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ABSTRACT 

 

The Hybrid Integration of Arsenic Trisulfide and Lithium Niobate Optical Waveguides 

by Magnetron Sputtering.  

(May 2011) 

Wee Chong Tan, B.Sc., University of Saskatchewan; M.Sc., University of Saskatchewan 

Chair of Advisory Committee: Dr. Christi K. Madsen 

 

It is well known that thermally evaporated a-As2S3 thin films are prone to oxidation 

when exposed to an ambient environment. These As2O3 crystals are a major source of 

scattering loss in sub-micron optical integrated circuits. Magnetron sputtering a-As2S3 

not only produces films that have optical properties closer to their equilibrium state, the 

as-deposited films also show no signs of photo-decomposed As2O3. The TM propagation 

loss of the as-deposited As2S3-on-Ti:LiNbO3 waveguide is 0.20 ± 0.05 dB/cm, and it is 

the first low loss hybrid waveguide demonstration.  

 

Using the recipe developed for sputtering As2S3, a hybrid Mach-Zehnder interferometer 

has been fabricated. This allows us to measure the group index of the integrated As2S3 

waveguide and use it in the study of the group velocity dispersion in the sputtered film, 

as both material dispersion and waveguide dispersion may be present in the system. The 

average group index of the integrated As2S3 waveguide is 2.36 ± 0.01.  
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On-chip optical amplification was achieved through thermal diffusion of erbium into X-

cut LiNbO3.  The net gain measured for a transverse magnetic propagation mode in an 

11 μm wide Er:Ti:LiNbO3 waveguide amplifier is 2.3 dB ± 0.1 dB, and its on-chip gain 

is 1.2 ± 0.1 dB/cm. The internal gain measured for a transverse electric propagation in an 

7 μm wide Er:Ti:LiNbO3 waveguide amplifier is 1.8 dB ± 0.1 dB and is among the 

highest reported in the literature. These gains were obtained with two 1488 nm lasers at 

a combined pump power of 182mW.   

 

In order to increase further the on-chip gain, we have to improve the mode overlap 

between the pump and the signal. This can be done by doping erbium into As2S3 film 

using multi-layer magnetron sputtering. The Rutherford backscattering spectroscopy 

shows that the doping of Er:As2S3 film with 16 layers of erbium is homogeneous, and 

Raman spectroscopy confirms no significant amount of  Er-S clusters in the sputtered 

film. The deposition method was used to fabricate an Er:As2S3 waveguide, and the 

presence of active erbium ions in the waveguide is evident from the green luminescence 

it emitted when it was pumped by 1488 nm diode laser.  
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1. INTRODUCTION 

 

1.1 Background 

Today, the field of optics is expanding at an explosive rate. The arrival of optical 

communications, personal computers, and digital television around the world has placed 

a heavy burden on materials and devices for signal transmission and processing. In 

telecommunication, the benefits of optical techniques for signal processing and 

transmission have already changed our lives in a major way by giving us access to the 

information superhighway.  

 

At the same time, an intense research effort is currently under way to integrate multiple 

optical technologies onto a single chip to make smaller, faster and more power-efficient 

microprocessor chips than is possible with conventional technologies. Major chip 

manufacturer has started to integrate electrical and optical devices on the same piece of 

silicon, enabling computer chips to communicate using pulses of light instead of 

electrical signals. The following sections describe the current effort taken by two of the 

technology leader in the semiconductor industry. 

 

 

                                                 
This dissertation follows the style of Journal of Applied Optics. 
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1.1.1 The 50Gbps Silicon Photonics Link (by Intel) 

Although innovations over recent years have enormously increased the speed of 

computational processes, as well as Internet bandwidths, the current technology leader, 

Intel Corporation, feels that the technologies that are currently in use for data transfer are 

already encountering their physical limits. According to Intel, there are two areas, 

namely data transfer via the Internet, and data transfer within and between microchips, in 

which new technology is needed in order to be able to maintain the speed of innovation 

into the future [1].  

 

Firstly, data streams within the Internet have now reached immense proportions, and 

data traffic is growing from day to day. The result is a data traffic jam at the distributor 

center, where the data is first converted into electronic signals, sorted by routers and 

switches, and converted back into optical signal before being forwarded to the correct 

recipient. This is laborious, expensive and uses a lot of energy. An integrated optical 

receiver chip that could process the optical signals directly would work much faster and 

use less energy.  

 

Secondly, the current technology for data transfer via metal conductor paths within 

computers, either between individual processor cores or the processor and the main 

memory, is also reaching its limits due to problems brought about by the close proximity 

of processors, memory and IO units (e.g. parasitic capacitance and heat dissipation) in 

the computer. Due to signal degradation that comes with using metals such as copper to 
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transmit data, the problem cannot be solved by simply placing those units far apart from 

one another. This therefore limits the design of computers, forcing processors, memory 

and other components to be placed just inches from each other. What is the use of an 

extremely fast processor core if it cannot transfer its data as quickly as it can process! In 

addition, high-speed electrical communication produces electromagnetic waves that 

interfere with neighboring electrical operations, since each tiny wire in a computer can 

act as an antenna. With optical communications, not only would interference and heating 

be reduced, developing low-power chips is also easier because there is less need to 

overpower all the interference. An integrated optical transmitter chip would not only 

permit today's supercomputers, which is housed in big cabinets and linked together in 

enormous halls, to be shrunk down to the size of a notebook, but would also 

revolutionize system design for microcomputer in such a way that a future data rate of 

more than one Terabit per second (Tbps) can be achieved using low-cost manufacturing 

techniques familiar to the semiconductor industry.  

 

An integrated optical transmitter chip is shown in Fig. 1. In the upper left of the figure is 

the prototype of the transmitter module. It is flipped over to show the bonding pads. The 

block diagram in the same figure illustrates how the electrical signal from four data 

channels are being converted into a 50Gbps optical signal for transmission over a single 

optical fiber by the integrated optical circuit. The transmitter chip is composed of four 

hybrid silicon lasers, whose light beams each travel into an optical modulator that 

encodes data onto them at 12.5Gbps. The hybrid silicon laser is created by bonding 
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indium phosphide (InP) onto silicon. Each of the lasers has its own emitting wavelength 

which is determined by the grating pitch that is etched into the silicon. The light is first 

emitted by the indium phosphide when it is electrically stimulated. It then bounces back 

and forth, undergoing stimulated emission in the InP based material. The modulator is 

based on a Mach-Zehnder interferometer with a reverse-biased pn junction in each of the 

arms. When a reverse voltage is applied to the junction, free carriers are pulled out of the 

junction, changing its refractive index via the free-carrier effect [2]. The intensity of the 

light transmitted through the Mach-Zehnder interferometer is modulated by modulating 

the phase difference between the interferometer’s two arms [3]. The optical multiplexer 

can be an arrayed waveguide grating, which uses constructive and destructive 

interference to combine light wave of different wavelength, an Echelle grating that is 

based on diffraction principles, or a device made up of a cascade of asymmetric Mach-

