of non-dimensional time

t̄ for various values of η̄, in the stress relaxation experiment. The initial condition for

B was chosen as 2.
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E. Model reduction in one dimension

If the elastic strain is small in the sense that

‖Bp(t) − I‖ = O(ε), ε� 1, (3.65)

then Eq. (3.54) reduces to (see [6])

(
p− λ̂

)
= −µ, (3.66)

and hence Eq. (3.51) reduce to

T = λ̂I + ηGBp(t)DG,

µ
(
Bp(t) − I

)
= Bp(t)

(
ηGDG − ηpDp(t)

)
.

(3.67)

If λi (i = G, p) is the one-dimensional stretch and ε = lnλi is the true strain, then in

one dimension, Eq. (3.67) reduces to

σ = η̂G
λ̇G
λG
,

µ
(
λ2
p − 1

)
= η̂G

λ̇G
λG
− η̂p

λ̇p
λp
,

(3.68)

where η̂i = ηiλ
2
p (i = G, p) are the stretch dependent viscosities and σ is the one

dimensional stress. Eq. (3.68) under the assumption that εi � 1 (i = G, p) reduces

to

σ = η̂Gε̇G, 2µεp = η̂Gε̇G − η̂pε̇p. (3.69)

Eqn. (3.69) can also be obtained if we have a dashpot with η̂G as the viscosity and

a Kelvin-Voigt element, with a spring constant 2µ and viscosity η̂p, in series (see

Fig. 10). Thus, our model in section 2 reduces to a dashpot and a Kelvin-Voigt

element in series whose viscosities are stretch dependent.
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F. Concluding remarks

For the model developed in this chapter, we solved the problems of creep and stress

relaxation and based on the results showed that our model is a fluid-like model.

We have also shown that under certain idealizations, our model reduces to both

a Maxwell-like fluid and a Kelvin-Voigt-like solid. We have also shown that our

model is a three dimensional generalization of the one dimensional model with a

dashpot and Kelvin-Voigt element in series. We would also like to note that the

general framework developed in section 1 can be extended to model visco-elasto-

plastic response by choosing the rate of dissipation for the motion from κR to κp(t) to

be of the form given in Eq. (39) or Eq. (40) in [44]. For example, one can choose the

rate of dissipation to be of the form

ξm(Bp(t),Dp(t),DG) = Y
(
Dp(t).Bp(t)Dp(t)

)1/2
+ ηGDG.Bp(t)DG, (3.70)

where Y is a material constant, along with the stored energy in Eq. (3.34), and then

maximize the rate of dissipation under appropriate constraints.
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CHAPTER IV

DEGRADATION AND HEALING IN A GENERALIZED NEO-HOOKEAN

SOLID DUE TO INFUSION OF A FLUID

The mechanical response and load bearing capacity of high performance polymer

composites changes due to degradation or healing associated with diffusion of a fluid,

temperature, oxidation or the extent of the deformation. Hence, there is a need to

study the response of bodies under such degradation mechanisms. In this chapter,

we study the effect of degradation and healing due to the diffusion of a fluid on the

response of a solid which prior to the diffusion can be described by the generalized

neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves

like an elastic body (i.e., it does not produce entropy) within a purely mechanical con-

text - creeps and stress relaxes due to degradation/healing when infused with a fluid

and behaves like a body whose material properties are time dependent. We specifi-

cally investigate the torsion of a degrading/healing generalized neo-Hookean circular

cylindrical annulus infused with a fluid. The equations of equilibrium for a general-

ized neo-Hookean solid are solved together with the convection-diffusion equation for

the fluid concentration. Different boundary conditions for the fluid concentration are

also considered. We also solve the problem for the case when the diffusivity of the

fluid depends on the deformation of the generalized neo-Hookean solid.

A. Introduction

As elastic bodies are incapable of producing any entropy, this would be the proper

definition of an elastic body within a thermodynamic context. Elastic bodies also

cannot stress relax, i.e., when the strain is kept constant in time the stresses within

the body cannot change with time. However, the stresses in a body that is initially
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elastic, which subsequently undergoes chemical reactions due to interactions with the

environment or which is subject to the effects of electro-magnetic radiation such as

ultra-violet rays, could change with time and the body’s response ceases to be that

of an elastic body. The chemical reactions or the interactions with the environment

invariably produce entropy. However, it could happen that when the chemical reac-

tions cease and the body is isolated from the environment the body ceases to produce

entropy, that is, it becomes a different elastic body. The body, due to its exposure

to the environment can undergo deterioration or enhancement with respect to its

load carrying capacity or other properties. While moisture diffusion in a polymer can

cause degradation of the body in that its load carrying capacity goes down, a body

such as biological matter can be strengthened due to a drug that is being injected.

Though the stress in the body might decrease when the strain is held constant in

bodies that are undergoing degradation, this phenomenon is quite different from the

stress relaxation observed in viscoelastic solids (see [59], [11]).

There is need for a good understanding of the degradation of materials as this

is relevant to a plethora of applications. For instance, the mechanical properties of

high performance polymer composites (like polyimides) used in hypersonic vehicles

vary due to the effect of high temperature, diffusion of moisture and the subsequent

oxidation. Chen and Tyler [60] have recently shown that polymers can also degrade

due to deformation. In this chapter we are interested in studying the response of a

body whose properties are changing due to the presence of a fluid, the extent of the

change depending on the concentration of the fluid.

There has been considerable interest in the damage and degradation of polymeric

solids and polymer composites. However, most of these studies appeal to ad hoc

constitutive equations. Also, many studies appeal to the notion of a hygrothermal

expansion coefficient (see [61], [62]) and such an approach would not be appropriate
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when large deformations due to swelling are involved. A general thermodynamic

framework has been developed to describe damage in composites by Weitsman [63].

This work introduces the notion of a damage tensor which is essentially a tensor

internal variable. While the study is very detailed and has a thermodynamic basis,

the theory however involves several material moduli that depend on as many as 32

invariants in the case of transversely isotropic materials, making it impractical to

put the theory to use as it is impossible to develop an experimental program to

determine the numerous material functions that characterize the body. Moreover,

such theories lead to intractable mathematical equations. While there have been

several other studies concerning the diffusion of moisture in composites (e.g., [64], [65],

[66], and [67]), they are primarily parametric studies in which the material moduli are

allowed to depend on the moisture content according to some pre-assigned manner

and not as a consequence of a reasonable convection-diffusion equation; that is the

coupled problem for the deformation of the composite and the diffusion of moisture

is not solved simultaneously. In general, the diffusivity depends on the temperature,

moisture content, strain, and stress. In fact, the diffusivity can depend on the history

of these quantities. Weitsman [68] and Roy et al. [69] have also addressed damage

due to diffusion but not in the manner advocated here.

Using ideas in multi-network theories for polymeric materials (see [70], [71]),

Wineman and Rajagopal [72] and Rajagopal and Wineman [49] developed a theory

applicable to the large deformation of polymeric solids that exhibit scisson and healing

and permanent set, within a purely mechanical context. This work was extended in

a series of papers by Huntley (see [73, 74, 75]) to deal with a variety of deformations

involving elastomeric solids that undergo permanent set. The scission and healing

that takes place can be viewed within the context of deformation induced damage

and due to cross-linkings that take place. These works within a purely mechanical



73

context were later generalized to include thermal effects (see [76], [77]).

A general thermodynamic framework which takes into account chemical reactions

(with chemical kinetics), diffusion and thermal effects needs to be put into place in

order to develop constitutive relations to study the degradation of materials (like

polyimides) due to chemical reactions. As a first step towards such a goal, in this

chapter, we shall first solve the problem of torsion of a degrading body, which when

there is no degradation taking place responds like a generalized neo-Hookean body.

We also look at healing (or strengthening) of a generalized neo-Hookean body when a

fluid is infused. We assume the body to be a cylindrical annulus of finite length. We

shall study the torsion of a cylindrical annulus through which a fluid is infusing. We

will assume that the infusion of the fluid is radial and thus the degradation or healing

takes place radially. We introduce a parameter that is a measure of the degradation

or healing which in virtue of the diffusion being radial also varies radially. The

material parameters are assumed to be functions of the variables that quantify the

degradation or healing. We need to then solve the convection-diffusion equation that

governs the diffusion of the fluid in tandem with the equilibrium equations for the

torsion problem; we look at how the moment varies with time when the angle of twist

of the cylinder is kept constant in time, and how the angle of twist of the cylinder

varies when the moment applied to the cylinder is kept constant. We find that the

moment that is needed to maintain the angular displacement decreases with time,

that is the body stress relaxes, when the material is degrading, but as we observed

earlier such a decrease of stress is very different from the stress relaxation observed in

viscoelastic bodies. The stresses can decrease in the body due to a variety of reasons

such as degradation of properties of the body due to chemical reactions, aging, etc.,

and it is important to recognize the reason for the “stress relaxation”. Rajagopal

and Wineman [78] have studied stress relaxation due to aging and they find that in
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marked contrast to the stress relaxation observed in viscoelastic bodies, the decrease

in stress is dependent on the geometry of the body. This aspect related to stress

relaxation, namely its dependence on the geometry is what sets stress relaxation in

viscoelastic materials apart from stress relaxation that manifests itself due to most

degradation theories. In order to highlight this difference, Rajagopal and Wineman

[78] considered the torsion of a viscoelastic cylinder that ages. They found that the

stress relaxation can be split into two parts, one that is a consequence of the body

being viscoelastic, which is independent of the size of the specimen, and another part

due to the aging of the cylindrical specimen, this being dependent on the radius of the

cylinder undergoing torsion. In this current chapter, we also find that the angular

displacement undergone by the body increases with time for the applied moment,

when the material is degrading. When one looks at healing due to diffusion of a

fluid, we find that that the moment needed to maintain a given angular displacement

increases with time, whereas the body’s angular displacement decreases with time

when one applies a constant moment.

We will now turn to a discussion of the response characteristics of the undamaged

elastic solid, namely the power-law neo-Hookean solid. The generalized (or power-law)

neo-Hookean elastic model (see [79]) allows for softening and stiffening under simple

shear when the power-law parameter (n) is lesser or greater than unity, respectively.

Softening and stiffening which are seen in real materials cannot be explained using

the classical neo-Hookean model while some of it possibly can be explained in terms

of the generalized neo-Hookean solid. In any event, one should recognize that such

models are merely caricatures of reality and in this study we are mainly interested

in obtaining some understanding of the degradation due to the infusion of fluid.

On setting the power-law parameter (n) to 1, one obtains the classical neo-Hookean

model. Knowles [79] studied the anti-plane shear of a power-law neo-Hookean body
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that has a crack, and noted that for n ≥ 1
2
, the equation of equilibrium for anti-plane

shear is always elliptic and that the ellipticity is lost when n < 1
2
. Hou and Zhang [80]

have studied the stability of a power-law neo-Hookean cylinder under axial stretching

and constant radial traction. The power-law model has also been used in several

subsequent studies (see [81]).

Rajagopal and Tao [82] studied inhomogeneous deformations in a wedge of a

generalized neo-Hookean material numerically, and later, Mcleod and Rajagopal [83]

re-investigated the same problem with a view towards establishing existence of so-

lutions to the governing equations. Tao et al. [84] have analyzed the problem of

inhomogeneous circular shear combined with torsion for a generalized neo-Hookean

material and have obtained exact solutions for certain values of the material con-

stants. This study was followed by an analysis by Zhang and Rajagopal [85] concern-

ing steady and unsteady inhomogeneous shear of a slab and a cylindrical annulus.

The reason for citing these studies is that in all of [82, 83, 84, 85], “boundary layer”

type solutions (that is, close to the boundary the deformations are inhomogeneous

while the deformations are mainly homogeneous in the inner core region of the body)

have been observed for certain values of the material parameters and also the strain

is concentrated in these boundary layers in that the strain gradients are very large

in these layers. Thus, one would expect damage, degradation and failure to occur in

these boundary layers. A systematic method to obtain approximate equations within

the boundary layer of a generalized neo-Hookean solid similar to the boundary layer

theory in fluid mechanics has been discussed by Rajagopal [86]. To show the effi-

cacy of this method, the approximate boundary layer equations were solved for the

circumferential shear problem and were compared to the full solution.

While there have been several studies concerning generalized neo-Hookean ma-

terials within the context of a purely mechanical setting, as noted above, there is
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no study concerning the degradation or enhancement of the properties of generalized

neo-Hookean materials. Such a study would be important since materials like elas-

tomers, for which the generalized neo-Hookean model is used, degrade or heal due to

the diffusion of moisture or other chemicals.

Recently, there have been a few investigations of the deformation of an elastic

solid that is undergoing degradation due to the influence of a diffusant. Muliana et al.

[87] analyzed the response of a composite cylinder that is undergoing degradation due

to the diffusion of a fluid, and Darbha and Rajagopal [88] studied unsteady motions

of a slab through which a fluid is diffusing. They investigated the unsteady shear of

an infinite slab of finite thickness and a cylindrical annulus of infinite length under

degradation due to diffusion of a chemical species. In both the studies the body was

assumed to be a linearized elastic body and the material moduli were assumed to

vary linearly with the concentration of the diffusing species.

Rajagopal [89] assumed the shear modulus of a generalized neo-Hookean material

to depend on temperature and solved the problem of inhomogeneous shear of an

infinite slab. Boundary layer type solutions were obtained based on the nature of

the boundary conditions for the temperature. Although, this paper was not written

within the context of understanding degradation due to temperature, one can extend

this work by assuming that all the material moduli depend on temperature in a

certain fashion and study the effect of temperature on the response of the body. It is

expected that boundary layers would develop due to degradation and the failure of

the body would be determined by the stresses in this boundary layer.

The current chapter is organized as follows. In section B, the problem of tor-

sion of a finite cylindrical annulus comprised of a generalized neo-Hookean material

through which a fluid is diffusing, is set up. In section C, we specifically assume that

the degradation or healing is due to diffusion and also assume that material moduli
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vary linearly with the concentration of the diffusant, and obtain the solutions to the

convection-diffusion equation for the diffusing species as well as the equilibrium equa-

tions. We also obtain an expression for the moment that is applied in terms of the

the angular displacement and the material parameters. In section D, the results are

discussed in detail, followed by final conclusions in section E.

B. Torsion of a cylindrical annulus undergoing degradation

Let κR and κt denote the reference and the current configuration of a body, respec-

tively. The motion χκR is a one-one mapping that assigns to each point X ∈ κR, a

point x ∈ κt, at a time t, i.e.,

x = χκR(X, t). (4.1)

The gradient of motion (or the deformation gradient) F is defined by

F :=
∂χκR
∂X

, (4.2)

with the velocity v defined as

v :=
∂χκR
∂t

. (4.3)

Let (R,Θ, Z) and (r, θ, z) be cylindrical co-ordinates in the reference and current

configuration, respectively. Consider a cylindrical annulus of height H with inner

radius Ri and outer radius Ro under torsion, whose motion is given by

r = R, θ = Θ + f(z, t), z = Z. (4.4)
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The deformation gradient F and the left Cauchy-Green stretch tensor B associated

with Eq. (4.4) are given by

F =


1 0 0

0 1 rfz

0 0 1

 , B := FFT =


1 0 0

0
(
1 + (rfz)

2) rfz

0 rfz 1

 . (4.5)

Thus, the first invariant of B is, I1 = tr(B) = 3 + (rfz)
2, where fz :=

∂f(z, t)

∂z
, and

tr(.) is the trace of a second order tensor.

The Cauchy stress tensor T in an incompressible generalized neo-Hookean ma-

terial, is given by

T = −pI + µ

[
1 +

b

n
(I1 − 3)

]n−1

B, (4.6)

where −pI is the spherical part due to the constraint of incompressibility, and µ ×[
1 + b

n
(I1 − 3)

]n−1
is the generalized shear modulus, µ being the shear modulus at

zero stretch. In general, the degradation or healing of the generalized neo-Hookean

material can be caused by diffusion, temperature, electromagnetic radiation, etc. We

shall denote the variable that is a measure of the degradation or healing by α, i.e.,

when degradation due to diffusion is considered, α would be the concentration of the

diffusing species; α would be temperature if we have degradation or healing due to

temperature, etc., with an appropriate governing equation for the variable. We shall

refer to α as the degradation/healing parameter. We shall assume that the material

moduli are functions of the degradation/healing parameter i.e., n = n(α), µ = µ(α),

b = b(α), which leads to changes in the response characteristics of the body. In view

of the geometry of the body, and the assumed form for the deformation field, we shall

further assume that the degradation/healing parameter varies only with the radius

and time, i.e., α = α(r, t). Then, the material moduli would be functions of the radius
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and time and Eq. (4.6) reduces to the form

T = −pI + Φ(r, z, t)B, (4.7)

where Φ(r, z, t) := µ(r, t)
[
1 + b(r,t)

n(r,t)
(rfz)

2
]n(r,t)−1

.

We shall consider the diffusion to be reasonably slow and that the inertial effects

in the solid can be neglected. It is important to bear in mind that the temporal effects

are not being ignored. One could choose to view time as a parameter. Neglecting the

body force, the balance of linear momentum reduces to the equations of equilibrium,

div T = 0, (4.8)

where div(.) denotes the divergence operator in the current configuration. We as-

sume that the concentration of the diffusing species (c) is governed by the following

convection-diffusion equation

∂c

∂t
+ div (cv) = div (D grad(c)) , (4.9)

where D is the diffusivity and in general it could depend on the deformation as well as

the concentration, grad(.) is the gradient based on the current configuration. In this

study, we assume that the diffusion is very slow so that the velocity of the fluid that

is diffusing can be neglected. The second term on the left side of Eq. (4.9) involves

the derivative of the velocity and of course it is possible that even if the velocity is

small its spatial derivatives need not be small. We shall however assume that the

derivatives of the velocity are small and thus we neglect the second term in Eq. (4.9).

We shall assume that D depends on the deformation, thus the equation governing

the diffusion of the fluid is coupled with the balance of linear momentum. Since the

concentration is only a function of the radius r and time t, equation Eq. (4.9) reduces
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to

∂c(r, t)

∂t
=

1

r

∂

∂r

(
Dr

∂c(r, t)

∂r

)
. (4.10)

Next, we shall document the balance of energy for the generalized neo-Hookean

solid and fluid as follows (see [90]):

ρi
dεi

dt
= Ti.Li − divqi + ρiri + Ei, i = solid, fluid, (4.11)

where εi, qi, ri are the specific internal energy, heat flux, radiant heating associated

with the i-th component and Ei is the energy supplied to the i-th constituent from

the other constituents. We shall ignore the energy equation associated with the

fluid and the contributions due to the interactions between the fluid and the solid

(Es) in the energy balance for the solid. We shall however later on incorporate the

energy associated with fluid indirectly by assuming that the internal energy of the

solid depends on the concentration of the diffusing fluid. In such a case, the energy

equation is merely,

ρε̇ = T.L− divq + ρr, (4.12)

where ε is the internal energy of the solid, L is the velocity gradient of the solid, q

is the heat flux, and r is the specific radiant heating. Further assumption that the

internal energy of the solid depends on the temperature (T ), concentration of the

diffusing fluid and the deformation gradient of the solid, i.e.,

ε = ε (T, c,F) , (4.13)

leads to

ρ
∂ε

∂T
Ṫ + ρ

∂ε

∂c
ċ+ ρ

∂ε

∂F
FT .L = T.L− divq + ρr, (4.14)
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where (.)T is the transpose of a second-order tensor. We shall define the specific

Helmholtz potential as Ψ = ε− Tη, where η is the specific entropy. Then Eq. (4.14)

reduces to

ρ
∂ε

∂T
Ṫ + ρ

∂Ψ

∂F
FT .L− ρT ∂2Ψ

∂T∂F
FT .L + ρ

∂Ψ

∂c
ċ− ρT ∂2Ψ

∂T∂c
ċ = T.L− divq + ρr.

