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ABSTRACT

Transient Analysis of Large-scale Stochastic Service Systems. (May 2011)

Young Myoung Ko, B. S., Seoul National University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Natarajan Gautam

The transient analysis of large-scale systems is often difficult even when the sys-

tems belong to the simplestM/M/n type of queues. To address analytical difficulties,

previous studies have been conducted under various asymptotic regimes by suitably

accelerating parameters, thereby establishing some useful mathematical frameworks

and giving insights into important characteristics and intuitions. However, some

studies show significant limitations when used to approximate real service systems:

(i) they are more relevant to steady-state analysis; (ii) they emphasize proofs of

convergence results rather than numerical methods to obtain system performance;

and (iii) they provide only one set of limit processes regardless of actual system size.

Attempting to overcome the drawbacks of previous studies, this dissertation

studies the transient analysis of large-scale service systems with time-dependent

parameters. The research goal is to develop a methodology that provides accurate

approximations based on a technique called uniform acceleration, utilizing the theory

of strong approximations. We first investigate and discuss the possible inaccuracy of

limit processes obtained from employing the technique. As a solution, we propose

adjusted fluid and diffusion limits that are specifically designed to approximate large,

finite-sized systems. We find that the adjusted limits significantly improve the quality

of approximations and hold asymptotic exactness as well. Several numerical results

provide evidence of the effectiveness of the adjusted limits. We study both a call
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center which is a canonical example of large-scale service systems and an emerging

peer-based Internet multimedia service network known as P2P.

Based on our findings, we introduce a possible extension to systems which show

non-Markovian behavior that is unaddressed by the uniform acceleration technique.

We incorporate the denseness of phase-type distributions into the derivation of limit

processes. The proposed method offers great potential to accurately approximate

performance measures of non-Markovian systems with less computational burden.
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CHAPTER I

INTRODUCTION

I.1. Motivation

Popular applications of large-scale service systems include call centers, Internet-based

services and mobile networks. These and similar service systems exhibit time-varying

characteristics that are sometimes meaningful only in a finite time interval. For

example, call centers which operate 24/7 in today’s global economy as well as those

which “open” and “close” in a shorter timeframe have a daily transient period, in

which the arrival rate of customers is highly time-varying (Zeltyn and Mandelbaum

(2005)), often changing day by day, week by week, or month by month. Analyzing

the operations of these service systems requires examining their transient behaviors,

e.g., expected queue length at 3 pm, the probability that customer’s virtual waiting

time is greater than 2 minutes during peak periods, etc. Another type of service

system, Internet-based multimedia services, i.e. Apple iTunes Services (2011), also

has a transient period, e.g., each time a user creates a new music or video file.

Transient analysis is critically important for optimal service operations. However,

even assuming stationarity and Markovian properties, obtaining accurate performance

measures is not trivial. For this reason, asymptotic analysis with fluid and diffusion

limits is gaining in popularity (Iglehart, 1965, Mandelbaum et al., 2002, Mandelbaum

and Pats, 1998, Whitt, 2006a,b). Typically, an analyst first obtains fluid and dif-

fusion limits by utilizing Functional Law of Large Numbers (FLLN) and Functional

Central Limit Theorem (FCLT). Knowing the limits allows the analyst to investigate

asymptotic characteristics of the systems under the conditions specified, such as heavy

The journal model is IIE Transactions.
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traffic, large number of servers, etc. Although the use of FLLN and FCLT is a common

feature of the literature mentioned above, these studies have different regimes, aims,

scenarios, and assumptions. Asymptotic approaches are particularly useful when

analyzing large-scale stochastic systems, because many complicated aspects disappear

in the asymptotic realm. Performance measures like average queue lengths and virtual

waiting times can only require the first two moments of the arrival and service

distributions. However, three major limitations occur when applying asymptotic

approaches to approximate the real service systems.

First, most real systems are not in the asymptotic realm even if their parameters

are fairly large; in fact, asymptotic analysis assumes that some parameters increase to

infinity. In other words whatever the parameters of the real systems, the analysis can

only use the same limit processes. Suppose there are two different multi-server queues.

In the first queue, the customer arrival rate is 10 and the number of servers is 15. In

the second queue, the customer arrival rate is 100 and the number of servers is 150.

Applying existing asymptotic methods will provide only one set of limit processes to

approximate both queues. Note, however, that the performance of the two queues is

not only a matter of scaling of the same limit processes. Second, transient analysis

may be inappropriate for the two queues. In a steady state, the limit processes usually

require only the first two moments of arrival and service distributions. In a transient

state, the shape of distributions heavily affects the performance measures, i.e. the

first two moments may not be enough. As a result, asymptotic methods taking

advantage of the first two moments may fail to approximate the transient dynamics

of the systems well enough. Third, most previous studies focus on establishing a

convergent sequence and show the existence and uniqueness of limit processes under

certain regimes. Only a few studies consider computational methods to obtain the

numerical values of performance measures. Consequently, even if one can find a
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satisfactory asymptotic model, it may not be possible to obtain explicit numerical

values of performance measures.

Furthermore, numerous new types of service systems, for instance, peer-to-peer

(P2P) network services, cloud computing services, and social networks, are rapidly

emerging. Their asymptotic analysis may not be helpful, unless the drawbacks

described above can be overcome. Hence, the objectives of this research are to:

• Accurately approximate time-varying stochastic service systems;

• Derive new limit processes specifically designed to approximate large, finite-size

systems;

• Provide efficient computational methods to obtain performance measures;

• Conduct analyses of several large-scale service systems.

The following section states the mathematical expressions of the problem.

I.2. Problem description

We consider a probability space (Ω,F , P ). Let {X(t), t ≥ 0} denote a d-dimensional

stochastic process which is the state of a stochastic service system and the solution

to the following equation:

X(t) = x0 +
k∑
i=1

liRi(t), (1)

where x0 is the initial value of the process, li ∈ Rd, and Ri(t)’s are Ft-adapted

counting processes.

It would help understand equation (1) to consider each Ri(t) as cumulated

number of arrivals or departures of customers. For example, in G/G/s type service

systems, Ri(·)’s represent arrival and departure processes. However, they are not
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λ

…

n

µ

servers

)(tX
µ

Fig. 1. M/M/n queueing system

restricted to the arrivals or departure processes: e.g., in the epidemic model, they

denote the number of people infected or cured by time t.

Specifically, this dissertation focuses on the case where each Ri(t) corresponds

to a non-homogeneous Poisson process which is denoted by Yi(fi(t, ·)) as described in

Kurtz (1978) and Mandelbaum et al. (1998). Then, equation (1) can be rewritten as

follows:

X(t) = x0 +
k∑
i=1

liYi

(∫ t

0

fi
(
s,X(s)

)
ds
)
, (2)

where Yi’s are independent rate-1 Poisson processes, and fi(t, ·)’s are continuous

Lipschitz rate functions.

To help understand equation (2), consider a M/M/n queue. There are n number

of servers. Customers arrive to the system with rate λ and the service rate of each

server is µt (see Figure 1). Then, the system can be expressed as follows:

X(t) = Y1

(∫ t

0

λds

)
− Y2

(∫ t

0

µ
(
X(s) ∧ n

)
ds

)
where Y1(·) and Y2(·) represent the cumulative number of arrivals and departures

respectively, f1(t, x) = λ, f2(t, x) = µ(x ∧ n), l1 = 1, and l2 = −1.

With the representation of the process (equation (2)), performance measures of in-

terest are E[X(t)] and Cov[X(t), X(t)] on any compact time intervals.
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I.3. Organization of the dissertation

The organization of the dissertation is as follows. Chapter II summarizes previous

research studies on transient analysis and asymptotic methodologies. We explain

one of the asymptotic analysis techniques, called uniform acceleration in detail since

it provides the basis of this study. Chapter III starts with describing the limited

applicability of the uniform acceleration technique when used to approximate real

service systems having finite values of parameters. To overcome this limitation,

we derive new fluid and diffusion limits, the main results of this dissertation. We

discuss how newly derived limits contribute to estimation accuracy and investigate

the connection to the existing (or standard) limits. Chapter IV shows an application

of adjusted limits to the call-center model, a canonical example of multi-server service

systems. Chapter V introduces an emerging peer-based multimedia service systems to

deliver contents via Internet and show how adjusted limits successfully approximate

this non-traditional service systems. Chapter VI suggests a possible extension to non-

Markovian systems by utilizing phase-type approximations and provides an example

in wireless mobile sensor networks. Chapter VII recapitulates the key results of this

dissertation and lists some future research topics.
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CHAPTER II

LITERATURE REVIEW AND BACKGROUND RESEARCH

In this chapter, we explain previous research studies on transient analysis and asymp-

totic approaches. This chapter focuses on the literature from a methodological

perspective. Many other research studies for application-specific topics will be referred

to in Chapters IV-VI. Section II.1 summarizes previous research studies regarding

transient analysis in queueing systems. Section II.2 explains asymptotic analysis tech-

niques and introduces two popular applications. There are several ways to construct

a sequence of processes depending on how to accelerate parameters. This research

pays more attention to the technique called uniform acceleration utilizing the theory

of strong approximations since it is adequate for the transient analysis of large-scale

systems. We visit the details of this technique in Section II.3.

II.1. Transient analysis

Most of the studies on transient analysis have been conducted for queueing systems.

For single server queues, Grassmann (1977) and Abate and Whitt (1989) develop

algorithms to obtain transient queue length and waiting time distributions under a

Markovian setting. In van de Coevering (1995), he reviews several studies on the

transient analysis of M/M/1 queues especially focusing on numerical computations

for practitioners. There are also studies on single server queues under a processor

sharing scheme. Chen et al. (1997) and Jean-Marie and Robert (1994) provide fluid

approximation results by utilizing Functional Law of Large Numbers. Hampshire

et al. (2006) derives fluid and diffusion limits for Mt/Mt/1/PS utilizing uniform

acceleration techniques. For infinite server queues, Collings and Stoneman (1976),

Foley (1982), and Eick et al. (1993) provide mathematical results for time-dependent
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Markovian queues. Nelson and Taaffe (2004a) and Nelson and Taaffe (2004b) de-

velop numerically exact solution procedures to obtain moments of the Pht/Pht/∞

queues using partial-moment differential equations, which can be used to approximate

G/G/∞. Since the transient analysis itself is challenging, many studies concerning it

rely on asymptotic approaches by increasing some parameters to infinity. Therefore,

in the following sections, we will more closely look at the literature on asymptotic

analysis and its applications.

II.2. Asymptotic analysis

Obtaining limit processes is a procedure to establish convergence in a certain func-

tional space (e.g. space C and D). Mathematical procedures to do it are well summa-

rized in Billingsley (1999) and Whitt (2002). As the terms “limit” and “asymptotic”

imply, stochastic process limits provide good approximation results under certain

conditions such as a large number of servers, large population, heavy traffic, etc.

One of the popular applications of asymptotic analysis is an epidemic model to

examine spreading mechanism of a disease (Ball and Neal (2004), Sellke (1983), Ball

and Barbour (1990), Ball et al. (1997), Andersson and Djehiche (1994), Andersson

(1999), Reinert (1995)). Specifically, the literature listed above provides asymptotic

analytical (mathematical) results when the number of nodes (or population) increases

to infinity along with other parameters suitably. Since the spread of a disease is

considered on a city or a nationwide scale, i.e. large population size, the asymptotic

approach is adequate for the analysis of those systems and actually it performs well in

some numerical studies. However, most of the studies do not provide computational

methods or use Markovian assumptions to obtain numerical values of performance

measures.
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Another application that is more popular and directly related to service systems

is a call center model. The call center model is a canonical example of service systems.

For that model, methodologies to obtain fluid and diffusion limits, as described in

Halfin and Whitt (1981), have been developed in the literature using two different

ways in terms of the traffic intensity.

The first approach is to consider the convergence of a sequence of traffic intensities

to a certain value. Depending on the value to which the sequence converges, there

are three different operational regimes: efficiency driven (ED), quality and efficiency

driven (QED), and quality driven (QD). Roughly speaking, if the traffic intensity (ρ)

of the limit process is strictly greater than 1, it is called ED regime. If ρ = 1, then

that is QED, otherwise QD. Many research studies have been done under the ED

and QED regimes for multi-server queues like call centers (Halfin and Whitt (1981),

Puhalskii and Reiman (2000), Garnet et al. (2002), Whitt (2006a), Whitt (2006b),

Pang and Whitt (2009)). Recently, the QED regime, also known as Halfin-Whitt

regime, has received a lot of attention; this is because it actually achieves both high

utilization of servers and quality of service (Zeltyn and Mandelbaum (2005)), and

is a favorable operational regime for call centers with strict performance constraints

(Mandelbaum and Zeltyn (2009)).

The second way to obtain limit processes is to accelerate parameters keeping

the traffic intensity fixed. An effective methodology called “uniform acceleration”

which is based on the theory of strong approximations enables the analysis of time-

dependent queues (Kurtz (1978), Mandelbaum and Pats (1995), Mandelbaum and

Massey (1995), Mandelbaum et al. (1998), Mandelbaum and Pats (1998), Massey

(1985), Massey and Whitt (1993), Massey and Whitt (1998), Whitt (1990), Hamp-

shire et al. (2006), Hampshire et al. (2009)) and in fact is the basis of this dissertation.

The advantage of accelerating parameters based on strong approximations as de-
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scribed in Kurtz (1978) is that it can be applied to a wide class of stochastic processes

including various telecommunication systems (Massey (2002)) and can be nicely

extended to time-dependent systems by combining with the results in Mandelbaum

et al. (1998). However, it might not be applied to multi-server queues directly since

the rate functions (e.g. net arrival rates and service rates) considered in Kurtz (1978)

are assumed to be differentiable everywhere. But some rate functions in multi-server

queues are not differentiable everywhere since they are of the forms, min(·, ·) or

max(·, ·).

To extend the theory to non-smooth rate functions, Mandelbaum et al. (1998)

proves weak convergence by introducing a new derivative called “scalable Lipschitz

derivative” and provides models for several queueing systems such as Jackson net-

works, multi-server queues with abandonment and retrials, multi-class preemptive

priority queues, etc. In addition, several sets of ordinary differential equations are

also provided to obtain the mean value and covariance matrix of the limit pro-

cesses. It, however, turns out that the resulting sets of differential equations are

numerically unsolvable in general. In a follow-on paper, Mandelbaum et al. (2002)

provides numerical results for queue lengths and waiting times in multi-server queues

with abandonment and retrials by adding a constraint to deal with computational

intractability. Specifically, the authors restrict their attention to the cases where

the time periods when the fluid limit is the same as the number of servers have

measure zero. Note that when the fluid limit has the same value as the number of

servers, we say the queue is in the critically loaded phase. By doing so, they were

able to apply the diffusion limit in Kurtz (1978) to multi-server queues since in this

case scalable Lipschitz derivatives are essentially the same as ordinary derivatives

ignoring a set of non-differentiable points. Adding this constraint seems restrictive

in theory. However, in practice, it is quite reasonable. For example, the number
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of servers is usually piecewise constant, and the fluid limit is a continuous function

of time including non-linear terms. Therefore, the fluid limit possibly stays close to

the number of servers but is not likely to stay there on any compact time interval.

Nevertheless, as pointed out in Mandelbaum et al. (2002), if the queues stay close to

the critically loaded phase (called lingering in Mandelbaum et al. (2002)) for a long

time, their approach actually causes significantly inaccurate results despite the fact

that it is asymptotically true.

In addition to the area described above, asymptotic analysis has been used for

the analysis and control of emerging online video rental systems such as Netflix

(Bassamboo et al. (2009), Bassamboo and Randhawa (2009)).

II.3. Background research

In this section, we recapitulate the fluid and diffusion limits in Kurtz (1978) and

Mandelbaum et al. (1998). We will call them standard fluid and diffusion limits in

the rest of the dissertation. The fluid and diffusion limits are obtained by increasing

parameters according to the uniform acceleration technique. For the better fit to

service systems, we follow the notation in Mandelbaum et al. (1998) instead of that

in Kurtz (1978). However, basically those two notations are the same if we adjust

the definition of the system state suitably. Moreover, it is worthwhile to note that

for η ∈ N, the state of the system Xη(t) includes jumps but the limit process is

continuous. Therefore, the weak convergence result that is presented is with respect

to uniform topology in Space D (Billingsley (1999) and Whitt (2002)).

Let {Xη(t), t ≥ 0} be an arbitrary d-dimensional stochastic process which is the
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solution to the following integral equation:

Xη(t) = xη0 +
k∑
i=1

liYi

(∫ t

0

ηfi

(
s,
Xη(s)

η

)
ds

)
, (3)

where xη0 = Xη(0) is a constant d-dimensional vector, Yi’s are independent rate-1

Poisson processes, li ∈ Zd for i ∈ {1, 2, . . . , k} are constant, and fi(t, ·)’s are Lipschitz

continuous functions on compact time intervals.