Zehnder interferometers [4]. 
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Fig. 1. An integrated optical transmitter chip. In the upper left of the picture is the 
physical prototype of the transmitter module. It is flipped over to show the bonding pads. 
The block diagram illustrates how the electrical signal from 4 data channels are 
converted into a single 50Gbps optical signal. (Courtesy of Intel [5]) 

 

 

The Fig. 2 shows an integrated optical receiver chip. In the upper right of the picture is 

the prototype of the receiver module with the device flipped over to show its bonding 

pads. The block diagram in the same figure illustrates how the electrical signal from 4 

data channels are being recovered from a single optical fiber. The working principle of 

the demultiplexer is similar to the multiplexer while the photodetector is a silicon-based 

avalanche photodetector (APD) [6].  
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Fig. 2. An integrated optical receiver chip. In the upper right of the picture is the 
physical prototype of the receiver module. It is flipped over to show the bonding pads. 
The block diagram illustrates how the electrical data from 4 channels are being 
recovered from the 50Gbps optical signal transmitted by a single fiber.  (Courtesy of 
Intel [5]) 

 

 

The silicon photonics data link prototype presented in 2008 worked with eight channels, 

i.e. eight modulators, eight lasers and eight demodulators on one chip. Each of these was 

able to transfer 25Gbps, amounting to a data throughput of 200Gbps. The 1000Gbps or 

1Tbps tera-scale microchip that will be presented soon contains 25 channels, each with a 

throughput of 40Gbps. The chip will be used in optical telecommunications to avoid the 

bottlenecks in internet data transfers. The diagram in Fig. 3 shows how the prototype can 

be scaled up or scaled out to achieve a data rate of more than 1Tbps. 
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Fig. 3. The path to tera-scale data transfer rate. The diagram illustrates the different ways 
to increase the data rate of the prototype from 50Gbps to more than 1Tbps (Courtesy of 
Intel [5]). 

 

 

1.1.2 Silicon Integrated Nanophotonics (by IBM) 

Although both Intel (July 27, 2010) and IBM (December 1, 2010) announced advances 

in the quest to use light beams to replace the use of electrons to carry data in and around 

computers, there are some difference in their approach toward this objective at the 

moment. One of the major differences is that Intel started off by making its CMOS and 

nanophotonic devices separately and then bonding them together, while IBM begin by 

trying to integrate them all on the same piece of silicon. According to IBM, this future 

3D-integated chip consists of several layers connected with each other with very dense 
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and small pitch interlayer vias. The lower layer is a processor itself with many hundreds 

of individual cores. Memory layers are bonded on top to provide fast access to local 

caches. On top of the stack is the photonic layer with many thousands of individual 

optical devices (modulators, detectors, switches) as well as analogue electrical circuits 

(amplifiers, drivers, latches, etc.). The key role of a photonic layer is not only to provide 

point-to-point broad bandwidth optical link between different cores and/or the off-chip 

traffic, but also to route this traffic with an array of nanophotonic switches [7].  

 

IBM's technology today consists of an optical transceiver unit with six optical 

communication links. The optical chip itself has more than one transmitter and receiver, 

each capable of handling six channels of data through the multiplexing technology. Also 

built in are modulators, which control the laser that generates the light signals. The laser 

itself is a separate component. Each modulator can manage bandwidth of 20Gbps, a 

major step toward IBM's goal of a chip with an aggregate capacity 1Tbps. For reference, 

today's conventional Ethernet operates at 1Gbps and sometimes at 10Gbps in higher-end 

servers. A capacity of 1Tbps would be enough to transfer the data of 26 DVDs in a 

second. The nanoscale silicon photonics circuits that are being developed here are 

targeted to enable the monolithic integration of complete optical systems on a 

semiconductor chip [8]. 
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The role of an integrated optical circuit will only expand further when the advances in 

the integration of various optical functions finds its way into sensor applications in 

transportation, medicine, biotechnologies, and environmental pollution detection. 

 

1.2 Lithium Niobate as a Substrate for Integrated Optical Circuits 

Lithium niobate as a substrate is a very versatile material for integrated optics. An array 

of new optical devices based on this material, including waveguide structures, electro-

optical wavelength filters and polarization controllers, lasers with remarkable properties, 

nonlinear frequency converters of exceptional efficiency, ultrafast all-optical signal 

processing devices and single photon sources have been demonstrated to date [9].  

 

We use lithium niobate as the substrate material because it is a mature technology with 

good long-term stability, and it has a strong electro-optic coefficient that leads to low 

drive voltages. Other advantages are its low optical loss and its capability to operate at 

high frequencies. For example, high speed LiNbO3 based modulator operating at 40Gbps 

had already been demonstrated in 2000, while Intel researchers were only able to match 

this speed with a silicon modulator in 2007 [10]. Optical modulators are essential in any 

signal processing system and are used to encode a high-quality data signal onto an 

optical beam, effectively by turning the beam on and off rapidly to create ones and zeros. 

Before the year 2004, no one had built an optical modulator from silicon that was faster 

than about 20 MHz. 
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Although silicon photonics have reach an important milestone in the fabrication of 

integrated optical circuits, the followings components are still missing in the technology. 

They are ultra-low threshold lasers (low power is key), high power optical amplifiers, 

short pulse mode locked lasers, optical isolator, polarizer, and polarization controller. 

Among those listed, LiNbO3 based isolator, polarizers, and polarizer controller, are very 

serious contenders because LiNbO3 by nature is birefringent, where light of different 

polarization will travel at different speed inside the material depending on how the wafer 

is diced. We described in the following the various components that LiNbO3 based 

devices has an advantage over silicon photonics. 

 

One important aspect of optical signal is the state of polarization, or the way in which an 

electromagnetic wave is restricted in the direction of vibration. A polarizer is a device 

that converts a beam of electromagnetic waves (light) of undefined or mixed polarization 

into a beam with well-defined polarization. The common types of polarizers are linear 

polarizers and circular polarizers. Polarizers are used in many optical techniques and 

instruments. Since LiNbO3 is by nature birefringent, polarization angle in a LiNbO3 

based waveplate can be easily fabricated by cutting the wafer in certain way, e.g. 

rectangular or wedge shaped.  

