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ABSTRACT 
 
 
 

A Model for Blood Coagulation and Lysis Utilizing the Intrinsic and Extrinsic Pathways.  
 

(May 2011) 
 

Daniel Edward LaCroix, B.S., Trinity University; 
 

M.S. Texas A&M University 
 

Chair of Advisory Committee: Dr. Kumbakonam Rajagopal 
 
 
 

Blood is a complex mixture of formed cellular elements, proteins, and ions 

dissolved in a solution. It is a difficult fluid to model because it is a shear-thinning, 

viscoelastic fluid that stress-relaxes. In this study, a new mathematical model for whole 

blood is developed from a general equation for a fluid with a shear dependent viscosity. 

The model is then used as a backdrop for 28 different biochemical factors interacting to 

form a clot. The full intrinsic and extrinsic pathways are both used in the simulation; the 

inclusion of the full intrinsic pathway is something that had not been done prior to this 

work. The model is executed in one spatial direction in an infinite domain as well as 

within a rigid walled cylinder using a finite volume scheme. The rigid wall, similar to 

the new mathematical equation for blood, is an oversimplification of actual in-vitro 

conditions. The results of both simulations show the formation and dissolution of the 

clot. Sensitivity analysis is then performed in the finite domain model by adjusting the 

initial levels of factors Va and Xa. The results show that increasing the initial level of 

one or both of these factors leads to the quicker formation of a clot. 
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INTRODUCTION1 
 
  

Blood is a liquid that circulates in the body and is one of the principal 

components of the cardiovascular system. The cardiovascular system is responsible for 

the delivery and removal of nutrients, gases, and necessary components throughout the 

body.  It is made up of the heart, which acts as a pump, as well as the arteries, arterioles, 

capillaries, venules, and veins that carry and distribute blood throughout the body. Blood 

is comprised of formed cellular elements and proteins suspended in an aqueous solution. 

The formed cellular elements include erythrocytes (or red blood cells), leukocytes (or 

white blood cells), and platelets. The aqueous solution is plasma and consists of mostly 

water as well as dissolved proteins (such as fibrinogen and prothrombin) and ions (such 

as Ca+, HCO3
-, etc.).  

Blood Distribution  

 Blood is pumped throughout the body by the heart. A large and complicated 

network of blood vessels is used to distribute blood. The blood vessels range in diameter 

from 2.5 cm (the aorta) to 8 µm (capillaries) (Martini et al., 2001). The pathways leading 

away from the heart are called arteries while those that usher blood on its return to the 

heart are called veins. The vessels are lined with endothelium which functions to allow 

secretion and absorption as well as protection.  A healthy endothelium will actively 

suppress unnecessary clot formation, vascular inflammation, as well as hypertrophy 

(Landmesser et al., 2004).  

                                                
1 This dissertation follows the style of Journal of Theoretical Biology. 
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It seems obvious that, without disruption, cardiac output and venous return are 

equal. Furthermore, within isolated tissues the in-flow and out-flow of blood remain 

equal. However, this does not mean that blood flows equally in arteries and veins. On 

the contrary, the two flow quite differently. Arterial blood flows in pulses while venous 

blood flow is essentially steady.  The maximum velocity, average velocity, and pressure 

are higher in arteries. These flow characteristics are logical when considering the manner 

in which blood is pumped. Arterial blood is moved by the periodic contraction of the 

heart, and while outflow from the heart is distinctly pulsatile, in smaller vessels it is 

much steadier. This is because the larger arteries expand during systole (when the heart 

contracts), storing blood. During diastole (when the heart fills with blood), the arteries 

contract, thus giving up the blood that was stored. How much a blood vessel expands 

and contracts is known as compliance. Venous blood flows smoothly because it deposits 

into atria of the heart that act as reservoirs before being pumped back into the body 

(Rajagopal and Lawson, 2007). 

Components of Blood 

Erythrocytes are actually small hemoglobin solutions bound by a flexible 

membrane. While in large pathways, red blood cells (or RBCs) are round discs with a 

diameter of about 7.7 microns and outer edges that are roughly twice as thick as the 

center (2.8 microns and 1.4 microns respectively) (Rajagopal and Lawson, 2007) . This 

discrepancy in thickness is important because as the RBCs enter smaller pathways they 

deform into a parabolic shape. The difference in thickness means that there is less 

resistance to this deformation. RBCs also contain hemoglobin, which is responsible for 
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transporting oxygen to the body. In addition to delivering oxygen, RBCs also help 

deliver carbon dioxide (mostly in the form of bicarbonate) to the lungs. Volumetrically, 

erythrocytes make up 97% of the formed elements in blood (Anand, et al. 2003). In large 

arteries, RBCs will bind together to form rouleaux (Chien et al., 1970). The shear 

thinning qualities of blood can be attributed to the disaggregation of rouleaux that form 

at low shear and the deformability of RBCs (Chien et al., 1966). Additionally, RBCs 

stay a minimum distance away from the wall due to the Fahreus-Lindqvist effect 

(Fåhreus and Lindqvist, 1931). 

In addition, recent research by scientists at the National University of Singapore 

have uncovered another function of erythrocytes: defense. Their findings state that when 

bacteria breach a red blood cell, a plethora of dangerous chemicals known as free 

radicals are released. The free radicals latch on to the bacteria and break open the cell 

wall, effectively killing the bacteria. The free radicals are also harmful to human tissue, 

but the proximity of the bacteria usually ensures that they will be the target rather than 

the endothelium. This defense mechanism has been found in horseshoe crabs as well 

which suggests that it is, evolutionarily speaking, an old defense mechanism (Kesava, 

2007). 

 Leukocytes, or white blood cells (WBC’s), are part of the body’s immune 

system, and act as the main aggressors against foreign agents. There are five different 

kinds of WBC’s: neutrophils, eosinophils, and basophils are referred to as granulocytes 

while lymphocytes and monocytes are called agranular leukocytes. Granulocytes are 

roughly 8-15 microns across while the agranular leukocytes are much bigger with sizes 
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between 15 and 25 microns (Rajagopal and Lawson, 2007). Each leukocyte serves a 

separate purpose.  

Neutrophil accumulation is associated with the immune system as well as 

inflammation and can be seen across a wide array of medical conditions from infection 

to cancer. The neutrophil combats bacterial infection as well as helping to rid the body 

of unnecessary (and therefore unwanted) extracellular deposits as well as damaged 

tissue. As neutrophils begin to fight infection they release granule enzymes, an oxidase, 

H2O2, and several lipids. The granules are mostly composed of two enzymes: the 

azurophil and the specific. The azurophil seeks out and destroys microbials while the 

specific replenishes membranes and limits reactions. It is worth noting that this 

leukocyte’s actions also cause inflammation and tissue damage to the body, which is 

normal for neutrophil accumulation (Baggiolini et al., 1989). 

How neutrophils combat microbes is especially interesting. It was previously 

thought that oxygen and oxygen reactive elements were activated to combat bacteria and 

fungi. However, this is incorrect. In actuality, electrons are pumped into the phagocytic 

vacuole (the target fungi or bacteria) which creates a charge difference across the 

membrane. As ions move across the membrane to rectify the charge difference, a path is 

created that allows the granule enzymes and superoxide to be released into the vacuole 

thus killing the target microbe (Segal, 2005). 

 While similar to neutrophils in their association with the immune system, 

eosinophils are involved in an extremely wide variety of processes. Within its function 

as a fighting agent, eosinophils are stimulated by tissue injury, infections, allergens, and 
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tumor formation. In response to stimulation, four different cytotoxic proteins are 

released. Eosinophils also discharge a wide array of cytokines responsible for 

lymphocyte proliferation and activation as well as ongoing communication with the 

lymphocytes after they have been mobilized (Rothenberg and Hogan, 2006).  

 Basophils are the least common WBC’s compromising less than 1% of 

leukocytes and have often been considered to be at best, minor and at worst, redundant. 

There exist cells in tissue that behave and perform nearly identical to basophils that are 

called mast cells (Sharon, 1998). Recent research done on mice with depleted basophils 

showed no significant effects on classic allergic reactions. In fact, it prevented the 

development of immunoglobin-E mediated chronic allergic dermatitis that is associated 

with eosinophil infiltration. Thus, basophils play an important role in the development of 

immunoglobin-E mediated chronic allergic inflammation as an initiator rather than in 

response to other immune system responses (Obata et al., 2007). Though they make up a 

small portion of WBCs, they are able to recruit assistance and call specific situations to 

the attention of the more capable elements of the immune system.  This may be the 

reason that there are such low numbers of basophils found within blood: they are merely 

intended to alert more capable leukocytes as well as act as reinforcements to the battle 

being waged by mast cells. 

 Lymphocytes can be broken down into three groups: T-cells, B-cells, and natural 

killer (NK) cells. Research into these elements yields a veritable library of information 

that delves deep into specifics surrounding their origin, role within the immune system, 

and relationship with elements that are outside the scope of this paper. As is, a general 
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overview of each cell and its variations will be discussed.  

 T-cells are so named because they are formed primarily in the Thymus. All T-

cells have several receptors on their membrane referred to as T-cell receptors. The 

receptors may be comprised of an α-β chain or a δ-γ chain, but not both. A T-cell only 

contains one type of receptor that is repeated. Within humans, α-β cells make up 

between 85 and 95% of all T-cells. There are three main types of T-cells; T-cytotoxic, T-

helper, and T-suppressor, and each serves a different purpose within their function as a 

T-cell. T- cytotoxic cells are sometimes called effectors because they effectively kill 

target cells. In order to do this, the T-cytotoxic cell bonds to the MHC class I complex of 

a cell with an unrecognizable antigenic determinant. T-helper cells, as their name 

implies, encourage the immune system response. T-suppressor cells do the opposite and 

work to dampen the immune system response. Both T-helper and T-suppressor work 

through direct contact with other cells as well as by the secretion of soluble molecules 

that impact the function of other cells (Sharon, 1998).  

 B-cells perform a similar function as T-cells, but in a different way. The B-cell 

antibody is shaped like a “Y”. The branches at the top are known as the Fab region, and 

provide two sites to bind antigens. The base part of the “Y” is referred to as the Fc 

region and is responsible for effector and transport functions. It doesn’t destroy the 

antigen itself, but rather clings to the target cell and rallies other soluble proteins as well 

as specific effector cells to its position. As such, B-cells often become the targets of T-

cells. Both T-cells and B-cells develop memories to specific antigens. The result is that 

in addition to the primary immune system response, there is also a bigger and faster 



7 
 

 

(thus better) secondary antibody response. The combination of the B- and T-cell memory 

often means that re-exposure to a pathogen will not result in disease (Sharon, 1998). 

This is mostly likely the main reason that seasonal ailments are only contracted once.  

 Natural Killer cells derive their name from their ability to kill host cells. NK-cells 

are similar to B-cells and especially similar to T-cells, but lack a receptor mechanism 

similar to either. In addition, on the average, NK-cells are slightly larger than the other 

two types of lymphocytes (9-15 micrometers opposed to 6- 15 micrometers 

respectively). An NK-cell has two receptors that, in effect, serve as the conscious of the 

cell. The activation receptor binds to ligands of a potential target and triggers the killing. 

The inhibitory receptor binds to the MHC class I molecules and, if engaged, transmits a 

protective signal that blocks the activation, thus preserving the target cell from 

destruction. Some pathogens may decrease the MHC class I expression in host cells as 

an effective way to avoid targeting by T-cytotoxic cells, but this results in targeting by 

NK-cells (Sharon, 1998). As the example shows, it is important to have more than one 

way to dispose of foreign cells. As an antigen adjusts to be more resistant to one 

lymphocyte, it often becomes more vulnerable to another.  

 The platelet is the final cellular element of blood to be discussed. Platelets are 

made in bone marrow, and their levels in blood are monitored and determined by the 

spleen. The average life span of a platelet is seven to ten days, and under steady state 

conditions, roughly two thirds of that will be spent in circulation and the other third will 

be spent in the spleen (Rajagopal and Lawson, 2007). The main function of platelets is to 

repair severed blood vessels. With regards to distribution, platelets drift towards the 
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wall; thus, they are not evenly dispersed throughout a blood vessel radially (Eckstein and 

Belgacem, 1991).  

 The cellular matter discussed to this point accounts for roughly 44% of whole 

blood; plasma accounts for the remaining 56%. The majority of plasma is water, which 

makes up 92-93%. The remaining 7-8% is a myriad of proteins and various ions (Anand 

et al., 2003). Among these are the factors critical in the formation of a clot, including but 

not limited to the inactivated and activated forms of factors V, VII, VIII, IX, X, XI, XII, 

as well as those that work against clotting such as Protein C, Tissue Factor Pathway 

Inhibitor, and Anti-thrombin III.  

 In mechanical terms, blood is a difficult fluid to model. It is primarily made up of 

plasma, a newtonian fluid, however, the work of Chien et al. (1966) shows that blood is 

shear-thinning. This description also doesn't encompass the full complexity of blood. 

Thurston (1972) showed that not only is blood viscoelastic, but that it also stress-relaxes.  

Blood Coagulation  

 During times of vascular damage, a clot is formed in a process known as 

thrombosis to prevent blood loss. Blood coagulation is an involved combination of 

positive and negative feedback mechanisms. During normal flow, the negative feedback 

factors dominate to halt the unnecessary formation of blood clots. When the blood vessel 

wall (or endothelium) is ruptured, it triggers three pathways, often referred to as 

Virchow's Triad (Anand et al., 2003). The first, is initiated by the activation of platelets. 

The second, the extrinsic pathway, so called because it involves factors not found in 

whole blood, is initiated by the release of tissue factor (TF) by the subendothelium. The 
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final pathway is the intrinsic pathway because it is triggered by factors found in whole 

blood. The final result of thrombosis is a fibrin net or mesh to which platelets adhere, 

thus forming a thrombotic plug. Two graphic images depicting the extrinsic and intrinsic 

pathways are presented in Fig. 1 and 2. 

 The platelet pathway is characterized by the activation of blood platelets. When 

activated, a platelet changes from a smooth disc into a spindly orb. Platelets can be 

activated by high shear stress as well as by chemical agonists. After the vessel wall is 

damaged, platelets attach to von Willebrand factor, collagen, and fibronectin located in 

the sublayer of the endothelium. As the platelets bond with the von Willebrand factor, 

they begin to resist the shear stress imparted by the passing blood. Additionally, as the 

platelet bonds to the collagen of the wall, platelet receptors are activated that initiate 

thrombaxane A2 formation as well as the release of storage granules (including ADP). 

The thrombaxane A2 and ADP are recognized by receptor sites on passing platelets, 

which are then activated and change shape to form an aggregate around the established 

platelets. The granules also cause the release of procoagulant phospholipids to the 

platelet surface which act to accelerate the thrombus formation by acting as catalysts and 

speeding up reactions (Rand et al., 2003). 