Typically the process Xη(t) (usually called a scaled process) is obtained by

considering η times faster arrival rate and larger number of servers. This type of

setting is used in the literature and is denoted as “uniform acceleration” in Massey

and Whitt (1998), Mandelbaum et al. (1998), and Mandelbaum et al. (2002). Then,

the following theorem provides the fluid limit to which {Xη(t)}η≥1 converges almost

surely as η →∞. For that, we first define

F (t, x) =
k∑
i=1

lifi(t, x). (4)

Theorem 1 (Fluid limit, Kurtz (1978), Mandelbaum et al. (1998)). If there is a

constant M < ∞ such that |F (t, x) − F (t, y)| ≤ M |x − y| for all t ∈ [0, T ] and

T < ∞. Then, limη→∞
Xη(t)
η

= X̄(t) a.s. where X̄(t) is the solution to the following

integral equation:

X̄(t) = x0 +
k∑
i=1

li

∫ t

0

fi
(
s, X̄(s)

)
ds.

Note that X̄(t) is a deterministic time-varying quantity. We will connect X̄(t)

and Xη(t) defined in equation (3) via equation (5), but before that we provide the

following result. Once we have the fluid limit, we can obtain the diffusion limit from

the scaled centered process (Dη(t)). Define Dη(t) to be √η
(
Xη(t)
η
− X̄(t)

)
. Then, the

limit process of Dη(t) is provided by the following theorem.
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Theorem 2 (Diffusion limit, Kurtz (1978), Mandelbaum et al. (1998)). Suppose F

is differentiable almost everywhere with respect to x and the Lebesgue measure of the

set {t : ∂F (t, X̄(t)) does not exist.} is zero. For some M <∞ and i ∈ {1, . . . , k}, if

fi’s and F satisfy.

|fi(t, x)− fi(t, y)| ≤M |x− y| and
∣∣∣∣ ∂∂xiF (t, x)

∣∣∣∣ ≤M, for almost all t ∈ [0, T ],

then limη→∞D
η(t) = D(t) where D(t) is the solution to

D(t) =
k∑
i=1

li

∫ t

0

√
fi
(
s, X̄(s)

)
dWi(s) +

∫ t

0

∂F
(
s, X̄(s)

)
D(s)ds,

Wi(·)’s are independent standard Brownian motions, and ∂F (t, x) is the gradient

matrix of F (t, x) with respect to x.

Remark 1. According to Ethier and Kurtz (1986), if D(0) is a constant or a Gaussian

random vector, then D(t) is a Gaussian process.

Now, we have the fluid and diffusion limits for Xη(t). Therefore, for a large η,

Xη(t) is approximated by

Xη(t) ≈ ηX̄(t) +
√
ηD(t). (5)

If we follow this approximation, we can also approximate the mean and covariance

matrix of Xη(t) denoted by E
[
Xη(t)

]
and Cov

[
Xη(t), Xη(t)

]
respectively as

E
[
Xη(t)

]
≈ ηX̄(t) +

√
nE
[
D(t)

]
, and (6)

Cov
[
Xη(t), Xη(t)

]
≈ ηCov

[
D(t), D(t)

]
. (7)

In equations (6) and (7), only X̄(t) is known. Therefore, in order to get approxi-

mated values of E
[
Xη(t)

]
and Cov

[
Xη(t), Xη(t)

]
, we need to obtain E

[
D(t)

]
and

Cov
[
D(t), D(t)

]
. The following theorem provides a methodology to obtain them.
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Theorem 3 (Mean and covariance matrix of linear stochastic systems, Arnold (1992)).

Let Y (t) be the solution to the following linear stochastic differential equation.

dY (t) = A(t)Y (t)dt+B(t)dW (t), Y (0) = 0,

where A(t) is a d × d matrix, B(t) is a d × k matrix, and W(t) is a k-dimensional

standard Brownian motion. Suppose A(t) and B(t) are measurable and bounded on

a compact time interval [0, T ]. Let M(t) = E
[
Y (t)

]
and Σ(t) = Cov

[
Y (t), Y (t)

]
.

Then, M(t) and Σ(t) can be obtained as the unique solution to the following ordinary

differential equations:

d

dt
M(t) = A(t)M(t), and

d

dt
Σ(t) = A(t)Σ(t) + Σ(t)A(t)′ +B(t)B(t)′. (8)

Corollary 1. If M(0) = 0, then M(t) = 0 for t ≥ 0.

By Corollary 1, if D(0) = 0, then E
[
D(t)

]
= 0 for t ≥ 0. Therefore, if X̄(0) =

X(0) = x0, then we can rewrite approximate equation (6) to be

E
[
Xη(t)

]
≈ ηX̄(t). (9)

In many cases, D(0) is set to be zero for the sake of analytical convenience. Then, for a

large η, the fluid limit is regarded as an approximation of E[Xη(t)] (equation (9)) and

the diffusion limit is used to approximate Cov[Xη(t), Xη(t)] (equation (7)). However,

when we closely look at equations (9) and (7), notice that only one set of fluid and

diffusion limits is available for all η. Scaling is the only way to adjust approximations

among different η values. Will the scaling of fluid and diffusion limits be enough to

describe the difference in the dynamics of systems with different η’s? In the following

chapters, we will answer the question both theoretically and numerically.
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CHAPTER III

ADJUSTED FLUID AND DIFFUSION LIMITS

III.1. Inaccuracy of the fluid and diffusion limits as approximations

In this section, we explain the possible inaccuracy of both fluid and diffusion limits

when approximating target systems. Consider the following equation to get the exact

value of E
[
Xη(t)

]
by the following theorem.

Theorem 4 (Expected value of Xη(t)). Consider Xη(t) defined in equation (1).

Then, for t ∈ [0, T ], E
[
Xη(t)

]
is the solution to the following equation.

E
[
Xη(t)

]
= xη0 +

k∑
i=1

li

∫ t

0

ηE

[
fi

(
s,
Xη(s)

η

)]
ds. (10)

Proof. Take expectation on both sides of equation (1). Then,

E
[
Xη(t)

]
= xη0 +

k∑
i=1

liE

[
Yi

(∫ t

0

ηfi

(
s,
Xη(s)

η

)
ds

)]

= xη0 +
k∑
i=1

liE

[ ∫ t

0

ηfi

(
s,
Xη(s)

η

)
ds

]

= xη0 +
k∑
i=1

li

∫ t

0

ηE

[
fi

(
s,
Xη(s)

η

)]
ds

by Fubini theorem in Folland (1999).

Comparing Theorems 1 and 4, notice that we cannot conclude that ηX̄(t) in

Theorem 1 is a good approximation of E
[
Xη(t)

]
since E

[
fi
(
t, X

η(t)
η

)]
is not the same

as fi
(
t, E
[Xη(t)

η

])
. They will eventually become identical when η goes to infinity.

However, the problem lies in the fact that we have no choice but to use the same

X̄(t) (with scaling) as approximations no matter which η values (number of servers)
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the real systems (e.g. call centers) have, i.e. the same X̄(t) is always used for η = 50,

η = 500, and η = 5, 000. Therefore, if one derives a new fluid limit specifically

designed for each η value, it would provide more improved results, and that is the

adjusted fluid limit that this dissertation proposes in Section III.2. Now, recall the

diffusion limit in Theorem 2 as follows:

D(t) =
k∑
i=1

li

∫ t

0

√
fi
(
s, X̄(s)

)
dWi(s) +

∫ t

0

∂F
(
s, X̄(s)

)
D(s)ds. (11)

Theorem 2 still holds if the set {t : ∂F (t, X̄(t)) does not exist.} has measure zero.

However, non-differentiability of function F (t, ·) implies that the drift matrix (∂F (t, ·))

can be discontinuous whenever X̄(t) hits the non-differentiable points. This discon-

tinuity may result in sharp spikes in the estimation of the covariance matrix. We

will show how significantly the quality of approximation is affected from a numerical

example of a call center. Figures 2 (a) and (b) show the estimation of the mean

value and covariance matrix of the multi-server queues respectively; we will visit this

application in detail in Chapter IV. Since the number of servers is 50, as shown

in Figure 2 (a), the mean value of x1(t), the number of customer in the system, is

fluctuating close to the number of servers. From the figure, we also confirm that

the fluid limit is quite inaccurate for the estimation of the mean value of x2(t), the

number of customer in the retrial queue. For the covariance matrix, as shown in Figure

2 (b), the diffusion limit brings about immense estimation inaccuracy (sharp spikes)

in the nearly critically loaded phase. Recall that under the parameters in Figure 2

the fluid and diffusion limits using the scalable Lipschitz derivatives in Mandelbaum

et al. (1998) are virtually the same as those in Kurtz (1978) and Mandelbaum et al.

(2002). Therefore, the methodology in Mandelbaum et al. (1998) also results in the

sharp spikes. As mentioned before, it turns out that the sharp spikes arise from the

discontinuity of the drift matrix in the diffusion limits at the non-differentiable points
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of rate functions. We will revisit and explain it in Section III.4.

In the next section, we describe our approach to the above issues in both fluid

and diffusion limits. Instead of accelerating parameters, we keep η fixed and construct

a new sequence {Zη,ν(t)}ν≥1 which converges to E[Xη(t)] almost surely. We derive

fluid and diffusion limits for the new sequence and show that they are asymptotically

identical to the standard fluid and diffusion limits in Kurtz (1978) and Mandelbaum

et al. (1998).

III.2. Adjusted fluid and diffusion limits

The basic idea of our approach is to derive new fluid and diffusion limits for a fixed

η (fixed number of servers). In this approach, we want to approximate multi-server

queues having a finite number of servers. To do so, for a fixed η, we first define new

rate functions gηi (t, x)’s from the existing fi(t, x)’s as follows:

gηi (t, x) = ηE

[
fi

(
t,
Xη(t)

η
−
E
[
Xη(t)

]
η

+
x

η

)]
.

With above new rate functions, we construct a new sequence of stochastic processes,

{Zη,ν(t)}ν≥1 such that Zη,ν(t) is the solution to the following integral equations:

Zη,ν(t) = νxη0 +
k∑
i=1

liYi

(∫ t

0

νgηi

(
s,
Zη,ν(s)

ν

)
ds

)
. (12)

Notice that once we show that gηi (t, x)’s are Lipschitz functions on [0, T ], we can

apply Theorems 1 and 2, and are able to obtain new fluid and diffusion limits for

Zη,ν(t). From the following lemmas, we prove that the functions gη,νi (t, ·)’s are actually

Lipschitz functions.

Lemma 1. For a fixed η and i ∈ {1, 2, . . . , k}, if |fi(t, x)| ≤ Ci(1 + |x|) on [0, T ],
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then gηi (t, x)’s satisfy

|gηi (t, x)| ≤ Di(1 + |x|) for some Di <∞.

Proof.

|gηi (t, x)| =

∣∣∣∣ηE[fi(t, Xη(t)

η
−
E
[
Xη(t)

]
η

+
x

η

)]∣∣∣∣
≤

∣∣∣∣ηE[Ci(1 +
∣∣∣Xη(t)

η
−
E
[
Xη(t)

]
η

+
x

η

∣∣∣)∣∣∣∣
≤

∣∣∣∣ηCi(1 + E
[∣∣∣Xη(t)

η
−
E
[
Xη(t)

]
η

∣∣∣]+
∣∣∣x
η

∣∣∣)∣∣∣∣
≤ Di(1 + |x|),

where

Di = ηCi sup
t≤T

(
1 + E

[∣∣∣Xη(t)

η
−
E
[
Xη(t)

]
η

∣∣∣]).

For the next lemma, we would like to define

Gη(t, x) =
k∑
i=1

lig
η
i (t, x). (13)

Lemma 2. For a fixed η and i ∈ {1, 2, . . . , k}, if |fi(t, x) − fi(t, y)| ≤ M |x − y| on

[0, T ], then gηi (t, x)’s satisfy

|gηi (t, x)− gηi (t, y)| ≤M |x− y|,

and if |F (t, x)− F (t, y)| ≤M |x− y|, then Gη(t, x) satisfies

|Gη(t, x)−Gη(t, y)| ≤M |x− y|.
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Proof. For any t ∈ [0, T ],

|gηi (t, x)− gηi (t, y)| = η

∣∣∣∣E[fi(t, Xη(t)

η
−
E
[
Xη(t)

]
η

+
x

η

)]
−E
[
fi

(
t,
Xη(t)

η
−
E
[
Xη(t)

]
η

+
y

η

)]∣∣∣∣
= η

∣∣∣∣E[fi(t, Xη(t)

η
−
E
[
Xη(t)

]
η

+
x

η

)
−fi
(
t,
Xη(t)

η
−
E
[
Xη(t)

]
η

+
y

η

)]∣∣∣∣
≤ M |x− y|.

Since M does not depend on t, |fi(t, x)− fi(t, y)| ≤M |x− y| on [0, T ].

Hence, with the results in Lemmas 1, and 2, we now derive the adjusted fluid

limit.

Theorem 5 (Adjusted fluid limit). Under the same assumptions in Theorem 1, i.e.,

for all t ∈ [0, T ]

∣∣fi(t, x)
∣∣ ≤ Ci

(
1 + |x|

)
for i ∈ {1, . . . , k}, (14)∣∣F (t, x)− F (t, y)

∣∣ ≤ M |x− y|, (15)

for a fixed η,

lim
ν→∞

Zη,ν(t)

ν
= Z̄η(t) a.s., (16)

where Z̄η(t) is the solution to the following integral equation:

Z̄η(t) = xη0 +
k∑
i=1

li

∫ t

0

gηi
(
s, Z̄η(s)

)
ds, (17)

and furthermore

Z̄η(t) = E
[
Xη(t)

]
= xη0 +

k∑
i=1

li

∫ t

0

ηE

[
fi

(
s,
Xη(s)

η

)]
ds. (18)
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Proof. From Lemmas 1 and 2, (14) and (15) imply

|gηi (t, x)| ≤ Di(1 + |x|) and |Gη(t, x)−Gη(t, y)| ≤M |x− y|.

Therefore, by Theorem 1, we have equation (17), and by the definition of gηi (t, x)’s,

we have equation (18).

Comparing equation (18) with equation (10) in Theorem 4, we notice that

Theorem 5 via equation (18) could provide the exact estimation of E
[
Xη(t)

]
. Once

we have the adjusted fluid limit, we can derive the adjusted diffusion limit from it.

The following theorem explains the adjusted diffusion limit.

Theorem 6 (Adjusted diffusion limit). Under the same settings in Theorem 2, for

a fixed η, suppose the Lebesgue measure of the set {t : ∂Gη(t, Z̄η(t)) does not exist.}

is zero. Define a sequence of scaled centered processes {V η,ν(t)} on a time interval

[0, T ] to be

V η,ν(t) =
√
ν
(Zη,ν(t)

ν
− Z̄η(t)

)
,

where Zη,ν(t) and Z̄η(t) are solutions to equations (12) and (17) respectively. If

fi(t, x)’s and F (t, x) satisfy equations (14) and (15) respectively, then limν→∞ V
η,ν(t) =

V η(t), where

V η(t) =
k∑
i=1

li

∫ t

0

√
gηi
(
s, Z̄η(s)

)
dWi(s) +

∫ t

0

∂Gη
(
s, Z̄η(s)

)
V η(s)ds,

Wi(·)’s are independent standard Brownian motions, and ∂Gη
(
t, Z̄η(t)

)
is the gradient

matrix of Gη
(
t, Z̄η(t)

)
with respect to Z̄η(t). Furthermore, V η(t) is a Gaussian

process.

Proof. From definition of Gη(t, x) in (13), we can easily verify that Gη(t, x) is differ-
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entiable almost everywhere, and hence |Gη(t, x)−Gη(t, y)| ≤M |x− y| implies∣∣∣∣ ∂∂xiGη(t, x)

∣∣∣∣ ≤Mi for some Mi <∞, almost all t ≤ T, and i ∈ {1, . . . , d}.

Therefore, by Theorem 2, we prove this theorem.

From Theorems 5 and 6, we obtain the adjusted fluid and diffusion limits from

Zη,ν(t). Recall that we call the fluid and diffusion limits in Section II.3 as standard

and the ones derived in this section as adjusted limits. Now one may ask a natural

question. What is the relationship between the standard and adjusted limits? The

following theorem suggests that the adjusted limits are asymptotically identical to

the standard fluid and diffusion limits.

Theorem 7 (Relationship between standard and adjusted limits). For t ∈ [0, T ], if

ηfi(t, x/η) = fi(t, x) for i ∈ {1, 2, . . . , k}, then,

lim
η→∞

Z̄η(t)

η
= X̄(t), and (19)

lim
η→∞

V η(t)
√
η

= D(t). (20)

Proof. It is enough to show that limη→∞ g
η(t, ηx)/η = fi(t, x) for t ∈ [0, T ], which

results in the integral equations for LHS of equations (19) and (20) identical to those

for RHS. If ηfi(t, x/η) = fi(t, x) for i ∈ {1, 2, . . . , k},

lim
η→∞

gη(t, ηx)

η
= lim

η→∞
E

[
fi

(
t,
Xη(t)

η
−
E
[
Xη(t)

]
η

+ x
)]

= E

[
lim
η→∞

fi

(
t,
Xη(t)

η
−
E
[
Xη(t)

]
η

+ x
)]

= fi(t, x).