 

Optical fibers are not perfectly circular, and the polarization is split into two different 

components that propagate at different speeds. Polarization mode dispersion (PMD) is a 
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form of modal dispersion where two different polarizations of light in a waveguide, 

which normally travel at the same speed, travel at different speeds due to random 

imperfections and asymmetries, causing random spreading of optical pulses. Unless it is 

compensated, which is difficult, this ultimately limits the rate at which data can be 

transmitted over a fiber. A polarization controller is used to continuously rotate the 

polarization of input beams of electromagnetic energy at a certain, predetermined angle. 

Other than being used to compensate for PMD in fibers, a polarization controller or 

rotator is also used in an optical isolator and multiplexer. Many LiNbO3 based 

polarization controllers have been demonstrated [11, 12]. Other than polarization 

controllers, LiNbO3 based isolators have also been demonstrated [13]. An optical isolator 

is an optical component which allows the transmission of light in only one direction. It is 

typically used to prevent unwanted feedback into an optical oscillator, such as a laser 

cavity.  

 

Besides its versatility, the fabrication process of an optical channel waveguide with low 

insertion and propagation loss in lithium niobate has been well-studied. It is reliable and 

has been used for more than 10 years. Typical lithium niobate waveguides are made 

using titanium-indiffusion or proton exchange. The resulting waveguides have low 

optical confinement and are weakly guiding structures with relatively large waveguide 

cross-sections and thus large mode distributions. This effectively means they can only 

achieve low loss for bend radii larger than about one centimeter in the 1400 nm to 1620 

nm wavelength range without incurring excess loss. This bend radius restriction 
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substantially limits the number of optical devices and functions operating in the low loss 

optical fiber transmission wavelength window that can be fabricated on a single 

substrate. Consequently, the type and quality of optical filtering that can be realized on-

chip is exceedingly limited [9]. However, this problem can be resolved with the 

integration of As2S3 waveguides on top of the LiNbO3.  

 

1.3 Arsenic Trisulfide as an Optical Material for Integrated Optics 

Amorphous As2S3 (a-As2S3) belongs to a group of amorphous semiconductors called the 

chalcogenide glasses, which contain a non-oxide group VI element (S, Se, or Te) as one 

of their components. It is photosensitive when exposed to near bandgap energy (Eg ~ 

2.35 eV) and has a wide optical transmission band extending roughly from 0.7 to 10 m. 

It's high refractive index and low processing temperatures allow very compact optical 

interconnects to be fabricated on different substrate materials, and their nonlinear 

coefficient is two orders of magnitude larger than that of silica  [14-16].  This property 

has gained increasing recognition and has led to a number of recent demonstrations of 

all-optical processes including switching, regeneration, wavelength conversion, 

amplification, lasing, pulse compression, and slow light [17]. All these properties make 

a-As2S3 an attractive candidate for advancing the next generation of integrated optics 

and biochemical sensors [18-23].  

 

Being a glass, the chalcogenides are a versatile platform. Apart from bulk optic 

components, chalcogenide glass fiber and planar waveguide devices have been 
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developed. Importantly chalcogenide glasses can be formed with a variety of 

compositions and doped with additional elements, e.g. rare earth elements, to provide 

further functionality [24-26].  

 

The main reasons a chalcogenide host such as As2S3 is particularly suited as a host for 

erbium are that it has very low phonon energies and it does not inherently contain any 

hydroxyl or silicon oxide groups. Hosts with low-phonon energy hosts are desired for 

rare-earth ions because multi-phonon relaxation pathways can result in a rapid 

depopulation of the upper excited state and cause quenching of the photoluminescence.   

 

On the other hand, hosts with inherent hydroxyl or silicon oxide groups will not only 

exhibit optical absorption at around 950 nm, 1240 nm, and 1400 nm, the presence of the 

IR absorption of Si-O species will also introduce a band-tail, which marks the long-

wavelength limit of the second telecommunications window. Furthermore, the presence 

of impurities also causes Rayleigh scattering which determines the short wavelength 

limit of the amplifier.  

 

From here, we can see that if a chalcogenide glass such as As2S3 is doped with erbium,  

the devices fabricated with this material can potentially access the entire 

telecommunications spectrum from 1200 nm wavelength to 1600 nm wavelength thus 

enabling access to an extra 100 nm or 25 % more wavelength channels over silica based 

devices [27].  
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1.4 Erbium as a Material for Optical Amplification 

Erbium is a chemical element in the lanthanide series, with the symbol Er and atomic 

number 68. A silvery-white solid metal when artificially isolated, natural erbium is 

always found in chemical combination with other elements on Earth. This lanthanide 

series begins with the element lanthanum (Z = 57) and ends with the elements lutetium 

(Z = 71).  The elements of this series are generally found in the +3 oxidation state and 

the 4f shell can accommodate a total of 14 electrons.   

 

The lanthanides display a very interesting property in its electronic configuration due to 

the shielding of the partially filled 4f shell by the electrons on the outer shells.  This 

shielding has the effect that the energy levels of this 4f shell are largely insensitive to the 

environment that they reside in.  As a result, the atomic-like energy levels of the rare-

earth element do not drastically change as they are inserted into a crystalline or 

amorphous host material.  Due to these unique optical properties, the elements in the 

lanthanide series are often employed in a wide variety of host matrices as a dopant that 

will provide the host material with their unique features without altering the properties of 

its host drastically.  

 

From among the lanthanides series, the element erbium has emerged as one of the most 

important rare-earth elements for telecommunications.  The Er3+ ion contains 11 

electrons in its 4f shell and the ground state is labeled as 4I15/2.  The electrons from this 
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ground state can be promoted to any one of the higher energy states through the 

absorption of a photon with a corresponding energy.  The trivalent erbium ion, Er3+, 

exhibits a strong emission band that is situated around 1535 nm wavelength from the 

emission of a photon due to the transition of an electron from the 4I13/2 meta-stable state 

to the 4I15/2 ground state.  The 4I13/2 is the meta-stable state that exhibits long luminescent 

lifetimes, which enable this atom to sustain population inversion long enough for an 

efficient amplification process to be carried out in this material [27]. 

 

One of the most important applications of erbium today is its inclusion into silica to form 

the erbium doped fiber amplifier (EDFA).  The EDFA has become a very important 

component in optical telecommunications as they are routinely used for signal boosting 

during long-distance signal transmission to maintain signal quality.  The EDFA is 

particularly attractive because it allows the amplification of an optical signal without the 

need to first convert the optical signal into an electrical signal before the amplification. 