 The extrinsic pathway is triggered by the release of tissue-factor (TF) from the 

subendothelium following rupture of the endothelium. TF binds with factor VIIa to form 

the TF-VIIa complex, which in turn activates factors IX and X to IXa and Xa, 

respectively (Anand et al., 2008).  The extrinsic pathway is counteracted by tissue factor 

pathway inhibitor (TFPI) and antithrombin-III (ATIII). 
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 The intrinsic pathway is activated by factor XII (or Hageman factor) coming into 

contact with a negatively charged surface, such as that found in the subendothelium. For 

this reaction, high molecular weight kininogen (HMWK) is present as a cofactor.  When 

factor XII is activated, it splits into equal amounts of α-XIIa and β-XIIa (Revak, 1977). 

These two factors, with independent rate constants, convert pre-kallikrein (preK) to 

kallikrein (kalli), which serves to activate more factor XII. This positive feedback loop 

serves as the main form of factor XII activation and greatly increases the amount of 

factor XIIa being produced (Tankersley and Finlayson, 1984). Factor XIIa activates XI 

to XIa, and XIa then activates IX to IXa. Protein C1-inhibitor (C1INH) serves to inhibit 

XIIa, kallikrein, and XIa. 

 After the intrinsic and extrinsic pathways are initiated, they converge at the 

activation of factor X. Together, Xa and Va make up the complex prothrombin, which 

converts II to IIa. As thrombin production continues, it converts fibrinogen (I) to fibrin 

(Ia). The strands of fibrin bind with platelets as the clot begins to form. As thrombin 

(and fibrin) production continue, the extravascular space above the damaged 

endothelium becomes filled. Now fully developed, the clot covers the damaged area and 

prevents blood from making further contact as well as preventing more pro-coagulant 

zymogens from reaching the extra-vascular compartment. Within the intravascular 

compartment, two different mechanisms serve to inhibit enzymes from escaping the clot. 

The first is Antithrombin III-Heparin Sulfate complex (HS-ATIII), which serves to 

inactivate IIa, Xa, and IXa. The second is Activated Protein C (APC) which is formed 

when Protein C binds to thrombin bound to endothelial thrombomodulin. APC 
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suppresses the formation of thrombin and fibrin by inactivating Va and VIIIa.  

 The breakdown of the clot, or fibrinolysis, is initiated by the same thrombin that 

promotes clot development. Thrombin (IIa) as well as fibrin (Ia) induce endothelial cells 

within the intravascular compartment to release tissue-plasminogen activator (tPA). 

Plasminogen (PLS) binds with tPA and Ia to form a complex that converts plasminogen 

to plasmin (PLA), the main degradation agent of fibrin (Ia). As the fibrin mesh breaks 

down, more binding sites are revealed to convert more PLS to PLA, thus advancing the 

dissolution of the clot. A higher concentration of PLA will result in a faster rate of 

degradation. Fibrinolysis is complete when the clot is completely dissolved. Any 

remaining plasmin is deactivated by α2-antiplasmin (α2 AP).   

 The activations (and subsequent inactivations) presented above can be 

mathematically modeled in various ways. The first is with Michaelis-Menten kinetics, in 

which the reaction rate is dependent upon the maximum value of the reaction as well as 

the amount of substrate available. A reaction following Michaelis-Menten kinetics has 

the form: 

[ ] [ ]
[ ]S+K
SV=

t
B

m

max

∂

∂          (1) 

where the change in concentration of some substance B is affected by Vmax, the 

maximum rate of the  reaction, Km, the inverse of enzyme availability, and S, the 

concentration of substrate. A first order reaction has the form: 

[ ] [ ]Bk=
t
B

1∂

∂

  
        (2) 

where B represents the concentration of a substance that changes with respect to the 
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activation (or deactivation) constant and the concentration of B present. Here, k1 has 

units of s-1. The final mode of activation considered is second order, following: 

[ ] [ ][ ]BAk=
t
B

2∂
∂          (3) 

 For reactions of this form, the rate of change in the concentration of B is dependent on 

the concentrations of both A and B. For this reaction, k2 has units of s-1mol-1.  

Coagulation Disorders 

 Disorders that arise surrounding the formation of clots are plentiful, and have 

been linked to a myriad of medical problems including, but not limited to, myocardial 

infarcation (heart attack), stroke, and ischemia. Pulmonary thromboembolism is an 

especially grave problem arising from clotting disorders, causing 5-10% of all hospital 

deaths (Goodnight and Hathaway, 2001). Clotting disorders can be broken into two 

groups: hemorrhagic and thrombotic. Hemorrhagic disorders are characterized by the 

body not developing a clot in response to vascular damage. Thrombotic disorders cause 

the body to form unnecessary clots. An excess or deficiency of a specific factor within 

the clotting cascade can have adverse effects on thrombosis. 

 Deep veinous thrombosis (DVT) and pulmonary thromboembolism are two of 

the major problems that may arise from a hypercoagulable state. DVT is characterized 

by a clot forming in a deep (or large) vein, thus blocking blood flow to parts of the body. 

Additionally, the clot could become dislodged, thus causing an embolism. Typically, 

these two conditions are caused by an excess of clotting factors, clotting factors in a 

mutant and hyperactive state, an insufficient amount of anti-coagulants, or anti-

coagulants in a mutant and ineffective form. The most common forms are Factor V 
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Leiden, mutant Prothrombin, Protein C deficiency, Protein S deficiency, and ATIII 

deficiency. Endothelial dysfunction could also be considered a risk. Treatment in most 

cases is done by administering anticoagulants (Anand et al., 2003). 

 Individuals with a deficiency of Factor XII do not show abnormal bleeding. 

However, there is an inverse association between myocardial infarcation and high levels 

of XII which suggests that there is a protective effect for elevated concentrations. In its 

activated form, XIIa, heightened levels have been associated with an increased risk for 

coronary heart disease while low levels pose a risk of coronary artery disease and stroke 

in middle aged men (Gailani and Renné, 2007). 

 A deficiency of factor VIII, IX, or XI results in hemorrhagic disorders known 

haemophilia A, B, and C, respectively. Typically, the factor in question is at a level 70% 

below normal. Severe cases of haemophilia A and B are associated with hemorrhage into 

joints and muscles, as well as soft tissue bleeding that can be life threatening. 

Haemophilia C is usually milder, characterized by trauma or soft tissue related 

hemorrhage, primarily with tissue that has high fibrinolytic activity (Gailani and Renné, 

2007). Typically, the disorder is treated by the intravenous replacement of the deficient 

factor (Goodnight and Hathaway, 2001). 

 Elevated levels of factors VIII, IX, and XI can prove to be equally problematic. 

Studies have shown that individuals with VIII above the upper limit of normal have 

roughly 5 times the possibility of venous thromboembolism. Similarly, levels of IX and 

XI in the top 10% have twice the risk of thromboembolism. High levels of factor XI 

have also been associated with an increased risk of heart attack, stroke, and ischemia 
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(Gailani and Renné, 2007).  

 Thrombocytopenia, or low platelet count, is a hemorrhagic disorder. This may be 

caused by a lack of platelet synthesis, improper regulation by the spleen, or excessive 

platelet destruction (Anand et al., 2003). The goal of treatment is not to achieve normal 

levels, but rather to achieve adequate levels; steroids often have a positive response. In 

adult cases, if all other treatments fail, a spleenectomy may be done (Goodnight and 

Hathaway, 2001). Platelet dysfunction, though different than thrombocytopenia, may 

have similar results. The administering of drugs for other afflictions may inactivate 

thromboxane A2 and/or ADP release. This results in the reduction of platelet adhesion 

and recruitment (Anand et al., 2003). 

  Von Willenbrand's disease is a genetic affliction causing a qualitative or 

quantitative shortfall of von Willenbrand factor (vWF). As has already been discussed, 

vWF plays an important role in the platelet adhesion to blood vessel walls, but it is also a 

carrier protein for factor VIII. Von Willenbrand's disease is characterized by 

mucocutaneous bleeding, and has several variations with varying effects (Goodnight and 

Hathaway, 2001).  

 Disseminated Intravascular Coagulation (DIC) is a complex entity that may have 

many stimuli. It is characterized by early formation of intravascular thrombi followed by 

subsequent coagulation factor depletion and augmented fibrinolysis; the end result is 

excessive bleeding. Thus, DIC is both a thrombotic and hemorrhaging disorder. It may 

be a complication caused by sepsis or trauma. Treatment depends on the stage it is 

recognized and often attempts to treat the underlying cause. Early thrombotic DIC is 
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countered by administering anticoagulants to prevent thrombus formation and also 

prevent coagulation factor depletion. Later stages of DIC, or bleeding DIC, is treated 

with agents to either augment coagulation or inhibit fibrinolysis (Anand et al., 2003). 

 The most popular anti-coagulant drugs are Heparin and Warfarin. Heparin works 

by impairing platelet function and irreversibly inactivating factors IXa, Xa, and XIa, all 

three of which are found in the intrinsic pathway. Warfarin deactivates factors VII, IX, 

X, and II, which are found in the intrinsic and extrinsic pathways. In order to effectively 

model the effects of either of these anticoagulants, the inclusion of the full intrinsic 

pathway is required. 

 A complete blood coagulation model would include the full scope of 

hemodynamics and the three major pathways of coagulation. The model could then be 

put to use in several capacities. A well-conceived and well executed model could replace 

experiments as well as simulate potential disturbances to clotting hemodynamics caused 

by disease or medication. Further, the model could be used in the design of implantable 

stents, ventricular assist devices, and artificial hearts. 
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LITERATURE REVIEW 
 
 

Whole Blood Literature Review 

 A variety of models for whole blood have been formulated with varying 

complexity. In 1966, experiments by Chien et al. showed that for whole blood, shear rate 

and viscosity do not have a linear relationship i.e. whole blood is non-newtonian. 

Walburn and Schneck (1976) posed a power law model based upon the hematocrit as 

well as a calculated quantity of fibrinogen and globulins. However, the model shows a 

decreasing viscosity at higher shear rates when whole blood is considered to behave as a 

newtonian fluid (Pedley, 1980). A Casson fluid model is presented by Fung (1997) and 

follows the general shape of experimental data, however it overestimates viscosity at 

high shear rates (Johnston et al., 2004). In 1991, Cho and Kensey presented a Carreau 

model that corrected this overestimation and was relatively accurate. Luo and Kuang 

(1992) presented a three-parameter constitutive equation that was a modification of 

Casson's equation and is adaptable over a wider range of shear rates.  The apparent 

viscosity for all of these models is presented in Appendix C. 

 Other models have been put forth more recently. In 1996, Yeleswarupu proposed 

a generalization of an Oldroyd-B fluid model that fit data better than other models used 

at the time (Anand and Rajagopal, 2004).  However, the model did not have a 

thermodynamic basis, something that Rajagopal and Srinivasa (2000) corrected. In 2004, 

Anand and Rajagopal further advanced this model to more accurately fit experimental 

data. Because the model put forth by Anand and Rajagopal represents the culmination of 

the Oldroyd-B fluid models, it is also presented in Appendix C. 
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 While the Walburn and Schneck model and Casson model use hematocrit, no 

other model uses constituents within the blood to adjust the viscosity. Although blood is 

a mixture of various cells, proteins, ions, glycoproteins, and platelets, all of the models 

discussed herein model blood as a continuum.  

Clotting Model Literature Review 

 At a similar time, papers authored by MacFarlane (1964) and Davie and Ratnoff 

(1964) showed the coagulation pathways as enzyme cascades. As a result, mathematical 

models have emerged to illustrate and predict coagulation processes. The first such 

model was by Levine (1966) who mathematically characterized general enzyme 

cascades using the work of MacFarlane (1964) and Wald and Bownds (1965) as guides. 

 In 1984, Nesheim et al. designed a program to mathematically simulate the 

functional properties of prothrombin using experimentally determined kinetic 

parameters. Simulations were carried out for a given set of initial concentrations of 

reaction components. The distribution of enzymatic components and substrates were 

then calculated from the distribution, fractional binding, and local and bulk 

concentrations. The results were then compared with experimental data. 

 In 1986, Nemerson and Gentry proposed a model showing that the activation of 

factors IX and X is predicated on their interaction with tissue factor and factor VIIa. 

Equations were derived to show that product formation is accompanied by the release of 

the enzyme activator complex. The model was verified by experiments using bovine 

tissue factor.  

 Khanin and Semenov (1989) proposed a non-linear model of the activation using 
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factors VIII, X, V, II, I, and their activated forms. The model is notable because it shows 

the reciprocal activation of IIa and Va. Deactivations of the factors used were also taken 

into account. The majority of the activation (and deactivations) were modeled as first 

order, only IIa was modeled using Michaelis-Menten kinetics. 

 Jones and Mann (1994) proposed a more involved model showing the full 

extrinsic pathway to activation utilizing TF, VIIa, IX, IXa, X, Xa, V, Va, II, and IIa. The 

activation and deactivation kinetics were modeled using first and second order rate 

constants. The end result is 18 first order differential equations. The thrombin, Xa, and 

IXa production levels were compared to experimental data. The model stops short of 

showing fibrin activation and thus clot development. It also neglects to include the 

inhibiting factors of the extrinsic pathway. 

 In 1996, Zarnitsina et al. proposed a model that included the formation of fibrin 

and also incorporated the anticoagulation effects of Activated Protein C (APC). The 

model incorporates Michaelis-Menten, first order, and second order kinetics to show the 

interactions of factors IX, IXa, VIII, VIIIa, V, Va, X, Xa, II, IIa, I, Ia, and APC. The end 

result is a spatial model of eight differential equations and one ordinary differential 

equation. The model set a boundary condition for factor IXa only. Though the authors 

call it a model of the intrinsic pathway, the factors most associated with the intrinsic 

pathway (XII, XIIa, XI, XIa) were not included. 

 The extrinsic pathway was modeled in more detail by Kuharsky and Fogelson in 

2001. Though fibrin is not included, the full extrinsic pathway along with the inhibitors 

TFPI, APC, and ATIII and platelet interactions are modeled. The model also 



19 
 

 

incorporates flow and adjusts the flux of components based upon boundary layer 

thickness. The final model is a system of 59 ordinary differential equations.  

 Bungay et al. (2003) modeled the extrinsic pathway and its inhibitors in a static 

fluid environment. The model is significantly different because it differentiates between 

fluid and lipid bound factors and complexes. Thus, reactions take place between factors 

and complexes both in the fluid and on the lipid membrane. The result is 73 ordinary 

differential equations using first and second order kinetics.  

 Anand et al. (2003) modeled the extrinsic pathway in a generalized oldroyd-B 

fluid with flow in one spatial direction. The model incorporates Michaelis-Menten as 

well as first and second order reaction kinetics in 25 coupled convection-diffusion-

reaction partial differential equations. It is a two phase model with the clot behaving as 

fluid with much higher viscosity. Platelets are included in the model as protein binding 

sites as well as catalytic surfaces. The intrinsic pathway was not included, nor was the 

fibrinolysis of the clot.  

 Bodnar and Sequiera (2008) modeled the formation of a clot using only the 

extrinsic pathway in a medium sized artery. A shear-thinning fluid was used for blood, 

23 partial differential equations were used to model the biochemical reactions taking 

place, and only the growth of the clot was shown.  The model oversimplified the level of 

TF-VIIa in the boundary conditions, failed to show the lysis of the clot, did not include 

the intrinsic pathway, and used a lower velocity than is found in-vivo for the size of the 

artery modeled. 