Now, we turn our attention to the solution of the adjusted fluid and diffusion
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limits for a fixed η. Theoretically, Theorem 5 guarantee the exact estimation to

E
[
Xη(t)

]
. However, the functions gηi (·, ·)’s, in fact, cannot be identified unless

we know the distribution of Xη(t), which forces us to develop a methodology to

approximate gηi (·, ·)’s for the sake of computational feasibility. Nonetheless, when

applying the adjusted fluid limit to the multi-server queues with abandonment and

retrials, we have a good candidate distribution to obtain gηi (·, ·)’s. So, the following

section will describe a computational methodology to get approximated adjusted

limits.

III.3. Approximation of adjusted limits with Gaussian density

In general, there is no clear way to find the distribution of Xη(t). Without knowledge

of it, it is not possible to obtain gηi (·, ·). However, we could approximate its distri-

bution based on the asymptotic distribution. As mentioned in Section II.3, equation

(5) implies that the distribution of Xη(t) becomes closer to Gaussian distribution

as η increases. Also, for the multi-server queueing systems like call centers, it was

experimentally shown that empirical density is actually quite close to the Gaussian

density even if the number of servers are not very large: see left graph in Figure 3.

Similar empirical results are found in Mandelbaum et al. (1998) and Mandelbaum

et al. (2002). Therefore, using Gaussian distribution to approximate the distribution

of Xη(t) is reasonable especially when the values of accelerated parameters are large.

Once we decide to use the Gaussian density, it provides the following two addi-

tional benefits:

1. Gaussian distribution can be completely characterized by the mean and covari-

ance matrix which can be obtained from the fluid and diffusion limits.

2. By using Gaussian density, gηi (t, ·)’s will be smooth even if fi(t, ·)’s are not,



23

30 35 40 45 50 55 60 65 70 75
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of customers

D
en

si
ty

n
t
=50,µ

t
1=1,µ

t
2=0.2, p

t
=0.5, λ

t
1=45, λ

t
2=55

 

 
Density from experiments
Density from adjusted limit processes

(a)

120 140 160 180 200 220 240 260 280
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of customers

D
en

si
ty

n
t
=200,µ

t
1=1,µ

t
2=0.2, p

t
=0.5, λ

t
1=180, λ

t
2=220

 

 
Density from experiments
Density from adjusted limit processes

(b)
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which enables us to apply Theorem 6 without measure-zero assumption.

The second benefit is not obvious and hence we provide a proof of that.

Lemma 3. For any fixed t > 0, assume that Xη(t) follows a multivariate normal

distribution with the mean µ = (µ1, . . . , µd)
′ and covariance matrix Σ. Then, gηi (t, x)’s

are differentiable everywhere with respect to x.

Proof. WLOG, we prove this lemma for η = 1. Define

φ(x, y) =
1

(2π)d/2|Σ|1/2
exp

(
− (y − µ+ x)′Σ−1(y − µ+ x)

2

)
.

Using Gaussian density,

gηi (t, x) =

∫
Rd

fi(t, y)φ(x, y)dy.

For j ∈ {1, . . . , d}, since φ(x, y) is differentiable with respect to xj and |fi(t, y) d
dxj
φ(x, y)|

is integrable,

d

dxj
gηi (t, x) =

d

dxj

∫
Rd

fi(t, y)φ(x, y)dy

=

∫
Rd

fi(t, y)
d

dxj
φ(x, y)dy by Theorem 2.27 in (Folland, 1999),

where xj is jth component of x. Therefore, gηi (t, x) is differentiable with respect to

xj.

Now, we have gηi (t, ·)’s which are differentiable. Then, we can apply Theorem

6 to obtain the diffusion limit for Zη,ν(t). Finally, we approximate the adjusted

fluid and diffusion limits by utilizing Gaussian density. Therefore, we compare the

adjusted limits with the empirical mean and covariance matrix. Note when we explain

Theorem 5, we do not consider Ση(t), the covariance matrix of Xη(t). However, in

order to obtain gηi (t, ·)’s from Gaussian density, we should consider Ση(t). In order
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to reflect that, we rewrite gηi (t, x)’s as follows:

gηi
(
t, x
)
→ gηi

(
t, x, u

)
for i ∈ {1, . . . , k} and (21)

Gη
(
t, x
)
→ Gη

(
t, x, u

)
. (22)

Note that the u term in equations (21) and (22) represent the covariance matrix of

Xη(t).

Proposition 1 (Estimation of mean and covariance matrix using adjusted limits ).

The quantities Z̄η(t) and Ση(t) are obtained by solving the following simultaneous

ordinary differential equations with initial values given by Z̄η(0) = xη0 and Ση(0) = 0:

d

dt
Z̄η(t) =

k∑
i=1

lig
η
i

(
t, Z̄η(t),Ση(t)

)
, and (23)

d

dt
Ση(t) = A(t)Ση(t) + Ση(t)A(t)′ +B(t)B(t)′, (24)

where A(t) is the gradient matrix of Gη
(
t, Z̄η(t),Ση(t)

)
with respect to Z̄η(t), and

B(t) is the d× k matrix such that its ith column is li
√
gηi
(
t, Z̄η(t),Ση(t)

)
.

Proof. By rewriting (17) in Theorem 5 as a differential equation form, we have (23),

and by Theorem 3, we have (24). Note that since both Z̄η(t) and Ση(t) are variables,

we should solve (23) and (24) simultaneously.

Although we obtain new rate functions for our adjusted limits, we need some intu-

ition regarding how they contribute to increasing accuracy especially in the critically

loaded phases. Thus, in the next section, we revisit the inaccuracy in the previous

approaches and explain how our adjusted limits treat this from simple Mt/Mt/nt

queues. The notation, Mt/Mt/nt, is a generalization of Kendall’s notation to add

time-varying features to M/M/n queues. The arrival and service processes are non-

homogeneous Poisson processes, and the number of servers changes over time.
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III.4. Intuition behind the functions gηi (·, ·)’s

In this section, we explain some intuition regarding the functions gηi (t, ·)’s. For the

sake of clarity, we consider a simple Mt/Mt/nt queue. We use η = 1 and remove the

superscript η, i.e., we use gi(t, ·) instead of gηi (t, ·). Let X(t) denote the number of

customers in the system at time t. Then, X(t) is the solution to the following integral

equation:

X(t) = X(0) + Y1

(∫ t

0

λsds
)
− Y2

(∫ t

0

(
X(s) ∧ ns

)
µsds

)
.

Here, for convenience, define f1(t, x) = λt, f2(t, x) =
(
x ∧ nt

)
µt, and F (t, x) =

λt −
(
x ∧ nt

)
µt. Applying theorems in Section II.3, we have the fluid and diffusion

limits, X̄(t) and U(t) respectively, from the following integral equations:

X̄(t) = X(0) +

∫ t

0

λs −
(
X̄(s) ∧ ns

)
µsds, and

U(t) = U(0) +

∫ t

0

(√
λs,
√(

X̄(s) ∧ ns
)
µs

)(dW1(s)

dW2(s)

)
+

∫ t

0

∂F (s, X̄(s))U(s)ds,

where

∂F (t, X̄(t)) =

 −µt if X̄(t) ≤ nt,

0 otherwise.

Notice that the drift part ∂F (t, X̄(t)) of the diffusion limit is completely determined

by the fluid limit, and here we notice a possibility that the diffusion limit could

produce the sharp spikes described in Section III.1. When the X̄(t) is much smaller

than the number of server nt (underloaded phase), then Pr[X(t) ≥ nt] is likely to be

very small, i.e. if we run several independent realization of the process, only small

fraction of them are in overloaded or critically loaded phases. In this case, the drift

part of the diffusion limit is −µt. Now, suppose that X̄(t) is smaller than but fairly
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close to nt (still underloaded phase). Then, Pr[X(t) ≥ nt] would be relatively large.

However, the drift part is still the same, −µt. The drift part which significantly

affects the covariance matrix structure does not reflect Pr[X(t) ≥ nt] at all, while

Pr[X(t) ≥ nt] is closely related to the covariance matrix. Furthermore, consider

the case where X̄(t) becomes slightly larger than nt. Then, the drift part suddenly

changes to zero. As a result, if X̄(t) is fluctuating close to nt, then the drift part

of the diffusion limit show repeated jumps between the values −µt and 0 although

the state of the queue itself does not changes much. Undoubtedly, it produces sharp

spikes in the covariance matrix as shown in Figure 2 and make the quality of the

approximation worse. Now, we turn our attention to the functions gi(t, ·)’s. Let us

follow the procedure to obtain g2(t, x). Note that g1(t, x) = f1(t, x).

Define G(t, x) = g1(t, x)− g2(t, x) = λt − g2(t, x). For a fixed t0, let X = X(t0),

µ = µt0 and n = nt0 and x = E[X]. Then,

g2(t0, x) = E
[
µ(X ∧ n)

]
= µ

{
E[XIX≤n] + nPr[X > n]

}
. (25)

From equation (25), notice the following characteristics of the function g2(t, x):

1. If Pr[X > n] becomes closer to 1, ∂g2(t0, x)/∂x approaches 0;

2. If Pr[X > n] gets closer to 0, ∂g2(t0, x)/∂x gets to be closer to µ.

Notice that the drift part ∂G(t, ·) determines its value between −µt and 0 according

to Pr[X(t) > nt]. Therefore, even if the queue makes phase transitions frequently,

the drift part of the adjusted diffusion limit does not make sudden changes.

Summarizing this chapter, Table 1 compares key characteristics of the standard

and adjusted limits. One can see the difference between two limits at a glance. In

the following chapters, we actually analyze several service systems and show how the

adjusted limits outperform the standard limits in the analyses.
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Table 1. Comparison between standard and adjusted limits

Standard limit Adjusted limit

Rate functions fi(·, ·)’s gηi (·, ·)’s

Fluid limit obtained independently
obtained simultaneously

Diffusion limit obtained using fluid limit

Assumption measure zero at non-

differentiable points

Gaussian density

Advantage easy to compute accurate approximation for

a fixed η

Limitation inaccuracy in both fluid and

diffusion limits

inaccuracy when Gaussian

assumption fails
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CHAPTER IV

MULTI-SERVER QUEUES WITH ABANDONMENT, RETRIAL, AND

TIME-VARYING PARAMETERS

In this chapter we apply the adjusted fluid and diffusion limits to service systems

having many servers represented by call centers. We provide the result of applying

standard fluid and diffusion limits as well and show how dramatically estimation

accuracy is improved.

IV.1. Critically loaded multi-server queues

According to Mandelbaum et al. (1998) and Mandelbaum et al. (2002), time-dependent

queues make transitions among three phases: underloaded, critically loaded, and

overloaded. The phase of the system is determined by its fluid limit. The limit

process in strong approximations does not require any regimes such as QD, QED, or

ED. However, from Section 1.4 in Zeltyn and Mandelbaum (2005), we could find a

rough correspondence between the operational regimes (QD, QED, and ED) and the

phases in time-varying queues (underloaded, critically loaded, and overloaded).

Explaining it briefly, Zeltyn and Mandelbaum (2005) models operational regimes

from tracing data of real call centers. They say the call center is working in the ED

regime when the occupancy is 100% with higher abandonment rates. Similarly, they

associate the time slots with the other operational regimes such as QED and QD. The

tracing table used for the explanation of the operational regimes, indeed, represents

the dynamics of the time-varying multi-server queues. Therefore, the ED, QED and

QD regimes could correspond to the overloaded, critically loaded and underloaded

phases respectively. From the tracing data in Zeltyn and Mandelbaum (2005), we

recognize the importance of the critically loaded phase as nearly 100% utilization and
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Fig. 4. Multi-server queue with abandonment and retrials, Mandelbaum et al. (2002)

low abandonment rates which most of companies want are achieved in that phase.

Therefore, capturing the dynamics of multi-server queues near the critically

loaded phase is also of significant importance. In this chapter, we reveal how standard

fluid and diffusion limits are inaccurate especially in the critically loaded phase.

Therefore, we will focus more on the critically loaded phase and show how this

inaccuracy is improved by the adjusted limits.

IV.2. Problem description

Consider Figure 4 that illustrates a multi-server queue with abandonment and retrials

as described in Mandelbaum et al. (1998) and Mandelbaum et al. (2002). There are nt

number of servers in the service node at time t. Customers arrive to the service node

according to a non-homogeneous Poisson process at rate λt. The service time of each

customer follows a distribution having a memoryless property at rate µ1
t . Customers
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in the queue are served under the FCFS policy and the abandonment rate of customers

is βt with exponentially distributed time to abandon. Abandoning customers leave

the system with probability pt or go to a retrial queue with probability 1 − pt. The

retrial queue is equivalent to an infinite-server-queue and hence each customer in the

retrial queue waits there for a random amount of time with mean 1/µ2
t and returns

to the service node.

Let X(t) =
(
x1(t), x2(t)

)
be the system state where x1(t) is the number of

customers in the service node and x2(t) is the number of customers in the retrial

queue at time t. Then, X(t) is the unique solution to the following integral equations:

x1(t) = x1(0) + Y1

(∫ t

0

λsds
)

+ Y2

(∫ t

0

x2(s)µ
2
sds
)

−Y3
(∫ t

0

(
x1(s) ∧ ns

)
µ1
sds
)
− Y4

(∫ t

0

(
x1(s)− ns

)+
βs(1− ps)ds

)
−Y5

(∫ t

0

(
x1(s)− ns

)+
βspsds

)
, and (26)

x2(t) = x2(0) + Y4

(∫ t

0

(
x1(s)− ns

)+
βs(1− ps)ds

)
− Y2

(∫ t

0

x2(s)µ
2
sds
)
, (27)

where Yi’s are independent rate-1 Poisson processes.

In the following sections, we provide analytical models to obtain standard and ad-

justed fluid and diffusion limits.

IV.3. Standard fluid and diffusion limits, Mandelbaum et al. (1998)

Deriving standard fluid and diffusion limits is done by Mandelbaum et al. (1998).

Therefore, in this section, we summarize their results to compare them with our

results. In order to obtain the limit processes, define Xη(t) = (xη1(t), x
η
2(t))

′ by
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accelerating the arrival rate and the number of servers by the factor of η as follows:

xη1(t) = xη1(0) + Y1

(∫ t

0

ηλsds
)

+ Y2

(∫ t

0

xη2(s)µ
2
sds
)
− Y3

(∫ t

0

(
xη1(s) ∧ ηns

)
µ1
sds
)

−Y4
(∫ t

0

(
xη1(s)− ηns

)+
βs(1− ps)ds

)
− Y5

(∫ t

0

(
xη1(s)− ηns

)+
βspsds

)
,

= xη1(0) + Y1

(∫ t

0

ηλsds
)

+ Y2

(∫ t

0

η
(xη2(s)

η
µ2
s

)
ds

)
−Y3

(∫ t

0

η
(xη1(s)

η
∧ ns

)
µ1
sds

)
− Y4

(∫ t

0

η
(xη1(s)

η
− ns

)+
βs(1− ps)ds

)
−Y5

(∫ t

0

η
(xη1(s)

η
− ns

)+
βspsds

)
, and (28)

xη2(t) = xη2(0) + Y4

(∫ t

0

(
xη1(s)− ηns

)+
βs(1− ps)ds

)
− Y2

(∫ t

0

xη2(s)µ
2
sds
)
,

= xη2(0) + Y4

(∫ t

0

η
(xη1(s)

η
− ns

)+
βs(1− ps)ds

)
−Y2

(∫ t

0

η
(xη2(s)

η
µ2
s

)
ds

)
. (29)

We now obtain the standard fluid limit by taking η →∞.

Theorem 8 (Fluid limit, Mandelbaum et al. (1998)). Let X̄(t) = (x̄1(t), x̄2(t))
′ be

the solution to the following integral equation:

x̄1(t) = x̄1(0) +

∫ t

0

λs + x̄2(s)µ
2
s −

(
x̄1(s) ∧ ns

)
µ1
s

−
(
x̄1(s)− ns

)+
βs(1− ps)−

(
x̄1(s)− ns

)+
βspsds, and

x̄2(t) = x̄2(0) +

∫ t

0

(
x̄1(s)− ns

)+
βs(1− ps)−

(
x̄2(s)µ

2
s

)
ds.

If limη→∞X
η(0)/η = X̄(0), then, on any compact time intervals,

lim
η→∞

Xη(t)

η
= X̄(t) almost surely.
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Define matrices, K1(t), K2(t), and L(t) as follows:

K1(t) =

 −µ1
t − βt µ2

t

βt(1− pt) −µ2
t

 ,

K2(t) =

 0 µ2
t

0 −µ2
t

 , and

L(t) =



√
λt 0√

µ2
t x̄2(t) −

√
µ2
t x̄2(t)

−
√
µ1
t (x̄1(t) ∧ nt) 0

−
√

(x̄1(t)− nt)+βt(1− pt)
√

(x̄1(t)− nt)+βt(1− pt)

−
√

(x̄1(t)− nt)+βtpt 0



′

.