(4.15)

where we have also used that η = −∂Ψ

∂T
. Now, if we set T = −πI + ρ

∂Ψ

∂F
FT , where

π is the Lagrange multiplier due to the constraint of incompressibility (given by

tr(L) = 0), then in the absence of radiation along with the assumption of Fourier’s

relation for heat conduction,

q = −k grad(T ), (4.16)

Eq. (4.15) reduces to

ρCvṪ − ρT
∂2Ψ

∂T∂F
FT .L + ρ

∂Ψ

∂c
ċ− ρT ∂2Ψ

∂T∂c
ċ = div (k grad(T )) , (4.17)

where Cv =
∂ε

∂T
= −T ∂

2Ψ

∂T 2
is the specific heat capacity and k is the heat conductivity,

both of which could depend on the deformation, temperature as well as concentration

of the diffusing fluid (in general, it could depend on the degradation/healing parame-

ter α). We also note that for a generalized neo-Hookean body, the specific Helmholtz

potential is given by

Ψ =
µ

2ρb

{[
1 +

b

n
(I1 − 3)

]n
− 1

}
. (4.18)

In general, along with infusion of a fluid, the body could be subject to high tem-

perature which could cause additional degradation, and so the material parameters

could depend on temperature as well i.e., n = n(c, T ), µ = µ(c, T ), b = b(c, T ). In
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such a case, one ought to solve Eqs. (4.8), (4.10), (4.17), simultaneously along with

Eq. (4.18). In what follows, we shall ignore the thermal effects and study the problem

of degradation or healing only due to the diffusion of a fluid.

C. Degradation and healing due to diffusion

It follows from Eq. (4.7) and Eq. (4.8) that

∂

∂r
(−p+ Φ(r, z, t))− rΦ(r, z, t) (fz)

2 = 0, (4.19)

1

r

∂

∂θ
(−p+ Φ(r, z, t)) +

∂

∂z
(Φ(r, z, t)rfz) = 0, (4.20)

∂

∂z
(−p+ Φ(r, z, t)) = 0. (4.21)

In solving Eqs. (4.19), (4.20) and (4.21), time t is treated as a parameter i.e., we are

solving the balance of linear momentum Eq. (4.8) at every instant of time assuming

that the problem is quasi-static.

Next, from Eq. (4.21), it follows that

−p+ Φ(r, z, t) = g(θ, r). (4.22)

Taking the derivative of Eq. (4.19) with respect to θ, and using Eq. (4.22), we obtain

that

∂

∂r

(
∂g(r, θ)

∂θ

)
= 0,

⇒∂g(r, θ)

∂θ
= h(θ), (4.23)

and therefore Eqs. (4.22), (4.23) reduce to

∂

∂θ
(−p+ Φ(r, z, t)) = h(θ), (4.24)
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where h is a function of θ. From Eqs. (4.20) and (4.24), we obtain that

− ∂

∂θ
(−p+ Φ(r, z, t)) = r

∂

∂z
(Φ(r, z, t)rfz) = E, (4.25)

where E is a constant. On the basis of periodicity, we can assume that
∂p

∂θ
= 0, and

hence from Eq. (4.25) it follows that E must be zero. Using the definition of Φ in

Eq. (4.25), we obtain that{[
1 +

b

n
(rfz)

2

]n−1

+
2b(n− 1)

n
(rfz)

2

[
1 +

b

n
(rfz)

2

]n−2
}
fzz =

E

µr2
= 0, (4.26)

where fzz :=
∂2f(z, t)

∂z2
. Thus, Eq. (4.26) reduces to either

fzz = 0, (4.27)

or {[
1 +

b

n
(rfz)

2

]n−1

+
2b(n− 1)

n
(rfz)

2

[
1 +

b

n
(rfz)

2

]n−2
}

= 0. (4.28)

Eq. (4.27) implies that

f(z, t) = C1(t)z + C2(t), (4.29)

and Eq. (4.28) reduces to

1 +
b(2n− 1)

n
(rfz)

2 = 0, (4.30)

which has no solution1. Hence, Eq. (4.29) is the solution to Eq. (4.8). Interestingly,

the solution Eq. (4.29) does not depend on the material parameters n, b or µ.

If we assume that the angle of twist at z = 0 is zero, i.e., if we assume that the

1Here, we are assuming that b is non-negative, and n ≥ 1
2
. As discussed previously

if n < 1
2
, then the equations of equilibrium for anti-plane shear lose their ellipticity.
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bottom of the cylinder is fixed, then we obtain that

f(z, t) = ψ(t)z, (4.31)

where ψ(t) is the angle of twist per unit length of the cylinder which is the time

dependent generalization of the classical torsion solution. The twisting moment is

given by

M(t) = 2π

∫ R0

Ri

Tzθr
2dr

= 2π

∫ R0

Ri

µ(c(r, t))

[
1 +

b(c(r, t))

n(c(r, t))
(rψ(t))2

]n(c(r,t))−1

ψ(t)r3dr. (4.32)

In our work, we shall enforce the following two sets of initial and boundary

conditions for the concentration of the diffusing species:

Case 1:

c(r, 0) = 0, Ri ≤ r ≤ R0, (4.33)

∂c

∂r
(Ri, t) = 0, ∀t > 0, (4.34)

c(Ro, t) = 1, ∀t > 0. (4.35)

That is, initially, the body is assumed to be in its virgin state and there is no diffusant

in the body. Also, the boundary condition Eq. (4.34) implies that the gradient of the

concentration is zero at the inner boundary of the annular cylinder. This can be

achieved by having some sort of a membrane on the inside of the annulus which is

impermeable to the diffusing species. The boundary condition Eq. (4.35) means that

the outer cylinder is always exposed to the diffusant.
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Case 2:

c(r, 0) = 0, Ri ≤ r ≤ R0, (4.36)

c(Ri, t) = c0, ∀t > 0, (4.37)

c(Ro, t) = 1, ∀t > 0. (4.38)

Here, as opposed to case 1, the inner boundary of the annular cylinder is held at

a constant diffusant concentration (as reflected by Eq. (4.37)). By constructing a

mechanism which continuously removes the diffusing species from the inside of the

cylindrical annulus, a constant concentration boundary condition can be maintained.

For example, if the diffusing species is moisture, then by blowing air inside the annulus

continuously, one can control the concentration of the moisture. For convenience, we

shall set c0 to zero for this case.

In addition, we shall assume that the material moduli change in a linear fashion

due to the diffusion, that is the material parameters change with c as follows:

µ = µ0 ± µ1c, 0 < µ1 < µ0, (4.39)

b = b0 ± b1c, 0 < b1 < b0, (4.40)

n = n0 ± n1c, 0 < n1 < n0, (4.41)

with the minus sign chosen when degradation is considered and plus sign for healing.

The restrictions on the ranges of µ1, b1, n1 are being enforced to ensure that µ, b, n

are positive, in the case of degradation.

Before proceeding with the solutions, we render the governing equations dimen-

sionless. The non-dimensionalization is carried out in the following manner. We
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define

t̄ =
t

t0
, r̄ =

r

Ro

, z̄ =
z

H
, ψ̄ =

ψH

θ0

, µ̄ =
µ

µ0

, (4.42)

where t0, θ0 are characteristic time and angle. Then Eqs. (4.32) and (4.10) reduce to

MH

2πR4
oθ0µ0︸ ︷︷ ︸
M̄

=

∫ 1

0

µ̄

1 +
b

n

R2
oθ

2
0

H2︸ ︷︷ ︸
q̄

(r̄ψ̄)2


n−1

ψ̄r̄3dr̄, (4.43)

∂c(r̄, t̄)

∂t̄
=

1

r̄

∂

∂r̄

r̄
(
Dt0
R2
o

)
︸ ︷︷ ︸

D̄

∂c(r̄, t̄)

∂r̄

 , (4.44)

where µ̄ = 1± µ̄1c, with µ̄1 =
µ1

µ0

.

The initial and boundary conditions for c after non-dimensionalization reduce to

Case 1:

c(r̄, 0) = 0, r̄i ≤ r̄ ≤ 1, (4.45)

∂c

∂r̄
(r̄i, t̄) = 0, ∀t̄ > 0, (4.46)

c(1, t̄) = 1, ∀t̄ > 0. (4.47)

Case 2:

c(r̄, 0) = 0, r̄i ≤ r̄ ≤ 1, (4.48)

c(r̄i, t̄) = 0, ∀t̄ > 0, (4.49)

c(1, t̄) = 1, ∀t̄ > 0, (4.50)

where r̄i =
Ri

Ro

.
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D. Discussion of results

We now proceed to solve the non-dimensionalized problem, numerically. Fig. (15)(a)

shows the solution to the convection-diffusion equation Eq. (4.44) for D̄ = 0.01,

which has been solved using pdepe solver in MATLAB. We notice that after a certain

time, the concentration profile reaches a steady state which implies that no further

healing or degradation of the body takes place. For a given value of ψ̄, the values

of concentration thus obtained at various radii and times were used to numerically

integrate (4.43) using composite trapezoidal rule to find M̄ . On the other hand for a

given value of M̄ , ψ̄ was calculated using a combination of the bisection method and

the composite trapezoidal rule of integration on (4.43). The numerical values chosen

for the non-dimensional quantities are shown in the figures.

The solution depicted in Fig. (15)(b) was obtained by setting n0 to 1 along with

n1 to 0 when degradation is assumed. Under these conditions the model reduces

to a neo-Hookean model as n = 1; furthermore, note that µ̄1 = 0 corresponds to

case when the neo-Hookean body is neither degrading nor healing. Notice that as

µ̄1 increases, the stress required to maintain the angular displacement decreases, i.e.,

the higher the degradation of the material, the greater is the stress relaxation in

that less moment is necessary to maintain the angular displacement. Of course, since

the moment is related to the shear stress through Eq. (4.32), we can call this stress

relaxation due to degradation. In Figs. (15), (16) the non-dimensional moment is

portrayed as a function of non-dimensional time by varying µ1, b1 and n1 along with

other quantities as indicated. In all these cases, it is seen that as the degradation

increases, less moment is needed to maintain the deformation, as is to be expected.

Next, we assume that the material is healing as the fluid diffuses (see Fig. (17)), and

the non-dimensional moment is observed as a function of time for a fixed value of
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Fig. 15.: (a) Solution to the convection diffusion equation given in Eq. (4.44). (b)

Non-dimensional moment (M̄) as a function of non-dimensional time (t̄) for various

values of µ̄1 starting from 0 to 0.5 in increments of 0.1 for the degradation case. Values

chosen were Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1, D̄ = 0.01, b0 = n0 = 1, b1 = 0, n1 = 0. This

corresponds to the neo-Hookean model since n = 1. (c) Non-dimensional moment (M̄)

as a function of non-dimensional time (t̄) with µ̄1 varying from 0 to 0.5 in increments

of 0.1 for the degradation case. Values chosen were Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1,

D̄ = 0.01, b0 = n0 = 1, b1 = 0.1, n1 = 0.1.
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Fig. 16.: (a) Non-dimensional moment (M̄) as a function of non-dimensional time (t̄)

for various values of b1 varying from 0 to 0.8 in increments of 0.2 for the degradation

case. Here, Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1, D̄ = 0.01, b0 = n0 = 1, µ̄1 = 0.1, n1 = 0.1. (b)

Non-dimensional moment (M̄) as a function of non-dimensional time (t̄) for various

values of n1 starting at 0 to 0.8 in increments of 0.2 for the degradation case. Here,

Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1, D̄ = 0.01, b0 = n0 = 1, b1 = 0.1, µ̄1 = 0.1.



90

Fig. 17.: Non-dimensional moment (M̄) as a function of non-dimensional time (t̄) for

various values of the material parameters when the body is healing. (a) µ̄1 varying

from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1, b1 = 0, n1 = 0 (neo-Hookean

model). (b) µ̄1 varying from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1, b1 = 0.1,

n1 = 0.1. (c) b1 varying from 0 to 0.8 in increments of 0.2 with b0 = n0 = 1, µ̄1 = 0.1,

n1 = 0.1. (d) n1 varying from 0 to 0.8 in increments of 0.2 with b0 = n0 = 1, b1 = 0.1,

µ̄1 = 0.1. Other values chosen in (a), (b), (c), (d) were Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1,

D̄ = 0.01.
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Fig. 18.: Non-dimensional angular displacement (ψ̄) as a function of non-dimensional

time (t̄) for various values of the material parameters when the body is degrading. (a)

µ̄1 varying from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1, b1 = 0, n1 = 0 (neo-

Hookean model). (b) µ̄1 varying from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1,

b1 = 0.1, n1 = 0.1. (c) b1 varying from 0 to 0.8 in increments of 0.2 with b0 = n0 = 1,

µ̄1 = 0.1, n1 = 0.1. (d) n1 varying from 0 to 0.4 in increments of 0.1 with b0 = n0 = 1,

b1 = 0.1, µ̄1 = 0.1. Other values chosen in (a), (b), (c), (d) were Ri/Ro = 0.5, q̄ = 1,

M̄ = 0.5, D̄ = 0.01.



92

Fig. 19.: Non-dimensional angular displacement (ψ̄) as a function of non-dimensional

time (t̄) for various values of the material parameters when the body is healing. (a)

µ̄1 varying from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1, b1 = 0, n1 = 0 (neo-

Hookean model). (b) µ̄1 varying from 0 to 0.5 in increments of 0.1 with b0 = n0 = 1,

b1 = 0.1, n1 = 0.1. (c) b1 varying from 0 to 0.8 in increments of 0.2 with b0 = n0 = 1,

µ̄1 = 0.1, n1 = 0.1. (d) n1 varying from 0 to 0.4 in increments of 0.1 with b0 = n0 = 1,

b1 = 0.1, µ̄1 = 0.1. Other values chosen in (a), (b), (c), (d) were Ri/Ro = 0.5, q̄ = 1,

M̄ = 0.5, D̄ = 0.01.
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Fig. 20.: (a) Non-dimensional moment (M̄) as a function of non-dimensional time (t̄)

for various values of µ̄1 starting from 0 to 0.5 in increments of 0.1 for the degradation

case with Ri/Ro = 0.75.
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Fig. 20.: continued. (b) Non-dimensional moment (M̄) as a function of non-

dimensional time (t̄) for various values of µ̄1 starting from 0 to 0.5 in increments

of 0.1 for the degradation case with Ri/Ro = 0.35. (c) Non-dimensional angular

displacement (ψ̄) as a function of non-dimensional time (t̄) for various values of µ̄1

starting from 0 to 0.5 in increments of 0.1 for the degradation case with Ri/Ro = 0.75.

(d) Non-dimensional angular displacement (ψ̄) as a function of non-dimensional time

(t̄) for various values of µ̄1 starting from 0 to 0.5 in increments of 0.1 for the degra-

dation case with Ri/Ro = 0.35. In all cases, q̄ = 1, b0 = n0 = 1, b1 = 0.0, n1 = 0.0.

Initial and boundary conditions considered are given by Eqs. (4.45–4.47).
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non-dimensional angular displacement. As the body heals with time, the moment

required to maintain the deformation increases. Furthermore, as seen from Figs. (15),

(16), (17) the non-dimensional moment reaches a steady value to maintain the angular

displacement since the concentration of the diffusant reaches a steady value after

which there is no further degradation or healing.

Fig. (18) shows that the non-dimensional angular displacement of the cylinder

increases with time for an applied non-dimensional moment when the generalized

neo-Hookean body is degrading i.e., the body ”creeps” for sometime, and then the

angular displacement reaches a steady value. This is very different from the creep

in a viscoelastic solid, wherein the angular displacement continuously increases with

time when an external moment is applied. This is one way of determining if the

creep undergone by a body is either due to the viscoelastic nature of the body or

due to degradation. Now, when one considers healing, the non-dimensional angular

displacement of the body decreases with time as shown in Fig. (19) for an applied

moment, and then remains steady.

As mentioned in the introduction, Rajagopal and Wineman [78] showed that the

stress relaxation due to aging depends on the material geometry, and this charac-

teristic differentiates the stress relaxation due to aging/degradation from the stress

relaxation due to viscoelasticity. To illustrate this phenomenon in our work, results

were obtained at the ratio of the inner radius of the annulus to the outer radius (r̄i)

being 0.35 and 0.75 (see Fig. (20)), and it is seen that not only stress relaxation but

also creep due to degradation depends on the geometry. Comparing Figs. (20)(a)

and (20)(b), Figs. (20)(c) and (20)(d), one can also see that the steady state values

are attained at a faster rate when r̄i = 0.75. This is because the annulus has a smaller

thickness for this case and so the concentration reaches steady state faster.

To see how the stress relaxation and creep depend on the diffusivity, we changed
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the non-dimensional diffusivity (D̄) from 0.01 to 0.1. As can be seen in Fig. (21)

the moment relaxes faster as the diffusivity increases, and the angular displacement

undergone by the body increases faster as the diffusivity increases. This is because

higher diffusivity means that the concentration at any given location increases faster

as it tends towards the steady state value, and as the material parameters decrease or

increase (based on degradation or healing) in value with increasing concentration, the

material degrades or heals faster. Also, notice that the steady state non-dimensional

moment and the non-dimensional angular displacement values are the same for the

three values of the non-dimensional diffusivity. This is due to the fact that the steady

state solution for concentration of the diffusant is the same in all the cases, which is

c(r, t) = 1, for t sufficiently large so that steady state is reached.

Next, we shall look at how the results vary when the diffusivity depends on the

strain; we choose the Almansi-Hamel strain as the measure of the non-linear strain.

This is to capture the fact that the pore structure in the body depends on the strain

and hence will lead to a change in the diffusivity. However, a priori, it is not clear

whether the diffusivity has to increase or decrease. In this study, we shall assume

that the diffusivity increases with the strain.
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Fig. 21.: (a) Comparison of non-dimensional moment (M̄) as a function of non-

dimensional time (t̄) for various constant diffusivity values for ψ̄ = 1. (b) Comparison

of non-dimensional angular displacement (ψ̄) as a function of non-dimensional time

(t̄) for various constant diffusivity values for M̄ = 1 . Also, Ri/Ro = 0.5, q̄ = 1,

b0 = n0 = 1, b1 = 0.1, n1 = 0.1, µ̄1 = 0.4. Initial and boundary conditions considered

are given by Eqs. (4.45–4.47).
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Fig. 22.: (a) Solution to the convection-diffusion equation Eq. (4.44) when the dif-

fusivity is held constant. (b) Solution to Eq. (4.44) when the diffusivity depends on

the Almansi-Hamel strain.
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Fig. 22.: continued. (c) Non-dimensional moment (M̄) as a function of non-

dimensional time (t̄) with and without diffusivity depending on the Almansi-Hamel

strain for ψ̄ = 1. (d) Non-dimensional angular displacement (ψ̄) as a function of non-

dimensional time (t̄) with and without diffusivity depending on the Almansi-Hamel

strain for M̄ = 1. Here, Ri/Ro = 0.5, q̄ = 1, b0 = n0 = 1, b1 = 0.1, n1 = 0.1,

µ̄1 = 0.4. For constant diffusivity case D̄ = 0.01, and for diffusivity depending on

the Almansi-strain, relation Eq. (4.53) is assumed with D̄0 = 0.01, D̄∞ = 0.1, λ = 1.

Initial and boundary conditions considered are given by Eqs. (4.45–4.47).
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Fig. 23.: (a) Solution to the convection-diffusion equation Eq. (4.44) when the dif-

fusivity is held constant. (b) Solution to Eq. (4.44) when the diffusivity depends on

the Almansi-Hamel strain.
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Fig. 23.: continued. (c) Non-dimensional moment (M̄) as a function of non-

dimensional time (t̄) with and without diffusivity depending on the Almansi-Hamel

strain for ψ̄ = 1. (d) Non-dimensional displacement (ψ̄) as a function of non-

dimensional time (t̄) with and without diffusivity depending on the Almansi-Hamel

strain for M̄ = 1. Here, Ri/Ro = 0.5, q̄ = 1, b0 = n0 = 1, b1 = 0.1, n1 = 0.1,

µ̄1 = 0.4. For constant diffusivity case D̄ = 0.01, and for diffusivity depending on

the Almansi-strain, relation Eq. (4.53) is assumed with D̄0 = 0.01, D̄∞ = 0.1, λ = 1.