 The most pertinent work to this study was done by Anand et al. (2008). The 
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model showed the formation and lysis of a clot using 23 partial differential equations to 

mimic the full extrinsic pathway. The clot was modeled in one dimensional direction in 

quiescent plasma over a thrombogenic pane. Thrombin production results compared 

favorably with experimental data from Butenas et al. (1999). The model was then used 

to look at Protein C and ATIII deficiencies and their effects on initiation time as well as 

the size of the clot. The model failed to include the intrinsic pathway.   
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PRELIMINARIES 
 
 

 This section will discuss a few of the concepts from continuum mechanics that 

will be used to develop the model. 

For a body B, let ƙR(B) be the reference configuration and ƙt(B) be the current 

configuration at some time t. Now, a sufficiently smooth motion, χ, may take place. The 

motion is a one-to-one mapping such that for every point X є ƙR(B) there is a point x є 

ƙt(B). Thus,   

 𝒙 =  𝝌 𝑿, 𝑡      𝑜𝑟   𝑿 =  𝝌!𝟏(𝒙, 𝑡)       (4) 

Any property of the body, φ, can be expressed as: 

𝜑 =  𝜑 𝑿, 𝑡 =  𝜑(𝒙, 𝑡)        (5) 

The velocity, v, and acceleration, a, are defined as: 

𝒗 𝑿, 𝑡 =   !𝝌
!"

          (6) 

𝒂 𝑿, 𝑡 =   !
!𝝌
!!!

          (7) 

Additionally, the deformation gradient, F, and the Cauchy-Green left and right stretch 

tensors, respectively are: 

 

X
xF
∂

∂=                 (8) 

 
T=FFB           (9) 

 
FFC T=           (10) 

 
Now, the velocity gradient, L, can be defined as: 
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( )v
X
vL grad==
∂

∂          (11) 

 
The symmetric part of the velocity gradient, D, is: 
 

D=
1

2
L+L

T( )          (12) 

 
Because blood will be treated as an incompressible fluid, the trace of the symmetric part 

of the velocity gradient will be zero. 

tr D( )= 0           (13) 

 
The equation governing the flow and reaction of each of the terms used in the 

biochemical aspect of the model is: 

! C
i[ ]

!t
+div C

i[ ]v( )= div D
i

! C
i[ ]

!x

"

#
$

%

&
'+Gi

;i =1,...,28            (14) 

 
where Ci is the concentration of a specific constituent, Di is the diffusion term 

correlating to the constituent, v is the velocity field of the fluid (for this work, zero), x is 

the spatial dimension, and Gi is the reaction term responsible for the production or 

depletion of the constituent in question. Each constituent is assumed to exist at every 

point and to not affect the overall flow rate.  

 The balance of mass, linear momentum and angular momentum are defined as: 

( ) 0=ρdiv+
Dt
Dρ v          (15) 

 

div T( )+!b= !
Dv

Dt
         (16) 

 
T=TT           (17) 
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where ρ is the density, v is the velocity field, t is time, b is the body force, and T is the 

stress tensor.  It should be stated that the balance of angular momentum is in the absence 

of internal body forces.  
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MODEL DESCRIPTION 
 

Whole Blood Constitutive Equation  

 As has already been discussed, blood is a shear-thinning viscoelastic fluid that 

stress-relaxes. The new constitutive equation can account for the shear-thinning 

viscosity, but fails to account for the stress-relaxation or elastic properties. Though flow 

is not taken into account in the biochemical portion of this work, the new equation for 

blood can be incorporated in future models. The stress for the new model is taken from 

Malek et al. (1995): 

 

𝑻 = −𝜋𝑰+  𝜇! 1+ 2𝐃 !
!!!
! (2𝐃)       (18) 

 
where π is the pressure, I is the identity tensor, and D maintains its previous meaning. 

By setting p to a value less than two, shear-thinning fluids can be modeled. For this 

work, the equation was modified slightly to be: 

 
𝑻 =  −𝜋𝑰+  𝜇(𝑐)(1+ 𝛼 𝐃 𝟐)!(𝐃)       (19) 
 
where µ(c) is a function based upon the amount of fibrin present in the blood, while α 

and m are constants. As levels of fibrin increase, the viscosity of blood also increases. 

When the level of fibrin within the blood reaches a critical level, for this work 350 nm, a 

clot is considered to be formed. The critical level is adapted from Ovanesov et al. 

(2002). At this concentration in the model, the viscosity will be 100 times that of normal 

blood.  

 The values for µ(0), α, and m are calculated based upon the experimental data 
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from Chien et al. (1966). The raw data points were extrapolated using Engauge Digitizer 

4.1. By establishing axes and then clicking on individual plot points, the program 

accurately estimates values for raw data points. The function for µ(c) was then calculated 

assuming a parabolic relationship between the initial value and the critical value. 

 When solving for general viscosity in a rotary viscometer, the symmetric part of 

the velocity gradient is the shear rate. For whole blood, maintaining µ and α as already 

presented, eq 19 becomes: 

      
        (20) 
 

where µ  is the generalized viscosity and γ  is the shear rate. Using MATLAB, the 

values for the constants were estimated and refined to match the raw data. The 

coefficient of determination was then used to calculate the accuracy of the fit. The 

coefficient of determination was found using: 

tot

err

SS
SS=R −12          (21) 

 
where 
 

( )∑ − 2
iierr fy=SS          (22) 

 
and 
 

( )∑ − 2ŷy=SS itot          (23) 
 
Here, yi is the value obtained experimentally, ŷ is the mean of all experimental values, 

and fi is the predicted value using eq. 20. 

 

( ) ( )
m

γα+µ=µ 




 2

2 
10 
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Clotting Model 

 The aim of this work was to create a model that is more comprehensive in its 

approach while minimizing the increase in complexity. A full clotting model would 

include all three pathways of Virchow's Triad: the platelet pathway, the extrinsic 

pathway, and the intrinsic pathway. With respect to modeling, the platelet pathway 

involves many different elements interacting in various ways. Among these are: the 

activation of platelets by shear stress, activation of platelets by chemical agents, platelet 

transport in flowing blood, platelet-platelet and platelet-surface interaction mechanics 

and kinetics, and the interplay between the platelet pathway and the other pathways of 

coagulation. For these reasons, the platelet pathway was neglected in this work. 

 The in vitro case is considered where blood is exposed to a negatively charged 

surface as well as a layer of subendothelial proteins. This initiates both the intrinsic and 

extrinsic pathways of coagulation, which then proceed along the pathway of activation. 

The end result is a fibrin scaffold to which platelets would adhere over the thrombogenic 

layer. The formation of the clot then initiates a series of reactions that result in the 

breakdown of the clot. 

 The 28 equations for the production and depletion of the separate constituents are 

all of the form: 

[ ] [ ]( ) [ ]
i

i
ii

i G+CDdiv=Cdiv+
t
C









∂

∂

∂

∂

x
v       (24)  

  
 
Here, Ci is the concentration of each, Di is the diffusion term correlating to that 

constituent, v is the velocity field of the fluid, x is the spatial dimension, and Gi is the 
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reaction term responsible for the production or depletion of the constituent in question. 

Because the velocity flow field is zero for this work, eq 21 reduces to: 

[ ] [ ]
i

i
i

i G+)Cdiv(D=
t
C

x∂
∂

∂

∂         (25) 

Figures 1 and 2 show a graphical representation of the reactions. The kinetic constants 

for the reactions can be found in Table 1, while the diffusion coefficients can be found in 

Table 2. The diffusion coefficients are calculated at 37˚ C using a correlation found in 

Young et al. (1980).  

 The 28 constituents chosen for this model are: fibrinogen (I) and fibrin (Ia), 

prothrombin (II) and thrombin (IIa), V and Va, VIII and VIIa, IX and IXa, X and Xa, 

tenase (IXa-VIIIa-PL- written as Z), prothrombinase (Xa-Va-PL- written as W), XI and 

XIa, XII and XIIa (also known as Hageman factor), prekallikrein and kallikrein (preK 

and Kalli), Antithrombin-III (ATIII), Protein C (PC) and Activated Protein C (APC), 

Tissue Factor Pathway Inhibitor (TFPI), C1-Inhibitor (C1INH), α1-Antitrypsin (α1AT ), 

Tissue Plasminogen Activator (tPA), Plasminogen (PLS) and Plasmin (PLA) and α2-

Antiplasmin (α2AP). Additionally, the TF-VIIa complex and endothelial cell tPA 

generation are taken into account in the boundary conditions. While not a complete list, 

these factors capture the salient features of the formation, propagation, and dissolution of 

a blood clot according to biochemical and clinical studies.  

 The equations for the reactions governing the production and depletion of each 

constituent are shown below. They are based upon experimental data from a multitude of 

sources. Zymogens are depleted by being activated into its corresponding active enzyme. 

The activated enzyme is then depleted by inactivation. Following convention, the terms 
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in brackets refer to a concentration of the factor located therein. The equations are:

[ ][ ]
[ ]

[ ][ ]
[ ]

[ ] [ ] [ ] [ ]( )C1INHhATαhATIIIhXIa
XI+K
XIXIIak+

XI+K
XIIIak=G 11a-CInhXIa ++− 111L111A3

12aM

12a

11M

11

  
(26) 

            
[ ][ ]

[ ]
[ ][ ]

[ ]XI+K
XIXIIak+

XI+K
XIIIak=G

12aM
XI

12a

11M

11 −−       (27)  

 
[ ]
[ ]

[ ][ ]
[ ]XII+K
XIIkallik+

XII+K
XIIk=G

kalliM

kalli

12M

12
XII

−−       (28) 

 
[ ]
[ ]

[ ][ ]
[ ]XII+K
XIIKallik+

XII+K
XIIk=G

kalli

kalli
XIIa

12

12   

   [ ] [ ] [ ] [ ]( )APαhATIIIhC1INHhhXIIa αAPATIII12a-PCI 212 −−−−  (29)  
 
 

[ ][ ]
[ ]

[ ][ ]
[ ]PreK+K
PreKXIIak+

PreK+K
PreKXIIak=G

PreKBM

PreKB

PreKAM

PreKA
preK

−−     (30)  

 
[ ][ ]

[ ]
[ ][ ]

[ ]
[ ]Kallih

PreK+K
PreKXIIak+

PreK+K
PreKXIIak=G kalli

PreKBM

PreKB

PreKAM

PreKA
kalli −    (31) 

 
[ ] [ ] [ ]( )XIah+XIIahC1INH=G 11a-CInh12a - CInhC1INH −      (32) 

 
[ ][ ]

[ ]
[ ][ ]ATIIIIXah

IX+K
IXXIak=GIXa 9

9M

9 −        (33) 

 
[ ][ ]

[ ]IX+K
IXXIak=GIX

9M

9−          (34) 

 

[ ] [ ][ ]
dZK
IXaVIIa=Z          (35) 

 
[ ][ ]

[ ]
[ ][ ] [ ][ ]XaTFPIhATIIIXah

X+K
ZVIIIak

=G TFPIXa −− 10
10M

10     (36) 
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[ ][ ]
[ ]X+K
ZVIIIak=GX

10M

10−          (37) 

 

[ ] [ ][ ]
dWK
XaVa=W          (38) 

 
[ ][ ]

[ ]
[ ][ ]ATIIIIIah

II+K
IIWk=GIIa 2

2M

2 −        (39) 

 
[ ][ ]
[ ]II+K
IIWk=GII

2M

2−          (40) 

 
[ ][ ]

[ ]
[ ] [ ][ ]

[ ]VIIIa+H
VIIIaAPChVIIIah

VIII+K
VIIIIIak=G

C8M

C8
VIIIa −− 8

8M

8      (41) 

 
[ ][ ]
[ ]VIII+K
VIIIIIak=GVIII

8M

8−          (42) 

 
[ ][ ]

[ ]
[ ] [ ][ ]

[ ]Va+H
VaAPChVah

V+K
VIIak=G

C5M

C5
Va −− 5

5M

5       (43) 

 
[ ][ ]
[ ]V+K
VIIak=GV

5M

5−          (44) 

 
[ ][ ]

[ ]
[ ][ ]ATαAPCh

PC+K
PCIIak=G PC

PCM

PC
APC 1−       (45) 

 
[ ][ ]

[ ]PC+K
PCIIak=G

PCM

PC
PC

−         (46) 

 
[ ] [ ] [ ] [ ] [ ] [ ]( )XIIah+XIah+IIah+Xah+IXahATIII=G ATIII11A3210ATIII 9−   (47)  

 
[ ][ ]XaTFPIh=G TFPITFPI −         (48) 

 
[ ][ ] [ ][ ]ATαXIahATαAPCh=ATG PCα 111L11

1
−−      (49) 
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[ ][ ]
[ ]

[ ][ ]
[ ]Ia+H
IaPLAh

I+K
IIIak=GIa

1M

1

1M

1 −        (50) 

 
[ ][ ]

[ ]I+K
IIIak=GI

1M

1−          (51) 

 
0=GtPA           (52) 

 
[ ][ ]

[ ]
[ ][ ]

[ ]
[ ][ ]APαPLAh

PLS+K
PLSXIIak+

PLS+K
PLStPAk=G PLA

PLA

PLA

PLAM

PLA
PLA 2

12aM

12a −
−

−    (53) 

 
[ ][ ]

[ ]
[ ][ ]

[ ]PLS+K
PLSXIIak

PLS+K
PLStPAk=G

PLA

PLA

PLAM

PLA
PLS

12aM

12a

−

−−
−      (54) 

  
 

[ ] [ ] [ ]( )XIIah+PLAhAPα=APG αAPPLAα 2
2

−       (55) 

 
The equations thus far not included in previous models, and worthy of discussion, 

include 28, 29, 30, 31, and 32. These are the equations for the generation and depletion 

of factors XII, XIIa, prekallikrein, kallikrein, and C1-Inhibitor. Other equations have 

been adjusted as necessary to reflect the inclusion of these five species.  

 The activation of XIIa is triggered by contact with a negative surface. However, 

the work of Tankersley and Finlayson (1984) shows that, “...reciprocal activation is the 

predominant mode of factor XII activation in normal plasma.” The auto-activation and 

activation by kallikrein both follow Michaelis-Menten kinetics. The initial activation 

uses high molecular weight kininogen (HMWK) as a cofactor. Here, it is assumed that 

there is plentiful HMWK for the reaction. When factor XII is activated, it splits into 

equal amounts of α-XIIa and β-XIIa. For this reason (and convenience), the single 

concentration of XIIa may be used with different kinetic constants to show its effect on 
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other species. Factor XIIa also contributes to the production of PLA following 

Michaelis-Menten kinetics, thus accelerating the process of fibrinolysis (Schousboe et 

al., 1999). 

 Factor XIIa is inactivated by ATIII, C1INH, and α2AP following second order 

kinetics (Pixley et al. 1985). The inactivation constant for ATIII was obtained in the 

presence of saturating concentrations of heparin. The literature makes no distinction 

between the two forms of activated factor XII; therefore the inactivation is attributed to 

both.  