With the matrices above, we derive the diffusion limit.

Theorem 9 (Diffusion limit, Mandelbaum et al. (1998)). Let Dη(t) =
√
η(Xη/η −

X̄(t)). Then,

lim
η→∞

Dη(t) = D(t) in distribution,

and D(t) is the solution to the following integral equation:

D(t) = D(0) +

∫ t

0

L(s)dB(s) +

∫ t

0

K(s)D(s)ds,

where, B(t) is a 5-dimensional standard Brownian motion and

K(t) =

 K1(t) if x̄1(t) ≤ nt,

K2(t) otherwise.
.

In Theorem 9, we notice that the drift matrix of the diffusion limit makes sudden

changes between K1(t) and K2(t) depending on the fluid limit. This means that if

x̄1(t) stays less (or greater) than nt, we say the diffusion limit has a somewhat stable
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drift matrix. On the other hand, if x̄1(t) stays close to nt and frequently crosses it

(i.e., nearly critically loaded), the diffusion limit experiences frequent changes in the

drift matrix. The drift matrix of the diffusion limit significantly affects the value of

the covariance matrix. Sudden changes in the drift matrix causes sharp spikes in

the covariance matrix, which makes the estimation accuracy worse. We observe this

phenomenon by numerical examples in Section IV.5.

IV.4. Adjusted fluid and diffusion limits

In this section, we derive the adjusted fluid and diffusion limits for the call center

models. In order to maintain numerical tractability, we use the Gaussian-based

approximation for gηi (·, ·)’s. For a fixed η (or a fixed number of servers), we obtain

approximated gηi (·, ·)’s as follows:

For x = (x1, x2)
′ and ση1(t)2 = V ar[xη1(t)],

gη1(t, x) = ηλt,

gη2(t, x) = µ2
tx2,

gη3(t, x) = µ1
t

(
ηnt + (x1 − ηnt)Φ(ηnt, x1, σ

η
1(t))− ση1(t)2(t)φ(ηnt, x1, σ

η
1(t))

)
,

gη4(t, x) = βt(1− pt)
(

(x1 − ηnt)
(
1− Φ(ηnt, x1, σ

η
1(t))

)
+ ση1(t)2(t)φ(ηnt, x1, σ

η
1(t))

)
,

and

gη5(t, x) = βtpt

(
(x1 − ηnt)

(
1− Φ(ηnt, x1, σ

η
1(t))

)
+ ση1(t)2(t)φ(ηnt, x1, σ

η
1(t))

)
,

where Φ(a, b, c) and φ(a, b, c) are function values at point a of the Gaussian CDF and

PDF respectively with mean b and standard deviation c.

Since f1(t, x) and f2(t, x) are constant and linear with respect to x respectively,

g1(t, x) = ηf1(t, x/η) and g2(t, x) = ηf2(t, x/η). The derivation of other gi(·, ·)’s is

straightforward but requires some computational efforts and hence we provide the
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details in Appendix A.1.

Then, we can define a new sequence of stochastic processes, {Zη,ν(t)}ν≥1 as described

in equation 12 and derive the adjusted limits as follows:

Let ση(t) be the standard deviation of zη1(t). Define

Φη(t) = Φ(ηnt, z̄
η
1(t), ση(t)),

φη(t) = φ(ηnt, z̄
η
1(t), ση(t)),

αη1(t) = ηnt + (z̄η1(t)− ηnt)Φη(t)− ση(t)2φη(t),

αη2(t) = (z̄η1(t)− ηnt)(1− Φη(t)) + ση(t)2φη(t),

Kη(t) =

 −µ1
tΦ

η(t)− βt(1− Φη(t)) µ2
t

βt(1− pt)(1− Φη(t)) −µ2
t

 , and

Lη(t) =



√
ηλt 0√

µ2
t z̄
η
2(t) −

√
µ2
t z̄
η
2(t)

−
√
µ1
tα

η
1(t) 0

−
√
βt(1− pt)αη2(t)

√
βt(1− pt)αη2(t)

−
√
βtptα

η
2(t) 0



′

.

Theorem 10 (Adjusted fluid limit). Suppose limν→∞ Z
η,ν(0)/ν = Z̄η(0). Then, on

any compact time interval

lim
ν→∞

Zη,ν(t)

ν
= Z̄η(t) a.s. (30)

where Z̄η(t) is the solution to the following integral equation:

z̄η1(t) = z̄η1(0) +

∫ t

0

λs + µ2
s z̄
η
2(s)− µ1

sα
η
1(s)− βsαη2(s)ds, and

z̄η2(t) = z̄η2(0) +

∫ t

0

−µ2
s z̄
η
2(s) + βs(1− ps)αη2(s)ds.

Proof. Since fi(t, ·)’s are Lipschitz functions, so are gηi (t, ·)’s. Therefore, by Theo-
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rem 5, we prove this theorem.

Once we derive the adjusted fluid limit, we now obtain the adjusted diffusion

limit from the scaled centered processes.

Theorem 11 (Adjusted diffusion limit). Let V η,ν(t) =
√
ν(Zη,ν(t)− Z̄η(t)). Then

lim
ν→∞

V η,ν(t) = V η(t) in distribution, (31)

and V η(t) is the solution to the following integral equation:

V η(t) = V η(0) +

∫ t

0

Lη(s)dB(s) +

∫ t

0

Kη(s)V η(s)ds,

where B(t) is a 5-dimensional standard Brownian motion.

Proof. Since gηi (t, ·)’s are obtained from Gaussian density, by Lemma 3, gηi (t, ·)’s are

differentiable everywhere. Therefore, by Theorem 6, we have this theorem.

IV.5. Numerical results

In this section, we show several numerical results to justify how effectively the adjusted

limits approximate the multi-server queues with abandonment and retrials. We

compare our adjusted limits against the standard ones. Under the similar settings in

Mandelbaum et al. (2002), we use 5,000 independent simulation runs and use them

as a reference model. We use constant rates for all parameters except the arrival rate.

The arrival rate alternates between 45 and 55 every two time units. Figures 5 and 6

show the estimation of mean values from one experiment. The number of servers (nt)

is 50 and the service rate of each server is 1 for all t ≥ 0. As seen in Figure 5, the

multi-server queue is nearly critically loaded, i.e. x̄1(t) ≈ nt. As Mandelbaum et al.

(2002) points out, the standard fluid limit shows significant inaccuracy for E
[
x2(t)

]
.

On the other hand, the adjusted fluid limit provides an excellent approximation
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result. Especially, one can recognize remarkable improvement in the estimation of

E
[
x2(t)

]
. For the mean value of x1(t), the adjusted fluid limit provides a lot better

approximation result.

When we see the estimation of the covariance matrix, we also notice the adjusted

diffusion limit shows dramatic improvement. As seen in Figure 6, the standard

diffusion limit causes “spikes” as also pointed out in Section III.1. The adjusted

diffusion limit, however, provides excellent accuracy without spikes.

Besides this specific example, in order to verify the effectiveness of our method-

ology, we conduct several experiments with different parameter combinations. Table

Table 2. Experiment setting

exp svrs λ1 λ2 µ1 µ2 β prob alter time

1 50 45 55 1 0.2 2.0 0.5 2 20

2 200 180 220 1 0.2 2.0 0.5 2 20

3 300 270 330 1 0.2 2.0 0.5 2 20

4 400 360 440 1 0.2 2.0 0.5 2 20

5 400 390 410 1 0.2 2.0 0.5 2 20

6 50 45 55 1 2.0 2.0 0.5 2 20

7 50 45 55 1 0.2 5.0 0.5 2 20

8 50 45 55 1 0.2 2.0 0.9 2 20

2 describes the setting of each experiment. In Table 2, “svrs” is the number of servers

(nt), “alter” is the time length for which each arrival rate lasts, and “time” is the

end time of our analysis. We already recognize that the standard fluid and diffusion

limits work well when it does not linger too long close to the critically loaded phase.

For comparison, therefore, our experiments contain several cases where the system
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does linger relatively longer. Experiments 1-4 are intended to see how the estimation

accuracy would be improved as we increase the number of servers along with the

arrival rates. Experiment 5 is set in order to observe the effect of lingering in the

nearly critically loaded phase even if we the number of servers is fairly large. We

change parameters other than number of servers and arrival rates in experiments 6-8

to see the effects of them. In fact, from a large number of experiments not listed in

Table 2, we observe that they do not affect estimation accuracy significantly.

Here we explain the overall results: for the details of numerical results, see

Tables 4-8 in Appendix A.2. As seen in Figures 7 and 8, the standard fluid and

diffusion limits show improvement in estimation accuracy when we scale the number

of servers along with the arrival rates since the standard limits are asymptotically

true. In fact, the improvement when using the adjusted limits does not seem obvious.

However, it is because they already provide excellent estimation results even when

the number of servers is relatively small, and the adjusted limits always outperform

the standard fluid and diffusion limits. We also see the effect of lingering near the

critically loaded phase in Figures 9 and 10. Although the number of servers is fairly

large, it does debase the quality of approximations significantly when we use the

standard fluid and diffusion limits. On the other hand, the adjusted ones provide

excellent accuracy for both mean and covariance matrix in all cases. Figure 11

illustrates the average percentile difference of both approaches against simulation.

Figure 11 (a) is obtained by averaging all difference across time. From Figure 11

(a), we notice that the adjusted limits show promise relative to the standard ones.

In Figure 11 (b), we graph the differences especially at the time points when the

queues are critically loaded. It turns out that the adjusted limits are still accurate,

while the standard ones show even worse accuracy as expected. Note that, in Figure

11 (b), huge estimation difference, more than 300%, is observed when estimating
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(e) Standard fluid limit of exp. 4
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Fig. 9. Fluid limits in the nearly critically loaded phase
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Fig. 10. Diffusion limits in the nearly critically loaded phase
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Cov[x1(t), x2(t)] using the standard fluid and diffusion limits. However, the graph is

cropped at the 70% level for the illustration purpose. We know that those results are

from our limited experiments and hence do not make an absolute conclusion about

two methodologies. Nonetheless, we could not deny the fact that the adjusted limits

provide accurate estimation results consistently, while the standard fluid and diffusion

limits result in inconsistent accuracy.

IV.6. Chapter summary

In this chapter, we explain the fluid and diffusion limits used in the analysis of

time-varying multi-server queues with abandonment and retrials and show potential

problems that one faces in obtaining accuracy in the nearly critically loaded phase. To

address those problems, we applied adjusted fluid and diffusion limits specifically de-

signed for the approximation of the multi-server queues with finite number of servers.

It turns out that the adjusted limits achieve great improvement in approximation

accuracy of performance measures, which was verified by a number of numerical

experiments.
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CHAPTER V

PEER-BASED MULTIMEDIA SERVICE NETWORKS

In this chapter, we conduct the transient analysis of Internet-based multimedia ser-

vices utilizing peer-to-peer networks. To do so, we apply both standard and adjusted

limits, and compare them to emphasize the effectiveness of adjusted limits. We also

provide additional analyses to obtain important intuitions on a peer network itself.

V.1. Transient analysis of peer-based service networks

The online multimedia market is growing at an unprecedented rate. This growth

accompanies increasing demand for network resources (e.g. bandwidth, servers, stor-

ages, etc.) and forces a service provider, which we call a “company” for the remainder

of this chapter, to equip enough resources to satisfy adequate quality of service (QoS).

Currently, the market is limited to music files which do not impose significant overhead

for the companies even though they require many more resources than simple web

pages. The market, however, is now moving to video content (e.g. movies, dramas,

online lectures, user created content, etc.) that is 10 to 100 times larger than music

files. This implies that the volume of multimedia content is increasing tremendously as

the market grows. In addition to the increase in volume, the demand for multimedia

content tends to fluctuate according to their popularity; when popular content is

created, a burst of traffic may be brought on by the demand. Therefore, under

these circumstances, maintaining enough resources to serve multimedia content with

a satisfactory QoS level becomes a major problem that companies must solve.

To address this problem, peer-to-peer (P2P) architecture can be a viable alter-

native for a company to “outsource” resources to peers instead of purchasing all the

resources by itself. In other words, the company could redirect requests to peers
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who have downloaded those files in the past. P2P architecture has already been

proven to be stable and scalable in many previous research studies, such as Qiu and

Srikant (2004), Ge et al. (2003), and Yang and de Veciana (2004). Furthermore, P2P

applications have become some of the most dominant applications in terms of network

traffic, and P2P traffic volume keeps increasing (Fraleigh et al. (2003), Gummadi et al.

(2003)). Despite these benefits (stability and scalability) and the popularity of P2P

architecture, it has not yet been broadly adapted to commercial companies, since it

is regarded as a source of illegal content distribution attributed to current free P2P

software, e.g., BitTorrent (2011), in that the company cannot control the distribution

of the content. If the content’s distribution could be under the control of companies,

they could not only distribute network bandwidth, but also reduce the number of

servers with a satisfactory service level, by adopting P2P architecture. In fact, a few

companies such as Pando (2011) are operating P2P networks for content-distribution.

Furthermore, even companies such as Akamai (2011) that provide more established

content distribution networks by locating caching servers, also seem to be interested in

P2P architecture (for example, Akamai purchased a P2P content distribution system

called “Redswoosh” in 2007).

Having described the merits of peer-based networks, when operating a peer

network to utilize the benefits of P2P architecture, a significant problem, however,

can arise before the peer network is mature. When new content (e.g. movie) comes

out, only the company’s servers have the content. If not enough service capacity is

prepared and the demand is large, then the company could suffer from a large queue of

customers. Since new content continues to be created, the company would encounter

this problem whenever new content is provided. Therefore, it is important to study

the behavior of a peer network during a transient period, especially for companies

that utilize P2P architecture. That is the objective of this chapter.
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For peer networks, most research focuses on modeling and performance analysis

of steady state behavior (Ge et al. (2003), Clévenot and Nain (2004), Qiu and Srikant

(2004)), or optimal peer search and selection (Adler et al. (2005)) of a peer network

itself. The literature typically deals with peer networks in a completely decentralized

fashion, such as in Bittorent; they do not consider peer networks operated by commer-

cial companies. However, our system is a hybrid scheme with a centralized dispatcher

much like Napster. In addition, other research studies have not focused on transient

behavior of peer networks, which is crucial for commercial companies as mentioned

before. Therefore, this research is different from that in the literature, in that we focus

more on the precise performance analysis of peer network transient behavior, rather

than steady state behavior. In fact, Shakkottai and Johari (2010) deals with the initial

burst of traffic of P2P networks. However they emphasize the insight regarding delay

experienced in P2P networks using a simple ordinary differential equation which is

somewhat away from the complex stochastic dynamics of the real P2P networks.

V.2. Problem description

In this section, we explain the system we consider and the mathematical model. Based

on the mathematical model, we subsequently define the problem and objective.

V.2.1. System description

We consider an online entertainment company that sells digital media content via

the World Wide Web. The company’s servers store media content through which

customers access and purchase content via the company’s web site. The company

operates a peer network consisting of peers who purchased these content before and

are given the authorization for delivering content to new customers. The company
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1. New content is created 2. Server prepares initial service capacity 

3. Customer arrives and downloads the content 

Active Peer Pool 4. Peer network is created 

Inactive Peer Pool 

Fig. 12. System illustration

manages one queue for waiting customers and allocates a new customer in the queue

to a peer when the peer becomes available. Figure 12 is a simplified illustration of our

target system. When new content is created, the company prepares the initial service

capacity (in terms of number of servers) to serve that content. Initially, arriving

customers download the content from the company’s servers. All the customers

become new peers as soon as they complete download of the content so that they

can share the content with customers arriving in the future. Since peers consist of

users’ computers, peers can move between an active peer pool and an inactive peer

pool as users turn their computers on and off. Only peers in the active peer pool can

serve new customers. Peers can also leave the peer network after serving a random

amount of time. If the leaving peer or the peer just moving to the inactive pool is

serving a customer, the customer is allocated to an available peer in the active peer
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Fig. 13. Simplified system model

pool or pushed back to the queue. Notice that the peer network grows when a new

peer joins and shrinks when a peer leaves. Throughout this chapter, we assume that

customers arrive to the system with average rate λ per unit time, the mean service

rate for each customer is µ per unit time, the on and off times of each peer are 1/θ

and 1/γ time units on average, respectively. When a peer leaves the active peer pool,

he/she leaves the system with probability p and moves to the inactive peer pool with

probability 1− p. Note that time-varying rates would be a straightforward extension

that we will show later in the chapter. We assume for mathematical tractability that

the service units initially prepared by the company act like peers.