Initial and boundary conditions considered are given by Eqs. (4.48–4.50).
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Fig. 24.: Comparison of the steady state solutions (t̄ = 40) to Eq. (4.44) with constant

diffusivity and when the diffusivity depends on the Almansi-Hamel strain, with initial

and boundary conditions given by Eqs. (4.48–4.50). Ri/Ro = 0.5, q̄ = 1, ψ̄ = 1,

b0 = n0 = 1, b1 = 0.1, n1 = 0.1, µ̄1 = 0.4. For constant diffusivity case D̄ = 0.01, and

for diffusivity depending on the Almansi-strain, relation Eq. (4.53) is assumed with

D̄0 = 0.01, D̄∞ = 0.1, λ = 1.
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Now, the Almansi-Hamel strain is given by

e =
1

2

(
I−B−1

)
=


0 0 0

0 0

(
1

2
rψ

)
0

(
1

2
rψ

) (
−1

2
r2ψ2

)
 . (4.51)

The Frobenius norm of e is given by

‖e‖ :=
√
tr (eTe) =

√
1

4
(rψ)4 +

1

2
(rψ)2

=

√
1

4
q̄2
(
r̄ψ̄
)4

+
1

2
q̄
(
r̄ψ̄
)2
. (4.52)

We shall assume that the diffusivity D̄ depends on the Almansi-Hamel strain in the

following manner

D̄ = D̄0 +
(
D̄∞ − D̄0

) (
1− e−λ‖e‖

)
. (4.53)

Figs. (22)(c), (22)(d) compare the stress relaxation and creep for the case with

constant diffusivity against the case when the diffusivity depends on the Almansi-

Hamel strain with the initial and boundary conditions considered are given by Eqs.

(4.45–4.47). The stress relaxation and creep are faster when diffusivity is assumed

to be a function of the Almansi-Hamel strain, as the diffusivity is higher in this case

and hence the degradation is faster.

Next, we shall consider the situation when we have the initial and boundary

conditions given by Eqs. (4.48–4.50). Here too, the stress relaxation and creep are

faster when the diffusivity depends on the Almansi-Hamel strain is assumed (see

Figs. (23)(c), (23)(d)). However, the steady state values of the non-dimensional mo-

ment and non-dimensional angular displacement when the diffusivity is maintained

constant is not the same as that when the diffusivity depends on the Almansi-Hamel
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strain. One can explain this by looking at the steady state solutions for the convection-

diffusion equation in Fig. (24). Unlike the situation corresponding to Eqs. (4.45–4.47),

the steady state solutions for the concentration are not the same and the steady state

concentrations when the diffusivity depends on the strain are higher than the steady

state values when the diffusivity is constant. This induces the stresses to relax to a

lower value in (23)(c) and the angular diplacement to reach a higher value in (23)(d).

These values are also attained faster as the steady state solution is reached faster

when the diffusivity depends on the strain.

E. Conclusions

Using the generalized neo-Hookean solid as a vehicle to illustrate the effects of degra-

dation of a body that is initially elastic we have shown that degradation due to the

infusion of a fluid can cause stress relaxation and creep until a steady state is reached.

In contrast to a viscoelastic body which creeps continuously upon application of a

load, the body considered here stops to creep after a certain steady state value is

attained. This is one important characteristic that can be used to differentiate the

creep due to the viscoelastic nature of a body, and the creep due to degradation.

We have also shown the geometric dependence of the stress relaxation and creep due

to degradation. We have also considered the case of healing or strengthening of a

generalized neo-Hookean body due to the infusion of a fluid. One can easily extend

this work to other forms of degradation in a generalized neo-Hookean material or for

that matter in any elastic body whose properties change due to the infusion of a fluid,

by providing an appropriate equation that governs the evolution of the degradation

parameter.
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CHAPTER V

MODELING THE NON-LINEAR VISCOELASTIC RESPONSE OF HIGH

TEMPERATURE POLYIMIDES

A constitutive model is developed to predict the viscoelastic response of polyimide

resins that are used in high temperature applications. This model is based on a

thermodynamic framework that uses the notion that the ‘natural configuration’ of

a body evolves as the body undergoes a process and the evolution is determined

by maximizing the rate of entropy production in general and the rate of dissipation

within purely mechanical considerations. We constitutively prescribe forms for the

specific Helmholtz potential and the rate of dissipation (which is the product of

density, temperature and the rate of entropy production), and the model is derived

by maximizing the rate of dissipation with the constraint of incompressibility, and

the reduced energy dissipation equation is also regarded as a constraint in that it

is required to be met in every process that the body undergoes. The efficacy of the

model is ascertained by comparing the predictions of the model with the experimental

data for PMR-15 and HFPE-II-52 polyimide resins.

A. Introduction

Polyimides are well known to be extremely stable at high temperatures and also have

a glass transition temperature that is greater than 300◦C. Due to their good perfor-

mance at high temperature ranges they are used by aircraft and automobile industries

to fashion their products. They are also used in wafer fabrication due to their excel-

lent high temperature resistance and adhesive properties (see [25]). The mechanical

properties of polyimides and polyimide composites used in several applications espe-

cially in the aerospace industry are affected by high temperature, diffusion of moisture
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and subsequent oxidation. Hence, there is need for a good understanding of the vari-

ous degradation mechanisms that are operational when such materials are subject to

hostile environment. Recent experimental evidence shows that the response of poly-

imide resins is solid-like viscoelastic response (see [91], [92]). Moreover, the response

of such bodies is non-linear (For a detailed description concerning how to differenti-

ate between viscoelastic solid-like and fluid-like response we refer the reader to [11],

[93]). A thermodynamic framework which takes into account the viscoelastic solid-

like response of the polyimides along with the various degradation processes needs to

be developed. As a first step, our aim in this chapter is to develop a model based

on a thermodynamic framework that can predict the non-linear viscoelastic solid-like

response of polyimides at various temperatures. This first step is non-trivial and

presents interesting challenges. Subsequently, we shall extend this model to include

degradation due to moisture diffusion, and chemical reactions, specifically oxidation.

While the thermal response of linear viscoelastic solids have been studied in great

detail, there has been no systematic study of non-linear viscoelastic solids. Standard

techniques like superposition that are valid in linear response are no longer valid,

thus making the study much more complicated. A single integral model has been

proposed by Pipkin and Rogers [14] who have assumed that a linear combination

of responses to single step strain histories can be used as an approximation to the

response to an arbitrary strain history. Unfortunately, such a model does not have

a sound thermodynamic basis, and moreover the model is too general to be of use.

Later on, Fung [15] developed a quasi-linear viscoelastic model that has been shown

to predict the behavior of several biological materials, though not adequately when

the strains are large. This model by Fung can be shown to be a special case of the

model by Pipkin and Rogers. For further details on the various viscoelastic models

for solids that have been reported in the literature, see the review articles by Drapaca
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et al. [16] and Wineman [17].

Most of the literature concerning the modeling of the response of polyimides

use a viscoelastic model proposed by Schapery [94]. Muliana and Sawant [95] used

Schapery’s model and obtained material parameters for PMR-151 using the experi-

ments carried out by Marais and Villoutreix [96]. They used these material parame-

ters in their ‘micromechanical’ model to predict the behavior of Kevlar/PMR-15 com-

posites. Ahci and Talreja [97] performed experiments on a composite made of graphite

fiber in a HFPE-II2. They have extended the framework developed by Schapery to

include a ‘damage tensor’ as an internal variable, and have also included anisotropy to

model the composite behavior. Recently, Falcone and Ruggles-Wrenn performed ex-

periments on PMR-15 at the service temperature of an aircraft, 288◦C, and compared

the predictions of Schapery’s model for the problem of creep with experimental data.

Bhargava [91] has also used Schapery’s model to predict the behavior of HFPE-II-52.

More recently, Hall [98] developed a thermodynamic framework for finite anisotropic

viscoplastic models to study the response of polymers subject to extreme thermal

environment.

Given its extensive use some comments on Schapery’s model are warranted:

Schapery developed a viscoelastic model using linear phenomenological relations based

on Onsager’s reciprocity theorem (see [56]) which states that the forces are linearly

related to the fluxes near equilibrium (see for instance, equation 11 in [99]). Next,

he introduced nonlinearity by assuming that the coefficient matrix relating the forces

and fluxes depends on generalized coordinates and temperature. Furthermore, the

free energy expression was obtained using a Taylor series expansion and by neglecting

1PMR polymerization of monomer reactant.
2HFPE stands for hydrofluoropolyether.
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higher order terms. Thus, while the model might be able to describe slight deviation

from linear response, one cannot expect it to be capable of describing truly non-

linear response that is thermodynamically compatible. Thus, if one is interested in

describing the non-linear response of viscoelastic solids that takes into account its

thermodynamic effects, a different model is necessary. In this chapter we develop a

viscoelastic solid model based on a thermodynamic framework that can be used to

describe the non-linear response exhibited by a class of polymers. The framework

has been recently developed and is used to describe the response of bodies that pro-

duce entropy in a variety of ways. In order to derive meaningful physical models

they require that amongst the class of processes that are possible the process which

is actually taken by the body is one that maximizes the rate of entropy production.

One can find details concerning this approach in the review article by Rajagopal and

Srinivasa [20]. In this approach, one need not assume near-equilibrium behavior and

linear phenomenological relations between forces and fluxes, the approach is much

more general. Also, one need not use a Taylor series expansion of the free energy,

and neglect higher order terms. Recently, Rajagopal and Srinivasa [38] have shown

that if one uses an expression for entropy production which is quadratic in the fluxes,

one can arrive at Onsager’s relations upon maximizing the rate of entropy produc-

tion along with appropriate constraints. As mentioned earlier such a thermodynamic

framework has also been used to model various material responses such as viscoelastic

solid-like and fluid-like behavior, traditional plasticity, twinning, crystallization and

so on (see the review article by Rajagopal and Srinivasa [20] for the references and

for the details of the framework).

In this chapter, a viscoelastic solid model is derived by assuming forms for the

Helmholtz potential and the rate of dissipation, and maximizing the rate of dissi-
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pation3 with incompressibility and the reduced energy dissipation equation as con-

straints. This model is shown to predict the viscoelastic response of polyimide resin.

Experimental data for PMR-15 polyimide resin from [92], and for HFPE-II-52 from

[91] are used to evaluate the efficacy of the model.

The current chapter is organized as follows. In section (B), the kinematics that

is required in this chapter are documented. In sub-sections (C.1), (C.2), a viscoelas-

tic solid model is developed using a thermodynamic framework. We show that the

viscoelastic solid model that is developed is a generalization of the one-dimensional

standard linear solid model in (C.3). In sub-section (C.4) the problem of uniaxial

extension is set up using our model, and the creep solution obtained by using the

model is compared with experimental data for PMR-15 and HFPE-II-52 polyimide

resins in sub-section (C.5). We find that the theoretical predictions agree quite well

with the experimental results.

B. Preliminaries

Let κR(B) and κt(B) denote the reference configuration and the current configuration,

respectively. The motion χκR is defined as the one-one mapping that assigns to each

point X ∈ κR, a point x ∈ κt, at a time t, i.e.,

x = χκR(X, t). (5.1)

The mapping χκR(X, t) is assumed to be sufficiently smooth and invertible. Let κp(t)

be the stress-free configuration instantaneously reached by the body upon removal of

the external stimuli (see Fig. (25)). We assume that the body can be instantaneously

3In case of isothermal processes, the rate of dissipation is the rate of conversion
of mechanical working into heat (energy in thermal form), and in general it is the
product of density, temperature and the rate of entropy production.
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unloaded. We shall call this configuration as the natural configuration corresponding

to κt. The natural configuration that underlies the current configuration depends

on the process class that is admissible. Thus underlying natural configuration corre-

sponding to isothermal and adiabatic processes could be different. Let F be gradient

of motion χκR(X, t) (usually known as the deformation gradient), defined by

F :=
∂χκR
∂X

, (5.2)

and let the left and right Cauchy-Green tensors be defined through

B = FF T , C = F TF . (5.3)

Let F κp(t) be the gradient of the mapping from κp(t) to κt, and let G be defined by

G := F κR→κp(t) = F−1
κp(t)

F . (5.4)

Similar to Eq. (5.3), we shall denote the left Cauchy-Green stretch tensors BG and

Bp(t) as

BG = GGT , Bp(t) = F κp(t)F
T
κp(t)

. (5.5)

We shall also define the velocity gradients

LG = ĠG−1, L = Ḟ F−1, Lp = Ḟ κp(t)F
−1
κp(t)

, (5.6)

and their symmetric parts by

Di =
1

2

(
Li +LTi

)
, i = p(t), G or no subscript. (5.7)

Also, we define the principal invariants through

IBl
= tr(Bl), IIBl

=
1

2

{
[tr(Bl)]

2 − tr(B2
l )
}
, IIIBl

= det(Bl) l = G, p(t),

(5.8)
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κR

κp(t)

κt

reference configuration current configuration

natural configuration

F

G
Fκp(t)

Fig. 25.: Illustration of various configurations of the body.

where tr(.) is the trace operator for a second order tensor and det(.) is the determinant.

Now, from Eq. (5.4)

Ḟ = Ḟ κp(t)G+ F κp(t)Ġ

⇒ Ḟ F−1 = Ḟ κp(t)GG
−1F−1

κp(t)
+ F κp(t)Ġ

⇒ L = Lp(t) + F κp(t)LGF
−1
κp(t)

,

(5.9)

where ˙(.) is the material time derivative of the second order tensor. In addition,

Ḃp(t) = Ḟ κp(t)F
T + F Ḟ

T

κp(t)

= Lp(t)Bp(t) +Bp(t)L
T
p(t),

(5.10)

and similarly

ḂG = LGBG +BGL
T
G. (5.11)

Hence, from Eq. (5.9) and Eq. (5.10), we have

Ḃp(t) = LBp(t) +Bp(t)L
T
p(t) − F κp(t)

(
LG +LTG

)
F T
κp(t)

, (5.12)
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and so
∇
Bp(t)= −2F κp(t)DGF

T
κp(t)

, (5.13)

where
∇
(.) is the usual Oldroyd derivative defined through

∇
A:= Ȧ − LA − ALT .

When one considers non-isothermal processes the local form of the second law of

thermodynamics takes the following form:

T ·D − %ψ̇ − %sθ̇ − qh · grad(θ)

θ
= %θζ := ξ ≥ 0, (5.14)

where T is the Cauchy stress, ψ is the specific Helmholtz potential, % is the density,

θ is the temperature, s is the specific entropy, qh is the heat flux, ζ is the rate of

entropy production and ξ is the rate of dissipation.

C. Constitutive assumptions and maximization of the rate of dissipation

1. General results

We shall assume that the viscoelastic solid is isotropic and incompressible with the

specific Helmholtz potential of the form

ψ = ψ(Bp(t),BG, θ) = ψ̂(IBp(t)
, IIBp(t)

, IBG
, IIBG

, θ). (5.15)

Since the elastic response is isotropic, without loss of generality, we choose κp(t) such

that

F κp(t) = V κp(t) , (5.16)

where V κp(t) is the right stretch tensor in the polar decomposition of F κp(t) . We shall

also assume that the total rate of dissipation can be split additively as follows

T ·D − %ψ̇ − %sθ̇ = ξm ≥ 0, −qh · grad(θ)

θ
= ξc ≥ 0, (5.17)



113

where ξm, ξc are the rates of mechanical dissipation (conversion of working into ther-

mal energy) and dissipation due to heat conduction, respectively. Now, we constitu-

tively choose

qh = −k(θ) grad(θ), k(θ) ≥ 0, (5.18)

where k is the thermal conductivity, so that Eq. (5.17)(b) is automatically satisfied.

Next,

ψ̇ =

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
I − ∂ψ̂

∂IIBp(t)

Bp(t)

]
· Ḃp(t)

+

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
I − ∂ψ̂

∂IIBG

BG

]
· ḂG +

∂ψ̂

∂θ
θ̇,

(5.19)

and using Eqs. (5.10), (5.11) along with Eq. (5.16) in Eq. (5.19), we obtain

ψ̇ = 2

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
· (D −DG)

+ 2

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
·DG +

∂ψ̂

∂θ
θ̇.

. (5.20)

Next, we shall assume the rate of mechanical dissipation to be of the form

ξm = ξm(θ,Bp(t),DG). (5.21)
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On substituting Eq. (5.20) into Eq. (5.17)(a), we arrive at[
T − 2%

(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) + 2%

∂ψ̂

∂IIBp(t)

B2
p(t)

]
·D

+ 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
·DG

− 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
·DG

− %
[
∂ψ̂

∂θ
+ s

]
θ̇

= ξm(θ,Bp(t),DG).

(5.22)

We shall set

s = −∂ψ̂
∂θ
, (5.23)

and define

T p(t) := 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
, (5.24)

TG := 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
. (5.25)

Using Eqs. (5.23)–(5.25) in Eq. (5.22), we obtain

(
T − T p(t)

)
·D +

(
T p(t) − TG

)
·DG

= ξm(θ,Bp(t),DG).

(5.26)

From constraint of incompressibility, we have

tr(D) = tr(Dp(t)) = tr(DG) = 0. (5.27)

Since, RHS of Eq. (5.26) does not depend on D, using Eq. (5.27),

T = pI + T p(t), (5.28)



115

where p is the Lagrange multiplier due to the constraint of incompressibility, with

(
T p(t) − TG

)
·DG = ξm(θ,Bp(t),DG), (5.29)

which can be re-written as

(T − TG) ·DG = ξm(θ,Bp(t),DG), (5.30)

using Eqs. (5.27) and (5.28).

Now, we shall maximize the rate of dissipation ξm by varying DG for fixed Bp(t).

That is, we maximize the function4

Φ := ξm + λ1 [ξm − (T − TG) ·DG] + λ2(I ·DG), (5.31)

where λ1, λ2 are the Lagrange multipliers. By setting, ∂Φ/∂DG = 0, we get

T = TG +
λ2

λ1

I +

(
λ1 + 1

λ1

)
∂ξm
∂DG

. (5.32)

We need to determine the Lagrange multipliers. On substituting Eq. (5.32) into

Eq. (5.30), we get (
λ1 + 1

λ1

)
=

ξm
∂ξm
∂DG
·DG

, (5.33)

and so Eq. (5.32) with Eq. (5.25) becomes

T = 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
+

(
ξm

∂ξm
∂DG
·DG

)
∂ξm
∂DG

+ λ̂I, (5.34)

where λ̂ := λ2
λ1

is the Lagrange multiplier due to the constraint of incompressibility.

4Though we only document that the first derivative is zero here, it can be shown
that the extremum is a maximum.
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Finally, the constitutive relations for the viscoelastic solid are given by

T = pI + 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
, (5.35a)

T = λ̂I + 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
+

(
ξm

∂ξm
∂DG
·DG

)
∂ξm
∂DG

,

(5.35b)

qh = −k(θ)grad(θ), s = −∂ψ̂
∂θ
. (5.35c)

2. Specific case

Specifically, we choose the specific Helmholtz potential as

ψ̂ = As + (Bs + cs2) (θ − θs)−
cs1
2

(θ − θs)2 − cs2θln
(
θ

θs

)
+
µG0 − µG1θ

2%θs
(IBG

− 3)

+
µp0 − µp1θ

2%θs
(IBp(t)

− 3), (5.36)

where µG, µp are elastic constants, θs is a reference temperature for the viscoelastic

solid, and the rate of dissipation as

ξm = η(θ)
(
DG ·Bp(t)DG

)
, (5.37)

where η is the viscosity.

Now,

s = −∂ψ̂
∂θ

= −(Bs + cs2) + cs1 (θ − θs) + cs2ln

(
θ

θs

)
+ cs2 +

µG1

2%θs
(IBG

− 3) +
µp1
2%θs

(IBp(t)
− 3).

(5.38)
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The internal energy ε is given by

ε = ψ̂ + θs

= As −Bsθs + cs2 (θ − θs) +
cs1
2

(
θ2 − θ2

s

)
+
µG0

2%θs
(IBG

− 3) +
µp0
2%θs

(IBp(t)
− 3).