This resulted in a dramatic simplification of the equipment used in the overall network.  

Moreover, with the advent of high-capacity communication network that employs 

wavelength division multiplexing to increase the number of channels carried by the 

signal, erbium’s unique broad gain spectrum in the telecommunication window help 

makes EDFAs an essential and integral part of any existing long-haul optical data carrier 

network in used today.   
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Due to its prominence in the telecommunications field, great research effort has been 

placed on Er-doped materials.  The host materials for the Er can be crystalline, such as 

Si, SiC, GaAs, and LiNbO3 (lithium niobate) or amorphous, such as silica, alumina and 

in chalcogenide glasses.  All of these systems have advantages as hosts for the Er3+ ions.  

However, we will pay particular attention to the advances of erbium doping in LiNbO3 

and As2S3 hosts because of the interest in these materials in our current work.  

 

1.5 Sputtering as a Deposition Method for As2S3 Waveguide 

Thin film deposition basically can be divided into physical vapor deposition or chemical 

vapor deposition. Currently, the more popular methods for depositing As2S3 film involve 

the use of a physical vaporization technique. Physical vapor deposition (PVD) is a 

general term used to describe any deposition methods which deposit thin films by the 

condensation of a vaporized form of the material onto a substrate. In other words, As2S3 

material in its bulk or pallet form is first vaporized into the gas-phase and then 

subsequently collected onto a substrate to form a thin film.  Some of the more common 

PVD methods are electron beam evaporation, thermal evaporation, pulsed laser 

deposition, and magnetron sputtering. 

 

Electron beam evaporation is a physical vapor deposition in which the material to be 

deposited is heated to a high vapor pressure by electron bombardment in high vacuum, 

Thermal evaporation is similar to electron beam but the material to be deposited is 

heated to a high vapor pressure by electrically resistive heating in relatively lower 
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vacuum. Pulsed laser deposition is also a PVD in which a high power laser ablates 

material from the target into a vapor. Lastly, in magnetron sputtering, a highly localized 

glow plasma discharge bombards the material and sputters some material away as a 

vapor. These various types of vaporization techniques can be divided into two main 

categories that depend on the gas-phase species that are generated.   

 

The first category of vaporization techniques uses a highly intense energy source that 

interacts with the As2S3 precursor for a very short time. Due to the short interaction time 

between the incident energy source and the source material, local heating is dominant 

and complete thermal fragmentation of the material cannot be achieved.  Therefore, 

these vaporization techniques do not cause any significant bond dissociation or 

rearrangement in the material that is emitted or ejected from the source.  The technique 

that exhibits this behavior is magnetron sputtering, where fast ion-bombardment impacts 

and dislodges material into the gas-phase, with a chemical composition and structure that 

is similar to that of the precursor at the source.  Although there are some who would put 

electron beam evaporation and pulsed laser deposition into the same category as 

magnetron sputtering, in the case of an As2S3 film, they actually belong to the category 

best represented by thermal evaporation [27]. This observation is based on the optical 

properties reported for As2S3 film prepared by these techniques and will be made clear in 

section three.  
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In contrast to the first, the second category of vaporization techniques is known for 

producing As2S3 films that are significantly different both chemically and structurally 

from the As2S3 precursor. It is best described by the thermal evaporation deposition.  As 

mentioned earlier, thermal evaporation is similar to electron beam evaporation except 

that the As2S3 to be deposited is heated to a high vapor pressure by electrically resistive 

heating. It is a well-known technique used for producing photosensitive thin films of 

As2S3. This vaporization technique involves the use of an oven which allows the 

precursor at the source to be thermally heated in a slow and controllable manner, thus 

enabling a more complete fragmentation of the precursor glass to take place. In this 

process, the As2S3 glass precursor, usually in pallet form, is thermally heated in a high-

vacuum environment until it evaporates into the gas-phase. Fig. 4 shows the schematic 

diagram of a thermal evaporator for the deposition of amorphous selenium film.  
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Fig. 4. Schematic diagram of a thermal deposition system. The figure shows the typical 
features of an evaporator and the deposition process of an amorphous selenium film 
[28].  

 

During the evaporation process of As2S3, the precursor glass defragments and rearranges 

in the gas-phase to yield individual molecular fragments or “monomers”.  Due to the 
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random gas-phase fragmentation process, a host of arsenic and sulfur molecules can be 

identified in the gas-phase.  However, the most abundant molecular fragments that have 

been identified in the gas-phase, and collected on the substrate, are the molecules of S8, 

As4S4 and As4S6. Once the As2S3 precursor has been fragmented into this monomer 

form, it can then be re-polymerized via the use of light sources with sufficient photon 

energies.  The entire thermal evaporation process takes place in a high vacuum chamber 

to reduce contamination from oxygen and water, and also serves to lower the boiling 

point of the As2S3 precursor thus allowing lower heating temperatures to be used.  Using 

this method, it is possible to produce thin films composed of molecules that are 

chemically and structurally different from the original bulky As2S3 [27]. 

 

Although thermal evaporation seems to be an ideal method for producing a 

photosensitive film, it has some serious disadvantages when it is used in the fabrication 

integrated As2S3 waveguide. Again, this will be explained in section three where we will 

show why magnetron sputtering is more superior to other methods when it comes to the 

deposition of As2S3 thin film for making integrated optics. 

 

1.6 Research Objective and Dissertation Outline 

The main purpose of this work is to demonstrate the viability of the fabricating As2S3 

waveguides with magnetron sputtering and also the feasibility of integrating them on 

LiNbO3 substrate with on-chip optical amplification. 
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The dissertation is divided into a total of six sections.  Following this introductory 

section, a brief literature review of amorphous semiconductors, chalcogenide glass, and 

As2S3, will be given in Section 2. The magnetron sputtering of As2S3 thin film and the 

fabrication process of a hybrid straight waveguide and an integrated Mach-Zehnder 

interferometer can be found in Section 3. Section 4 will describe in detail how on-chip 

amplification can be achieved with the diffusion of erbium into the substrate and section 

5 introduces the novel method of doping erbium into As2S3 thin film by multi-layer 

magnetron sputtering. Section 6 summarizes all the findings and provides the 

conclusions of this work. 
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2. A LITERATURE REVIEW ON AMORPHOUS ARSENIC TRISULFIDE 

 

2.1 Background 

In order to gain some measure of understanding of the unique electronic and optical 

properties of amorphous arsenic trisulfide, a theoretical grasp of the energy band 

structure of an amorphous semiconductor is required. This can be done by applying 

quantum mechanics to an amorphous system. However, due to the absence of 

periodicity, or more specifically the loss of long range order in an amorphous material, 

quantum mechanical methods that so effectively predict the behavior of crystalline 

semiconductors become mathematically too complex to apply in such a system. As a 

result, the behavior of an amorphous semiconductor cannot be derived in the same 

manner as in a crystalline material but are determined by studying the energy band 

structure that was mapped from observations obtained from various rigorous 

experiments. The section will begin with a brief introduction to an amorphous solid in 

general before narrowing down to the discussion of chalcogenide glasses and 

specifically amorphous arsenic trisulfide. Part of the theory reported in this section is 

reprinted from the reference in the literature [28].  