Note that we use the term “content” instead of “file” or “chunk” to indicate

multimedia data. In fact, many P2P software programs divide a file into several

chunks for the sake of transmission efficiency. The objective of this chapter, however,

is not to analyze a specific P2P software, but to provide a methodology to model a

class of queues having P2P architecture. Therefore, the content can be a file in one

application and can be a chunk in another application.
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V.2.2. Mathematical model

Let X(t) = (x1(t), x2(t), x3(t))
′ denote the state of the system at time t where x1(t)

is the number of customers in the system, i.e. those who are waiting in the queue or

are downloading the content, x2(t) is the number of peers in the active peer pool, and

x3(t) is the number of peers in the inactive peer pool. We assume that all times (i.e.

inter-arrival time, service time, on time and off time) follow exponential distributions

with parameters λ, µ, θ, and γ, respectively. Figure 13 shows an abstract system

model. We can think of peers in the active peer pool as working servers and peers

in the inactive peer pool as servers on vacation. Note that waiting customers are

located in one queue, which is managed by the company. Therefore, this process

can be characterized as a M/M/x2(t) type queue with server vacations in which the

number of servers changes over time. Here, we use Markovian assumption, i.e. Poisson

arrival and exponential service time. This assumption has been used and verified in

Qiu and Srikant (2004) and Yang and de Veciana (2004) by comparing real trace data

from a BitTorrent network.

V.2.3. Objective

Figure 14 illustrates a typical evolution of peer networks. From Figure 14, we can

define three stages based on the number of customers and peers. At the beginning

of stage 1 (i.e. t = 0), the company prepares initial service capacity, and customers

begin to arrive. All service capacity becomes full in a short time if the arrival rate is

high. In this stage, the queue remains empty (as all customers are at servers). Stage

2 begins when the queue is about to be filled. Due to high arrival rates, the number of

customers in the queue increases for some time. However, since the number of peers

also increases rapidly, the number of peers catches up with the number of customers
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Fig. 14. Typical evolution of peer networks on average

(i.e. the queue becomes empty again) and stage 2 ends. In stage 3, the number of

peers is greater than the number of customers and some peers remain idle. Once the

peer network is in stage 3, we can say that the peer network is mature or stable.

From the company’s perspective, stage 2 is the most important stage, since queue

length could grow extensively during stage 2, potentially causing significant delay to

the customers and breaking the QoS conditions. In that light, the objective of this

research is to characterize the dynamics of the system (the number of customers and

peers) by establishing an analytical model for the transient period especially focusing

on stage 1 and stage 2 rather than stage 3. Therefore, we are interested in the time

interval [0, t2] provided that t1 and t2 are the end time points of stages 1 and 2

respectively. Understandably, because of the stochastic aspect of the system, there is

some ambiguity in the definition of t1 and t2 which we will clarify in Section V.3.
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To analyze our model, there are several approaches to consider. We choose fluid

and diffusion approximations because of the following shortcomings of other methods

such as Continuous Time Markov Chains (CTMC) and simulation:

• CTMC is not appropriate when the state space is more than two-dimensional,

especially when the CTMC is not reversible, and the state space is unbounded.

As the dimension becomes higher, it becomes extremely difficult to analyze the

CTMC and hence is not scalable. In addition, even if we come up with the

infinitesimal generator matrix by utilizing techniques such as Matrix Geometric

Methods, it is usually good for steady state analysis but not for transient

analysis. Further, if transition rates are time-varying, it makes the analysis

intractable. In this research, we have three dimensions of state space and

unbounded state space. If we add a reneging feature to our model, the dimension

of state space would increase. Furthermore, we can consider time-varying

transition rates for arrival, service, and peer’s up and down. Considering these,

we do not think CTMC is appropriate for the transient analysis of our model.

• Although simulation has been extensively used for performance analysis, the

most common shortcoming of simulation is computational time. Usually, simu-

lation requires a long time, even to run a single parameter combination. There-

fore, to see the relationship among parameters, a significant amount of time is

required. This makes it difficult to perform “what-if” analysis. Like the CTMC

approach, simulation also has a scalability issue when adding more features

to the existing model since whenever we add a feature, the modification of

simulation code is not a trivial task. Therefore, considering time and scalability,

in our opinion, simulation is also inadequate for analyzing our model.

Fluid and diffusion approximations have great advantages compared to CTMC
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and simulation approaches. They are not restricted by dimensional problems and

easily extend to time varying rate functions. In addition, they can be used for

transient analysis. Since these approximations have analytical results, computation

is faster than simulation runs and it is possible to intuitively see the effects of

parameters. Thus we utilize fluid and diffusion approximations and will explain them

in Sections V.3 and V.4.

V.3. Fluid and diffusion approximations

In this section, we derive fluid and diffusion limits in by Kurtz (1978) and Man-

delbaum et al. (2002) for our problem. After developing the results, we will show

the inadequacy of these approximations. The first step of this approach is to define

a sequence of stochastic processes and to obtain the fluid limit by taking limit of

the sequence. Fluid limit takes the role of the expected value for each time point.

The second step is to obtain a diffusion limit by taking limit to the centered process

multiplied by some adequate scaling factor. In Markovian networks, this centered

process converges to Gaussian process under certain conditions that are described

later.

Consider X(t) = (x1(t), x2(t), x3(t))
′ as defined in Section V.2.2. Assume that

there is no customer and the company prepares C service units at time t = 0; i.e.

X(0) = (0, C, 0)′. Then, for our model, the sample path can be constructed using the
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following integral equation:

x1(t) = Y1

(∫ t

0

λds
)
− Y2

(∫ t

0

µ(x1(s) ∧ x2(s))ds
)
,

x2(t) = C + Y2

(∫ t

0

µ(x1(s) ∧ x2(s))ds
)
− Y3

(∫ t

0

pθx2(s)ds
)

−Y4
(∫ t

0

(1− p)θx2(s)ds
)

+ Y5

(∫ t

0

γx3(s)ds
)
, and (32)

x3(t) = Y3

(∫ t

0

pθx2(s)− Y5
(∫ t

0

γx3(s)ds
)
,

where Y1(·), Y2(·), Y3(·), Y4(·), and Y5(·) are independent Poisson processes corre-

sponding to customer arrival, service, peer’s up, peer’s leaving, and peer’s down

respectively. To apply fluid and diffusion approximations to equation (32), we accel-

erate the arrival rate λ and the initial service capacity C by multiplying a scaling

factor η. Consider a sequence of stochastic processes {Xη(t)}t≥0 so that Xη(t) =

(xη1(t), x
η
2(t), x

η
3(t))

′ is the solution to the following integral equation:

xη1(t) = Y1

(∫ t

0

ηλds
)
− Y2

(∫ t

0

ηµ
(xη1(s)

η
∧ x

η
2(s)

η

)
ds
)
,

xη2(t) = ηC + Y2

(∫ t

0

ηµ
(xη1(s)

η
∧ x

η
2(s)

η

)
ds
)
− Y3

(∫ t

0

ηpθ
xη2(s)

η
ds
)

−Y4
(∫ t

0

η(1− p)θx
η
2(s)

η
ds
)

+ Y5

(∫ t

0

ηγ
xη3(s)

η
ds
)
, and (33)

xη3(t) = Y3

(∫ t

0

ηpθ
xη2(s)

η

)
− Y5

(∫ t

0

ηγ
xη3(s)

η
ds
)
.

Note that η is a scaling factor so that we obtain the fluid approximation limit by

letting η →∞ for {Xη(t)}. That is described in the next theorem.

Theorem 12 (Fluid limit). Let X̄(t) = (x̄1(t), x̄2(t), x̄3(t))
′ denote the deterministic
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fluid limit corresponding to Xη(t) that satisfies

x̄1(t) =

∫ t

0

λ− µ(x̄1(s) ∧ x̄2(s))ds,

x̄2(t) = C +

∫ t

0

µ(x̄1(s) ∧ x̄2(s))− θx̄2(s) + γx̄3(s)ds, and (34)

x̄3(t) =

∫ t

0

pθx̄2(s)− γx̄3(s)ds

Then,

lim
η→∞

Xη(t)

η
= X̄(t) a.s..

Proof. Let X = (x, y, z)′ and define f1(X) = λ, f2(X) = µ(x ∧ y), f3(X) = θpy,

f4(X) = θ(1− p)y, and f5(X) = γz. Then, equation (33) can be written as

Xη(t) = (0, C, 0)′ +
5∑
i=1

liYi

(∫ t

0

ηfi

(Xη(s)

η

)
ds
)
,

where l1 = (1, 0, 0)′, l2 = (−1, 1, 0)′, l3 = (0,−1, 1)′, l4 = (0,−1, 0)′, and l5 =

(0, 1,−1)′. Then, it is easy to verify that the fi(·)’s are Lipschitz and there exist εi’s

such that |fi(X)| ≤ εi(1 + |X|). Since
∑
|li|2εi <∞, by Theorem 1, limη→∞X

η/η =

X̄(t) a.s..

Before moving to the diffusion limit, we investigate the graph of the fluid limit

over time since it is closely related to the diffusion limit, which will be explained in

Theorem 13. The fluid limit is deterministic and its graph is identical to Figure 14.

In the original process (i.e. X(t)), the end time of stage 2 (denoted by t2) is random

and hard to obtain from any stopping time of stochastic process since defining the

stopping time itself is ambiguous. For example, it is not possible to define the first or

second time when the number of peers exceeds the number of customers as a stopping

time since the number of peers and customers can meet several times around the end

time of stage 1 (denoted by t1). Therefore, without hurting our objective significantly,
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we define t1 and t2 via the fluid limit;

t1 = inf{t : x̄1(t) = x̄2(t), t ≥ 0}

t2 = inf{t : x̄1(t) = x̄2(t), t > t1}

Notice t1 and t2, depicted in Figure 14, for further clarification. The switching times

t1 and t2 can be obtained directly by solving the integral equation (34). Defining t1

and t2 using the fluid limit is reasonable since the queue is empty at t2 on average.

Now we move our attention to the diffusion limit. For the diffusion limit, we apply

Central Limit Theorem by defining the scaled centered process.

Theorem 13 (Diffusion limit). Let Dη(t) be the scaled centered process; i.e. Dη(t) =

√
η
(
Xη(t)/η − X̄(t)

)
. Then, we derive the diffusion limit as

D(t) =
(
d1(t), d2(t), d3(t)

)′
= lim

η→∞
Dη(t).

Define the matrices K1, K2, and L(t) as follows:

K1 =


−µ 0 0

µ −θ γ

0 pθ −γ

 ,

K2 =


0 −µ 0

0 µ− θ γ

0 pθ −γ

 , and

L(t) =



√
λ 0 0

−
√
µ(x̄1(t) ∧ x̄2(t))

√
µ(x̄1(t) ∧ x̄2(t)) 0

0 −
√
pθx̄2(t)

√
pθx̄2(t)

0 −
√

(1− p)θx̄2(t) 0

0
√
γx̄3(t) −

√
γx̄3(t)



′

.
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Then, D(t) is the solution of the following integral equation:

for 0 ≤ t < t1,

D(t) =

∫ t

0

L(s)dB(s) +

∫ t

0

K1 ·D(s)ds, (35)

for t1 ≤ t < t2,

D(t) = (d1(t1), d2(t1), d3(t1))
′ +

∫ t

t1

L(s)dB(s) +

∫ t

t1

K2 ·D(s)ds, (36)

and for t ≥ t2,

D(t) = (d1(t2), d2(t2), d3(t2))
′ +

∫ t

t2

L(s)dB(s) +

∫ t

0

K1 ·D(s)ds, (37)

where B(t) is a 5-dimensional standard Brownian motion.

Proof. With the same definition of X, li’s and fi(·)’s as in the proof of Theorem 12,

define F (X) as follows:

F (X) =
5∑
i=1

lifi(X).

Then, by Theorem 2, the centered process D(t) satisfies the following integral equa-

tion:

D(t) =
5∑
i=1

li

∫ t

0

√
fi
(
X̄(s)

)
dB(s) +

∫ t

0

∂F
(
X̄(s)

)
·D(s)ds,

where ∂F
(
X̄(t)

)
is the gradient of F

(
X̄(t)

)
. For 0 ≤ t < t1, (35) is straightforward.

Since t1 and t2 have measure zero similar to what Mandelbaum et al. (2002) considers,

we can obtain (36) for t1 ≤ t < t2 and (37) for t ≥ t2.

Note that the diffusion limit in (35), (36), and (37) turns out to be a Gaussian

process and is closely related to the fluid limit (X̄(t)). Depending on the fluid limit,

the diffusion limit changes its behavior at time points t1 and t2.
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Theorem 13 indicates that the diffusion limit is a linear model. Therefore, we could

obtain the expectation and covariance matrix of D(t) in the following way.

Theorem 14 (Expectation and Covariance matrix). Let m(t) denote E
(
D(t)

)
and

Σ(t) denote Cov
(
D(t), D(t)

)
. Then, with the same definition of K1, K2, and L(t)

as in Theorem 13, m(t) is the solution to the following differential equation: for

0 ≤ t < t1 or t ≥ t2,

d

dt
m(t) = K1 ·m(t), (38)

and for t1 ≤ t < t2,

d

dt
m(t) = K2 ·m(t). (39)

Moreover, Σ(t) is the unique symmetric semi-positive definite solution to the following

differential equation:

for 0 ≤ t < t1 or t ≥ t2,

d

dt
Σ(t) = K1 · Σ(t) + Σ(t) ·K ′1 + L(t) · L(t)′, (40)

and for t1 ≤ t < t2,

d

dt
Σ(t) = K2 · Σ(t) + Σ(t) ·K ′2 + L(t) · L(t)′. (41)

Proof. For 0 ≤ t < t1, we know that E
(
D(0)

)
= 0 < ∞ since D(0) = 0. Then, by

Theorem 3, m(t) and D(t) satisfy (38) and (40). From (38), we also have E
(
D(t1)

)
<

∞. Therefore, we can also apply Theorem 8.2.6 in Arnold (1992) and obtain (39)

and (41). Since E
(
D(t2)

)
<∞, we obtain (38) and (40) for t ≥ t2.

Summarizing, we established the fluid and diffusion limits. We found that the

diffusion limit is a Gaussian process and that the mean vector and covariance matrix
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can be obtained by solving the ordinary differential equations from (38) to (41).

Once we build the fluid and diffusion limits, we need to define the approximation

for our original process for a fixed η. Based on the definition of D(t), we use

ηX̄(t) +
√
ηD(t) as an approximation of Xη(t); see equations (5)-(7) in Chapter II.

By Theorem 14, we obtain E[D(t)] = m(t) = 0 for all t ≥ 0 since m(0) = E[D(0)] =

E[limn→∞
√
η(Xη(0)/η − X̄(0))] = E[limη→∞

√
η(x0 − x0)] = 0. Therefore,

E[Xη(t)] ≈ ηE[X̄(t)] + ηE[D(t)] = ηX̄(t) + 0 and

Cov[Xη(t), Xη(t)] ≈ ηCov[D(t), D(t)].

Figure 15 shows the fluid and diffusion approximation results compared with the

simulation results when λ = 200, µ = 1, θ = 0.1, γ = 0.3, p = 0.8 and the initial

service units is 15 (C = 15). Note that Figure 15 (a) is for X̄(t) and Figure 15 (b)

for Σ(t). The simulation result is obtained by averaging 5,000 simulation runs. We

see that the fluid and diffusion limits are close to the simulation results when t is

small. We, however, notice that the fluid and diffusion limits show a big difference,

especially in covariance matrix entries around t2. We find two significant problems

in the fluid and diffusion limits from Figure 15. Let t′2 denote the switching time

between stages 2 and 3 in the simulation result. Then,

1. The fluid limit shows some estimation error near the time t′2. From the exper-

iments with different parameters, we see that the fluid limit always underesti-

mates the switching time between stages 2 and 3, i.e. t2 < t′2. This implies that

at time t2, the average number of customers is greater than the average number

of active peers in the simulation results.

2. Sharp spikes are always observed in the diffusion limit at time t2. Moreover, our

diffusion limit shows significant difference from the simulation result around t2.
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Fig. 15. Standard fluid and diffusion approximations
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These spikes come from the sudden change of the drift matrix from K2 and K1

at time t2 in Theorem 13 and this switching is caused by the non-differentiability

of the
(
x̄1(t) ∧ x̄2(t)

)
in the fluid limit.

Remark 2. These problems also occur at time t1. The process, however, starts with

deterministic initial values and the time t1 is close to the time zero. Thus, the effect

of these problems is insignificant.

To resolve these two problems, we apply the adjusted fluid and diffusion limits and

will explain it in the next section.

However, before moving to the next section, we provide the steady state behavior

of the P2P networks using fluid and diffusion limits since they provide accurate

estimation results in steady state. From Theorem 12 and 13, we notice that (x̄1(t) ∧

x̄2(t)) = x̄1(t) for t > t2 and this implies that the non-differentiability of (x̄1(t)∧x̄2(t))

disappears as t→∞. Qiu and Srikant (2004) use fluid and diffusion approximations

for a similar scenario and mention that their process converges to the OU process in

steady state. Since they do not provide the proof for this convergence, we provide

the proof (for our scenario) to show that the diffusion limit for our original process

is also an OU process in steady state.