(5.39)

and the specific heat capacity Cv is

Cv =
∂ε

∂θ
= cs1θ + cs2. (5.40)

Also, Eqs. (5.35a), (5.35b) reduce to

T = pI + µ̄pBp(t), (5.41a)

T = λI + µ̄GBG +
η

2

(
Bp(t)DG +DGBp(t)

)
, (5.41b)

where µ̄p = µp0−µp1θ
θs

, µ̄G = µG0−µG1θ
θs

. From Eq. (5.41)

(p− λ)I + µ̄pBp(t) = µ̄GBG +
η

2

(
Bp(t)DG +DGBp(t)

)
, (5.42)

and so by pre-multiplying the above equation by B−1
p(t) and taking the trace, we get

(p− λ) =
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

. (5.43)

Using Eq. (5.43) in Eq. (5.42), we arrive at the following equation that holds:[
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

]
I + µ̄pBp(t) = µ̄GBG +

η

2

(
Bp(t)DG +DGBp(t)

)
, (5.44)

which can be re-written as[
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

]
I + µ̄pBp(t)

= µ̄GBG −
η

4

(
V p(t)

∇
Bp(t) V

−1
κp(t)

+ V −1
κp(t)

∇
Bp(t) V p(t)

)
, (5.45)
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where we have used Eqs. (5.13) and (5.44). Thus, with the current choice of the

specific Helmholtz potential and the rate of dissipation, we arrive at the following

constitutive equations:

T = pI + µ̄pBp(t), (5.46)

where the evolution of the natural configuration is given by Eq. (5.45). Also, note that

the above model reduces to the generalized Maxwell fluid model derived by Rajagopal

and Srinivasa [6] when µ̄G = 0. This is interesting, but not totally surprising, that we

obtain a fluid model by eliminating a energy storage mechanism. In the corresponding

one dimensional model this is tantamount to a spring being removed.

3. Relationship to the standard linear solid

Now, Eqs. (5.46), (5.45) can be re-written as

T = (p+ µ̄p)I + µ̄p(Bp(t) − I), (5.47a)

[
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

+ µ̄p − µ̄G
]
I + µ̄p(Bp(t) − I)

= µ̄G(BG − I)− η

4

(
V p(t)

∇
Bp(t) V

−1
κp(t)

+ V −1
κp(t)

∇
Bp(t) V p(t)

)
. (5.47b)

If λi (i = G, p) is the one-dimensional stretch and εi = lnλi (i = G, p) is the

logarithmic strain, when one is restricted to one-dimension, Eq. (5.47) reduces to

σ = µ̄p(λ
2
p − 1), (5.48a)

µ̄p(λ
2
p − 1) = µ̄G(λ2

G − 1) + ηλ2
p

λ̇G
λG
, (5.48b)
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where σ is the one dimensional stress. Eq. (5.48) under the assumption that εi �

1 (i = G, p) reduces to

σ = 2µ̄pεp, (5.49a)

2µ̄pεp = 2µ̄GεG + η̂ε̇G, (5.49b)

where η̂ = ηλ2
p is the stretch dependent viscosity. Eq. (5.49) can also be obtained by

using a Kelvin-Voigt element (with spring constant 2µ̄G, viscosity of η̂) and a spring

(of spring constant 2µ̄p) in series, which is the spring-dashpot analogy for the stan-

dard linear solid. However, in this model the viscosity is stretch dependent and hence

the model is a generalization of the classical standard linear solid as the viscosity in

the standard linear solid model is assumed to be a constant. Hence, the viscoelastic

solid model given by Eqs. (5.46), (5.45) is a three-dimensional generalization of the

standard linear solid. Of course, there can be infinity of three dimensional general-

izations of a one dimensional model (see [53]). Recently, Kannan and Rajagopal [52]

have also derived a three-dimensional viscoelastic solid model, that is different from

the model developed in this chapter, that also reduces to the standard linear solid.

That more than one, in fact, infinity of generalizations are possible is akin to the

situation in elementary mathematics and stems from the fact that infinity of three

dimensional functions can have the same one dimensional projection. In fact, even

when one considers the thermodynamical formulation that is used in this chapter,

using different forms for the specific Helmholtz potential and the rate of dissipation,

and by maximizing the rate of dissipation with the necessary constraints more than

one three-dimensional model reduces to the same one-dimensional model (see [53] for

details of an example).
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4. Application of the model

Let us study the uniaxial extension, given by

x = λ(t)X, y =
1√
λ(t)

Y, z =
1√
λ(t)

Z, (5.50)

within the context of this model. The velocity gradient is given by

L = diag

{
λ̇

λ
,− λ̇

2λ
,− λ̇

2λ

}
. (5.51)

We shall assume that the stretch Bp(t) is given by

Bp(t) = diag

{
B,

1√
B
,

1√
B

}
. (5.52)

So,

Ḃp(t) = diag

{
Ḃ,− Ḃ

2B3/2
,− Ḃ

2B3/2

}
, (5.53)

∇
Bp(t)= diag

{
Ḃ − 2Bλ̇

λ
,− Ḃ

2B3/2
+

λ̇

λ
√
B
,− Ḃ

2B3/2
+

λ̇

λ
√
B

}
, (5.54)

V κp(t) = diag

{√
B,

1

B1/4
,

1

B1/4

}
, (5.55)

and

DG = −1

2
diag

{
Ḃ

B
− 2λ̇

λ
,
λ̇

λ
− Ḃ

2B
,
λ̇

λ
− Ḃ

2B

}
. (5.56)

Also,

G = V −1
κp(t)

F

= diag

{
λ√
B
,
B1/4

√
λ
,
B1/4

√
λ

}
,

(5.57)

which yields

BG = diag

{
λ2

B
,

√
B

λ
,

√
B

λ

}
. (5.58)
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and

B−1
p(t)BG = diag

{
λ2

B2
,
B

λ
,
B

λ

}
. (5.59)

Substituting Eqs. (5.52), (5.54)), (5.59) into Eq. (5.44)

Ḃ

2
=
Bλ̇

λ
+
µ̄G
η

λ2

B
− µ̄p

η
B −

{
µ̄G
η

(λ3 + 2B3)− 3 µ̄p
η
λB2

λB (1 + 2B3/2)

}
, (5.60)

which can be re-written in the following form:

λ̇ = λ

{
Ḃ

2B
−
[

1

ηB

(
µ̄G

λ2

B
− µ̄pB −

(
µ̄G (λ3 + 2B3)− 3µ̄pB

2λ

Bλ(1 + 2B3/2)

))]}
. (5.61)

Now, from Eqs. (5.52), (5.46), and using the fact that lateral surfaces are traction

free, we conclude that

T11 = µ̄p

(
B − 1√

B

)
. (5.62)

We shall also use logarithmic strain (or true strain) ε = lnλ as our strain measure in

what follows.

5. Comparison with experimental creep data

For the loading process, with known constant applied stress T11 and material proper-

ties, Eq. (5.62) was first solved for B(t). Then, Eq. (5.60) was solved with the initial

condition λ(0) =
√
B(0). For the unloading process, T11 was set to zero and B(t) was

evaluated using Eq. (5.62). Then, using λ(t+u ) = λ(t−u )
λ(0)

as the initial condition (where

tu is the time when unloading starts), λ(t) during the unloading process is evaluated

using Eq. (5.60). All the ODEs were solved in MATLAB using the ode45 solver.

In order to obtain the material parameters for a given set of experimental creep

data, fminsearch function in MATLAB (which uses Nedler-Mead simplex method)
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was used to minimize the error defined by

error = w ×
√∑

(εtheo,load − εexp,load)2∑
(εexp,load)

2 + (1− w)×
√∑

(εtheo,unload − εexp,unload)2∑
(εexp,unload)

2 ,

(5.63)

where εtheo denotes the theoretical strain values, εexp denotes the experimental strain

values, the suffixes load, unload denote the values during loading and unloading

processes respectively, w is a weight. The material parameters for the model was

obtained for HFPE-II-52 polyimide resin using the experimental creep data from [91]

at different temperatures (285◦C, 300◦C, 315◦C and 330◦C). To determine the efficacy

of the model the following process was followed. At 285◦C, the experimental data

values for the loading of 0.45 UTS were used to obtain the material parameters by

minimizing the error in Eq. (5.63). Then, these material parameters were used for

the model prediction at the other loadings of 0.30 UTS and 0.15 UTS. The loading

values corresponding to the sets of experimental data which were used to obtain the

material parameters at the other temperatures are shown in table (I). Similar to the

process described above for 285◦C, the material parameters shown in table (I) were

used to predict the creep at other temperatures. The model predictions compare well

with the experimental data as shown in Figs. (26), (27).

Next, the creep solution that stems from our model is compared to the experi-

mental creep data of Falcone and Ruggles-Wrenn [92] for PMR-15 resin at 288◦C in

Fig. (28). The best-fit values of the parameters for were found to be µ̄G = 4.42× 108

Pa, µ̄p = 3.76×108 Pa, η = 6.22×1012 Pa.s. A weight of w = 0.75 was used since there

are fewer data points for the unloading process. As it can be seen from Fig. (28),

our model shows a good fit with the experiment. However, there is no additional

experiment with which the predictive capability of the model can be tested.

It is seen in the experiments that at a loading close to the failure values, the
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experimental data shows permanent set in the body, and there seems to be ‘yielding’.

Our model being a viscoelastic solid model it cannot predict such a permanent set.

Thus, the model should be generalized to take into account the inelastic response

of the polymer, but this is a daunting problem that requires a careful and separate

study.

In conclusion, a viscoelastic model has been developed which predicts the behav-

ior of polyimide resins, that takes into account the thermal response, quite well. Our

work can be extended to include anisotropy, and inelasticity to predict the response

of polyimide composites and one can include various degradation mechanisms as well.

Table I.: Table showing values for the ultimate tensile strength (UTS) and various

material parameters (µ̄p, µ̄G, η). The table also shows the loading value data set that

was used to obtain the optimum set of material parameters.

Temperature UTS (MPa) µ̄p (×108 Pa) µ̄G (×109 Pa) η (×1013 Pa.s) Parameter loading value

285◦C 43.0 4.79 1.43 3.95 0.45 UTS

300◦C 40.2 4.12 0.51 2.23 0.45 UTS

315◦C 36.3 4.19 0.79 4.04 0.30 UTS

330◦C 23.8 5.07 0.79 3.19 0.20 UTS
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(b) 300◦C

Fig. 26.: Comparison of the model predictions with experimental creep data of Bhar-

gava [91] at different loadings. The polyimide in this case is HFPE-II-52 at 285◦C

and 300◦C. The parameters chosen and the values for the ultimate tensile strength

(UTS) are shown in table (I). A weight of w = 0.5 was used for these two cases to

obtain the optimum set of parameters.
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(a) 315◦C
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Fig. 27.: Comparison of the model predictions with experimental creep data of Bhar-

gava [91] at different loadings. The polyimide in this case is HFPE-II-52 at 315◦C

and 330◦C. The parameters chosen and the values for the ultimate tensile strength

(UTS) are shown in table (I). A weight of w = 0.75 was used for these two cases to

obtain the optimum set of parameters.
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Fig. 28.: Comparison of the model with experimental creep data of Falcone and

Ruggles-Wrenn [92] for a loading of 10 MPa. The polyimide in this case is PMR-15

at a temperature of 288◦C. The parameter values used were µ̄G = 4.42 × 108 Pa,

µ̄p = 3.76× 108 Pa, η = 6.22× 1012 Pa.
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CHAPTER VI

DIFFUSION OF A FLUID THROUGH A VISCOELASTIC SOLID

This chapter is concerned with the diffusion of a fluid through a viscoelastic solid

undergoing large deformations. The constitutive relations for a mixture of a vis-

coelastic solid and a fluid (specifically Newtonian fluid) are derived using ideas from

the classical theory of mixtures and a thermodynamic framework based on the notion

of maximization of the rate of entropy production. We prescribe forms for the specific

Helmholtz potential and the rate of dissipation and the relations for the partial stress

in the solid, the partial stress in the fluid, the interaction force between the solid and

the fluid, and the evolution equation of the natural configuration of the solid are de-

rived. We also use the assumption that the volume of the mixture is equal to the sum

of the volumes of the two constituents in their natural state as a constraint. Results

from the developed model are shown to be in good agreement with the experimental

data for the diffusion of various solvents through high temperature polyimides that

are used in the aircraft industry. We also study the swelling of a viscoelastic solid

under the application of an external force.

A. Introduction

Several materials in the areas of of polymer mechanics, asphalt mechanics, and biome-

chanics that show non-linear viscoelastic behavior swell in the presence of a fluid. For

instance, polyimides which are known to show viscoelastic solid-like response (see

[91], [92]) are used in the aerospace industry due to their good performance at high

temperatures (also see [25]). These materials in their service environment are known

to swell in the presence of moisture. In addition, asphalt based materials (that are

well know to show non-linear viscoelastic fluid-like behavior) degrade in the presence



128

of moisture [100]. Diffusion of biological fluids through biological materials is another

application wherein typically nutrition is provided by the fluid that diffuses, and the

amount of the stress or strain in the solid can control the chemicals that are released

[101]. Thus, there is a considerable interest to understand how such viscoelastic ma-

terials deform and swell due to diffusion of a fluid. Study of such a phenomenon is

also of interest in geomechanics [102] and food industry [103].

It is well known that the Darcy’s and Fick’s equations ([104, 105]) that are

extensively used cannot predict swelling of the solid as well as the stresses in the solid.

In fact, Darcy’s equation is an approximation of the balance of linear momentum of

the fluid going through a rigid solid. To capture the swelling phenomena, several works

have been done using mixture theory (see review article [106]) and using variational

principles [107]. These models have been shown to match experimental swelling data

well for rubber materials (that show elastic response) due to the diffusion of various

organic solvents.

In the area of diffusion of a fluid through viscoelastic materials, some of the

earliest works were by Biot [108] and Weitsman [68], who have used linear viscoelas-

ticity. In deriving their models, they have used the fact that the fluxes and affinities

are related through linear phenomenonological relations. Later on, Cohen and co-

workers [109, 110], and Durning and co-workers [111, 112] have also recognized the

importance of studying diffusion of solvents through polymeric materials showing vis-

coelastic bodies. They have coupled diffusion and viscoelasticity by adding terms to

the flux of the diffusing fluid that depend on the stress in the solid. Such an approach

does not have a thermodynamic basis. Furthermore, these models developed are only

one-dimensional in nature. Recently, Liu et al. [113] have used the model developed

by Cohen and co-workers to study the effect of various viscoelastic parameters on dif-

fusion. They have shown that comparable relaxation times of polymer viscoelasticity
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and diffusion of a fluid results in non-Fickian behavior.

1. Main contributions of this work

Our main goal in this chapter is to develop a thermodynamic framework to model

diffusion of a fluid through a viscoelastic solid and we shall mainly focus on the

swelling of polyimides. We use ideas from mixture theory (see [90], [114], [115], [116],

[117], [118], [119], [120], [121] for details) and irreversible thermodynamics to build

such a framework. In Chapter V, we developed a framework that can be used to

predict the non-linear viscoelastic response of polyimides under various temperature

and loading conditions. We extend this work in Chapter V to incorporate diffusion

of a fluid and to model the swelling phenomenon.

The thermodynamic framework in the current work uses the notion of evolving

natural configuration that has been used to model a variety of phenomena includ-

ing classical plasticity, viscoelasticity, multi-network theory, superplasticity, twinning,

etc. (see [20] for details). The evolution of such a natural configuration is determined

by maximizing the rate of entropy production (with any additional constraints). We

constitutively prescribe forms for the Helmholtz potential of the mixture and the rate

of dissipation (which is the product of density, temperature and the rate of entropy

production) due to mechanical working, diffusion, heat conduction, and the final con-

stitutive relations are derived by maximizing the rate of dissipation under appropriate

constraints. In such an approach, one need not assume linear phenomenonological

relations between the flux and the affinites, and thus our framework is more general.

It has also been shown recently that if one chooses quadratic form for the rate of en-

tropy production in terms of affinities, and maximizes the rate of entropy production

with respect to the affinities, one can arrive at the Onsager’s relations (see [38] for

further details).
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An initial boundary value problem is solved where a viscoelastic solid held be-

tween two rigid walls, and immersed in a fluid is considered. Using the model de-

veloped in this chapter, free swelling of a viscoelastic solid and swelling under the

application of external force i.e., stress-assisted swelling are studied. The numerical

results for free swelling of the viscoelastic solid are compared with experimental data

for diffusion of different solvents through polyimides.

2. Organization of the work

In section (B), the kinematics required in this chapter are documented. In section (C),

the constitutive assumptions are specified and the constitutive relations are derived.

We shall also show that our constitutive relations reduces to the equations for diffusion

through an elastic solid derived using theory of mixtures when certain parameters

take special values. An initial boundary value problem is set up using our model in

section (D). The boundary conditions used, the non-dimensionalization scheme, and

comparison of the numerical results with experimental data are given in (D.1), (D.2),

and (D.3), respectively. Final concluding remarks are given in section (E).

B. Preliminaries

Let us consider a mixture of a fluid and a viscoelastic solid. We shall assume co-

occupancy of the constituents, which is the central idea in theory of mixtures and

is based on the notion that at each point x in the mixture at some time t, the

two constituents exist together in a homogenized fashion and are capable of moving

relative to each other. We shall denote the quantities associated with the fluid through

the superscript f and use the superscript s for the solid. Now, we shall define the
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motion χi for the i-th constituent of the mixture through

x = χi
(
X i, t

)
, i = f, s, (6.1)

where X i is the material point of the i-th constituent in its reference configuration.

We shall assume that the mapping χi is sufficiently smooth and invertible at each

time t. The velocity associated with the i-th constituent is defined as

vi =
∂χi

∂t
, (6.2)

and the deformation gradient through

F i =
∂χi

∂x
. (6.3)

Let κt denote the current configuration of the mixture and let κR, κr denote the

reference configurations of the solid and the fluid respectively. Also, let κp(t) denote

the natural configuration of the viscoelastic solid (see Fig. (29)). Such a configuration

is attained by the body upon instantaneous removal of external loading. For a Navier-

Stokes fluid, the natural configuration is same as the current configuration of the fluid

[34]. Now, if F i, i = f, s is the gradient of the motion (usually known as deformation

gradient) χi
(
Xi, t

)
, and if F s

κp(t)
is the gradient of the motion of the viscoelastic

solid from κp(t) to κt, then

Gs =
(
F s
κp(t)

)−1

F s. (6.4)

The density ρ and the average velocity (also known as barycentric velocity) v of

the mixture are defined by

ρ =
∑
i

ρi, v =
1

ρ

∑
i

ρivi. (6.5)
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χs(Xs, t)

χf(Xf , t)

x

Xs

Xf

κR

κr

κt

κp(t)
Fs

κp(t)Gs

reference configuration of the solid

reference configuration of the fluid

natural configuration of the solid

current configuration of the mixture

Fig. 29.: Illustration of the various configurations of the viscoelastic solid and fluid

components in the mixture.
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We define the following derivatives for any scalar quantity φi by

∂φi

∂t
=
∂φ̃i

∂t
,

diφi

dt
=
∂φ̂i

∂t
, grad(φi) =

∂φ̃i

∂x
,

∂φi

∂X i =
∂φ̂i

∂X i , (6.6)

where

φi = φ̃i (x, t) = φ̂i
(
X i, t

)
. (6.7)

Hence,

diφi

dt
=
∂φi

∂t
+ grad(φi) · vi, (6.8)

and we shall also define the following

dφ

dt
=
∂φ

∂t
+ grad(φ) · v. (6.9)

The velocity gradient for the i-th component Li and the velocity gradient for the

total mixture L are defined by

Li = grad(vi), L = grad(v). (6.10)

The symmetric and anti-symmetric parts for the velocity gradients Li, L are

Di =
1

2

[
Li +

(
Li
)T]

, W i =
1

2

[
Li −

(
Li
)T]

,

D =
1

2

[
L+ (L)T

]
, W =

1

2

[
L− (L)T

]
. (6.11)

The left Cauchy-Green stretch tensor Bs
p, B

s
p(t) and their principal invariants are

defined as

Bs
G = F s

G (F s
G)T , Bs

p(t) = F s
κp(t)

(
F s
κp(t)

)T
, (6.12)
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IBs
j

= tr
(
Bs
j

)
, IIBs

j
=

1

2

{[
tr
(
Bs
j

)]2 − tr
[(
Bs
j

)2
]}

, IIIBs
j

= det
(
Bs
j

)
, j = G, p(t).