 

2.2 The Atomic Structure of Amorphous Solids 

All solids that do not have long range periodicity in their arrangement of its atoms can 

be termed as amorphous or “structureless”. They are best defined when compared to a 

crystalline solid which has a distinctive regular spatial arrangement of atoms throughout 
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the whole material. In fact they are often simply referred to as non-crystalline materials. 

Although their structure appears random over the long range, an amorphous substance 

still has a high degree of short range spatial order in its atomic structure. This is because 

individual atoms in an amorphous solid must still fulfill their requirement for valence 

bonding. However, unlike their crystalline counterpart, there are some small deviations 

in the bonding angles between adjacent atoms and this leads to a disruption of the 

periodicity in the material. Fig. 5 illustrates the difference between a crystalline and an 

amorphous solid.  

 

2.3 Band Theory of Amorphous Semiconductors 

Although an amorphous semiconductor is a non-crystalline material, the band theory of 

amorphous semiconductors is closely related to its crystalline counterpart. The theory 

was called the band theory because when quantum mechanics was applied to a crystal, 

bands of allowable energy states were brought into existence. Besides these bands of 

allowable states, which are often grouped into two principle bands labeled as the valence 

and conduction bands, there is also a bandgap separating the two bands where no 

electron states can exist. Very often the density of states (DOS) diagram is used to 

explain or predict the properties of a material in the band theory. It denotes the number 

of electron states per unit energy per electron, g(E), a material will have at an energy 

level and is used successfully to describe many of the characteristics found in a 

crystalline semiconductor.  
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Fig. 5. An illustration of a crystalline and an amorphous solid. Two dimensional 
representation of the structure of (a) a crystalline solid and (b) an amorphous solid. 
Atoms marked “O” represent over-coordinated atoms with more than usual numbers of 
bonding with adjacent atoms and “U” represent under-coordinated atoms with less than 
the usual number of bonds with adjacent atoms. 

 

 

When it was discovered that amorphous and crystalline semiconductors shared the same 

basic electronic and optical properties, it immediately led to the thinking that the DOS of 

the amorphous semiconductor might be similar to that of its crystalline counterpart and 

not completely different as it was thought initially. This can be seen in the three popular 

density of states models proposed shown in Fig. 6. In the figure, the hatched regions 

denote localized states, which is different from the extended states in the conduction 

band. As can be seen in the Fig. 6 (a), the energy bandgap of a crystalline semiconductor 

is defined as Eg = Ec - Ev, where the starting energy level of the conduction band is 

( a )                                            ( b ) 

O

U

U

U

O

O O
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denoted as Ec and the highest energy level of the valence band is denoted as Ev. There 

are no available states within this energy gap. This is in contrast to the energy bandgap 

of an amorphous semiconductor shown by the three models in Fig. 6 (b), (c), and (d). In 

all of these models, the energy gap where no states are available is always smaller than 

the bandgap of a crystalline semiconductor, Eg = Ec - Ev. The energy bandgap of an 

amorphous semiconductor is usually refers to as the optical bandgap and can be obtained 

from an optical spectrometer [28]. Lastly, the Fermi level, EF, in the figure represents the 

energy of the highest occupied quantum state an electron can have at absolute zero 

temperature.  

 

One important difference between crystalline and amorphous semiconductors is the 

existence of localized states in the mobility gap. Unlike the extended states found in the 

two principal bands, electrons in the localized states are not free to travel anywhere in 

the material and thus have zero mobility. While some of these localized states are 

created by defects, the majorities of them are created by the loss of long range order and 

is unique to solids which are amorphous. 
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Fig. 6. Density of states model of amorphous semiconductor. (a) DOS of a crystalline 
semiconductor; (b) DOS models proposed by Mott [29], (c) DOS models proposed by 
Cohen, Fritzsche and Ovshinski (CFO) [30], and (d) DOS models proposed by Marshall 
and Owen [31]. The hatched regions denote localized states. Note: the x-axis in all the 4 
figures is logarithmic. Ec refers to the starting energy level of the conduction band and 
Ev refers to the highest energy level of the valence band. EF is the Fermi level, which 
represents the energy of the highest occupied quantum state an electron can have at 
absolute zero temperature.  
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2.4 The Optical Properties of Amorphous Semiconductors 

In general, the optical properties of a material describe how the characteristics of light 

are affected when it passes through it. The two most important optical constants are the 

refractive index n and absorption coefficient . The refractive index of an optical 

material or dielectric medium is generally defined as the ratio of the speed of light c in 

vacuum to its velocity v in the medium. In materials where an electromagnetic wave can 

lose its energy during propagation, the refractive index becomes complex. The real part 

of this complex refractive index N is the refractive index n while the imaginary part is 

referred to as the extinction coefficient K, which is related to the absorption coefficient 

through  2/cK  , where is the frequency of interest. While the importance of 

the absorption coefficient, which dictates how readily photons will be absorbed by the 

material, can be understood from the viewpoint of a photoconductor, the interest in the 

refractive index, which ultimately determines the coupling and guiding of optical signal, 

and the amount of dispersion, is important in the engineering of optical waveguides. 

Although our understanding of these two properties in amorphous semiconductors is 

limited and not complete, some perspectives on the optical properties of amorphous 

semiconductor can still be gained from the proposed models. 

 

2.4.1 The Absorption Coefficient of Amorphous Semiconductor 

The absorption edge of many amorphous compound semiconductors has the shape that 

looks like the one depicted in Fig. 7. There will be a high absorption region A, which is 
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also referred to as the fundamental absorption edge, where the absorption coefficient is 

 >104cm-1. An exponential region B, which is usually referred to as the Urbach edge 

and has values that extend over 4 orders of magnitude of  , and a weak absorption tail 

C called the Urbach tail. Very often the density of states proposed by different models 

mentioned previously in section 2.3 is used to describe optical transitions in 

semiconductors. The basic difference between models used for crystalline 

semiconductors and those used for amorphous semiconductors is the change in the 

character of the wavefunctions, some of which no longer extend over the whole volume 

of the sample but become localized over a certain volume.  