Theorem 15 (Steady State Behavior). Let D(∞) be the scaled centered process D(t)

defined in Theorem 13 when t → ∞. Then, for 0 ≤ p < 1, D(∞) is a three-

dimensional OU process with the drift matrix given by

K =


−µ 0 0

µ −θ γ

0 pθ −γ
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and the diffusion coefficient matrix given by

L =


√
λ −

√
λ 0 0 0

0
√
λ −

√
λp/(1− p) −

√
λ

√
λp/(1− p)

0 0
√
λp/(1− p) 0 −

√
λp/(1− p)

 .

Proof. When t > t2, the drift matrix is given by K. By solving differential equations

in (34) for t > t2 and taking t→∞, we obtain

lim
t→∞

x̄1(t) =
λ

µ
, (42)

lim
t→∞

x̄2(t) =
λ

(1− p)θ
, and (43)

lim
t→∞

x̄3(t) =
λp

(1− p)γ
. (44)

Then, by Theorem 13 and equations (42)-(44), we have

L =


√
λ −

√
λ 0 0 0

0
√
λ −

√
λp/(1− p) −

√
λ

√
λp/(1− p)

0 0
√
λp/(1− p) 0 −

√
λp/(1− p)

 .

Remark 3. Notice that the steady state number of customers, active peers, and

inactive peers via equations (42)-(44) are respectively λ/µ, λ/((1−p)θ), and λp/((1−

p)γ). The simulations also converge to the same values.

V.4. Adjusted fluid and diffusion limits

In the previous section, we saw that spikes in the diffusion limit are caused by the

non-differentiability of the “min” function (∧) in the fluid limit. In addition to non-

differentiability, notice that the “min” function causes underestimation of t2 in the

fluid limit. From the following simple lemma, we explain why it occurs.
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Lemma 4. Let X and Y be random variables such that E(X) <∞ and E(Y ) <∞.

Then,

E[(X ∧ Y )] ≤ (E(X) ∧ E(Y )).

Recall that when solving equation (34) in Theorem 12, we actually solve the

following differential equations:

d

dt
x̄1(t) = λ− µ(x̄1(t) ∧ x̄2(t)), (45)

d

dt
x̄2(t) = µ(x̄1(t) ∧ x̄2(t))− θx̄2(t) + γx̄3(t), and (46)

d

dt
x̄3(t) = pθx̄2(t)− γx̄3(t).

In Section V.3, for any time point t, we regard E
[
Xη(t)

]
as ηX̄(t) (i.e. η(x̄1(t) ∧

x̄2(t)) as
(
E[xη1(t)] ∧E[xη2(t)]

)
). We, however, observe E

[
(xη1(t) ∧ x

η
2(t))

]
rather than(

E[xη1(t)] ∧ E[xη2(t)]
)
in simulations and from Lemma 4, E

[
(xη1(t) ∧ x

η
2(t))

]
is less

than or equal to
(
E[xη1(t)] ∧ E[xη2(t)]

)
∀t ∈ [0,∞). Therefore, we can verify that the

increasing rate of ηx̄1(t) is less than the increasing rate of E[xη1(t)] in simulations,

and the increasing rate of ηx̄2(t) is greater than the increasing rate of E[xη2(t)] in

simulations from (45) and (46). In order to improve estimation accuracy, we apply

the adjusted fluid and diffusion limits to this problem. For a fixed η (or a fixed number

of servers), we obtain gηi (·, ·)’s using Gaussian adjustment described in Chapter III as

follows:

Define

Φη(t) = Φ(0, E[xη1(t)− x
η
2(t)], σ

η(t)) and

φη(t) = φ(0, E[xη1(t)− x
η
2(t)], σ

η(t)),

where ση(t)2 is the variance of xη1(t)− x
η
2(t), and Φ(a, b, c) and φ(a, b, c) are function
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values at point a of the Gaussian CDF and PDF respectively with mean b and

standard deviation c. For x = (x1, x2, x3)
′,

gη1(t, x) = ηλ,

gη2(t, x) = µ
(
Φη(t)x1 + (1− Φη(t))x2 − ση(t)2φη(t)

)
,

gη3(t, x) = pθy,

gη4(t, x) = (1− p)θx2, and

gη5(t, x) = γx3.

The derivation of gη2(t, x) is provided in Appendix B.1.

Let Zη,ν(t) = (zη,ν1 (t), zη,ν2 (t), zη,ν3 (t))′. With gηi )(·, ·)’s above, define a new sequence,

{Zη,ν(t)}ν≥1, as follows:

zη,ν1 (t) = Y1

(∫ t

0

νgη1

(
s,
Zη,ν(s)

ν

)
ds
)
− Y2

(∫ t

0

νgη2

(
s,
Zη,ν(s)

ν

)
ds
)
,

zη,ν2 (t) = νηC + Y2

(∫ t

0

νgη2

(
s,
Zη,ν(s)

ν

)
ds
)
− Y3

(∫ t

0

νgη3

(
s,
Zη,ν(s)

ν

)
ds
)

−Y4
(∫ t

0

νgη4

(
s,
Zη,ν(s)

ν

)
ds
)
, and (47)

zη,ν3 (t) = Y3

(∫ t

0

νgη3

(
s,
Zη,ν(s)

ν

)
ds
)
− Y5

(∫ t

0

νgη5

(
s,
Zη,ν(s)

ν

)
ds
)
.

Then, by taking ν →∞, we derive the adjusted fluid limit.

Theorem 16 (Adjusted fluid limit). If limν→∞ Z
η,ν(0)/ν = Z̄η(0), then

lim
ν→∞

Zη,ν(t)

ν
= Z̄η(t) a.s. (48)
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where Z̄η(t) is the solution to the following integral equation:

z̄η1(t) =

∫ t

0

λ− µ
{

Φη(s)z̄η1(s) + (1− Φη(s))z̄η2(s)− ση(s)2φη(s)
}
ds, (49)

z̄η2(t) = ηC +

∫ t

0

µ
{

Φη(s)z̄η1(s) + (1− Φη(s))z̄η2(s)− ση(s)2φη(s)
}

−θz̄η2(s)ds, and (50)

z̄η3(t) =

∫ t

0

pθz̄η2(s)− γz̄η3(s)ds. (51)

This convergence holds uniformly on any compact time intervals.

As mentioned in Section V.3, sharp spikes in covariance matrix entries are caused

by the sudden change of the drift matrix such as the change
0 −µ 0

0 µ− θ γ

0 pθ −γ

→

−µ 0 0

µ −θ γ

0 pθ −γ

 .

If we use the adjusted fluid limit obtained from equations (49)-(51), we can eliminate

the non-differentiability of rate functions and obtain a new drift matrix Kη(t) and a

diffusion coefficient matrix Lη(t) as follows:

Kη(t) =


−µ · Φη(t) −µ ·

(
1− Φη(t)

)
0

µ · Φη(t) µ ·
(
1− Φη(t)

)
− θ γ

0 pθ −γ

 ,

Lη(t) =


√
λ −

√
µαη(t) 0 0 0

0
√
µαη(t) −

√
pθz̄η2(t) −

√
(1− p)θz̄η2(t)

√
γz̄η3(t)

0 0
√
pθz̄η2(t) 0 −

√
γz̄η3(t)

 ,

where αη(t) = Φη(t)z̄η1(t) + (1− Φη(t))z̄η2(t)− ση(t)2φη(t).

From the definition of Φη(t), it is a Gaussian distribution function and is differentiable
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with respect to z̄η1(t) and z̄η2(t). Hence both Φη(t) and αη(t) are differentiable with

respect to z̄η1(t) and z̄η2(t), and we get rid of the differentiability issue in K(t) and

L(t). Now, we are ready to derive the adjusted diffusion limit for the P2P networks

by considering a sequence of scaled centered processes, {V η,ν(t)}ν≥1.

Theorem 17 (Adjusted diffusion limit). Define V η,ν(t) as
√
ν(Zη,ν(t)−Z̄η(t)). Then

lim
ν→∞

V η,ν(t) = V η(t) in distribution, (52)

and V η(t) satisfies the following integral equation:

V η(t) = V η(0) +

∫ t

0

Lη(s)dB(s) +

∫ t

0

Kη(s)V η(s)ds,

where B(t) is a 5-dimensional standard Brownian motion.

We obtain the covariance matrix of the diffusion limit by solving equation (53)

from Theorem 14.

d

dt
Σ(t) = K(t) · Σ(t) + Σ(t) ·K ′(t) + L(t) · L(t)′, (53)

where Σ(t) is the covariance matrix defined in Theorem 14.

Figure 16 shows the results from the adjusted fluid and diffusion limits with

same parameters in Figure 15. From Figure 16, we see that the fluid limit is almost

the same as the simulation results. For the covariance matrix entries, sharp spikes

disappear and the accuracy is also improved. In fact, the accuracy of covariance

matrix entries is not always improved much for all t > 0, but they are quite accurate

before t2. The fluid limit, however, shows great accuracy regardless of the values of

parameters.

Remark 4. We consider the constant rates for arrival, service, peer’s up and down

times. However, the fluid and diffusion limits can extend to time-varying rates by
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Table 3. Parameters used in two examples

No. λ µ θ γ p C

Example 1 100 1 0.2 0.5 0.7 10

Example 2 400 1 0.1 0.2 0.9 25

substituting λ, µ, θ, and γ with λ(t), µ(t), θ(t), and γ(t) since Theorem 12-14 do

not require λ, µ, θ, and γ to be constant functions of t. Furthermore, in Markovian

queueing systems, most of the non-differentiabilities of the rate functions are from

the use of “min” function. Therefore, we can apply this Gaussian-based adjustment to

more general Markovian applications.

V.5. Numerical results

In this section, we provide numerical examples to verify our results obtained through

Sections V.3 and V.4. We show more numerical experiments to compare the adjusted

fluid and diffusion limits (described in Section V.4) with the standard fluid and

diffusion limits (described in Section V.3) in Section V.5.1. In addition to this, we

provide some numerical experiments when the rate functions vary over time in Section

V.5.2.

V.5.1. Comparison between the standard and adjusted limits

We provide two examples to demonstrate that the adjusted limits outperform the

standard limits on [0, t2]. The parameters we use in the examples are summarized in

Table 3. We have a criterion to determine parameter values for our problem. In order

for a company to take advantage of peer-based networks, the following conditions

should be met.
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1. Customer arrival rates should be fairly large. If not, there is no need to outsource

network traffic.

2. The service rate of each peer is much smaller than the customer arrival rate.

If not, only a few peers are enough to cover the traffic, and then outsourcing

traffic does not make sense. We assume a large peer-network (more than 100

peers).

3. Each peer stays relatively long time to serve other customers, i.e. each peer

serves more than 3-5 customers. If not, managing contents delivery becomes

hard, and it reduces the benefit of outsourcing.

However, parameter values are selected arbitrarily based on the above conditions.

We conducted 5,000 simulation runs for each example and compared the simulation

results with the results of the standard and adjusted limits to see how accurate each

limit is. Figures 17 and 18 illustrate the comparison of mean numbers and covariance

matrix entries with the setting of example 1. Figures 19 and 20 show the results for

example 2. In both examples, the standard limits show inaccuracy in estimating both

expected values and covariance matrix entries. As mentioned in Section V.3, we see

that the standard limits always underestimate t2. For covariance matrix entries, the

standard limits show more than 100% errors at t = t2 in both examples. In contrast,

the adjusted limits reasonably well estimate t2, especially as the arrival rate becomes

higher, which is desirable for the real applications. Although the adjusted limits show

some errors in covariance matrix entries, the errors are less than 25% in example 1

and less than 5% in example 2. Therefore, from these two examples, we can verify

that the adjusted limits are more suitable for the transient analysis than the standard

limits. We obtained similar results for all the numerical experiments we performed.

Now, we move to the effects of parameters λ and p. Although the other parameters
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(a) Mean number of customers and peers of standard limit
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Fig. 17. Comparison of mean numbers between standard and adjusted limits in
Example 1
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(a) Covariance matrix entries of standard limit
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Fig. 18. Comparison of covariance matrices between standard and adjusted limits in
Example 1
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(a) Mean number of customers and peers of standard limit
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Fig. 19. Comparison of mean numbers between standard and adjusted limits in
Example 2



75

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3
x 10

4

Time

C
ov

ar
ia

nc
e 

m
at

rix
 e

nt
rie

s

λ=400,µ=1,θ=0.1,γ=0.2,C=25,p=0.9

 

 

sim customer
diff customer
sim covariance
diff covariance
sim active
diff active
sim inactive
diff inactive

t
2 t

2
’t

1

(a) Covariance matrix entries of standard limit
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Fig. 20. Comparison of covariance matrices between standard and adjusted limits in
Example 2
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are also important, the arrival rate (λ) and the probability of residing in the system

(p), i.e. going to inactive queue, are more interesting due to the following reasons:

• The arrival rate implies the demand for the content. When operating a peer

network, preparing a burst of the demand is crucial. Therefore, it is important

to see when to reach stage 3 and how many peers (customers also) reside in the

system at the end of stage 2, according to the arrival rates.

• The probability of residing in the system determines the current and potential

service capacity. If p = 0, there is no peer in the inactive peer pool. In this

case, service capacity thoroughly depends on the number of peers in the active

peer pool. If p = 1, no peer leaves the system and the current and potential

service capacity continues to increase.

Figures 21 and 22 show the changes of t2 and E[X(t2)] over λ and p respectively.

As seen in Figure 21, t2 and E[X(t2)] increase according to λ. This implies that if

a content is popular, more time and peers are required to enter stage 3. For the

effect of residing probability p, we can see that t2 and E[x1(t2)](= E[x2(t2)]) decrease

according to p whereas E[x3(t2)] increases. This implies that increasing potential

service capacity (i.e. number of inactive peers) accelerates the increasing rate of the

number of peers so that it enables our system to reach stage 3 earlier. In addition to

these observations, we see that the adjusted fluid limit provides more accurate t2 and

E[X(t2)] than the standard fluid limit.

V.5.2. Time-varying rate functions

In Remark 4, we mentioned that fluid and diffusion approximations can be extended

to time varying rate functions; i.e. arrival rate is λ(t), service rate is µ(t), and peer’s

up and down times are 1/θ(t) and 1/γ(t) on average, respectively. In this section,
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Fig. 21. Estimation of t2 and E(x1(t2)) according to λ
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(a) Standard limit with time-varying arrival rate
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Fig. 23. Mean number with alternating arrival rates between 100 and 25
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(a) Standard limit with time-varying arrival rate
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Fig. 24. Covariance matrix with alternating arrival rates between 100 and 25
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we show two numerical examples in that the arrival rate changes over time (µ, θ,

and γ are held constant over time only for illustration purposes). Figures 23 and 24

show the mean and covariance matrix entries of the number of customers and peers

with the arrival rate alternating between 100 and 25 every two time units. We apply

both the standard and adjusted limits and compare them with simulation results. As

seen in Figure 23, the adjusted limit gives quite accurate results in all ranges of time

intervals, whereas the standard limit shows some error around t ∈ [1.2, 2.5] and gives

accurate results after t > 3. For the standard fluid limit, note that (x̄1(t) ∧ x̄2(t))

changes the value from x̄2(t) to x̄1(t) near t = 1.5 and after that it remains in

x̄1(t). Therefore, we can explain the reason for this phenomenon by Theorem 15

and Lemma 4, similar to the case of the constant rate functions. For the covariance

matrix entries, both the standard and adjusted limits show shapes similar to the

case of constant rates functions. Although the adjusted diffusion limit also shows

errors, we can see that the accuracy is significantly improved compared with the

standard limit, especially before t2 (recall the definition of t2 in Section V.3). In this

example, we use the piecewise constant arrival rate function. Vertical dotted lines

indicate the times when the arrival rate changes. Note that the change in arrival

rate immediately forms the peak point of the mean number of customers, whereas it

imposes some delay for the mean number of active peers to reach its peak point. In

the second example, we consider heavier traffic and more frequent changes in arrival

rates; the arrival rate is alternating between 300 and 150 every one time unit. As

shown in Figures 25 and 26, we observe results similar to the first example. The

standard fluid limit shows inaccuracy around t ∈ [3.7, 6] while the adjusted fluid limit

provides an excellent estimation. The adjusted diffusion limit is almost exact for

t < t2 but shows inaccuracy after t2 just like the first example. From the examples,

we can think that our adjusted fluid and diffusion limits work great during the time
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interval we are interested in, i.e. 0 ≤ t ≤ t2.

V.6. Chapter summary

In this chapter, we analyze the transient behavior of a peer network that could possibly

be operated by a commercial company. We initially utilize standard fluid and diffusion

approximations to build a model for peer networks. Using them, we show that the

diffusion model turns out to be a three dimensional OU process in steady state. For

the transient analysis, we focus on stages 1 and 2 (refer to Figure 14) when the

peer network is not mature and the number of customers exceeds the number of

peers such that the company is able to satisfy the QoS level; after t2, when stage

3 begins, the number of customers becomes less than the number of active peers

on average, that is, the queue is empty. Yet, we observe that standard fluid and

diffusion approximations show great inaccuracy around t2 which is caused by the

non-differentiability of “min” function. To resolve this problem, we apply adjusted

fluid and diffusion approximations. We replace the standard fluid model with the

adjusted model and it turns out that the non-differentiability of the drift matrix in

the diffusion model disappears.