 Both forms of activated factor XII have an effect on kallikrein production with 

independent kinetic activation rates on prekallikrein. The production of kallikrein due to 

α-XIIa and β-XIIa follows Michaelis-Menten kinetics. This is reflected in equations 30 

and 31. The inactivation follows pseudo-first order kinetics (Van der Graaf et al., 1983). 

Here, it is modeled as a first order reaction. 

 Protein C1-Inhibitor has been included because of its effect on the inactivation of 

factors XIIa, XIa, and Kallikrein. Though its concentration is not included in the 

deactivation of Kallikrein, the first order rate constant for Kallikrein decreases 

substantially in C1INH deficient plasma (Van der Graaf et al., 1983). Factors XIIa and 

XIa are both deactivated by C1INH following second order kinetics. 

Boundary Conditions 

 The pressure and velocity of the fluid are maintained at zero throughout the 

simulation. The initial concentrations of all species are set as in Table 3. The activated 

enzymes start at 0.1% of their corresponding inactivated forms. With the exception of 
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the area for clot modeling, the concentrations at the wall are set at zero. 

 Within the area of clot development, the boundary conditions are set such that: 

[ ] [ ][ ]
[ ] IXaM D

L
IX+K
VIIaTFIXk

=
x
IXa

7,9

7,9 −

∂

∂        (56) 

 
[ ] [ ][ ]

[ ] IXM D
L

IX+K
VIIaTFIXk

=
x
IX

7,9

7,9 −−

∂

∂        (57) 

 
[ ] [ ][ ]

[ ] XaM D
L

X+K
VIIaTFIXk

=
x
Xa
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7,10 −−

∂

∂        (58) 

 
[ ] [ ][ ]

[ ] XM D
L

X+K
VIIaTFIXk

=
x
X

7,10

7,10 −−

∂

∂        (59) 

 
[ ] [ ] [ ]( )[ ]

tPA
tPaIatPAIIatPAC D

LENDOIak+IIak+k=
x
tPA

−−−−
∂

∂     (60) 

 
 
For these equations, L is the length scale and chosen to be equal to the length (in the z-

direction) of the clot; D-- is the diffusion coefficient of the constituent of the subscript as 

listed in Table 2; the kinetic constants for the boundary conditions are listed in Table 4. 

The term ENDO represents endothelial cell concentration at the surface and is taken 

from Karsan and Harlan (2000): 

[ENDO] = 2.0 x 10
9          (61) 

 At the clotting surface, tissue factor associates with endogenous VIIa to form the 

TF-VIIa complex. As coagulation progresses, the action of thrombin also causes tissue 

factor and VIIa to associate and form TF-VIIa. In the work of Orfeo et al. (2005), 5 pM 

of tissue factor is introduced to synthetic plasma and the amount of TF-VIIa complex is 
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recorded. The curve is regenerated in Fig. 3, and scaled by a factor of 2 x 104 for the 

simulation. After 1500 seconds, the TF-VIIa level is set to zero. 

 For both simulations, gravity is not taken into account. Within the body, the 

directional effect of gravity changes due to several factors. As an example, if a person is 

standing, then gravity is working parallel to flow in arteries in the upper thigh. However, 

if a person sits or lies down, the gravity is working perpendicular to the direction of 

flow. Thus, if gravity were to be included it would call into question the physical 

position of a person. These models are neither developed nor intended for this level of 

specificity. It is also worth noting that the variation of position should not have a large 

impact on the formation and dissolution of a clot in a healthy subject. Therefore, gravity 

is not considered.  

MATLAB Computational Methodology 

 Uniform clot formation, growth, and dissolution are considered in one spatial 

dimension in 2 mm deep quiescent plasma exposed to a negatively charged surface and a 

thrombogenic pane. Thus, both the intrinsic and extrinsic pathways of coagulation are 

activated. A clot is considered to be formed when fibrin concentration meets or exceeds 

350 nM (adapted from Ovanesonov et al., 2002). The size of the clot is determined by 

tracking, in time, the regions within the domain that meet or exceed this level. The 

simulation is carried out over a period of 3000 seconds. 

 To model the information, the equations, initial conditions, and boundary 

conditions are non-dimensionalized according to: 

T
tt =∗            (62) 
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xx  = ∗           (63) 
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i ∗          (64) 
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i∗           (65) 

( )0
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=tC
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i
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i ∗          (66) 

The non-dimensionalized equations are then solved using the 'pdepe' routine in 

MATLAB with a mesh of δx* = 0.005, δt* = 0.001, T = 3000, and L = 0.002. 

Finite Domain Computational Methodology 

 Clot formation, growth, and dissolution are considered in a rigid cylindrical 

vessel 6 mm in diameter and 3 mm long. The pressure and velocity of the fluid are 

maintained at zero throughout the simulation. The calculations are done using the open 

source computational fluid dynamics program OpenFOAM. The software uses C++ and 

can be customized to reflect user-specific conditions. Additionally, the program comes 

with a mesh generation utility as well as post-processing tools to view results. 

 The solver was customized to reflect the biochemical equations described as well 

as the new constitutive equation for whole blood. The computations within the domain 

are carried out using a finite volume approach and a combination of two solution 

procedures. The first is the PISO (Pressure Implicit Splitting of Operators) algorithm, 

and it is used to solve time dependent equations. The second is the SIMPLE (Semi-

Implicit Method for Pressure Linked Equations), and it is used for steady state equations. 
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The relevant files can be seen in Appendix D. 

 The mesh is created using the blockMesh utility that comes with the software. In 

it, vertices are created and then connected in three dimensions. The faces are then given 

properties (such as wall, inlet, outlet, and for this work, clot) and the internal mesh is 

created according to assigned specifications.   Figures 4 and 5 show the mesh used in the 

calculation. Figure 6 shows the area subjected to the clotting boundary conditions.  

 The viscosity is calculated by using the fibrin concentration from the previous 

time step. As fibrin concentration increases past the critical level of clot development, 

the term is held constant. Thus, a clot is the maximum viscosity that the blood achieves.  

 The concentrations of the 28 biochemical factors have been set to a minimal level 

of 1 x 10-40 moles. Preliminary simulations showed values becoming negative numbers. 

As a result, this lower threshold was put in place to prevent such numerical discrepancies 

from happening.  
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RESULTS AND DISCUSSION 
 

 

Constitutive Equation for Whole Blood 

 The constants for the equation have been obtained as well as the function µ(c). 

The initial point µ(0) is redefined for the initial condition of fibrin concentration such 

that µ(0) = µ(7 x 10-9).  The equation for the function µ(c) is:     

( ) [ ] 0.14411.958 215 +Ia=cµ         (67) 

The remaining constants are set as α = 1540 and m = -0.277. Figure 7 shows the results 

of the model predictions (red) against experimental data (black) for whole blood. The 

behavior of the clot during formation (µ(150 x 10-9) ) is compared to the clot           

(µ(350 x 10-9 ) ) and whole blood (µ(7 x 10-9) ) in Fig. 8.  

 The coefficient of determination for the whole blood model is R2 = 0.9938. This 

shows that the whole blood model fits quite well to the experimental data. At low shear 

rates, the model is especially good at predicting the behavior of blood. Only at higher 

shear rates does a distinct and discernible difference become evident, and this is 

minimal. If flow were incorporated in the clotting model, these higher shear rates would 

fall outside the range for the size of the artery chosen (Kornet et al., 1999). 

MATLAB Results 

 The non-dimensionalized equations have been calculated and the results for 

thrombin production, fibrin production, and clot size are presented in Fig. 9, 10, and 11, 

respectively. Thrombin production is monitored because it is the main activation agent 

of fibrin. A peak in thrombin values should not precede a maximum in fibrin 
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concentration, but rather serve as a harbinger of the apex. The results for the intrinsic 

and extrinsic pathway are compared to those of modeling just the extrinsic pathway 

taken from Anand et al. (2008). Figure 11 has already been presented in LaCroix and 

Anand (2010).  

 Including the intrinsic pathway causes thrombin production to reach a higher 

concentration, but a longer time period is needed to reach it. With the intrinsic pathway a 

maximum value of 1.967 nM is reached at a time of roughly 150 seconds. After 

initiation, the highest value the extrinsic pathway reaches is 1.35 nM at a time of about 

75 seconds. Although, the extrinsic pathway peaks at an earlier time, it is worth noting 

that with the inclusion of the intrinsic pathway, a higher thrombin concentration is 

achieved at this same time. With the inclusion of the intrinsic pathway, maximum fibrin 

production achieves a higher value and occurs more quickly; a maximum concentration 

of 1723 nM is reached at roughly 300 seconds opposed to a peak of 1527 at roughly 400 

seconds when only the extrinsic pathway is considered. 

 Figure 11 tracks the size of the clot throughout the domain considered. The 

inclusion of the intrinsic pathway shows not only a larger clot being formed, but a faster 

dissolution of the clot. This can be attributed to the increased rate of PLA production due 

to the inclusion of factor XIIa. The increase in PLA results in a quicker breakdown of 

fibrin, and thus a faster rate of fibrinolysis. 

Finite Domain Results 

 The system of equations has been solved in a finite three dimensional domain 

with the boundary conditions stated. A clot is first developed at 440 seconds (the edges 
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of the clotting area reach a concentration level greater than 350 nM). At 475 seconds the 

entire clot boundary area has a concentration greater than 350 nM. Thus, a thrombus 

covers the entire clotting area. The thrombin level gradually increases until attaining a 

maximum value of 3.61 nM at a time of 528 seconds. After which, concentration drops 

off severely and stays at a low level for the remainder of the simulation. The peak level 

of thrombin within the clotting area with respect to time is shown in Fig. 12. The fibrin 

level within the clot area continues to increase until it reaches a maximum of 6123 nM at 

1035 seconds. At this point, the clot begins to lyse until its level drops below 350 nM at 

3685 seconds, signifying the dissolution of the clot at the wall. Figure 13 shows the 

maximum fibrin concentration within the clotting area for the duration of the simulation, 

and Fig. 14 shows the development of fibrin at 100 second intervals for the first 500 

seconds. As can be seen, the area of fibrin concentration is higher at the edges and is 

reduced towards the center. Thus the clot is propagating inward from the outside edge. 

Figure 15 shows the radial view of the blood vessel at the time of maximum 

concentration of fibrin. This view shows how far the clot extends radially into the blood 

vessel. 

 In order to corroborate the simulation, the fibrin and thrombin levels were 

compared to experimental tests. It is difficult to obtain in-vivo clotting data, especially 

when considering the specificity of the problem as modeled. Two different experimental 

tests were used for model corroboration. For thrombin level, the work of Butenas et al. 

(1999) is used. In the experiment, the peak thrombin level is measured at 420 seconds; 

the peak level of thrombin in the simulation is achieved at 528 seconds. Similar to the 
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fibrin performance, this is slightly slow, but still acceptable. It is worth noting that the 

simulation within the finite domain matches the curve more closely than those of the 

MATLAB simulations. 

For the fibrin, a study of temperature's effect on clotting done by Valeri et al. 

(1995) was used. The average clotting time for all subjects at a temperature of 37º C was 

348 ± 78 seconds. The simulation performed shows the first signs of clot at 440 seconds, 

and the entire area being clotted at 475 seconds. The performance is lags slightly behind 

the experimental work, but remains comparable.  

Sensitivity Analysis 

 A sensitivity analysis has been performed on prothrombin (factors Va and Xa). 

Prothrombin was chosen because it is the main activator of thrombin and would impact 

the production of fibrin through this relationship. For the original simulation, the 

activated factors are set to an initial level of 0.1% of their inactivated counterparts. The 

sensitivity analysis changed the initial level to 1%, and the impact on fibrin and 

thrombin production was recorded. The impact in relation to thrombin and fibrin 

production is presented in Fig. 16 and 17, respectively.  

 The sensitivity for the individual factors was also analyzed using: 

0.1M
M

P
P

=S normal

∂

∂

          (68) 

where the numerator is the difference in the maximum value of thrombin (or fibrin) 

achieved over the respective value in the original simulation. The denominator is the 
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change in the initial value of the individual factor over the initial value when it was at 

0.1%. The equation normalizes the impact of the factors in question. The results are 

presented in Table 5. Increasing the initial concentration of either factor increases the 

maximum amount of fibrin produced. The impact on thrombin, however, is quite 

different. While increasing the initial concentration of factor Xa sees a significant 

increase in maximum thrombin produced, the adjustment to factor Va actually causes a 

reduction in this value. Using eq 68, factor Xa has the greatest positive impact on fibrin 

and thrombin production. However, this gives an incomplete picture. 

 The most obvious shortcoming of the sensitivity analysis above is the lack of 

temporal effects. Adjusting Va and Xa alone reduces the time of peak thrombin 

production from 528 to 428 and 486 seconds, respectively. When increased together, the 

time of peak thrombin production is 427 seconds. The time it took to achieve the 

minimum fibrin concentration for a clot as well as maximum fibrin and thrombin 

production is presented in Table 6. Increasing either Xa or Va not only increases the 

maximum fibrin concentration, but also reduces the time it takes to achieve this value. 

By setting the initial value of Va or Xa at 1%, the time to clot is reduced from 440 to 75 

and 415 seconds, respectively. Increasing both values reduces this time further to 70 

seconds. Thus, raising the initial level of Va to 1%, either by itself or in conjunction with 

Xa, has a great impact on the time it takes to develop a clot. This small increase reduces 

clotting time to 1/6th of its initial value- a difference of more than 6 minutes.  

Grid Dependence 

 A preliminary grid dependence test has been done, but a more thorough 
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study is necessary before any conclusive statements can be made. The aim of this 

work was to extend the current biochemical model to include the intrinsic 

pathway of activation rather than carry out a numerical study upon each of the 

factors involved and how they are affected by alterations to the size of the mesh. 

Such a study would be large in scope and encompass a great deal of numerics as 

well as error calculations. 

For the grid dependence, the concentration of Va was monitored at a 

specific area, namely, the edge of the clot. Va was chosen because it is not one of 

the boundary values set and changes only due to reactions. A modest grid 

dependence test showed trivial changes in the concentration produced. A more 

drastic grid dependence test was completed by increasing the number of nodes for 

the mesh from 180 to 50,000. While the increase in nodes is by a factor of 270, 

the value of Va changes only by a factor of 3.3. These results show that a large 

jump in the number of nodes leads to a marginal increase in the concentration for 

factor Va. This modest addition is greatly offset by the huge expansion in 

computational time. 
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CONCLUSION AND FUTURE WORK 

 

This dissertation has presented a variety of work to add to the established 

literature with regards to modeling blood and coagulation.  

 A new constituent equation for blood as it behaves in large arteries has been 

presented. The model is shear-thinning. The viscosity of the fluid is based upon fibrin 

concentration, a feature never before included in other models. Thus the viscosity is 

progressively increased dependent upon how much fibrin is present. Though flow was 

not utilized in the subsequent clotting simulation, this new blood model can (and will) be 

incorporated in all future simulations. 

 The intrinsic pathway has been added to already existing mathematical model of 

coagulation. This involved the inclusion of the relevant components as well as their 

respective rate constants for activation and deactivation. The result was the addition of 

five additional factors and the expansion of the number of partial differential equations 

from 23 to 28.   