 

Many semiconducting glasses have been observed to have absorption,  that has the 

following frequency dependence in the region where the absorption is high, i.e. region A 

of Fig. 7,  

    )cm10(, 14  
ropt

gEA       (1) 

where A and r are physical constants that depend on the material properties,  is the 

energy of the photon and  g
opt is a parameter that has been called optical bandgap energy. 
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Fig. 7. A typical absorption edge of an amorphous semiconductor. In the figure, A 
represents a region where  ≥ 10

4cm-1, called the fundamental absorption edge, B 
represents a region changing exponentially, which is referred to as the Urbach edge, and 
C represents a region referred to as the weak absorption tail or Urbach tail.  g

opt is the 
optical bandgap [32]. 
 

 

In many direct bandgap crystalline semiconductors, r has been found to have a value of r 

= 2 and A = 105 to 106 cm-1 eV-1. Many amorphous semiconductors also have r = 2 (e.g. 

a-Si:H, As2Se3 etc.) while some complicated glasses have r = 3, and r = 1 for a relatively 

simple glass, such as a-Se [32, 33].  
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In the exponential region B of the absorption edge of Fig. 7, whose existence was said to 

be the evidence of the presence of localized states, the absorption coefficient was found 

to have the following properties. Firstly, it has a frequency dependency of the form: 

()  exp (h/E), where E is the energy characterizing the slope. Secondly, at low 

temperatures, usually below room temperature, the energy E is almost temperature 

independent and has, in many semiconducting glasses, the value between 0.05 eV and 

0.08 eV. While at high temperatures, E  T. Lastly, in many amorphous 

semiconductors except a-Se, parts A and B of Fig. 7 move as a whole [32]. In a 

crystalline semiconductor, similar exponential tails have been observed and these tails 

are usually referred to as Urbach edges. The theories of the Urbach edge are based on the 

idea that the sharp absorption edge is broadened by some kind of mechanism. In ionic 

crystals it is the optical phonons which are responsible for the Urbach edges. Although 

developed for crystals, the Urbach edge was successfully applied to the temperature 

dependence of the absorption edge of a-Se . 

 

Of the three absorption regions in Fig. 7, part C is the most difficult to study. This is 

because absorption at such low levels may only be apparent or false due to the 

possibility that it might be light scattering or simply noise in the system. This absorption 

tail lies below the exponential part of the absorption edge B and its strength and shape 

were found to depend on the preparation, purity and thermal history of the material, and 

vary very little with its thickness. Nevertheless it is still possible to study the optical 

transition in this region if the sample is properly prepared. This can be seen when light 
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scattering had been experimentally tested on the sample with an absorption tail shown in 

Fig. 8. In this experiment, the attenuation that is due to scattering was found to be scatter 

≈ 0.04 per cm for a sample that was free of large macroscopic inhomogeneities. This is 

about an order of magnitude lower than the absorption level in the region of the weak 

absorption tail, as can be seen in Fig. 8. Similar results were also observed for other 

chalcogenide glasses [32]. 

 

 

 
Fig. 8. The weak absorption tail of a-As2S3. The absorption edge of a-As2S3, at low 
absorption levels at various temperatures [32]. 
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There are two possible forms of optical transitions in this region, i.e. part C of Fig. 7, 

that are considered to be most probable. First, the optical transitions may be of the kind 

that corresponds to electron transitions from an impurity ion to an ion of the host lattice, 

or vice versa, that is the initial and final states are localized at different centers. Although 

one has observed formulations of similar tails in crystals, it has not been studied 

quantitatively. Second, the optical transitions may be of the kind that is similar to what 

was suggested for the exponential region B of the absorption edge in Fig. 7. This is to 

say that the initial state is localized and the final state is extended, or vice versa.  

 

In summary, Tauc compared the absorption edge of amorphous and crystalline As2S3 

and showed that the high absorption (α > 10
4 cm-1) region was mostly associated with 

transitions from localized valence band states below Ev to conduction band states above 

Ec (delocalized), or vice-versa. For 1 cm-1
< α < 10

4 cm-1, the absorption was declared to 

be due to the presence of band tail states that extends into the gap.  The third region of 

the band (α < 1 cm-1) was found to be related to the preparation, purity and thermal 

history of the material. 

 

2.4.2 Index of Refraction  

As mentioned earlier, the refractive index n of an optical or dielectric medium is defined 

as n = c/v, where c is the velocity of light in vacuum and v is the velocity in the medium. 
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In a lossy material, this refractive index becomes complex and can be expressed as 

jKnN  , where N is the complex refractive index, n is the refractive index and K is 

the extinction coefficient.  

 

The optical constants, n and K can be determined by measuring the reflectance from the 

surface of a material as a function of polarization and the angle of incidence. For normal 

incidence, the reflection coefficient, r, is obtained as  
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and thus the reflectance R is, 
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So by fitting this equation to the measured reflectance R at normal incidence, the optical 

constants, n and K can be calculated [34]. The refractive index, n is also related to the 

relative permittivity through an equation derived from the Maxwell’s equations, which is 

n = (εr μr)1/2, where εr is the static dielectric constant or relative permittivity and r is the 

relative magnetic permeability. This equation associates the dielectric properties of a 

material to its optical properties.  
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For a lossy nonmagnetic medium, where r = 1, both its refractive index and relative 

permittivity will have an imaginary component that represent the attenuation. If the 

complex static dielectric constant is given by  

rrr j           (4) 

where 
r   and 

r   are just the real and imaginary part of the complex permittivity 

respectively, then from N = (εr μr)1/2, it will become rr jjKn   , and thus either 

rKn  22
         (5) 

and 

rnK  2          (6) 

or  

2/122
])[2/1( rrrn         (7) 

and 

2/122
])[2/1( rrrK         (8) 

 

The above equations, Eq. (5) to Eq. (8), relate the complex relative permittivity of the 

material to its index of refraction regardless of the mechanism of loss. Since the optical 

properties of materials are typically presented either by showing the frequency 

dependencies of n and K or r   and r  , a link to the complex permittivity allows us to 

relate macroscopic optical properties, like n and K to a microscopic properties such as 

electronic polarizability, e. This can be done through a model used for the study of 

dielectric dispersion in material. The model is based on a single oscillator, in which the 
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electric field of the incident EM wave induces dipole oscillations in the material with a 

single resonant frequency o, in such a way that 

e
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r

N



  at1          (9) 
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
  at1         (10) 

where Nat is the number of atoms per unit volume, o is the permittivity of free space, 

and e   and e   are the real and imaginary parts of the electronic polarizability, given 

respectively by: 

 



e  eo
1 ( /o)

2

[1 ( /o )
2
]

2
 ( /o)

2
( /o)

2      (11)  

and   
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where eo is the DC polarizability corresponding to  = 0  and  is the loss coefficient 

that characterizes the attenuation of the EM wave within the material system [34]. 