To validate the adjusted models, we provide a number of examples and see the

adjusted models outperform the standard models in terms of accuracy, especially

before t2 as desired. Moreover, we provide several numerical examples to see the

effects of parameters and also show that the extension to time-varying rate functions

is quite straightforward. From the numerical experiments, we see that higher arrival

rate causes larger t2 values and the expected number of customers (peers) at t2. In

addition, we provide other insightful numerical analysis. For example, we see that

higher sojourn probability decreases t2 values, whereas the expected number of cus-
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(a) Standard limit with time-varying arrival rate
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(b) Adjusted limit with time-varying arrival rate

Fig. 25. Mean number with alternating arrival rates between 300 and 150
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(a) Standard limit with time-varying arrival rate
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(b) Adjusted limit with time-varying arrival rate

Fig. 26. Covariance matrix with alternating arrival rates between 300 and 150
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tomers does not decrease much. For time-varying rate functions, we consider discrete

arrival rate functions. From the examples provided, the increasing (or decreasing)

rate of the number of customers is immediately affected by the changes in arrival

rates. We see that the extreme points of the number of active peers appear with

some delay, compared to the number of customers, which is due to the service time.
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CHAPTER VI

EXTENSION TO NON-MARKOVIAN SYSTEMS

Until now, we explain the adjusted fluid and diffusion limits for the transient analysis

of large-scale service systems. In this chapter, we introduce a possible extension of this

research to non-Markovian systems. In Section VI.1, we briefly sketch the direction of

the research to achieve this work from a simple example ofMt/G/s queues. After that,

in Section VI.2, we apply this extension to epidemic-based information dissemination

in wireless mobile networks which is one of the popular application of asymptotic

analysis.

VI.1. Phase-type approximations

The basic idea is to combine the limit processes with phase-type approximations. For

that, we define a fluid limit for a non-Markovian system as the limit of a sequence of

fluid limits for Markovian systems.

Suppose G = (G1, G2, ..., GK) is a distribution set associated with a stochastic

process X, e.g. G = (G1, G2) for G/G/s queue. Let {PHm}m≥1 be a sequence

of phase-type distribution sets jointly converging to G, where for each m PHm =

(PH1,m, PH2,m, ..., PHK,m). For m ≥ 1, define {Xn,m} to be a sequence of stochastic

processes associated with PHm converging to its fluid limits X̄m. Then, we use X̄m(t)

as an approximation of E[X(t)] for a sufficiently largem, i.e. E[X(t)] ≈ X̄m(t). There

are two simple numerical examples forMt/G/s queue: Poisson arrival with alternating

rates between 40 and 80 every two time units, 50 servers, and Pareto(2.2,0.83) (and

Pareto(1.2,5)) service time distribution (see Figure 27). Note that Pareto(a,b) denote

the Pareto distribution of which CCDF is F c(t) = (1 + bt)−a. We use hyper-

exponential distributions provided in Feldmann and Whitt (1998) to approximate
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Fig. 27. Mt/G/s queue

the Pareto distribution. As seen in Figure 28, we notice that proposed approximation

is accurate, and it requires only 14-15 ODEs to solve. The number of ODEs in this

example increases in O(K) where K is the number of phases used, which implies the

proposed method is scalable. To see its potential for broader applications, in the next

section, we apply this method to analyze an information transfer model in wireless

mobile networks operating under harsh environments.

VI.2. Epidemic-based information dissemination in wireless mobile sensor networks

In the near future, intelligent wireless mobile sensors will be extensively deployed in

harsh environments such as military operations, under-sea explorations, hazardous

environments, etc. The objectives for the nodes in such wireless mobile sensor

networks are to move rapidly, probe, process and transmit information to other nodes.

At the end of the “operation” only a subset of the sensor network nodes are recovered

(the rest are either lost or severely damaged). Information is retrieved from what is

stored in the subset of recovered nodes. Since the sensors have limited computational

power, they have to balance between energy conservation and fault-tolerance while

transmitting information.
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Epidemic information spreading models lend themselves well to such applications

where each node selects at random a neighbor and transmits a quantum of informa-

tion (referred to as gossip). There have been several research studies on epidemic

information spreading models. Originally, studies have been conducted to analyze

spreading mechanism of a disease. However, due to the scalability and stability

of epidemic models, they have been adopted as an effective method to disseminate

information over large-scale communication networks. Zhang et al. (2007) provides

deterministic ODE models that are in fact the asymptotic results of Markovian

models for epidemic routing problems. However, instead of analyzing the (asymptotic)

phenomena, studies in communication networks are mostly concerned with developing

fast and reliable algorithms to transfer information to as many nodes as possible

under fixed network topology. Eugster et al. (2004) summarizes epidemic models

in communication networks and emphasizes the easiness of deployment, robustness

and stability. Boyd et al. (2006) and Mosk-Aoyama and Shah (2008) apply gossip

algorithms to solve distributed computing problems (separable functions) consider-

ing both synchronous and asynchronous (with exponential inter-transmission time

distributions) models. Weber et al. (2006) analyzes the performance of a particular

gossip algorithm suitable for fixed networks using copulas. However, besides using

fixed networks, the selection of right copulas is still an open question. Haas and Small

(2006) and Haas et al. (2006) use epidemic models for a routing problem in ad-hoc

networks. Some rules of thumb to reduce the number of transmissions are suggested

from a number of experiments. Sistla et al. (2001) considers layered gossip networks

using simulation. Deb et al. (2006) looks at the gossip algorithm from an information

theoretic standpoint. When multiple messages are transmitted in the network, the

number of transmission to deliver messages is reduced by proposed network coding

method. In designing and constructing an epidemic information spreading model for
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wireless mobile sensor networks, we found that most of previous studies ignore the

fact that transmission behavior can be affected by external environment. Although

exponential inter-transmission time is justified by Groenevelt et al. (2005), it may

not be appropriate for harsh environment, where it could be time-varying or have

a large variation. Therefore, the objective of this chapter is to conduct the perfor-

mance analysis, specifically when the number of nodes in the network increases and

transmission of information shows non-Markovian behavior.

VI.2.1. Problem description

Given a wireless mobile sensor network with N nodes, consider an information dissem-

ination model for nodes to dissipate sensed information to as many nodes as possible.

We specifically concentrate on a scenario where the sensor nodes move around, they

sense and process information that they periodically transmit to other nodes. The

inter-transmission times are far apart that the nodes would have significantly moved

between two transmissions. Between successive transmissions, the nodes sense, pro-

cess and store information. Unlike the previous studies assuming exponential inter-

transmission time distribution (Boyd et al. (2005), Karp et al. (2000), and Kempe

et al. (2003)), we consider a general asynchronous time model and investigate whether

and how the performance is affected by a heavy-tailed CDF.

Note that the nodes (i) have local knowledge, (ii) have limited computational

power, (iii) make distributed decisions, and (iv) move rapidly over time. With those

in mind, we arrive at the following information dissemination model. Consider a

gossip that was originated at a certain node. During the next transmission time for

the node, the node picks its closest neighbor to transmit the gossip. Since the nodes

are moving rapidly, we assume that the probability that a certain node is selected

(i.e. closest neighbor) is 1
N−1 , even though all nodes may not be candidate neighbors.
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At the next transmission time for each of these two nodes that know the gossip,

the transmitting node selects a neighboring node at random with probability 1
N−1 .

Although not exactly the same but a similar mobility model is provided in Neely

and Modiano (2005) known as i.i.d mobility model. They assume a cell-partitioned

network and each node chooses a cell randomly to move at next time slot. This implies

infinite mobility that is reasonable for a network in which nodes are moving quickly

relative to inter-transmission times. Moreover, from Theorem III-4 in Grossglauser

and Tse (2002), for a large population, our selection mechanism could be justified.

In this manner, during every transmission time of a node, every node that has

the gossip (and has not stopped spreading it) selects one of the N − 1 other nodes

to check if it has the gossip. If the selected node already has the gossip, then the

transmitting node not only does not transmit the gossip but also stops spreading

it; else it continues spreading the gossip. If the size of gossip is small, it would

be reasonable to skip the checking procedure and determine whether to continue

spreading it based on the acknowledgment. As a result of this explicit stopping

criterion, each node stops spreading the gossip and conserves energy. Note: stopping

the gossip spreading implies stopping the checking procedure as well. Therefore, a

node does not spend network resources and energy for the gossip any longer once it

decides to stop spreading.

VI.2.2. Fluid approximation

For general inter-transmission time distributions, we adopt techniques that approxi-

mate any distribution function having positive support with phase-type distributions

since they are proven to be dense in all distributions with positive support (Johnson

and Taaffe (1988) ) and have nice properties. One common method to find a phase-

type distribution is matching moments due to its easiness and convenience (Whitt
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(1981), Whitt (1982), Altiok (1985), Johnson and Taafe (1990)). It, however, has

limitation since it may lose properties of target distribution. Therefore, in this

chapter, we use the methodology in Feldmann and Whitt (1998) that approximates

the distribution function itself and is applicable even if no moment exists. The main

idea of our method is to find a phase-type distribution function which approximates

a given distribution function accurately (depending on the problem). For the class

of distributions we consider here, i.e. distributions having positive support with

decreasing PDFs), the following theorem guarantees that there is a sequence of

hyperexponential distributions that converges to an element of that class.

Theorem 18 (Denseness, Feldmann and Whitt (1998)). If F is a CDF with a

completely monotone PDF, then there are hyperexponential CDFs F (n), n ≥ 1, i.e.,

CDFs of the form

F (n) =
kn∑
i=1

pni(1− e−λnit), t ≥ 0,

with λni ≤ ∞ and pn1 + · · ·+ pnkn = 1 such that F (n) ⇒ F as n→∞.

Therefore, from Theorem 18, we can choose a hyperexponential distribution

function satisfying a desired error bound. After choosing such a hyperexponential dis-

tribution function, we combine it with the asymptotic method explained in Chapter II.

In fact, approximating a distribution with phase-type distributions is well studied in

the literature. However, one crucial limitation commonly raised in the literature is

that a Markov chain obtained from phase-type distributions becomes intractable as

the number of phases increases for better approximation. In our method, however,

we found that only K + 1 ODEs are enough to obtain the fluid model of the system.

Suppose the inter-transmission time distribution function of each node is F and
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is approximated by hyper-exponential distribution function G where

1−G(u) =
K∑
i=1

pi exp(−λiu).

Note we are not interested in how to find G in this chapter. We apply an exist-

ing approximation method proposed by Feldmann and Whitt (1998). Let Xn,t =

(x1n,t, . . . , x
K
n,t, yn,t), the state of the system and Hn,t is the distribution function of

inter-transmission time among all nodes at time t with total n+ 1 nodes, then

1−Hn,t(u) = exp
(
u

K∑
i=1

λix
i
n,t

)
.

Now consider a split process of Poisson processes. Probability that next event occurs

in xin,t is
λix

i
n,t∑K

j=1 λjx
j
n,t

.

Applying minimum of exponential distributions, rate of event is
∑K

j=1 λjx
j
n,t. There-

fore, rate of events of each phase is just λixin,t.

Let ei be K + 1 dimensional column vector where its ith element is 1 and other

elements are 0. Then, Xn,t is the solution to the following integral equation.

Xn,t = Xn,0

+
K∑
i=1

K∑
j=1

K∑
k=1

(ej + ek − ei − eK+1)Y
1
ijk

(∫ t

0

yn,s
n
λix

i
n,tpjpk

)
−

K∑
i=1

eiY
2
i

(∫ t

0

n− yn,s
n

λix
i
n,t

)
. (54)
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Let X̃n,t = Xn,t/n. Then, the equation (54) can be written as follows:

X̃n,t = X̃n,0

+
K∑
i=1

K∑
j=1

K∑
k=1

1

n
(ej + ek − ei − eK+1)Y

1
ijk

(
n

∫ t

0

ỹn,sλix̃
i
n,tpjpk

)
−

K∑
i=1

1

n
eiY

2
i

(
n

∫ t

0

(1− ỹn,s)λix̃in,t
)
. (55)

Theorem 19 (Fluid limit). Suppose {X̃n,t}n≥1 is the solution to equation (55) and

X̃n,0 converges to X̄0 almost surely. Then, X̃n,t converges to X̄t almost surely where

x̄at and ȳt, the ath and (K + 1)th components of X̄t respectively, are the solutions to

the following differential equations:

d

dt
x̄at = ȳt

[
2pa

K∑
i=1,i 6=a

λix̄
i
t + (p2a − (1− pa)2)λax̄at

]
−(1− ȳt)λax̄at for a ∈ {1, 2, . . . , K}, and

d

dt
ȳt = −ȳt

K∑
i=1

λix̄
i
t

Proof. We will derive the ath component of X̄t. We first consider

K∑
i=1

K∑
j=1

K∑
k=1

1

n
(ej + ek − ei − eK+1)Y

1
ijk

(
n

∫ t

0

ỹn,sλix̃
i
n,tpjpk

)
of equation (55). The ath component, x̄at is

1. increasing by 2 when j = k = a and i 6= a in equation (55) with rate

ȳtp
2
a

K∑
i=1,i 6=a

λi, x̄
i
t.

2. increasing by 1

• when j = k = i = a with rate ȳtλax̄at p2a.
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• when j = a, k 6= a, and i 6= a with rate

ȳt

K∑
i=1,i 6=a

K∑
k=1,k 6=a

λix̄
i
tpapk = ȳt

K∑
i=1,i 6=a

λix̄
i
tpa(1− pa).

• when k = a, j 6= a, and i 6= a with rate

ȳt

K∑
i=1,i 6=a

K∑
j=1,j 6=a

λix̄
i
tpapj = ȳt

K∑
i=1,i 6=a

λix̄
i
tpa(1− pa).

3. decreasing by 1 when j 6= a, k 6= a, and i = a with rate

ȳt

K∑
j=1,j 6=a

K∑
k=1,k 6=a

λax̄
a
t pjpk = ȳtλax̄

a(1− pa)2.

Note that ȳt is decreasing by 1 in any case. Second, we consider

−
K∑
i=1

1

n
eiY

2
i

(
n

∫ t

0

(1− ỹn,s)λix̃in,t
)

of equation (55). The ath component, x̄at is decreasing only when i = a with rate

(1− ȳt)λax̄at and ȳt does not change in all cases.

The number of ODEs in Theorem 19 is just K + 1. The resulting phase-type

distributions in Feldmann and Whitt (1998) have about 15 phases and accurately fit

the target distribution function. Therefore, we could think that less than 30 phases

are enough for approximation. Even if we have more than 30 phases, solving that

number of ODEs is not computationally expensive.

Figure 29 shows the estimation of mean values using a fluid limit with phase-type

approximation. In these examples, we have 1,000 nodes and the inter-transmission

time distributions are Pareto(2.2,0.83) and Pareto(1.2,5) respectively. As seen in the

figure, the fluid limit with phase-type approximations provides excellent estimation

results for the transient dynamics of wireless mobile sensor networks.
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Fig. 29. Evolution of wireless mobile networks on average
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CHAPTER VII

CONCLUSION

Transient analysis of large-scale service systems is not sufficiently addressed in previ-

ous literature, nor do the techniques fully approximate real systems. This dissertation

discusses a new technique to enable more accurate analysis by suitably adjusting fluid

and diffusion limits with less computational time. This chapter summarizes the main

results and contributions of this dissertation.

VII.1. Methodology to approximate large-scale systems

We describe the fluid and diffusion limits obtained from the uniform acceleration since

this technique is adequate for transient analysis of time-dependent systems. However,

there are two significant problems when using this technique for balancing accuracy

and computational tractability. First, the expectation of a function of a random

vector X is not equal to the value of the function of the expectation of X. Therefore,

unless they are equal or close, the fluid limit may not provide an accurate estimation

of mean values of the system state. Second, non-differentiability of rate functions

causes discontinuity in the drift matrix of diffusion limits. To resolve these critical

issues, we develop a methodology to obtain the exact estimation of mean values of

system states and an algorithm to achieve computational tractability.

The basic concept is to construct a new sequence of stochastic processes which

converges to the fluid limit exactly as the mean value of the system state. We prove

that if the rate functions in the original model satisfy the conditions for the fluid

limit, rate functions in the new model also satisfy them. Therefore, we can apply the

adjusted fluid limit if we apply the standard fluid limit. Generally speaking, since no

computational method can exactly obtain the adjusted fluid limit, we utilize Gaussian
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density because it allows us to see that rate functions in the constructed process are

differentiable everywhere and in turn we are able to apply the diffusion limit, even if

the rate functions in the original process are not differentiable. Although the standard

limits show inaccuracy to approximate the system, we find that the adjusted limits are

asymptotically identical to the standard limits. Therefore, the adjusted limits achieve

both accurate estimation of the system being analyzed and asymptotic exactness.