 The newly expanded model for coagulation was then solved in one spatial 

dimension as well as in a finite three dimensional domain similar to a medium sized 

artery, such as the femoral artery. Both the formation and subsequent fibrinolysis of the 

clot were presented. This three dimensional model can be easily expanded to include 

flow characteristics of blood, and if so desired, more clotting factors.  

 Finally, sensitivity analysis was completed on select factors within the clotting 

cascade. Prothrombin, was examined by elevating initial concentrations of factors Va 
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and Xa separately as well as together. The results show that increasing the initial level of 

Va greatly reduces the time necessary for the formation of the clot, while a heightened 

level of Xa increases maximum fibrin and thrombin concentrations.  

 While the new constitutive equation marks a step towards a progressively more 

viscous fluid during coagulation, it fails to capture the other properties of blood, namely 

elasticity and stress relaxation. A more accurate model would model blood as a complex 

mixture of all of its constituents. Similarly, a clot would be modeled as a mixture of 

platelets adhering to the fibrin mesh and include the other many varied components 

found within the intravascular compartment. 

The first step forward to a more accurate coagulation model is the inclusion of 

steady state flow. Though this is still not accurate with in-vivo conditions, it is the next 

step to a more complete model. Following the inclusion of steady state flow, the aspect 

of pulsatile flow can then be integrated. With this comes varying factors of pressure and 

velocity.  

After the inclusion of flow, the third major pathway, the platelet pathway, can be 

integrated into the model. Because platelets can be activated by shear stress, it is logical 

to include flow prior to the inclusion of the platelet pathway.  Its inclusion requires the 

mathematical characteristics of the interaction of both activated and inactivated platelets 

with each other as well as the other constituents being considered. Additionally, the 

model would consider the distribution qualities as well as platelet transport in flowing 

blood. 

 Finally, the finite dimensional model was calculated within a rigid cylinder. 
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Blood vessels expand and contract, and this may have a great effect on thrombus 

formation. Thus, the compliance of the blood vessel is an important aspect that would 

also need to be included for a fully complete simulation of blood coagulation.  

 In total, this dissertation marks a step, rather than a destination, on the long path 

towards a complete numerical simulation of blood coagulation. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



45 
 

 

REFERENCES 
 

 
Ahmad, S., Rawalasheikh, R. Walsh, P.N., 1989. Comparative interactions of factor IX 

and factor-IXa with human platelets. J. Bio. Chem. 264 (6), 3244-3251. 
 
Anand, M., Rajagopal, K., Rajagopal, K.R., 2003. A model incorporating some of the 

mechanical and biochemical factors underlying clot formation and dissolution in 
flowing blood. J. Theor. Med. 5 (3-4), 183-218. 

 
Anand, M. Rajagopal, K.R., 2004. A shear thinning viscoelastic fluid model for 

describing the flow of blood. Int. J. Cardio. Med. Sci. 4 (2), 59-68. 
 
Anand, M., Rajagopal, K., Rajagopal, K.R., 2008. A  model for the formation, growth, 

and lysis of clots in quiescent plasma. A comparison between the effects of 
antithrombin III deficiency and protein C deficiency. J. Theor. Bio. 253, 725-
738. 

 
Baggiolini, M., Walz, A., and Kunkel, S.L.,1989. Neutrophil-activating peptide-

1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 
84,1045–1049. 

 
Bodnar, T., and Sequeira, A., 2008. Numerical simulation of the coagulation dynamics 

of blood. Comp. Math. Method. Med. 9 (2), 83-104. 
 
Booth, N.A., 1995. Fibrinolysis and thrombosis. Bailliére Clin. Haem. 12 (3), 423-433. 
 
Brummel-Ziedins, K., Orfeo, T. Jenny, N.S., Everse, S.J., Mann, K.G., 2004. Blood 

coagulation and fibrinolysis. In: Tkachuk, D.C., Hirschmann, J.V. (Eds.) 
Wintrobes Clinical Hematology, 11th ed. Lippincott, Williams, and Wilkins, 
Philadelphia, pp 677-690. 

 
Bungay, S.D., Gentry, P.A., Gentry, R.D., 2003. A mathematical model of lipid-

mediated thrombin generation. Math. Med. Biol. 20, 105-129. 
 
Butenas, S., Veer, C., Mann, K.G., 1999. “Normal” thrombin generation. Blood 94(7), 

2169-2178. 
 
Chien, S. Usami, S., Taylor, H.M., Lundberg, J.L., Gregersen, M.I. 1966. Effects of 

hematocrit and plasma proteins on human blood rheology at low shear rates. J. 
Appl. Phys. 21(1), 81-87. 

 
 
 



46 
 

 

Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I., 1970. Shear dependent 
deformation of erythrocytes in rheology of human blood. Am. J. Phys. 219 (1) 
136-142. 

 
Cho, Y.I., Kensey, K.R., 1991. Effects of non-Newtonian viscosity of blood on flows in 

a diseased arterial vessel. Part 1: Steady flows. Biorheology 28(3-4), 241-262. 
 
Colman, R.W., Clowes, A.W., George, J.N., Hirsh, J., Marder, V.J., 2001. Overview of 

hemostasis. In: Colman, R.W., Hirsh, J., Marder, V.J., Clowes, A.W., George, 
J.N. (Eds.), Hemostasis and Thrombosis, fourth ed. Lippincott, Williams and 
Wilkins, Philadelphia, pp. 1-16. 

 
Davey, M.G., and Luscher, E.F., 1967. Actions of thrombin and other coagulant and 

proteolytic enzymes on blood platelets. Nature 216 (5118), 857-858. 
 
Davie, E.W., and Ratnoff, O.D., 1964. Waterfall sequence for intrinsic blood clotting. 

Science 145, 1310-1312. 
 
De Cristofaro, R., De Filippis, V., 2003. Interaction of the 268-282 region of 

glycoprotein ib alpha with the heparin-binding site of thrombin inhibits the 
enzyme activation of factor viii. Biochem. J. 373 (2), 593-601. 

 
Diamond, S., Anand, S., 1993. Inner clot diffusion and permeation during fibrinolysis. 

Biophys. J. 65, 2622-2643. 
 
Eckstein, E.C., and Belgacem, F., 1991. Model of platelet diffusion with drift and 

diffusion terms. Biophys. J. 60, 53-69.  
 
Fåhraeus, R., and Lindqvist, T., 1931. The viscosity of the blood in narrow capillary 

tubes. Am. J. Physiol. 96, 562–568. 
 
Freyssinet, J.M., Orfandoudakis, T.T., Ravant, C., Grunebaum, L., Gauchy, J., 

Cazenave, J.P., Wiesel, M.L., 1991. The catalytic role of anionic phospholipids 
in the activation of protein C by factor Xa and expression of its anticoagulant 
function in human plasma. Blood Coagul. Fibrin. 2, 691- 698. 

 
Fung, Y.C., 1997. Biomechanics. Second ed. Springer-Verlag, New York. 
 
Gailani, D., Broze, G.J., 1991. Factor XI activation in a revised model of blood 

coagulation. Science 253(5022), 909-912. 
 
Gailani, D., Renné, T., 2007. Intrinsic pathway of coagulation on arterial thrombosis. 

Aerterioscler. Thromb. Vasc. Bio. 27, 2507-2513. 
 



47 
 

 

Goodnight, S. H., Hathaway, W.E., 2000. Disorders of Hemostasis and Thrombosis: A 
Clinical Guide. Second ed. McGraw-Hill, New York.  

 
Heeb, M.J. Bischoff, R., Courtney, M., Griffin, J.H., 1990. Inhibition of activated 

protein C by recombinant α1-antitrypsin variants with substitution of arginine or 
leucine for methionine. J. Biol. Chem. 265 (4), 2365-2389. 

 
Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrich, D.,  2004. Non-Newtonian blood 

flow in human right coronary arteries: Steady state simulations. J. Biomech. 37 
(5). 709-720. 

 
Jones, K.C., Mann, K.G., 1994. A model for the tissue factor pathway to thrombin. II. A 

mathematical  simulation. J. Biol. Chem. 269 (37), 23367-23373. 
 
Kalafatis, M., Egan, J.O., vant Veer, C., Cawthern, K.M., Mann, K.G., 1997. The 

regulation of clotting factors. Crit. Rev. Eukar. Gene 7 (3), 241-280. 
 
Karsan, A.L., Harlan, J.M., 2000. The blood vessel wall. In: Hoffman, R., Benz, E.J., 

Shattil, S.J., Furie, B., Cohen, H.J., Silberstein, L.E., McGlave, P. (Eds.), 
Hematology: Basic Principles and Practice, third ed. Churchill Livingstone, 
Philadelphia, 1770-1782. 

 
Kesava, S., 2007. Red blood cells do more than just carry oxygen. New findings by NUS 

team show they aggressively attack bacteria too. The Straits Times. 
http://www.dbs.nus.edu.sg/eventlist/happenings/details/2007/dingSTsep07.pdf. 
retrieved 11 Nov 2007. 

 
Khanin, M.A., Semenov, V.V., 1989. A mathematical model of the kinetics of blood 

coagulation. J. Theor. Biol. 136, 127-134. 
 
Kolev, K., Lerant, I., Tenekkejiev, K., and Machovich, R., 1994. Regulation of 

fibrinolytic activity of neutrophil leukocyte elastase, plasmin, and miniplasmin 
by plasma protease inhibitors. J. Biol. Chem. 269 (25), 17030-17034. 

 
Komiyama, Y., Pedersen, A.H., Kisiel, W., 1990. Proteolytic activation of human factors 

IX and X by recombinant human factor VIIa: effects of calcium, phospholipids, 
and tissue factor. Biochemistry-US 29 (40), 9418-9425. 

 
Kornet, L., Hoeks, A.P.G., Lambregts, J., Reneman, R.S., 1999. In the femoral artery 

bifurcation, differences in mean wall stress within subjects are associated with 
different intima-media thickness. Arterio., Thromb., and Vasc. Biol. 19, 2933-
2939. 

 
 



48 
 

 

Krishnaswamy, S., Church, W.R., Nesheim, M.E., Mann, K.G., 1987. Activation of 
human prothrombin by human prothrombinase. Influence of factor Va on the 
reaction mechanism. J. Biol. Chem. 262 (7), 3291-3299. 

 
Kroll, M.H., Hellums, J.D., McIntire, L.V., Schafer, A.I., Moake, J.L., 1996. Platelets 

and Sheer Stress. Blood 88(5), 1525-1541. 
 
Kuharsky, A., Fogelson, A.F., 2001. Surface mediated control of blood coagulation: The 

role of binding site densities and platelet deposition. Biophys. J. 80, 1050-1094. 
 
LaCroix, D.E. and Anand, M., 2010. A model for the formation, growth, and dissolution 

of clots in vitro. Effect of the intrinsic pathway on antithrombin III deficiency 
and protein C deficiency, Recent Advances in Mechanics - Workshop in honor of 
Prof. K. R. Rajagopal on his 60th birthday, IIT Madras, Chennai, India. 

 
Landmesser, U., Horning, B., and Drexler, H., (2004) Endothelial Function A Critical 

Determinant in Atherosclerosis?. Circulation 109, II-27-II-33. 
 
Levin, E.G., Marzec, U., Anderson, J., Harker, L.A., 1984. Thrombin stimulates tissue 

plasminogen activator release from cultured human endothelial cells. J. Clin. 
Invest. 74, 1988-1995. 

 
Luo, X.Y., Kuang, Z.B., 1992. A study on the constitutive equation of blood. J. 

Biomech. 25(8), 929- 934. 
 
MacFarlane, R.G., 1964. An enzyme cascade in the blood clotting mechanism and its 

function as a biochemical amplifier. Nature 202, 498-499. 
 
Madison, E.L., Coombs, G.S., Corey, D.R., 1995. Substrate-specificity of tissue-type 

plasminogen-activator- characterization of the fibrin-dependent specificity of t-
PA for plasminogen. J. Biol. Chem. 270 (13), 7558-7562. 

 
Malek, J., Rajagopal, K.R., Ruzicka, M., 1995. Existence and regularity of solutions and 

the stability of the rest state for fluids with shear dependent viscosity. Math. 
Mod. Meth. Appl. Sci. 5 (6), 789-812. 

 
Mann, K.G., 1987. The assembly of blood clotting complexes on membranes. Trends 

Biochem. Sci. 12 (6), 229-233. 
 
Mann, K.G., Gaffney, D., Bovill, E.G., 1995. Molecular biology, biochemistry, and 

lifespan of plasma coagulation factors. In: Beutter, B. (Ed.), fifth ed. Williams 
Hematology. McGraw-Hill, New York, pp. 1206-1226. 

 
 



49 
 

 

Martini, F.H., Ober, W.C., Garrison, C.W., Welch, K., Hutchings, R.T., 2001. 
Fundamentals of Anatomy and Physiology, Fifth ed. Prentice Hall, Upper Saddle 
River, pp. 692-750. 

 
Meijers, J.C.M., Vlooswijk, R.A.A., Bouma, B.N., 1988. Inhibition of human blood 

coagulation factor XIa by C1 inhibitor. Biochemistry 27, 959-963. 
 
Monkovic, D.D., Tracy, P.B., 1990. Functional characterization of human platelet-

released factor V and its activation by factor Xa and thrombin. J. Biol. Chem. 
265 (28), 17132-17140. 

 
Nesheim, M.E., Tracy, R.P., Mann, K.G., 1984. “Clotspeed,” a mathematical simulation 

of the  functional properties of prothrombinase. J. Bio. Chem. 259 (3) 1447-
1458. 

 
Nemerson, Y., Gentry, R. 1986. An ordered addition, essential activation model of the 

tissue factor pathway of coagulation: evidence of a comformational cage. 
Biochemistry 25, 4020-4033. 

 
Neuenschwander, P.F., Jesty, J., 1992. Thrombin-activated and factor Xa-activated 

human factor VIII: Differences in cofactor activity and decay rate. Arch. 
Biochem. Biophys. 296 (2), 426-434. 

 
Obata, K., Mukai, K., Tsujimura, Y., Ishiwata, K., Kawan, Y., Minegishi, Y., Watanabe, 

N., and Karausuyama, H., 2007. Basophils are Essential Initiators of a Novel 
Type of Chronic Allergic Inflammation. Blood 110, 913-920. 

 
Orfeo, T., Butenas, S., Brummel-Ziedins, K. E., Mann, K.G., 2005. The tissue factor 

requirement in blood coagulation. J of Bio. Chem. 280 (52), 42887-42896. 
 
Ovanesov, M.V., Krasotkina, J.V., Ulyanova, L.I., Abushinova, K.V., Plyushch, O.P., 

Domogatskii,  S.P., Vorobev, A.I., Ataullakhanov, F.I., 2002. Hemophilia a and b 
are associated with abnormal spatial dynamics of clot growth. BBA-Gen. 
Subjects 1572 (1), 45-57. 

 
Pedley, T.J., 1980. The Fluid Mechanics of Large Blood Vessels. Cambridge University 

Press,  Cambridge. 
 