(6.13)

where det(.) is the determinant of a second order tensor. We shall now note the

balance laws.

The balance of mass for the i-th constituent without any mass production is

given by

∂ρi

∂t
+ div

(
ρivi

)
= 0, (6.14)

where ρi is the mass density of the i-th constituent and div(.) := tr(grad(.)) is the

divergence operator with tr(.) meaning the trace of a second order tensor. The sum-

mation of Eq. (6.14) over i along with Eq. (6.5) leads to

∂ρ

∂t
+ div (ρv) = 0. (6.15)

The balance of linear momentum for i-th constituent is

ρi
divi

dt
= div

[(
T i
)T]

+ ρibi +mi, (6.16)

wheremi is the interaction force on the i-th constituent due to the other constituents,

bi is the external body force on the i-th constituent, T i is the partial Cauchy stress

tensor associated with the i-th constituent related to the surface traction on the i-th

constituent ti through

ti =
(
T i
)T
n, (6.17)

where n is the surface outward normal. From Newton’s third law, we have

∑
i

mi = 0. (6.18)
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For mixtures, the balance of angular momentum, in the absence of body couples

requires that the total Cauchy stress of the mixture be symmetric i.e.,

T = T T , where T =
∑
i

T i, (6.19)

although the individual partial stresses T i could be non-symmetric. Now, the balance

of energy for the i-th constituent is given by

ρi
d

dt

(
εi +

vi.vi

2

)
= div

(
T i · vi − qi

)
+ ρiri + ρibi · vi + Ei +mi · vi, (6.20)

where εi, qi, ri are the specific internal energy, heat flux, radiant heating associated

with the i-th component and Ei is the energy supplied to the i-th constituent from

the other constituents.

Now, taking the scalar multiplication of Eq. (6.16) and vi and subtracting the

resulting equation from Eq. (6.20), we arrive at

ρi
dεi

dt
= T i ·Li − div(qi) + ρiri + Ei, (6.21)

Using εi = ψi + θηi, where ψi, ηi are the Helmholtz potential and specific entropy of

the i-th constituent, with θ being the common temperature of the constituents at a

point in the mixture, Eq. (6.21) along with Eq. (6.14) results in

∂

∂t

(
ρiηi

)
+ div

(
ρiηivi

)
=

1

θ
T i ·Li − div

(
qi

θ

)
− 1

θ2
qi · grad(θ) +

1

θ
ρiri +

1

θ
Ei

− ρi

θ

(
diψi

dt
+ ηi

diθ

dt

)
. (6.22)

Now, using the fact that ηi = −∂ψi

∂θ
, we can establish the following result:

diψi

dt
+ ηi

diθ

dt
=
diψi

dt
− ∂ψi

∂θ

diθ

dt
=

(
∂ψi

∂t
− ∂ψi

∂θ

∂θ

∂t

)
+ vi ·

(
grad(ψi)− ∂ψi

∂θ
grad(θ)

)
=

(
diψi

dt

)
θ fixed

, (6.23)
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where the subscript “θ fixed” means that the derivative is to be taken keeping θ fixed.

We shall define

q =
∑
i

qi, r =
1

ρ

∑
i

ρiri. (6.24)

Using the relation Eq. (6.23) in Eq. (6.22) and summing over i, along with Eq. (6.24),

we get

∂

∂t

(∑
i

ρiηi

)
+ div

(∑
i

ρiηivi

)
=

1

θ

∑
i

T i.Li − div
(q
θ

)
− 1

θ2
q · grad(θ) + ρ

(r
θ

)
+

1

θ

∑
i

Ei − 1

θ

∑
i

ρi
(
diψi

dt

)
θ fixed

. (6.25)

Eq. (6.25) is the balance of entropy with the rate of entropy production ζ being

ζ =
1

θ

∑
i

T i ·Li − 1

θ2
q · grad(θ) +

1

θ

∑
i

Ei − 1

θ

∑
i

ρi
(
diψi

dt

)
θ fixed

. (6.26)

We shall assume that the total entropy production can be additively split into entropy

production due to thermal effects i.e., conduction (ζc), and entropy production due to

internal working and mixing (ζm). We shall also require that each of these quantities

be non-negative, so that the rate of entropy production ζ is non-negative and the

second law of thermodynamics is satisfied automatically. This implies that

ζc := −q · grad(θ)

θ2
≥ 0, (6.27a)

ζm :=
1

θ

∑
i

T i ·Li +
1

θ

∑
i

Ei − 1

θ

∑
i

ρi
(
diψi

dt

)
θ fixed

≥ 0. (6.27b)

We shall choose q = −k(ρ, θ)grad(θ), k ≥ 0, so that Eq. (6.27b) automatically

satisfies. Also, if we define the rate of dissipation ξm := θζm, then

∑
i

T i ·Li +
∑
i

Ei −
∑
i

ρi
(
diψi

dt

)
θ fixed

= ξm ≥ 0. (6.28)



137

Assuming

∑
i

Ei +
∑
i

mi · vi = 0, (6.29)

Eq. (6.28) can be re-written as

∑
i

T i ·Li −
∑
i

mi · vi −
∑
i

ρi
(
diψi

dt

)
θ fixed

= ξm. (6.30)

Now,

∑
i

ρi
(
diψi

dt

)
=

∂

∂t

(∑
i

ρiψi

)
+ div

(∑
i

ρiψivi

)

= ρ
dψ

dt
+ div

(∑
i

ρiψi
(
vi − v

))
, (6.31)

where ψ := 1
ρ

∑
i ρ

iψi is the average Helmholtz potential of the mixture.

Finally, from Eqs. (6.31) and (6.30), we arrive at

∑
i

T i ·Li −
∑
i

mi · vi −
[
ρ
dψ

dt
+ div

(∑
i

ρiψi
(
vi − v

))]
θ fixed

= ξm. (6.32)

Assuming that all the components have the same Helmholtz potential Eq. (6.32)

reduces to

∑
i

T i ·Li −
∑
i

mi · vi −
(
ρ
dψ

dt

)
θ fixed

= ξm, (6.33)

where we have used Eq. (6.5). The second law of thermodynamics is invoked by

ensuring ξm ≥ 0. The preliminaries discussed so far are sufficient for the derivation

of the constitutive equations in section (C).
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C. Constitutive assumptions

We shall assume that the specific Helmholtz potential for the mixture is of the form

ψ = ψ̂
(
θ, IBs

G
, IIBs

G
, IIIBs

G
, IBs

p(t)
, IIBs

p(t)
, IIIBs

p(t)

)
, (6.34)

and so

dψ

dt
=
dsψ

dt
+ (v − vs) · grad(ψ) (6.35)

⇒
(
dψ

dt

)
θ fixed

=[(
∂ψ̂

∂IBs
p(t)

+ IBs
p(t)

∂ψ̂

∂IIBs
p(t)

)
I − ∂ψ̂

∂IIBs
p(t)

Bs
p(t) + IIIBs

p(t)

∂ψ̂

∂IIIBs
p(t)

(Bs
p(t))

−1

]
· Ḃs

p(t)

+

[(
∂ψ̂

∂IBs
G

+ IBs
G

∂ψ̂

∂IIBs
G

)
I − ∂ψ̂

∂IIBs
G

Bs
G + IIIBs

G

∂ψ̂

∂IIIBs
G

(Bs
G)−1

]
· Ḃs

G

+ (v − vs) · (grad(ψ))θ fixed , (6.36)

where ˙( ) is ds( )
dt

for the sake of convenience.

Now,

Ḟ
s

= Ḟ
s

κp(t)
Gs + F s

κp(t)
Ġ
s

⇒ Ḟ
s
(F s)−1 = Ḟ

s

κp(t)
Gs(Gs)−1(F s

κp(t)
)−1 + F s

κp(t)
Ġ
s
(Gs)−1(F s

κp(t)
)−1

⇒ Ls = Lsp(t) + F s
κp(t)

LsG(F s
κp(t)

)−1

⇒Ds = Ds
p(t) +

1

2

[
F s
κp(t)

LsG(F s
κp(t)

)−1 + (F s
κp(t)

)−T (LsG)T (F s
κp(t)

)T
]
.

(6.37)

In addition,

Ḃ
s

p(t) = Ḟ
s

κp(t)
(F s)T + F s(Ḟ

s

κp(t)
)T

= Lsp(t)B
s
p(t) +Bs

p(t)(L
s
p(t))

T ,

(6.38)

and similarly

Ḃ
s

G = LsGB
s
G +Bs

G(LsG)T . (6.39)
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Assuming that the response of the viscoelastic solid from the current configura-

tion to its natural configuration is isotropic elastic, we choose κp(t) such that

F s
κp(t)

= V s
κp(t)

, (6.40)

where V s
κp(t)

is the right stretch tensor in the polar decomposition of F s
κp(t)

.

Using Eqs. (6.37), (6.38), (6.39), (6.40) in Eq. (6.36), we get(
dψ

dt

)
θ fixed

=

2

[(
∂ψ̂

∂IsBp(t)

+ IBs
p(t)

∂ψ̂

∂IIBs
p(t)

)
Bs
p(t) −

∂ψ̂

∂IIBs
p(t)

(Bs
p(t))

2 + IIIBs
p(t)

∂ψ̂

∂IIIsBp(t)

I

]
· (Ls −LsG)

+ 2

[(
∂ψ̂

∂IsBG

+ IBs
G

∂ψ̂

∂IIBs
G

)
Bs
G −

∂ψ̂

∂IIsBG

(Bs
G)2 + IIIBs

G

∂ψ̂

∂IIIBs
G

I

]
·LsG

+ (v − vs) · (grad(ψ))θ fixed , (6.41)

In what follows, we shall assume that the reference configurations (subscript o)

of the constituents are same as their natural states (subscript R) and so φi :=
ρi

ρiR
=

ρio
detF iρiR

=
1

detF i , i = s, f , where we have used the fact that ρio = ρiR. This need not

be true in general.

We shall also assume the volume additivity constraint that is based on the fact

that the volume of the swollen viscoelastic solid is equal to the sum of the volumes

of the unswollen viscoelastic solid and the fluid [122]. In our case this constraint is

given by,

φs + φf = 1, (6.42)

and so Eq. (6.14) can be re-written as

∂φi

∂t
+ div

(
φivi

)
= 0, (6.43)
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which implies

∂
∑

i φ
i

∂t
+ div

(∑
i

φivi

)
= 0 (6.44)

⇒ div
(
φfvf + φsvs

)
= 0 (using Eq. (6.42)). (6.45)

Eq. (6.45) can be re-written as

φstr(Ls) + φf tr(Lf ) + vs · grad(φs) + vf · grad(φf ) = 0. (6.46)

Again from Eq. (6.42), we have

grad(φs) + grad(φf ) = 0, (6.47)

and hence, using Eq. (6.47) in Eq. (6.46), we arrive at

φstr(Ls) + φf tr(Lf ) + vs,f · grad(φs) = 0, (6.48)

where vs,f = vs − vf , is the velocity of the solid with respect to the fluid.

Next, we shall assume that the rate of entropy production is of the form

ξm = ξm
(
LsG,F

s
p(t),L

f , θ,vs,f
)
. (6.49)

and so Eq. (6.33) along with Eq. (6.18) reduces to

T s ·Ls + T f ·Lf −ms · vs,f −
(
ρ
dψ

dt

)
θ fixed

= ξm
(
LsG,F

s
p(t),L

f , θ,vs,f
)
. (6.50)

Using Eq. (6.41) in Eq. (6.50), we get

T s ·Ls + T f ·Lf −ms · vs,f − T s
p(t) · (Ls −LsG)− T s

G ·LsG − ρ(v − vs) · (grad(ψ))θ fixed

= ξm
(
LsG,F

s
p(t),L

f , θ,vs,f
)
,

(6.51)
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where

T s
p(t) := 2ρ

[(
∂ψ̂

∂IBs
p(t)

+ IBs
p(t)

∂ψ̂

∂IIBs
p(t)

)
Bs
p(t) −

∂ψ̂

∂IIBs
p(t)

(Bs
p(t))

2 + IIIBs
p(t)

∂ψ̂

∂IIIsBp(t)

I

]
,

(6.52)

T s
G := 2ρ

[(
∂ψ̂

∂IBs
G

+ IBs
G

∂ψ̂

∂IIBs
G

)
Bs
G −

∂ψ̂

∂IIBs
G

(Bs
G)2 + IIIBs

G

∂ψ̂

∂IIIBs
G

I

]
. (6.53)

Eq. (6.51) with the constraint Eq. (6.48) can be written as

T s ·Ls + T f ·Lf −ms · vs,f − T s
p(t) · (Ls −LsG)− T s

G ·LsG − ρ(v − vs) · (gradψ)θ fixed

+ λ
(
φstr(Ls) + φf tr(Lf ) + vs,f · grad(φs)

)
= ξm

(
LsG,F

s
p(t),L

f , θ,vs,f
)
, (6.54)

where λ is a Lagrange multiplier.

We shall further assume that the rate of dissipation can be additively split into

the rate of dissipation due to mechanical working of the viscoelastic solid, the rate of

dissipation due to the fluid and the rate of dissipation due to diffusion of the fluid,

with specific forms as follows:

ξm
(
LsG,F

s
p(t),L

f , θ,vs,f
)

= ξ
(
LsG,B

s
p(t), θ

)
+ νDf ·Df + α(θ)vs,f · vs,f . (6.55)

Then, from Eq. (6.55) and Eq. (6.54), we arrive at

T s ·Ls + T f ·Lf −ms · vs,f − T s
p(t) · (Ls −LsG)− T s

G ·LsG − ρ(v − vs) · (grad(ψ))θ fixed

+ λ
(
φstr(Ls) + φf tr(Lf ) + vs,f · grad(φs)

)
= ξ

(
LsG,B

s
p(t), θ

)
+ νDf ·Df

+ α(θ)vs,f · vs,f , (6.56)
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which can be re-written as

Ls ·
[
T s + λφsI − T s

p(t)

]
+Lf ·

[
T f + λφfI − νDf

]
+
(
T s
p(t) − T s

G

)
·LsG

+ vs,f ·
[
−ms + λ grad(φs)− α(θ)vs,f + ρf (grad(ψ))θ fixed

]
= ξ

(
LsG,B

s
p(t), θ

)
,

(6.57)

using the fact that ρ (v − vs) = −ρfvs,f . Since, the right hand side of Eq. (6.57) does

not depend on Ls, Lf and vs,f , we have

T s = −λφsI + T s
p(t), (6.58)

T f = −λφfI + νDf , (6.59)

ms = λ grad(φs)− α(θ)vs,f + ρf (grad(ψ))θ fixed , (6.60)

and so Eq. (6.57) reduces to

(
T s
p(t) − T s

G

)
·LsG = ξ

(
LsG,B

s
p(t), θ

)
. (6.61)

Next, we shall maximize the rate of dissipation ξ with Eq. (6.61). We shall

maximize the auxiliary function

Φ := ξ + β
[
ξ −

(
T s
p(t) − T s

G

)
·LsG

]
. (6.62)

Now,

∂Φ

∂LsG
= 0⇒ (β + 1)

β

∂ξ

∂LsG
−
(
T s
p(t) − T s

G

)
= 0. (6.63)

Taking the scalar product of Eq. (6.63) with LsG and using Eq. (6.61), we arrive at

(β + 1)

β
=

ξ

∂ξ

∂LsG
·LsG

. (6.64)
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and hence the evolution equation for the natural configuration of the solid is given by

(
T s
p(t) − T s

G

)
=

ξ

∂ξ

∂LsG
·LsG

∂ξ

∂LsG
. (6.65)

1. Specific constitutive assumptions

We shall assume the following specific form for the specific Helmholtz potential of the

mixture

ψ̂ = As + (Bs + cs2) (θ − θs)−
cs1
2

(θ − θs)2 − cs2θln
(
θ

θs

)
+
µG0 − µG1θ

ρsθs
(IBs

G
− 3)

+
µp0 − µp1θ

ρsθs
(IBs

p(t)
− 3) +

Rθ

ρfRV0φs

[
(1− φs)ln(1− φs)− χ(φs)2

]
, (6.66)

where µG0, µG1, µp0, µp1 are material parameters, θs is a reference temperature for the

viscoelastic solid, R is the gas constant, θ the absolute temperature of mixture, V0

the molar volume of the fluid, and χ a mixing parameter for the particular solid-fluid

combination. The last term in Eq. (6.66) is the term added to the specific Helmholtz

in Chapter V to capture the swelling phenomenon in the solid.

Now,

η = −∂ψ̂
∂θ

= −(Bs + cs2) + cs1 (θ − θs) + cs2ln

(
θ

θs

)
+ cs2 +

µG1

ρθs
(IBs

G
− 3) +

µp1
ρθs

(IBs
p(t)
− 3)

− R

ρfRV0φs

[
(1− φs)ln(1− φs)− χ(φs)2

]
. (6.67)

The internal energy ε is given by

ε = ψ + θη

= As −Bsθs + cs2 (θ − θs) +
cs1
2

(
θ2 − θ2

s

)
+
µG0

ρθs
(IBs

G
− 3) +

µp0
ρθs

(IBs
p(t)
− 3), (6.68)
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and the specific heat capacity Cv is

Cv =
∂ε

∂θ
= cs1θ + cs2. (6.69)

From Eq. (6.66) and Eq. (6.52)

T s
p(t) =

ρJspJ
s
G

ρsR

[
2µ̄pB

s
p(t) + µ̄p

(
IBs

p(t)
− 3
)
I + µ̄G

(
IBs

G
− 3
)
I
]

+
ρRθJspJ

s
G

ρfRV0

[
ln(1− φs) + φs + χ(φs)2

]
I, (6.70)

and from Eq. (6.66) and Eq. (6.53),

T s
G =

ρJspJ
s
G

ρsR

[
2µ̄GB

s
G + µ̄p

(
IBs

p(t)
− 3
)
I + µ̄G

(
IBs

G
− 3
)
I
]

+
ρRθJspJ

s
G

ρfRV0

[
ln(1− φs) + φs + χ(φs)2

]
I, (6.71)

where µ̄G = µ̄G0−µ̄G1θ
θs

, µ̄p = µ̄p0−µ̄p1θ
θs

, JsG = det(Gs), Jsp = det(F s
κp(t)

).

We shall further assume that the rate of dissipation ξ is of the form

ξ = γ(θ)Ds
G ·Ds

G, (6.72)

then Eq. (6.58) becomes

T s = −λφsI +
ρ

ρs

[
2µ̄pBp(t) + µ̄p

(
IBs

p(t)
− 3
)
I + µ̄G

(
IBs

G
− 3
)
I
]

+
ρRθJspJ

s
G

ρfRV0

[
ln(1− φs) + φs + χ(φs)2

]
I, (6.73)

and Eq. (6.65) reduces to

2ρ

ρs
[
µ̄pB

s
p(t) − µ̄GBs

G

]
= γ(θ)Ds

G. (6.74)
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The final constitutive equations are

T s = −λφsI +
ρ

ρs

[
2µ̄pB

s
p(t) + µ̄p

(
IBs

p(t)
− 3
)
I + µ̄G

(
IBs

G
− 3
)
I
]

+
ρRθJspJ

s
G

ρfRV0

[
ln(1− φs) + φs + χ(φs)2

]
I, (6.75a)

T f = −λφfI + νDf , (6.75b)

ms = λ gradφs − α(θ)vs,f + ρf (gradψ)θ fixed , (6.75c)

and

2ρ

ρs
[
µ̄pB

s
p(t) − µ̄GBs

G

]
= γ(θ)Ds

G, (6.76)

being the evolution equation of the natural configuration of the solid.