VII.2. Multi-server retrial queues (call center model)

We select a critically-loaded call center to test our adjusted limits. A call center

is considered critically loaded when the number of servers equals the number of

customers. Ideally, most companies operating call centers desire this condition, i.e.

no waiting customer and no idle server. However, the transient analysis of critically

loaded queues is difficult, and the standard fluid and diffusion limits do not give

accurate approximations. We find that the use of the adjusted limits achieves accurate

approximation of call centers when they are almost critically loaded.

VII.3. Peer-based Internet services

The second application involves a relatively new type of service system, peer-based

multimedia services. P2P architecture is a viable alternative to outsource resources

for the online multimedia service industry. However, to successfully deploy P2P

architecture, the transient analysis of initial build-up periods must be conducted

in advance, because P2P networks are extremely unstable at first. Utilizing stan-

dard limits causes significant inaccuracy especially in the early stage of the network

evolution. We use the adjusted limits to estimate the performance measures, and

successfully demonstrate its effectiveness with numerical experiments.
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VII.4. Extension to non-Markovian systems

The adjusted fluid and diffusion limits are derived under Markovian settings. An

extension to non-Markovian systems using phase-type distributions is also possible

since the fluid and diffusion limits are relatively insensitive to the dimension of the

system state. Phase-type distributions are known to be dense in all of the distribution

functions having positive support. We incorporate this phase-type approximation into

the fluid limit. Preliminary work applied to Mt/G/s appears promising. Next, we

apply the extension to non-service systems, an epidemic model in wireless mobile

networks. In harsh environments like military operations and natural disasters, envi-

ronmental factors can significantly affect the behavior of wireless sensors. Considering

that non-Markovian inter-transmission times should be natural, we find that phase-

type approximations provide accurate estimation returns for non-service systems.

VII.5. Future research

Although the methodology presented in this dissertation is versatile, in some other

types of systems, e.g. multi-class queues, the approximation quality is still not good

enough. We observe that for those systems the empirical density is not close to the

Gaussian density even if the values of the parameters are fairly large. We conjecture

that, depending on the problems, convergence rates of empirical density to Gaussian

density might require significantly large values of parameters. Future research should

investigate the properties of the specific rate functions affecting the shape of empirical

density in order to devise a new methodology to find the functions gηi (·, ·)’s from other

density functions.
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APPENDIX A

MATHEMATICAL DERIVATION AND NUMERICAL RESULTS FOR

CHAPTER 4

A.1. Derivation of functions gηi (t, x)

For a fixed η, suppose xη1(t) ∼ N(E[xη1(t)], σ
η2
1 (t)). For x = (x1, x2)

′, we have

gη3
(
t, x
)

= ηE
[
µ1
t

(xη1(t)
η
− E[xη1(t)]

η
+
x1
η
∧ nt

)]
= E

[
µ1
t (x

η
1(t)− E[xη1(t)] + x1 ∧ ηnt)

]
= µ1

t

{
E
[
(xη1(t)− E[xη1(t)] + x1)Ixη1(t)−E[xη1(t)]+x1≤ηnt

]
+ηntPr[x

η
1(t)− E[xη1(t)] + x1 > ηnt]

}
Let y1(t) = xη1(t)− E[xη1(t)] + x1.

= µ1
t

[∫ ηnt

−∞

y1(t)√
2πση1(t)

exp

(
− (y1(t)− x1)2

2ση21 (t)

)
dy1(t) + ηntPr[y1(t) > ηnt]

]

= µ1
t

[
−ση1(t)√

2π

∫ ηnt

−∞
−y1(t)− x1

ση21
exp

(
− (y1(t)− x1)2

2ση21

)
dy1(t)

+x1Pr[y1(t) ≤ ηnt] + ηntPr[y1(t) > ηnt]

]

= µ1
t

[
− ση21 (t)

1√
2πση1(t)

exp

(
− (ηn− x1)2

2ση21 (t)

)

+(x1 − ηnt)Pr[y1(t) ≤ ηnt] + ηnt

]
.

Therefore, we have gη3(t, x).

Note gη4(·, ·) and gη5(·, ·) are the same except a constant part with respect to x.
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Therefore, it is enough to derive gη5(·, ·). We can show that

gη5
(
t, x
)

= ηE
[
βtpt

(xη1(t)
η
− E[xη1(t)]

η
+
x1
η
− nt

)+]
= βtpt

{
E
[
(xη1(t)− E[xη1(t)] + x1 ∨ ηnt)

]
− ηnt

}
= βtpt

{
E
[
(xη1(t)− E[xη1(t)] + x1)Ixη1(t)−E[xη1(t)]+x1>ηnt

]
+ηntPr[x

η
1(t)− E[xη1(t)] + x1 ≤ ηnt]− ηnt

}
Let y1(t) = xη1(t)− E[xη1(t)] + x1.

= βtpt

[∫ ∞
ηnt

y1(t)√
2πση1(t)

exp

(
− (y1(t)− x1)2

2ση21 (t)

)
dy1(t)

+ηntPr[y1(t) ≤ ηnt]− ηnt

]

= βtpt

[
−ση1(t)√

2π

∫ ∞
ηnt

−y1(t)− x1
ση21

exp

(
− (y1(t)− x1)2

2ση21

)
dy1(t)

+x1Pr[y1(t) > ηnt] + ηntPr[y1(t) ≤ ηnt]− ηnt

]

= βtpt

[
ση21 (t)

1√
2πση1(t)

exp

(
− (ηn− x1)2

2ση21 (t)

)

+(x1 − ηnt)Pr[y1(t) > ηnt]

]
.

Therefore, we have gη5(t, x).
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A.2. Numerical results

Table 4. Estimation of E
[
x1(t)

]
over time; difference from simulation

Exp. Time
# type 6 7 8 9 10 11 12 13 14 15

1 adj. 1.83 0.48 -1.62 -0.63 -0.39 -0.29 0.40 -0.15 -0.82 -0.13
standard 0.40 -1.04 -2.64 -1.90 -0.80 -1.20 -0.18 -1.01 -0.80 -0.69

2 adj. 0.95 0.27 -1.57 -0.50 -0.79 -0.03 0.23 0.05 -0.37 -0.14
standard 0.78 -0.27 -1.82 -0.99 -0.61 -0.35 -0.03 -0.34 -0.46 -0.40

3 adj. 1.29 0.24 -1.54 -0.45 -0.54 -0.16 0.40 0.24 0.22 -0.09
standard 1.01 -0.18 -1.53 -0.77 -0.98 -0.50 0.28 -0.07 0.23 -0.31

4 adj. 1.24 0.15 -1.61 -0.49 -0.07 -0.02 0.37 0.11 -0.56 -0.19
standard 1.15 -0.19 -1.35 -0.67 -0.20 -0.29 0.32 -0.14 -0.46 -0.36

5 adj. 0.37 0.03 -0.28 -0.06 -0.11 0.03 0.09 0.06 -0.00 -0.02
standard -0.40 -0.63 -0.82 -0.57 -0.31 -0.34 -0.16 -0.26 -0.25 -0.28

6 adj. 1.30 0.54 -1.21 -0.36 -0.30 0.11 0.40 -0.01 -0.17 -0.20
standard 1.49 0.29 -1.39 -0.74 0.17 0.02 0.61 -0.22 0.24 -0.31

7 adj. 1.68 -0.07 -1.64 -0.13 -0.02 -0.14 0.31 0.24 -0.60 -0.35
standard -1.62 -3.88 -4.20 -3.66 -2.26 -3.39 -2.25 -3.03 -2.76 -3.28

8 adj. 1.64 0.31 -1.46 -0.58 -0.26 0.21 0.15 0.25 -0.19 0.12
standard -0.21 -1.96 -2.95 -2.78 -1.94 -1.96 -1.32 -1.93 -2.17 -2.05

Table 5. Estimation of E
[
x2(t)

]
over time; difference from simulation

Exp. Time
# type 6 7 8 9 10 11 12 13 14 15

1 adj. -1.37 2.90 0.89 -2.03 -2.12 -2.34 -1.12 -0.57 -0.71 -1.14
std. 77.71 78.84 59.99 63.78 68.73 70.44 58.52 62.73 67.10 68.65

2 adj. -2.37 1.61 0.84 -3.49 -2.56 -2.85 -1.76 -1.17 -1.11 -1.56
std. 55.00 57.92 33.81 36.87 41.48 44.67 30.90 35.92 39.56 42.01

3 adj. -3.47 3.93 2.40 -2.23 -1.27 -1.72 -1.23 0.14 0.06 0.01
std. 43.47 49.71 26.57 29.38 33.16 35.73 22.49 28.26 30.92 34.20

4 adj. -3.17 3.20 0.70 -4.33 -2.75 -1.89 -1.03 -0.19 -0.25 -1.10
std. 35.37 42.81 20.08 22.79 26.22 30.16 18.29 23.35 25.38 27.70

5 adj. -1.01 0.97 0.73 -0.90 -1.00 -0.59 -0.79 -0.47 -0.24 -0.50
std. 100.00 94.18 73.94 77.12 81.28 82.09 70.79 74.22 78.18 78.78

6 adj. -6.58 6.35 1.32 -5.83 -2.07 1.60 -0.07 1.68 -1.74 -0.52
std. 96.64 78.24 40.17 75.11 94.63 76.05 39.36 77.09 94.60 75.69

7 adj. -1.52 2.10 1.99 -0.12 0.00 0.29 0.08 0.09 -0.42 -1.06
std. 77.20 75.69 59.18 65.40 70.23 70.38 58.65 64.27 68.43 67.79

8 adj. -0.14 2.04 1.82 -3.27 -1.61 -1.26 -1.65 0.19 0.22 -0.44
std. 77.59 78.60 59.36 62.65 67.64 70.43 56.90 62.15 66.04 68.30
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Table 6. Estimation of V ar
[
x1(t)

]
over time; difference from simulation

Exp. Time
# type 6 7 8 9 10 11 12 13 14 15

1 adj. 2.86 -3.23 -4.43 -2.63 -3.98 1.41 0.83 1.58 -2.75 0.02
std. -17.89 13.73 15.53 -20.73 -27.51 18.09 18.99 -15.62 -26.91 17.15

2 adj. -1.19 0.90 -5.74 2.86 -0.95 3.53 0.11 2.39 -1.66 1.34
std. -12.11 14.36 5.51 -11.40 -13.82 16.35 9.61 -12.33 -16.16 14.45

3 adj. 3.59 -5.48 -1.10 5.68 2.82 2.94 2.13 -0.74 0.93 -1.41
std. -4.05 7.69 7.09 -7.00 -7.01 15.00 9.00 -14.60 -9.62 10.53

4 adj. -0.65 0.70 0.75 4.37 2.61 0.94 4.62 1.76 4.02 1.75
std. -6.28 12.07 7.18 -7.71 -4.74 12.09 9.62 -10.58 -3.84 12.25

5 adj. 0.75 -0.50 4.16 4.51 2.29 -5.35 1.04 0.21 0.96 -0.42
std. -23.30 16.34 25.03 -14.48 -24.12 11.81 21.36 -20.46 -27.82 16.96

6 adj. 2.21 -0.03 -1.20 -2.66 -4.41 -4.85 2.66 -0.67 -4.27 0.39
std. -8.10 16.36 9.60 -20.87 -16.75 12.43 13.27 -18.46 -16.80 16.82

7 adj. 7.93 5.69 9.33 12.52 8.80 9.50 9.22 7.10 7.30 13.31
std. -45.85 50.54 49.23 -41.37 -49.97 51.17 47.32 -52.19 -56.04 52.61

8 adj. 0.06 -1.79 -0.17 2.04 0.08 -0.61 2.02 -0.24 0.42 -1.47
std. -21.05 14.17 20.78 -14.91 -21.25 15.11 22.32 -17.50 -21.40 15.05

Table 7. Estimation of Cov
[
x1(t), x2(t)

]
over adj.; difference from simulation

Exp. Time
# type 6 7 8 9 10 11 12 13 14 15

1 adj. -12.00 -5.08 -9.57 -18.15 -9.48 -10.91 -5.76 -1.24 -3.10 -2.03
std. 49.47 -20.54 -28.92 -6.61 35.86 -25.69 -21.25 6.58 36.03 -14.04

2 adj. -15.19 -4.39 -9.89 -7.40 -10.49 -8.76 -6.09 -7.50 -4.81 0.90
std. 38.21 -13.72 -16.37 6.60 27.72 -16.08 -10.74 4.81 29.09 -4.71

3 adj. -2.93 -5.13 -3.47 -4.45 -2.58 -5.58 -1.78 -2.63 0.32 -3.80
std. 37.28 -14.23 -7.63 9.48 28.60 -12.58 -4.81 9.25 28.44 -8.72

4 adj. -16.78 -5.06 -0.41 -0.63 5.79 -2.72 3.03 -1.50 5.91 -2.11
std. 21.08 -13.76 -3.38 13.17 30.93 -8.53 1.24 10.40 29.73 -5.99

5 adj. -11.21 -7.95 -0.98 -5.45 -7.17 -13.04 -5.12 -5.41 -3.60 -7.30
std. 100.00 -4.36 -11.86 19.11 52.47 -16.14 -15.25 13.33 46.73 -11.80

6 adj. -3.61 2.87 -0.40 -3.34 -4.23 -2.08 -0.87 -0.09 -6.08 2.52
std. 95.91 -30.60 -41.94 26.42 93.38 -36.81 -41.84 28.92 93.14 -30.60

7 adj. -5.94 -5.85 0.97 -2.30 -2.63 2.14 2.75 -15.02 -12.12 -9.90
std. 57.03 11.72 22.98 24.55 42.82 20.77 24.91 11.42 33.11 14.63

8 adj. 6.42 0.38 -8.32 -5.35 4.03 6.00 -4.38 5.43 5.73 -15.89
std. 71.65 -22.00 -30.97 23.00 66.81 -14.74 -25.75 30.19 66.70 -42.77
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Table 8. Estimation of V ar
[
x2(t)

]
over time; difference from simulation

Exp. Time
# type 6 7 8 9 10 11 12 13 14 15

1 adj. 5.37 10.58 5.05 -0.43 0.17 -1.26 -0.49 0.22 1.06 3.48
std. 33.13 29.99 -16.71 -6.54 20.04 14.46 -15.56 -2.42 21.71 18.92

2 adj. 2.43 7.55 2.16 -4.56 -0.80 0.66 -1.39 -2.17 -0.58 1.54
std. 14.93 12.50 -15.93 -11.18 7.57 4.35 -13.86 -5.86 9.61 5.96

3 adj. -2.82 9.06 2.16 -2.74 0.72 3.39 1.65 3.42 3.82 3.03
std. 3.14 8.16 -13.75 -7.76 6.63 2.89 -9.48 0.27 10.46 5.28

4 adj. -3.45 3.60 0.54 -5.28 -1.15 1.10 -0.41 0.44 0.38 0.65
std. -2.85 -0.87 -13.49 -8.48 3.68 0.36 -9.05 -1.20 6.52 1.55

5 adj. 6.80 5.83 2.85 0.28 0.16 0.97 0.05 -0.19 1.20 1.24
std. 100.00 63.29 -14.34 -1.32 28.92 22.89 -20.40 -5.91 24.08 16.17

6 adj. 10.02 13.30 4.08 4.66 11.23 9.03 1.55 12.40 10.59 9.95
std. 97.96 3.94 -39.20 55.02 96.58 -1.78 -41.49 59.04 96.51 -0.47

7 adj. -11.51 -4.29 -5.94 -8.15 -8.22 -8.18 -8.07 -6.98 -8.76 -12.30
std. 30.39 4.97 -24.06 3.38 27.23 5.82 -16.49 8.18 28.48 3.15

8 adj. -1.57 2.12 2.95 -2.75 0.43 1.81 0.52 1.54 3.77 0.84
std. 52.96 53.03 20.08 27.87 43.84 46.93 21.02 31.76 45.23 45.18
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APPENDIX B

MATHEMATICAL DERIVATION FOR CHAPTER 5

B.1. Derivation of functions gηi (t, x)’s

Since fi(·, ·)’s except f2(·, ·) are linear or constant,

gηi (t, x) = ηfi(t, x/η) for i ∈ {1, 3, 4, 5}.

Now, we derive gη2(t, x).

gη2(t, x) = ηE

[
µ
{(xη1(t)

η
− E

[xη1(t)
η

]
+
x1
η

)
∧
(xη2(t)

η
− E

[xη2(t)
η

]
+
x2
η

)}]
= E

[
µ
{(
xη1(t)− E[xη1(t)] + x1

)
∧
(
xη2(t)− E[xη2(t)] + x2

)}]
Let y(t) = (xη1(t)− E[xη1(t)] + x1)− (xη2(t)− E[xη2(t)] + x2).

= µ
[
E[(y(t) ∧ 0)Iy(t)≤0]] + x2

]
= µ

[
(x1 − x2)Pr[y(t) ≤ 0] + x2

−ση2(t) 1√
2πση(t)

exp

(
− (x1 − x2)2

2ση2(t)

)]

= µ

[
x1Pr[y(t) ≤ 0] + x2Pr[y(t) > 0]

−ση2(t) 1√
2πση(t)

exp

(
− (x1 − x2)2

2ση2(t)

)]
.
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