 

There are several popular models describing the spectral dependence of refractive index 

n in a material. Such dispersion relationships are essential in designing photonic devices, 

such as waveguides. In the Cauchy equation, the dispersion relationship is commonly 

described as follows: 

42 

CB
An          (13) 
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where A, B and C are material dependent constants determined through curve fittings, n 

is the refractive index and   is the wavelength. It is typically used in the visible 

spectrum region for various optical glasses. Besides Cauchy’s dispersion model, there is 

also the Sellmeier equation, which is an empirical formula made up of a series of lossless 

single dipole Lorentz oscillator terms, each of which having the same wavelength 

dependence of the type )/( 222

i   with different strengths, i.e.  

...1
2

3

2

2

3

2

2

2

2

2

2

1

2

2

12 



















 AAA
n       (14) 

where the Sellmeier coefficients, ii andA  , with integer i = 1,2,3,…, are determined 

through curve fitting. Since any number of resonance type or oscillator terms can be 

summed together to get as wide a range of wavelength dependence as possible with this 

model, it is the most popular dispersion relation. Its main drawback is that it does not 

accurately represent the refractive index when there is a contribution arising from free 

carriers in narrow bandgap or doped semiconductors [34].  

 

Another model that is based on the single oscillator is the Wemple-DiDominico equation. 

It is a semi-empirical dispersion relation for determining the refractive index at photon 

energies below the inter-band absorption edge. It is expressed as: 
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where  is the frequency, h is the Planck constant, Eo is the single oscillator energy and 

Ed is the dispersion energy which measures the average strength of inter-band optical 
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transitions. It is given by Ed = NcZaNe (eV), where Nc is the effective coordination 

number of the cation nearest-neighbor to the anion, Za is the formal chemical valency of 

the anion, Ne is the effective number of valence electrons per anion excluding the cores, 

and  is a two-valued constant that depends on whether the inter-atomic bond is ionic or 

covalent (i= 0.26 ± 0.03eV and c= 0.37 ± 0.04eV respectively). It was said that Ed 

(corrected for differences in densities) depends on the short range order only and is the 

same in the crystalline and amorphous forms if the short-range order (the first 

coordination number) is the same [35]. 

 

The refractive index of a semiconductor (typically for h< Eg) usually decreases with 

increasing energy bandgap Eg. There are various empirical and semi-empirical rules and 

expressions that relate n to Eg. In the Hervé-Vandamme relationship [36], 
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where A and B are constants, typically A  13.6eV and B  3.4eV.  The temperature 

dependence of n arises from the variation of Eg with temperature T and typically 

increases with increasing temperature. 

 

2.5 Photoinduced Phenomena in Chalcogenide Glasses  

Chalcogenide glasses (ChG) are amorphous semiconductors formed by the addition of 

other elements such as As, Ge, or Ga, into chalcogen elements, S, Se, and Te. These 

glasses have low phonon energy and are generally transparent from the visible up to 
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infrared. They are sensitive to the absorption of electromagnetic radiation and show a 

variety of photoinduced effects as a result of illumination. Chalcogenide glasses can also 

be doped with rare-earth elements, such as Er, Nd, Pr, etc., and thus have applications in 

active optical devices. It was shown that impurities only play a predominant role in 

determining the optically-induced properties of arsenic chalcogenides when it is in the 

crystalline state [37].  In other words, the doping of rare-earth elements (“impurities”) 

into chalcogenide glasses should not affect the photo-induced properties of As2S3. 

 

On the other hand, as the glass state is characterized by the lack of thermodynamic 

equilibrium, all the physical properties of the glasses are time dependent, and this 

behavior is generally referred to as a physical aging phenomenon. To avoid the changes 

in physical properties caused by physical aging, a material with completely saturated 

aging should be used in chalcogenide-based devices. However, natural physical aging 

requires years at low temperatures; therefore, γ-ray irradiation, photo-exposure, and 

thermal annealing are usually applied to accelerate the relaxation process [38].  

 

A study was conducted, using differential scanning calorimetry (DSC) to identify the 

physical parameters that are uniquely related to the aging process, on an amorphous 

As2S3 film deposited by ultra-fast laser ablation method. Firstly, although no crystalline 

composition was found in the as-deposited film and bulk materials, a substantial amount 

of crystalline phase had formed in those films annealed above 160°C for 15 hours. The 

formation of crystalline phase was also found on samples annealed at 140°C for more 
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than 200 hours, suggesting that the crystalline phase could be formed even at a lower 

annealing temperature at a very slow rate. The study also shows that unlike a pulsed 

laser deposited film, As2S3 bulk glass is strongly resistant to crystallization [38]. Similar 

study using DSC has not been carried out on a magnetron sputtered As2S3 film. 

 

Due to the low coordination of chalcogens that made amorphous chalcogenides more 

structurally flexible, several distinct photoinduced phenomena can be observed in 

amorphous chalcogenides upon illumination with electromagnetic radiation having 

photon energy near the optical band gap of the chalcogenide. These changes are usually 

accompanied by changes in their physical and optical properties, i.e. thickness, refractive 

index and absorption coefficient, and thermal annealing chalcogenide glasses can affect 

these photoinduced changes. In particular, irreversible effects can occur in as-deposited 

films, while reversible effects occur in well-annealed films as well as bulk glasses. In the 

following, we will describe some of the main photoinduced phenomena found in 

chalcogenide glasses that will be relevant to the fabrication of As2S3 waveguides.  

 

Photodecomposition is a process whereby the chemical content of the chalcogenide glass 

is irreversibly changed when it is exposed to electromagnetic radiation. It was used to 

explain the dissociation of As2S3 film, and the formation of S and As2O3 crystals at the 

surface of the exposed film by Berkes as follows [39]:  

 S3As2SAs 32 
h

        (17) 

The liberated arsenic on the surface then oxidizes in the following manner: 
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32

OH

2 OAs23O 4As
2

        (18) 

 

Photodarkening is a process whereby the optical bandgap of the chalcogenide glass is 

reversibly reduced and its absorption band edge is shifted toward lower energies when it 

is exposed to electromagnetic radiation.  The refractive index usually increases as a 

result. Thermal annealing the film near its glass-transition temperature can erase the 

“darkened” state and this process is often referred to as photo-bleaching. Fig. 9 shows 

the reversible photodarkening process of a thermally evaporated chalcogenide film taken 

from a study in the literature [39].  Reversible photo-structural changes are defined as 

modifications induced by light in amorphous bulk and thin films, which when annealed 

below the glass transition temperature can be cancelled or reversed by thermal treatment. 