Notice that when µ̄G = 0 and γ →∞, for the LHS of Eq. (6.76) to be finite, we

must have Ds
G = 0. This implies that Gs = I, and hence Bs

p(t) = Bs and the solid

is now an elastic solid. In such a case, the constitutive equations Eq. (6.75), with

additional assumption of ν = 0, reduce to

T s = −λφsI + 2ρ

[(
∂ψ̂

∂IBs

+ IBs

∂ψ̂

∂IIBs

)
Bs − ∂ψ̂

∂IIBs

(Bs)2 + IIIBs

∂ψ̂

∂IIIBs

I

]
,

(6.77a)

T f = −λφfI, (6.77b)

ms = λ gradφs − α(θ)vs,f + ρf (gradψ)θ fixed . (6.77c)

These equations are same as the equations derived using theory of mixtures for the

diffusion of a fluid through an elastic solid (see equations 3.15–3.17 in [123]).
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D. Initial boundary value problem

Let us consider the problem of compression of the viscoelastic solid body inside rigid

walls as shown in Fig. (30). Let us assume that the motion of the swollen solid body

is given by

x = X, y = Y, z = f(Z, t). (6.78)

In this case, the deformation gradient of the solid (F s) is given by

F s = diag {1, 1, p} , (6.79)

where p :=
∂f

∂Z
. Let us assume a form for Gs as follows

Gs = diag {1, 1, g(Z, t)} , (6.80)

and the velocity of the fluid be of the form

vf = (0, 0, v(Z, t)) . (6.81)

Then,

Bs
κp(t)

= diag

{
1, 1,

(
p

g

)2
}
, (6.82)

IBs
p(t)

= 2 +

(
p

g

)2

, IBs
G

= 2 + g2, Jsp =
p

g
, JsG = g. (6.83)

The balance of mass for the solid gives

φs =
1

det(F s)
=

1

p
, (6.84)
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and hence from volume additivity constraint

ρf = ρfR

(
1− 1

p

)
. (6.85)

Also, we note the following relations

ρ

ρs
= 1 +

ρfR
ρsR

(p− 1), (6.86a)

ρ

ρfR
= 1 +

1

p

(
ρsR

ρfR
− 1

)
. (6.86b)

The balance of mass for the fluid reduces to

Z = 0

Z = H

Z = −H

Porous filter

Swollen viscoelastic solid

F (t)

F (t)

fluid

Fig. 30.: Schematic of the initial boundary value problem

∂p

∂t
+
v

p

∂p

∂Z
+ (p− 1)

∂v

∂Z
= 0. (6.87)
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Setting ν = 0, zz-component of the total stress tensor for the mixture reduces to

Tzz = T szz + T fzz (6.88)

= −λ+

(
1 +

ρfR
ρsR

(p− 1)

)[
2µ̄p

(
p

g

)2

+ µ̄p

(
p2

g2
− 1

)
+ µ̄G

(
g2 − 1

)]

+

(
1 +

1

p

(
ρsR

ρfR
− 1

))
Rθp

V0

[
ln

(
1− 1

p

)
+

1

p
+ χ

1

p2

]
. (6.89)

The balance of linear momentum for the solid and the fluid after assuming zero body

forces reduce to

ρs
∂2f

∂t2
=
∂T szz
∂z

+ms
z, (6.90a)

ρf
∂v

∂t
=
∂T fzz
∂z
−ms

z. (6.90b)

Now, adding Eqs. (6.90a), (6.90b), we arrive at the balance of linear momentum for

the mixture

ρs
∂2f

∂ts
+ ρf

∂v

∂t
=

∂

∂z
(T szz + T fzz)

⇒ ρs
∂2f

∂ts
+ ρf

∂v

∂t
= −∂λ

∂z
+
∂T sfzz
∂z

, (6.91)

where

T sfzz =

(
1 +

ρfR
ρsR

(p− 1)

)[
2µ̄p

(
p

g

)2

+ µ̄p

(
p2

g2
− 1

)
+ µ̄G

(
g2 − 1

)]

+

(
1 +

1

p

(
ρsR

ρfR
− 1

))
Rθp

V0

[
ln

(
1− 1

p

)
+

1

p
+ χ

1

p2

]
. (6.92)

Now, Eq. (6.90b) along with volume additivity constraint reduces to

ρf
∂v

∂t
= −φf ∂λ

∂z
+ α

(
∂f

∂t
− v
)
− ρf

(
∂ψ

∂z

)
θ fixed

, (6.93)

where we have used the fact that the velocity of the solid is (0, 0,
∂f

∂t
).
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Multiplying Eq. (6.91) with φf and subtracting Eq. (6.93) from the resulting

equation we get

φfρs
∂2f

∂t2
+ (φf − 1)ρf

∂v

∂t
= −α

(
∂f

∂t
− v
)

+ φf
∂T sfzz
∂z

+ ρf
(
∂ψ

∂z

)
θ fixed

, (6.94)

which reduces to

φfρs
∂2f

∂t2
+ (φf − 1)ρf

∂v

∂t
= −α

(
∂f

∂t
− v
)

+ φf
∂T sfzz
∂z

+ ρf

(
∂ψ̃

∂z

)
, (6.95)

where

ψ̃ =
µ̄Gp

ρsR

(
g2 − 1

)
+
pµ̄p
ρsR

(
p2

g2
− 1

)
+
Rθp

ρfRV0

[(
1− 1

p

)
ln

(
1− 1

p

)
− χ 1

p2

]
. (6.96)

Now, assuming that the velocity and acceleration of the solid are small compared to

that of the fluid, we shall drop
∂f

∂t
and

∂2f

∂t2
in Eq. (6.95), we get

(φf − 1)ρf
∂v

∂t
= αv + φf

∂T sfzz
∂z

+ ρf

(
∂ψ̃

∂z

)
. (6.97)

Next, we shall also assume that the acceleration of the fluid is also small and we shall

drop
∂v

∂t
term in Eq. (6.97), to get

v = − 1

α

[
φf
∂T sfzz
∂z

+ ρf

(
∂ψ̃

∂z

)]
. (6.98)

Using Eq. (6.98) in Eq. (6.87), we arrive at

∂p

∂t
=

1

αp2

∂p

∂Z

[
φf
∂T sfzz
∂Z

+ ρf

(
∂ψ̃

∂Z

)]
+
p− 1

α

∂

∂Z

[
φf

p

∂T sfzz
∂Z

+
ρf

p

(
∂ψ̃

∂Z

)]
. (6.99)

Also, note that

DG = LG = diag

{
0, 0,

1

g

∂g

∂t

}
, (6.100)
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and so the evolution equation of the natural configuration reduces to

γ
1

g

∂g

∂t
= 2

(
1 +

ρfR
ρsR

(p− 1)

)[
µ̄p

(
p

g

)2

− µ̄Gg2

]
. (6.101)

1. Boundary conditions

Applying boundary conditions in an initial boundary value problem has been an

issue in mixture theory due to its basic assumption of co-occupancy. For instance,

if traction is applied on the boundary, a natural question is how is the traction to

be split between the solid and the fluid. To this end, the method of spitting the

traction based on the volume fraction of the solid and the fluid was proposed [121].

Later on, Baek and Srinivasa [107] derived the relations for swelling of an elastic body

based on variational principles and the boundary conditions were derived naturally.

However, this approach assumes that the swelling is slow, and that the relative velocity

between the solid and the diffusing fluid is small. Recently, Prasad and Rajagopal

[124] have compared the solutions of diffusion of a fluid through a elastic slab using

various boundary conditions like saturation boundary condition, traction splitting

boundary condition, the natural boundary condition derived by Baek and Srinivasa,

and the condition that the chemical potential is continuous across the boundary.

Interestingly, they show that the results are insensitive to these different forms of

boundary conditions.

For our problem, let F (t) be the compressive force applied on the solid at Z = ±H

as shown in Fig. (30) and let P∞ be the pressure in the fluid at the boundaries

Z = ±H, then we shall apply the following boundary conditions:

T szz = −F (t)− φsP∞, Z = ±H, (6.102a)

T fzz = −φfP∞, Z = ±H, (6.102b)
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that is, we are assuming that the external force is borne by the solid only, while

the fluid pressure is borne by both the solid and the fluid, and this pressure is split

proportional to the volume fraction of the constituents. Based on these assumptions,

Eq. (6.102b) reduces to

λ = P∞, Z = ±H. (6.103)

Eq. (6.102a) and Eq. (6.103) reduce to

−F (t) = T sfzz , Z = ±H. (6.104)

Note that F (t) is zero under free-swelling.

2. Non-dimensionalization

We shall use the following non-dimensionalization scheme:

Z? =
Z

L
, t? =

t

T
, v? =

vT

L
, p? = p, g? = g, µ̄?p =

µ̄p
µ
, γ? =

γV

µL
, (6.105)

where T , L are characteristic time and length respectively. If we pick µ = Rθ
V0

and

define the non-dimensionalization quantities β1 :=
ρsR
ρfR

, β2 := L2V0α
RθT

then Eqs. (6.99),

(6.101) become

β2
∂p?

∂t
=

1

(p?)2

(
1− 1

p?

)
∂p?

∂Z?

[
∂T sf?zz

∂Z?
+
∂ψ̃?

∂Z?

]

+ (p? − 1)
∂

∂Z?

[(
1− 1

p?

)
1

p?

(
∂T sf?zz

∂Z?
+
∂ψ̃?

∂Z?

)]
, (6.106a)

γ?
1

g?
∂g?

∂t?
= 2

(
1 +

1

β1

(p? − 1)

)[
µ̄?p

(
p?

g?

)2

− µ̄?G(g?)2

]
, (6.106b)
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where

T sf?zz =

(
1 +

1

β1

(p? − 1)

)[
2µ̄?p

(
p?

g?

)2

+ µ̄?p

(
(p?)2

(g?)2
− 1

)
+ µ̄?G

(
(g?)2 − 1

)]

+

(
1 +

1

p?
(β1 − 1)

)
p?
[
ln

(
1− 1

p?

)
+

1

p?
+ χ

1

(p?)2

]
, (6.107a)

ψ̃? =
µ̄?Gp

?

β1

(
(g?)2 − 1

)
+
p?µ̄?p
β1

(
(p?)2

(g?)2
− 1

)
+ p?

[(
1− 1

p?

)
ln

(
1− 1

p?

)
− χ 1

(p?)2

]
.

(6.107b)

The boundary conditions Eq. (6.104) reduce to

−F ?(t?) = T sf?zz , Z? = ±H?, (6.108)

with F ? = F
µ

, P ?
∞ = P ?

∞
µ

. If we pick H as the characteristic length L, then H? = 1.

The coupled equations Eqs. (6.106a), (6.106b) are solved using the staggered scheme

shown in algorithm 1.

The ratio of the mass of the swollen solid to its original unswollen mass can be

calculated as follows:

m

m0

=

∫
ρ dV∫
ρsR dV

=

∫ z=1

z=−1

ρ

ρsR
dz∫ z=1

z=−1
dz

=
1

2β1

∫ z=1

z=−1

[
1 +

1

p?
(β1 − 1)

]
dz. (6.109)

Once, the value of p?(Z?, t?) is evaluated on the domain at various times, Eq. (6.109)

is integrated numerically to get the mass ratio.
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Algorithm 1 A staggered procedure for solving the coupled equations

1: Input: β1, β2, χ, F ?, P ?
∞, µ̄?p, µ̄

?
G, γ?; Time of integration t?f ; Time step ∆t?; No.

of divisions along Z? direction N ; TOLERANCE.

2: Output: p?.

3: Set p?0 = 1, g?0 = 1.

4: while t < tf do

5: t? = t? + ∆t?.

6: while true do

7: Using p?i(l), g?i(l), N , ∆t, β1, β2, χ, F ?, P ?
∞, µ̄?p, µ̄

?
G, γ?, Solve for p?i(l+1)

using Eq. (6.106a) in MATLAB’s pdepe solver with the p?i(l+1) at the bound-

aries (Z? = ±1) obtained by solving the non-linear algebraic equation in

Eq. (6.108). This non-linear algebraic equation is solved using the fsolve

solver in MATLAB.

8: Using p?i(l+1), g?i(l) and ∆t, β1, β2, χ, F ?, P ?
∞, µ̄?p, µ̄

?
G, γ?, Solve for g?i(l)

using Eq. (6.106b) in MATLAB’s ode45 solver.

9: if ‖p?i(l+1) − p?i(l)‖2 < TOLERANCE then

10: Return.

11: end if

12: end while

13: p?i+1 ← p?i, g?i+1 ← g?i.

14: end while
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3. Comparison with experimental data

Fig. (31) shows comparison of the numerical results to the experimental data for

the ratio of swollen to unswollen (see Eq. (6.109)) PMDA-ODA (poly(N, N’- bisphe-

noxyphenylpyromellitimide)) due to diffusion of the solvents DMSO (dimethylsul-

foxide) and NMP (N-methyl-2-pyrollidinone). In case of DMSO diffusing through

PMDA-ODA the following material parameters were chosen: Density of DMSO was

chosen to be 1.096 g/cc [125] and density of PMDA-ODA to be 1.42 g/cc [126], and

so β1 = 1.3. Also, χ = 0.425, β2 = 0.018, µ̄?p = 0.1, µ̄?G = 0.1, γ? = 20 were chosen.

The characteristic time (T ) chosen was 10500min. For the diffusion of NMP, the

material parameters chosen were: density of NMP is taken to be 1.02 g/cc [125] and

so β1 = 1.4. Next, χ = 0.6, β2 = 0.016, µ̄?p = 0.1, µ̄?G = 0.1, γ? = 20 and the

characteristic time chosen was 245min. The numerical results show good agreement

with the experimental data taken from [127].

Next, we shall consider the diffusion of water through HPFE-II-52. The material

parameters were assumed to be: χ = 0.425, β1 = 1.3, β2 = 0.018, µ̄?p = 0.1, µ̄?G = 0.1,

γ? = 20. The characteristic time chosen was 2800 s. Even in this case the numerical

results and experimental data taken from [91] match well (see Fig. (32)). In all the

numerical calculations TOLERANCE was chosen to be 10−4.

We shall now consider the problem of compression of the viscoelastic solid and

study its effects on swelling due to diffusion of a fluid. In this numerical experiment,

the solid is allowed to swell freely first till it saturates with fluid (upto t? = 0.5). Then,

the swollen solid is subjected to constant compressive force of F ? = 1 is applied for

a time period of t? = 0.5 and then the load is removed, and the solid is allowed

to swell freely again for another time period of t? = 0.5. Fig. (33a) shows that the

volume of the solid gradually increases with time and then reaches a steady state
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Fig. 31.: Comparison of the model with the experimental data from [127] for the

diffusion of DMSO and NMP through PMDA-ODA (imidized at 300oC) under free-

swelling condition. The characteristic times chosen were 10500min and 245min for

DMSO and NMP, respectively. Here, 301 spatial points were used for the calculations,

non-dimensional time step chosen is ∆t? = 0.025.
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Fig. 32.: Comparison of the model with the experimental data from [91] (pg. 27)

for the diffusion of water through HFPE-II-52 under free-swelling condition. The

characteristic time chosen was 2800 s. The parameters chosen are χ = 0.425, β1 = 1.3,

β2 = 0.018, µ̄?p = 0.1, µ̄?G = 0.1, γ? = 20. Here, 301 spatial points were used for the

calculations, ∆t? = 0.025. The normalized mass is defined by
m(t)−m0

m∞ −m0

, where m0

is the mass of the dry solid, m∞ is the steady state mass of the swollen solid, m(t) is

the mass of the swollen solid at a given time t.
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(b) compression after free swelling

Fig. 33.: Ratio of volume of the swollen solid to volume of unswollen solid (J =

det(F s)) as a function of time for (a) free swelling and (b) compressive force F ? = 1

is applied after the swollen solid reaches a saturated state due to free swelling. The

parameters chosen are χ = 0.425, β1 = 1.3, β2 = 0.018, µ̄?p = 0.1, µ̄?G = 0.1, γ? = 20.

Here, 301 spatial points were used for the calculations, non-dimensional time step

chosen is ∆t? = 0.025.
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Fig. 34.: Ratio of volume of the swollen solid to volume of unswollen solid (J =

det(F s)) as a function of time for free- swelling after the compressive force is removed.

The parameters chosen are χ = 0.425, β1 = 1.3, β2 = 0.018, µ?p = 0.1, µ?G = 0.1,

γ? = 20. Here, 301 spatial points were used for the calculations, non-dimensional

time step chosen is ∆t? = 0.025.
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where the volume of the solid is same everywhere and there is no further swelling.

Also, the volume of the solid near the boundary increases faster than that of the

inner solid. Upon application of a constant compressive load in Fig. (33b), the fluid

diffuses out of the swollen solid and the volume of the solid gradually decreases until

the volume of the solid is same everywhere. Next, upon removal of the compressive

load in Fig. (34), the solid absorbs the fluid and swells freely back to its original

swollen saturation state.

E. Conclusions

We developed a systematic framework with a thermodynamic basis to develop consti-

tutive relations for the diffusion of a fluid through a viscoelastic solid. A model was

also derived using this framework by choosing specific forms for the Helmholtz poten-

tial and the rate of dissipation, and by maximizing the rate of dissipation. An initial

boundary value problem was solved where we considered free swelling and swelling

under the application of external force. We also showed that the model fits well with

the experimental data for diffusion of fluids through polyimides. Furthermore, our

work in this chapter can be easily extended to study the diffusion of fluids in biolog-

ical materials as well as in studying moisture-induced damage in asphalt mixes and

other geomaterials that show viscoelastic behavior.

Finally, here we shall summarize the assumptions made in this chapter:

1. the specific Helmholtz potential of the constituents is the same,

2. the temperature of the constituents is the same,

3. the specific Helmholtz potential of the mixture depends on the temperature of

the mixture, and the deformation of the solid,



160

4. the volume of the mixture is sum of the volumes of the constituents in their

natural state,

5. the response of the solid from the current configuration to its natural configu-

ration is isotropic and elastic,

6. the reference configurations of the constituents are same as their natural states,

7. the rate of dissipation of the mixture is assumed to be the sum of the rates of

dissipation due to mechanical working of the viscoelastic solid, due to the fluid

(i.e, due to the friction between the layers of the fluid), and due to the drag

between the solid and the fluid.

The following additional assumptions are made to solve the problem of compression:

1. the viscosity of the fluid is zero i.e., we are assuming that the dissipation due

to the friction between the layers of the fluid is much smaller than that due to

the drag between the solid and the fluid,

2. the velocity and acceleration of the solid are small compared to that of the fluid,

3. acceleration of the fluid is small,

4. the external loading is applied on the solid only, whereas the fluid pressure at

the boundary is borne by both the solid and the fluid.
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CHAPTER VII

A MODEL FOR THE DEGRADATION OF POLYIMIDES DUE TO OXIDATION

Polyimides, due to their superior mechanical behavior at high temperatures, are used

in a variety of applications that include aerospace, automobile and electronic packag-

ing industries, as matrices for composites, as adhesives etc. In this chapter, we extend

our previous model in Chapter V, which was shown to be a three-dimensional exten-

sion of the standard linear solid model, to include oxidative degradation of these high

temperature polyimides. The forms for the Helmholtz potential and the rate of dissi-

pation are modified to incorporate the degradation. The results for specific boundary

value problem, using our model compare well with the experimental creep data for

PMR-15 resin that is aged in air.