Pixley, R.A., Schapira, M., and Colman, R.W., 1985. The regulation of human factor 

XIIa by plasma proteinase inhibitors. J of Bio. Chem. 260 (3), 1723-1729. 
 
Rajagopal, K., Lawson, J., 2007. Regulation of hemostatic system function by 

biochemical and mechanical factors. In: Mollica, F., Preziosi, L., Rajagopal, K.R. 
(Eds.), Modeling of Biological Materials. Birkhauser, Boston, pp. 179-210. 



50 
 

 

Rajagopal, K.R., Srinivasa, A.R., 2000. A thermodynamic framework for rate type fluid 
models. J. Non-Newt. Fluid Mech. 88, 207-227. 

 
Rawalasheikh, R., Ahmed, S.S., Ashby, B., Walsh, P.N., 1990. Kinetics of coagulation 

factor X activation by platelet-bound factor IXa. Biochemistry-US 29 (10), 2606-
2611. 

 
Revak, S.D., Cochrane, C.G., Griffin, J.H., 1977. The binding and cleavage 

characteristics of human Hageman factor during contact activation: A 
comparison of normal plasma with plasmas deficient in factor XI, prekallikrein, 
or high molecular weight kininogen. J. Clin. Invest. 59, 1167-1175. 

 
Rothenberg, M. E. and Hogan, S. P., 2006. The eosinophil. Annual Review of 

Immunology 24, 147-174. 
 
Schousboe, I., Feddersen, K., Rojkjaer, R., 1999. Factor XIIa is a kinetically favorable 

plasminogen activator. Thromb. Haemost. 82, 1041-1046. 
 
Schrauwen, Y., Kooistra, T., de Vries, R.E.M., Emies, J.J., 1995. Studies on the acute 

release of tissue-type plasminogen activator from human endothelial cells in vitro 
and in rats in vivo: Evidence for dynamic storage pool. Blood 85 (12), 3510-
3517. 

 
Scott, C.F., Schapira, M., James, H.L. Cohen, A.B., Colman, R.W., 1982. Inactivation of 

factor Xia by plasma protease inhibitors. J. Clin. Invest. 69 (12), 844-852. 
 
Segal, Anthony W., 2005. How neutrophils kill microbes. Annual Review of 

Immunology 23, 197-223.  
 
Silverberg, M. and Kaplan, A.P., 1982. Enzymatic activities of activated and zymogen 

forms of human hageman factor (factor XII). Blood 60 (1), 64-70. 
 
Solymoss, S., Tucker, M.M., Tracy, P.B., 1988. Kinetics of inactivation of membrane-

bound factor Va by activated protein C. J. Biol. Chem. 263 (29), 14884-14890. 
 
Soons, H., Janssen-Claessen, T., Tans, G., Hemker, H.C., 1987. Inhibition of factor XIa 

by antithrombin III. Biochemistry-US 26 (15), 4624-4629. 
 
Sun, Y., Gailani, D., 1996. Identification of factor IX binding site on the third apple 

domain of activated factor XI. J. Biol. Chem. 271 (46), 29023-29028. 
Tankersly, D.L. and Finlayson, J.S., 1984. Kinetics of activation and autoactivation of 

human factor  XII. Biochemistry 23, 273-279. 
 
Thurston, G.B., 1972. Viscoelasticity of Human Blood. Biophys. J. 12 (9),1205-1217. 



51 
 

 

Tsiang, M., Paborsky, L.R., Li, W.X., Jain, A.K., Mao, C.T., Dunn, K.E., Lee, D.W., 
Matsumara, S.Y., Matteucci, M.D., Coutre, S.E., Leung, L.L.K., Gibbs, C.S., 
1996. Protein engineering thrombin for optimal specificity and potency of 
anticoagulant activity in vivo. Biochemistry-US 34, 16449-16457. 

 
Valeri, R.C., MacGregor, H., Cassidy, G., Tinney, R., Pompei, F., 1995. Effects of 

temperature on bleeding time and clotting time in normal male and female 
volunteers. Critical Care Medicine 23(4), 698-704. 

 
Van der Graaf, F., Koedam, J.A., and Bouma, B.N., 1983. Inactivation of kallikrein in 

human plasma. J. Clin. Invest. 71 (1), 149-158. 
 
Walburn, F.J., Schneck, D.J., 1976. A constitutive equation for whole human blood. 

Biorheology 13, 201-210. 
 
Wald, G. Bownds, D., 1965. Reaction of rhodopsin chromophore with sodium 

borohydride. Nature 205 (4968). 254-257. 
 
Wiebe, E.M., Stafford, A.R., Fredenburgh, J.C., Weitz, J.I., 2003. Mechanism of 

catalysis of inhibition of factor IXa by antithrombin in the presence of heparin or 
pentasaccharide. J. Biol. Chem. 278 (37), 35767-35774. 

 
Yeleswarupu, K.K., 1996. Evaluation of continuum models for characterizing the 

constitutive behavior of blood. PhD Dissertation, University of Pittsburgh, 
Pittsburgh, PA, 1996. 

 
Young, M.E., Carroad, P.A., Bell, R.L., 1980. Estimation of diffusion coefficients of 

proteins. Biotechnol. Bioeng. 22, 947-955. 
 
Zarnitsina, V.I., Pokhilko, A.V. Ataullakhanov, F.I., 1996. A mathematical model for the 

spatio- temporal dynamics of intrinsic pathway of blood coagulation. I. The 
model description. Thromb. Res. 84 (4), 225-236. 



52 
 

 

APPENDIX A 
 

FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Graphical representation of the clotting cascade that is modeled (the figure is 
modeled after a similar depiction from Rajagopal and Lawson, 2007). 
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Fig. 2. Separate graphical depiction of the clotting cascade modeled. Included are the 
complexes formed by various factors and ions.(LaCroix and Anand, 2010). 
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Fig. 3. Surface bound TF-VIIa concentration during thrombosis for 5 pM of added from 
tissue factor. The data is fitted to match the work of Orfeo et al. 2005. 
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Fig. 4. Front view of the mesh used in calculation. The center of the mesh is a 6x6 
square. Outside of this, each quadrant features a 6x6 section. There is a total of 18000 
nodes. 
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Fig. 5. A view of the mesh that includes all three dimensions. 
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Fig. 6. The area subjected to the clotting boundary conditions is shown in red. 
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Fig. 7. Whole blood experimental data from Chien et al. 1966 (black) versus model 
predictions (red). 
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Fig. 8. Experimental data (black) from Chien et al. 1966 compared to µ(0) (red) to 
µ(150) (green) and µ(350)(blue line). The blue line represents the behavior of a clot and 
is 100 times more viscous than whole blood.  
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Fig. 9. Thrombin concentration at the clot surface versus time. The extrinsic model only 
is shown in red while the combined extrinsic and intrinsic pathways is modeled in black. 
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Fig. 10. Fibrin concentration at the clot surface versus time. The extrinsic pathway only 
is modeled in red while the combined extrinsic and intrinsic is modeled in black. 
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Fig. 11. Clot size versus time. The extrinsic pathway only is modeled in red. The 
extrinsic and intrinsic pathways combined are shown in black. (From LaCroix and 
Anand, 2010) 
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Fig. 12. The maximum value of thrombin on the clot surface for the first 1300 seconds. 
After 1300 seconds, the level drops to miniscule amounts. The maximum value of 3.61 
nM is achieved at 528 seconds. 
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Fig. 13. Fibrin concentration at the clot surface throughout the simulation. A maximum 
value of 6123 nM is achieved at 1035 seconds, at which point lysis begins.  
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Fig. 14. Evolution of the clot for the first 500 seconds. The scales for concentration are 
different for each figure and are presented in moles (rather than nM). The time at each 
(in seconds) is 100 (A), 200 (B), 300 (C), 400 (D), and 500 (E). Notice that between (D) 
and (E), the a concentration above 350 nM is achieved everywhere over the clotting 
surface.  
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Fig. 15. The radial size of the clot at peak fibrin concentration. 
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Fig. 16. Maximum thrombin concentration on the clot surface for different initial 
conditions. “Va 1%,” and “Xa 1%,” refer to the initial level of each being raised to 1%; 
and “XaVa 1%” represents both concentrations being at an elevated level. Increasing 
factor Va lowers the maximum amount of thrombin produced, however it reduces the 
time it takes to reach this maximum. By only increasing the initial level of Xa, a higher 
maximum is produced quicker, though not as quick as increasing Va. 
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Fig. 17. Maximum fibrin concentration at the surface of the clot for different initial 
conditions. “Va 1%,” and “Xa 1%,” refer to the initial level of each being raised to 1%; 
and “XaVa 1%” represents both concentrations being at a heightened level. The “Va 
1%” and “XaVa 1%” line follow the same path. While each increases the maximum 
fibrin produced, the biggest difference is in the initiation stage where an increased level 
of factor Va (either by itself or in conjunction with Xa) leads to a much quicker 
formulation of a clot. 
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APPENDIX B 
 

TABLES 
 

 
Table 1 
Kinetic constants used for the biochemical equations. “M” is for Michaelis-Menten, “F” 
is for first order and “S” is for second order. 

 
 
 
 

Equation Kinetics Parameters Source

26, 27 M  k11 = 0.0078 min-1, K11M = 50 nM!! Gailani and Broze (1991)

26,47 S  h11A3 = 1.6 x 10-3 nM-1 min-1! Soons et al. (1987)

26, 49 S  h11L1 = 11.3 x 10-5 nM-1 min-1!! Scott et al. (1982)

33, 34 M  k9 = 11 min-1, K9M = 160 nM! Sun and Gailani (1996)

33, 47 S  h9 = 0.0162  nM-1 min-1 Wiebe et al. (2003)

41,42 M  k8 = 194.4 min-1, K8M = 112 000 nM! De Cristofaro and De Filippis (2003)

41 F  h8 = 0.222 min-1 ! Neuenschwander and Jesty (1992)

41 M  hC8 = 10.2 min-1 , HC8M = 12.6 nM Anand et al. (2008)

35 S  KdZ = 0.56 nM! Ahmad et al. (1989)

43, 44 M  k5 = 27.0 min-1, K5M = 140.5 nM! Monkovic and Tracy (1990)

43 F  h5 = 0.17 min-1! Freyssinet et al. (1991)

43 M  hC5 = 10.2 min-1, HC5M = 14.6 nM!! Solymoss et al. (1988)

36, 37 M  k10 = 2391 min-1 , K10M = 160 nM Rawalasheikh et al. (1990)

36, 47 S  h10 = 0.347 nM-1 min-1! Wiebe et al. (2003)

36, 48 S  hTFPI = 0.48 nM-1 min-1! Wiebe et al. (2003)

38 S  KdW = 0.1 nM! Mann (1987)

39, 40 M  k2 = 1344 min-1 , K2M = 1060 nM! Krishnaswamy et al. (1987)

39, 47 S  h2 = 0.714  nM-1 min-1! Wiebe et al. (2003)

45,46 M  kPC = 39 min-1 , KPCM = 1060 nM! Tsiang et al. (1996)

45,49 S  hPC = 6.6 x 10-7
 nM-1 min-1 Heeb et al. (1990)

50,51 M  k1 = 3540 min-1  , K1M = 3160 nM! Tsiang et al. (1996)

50 M  h1 = 1500 min-1 , H1M = 250 000 nM! Diamond and Anand (1993)

53, 54 M  kPLA = 12 min-1, KPLAM = 18 nM! Madison et al. (1995)

53, 55 S hPLA = 0.096 nM-1 min-1 Kolev et al. (1994)

28, 29 M  k12 = 19.8 min-1, K12M = 7500 nM! Tankersly and Finlayson (1984)

28, 29 M  kkalli = 435 min-1, KkalliM = 780 nM! Tankersly and Finlayson (1984)

30, 31 M  kPreKA = 216
 
min-1, KPreKAM = 91 nM! Tankersly and Finlayson (1984)

30, 31 M  kPreKB = 2400 min-1, KPreKBM = 36,000 nM! Tankersly and Finlayson (1984)

29 F  h12 = 0.85 min-1 Silverberg and Kaplan (1982)

29, 32 S  hCInh-12a = 2.2 x 10-4 
nM-1 min Pixley et al. (1985)

29, 55 S  h !AP = 1.1 x 10-5 
nM-1 min-1! Pixley et al. (1985)
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Table 2 
Diffusion coefficients. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Species Mol. Mass (Da) (cc/g) Diffusion coefficient (cm2/sec)
I 340000 0.723  3.10 x 10‐7

Ia ≈660,000 0.730  2.47 x 10-7

II 72000 0.719  5.21 x 10-7

IIA 37000 0.730  6.47 x 10-7

V 330000 0.730  3.12 x 10-7

Va 179000 0.730  3.82 x 10-7

VIII 330000 0.730  3.12 x 10-7

VIIIa 166000 0.730  3.92 x 10-7

IX 56000 0.730  5.63 x 10-7

Ixa 41000 0.730  6.25 x 10-7

X 56000 0.730  5.63 x 10-7

Xa 25000 0.730  7.37 x 10-7

XI 16000 0.730  3.97 x 10-7

XIa 80000 0.730  5.0 x 10-7

XII 80000 0.730 5.0 x 10-7

XIIa 108000 0.730 2.93 x 10-7

preK 84000 0.730 4.92 x 10-7

Kalli 84000 0.730 4.92 x 10-7

C1INH 105000 0.730 4.61 x 10-7

PC 62000 0.730 5.44 x 10-7

APC 60000 0.730 5.50 x 10-7

ATIII 58000 0.730 5.57 x 10-7

TFPI 40000 0.730 6.30 x 10-7

α1AT 51000 0.728 5.82 x 10-7

tPA 68000 0.730 5.28 x 10-7

PLS 92000 0.715 4.81 x 10-7

PLA 85000 0.715 4.93 x 10-7

α2AP 70000 0.720 5.25 x 10‐7
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Table 3 
Initial conditions for all factors. 

 
 
 
 
 
 
 
 
 
 

Species Initial Concentration (nM) Source 
I 7000 Mann et al. (1995) 
Ia 7.0  
II 1400 Mann et al. (1995) 
IIa 1.4  
V 20 Mann et al. (1995) 
Va 0.02  

VIII 0.7 Mann et al. (1995) 
VIIIa 0.0007  

IX 90 Mann et al. (1995) 
IXa 0.09  
X 170 Mann et al. (1995) 
Xa 0.17  
XI 30 Bungay et al. (2003) 
XIa 0.03  
XII 500 Brummel-Ziedens et al. (2004) 
XIIa 5  
preK 485 Brummel-Ziedens et al. (2004) 
Kalli 4.85  

C1INH 1625 Brummel-Ziedens et al. (2004) 
PC 60 Mann et al. (1995) 

APC .06  
ATIII 3400 Kalafatis et al. (1997) 
TFPI 2.5 Mann et al. (1995) 
α1AT 45000 Colman et al. (2001) 
tPA 0.08 Booth (1995) 
PLS 2180 Lijnen and Collen (2000) 
PLA 2.18  
α2AP 105 Colman et al. (2001) 
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Table 4 
Boundary condition parameters. 
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Table 5 
Sensitivity, S, to increased initial levels of activated factors V and X. The initial 
condition is set to 1% of their respective inactivated forms. The table uses equation 58 
from the text to find the impact of raising Va and Xa individually and together. 
  