A. Introduction

Polyimide and polyimide composites are used in a variety of applications due to the

high glass transition temperature of above 300oC. These polymers and their composite

components undergo degradation in a variety of ways including degradation due to

oxidation. Thus, there is a need to understand how the mechanical behavior of these

materials is affected by oxidation. Several experimental studies have been carried

out which show that there is: (a) weight loss in the polyimides, and (b) an oxidized

layer is formed on the surface of the material (see [128, 129], also see references in

[130]) due to oxidation. The loss of weight due to oxidation is observed to be due

to chemical bond breakage and escape of volatile lower molecular weight gaseous

products. In addition, it has been observed that the brittle oxidized layer formed on

the surface of the polyimide acts as a crack initiation site, which leads to the failure

of the materials. These cracks also provide more surface area for further degradation
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and damage due to oxidation. Recently, Tandon et al. [131], Pochiraju and Tandon

[130], Roy et al. [132] have looked at oxidative degradation of polymer composites

from a modeling perspective. However, most of the works either do not consider the

coupling between chemical reactions and deformation or assume that the coupling is

between the small strain in a linearized elastic solid model (which does not correctly

describe the mechanical behavior of these high temperature polymers since it has been

experimentally shown that they exhibit non-linear viscoelastic response, see [92]) and

an advection-diffusion-reaction equation.

A thermodynamic framework that considers the coupling between chemical reac-

tions (including stoichiometry and chemical kinetics) and deformation of polyimides

that show non-linear viscoelastic response, is needed. Such a framework can also be

used in modeling similar coupling in areas like asphalt mechanics, biomechanics and

geomechanics. Some of the earlier works in areas of stoichiometry and thermochem-

istry are by Prigogine [58], de Donder and Van Rysselberghe [133], Van Rysselberghe

[134], Bowen [135, 136], Samohýl [137], Nunziato and Walsh [138], Björnbom [139],

Fishtik and Datta [140], Germain et al. [141], Pekar [142], Zeleznik [143], and Kannan

and Rajagopal [144].

In this chapter, we shall extend our constitutive theory that has been used to

model the non-linear response of viscoelastic solids (see Chapter V) to include degra-

dation due to chemical reactions (specifically, oxidation). This theory is based on the

thermodynamic framework of Rajagopal and co-workers (we refer the reader to [20]

for details of this framework) that has been shown to be able to capture a plethora of

phenomena. We extend our previous work by introducing a variable α that represents

the extent of oxidation in the polyimide. Our approach should not be thought of as

merely other internal variable theories that are in vogue; we are able to assign a clear

meaning to this variable and thus it is a variable that goes towards specifying the
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state of the body. The forms for the Helmholtz ψ potential and the rate of dissipation

ξ in Chapter V are modified to incorporate the changes in the response of the body

due to oxidative degradation. Our approach is similar to that of Rajagopal et al.

[145] who have modeled the degradation due to deformation and chain scission in

polymers using a variable to quantify the degradation.

The current chapter is organized as follows. The preliminaries that are required

are documented in section (B). In sub-sections (C.1), (C.2), the constitutive relations

for the degradation due to oxidation are derived. In sub-section (C.3), the predictions

of our proposed model are compared with the experimental creep data for oxidative

degradation of PMR-15 given in [146]. In the final section, we make some remarks

concerning the limitations of the approach, the scope for its improvement and future

work that needs to be carried out.

B. Preliminaries

The local form of the balance of mass, linear momentum, angular momentum (in the

absence of internal couples), and energy are given by

%̇ = −% div(v), (7.1a)

%v̇ = div
(
T T
)

+ %b, (7.1b)

T = T T , (7.1c)

%ε̇ = T .L + %r − div(q). (7.1d)

where T is the Cauchy stress, % is the density, b is the specific body force, ε is the

specific internal energy, r is the radiant heating, q is the heat flux, div(.) stands for

the divergence operator in the current configuration. The kinematics presented in

this section in addition to the preliminaries in Chapter V are sufficient for the work
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that follows.

C. Constitutive assumptions

1. General results

We shall assume that the viscoelastic solid is isotropic and incompressible with the

specific Helmholtz potential of the form

ψ = ψ(Bp(t),BG, θ, α) = ψ̂(IBp(t)
, IIBp(t)

, IBG
, IIBG

, θ, α), (7.2)

where α is a variable that accounts for the extent of oxidation. α equal to zero implies

the body is in its virgin state and α = 1 means that the material is completely

oxidized, and no further oxidation is possible. The rate of change of the variable

α is related to the rate of the oxidation reaction that takes place in the polyimide.

In general, α can be taken to be a tensor which represents the degree of oxidation

in different directions i.e., anisotropic oxidation. Although it is seen in experiments

that oxidation mostly occurs on the surface of the polyimide, we shall assume that

oxidation occurs at every point in the body. One can model the motion of the surface

of oxidation in the polyimide using a mixture theory approach such as that used

by Rajagopal and Tao [121] which can take into effect the diffusion of a singular

surface, which in the case of the problem under consideration would be the surface

that separates the region of the virgin and oxidized body; however such an approach

would make the problem too complicated to be amenable to a meaningful study of

a initial-boundary value problem. We are also assuming that oxygen, polyimide and

the products of oxidation together constitute a constrained mixture i.e., there is no

relative velocity between these constituents, and hence our approach does not capture

the diffusion process. In order to model the diffusion phenomenon, one can follow the
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approach shown in Chapter VI.

Next, assuming that the elastic response from the current configuration κt to the

natural configuration κp(t) is isotropic, without loss of generality, we choose κp(t) such

that

F κp(t) = V κp(t) , (7.3)

where V κp(t) is the right stretch tensor in the polar decomposition of F κp(t) . We shall

also assume that the total rate of dissipation can be split additively as follows

T ·D − %ψ̇ − %sθ̇ = ξm,d ≥ 0, −qh · grad(θ)

θ
= ξc ≥ 0, (7.4)

where ξm,d is the rate of dissipation due to the conversion of mechanical working

into thermal energy and due to degradation, ξc is the rate of dissipation due to heat

conduction. Now, if we constitutively choose

qh = −K(θ) grad(θ), K(θ) ≥ 0, (7.5)

where K is the thermal conductivity, then Eq. (7.4)(b) is automatically satisfied.

Now,

ψ̇ =

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
I − ∂ψ̂

∂IIBp(t)

Bp(t)

]
· Ḃp(t)

+

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
I − ∂ψ̂

∂IIBG

BG

]
· ḂG +

∂ψ̂

∂θ
θ̇ +

∂ψ̂

∂α
α̇,

(7.6)

and using Eqs. (5.10), (5.11) along with Eq. (7.3) in Eq. (7.6), we obtain that

ψ̇ = 2

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
· (D −DG)

+ 2

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
·DG +

∂ψ̂

∂θ
θ̇ +

∂ψ̂

∂α
α̇.

(7.7)
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Next, we shall assume the rate of dissipation ξm,d to be of the form

ξm,d = ξm,d(θ, α, α̇,Bp(t),DG). (7.8)

On substituting Eq. (7.7) into Eq. (7.4)(a), we arrive at[
T − 2%

(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) + 2%

∂ψ̂

∂IIBp(t)

B2
p(t)

]
·D

+ 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
·DG

− 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
·DG − %

∂ψ̂

∂α
α̇

− %
[
∂ψ̂

∂θ
+ s

]
θ̇

= ξm,d(θ, α, α̇,Bp(t),DG).

(7.9)

We shall set

s = −∂ψ̂
∂θ
, (7.10)

and define

T p(t) := 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
, (7.11)

TG := 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
. (7.12)

Using Eqs. (7.10)–(7.12) in Eq. (7.9), we obtain

(
T − T p(t)

)
·D +

(
T p(t) − TG

)
·DG − %

∂ψ̂

∂α
α̇

= ξm,d(θ, α, α̇,Bp(t),DG).

(7.13)

By virtue of the constraint of incompressibility, we have

tr(D) = tr(Dp(t)) = tr(DG) = 0. (7.14)
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Since, the right hand side of Eq. (7.13) does not depend on D, using Eq. (7.14),

T = pI + T p(t), (7.15)

where p is the Lagrange multiplier due to the constraint of incompressibility1, with

(
T p(t) − TG

)
·DG − %

∂ψ̂

∂α
α̇ = ξm,d(θ, α, α̇,Bp(t),DG), (7.16)

which can be re-written as

(T − TG) ·DG − %
∂ψ̂

∂α
α̇ = ξm,d(θ, α, α̇,Bp(t),DG), (7.17)

using Eqs. (7.14) and (7.15).

We shall further assume that ξm,d can be further additively split as follows:

ξm,d(θ, α̇,Bp(t),DG) = ξm(θ, α,Bp(t),DG) + ξd(θ, α, α̇), (7.18)

with each of ξm, ξd being non-negative, so that the second law is automatically satis-

fied. Noting that the first term and second terms on the left hand side of Eq. (7.17)

are the contributions to dissipation2 due to mechanical working and degradation,

respectively, we shall further assume that

(T − TG) ·DG = ξm(θ, α,Bp(t),DG), (7.19a)

−%∂ψ̂
∂α

α̇ = ξd(θ, α, α̇). (7.19b)

1The standard method in continuum mechanics to obtain constraints appeals to
the notion that the constraint response does not work. It has been shown recently by
Rajagopal and Srinivasa [147] that such an assumption is in general incorrect.

2The term dissipation is used to refer to the mechanical working being converted
into energy in thermal form, and associated with this dissipation we have entropy
production. We shall abuse the use of the term dissipation and refer to other entropy
producing mechanism such as degradation as also dissipation.
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Now, we shall maximize the rate of dissipation ξm by varying DG for fixed Bp(t).

That is, we maximize the function

Φ := ξm + λ1 [ξm − (T − TG) ·DG] + λ2(I ·DG), (7.20)

where λ1, λ2 are the Lagrange multipliers. By setting, ∂Φ/∂DG = 0, we get

T = TG +
λ2

λ1

I +

(
λ1 + 1

λ1

)
∂ξm
∂DG

. (7.21)

We need to determine the Lagrange multipliers. On substituting Eq. (7.21) into

Eq. (7.17), we get (
λ1 + 1

λ1

)
=

ξm
∂ξm
∂DG
·DG

, (7.22)

and so Eq. (7.21) with Eq. (7.12) becomes

T = 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
+

(
ξm

∂ξm
∂DG
·DG

)
∂ξm
∂DG

+ λ̂I. (7.23)

where λ̂ := λ2
λ1

is the Lagrange multiplier due to the constraint of incompressibility.

Finally, the constitutive relations are given by

T = pI + 2%

[(
∂ψ̂

∂IBp(t)

+ IBp(t)

∂ψ̂

∂IIBp(t)

)
Bp(t) −

∂ψ̂

∂IIBp(t)

B2
p(t)

]
, (7.24a)

T = λ̂I + 2%

[(
∂ψ̂

∂IBG

+ IBG

∂ψ̂

∂IIBG

)
BG −

∂ψ̂

∂IIBG

B2
G

]
+

(
ξm

∂ξm
∂DG
·DG

)
∂ξm
∂DG

,

(7.24b)

qh = −k(θ)grad(θ), s = −∂ψ̂
∂θ
, (7.24c)

%
∂ψ

∂α
= −ξd

α̇
. (7.24d)

The two equations Eqs. (7.24a), (7.24b) are to be equated and simplified to get the

evolution equation for Bκp(t) . This will be shown in the next sub-section when we

choose specific forms for ψ and ξ.
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2. Specific case

We choose the specific Helmholtz potential as

ψ̂ = As + (Bs + cs2) (θ − θs)−
cs1
2

(θ − θs)2 − cs2θln
(
θ

θs

)
+
µG (1 + β(θ)α)

2%
(IBG

− 3)

+
µp (1 + γ(θ)α)

2%
(IBp(t)

− 3) + F (α, θ), (7.25)

where µG, µp are elastic parameters, θs is a reference temperature for the viscoelastic

solid and the rates of mechanical dissipation, and the dissipation due to degradation

as

ξm = η(1 + δ(θ)α)
(
DG ·Bp(t)DG

)
, (7.26a)

ξd =
D (‖α̇‖)n+1

n

(1− α)
1
n

. (7.26b)

where η is the viscosity, ‖.‖ stands for absolute value. Here, β, γ and δ are material

parameters that depend on temperature. Also, note from Eq. (7.26) that ξm, ξd are

non-negative provided η, δ, D are also non-negative.

Now,

s = −∂ψ̂
∂θ

= −(Bs + cs2) + cs1 (θ − θs) + cs2ln

(
θ

θs

)
+ cs2 −

µGα

2%

∂β

∂θ
(IBG

− 3)

− µpα

2%

∂γ

∂θ
(IBp(t)

− 3)− ∂F

∂θ
. (7.27)
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The internal energy ε is given by

ε = ψ + θs

= As −Bsθs + cs2 (θ − θs) +
cs1
2

(
θ2 − θ2

s

)
+
µG
2%

(IBG
− 3)

[
1 + α

(
β − θ∂β

∂θ

)]
(7.28)

+
µp
2%

(IBp(t)
− 3)

[
1 + α

(
γ − θ∂γ

∂θ

)]
+ F − θ∂F

∂θ
. (7.29)

and the specific heat capacity Cv is

Cv =
∂ε

∂θ
= cs1θ + cs2 −

µGαθ

2%
(IBG

− 3)
∂2β

∂θ2
− µpαθ

2%
(IBp(t)

− 3)
∂2γ

∂θ2
− θ∂

2F

∂θ2
. (7.30)

Also, Eqs. (7.24a), (7.24b) reduce to

T = pI + µ̄pBp(t), (7.31a)

T = λI + µ̄GBG +
η̄

2

(
Bp(t)DG +DGBp(t)

)
, (7.31b)

where µ̄p = µp (1 + β(θ)α), µ̄G = µG (1 + γ(θ)α), η̄ = η (1 + δ(θ)α). We also note

that we chose the functions for the material moduli (µ̄p, µ̄G, η̄) such that they increase

as α goes from 0 to 1. This is consistent with the experiments (see figure 5 in [146])

where it seen that the elastic modulus increases with aging. We further note that

such a choice of functions for the material moduli is different from what Rajagopal

et al. [145] have chosen in their work.

From Eq. (7.31)

(p− λ)I + µ̄pBp(t) = µ̄GBG +
η̄

2

(
Bp(t)DG +DGBp(t)

)
, (7.32)

and so by pre-multiplying the above equation by B−1
p(t) and taking the trace, we get

(p− λ) =
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

. (7.33)
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Using Eq. (7.33) in Eq. (7.32), we arrive at the following equation:[
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

]
I + µ̄pBp(t) = µ̄GBG +

η̄

2

(
Bp(t)DG +DGBp(t)

)
, (7.34)

which can be re-written as[
µ̄Gtr(B−1

p(t)BG)− 3µ̄p

tr(B−1
p(t))

]
I + µ̄pBp(t) = µ̄GBG

− η̄

4

(
V p(t)

∇
Bp(t) V

−1
κp(t)

+ V −1
κp(t)

∇
Bp(t) V p(t)

)
,

(7.35)

where we have used Eqs. (5.13) and (7.34). Now, Eq. (7.24d) reduces to

µGβ(θ)

2
(IBG

− 3) +
µpγ(θ)

2
(IBp(t)

− 3) + %
∂F

∂α
= − D ˙‖α‖

n+1
n

α̇ (1− α)
1
n

. (7.36)

We shall assume that

F (α) = −k(θ)

%
α, (7.37)

where k is a non-negative constant, then Eq. (7.36), for n = 1 reduces to

µGβ(θ)

2
(IBG

− 3) +
µpγ(θ)

2
(IBp(t)

− 3)− k = − D ˙‖α‖2

α̇ (1− α)
. (7.38)

Notice that the first two terms on the left hand side of Eq. (7.38) represent the

dependence of the extent of oxidation on the deformation of the material.

Thus, with the current choice of the specific Helmholtz potential and the rate of

dissipation, we arrive at the following constitutive equations:

T = pI + µp (1 + β(θ)α)Bp(t), (7.39)
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where the evolution of the natural configuration is given by[
µG (1 + γ(θ)α) tr(B−1

p(t)BG)− 3µp (1 + β(θ)α)

tr(B−1
p(t))

]
I + µp (1 + β(θ)α)Bp(t)

= µG (1 + γ(θ)α)BG −
η

4

(
V p(t)

∇
Bp(t) V

−1
κp(t)

+ V −1
κp(t)

∇
Bp(t) V p(t)

)
, (7.40)

and the evolution of α is given by Eq. (7.38). These constitutive relations reduce to the

non-linear viscoelastic solid model derived in Chapter V when there is no degradation.

In a general initial-boundary value problem, one has to solve the coupled equations

Eqs. (7.1b), (7.38) along with Eqs. (7.39), (7.40), subject to appropriate initial and

boundary conditions. In problems where temperature gradients are important one

needs to also consider the balance of energy Eq. (7.1d).

3. Comparison with experimental data

In order to compare the predictions of our model with experimental data, we shall

consider the problem of uniaxial extension, given by

x = λ(t)X, y =
1√
λ(t)

Y, z =
1√
λ(t)

Z, (7.41)

within the context of this model. The velocity gradient is given by

L = diag

{
λ̇

λ
,− λ̇

2λ
,− λ̇

2λ

}
. (7.42)

We shall assume that the stretch Bp(t) is given by

Bp(t) = diag

{
B,

1√
B
,

1√
B

}
. (7.43)

Straight forward calculations using Eq. (7.34) give

Ḃ

2
=
Bλ̇

λ
+
µ̄G
η̄

λ2

B
− µ̄p

η̄
B −

{
µ̄G
η̄

(λ3 + 2B3)− 3 µ̄p
η̄
λB2

λB (1 + 2B3/2)

}
, (7.44)
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which can be re-written in the following form:

λ̇ = λ

{
Ḃ

2B
−
[

1

η̄B

(
µ̄G

λ2

B
− µ̄pB −

(
µ̄G (λ3 + 2B3)− 3µ̄pB

2λ

Bλ(1 + 2B3/2)

))]}
. (7.45)

Using Eq. (7.43) in Eq. (7.39), and also the fact that lateral surfaces are traction

free, it is easy to see that

T11 = µ̄p

(
B − 1√

B

)
, (7.46)

and so

Ṫ11 = µ̄p

(
1− 1

2
√
B

)
Ḃ. (7.47)

In addition, Eq. (7.38) becomes

−µGβ(θ)

2

(
λ2

B
− 2
√
B

λ
− 3

)
− µpγ(θ)

2

(
B +

2√
B
− 3

)
+ k =

D ˙‖α‖2

α̇ (1− α)
. (7.48)

We shall also use logarithmic strain (or true strain) ε = lnλ as our strain measure in

what follows.

We shall compare our model with the experimental data for PMR-15 from [146].

With the given Ṫ11 and material parameters, Eqs. (7.47), (7.45) were first solved

using the initial condition that B(0) = λ(0) = 1 for a time of
T11

Ṫ11

. Then, Eqs. (7.45),

(7.46) were solved till the end of loading. Since in the experiments the aging in air

was done without any load being applied, Eq. (7.38) was also solved without the first

two terms on the left hand side using α(0) = 0 as the initial condition. The ODEs

were solved in MATLAB using the ode45 solver. The following parameters were used

for comparing the results predicted by our model to the experimental creep data for

PMR-15 (under 10 MPa loading) that has been aged in air for various amounts of

time (also see Fig. (35)): µp = 2×109 MPa, µG = 3.8×108 MPa, η = 45×1012 MPa.s,

k
D

= 1.2× 10−6 s−1, β = 10, γ = 0.3, δ = 0.5. Also, since the experiments were done
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under isothermal conditions, the balance of energy Eq. (7.1d) was not considered.
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Fig. 35.: Comparison of the model predictions with experimental creep data by

Ruggles-Wrenn and Broeckert [146] for PMR-15 at a loading of 10 MPa with Ṫ11 = 1

MPa/s as the rate of loading. The amount of time that the sample is aged in air

is also shown. The material parameters used are as follows: µp = 2 × 109 MPa,

µG = 3.8 × 108 MPa, η = 45 × 1012 MPa.s, k
D

= 1.2 × 10−6 s−1 , β = 10, γ = 0.3,

δ = 0.5.

D. Concluding remarks

A model for the degradation of polyimides due to oxidation has been developed in

this chapter. Our model also accounts for the effect of deformation on the aging due

to oxidation. However, there is no experimental data to corroborate this part of our

model.
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The limitations of our model are as follows:

1. Our model cannot predict the diffusion of oxygen and hence one cannot estimate

the thickness of the oxidized layer on the surface of the resin.