Factor Ia IIa  
Va 0.004 -0.034 
Xa 0.006 0.039 
XaVa 0.0045 -0.025 
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Table 6 
Temporal effects of adjusting the initial level of Va and Xa. The time it takes to achieve 
the maximum concentration of fibrin and thrombin as well as reach a fibrin 
concentration of 350 nM (time to clot) is listed. For thrombin and fibrin, the maximum 
values are included in parentheses. All times listed are in seconds. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Factor Ia IIa Time to Clot 
Va 960 (6364) 428 (2.49) 75 
Xa 960 (6464) 486 (4.84) 415 
XaVa 960 (6369) 427 (2.46) 75 
Normal 1025 (6123) 528 (3.61) 440 
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APPENDIX C 
 
Model         Apparent Viscosity 
 
Walburn and Schneck (1976)   

     𝜇 = 𝐶!𝑒!!![𝑒
!!

!"#$
!! ](𝛾)!!!! 

         
        C1=.00797      C2 = 0.0608 
        C3 = .00499    C4 = 14.585 
        H = 40%        TPMA = 25.9 
 
 
Carreau (Cho and Kensey, 1991)  𝜇 = 𝜇! + 𝜇! −  𝜇! [1+ 𝜆𝛾 !)]

!!!
!  

  
        λ= 3.313          n = 0.3568 
        µ0 = 0.56P   µ∞ = 0.0345P 
        P represents pressure 
 

Casson (Fung, 1997)      𝜇 = [ 𝜂!𝐽!
!
! + 2

!!
! 𝜏!

!
! ]!  𝐽!

!!
!  

         
       𝛾 = !

!!
     𝜏! = 0.1(0.625𝐻)!  

 
        𝜂 = 𝜂!(1− 𝐻)!!.! 
        η0 = 0.012P         H = 0.037 
 
        P  represents pressure 
 
 
Luo and Kang (1992)     𝜇 = !

!
=  𝜂! + 𝜂!𝛾

!!! +  𝜏!𝛾!! 
 
        τy = 4.968     η1 = 4.076    
        η2 = 16.066 
 
 
 
 
 
 
 
 
 



76 
 

 

 
 

Refined Oldroyd-B (Anand and Rajagopal, 2004)  𝜇 =  
!!!
! !!!

!
 

 
        𝜆 =   !

[!! !
!!!

! !]!/!
 

 
        𝜒 = 𝐾[!!

!

!!!
   !

!! !!

!!!

]! 

 
        n = 0.1372      η1= 0.1 Pa s-1     
       
       µ1 = 0.1611 N/m2     K = 58.0725 s-1    
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APPENDIX D 
 
 
Files are separated by bold font introducing them. There are four files presented. 
 
chemPimpleFoam.C : 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by the 
    Free Software Foundation; either version 2 of the License, or (at your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Application 
    pimpleFoam 
 
Description 
    Large time-step transient solver for incompressible, flow using the PIMPLE 
    (merged PISO-SIMPLE) algorithm. 
 
    Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "fvCFD.H" 
#include "singlePhaseTransportModel.H" 
#include "turbulenceModel.H" 



78 
 

 

 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
int main(int argc, char *argv[]) 
{ 
    #include "setRootCase.H" 
    #include "createTime.H" 
    #include "createMesh.H" 
    #include "createFields.H" 
    #include "initContinuityErrs.H" 
 
    Info<< "\nStarting time loop\n" << endl; 
 
    while (runTime.run()) 
    { 
        #include "readTimeControls.H" 
        #include "readPIMPLEControls.H" 
        #include "CourantNo.H" 
        #include "setDeltaT.H" 
 
        runTime++; 
 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
 
        // --- Pressure-velocity PIMPLE corrector loop 
        for (int oCorr=0; oCorr<nOuterCorr; oCorr++) 
        { 
            if (nOuterCorr != 1) 
            { 
                p.storePrevIter(); 
            } 
 
//        Info<< "Velocity:" << endl; 
            #include "UEqn.H" 
//        Info<< "Chemical:" << endl; 
     #include<chemEqs.H>  
// Info<< "Viscoelasticity:" << endl; 
//     #include<viscoElasticity.H>  
 
 
            // --- PISO loop 
            for (int corr=0; corr<nCorr; corr++) 
            { 
                #include "pEqn.H" 
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            } 
 
            turbulence->correct(); 
        } 
 
//       if(runTime.write()){nuF.write();} 
        runTime.write(); 
 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
 
    Info<< "End\n" << endl; 
 
    return 0; 
} 
 
 
// 
***********************************************************************
** // 
 
Where, UEqn.H : 
 
 
nuST = ((nu0 - nuInf)/pow(scalar(1) + pow(lambdaMCM*mag(symm(fvc::grad(U))), 
m),n) + nuInf)/rho; 
 
nuF = min(nuST*(1 + nuStar*mag(CIa)/Threshold_CIa), 
nuST*nuStar*mag(CIa)/mag(CIa)); 
 
 
tmp<fvVectorMatrix> UEqn 
( 
    fvm::ddt(U) 
  + fvm::div(phi, U) 
  - fvm::laplacian(nuF, U) 
//  - fvc::div(Te)/rho           
 
//  + turbulence->divDevReff(U) 
); 
 
if (oCorr == nOuterCorr-1) 
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{ 
    UEqn().relax(1); 
} 
else 
{ 
    UEqn().relax(); 
} 
 
volScalarField rUA = 1.0/UEqn().A(); 
 
if (momentumPredictor) 
{ 
    if (oCorr == nOuterCorr-1) 
    { 
        solve(UEqn() == -fvc::grad(p), mesh.solver("UFinal")); 
    } 
    else 
    { 
        solve(UEqn() == -fvc::grad(p)); 
    } 
} 
else 
{ 
    U = rUA*(UEqn().H() - fvc::grad(p)); 
    U.correctBoundaryConditions(); 
} 
***********************************************************************
************ 
 
 
PEqn.H : 
 
 
U = rUA*UEqn().H(); 
 
if (nCorr <= 1) 
{ 
    UEqn.clear(); 
} 
 
phi = (fvc::interpolate(U) & mesh.Sf()) 
    + fvc::ddtPhiCorr(rUA, U, phi); 
 
adjustPhi(phi, U, p); 
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// Non-orthogonal pressure corrector loop 
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) 
{ 
    // Pressure corrector 
    fvScalarMatrix pEqn 
    ( 
        fvm::laplacian(rUA, p) == fvc::div(phi) 
    ); 
 
    pEqn.setReference(pRefCell, pRefValue); 
 
    if 
    ( 
        oCorr == nOuterCorr-1 
     && corr == nCorr-1 
     && nonOrth == nNonOrthCorr 
    ) 
    { 
        pEqn.solve(mesh.solver("pFinal")); 
    } 
    else 
    { 
        pEqn.solve(); 
    } 
 
    if (nonOrth == nNonOrthCorr) 
    { 
        phi -= pEqn.flux(); 
    } 
} 
 
#include "continuityErrs.H" 
 
// Explicitly relax pressure for momentum corrector except for last corrector 
if (oCorr != nOuterCorr-1) 
{ 
    p.relax(); 
} 
 
U -= rUA*fvc::grad(p); 
U.correctBoundaryConditions(); 
 
***********************************************************************
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********** 
 
 
And chemEqs.H is : 
 
/*There will be set of following advection-diffusion equations: 
 
DC/Dt = D*ddC/dxx + G 
 
28 constituents:  
  
  
  
  
  
 CI  
 CIa  
 CII  
 CIIa 
 CV 
 CVa 
 CVIII 
 CVIIIa 
 CIX 
 CIXa 
 CX 
 CXa 
 CXI 
 CXIa 
 CPC 
 CAPC 
 CATIII 
 CTFPI 
 Calpha1AT 
 CtPA 
 CPLS 
 CPLA 
 Calpha2AP 
 CXII 
 CXIIa 
 CCInh 
 CCInh 
 CKalli   */ 
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//1  
    tmp<fvScalarMatrix> CIEqn 
    ( 
              fvm::ddt(CI) 
            + fvm::div(phi, CI) 
            - fvm::laplacian(DCI, CI) 
     + fvm::Sp((k1)*CIIa/(K1M + CI),CI) 
      
      
     //     - (-k1)*CIIa*CI/(K1M + CI) 
    ); 
 
     
    CIEqn().relax(); 
    solve(CIEqn); 
    CI = max(CI,  1e-40);     
    Info<< "CI min:" << min(CI).value() << endl; 
    Info<< "CI max:" << max(CI).value() << endl; 
//2 
    tmp<fvScalarMatrix> CIaEqn 
    ( 
              fvm::ddt(CIa) 
            + fvm::div(phi, CIa) 
            - fvm::laplacian(DCIa, CIa) 
     - (k1*CIIa*CI/(K1M + CI))  
     + fvm::Sp(h1*CPLA/(H1M + CIa),CIa) 
      
     //- (k1*CIIa*CI/(K1M + CI) - h1*CPLA*CIa/(H1M + CIa)   ) 
    ); 
    CIaEqn().relax(); 
    solve(CIaEqn); 
    CIa = max(CIa,  1e-40);     
    Info<< "CIa min:" << min(CIa).value() << endl; 
    Info<< "CIa max:" << max(CIa).value() << endl; 
//3 
    tmp<fvScalarMatrix> CIIEqn 
    ( 
              fvm::ddt(CII) 
            + fvm::div(phi, CII) 
            - fvm::laplacian(DCII, CII) 
     + fvm::Sp((k2)*CVa*CXa/(KdW*(K2M + CII)),CII)     
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     // - (-k2)*CVa*CXa*CII/(KdW*(K2M + CII))  
    ); 
    CIIEqn().relax(); 
    solve(CIIEqn); 
    CII = max(CII,  1e-40);     
    Info<< "CII min:" << min(CII).value() << endl; 
    Info<< "CII max:" << max(CII).value() << endl; 
//4 
    tmp<fvScalarMatrix> CIIaEqn 
    ( 
              fvm::ddt(CIIa) 
            + fvm::div(phi, CIIa) 
            - fvm::laplacian(DCIIa, CIIa) 
     - k2*CVa*CXa*CII/(KdW*(K2M + CII)) 
     + fvm::Sp(h2*CATIII,CIIa) 
      
     //   - (k2*CVa*CXa*CII/(KdW*(K2M + CII)) - h2*CIIa*CATIII) 
    ); 
    CIIaEqn().relax(); 
    solve(CIIaEqn);     
    CIIa = max(CIIa,  1e-40);     
    Info<< "CIIa min:" << min(CIIa).value() << endl; 
    Info<< "CIIa max:" << max(CIIa).value() << endl; 
//5 
    tmp<fvScalarMatrix> CVEqn 
    ( 
              fvm::ddt(CV) 
            + fvm::div(phi, CV) 
            - fvm::laplacian(DCV, CV) 
     + fvm::Sp((k5*CIIa/(K5M + CV)),CV) 
      
     //- (-k5*CIIa*CV/(K5M + CV)) 
    ); 
    CVEqn().relax(); 
    solve(CVEqn); 
    CV = max(CV,  1e-40);     
    Info<< "CV min:" << min(CV).value() << endl; 
    Info<< "CV max:" << max(CV).value() << endl; 
//6 
    tmp<fvScalarMatrix> CVaEqn 
    ( 
              fvm::ddt(CVa) 
            + fvm::div(phi, CVa) 
            - fvm::laplacian(DCVa, CVa) 
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     - (k5*CIIa*CV/(K5M + CV)) 
     + fvm::Sp(h5,CVa) 
     + fvm::Sp(hC5*CAPC/(HC5M + CVa),CVa) 
      
     //- (k5*CIIa*CV/(K5M + CV) - h5*CVa - hC5*CAPC*CVa/(HC5M + CVa) ) 
    ); 
    CVaEqn().relax(); 
    solve(CVaEqn); 
    CVa = max(CVa,  1e-40); 
    Info<< "CVa min:" << min(CVa).value() << endl; 
    Info<< "CVa max:" << max(CVa).value() << endl; 
//7 
    tmp<fvScalarMatrix> CVIIIEqn 
    ( 
              fvm::ddt(CVIII) 
            + fvm::div(phi, CVIII) 
            - fvm::laplacian(DCVIII, CVIII) 
     + fvm::Sp((k8*CIIa/(K8M + CVIII)),CVIII)    
      
     //- (-k8*CIIa*CVIII/(K8M + CVIII)) 
    ); 
    CVIIIEqn().relax(); 
    solve(CVIIIEqn); 
    CVIII = max(CVIII,  1e-40); 
    Info<< "CVIII min:" << min(CVIII).value() << endl; 
    Info<< "CVIII max:" << max(CVIII).value() << endl; 
//8 
    tmp<fvScalarMatrix> CVIIIaEqn 
    ( 
              fvm::ddt(CVIIIa) 
            + fvm::div(phi, CVIIIa) 
            - fvm::laplacian(DCVIIIa, CVIIIa) 
     - ((k8*CIIa*CVIII/(K8M + CVIII))) 
     + fvm::Sp(h8,CVIIIa) 
     + fvm::Sp(hC8*CAPC/(HC8M + CVIIIa) ,CVIIIa)     
      
     //- (k8*CIIa*CVIII/(K8M + CVIII) - h8*CVIIIa - hC8*CAPC*CVIIIa/(HC8M 
+ CVIIIa) ) 
    ); 
    CVIIIaEqn().relax(); 
    solve(CVIIIaEqn); 
    CVIIIa = max(CVIIIa,  1e-40); 
    Info<< "CVIIIa min:" << min(CVIIIa).value() << endl; 
    Info<< "CVIIIa max:" << max(CVIIIa).value() << endl; 
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//9 
    tmp<fvScalarMatrix> CIXEqn 
    ( 
              fvm::ddt(CIX) 
            + fvm::div(phi, CIX) 
            - fvm::laplacian(DCIX, CIX) 
     + fvm::Sp((k9*CXIa/(K9M + CIX)),CIX)   
      
     //- (-k9*CXIa*CIX/(K9M + CIX)) 
    ); 
 
    CIXEqn().relax(); 
    solve(CIXEqn); 
    CIX = max(CIX,  1e-40); 
Info<< "CIX min:" << min(CIX).value() << endl; 
Info<< "CIX max:" << max(CIX).value() << endl; 
 
//10 
    tmp<fvScalarMatrix> CIXaEqn 
    ( 
              fvm::ddt(CIXa) 
            + fvm::div(phi, CIXa) 
            - fvm::laplacian(DCIXa, CIXa) 
     - (k9*CXIa*CIX/(K9M + CIX)) 
     + fvm::Sp(h9*CATIII,CIXa) 
      