2. The weight lost due to oxidation cannot be estimated using our model. For this

one needs to understand the chemical kinetics. Once the chemical kinetics are

established, an approach similar to ours can be used to couple these reaction

kinetics to the deformation of the polymer. Our work in this chapter can be

viewed as a first step towards this end.
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CHAPTER VIII

SUMMARY AND FUTURE WORK

In summary, we first showed that different forms for the specific Helmholtz potential

and the rate of dissipation can give rise to different three-dimensional models, upon

maximizing the rate of dissipation, along with appropriate constraints. These three-

dimensional models reduce to the same one-dimensional model. Next, we developed a

thermodynamic framework for deriving rate-type models for viscoelastic fluids that do

not possess instantaneous elasticity under creep. We then showed that bodies that are

initially elastic in nature (and hence cannot creep or stress relax) can creep and stress

relax due to degradation caused by diffusion of a fluid. We also showed that this creep

and stress relaxation phenomena is different from that shown by viscoelastic bodies

in that these phenomena depend on the geometry of the body. Next as a first step to

model the various degradation processes on high temperature polyimides, we develop

a framework to model the non-linear viscoelastic behavior of these polyimides. We

also showed that the model developed using such a framework is a three-dimensional

generalization of the standard linear solid. Then, such a framework is extended to

include diffusion of a fluid as well as degradation due to oxidation. We showed that

the numerical data obtained by solving different boundary valued problems using

these models compare well with the experimental data for polyimides.

Directions for future work are as follows:

1. Develop better and more sophisticated experimental techniques for identifying

the correct three-dimensional model.

2. Use the rate-type fluid models developed by using our framework in Chapter II

to corroborate with experimental data for asphalt and other materials. Also,
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extend such a framework to develop visco-elasto-plastic models.

3. Develop a finite element framework for coupling diffusion of a fluid and finite

deformation of an elastic solid by incorporating techniques, that have been

introduced recently [148], [149], to ensure non-negativity in concentration.

4. To model the anisotropic response of polyimide composites, our framework in

Chapter V can be extended by modifying the Helmholtz potential.

5. Further experiments need to be carried out to get the creep and stress relax-

ation of different polyimides under different loading conditions and for various

amounts of aging in oxygen. Also, one needs to perform experiments where

simultaneous deformation and aging takes place to see how they are coupled.

6. One can easily extend our work in Chapter VII to include anisotropy in oxidation

by introducing a tensor (α). In addition, for modeling oxidative degradation in

polyimide composites, one can also use different variables αm, αf that represent

the degradation due to oxidation in the polymer matrix and fiber, respectively.

This approach is similar to Baek and Pence [150] who have used different vari-

ables to represent the degradation due to swelling in the composite matrix and

fiber.

7. Our framework in Chapters VII and VIII can also be used to model degradation

due to diffusion of moisture (or other fluids) and oxidation (or other chemical

reactions) in materials like asphalt/asphalt derivatives, biomaterials. For this,

one has to accordingly modify the terms in the Helmholtz potential and the

rate of dissipation due to deformation.

8. Develop a finite element framework for all the viscoelastic models developed in
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this dissertation. Such a framework can be used to solve more realistic finite

dimensional problems.
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[35] J. Málek and K. R. Rajagopal, “A thermodynamic framework for a mixture of

two liquids,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp.

1649–1660, 2008.



183

[36] J. G. Oldroyd, “On the formulation of rheological equations of state,” Pro-

ceedings of the Royal Society of London. Series A, Mathematical and Physical

Sciences, vol. 200, no. 1063, pp. 523–541, 1950.

[37] K. R. Rajagopal and A. R. Srinivasa, “On the thermodynamics of fluids defined

by implicit constitutive relations,” Zeitschrift für Angewandte Mathematik und

Physik (ZAMP), vol. 59, no. 4, pp. 715–729, 2008.

[38] K. R. Rajagopal and A. R. Srinivasa, “On thermomechanical restrictions of

continua,” Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, vol. 460, no. 2042, pp. 631–651, 2004.

[39] K. R. Rajagopal, “On implicit constitutive theories,” Applications of Mathe-

matics, vol. 48, no. 4, pp. 279–319, 2003.

[40] K. R. Rajagopal and A. R. Srinivasa, “Mechanics of the inelastic behavior

of materials: Part I - Theoretical underpinnings,” International Journal of

Plasticity, vol. 14, no. 10-11, pp. 945–967, 1998.

[41] C. Eckart, “The thermodynamics of irreversible processes. IV. The theory of

elasticity and anelasticity,” Physical Review, vol. 73, no. 4, pp. 373–382, 1948.

[42] K. R. Rajagopal and A. R. Srinivasa, “Inelastic behavior of materials. Part II.

Energetics associated with discontinuous deformation twinning,” International

Journal of Plasticity, vol. 13, no. 1-2, pp. 1–35, 1997.

[43] K. R. Rajagopal and A. R. Srinivasa, “On the thermomechanics of shape

memory wires,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP),

vol. 50, no. 3, pp. 459–496, 1999.



184

[44] A. R. Srinivasa, “Large deformation plasticity and the Poynting effect,” Inter-

national Journal of Plasticity, vol. 17, no. 9, pp. 1189–1214, 2001.

[45] I. J. Rao and K. R. Rajagopal, “A thermodynamic framework for the study

of crystallization in polymers,” Zeitschrift für Angewandte Mathematik und

Physik (ZAMP), vol. 53, no. 3, pp. 365–406, 2002.

[46] K. Kannan, I. J. Rao, and K. R. Rajagopal, “A thermomechanical framework

for the glass transition phenomenon in certain polymers and its application to

fiber spinning,” Journal of Rheology, vol. 46, pp. 977–999, 2002.

[47] S. C. Prasad, I. J. Rao, and K. R. Rajagopal, “A continuum model for the

creep of single crystal nickel-base superalloys,” Acta Materialia, vol. 53, no. 3,

pp. 669–679, 2005.

[48] S. C. Prasad, K. R. Rajagopal, and I. J. Rao, “A continuum model for the

anisotropic creep of single crystal nickel-based superalloys,” Acta Materialia,

vol. 54, no. 6, pp. 1487–1500, 2006.

[49] K. R. Rajagopal and A. S. Wineman, “A constitutive equation for nonlinear

solids which undergo deformation induced microstructural changes,” Interna-

tional Journal of Plasticity, vol. 8, no. 4, pp. 385–395, 1992.

[50] K. R. Rajagopal and A. R. Srinivasa, “Modeling anisotropic fluids within the

framework of bodies with multiple natural configurations,” Journal of Non-

Newtonian Fluid Mechanics, vol. 99, no. 2-3, pp. 109–124, 2001.

[51] K. Kannan, “A note on aging of a viscoelastic cylinder,” Computers & Math-

ematics with Applications, vol. 53, no. 2, pp. 324–328, 2007.



185

[52] K. Kannan and K. R. Rajagopal, “A thermomechanical framework for the

transition of a viscoelastic liquid to a viscoelastic solid,” Mathematics and

Mechanics of Solids, vol. 9, no. 1, pp. 37–59, 2004.

[53] S. Karra and K. R. Rajagopal, “Development of three dimensional constitu-

tive theories based on lower dimensional experimental data,” Applications of

Mathematics, vol. 54, no. 2, pp. 147–176, 2009.

[54] H. Ziegler, An Introduction to Thermomechanics, Amsterdam: North-Holland

Publishing Company, 1983.

[55] H. Ziegler and C. Wehrli, “The derivation of constitutive relations from the

free energy and the dissipation function,” in Advances in Applied Mechanics,

T. Y. Wu and J. W. Hutchinson, Eds. 1987, vol. 25, pp. 183–238, New York:

Academic Press.

[56] L. Onsager, “Reciprocal relations in irreversible processes. I.,” Physical Review,

vol. 37, no. 4, pp. 405–426, 1931.

[57] P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability

and Fluctuations, New York: Wiley-Interscience, 1971.

[58] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, New

York: John Wiley & Sons, 1967.

[59] R. M. Christensen, Theory of Viscoelasticity, New York: Dover Publications,

2003.

[60] R. Chen and D. R. Tyler, “Origin of tensile stress-induced rate increases in the

photochemical degradation of polymers,” Macromolecules, vol. 37, no. 14, pp.

5430–5436, 2004.



186

[61] H. Bouadi and C. T. Sun, “Hygrothermal effects on the stress field of laminated

composites,” Journal of Reinforced Plastics and Composites, vol. 8, pp. 40–54,

1989.

[62] L. W. Cai and Y. Weitsman, “Non-Fickian moisture diffusion in polymeric

composites,” Journal of Composite Materials, vol. 28, pp. 130–154, 1994.

[63] Y. Weitsman, “Coupled damage and moisture-transport in fiber-reinforced,

polymeric composites,” International Journal of Solids and Structures, vol. 23,

no. 7, pp. 1003–1025, 1987.

[64] J. M. Snead and A. N. Palazotto, “Moisture and temperature effects on the

instability of cylindrical composite panels,” Journal of Aircraft, vol. 20, pp.

777–783, 1983.

[65] S. Y. Lee and W. J. Yen, “Hygrothermal effects on the stability of a cylindrical

composite shell panel,” Computers & Structures, vol. 33, no. 2, pp. 551–559,

1989.

[66] H. Bouadi and C. T. Sun, “Hygrothermal effects on structural stiffness and

structural damping of laminated composites,” Journal of Materials Science,

vol. 25, no. 1, pp. 499–505, 1990.

[67] G. A. Kardomateas and C. B. Chung, “Boundary layer transient hygroscopic

stresses in orthotropic thick shells under external pressure,” Journal of Applied

Mechanics, vol. 61, pp. 161–168, 1994.

[68] Y. Weitsman, “Stress assisted diffusion in elastic and viscoelastic materials,”

Journal of the Mechanics and Physics of Solids, vol. 35, no. 1, pp. 73–94, 1987.



187

[69] S. Roy, K. Vengadassalam, Y. Wang, S. Park, and K. M. Liechti, “Character-

ization and modeling of strain assisted diffusion in an epoxy adhesive layer,”

International Journal of Solids and Structures, vol. 43, no. 1, pp. 27–52, 2006.

[70] A. V. Tobolsky and R. D. Andrews, “Systems manifesting superposed elastic

and viscous behavior,” The Journal of Chemical Physics, vol. 13, pp. 3–27,

1945.

[71] A. V. Tobolsky, I. B. Prettyman, and J. H. Dillon, “Stress relaxation of natural

and synthetic rubber stocks,” Journal of Applied Physics, vol. 15, pp. 380–395,

1944.

[72] A. S. Wineman and K. R. Rajagopal, “On a constitutive theory for materials

undergoing microstructural changes,” Archives of Mechanics, vol. 42, no. 1, pp.

53–75, 1990.

[73] H. E. Huntley, A. S. Wineman, and K. R. Rajagopal, “Load maximum be-

havior in the inflation of hollow spheres of incompressible material with strain-

dependent damage,” Quarterly of Applied Mathematics, vol. 59, no. 2, pp.

193–223, 2001.

[74] H. E. Huntley, A. S. Wineman, and K. R. Rajagopal, “Stress softening, strain

localization and permanent set in the circumferential shear of an incompressible

elastomeric cylinder,” IMA Journal of Applied Mathematics, vol. 59, no. 3, pp.

309–338, 1997.

[75] H. E. Huntley, A. S. Wineman, and K. R. Rajagopal, “Chemorheological re-

laxation, residual stress, and permanent set arising in radial deformation of

elastomeric hollow spheres,” Mathematics and Mechanics of Solids, vol. 1, no.

3, pp. 267–299, 1996.



188

[76] A. S. Wineman and J. Shaw, “Scission and healing in a spinning elastomeric

cylinder at elevated temperature,” Journal of Applied Mechanics, vol. 69, no.

5, pp. 602–609, 2002.

[77] J. A. Shaw, A. S. Jones, and A. S. Wineman, “Chemorheological response of

elastomers at elevated temperatures: experiments and simulations,” Journal of

the Mechanics and Physics of Solids, vol. 53, no. 12, pp. 2758–2793, 2005.

[78] K. R. Rajagopal and A. S. Wineman, “A note on viscoelastic materials that

can age,” International Journal of Non-Linear Mechanics, vol. 39, no. 10, pp.

1547–1554, 2004.

[79] J. K. Knowles, “The finite anti-plane shear field near the tip of a crack for a

class of incompressible elastic solids,” International Journal of Fracture, vol.

13, no. 5, pp. 611–639, 1977.

[80] H. S. Hou and Y. Zhang, “The effect of axial stretch on cavitation in an elastic

cylinder,” International Journal of Non-Linear Mechanics, vol. 25, no. 6, pp.

715–722, 1990.

[81] G. Saccomandi, “Some generalized pseudo-plane deformations for the neo-

Hookean material,” IMA Journal of Applied Mathematics, vol. 70, no. 4, pp.

550–563, 2005.

[82] K. R. Rajagopal and L. Tao, “On an inhomogeneous deformation of a general-

ized neo-Hookean material,” Journal of Elasticity, vol. 28, no. 2, pp. 165–184,

1992.

[83] J. B. McLeod and K. R. Rajagopal, “Inhomogeneous non-unidirectional de-

formations of a wedge of a non-linearly elastic material,” Archive for Rational



189

Mechanics and Analysis, vol. 147, no. 3, pp. 179–196, 1999.

[84] L. Tao, K. R. Rajagopal, and A. S. Wineman, “Circular shearing and torsion

of generalized neo-Hookean materials,” IMA Journal of Applied Mathematics,

vol. 48, no. 1, pp. 23, 1992.

[85] J. P. Zhang and K. R. Rajagopal, “Some inhomogeneous motions and defor-

mations within the context of a non-linear elastic solid,” International Journal

of Engineering Science, vol. 30, no. 7, pp. 919–938, 1992.

[86] K. R. Rajagopal, “Deformations of nonlinear elastic solids in unbounded do-

mains,” Mathematics and Mechanics of Solids, vol. 1, no. 4, pp. 463–472, 1996.

[87] A. Muliana, K. R. Rajagopal, and S. C. Subramanian, “Degradation of an Elas-

tic Composite Cylinder due to the Diffusion of a Fluid,” Journal of Composite

Materials, vol. 43, pp. 1225–1249, 2009.

[88] S. Darbha and K. R. Rajagopal, “Unsteady motions of degrading or aging

linearized elastic solids,” International Journal of Non-Linear Mechanics, vol.

44, no. 5, pp. 478–485, 2009.

[89] K. R. Rajagopal, “Boundary layers in finite thermoelasticity,” Journal of

Elasticity, vol. 36, no. 3, pp. 271–301, 1994.

[90] C. Truesdell, W. Noll, and S. S. Antman, The Non-linear Field Theories of

Mechanics, Berlin: Springer Verlag, 2004.

[91] P. Bhargava, “High temperature properties of HFPE-II-52 polyimide resin and

composites,” Ph.D. dissertation, Cornell University, Ithaca, NY, 2007.



190

[92] C. M. Falcone and M. B. Ruggles-Wrenn, “Rate dependence and short-term

creep behavior of a thermoset polymer at elevated temperature,” Journal of

Pressure Vessel Technology, vol. 131, pp. 1–8, 2009.
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APPENDIX A

APPENDIX FOR CHAPTER II

From Eq. (3.21) and Eq. (3.32) in [151]

∂f(L1)

∂D1

=
1

2

(
∂f

∂L1

+

(
∂f

∂L1

)T)
. (A.1)

Hence, using Eq. (A.1)
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APPENDIX B

APPENDIX FOR CHAPTER III

In this section, we shall derive the constitutive relations when the rate of dissi-

pation is of the form

ξm(Dp(t),DG) = ηpDp(t).Dp(t) + ηGDG.DG. (B.1)

with the stored energy given by Eq. (3.34). Now, Eq. (3.33) reduces to

T = pI + µBp(t) + ηpDp(t), (B.2)

and

T = λ̂I + ηGV
−1
κp(t)

DGVκp(t) . (B.3)

Also, from Eqs. (B.2) and (B.3),

(p− λ̂) = −µ
3
tr(Bp(t)). (B.4)

Equating Eqs. (B.2) and (B.3), pre-multiplying and post-multiplying by Vκp(t) , and

using Eqs. (3.15), (3.23), we get

(p− λ̂)Bp(t) + µB2
p(t) +

ηp
2
Ḃp(t) = −ηG

2
V−1
κp(t)

∇
Bp(t) Vκp(t) . (B.5)

It follows that, the constitutive relations for the choices of Eq. (3.34) and Eq. (B.1)

for the specific Helmholtz potential and the rate of dissipation, are

T = pI + µBp(t) +
ηp
2
V−1
κp(t)

Ḃp(t)V
−1
κp(t)

, (B.6)

and

−ηG
2
V−1
κp(t)

∇
Bp(t) Vκp(t) = −µ

3
tr(Bp(t))Bp(t) + µB2

p(t) +
ηp
2
Ḃp(t). (B.7)
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Eq. (B.7) is the evolution equation of the natural configuration.
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APPENDIX C

APPENDIX FOR CHAPTER VI

A. Convergence of numerical results

Since the analytical solution for the problem is unknown, we perform an engineering

convergence study of the solution using the described algorithm (see figure (36)). In

this study, the error is calculated by taking the difference between solution of various

grid sizes (5, 15, 25, . . . , upto 351 points) and the solution found using a very fine

grid of 401 points at the point Z? = 0 and at a time of t? = 0.5. Note that the error

is propotional to logarithm of the spatial increment and hence the convergence rate

is slow. The aim of our current work is not to present an optimal algorithm but to

solve the coupled partial differential equations.

B. Derivation of the constitutive equation for the viscoelastic solid in the absence of

diffusion

Here we show that in the absence of diffusion the derived constitutive equations

reduces to a variant of the three-dimensional standard linear solid model given in

Chapter V. Now, in the absence of diffusion of the fluid, we will have to drop the last

term in (6.66) to get

ψ̂ = As + (Bs + cs2) (θ − θs)−
cs1
2

(θ − θs)2 − cs2θln
(
θ

θs

)
+
µG0 − µG1θ

ρsθs
(IBs

G
− 3)

+
µp0 − µp1θ

ρsθs
(IBs

p(t)
− 3). (C.1)
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Fig. 36.: Engineering spatial convergence of the solution for p at Z? = 0 and at

t? = 0.5. The time-step was chosen to be ∆t? = 0.025.

We shall assume that the solid is incompressible in the absence of fluid. The constraint

of incompressibility is given by

tr (Ds) = tr (Ds
G) = 0. (C.2)

The reduced energy dissipation equation of the solid reduces to

T s ·Ds −
(
ρ
dψ

dt

)
θ fixed

= ξm. (C.3)

In the absence of diffusion, there will be only be dissipation due to mechanical working

of the solid, and so the rate of dissipation in this case would be

ξm = γ(θ)Ds
G ·Ds

G. (C.4)
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Upon maximizing the rate of dissipation using (C.4), (C.2) as constraints (see Chapter

V for details) we arrive at

T s = pI + 2µ̄pB
s
p(t), (C.5a)

T s = λI + 2µ̄GB
s
G + ηDs

G. (C.5b)

From (C.5a), (C.5b) we have

(p− λ) I + 2µ̄pB
s
p(t) − 2µ̄GB

s
G = ηDs

G. (C.6)

Taking the trace of (C.6), we get

3 (p− λ) = −2µ̄ptr
(
Bs
p(t)

)
+ 2µ̄Gtr (Bs

G) . (C.7)

Hence, (C.7) in (C.6) gives

2µ̄pB
s
p(t) − 2µ̄GB

s
G =

2

3

[
µ̄ptr

(
Bs
p(t)

)
− µ̄Gtr (Bs

G)
]

+ ηDs. (C.8)

The final constitutive equations for the viscoelastic solid are

T s = pI + 2µ̄pB
s
p(t), (C.9)

with (C.8) being the evolution equation for the natural configuration of the viscoelas-

tic solid. This is a variant of the model derived in Chapter V.
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