     //- (k9*CXIa*CIX/(K9M + CIX) - h9*CIXa*CATIII) 
    ); 
    CIXaEqn().relax(); 
    solve(CIXaEqn); 
    CIXa = max(CIXa,  1e-40); 
    Info<< "CIXa min:" << min(CIXa).value() << endl; 
    Info<< "CIXa max:" << max(CIXa).value() << endl; 
//11 
    tmp<fvScalarMatrix> CXEqn 
    ( 
              fvm::ddt(CX) 
            + fvm::div(phi, CX) 
            - fvm::laplacian(DCX, CX) 
     + fvm::Sp((k10*CVIIIa*CIXa/(KdZ*(K10M + CX))),CX)   
     
      
     //- (-k10*CVIIIa*CIXa*CX/(KdZ*(K10M + CX))) 
    ); 



87 
 

 

    CXEqn().relax(); 
    solve(CXEqn); 
    CX = max(CX, 1e-40); 
    Info<< "CX min:" << min(CX).value() << endl; 
    Info<< "CX max:" << max(CX).value() << endl; 
//12 
    tmp<fvScalarMatrix> CXaEqn 
    ( 
              fvm::ddt(CXa) 
            + fvm::div(phi, CXa) 
            - fvm::laplacian(DCXa, CXa) 
     - (k10*CVIIIa*CIXa*CX/(KdZ*(K10M + CX)) ) 
     + fvm::Sp(h10*CATIII,CXa) 
     + fvm::Sp(hTFPI*CTFPI,CXa)      //- (k10*CVIIIa*CIXa*CX/(KdZ*(K10M + 
CX)) - h10*CXa*CATIII - hTFPI*CTFPI*CXa ) 
    ); 
    CXaEqn().relax(); 
    solve(CXaEqn); 
    CXa = max(CXa, 1e-40); 
    Info<< "CXa min:" << min(CXa).value() << endl; 
    Info<< "CXa max:" << max(CXa).value() << endl; 
//13 
    tmp<fvScalarMatrix> CXIEqn 
    ( 
              fvm::ddt(CXI) 
            + fvm::div(phi, CXI) 
            - fvm::laplacian(DCXI, CXI) 
     + fvm::Sp((k11)*CIIa/(K11M + CXI) ,CXI) 
     + fvm::Sp((k12a)*CXIIa/(K12aM + CXI),CXI) 
      
     //- ((-k11)*CIIa*CXI/(K11M + CXI) + (-k12a)*CXIIa*CXI/(K12aM + CXI)   
) 
    ); 
    CXIEqn().relax(); 
    solve(CXIEqn); 
    CXI = max(CXI, 1e-40); 
    Info<< "CXI min:" << min(CXI).value() << endl; 
    Info<< "CXI max:" << max(CXI).value() << endl; 
//14 
    tmp<fvScalarMatrix> CXIaEqn 
    ( 
              fvm::ddt(CXIa) 
            + fvm::div(phi, CXIa) 
            - fvm::laplacian(DCXIa, CXIa) 
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     - (k11*CIIa*CXI/(K11M + CXI)) 
     - (k12a*CXIIa*CXI/(K12aM + CXI)) 
     + fvm::Sp(h11A3*CATIII,CXIa) 
     + fvm::Sp(h11L1*Calpha1AT,CXIa) 
     + fvm::Sp(hPCI11a*CCInh,CXIa) 
      
     //- (k11*CIIa*CXI/(K11M + CXI) + k12a*CXIIa*CXI/(K12aM + CXI) - 
h11A3*CXIa*CATIII - h11L1*CXIa*Calpha1AT - hPCI11a*CXIa*CCInh)    
    ); 
    CXIaEqn().relax(); 
    solve(CXIaEqn); 
    CXIa = max(CXIa, 1e-40); 
    Info<< "CXIa min:" << min(CXIa).value() << endl; 
    Info<< "CXIa max:" << max(CXIa).value() << endl; 
//15 
    tmp<fvScalarMatrix> CPCEqn 
    ( 
              fvm::ddt(CPC) 
            + fvm::div(phi, CPC) 
            - fvm::laplacian(DCPC, CPC) 
     + fvm::Sp((kPC*CIIa/(KPCM + CPC)),CPC) 
      
     //- ((-kPC)*CIIa*CPC/(KPCM + CPC)) 
    ); 
 
    CPCEqn().relax(); 
    solve(CPCEqn); 
    CPC = max(CPC, 1e-40); 
    Info<< "CPC min:" << min(CPC).value() << endl; 
    Info<< "CPC max:" << max(CPC).value() << endl; 
 
//16 
    tmp<fvScalarMatrix> CAPCEqn 
    ( 
              fvm::ddt(CAPC) 
            + fvm::div(phi, CAPC) 
            - fvm::laplacian(DCAPC, CAPC) 
     - (kPC*CIIa*CPC/(KPCM + CPC)) 
     + fvm::Sp(hPC*Calpha1AT/*/(KPCM + CPC)*/,CAPC) 
      
      
     //- (kPC*CIIa*CPC/(KPCM + CPC) - hPC*CAPC*Calpha1AT) 
    ); 
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    CAPCEqn().relax(); 
    solve(CAPCEqn); 
    CAPC = max(CAPC, 1e-40); 
    Info<< "CAPC min:" << min(CAPC).value() << endl; 
    Info<< "CAPC max:" << max(CAPC).value() << endl; 
//17 
    tmp<fvScalarMatrix> CATIIIEqn 
    ( 
              fvm::ddt(CATIII) 
            + fvm::div(phi, CATIII) 
            - fvm::laplacian(DCATIII, CATIII) 
            + fvm::Sp((h9*CIXa + h10*CXa + h2*CIIa + h11A3*CXIa + 
h12A3*CXIIa),CATIII) 
      
     //- ( -(h9*CIXa + h10*CXa + h2*CIIa + h11A3*CXIa + 
h12A3*CXIIa)*CATIII   ) 
    ); 
    CATIIIEqn().relax(); 
    solve(CATIIIEqn); 
    CATIII = max(CATIII, 1e-40); 
    Info<< "CATIII min:" << min(CATIII).value() << endl; 
    Info<< "CATIII max:" << max(CATIII).value() << endl; 
//18 
    tmp<fvScalarMatrix> CTFPIEqn 
    ( 
              fvm::ddt(CTFPI) 
            + fvm::div(phi, CTFPI) 
            - fvm::laplacian(DCTFPI, CTFPI) 
     + fvm::Sp((hTFPI*CXa),CTFPI) 
      
     //- ( -(hTFPI*CTFPI*CXa)   ) 
    ); 
    CTFPIEqn().relax(); 
    solve(CTFPIEqn); 
    CTFPI = max(CTFPI, 1e-40); 
    Info<< "CTFPI min:" << min(CTFPI).value() << endl; 
    Info<< "CTFPI max:" << max(CTFPI).value() << endl; 
//19 
    tmp<fvScalarMatrix> Calpha1ATEqn 
    ( 
              fvm::ddt(Calpha1AT) 
            + fvm::div(phi, Calpha1AT) 
            - fvm::laplacian(DCalpha1AT, Calpha1AT) 
     + fvm::Sp(hPC*CAPC,Calpha1AT) 
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     + fvm::Sp(h11L1*CXIa,Calpha1AT) 
      
     //- ( -hPC*CAPC*Calpha1AT - h11L1*CXIa*Calpha1AT    ) 
    ); 
    Calpha1ATEqn().relax(); 
    solve(Calpha1ATEqn); 
    Calpha1AT  = max(Calpha1AT, 1e-40); 
    Info<< "Calpha1AT min:" << min(Calpha1AT).value() << endl; 
    Info<< "Calpha1AT max:" << max(Calpha1AT).value() << endl; 
//20 
    tmp<fvScalarMatrix> CtPAEqn 
    ( 
              fvm::ddt(CtPA) 
            + fvm::div(phi, CtPA) 
            - fvm::laplacian(DCtPA, CtPA) 
 //    - (0) 
    ); 
    CtPAEqn().relax(); 
    solve(CtPAEqn); 
    CtPA = max(CtPA, 1e-40); 
    Info<< "CtPA min:" << min(CtPA).value() << endl; 
    Info<< "CtPA max:" << max(CtPA).value() << endl; 
//21 
    tmp<fvScalarMatrix> CPLSEqn 
    ( 
              fvm::ddt(CPLS) 
            + fvm::div(phi, CPLS) 
            - fvm::laplacian(DCPLS, CPLS) 
     + fvm::Sp(kPLA*CtPA/(KPLAM + CPLS),CPLS) 
     + fvm::Sp(kPLA12a*CXIIa/(KPLA12aM + CPLS) ,CPLS) 
      
     //- (-kPLA*CtPA*CPLS/(KPLAM + CPLS) - 
kPLA12a*CXIIa*CPLS/(KPLA12aM + CPLS)   ) 
    ); 
 
    CPLSEqn().relax(); 
    solve(CPLSEqn); 
    CPLS = max(CPLS, 1e-40); 
    Info<< "CPLS min:" << min(CPLS).value() << endl; 
    Info<< "CPLS max:" << max(CPLS).value() << endl; 
 
//22 
    tmp<fvScalarMatrix> CPLAEqn 
    ( 
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              fvm::ddt(CPLA) 
            + fvm::div(phi, CPLA) 
            - fvm::laplacian(DCPLA, CPLA) 
     - (kPLA*CtPA*CPLS/(KPLAM + CPLS)) 
     - (kPLA12a*CXIIa*CPLS/(KPLA12aM + CPLS)) 
     + fvm::Sp(hPLA*Calpha2AP,CPLA) 
      
     //- (kPLA*CtPA*CPLS/(KPLAM + CPLS) + 
kPLA12a*CXIIa*CPLS/(KPLA12aM + CPLS) - hPLA*CPLA*Calpha2AP  ) 
    ); 
 
    CPLAEqn().relax(); 
    solve(CPLAEqn); 
    CPLA = max(CPLA, 1e-40); 
    Info<< "CPLA min:" << min(CPLA).value() << endl; 
    Info<< "CPLA max:" << max(CPLA).value() << endl; 
 
//23 
    tmp<fvScalarMatrix> Calpha2APEqn 
    ( 
              fvm::ddt(Calpha2AP) 
            + fvm::div(phi, Calpha2AP) 
            - fvm::laplacian(DCalpha2AP, Calpha2AP) 
     + fvm::Sp((hPLA*CPLA + halphaAP*CXIIa),Calpha2AP) 
      
      
     //- (-(hPLA*CPLA + halphaAP*CXIIa)*Calpha2AP  ) 
    ); 
 
    Calpha2APEqn().relax(); 
    solve(Calpha2APEqn); 
    Calpha2AP = max(Calpha2AP, 1e-40); 
    Info<< "Calpha2AP min:" << min(Calpha2AP).value() << endl; 
    Info<< "Calpha2AP max:" << max(Calpha2AP).value() << endl; 
//24 
    tmp<fvScalarMatrix> CXIIEqn 
    ( 
              fvm::ddt(CXII) 
            + fvm::div(phi, CXII) 
            - fvm::laplacian(DCXII, CXII) 
     + fvm::Sp(k12/(K12M + CXII),CXII) 
     + fvm::Sp(kkalli*CKalli/(KkalliM + CXII),CXII) 
      
     //- (-k12*CXII/(K12M + CXII) - kkalli*CKalli*CXII/(KkalliM + CXII)   ) 
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    ); 
    CXIIEqn().relax(); 
    solve(CXIIEqn); 
    CXII = max(CXII, 1e-40); 
    Info<< "CXII min:" << min(CXII).value() << endl; 
    Info<< "CXII max:" << max(CXII).value() << endl; 
//25 
    tmp<fvScalarMatrix> CXIIaEqn 
    ( 
              fvm::ddt(CXIIa) 
            + fvm::div(phi, CXIIa) 
            - fvm::laplacian(DCXIIa, CXIIa) 
     - (k12*CXII/(K12M + CXII)) 
     - (kkalli*CKalli*CXII/(KkalliM + CXII)) 
     + fvm::Sp(h12,CXIIa) 
     + fvm::Sp(hPCI12a*CCInh,CXIIa) 
     + fvm::Sp(halphaAP*Calpha2AP,CXIIa) 
     + fvm::Sp(h12A3*CATIII,CXIIa) 
      
     //- (k12*CXII/(K12M + CXII) + kkalli*CKalli*CXII/(KkalliM + CXII) -
h12*CXIIa - hPCI12a*CXIIa*CCInh - halphaAP*CXIIa*Calpha2AP - 
h12A3*CXIIa*CATIII  ) 
    ); 
    CXIIaEqn().relax(); 
    solve(CXIIaEqn); 
    CXIIa = max(CXIIa, 1e-40); 
    Info<< "CXIIa min:" << min(CXIIa).value() << endl; 
    Info<< "CXIIa max:" << max(CXIIa).value() << endl; 
//26 
    tmp<fvScalarMatrix> CCInhEqn 
    ( 
              fvm::ddt(CCInh) 
            + fvm::div(phi, CCInh) 
            - fvm::laplacian(DCCInh, CCInh) 
     + fvm::Sp((hPCI12a*CXIIa + hPCI11a*CXIa),CCInh ) 
      
     //- ( -(hPCI12a*CXIIa + hPCI11a*CXIa)*CCInh  )  
    ); 
    CCInhEqn().relax(); 
    solve(CCInhEqn); 
    CCInh = max(CCInh, 1e-40); 
    Info<< "CCInh min:" << min(CCInh).value() << endl; 
    Info<< "CCInh max:" << max(CCInh).value() << endl; 
//27 
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    tmp<fvScalarMatrix> CPreKalliEqn 
    ( 
              fvm::ddt(CPreKalli) 
            + fvm::div(phi, CPreKalli) 
            - fvm::laplacian(DCPreKalli, CPreKalli) 
     + fvm::Sp(kPreKA*CXIIa/(KPreKAM + CPreKalli),CPreKalli) 
     + fvm::Sp(kPreKB*CXIIa/(KPreKBM + CPreKalli),CPreKalli) 
      
     //- (-kPreKA*CXIIa*CPreKalli/(KPreKAM + CPreKalli) - 
kPreKB*CXIIa*CPreKalli/(KPreKBM + CPreKalli) ) 
    ); 
    CPreKalliEqn().relax(); 
    solve(CPreKalliEqn); 
    CPreKalli = max(CPreKalli, 1e-40); 
    Info<< "CPreKalli min:" << min(CPreKalli).value() << endl; 
    Info<< "CPreKalli max:" << max(CPreKalli).value() << endl; 
//28 
    tmp<fvScalarMatrix> CKalliEqn 
    ( 
              fvm::ddt(CKalli) 
            + fvm::div(phi, CKalli) 
            - fvm::laplacian(DCKalli, CKalli) 
     - (kPreKA*CXIIa*CPreKalli/(KPreKAM + CPreKalli))  
     + fvm::Sp(hkalli,CKalli) 
      
      
     //- (kPreKA*CXIIa*CPreKalli/(KPreKAM + CPreKalli) + 
kPreKB*CXIIa*CPreKalli/(KPreKBM + CPreKalli) - hkalli*CKalli ) 
    ); 
    CKalliEqn().relax(); 
    solve(CKalliEqn); 
    CKalli = max(CKalli, 1e-40); 
    Info<< "CKalli min:" << min(CKalli).value() << endl; 
    Info<< "CKalli max:" << max(CKalli).value() << endl; 
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