The photo-exposure was conducted with a 632.8 nm laser at an intensity of 1016 photons 

per cm2 per sec. First of all, curve A-to-B in the figure represents the temperature 

dependent transmittance of a virgin As2Se3 film which has not been exposed to light. If a 

sample is cooled from A-to-B, i.e. from room temperature to 120 K, subsequently 

photodarkened with a laser from B-to-C and allowed to heat up to room temperature 

again, it will finally attain a transmittance specified by D and not the virgin state at A. 
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Fig. 9. Reversible photodarkening process of As2Se3. The arrows indicate possible 
traverse directions. All vertical arrows represent isothermal exposures and all other 
arrows indicate temperature dependent optical density paths traversable in complete 
darkness by an As2Se3 film. The arrows also indicate whether any particular path can be 
traversed reversibly or not [39]. 
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Furthermore, when this sample is again cooled to 120 K, the transmittance curve 

followed is not D-to-C but D-to-E. The net result is that the average optical transmission 

of this material is now approximately equal or greater than the initial value at B. The line 

D-to-E can be reversibly traversed, indicating that the material has attained a reasonable 

stable phase state different from the virgin material. Repeated traversing of the loop E-

to-C-to-D-to-E is possible by cycling the sample through exposure, heating and cooling. 

If an as-deposited film were exposed to light at room temperature and optically densify 

from A-to-G. Subsequent heating by thermal annealing to L and cooling back to room 

temperature would result in a transmittance level specified by M. Repeated traversing of 

the loop M-to-G-to-L-to-M is also possible by cycling the thermally evaporated sample 

through exposure, annealing and cooling [39]. From the figure, we can see the effect of 

thermal history on the transmittance of the chalcogenide film. For example, depending 

on the annealing temperature, heating the film with a transmittance at G to either 350 K 

or 400 K can cause the film to have either a lower transmittance at J or a higher 

transmittance at M when the film cooled down to room temperature at 300 K. 

 

Other than photodecomposition and photodarkening, photo-induced volume change in 

As2S3 also has a major impact on the design of an As2S3 waveguide. This is because the 

effective index that control the propagation constant of the optical signal is determined 

by the physical thickness and width of the waveguide. Although several studies 
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conducted on thermally evaporated on glassy As2S3 film have demonstrated an 0.5% 

expansion in the thickness after illumination, the mechanism of the photoexpansion is 

still regarded as speculative because x-ray structural studies have not been able to 

provide reliable results to account for the macroscopic expansion phenomenon [40]. It 

was also shown that the photoexpansion can be recovered with annealing at the glass-

transition temperature of 470 K, and the phenomenon can occur concurrently with 

photodarkening [41]. In the extreme case, a thermally evaporated As2S3 film can 

experience a giant photo-expansion of about 5 % upon illumination with a He-Ne laser 

(hν = 2.0 eV) for roughly 10 s [42]. 
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3. FABRICATION OF AS2S3 WAVEGUIDES BY MAGNETRON 

SPUTTERING 

 

3.1 Background 

Even though the As2S3 bulk glasses offer large third-order optical nonlinearities and low 

optical losses, As2S3 films are well known to exhibit physical properties that are different 

from their bulk counterparts. For instance, the as-grown films prepared by laser ablation 

or thermal evaporation always include molecular clusters and cross-linked bonds, which 

degrade the network of the glass. Moreover, different phases of these clusters may 

coexist in the films. Although thermal annealing can accelerate the structural relaxation 

of amorphous films, complete transformation from homopolar (total dipole moment is 

zero) covalent bonds to heteropolar (non-zero dipole moment) covalent bonds cannot be 

achieved [38]. As a result, there are always structural differences between the films 

prepared by laser ablation or thermal evaporation and the bulk material [43-46].  

 

A major motivation for magnetron sputtering a-As2S3 is that it not only produces films 

that are structurally closer to the equilibrium state of a bulk glass, the as-deposited films 

also show no significant amount of As2O3 crystals in them when they are exposed to the 

ambient environment. This is especially important for the fabrication of a-As2S3 

waveguides, as very often the as-deposited a-As2S3 film prepared by resistive thermal 

evaporation or pulsed laser deposition, will oxidize into As2O3 when it comes into 

contact with oxygen in the ambient environment [39, 47, 48]. Since these crystals can be 
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numerous and are usually big enough to serve as a scattering centre for any light 

propagating in the film, they can be the main source of scattering losses in an optical 

waveguide with sub-micron thicknesses. Even though a number of advanced processing 

methods have been proposed to solve these problems, the proposed methods in the 

literature still require the breaking of vacuum after the film is deposited and so will not 

effectively stop the oxidation process in the a-As2S3 film [43-46]. 

 

In this section, we will report on the chemical and optical properties of a magnetron 

sputtered a-As2S3 thin film and the fabrication of various hybrid a-As2S3 waveguides 

[49]*.   

 

3.2 The Characterization of a Magnetron Sputtered a-As2S3 Film 

While the optical properties and propagation loss of a-As2S3 have been studied by 

several authors, they were either using bulk glasses or thin films prepared by methods 

other than magnetron sputtering [16, 50, 51]. Since a-As2S3 film is a photosensitive 

material and the emission spectra of the argon plasma contains spectra lines well within 

the optical bandgap of As2S3, it is reasonable to suspect that a-As2S3 film made by 

magnetron sputtering can have properties different from those made by other deposition 

techniques. This is the reason we have to investigate its optical properties. 

 
                                                 
* Copyright 2010 American Institute of Physics. This article may be downloaded for 
personal use only. Any other use requires prior permission of the author and the 
American Institute of Physics. The following article appeared in [49] and may be found 
at http://link.aip.org/link/doi/10.1063/1.3295908. 
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3.2.1 Experimental Technique 

Films of a-As2S3 were deposited in room temperature on glass slides (~ 20 mm by 20 

mm), silicon wafers (~ 10 mm by 10 mm), and titanium diffused lithium niobate wafers 

(~ 23 mm by 20 mm) in a magnetron sputtering system using a commercially available 

2-inch AMTIR-6 target (Amorphous Materials, Inc., Garland, TX 75042). The sputtering 

was done at a low pressure of ~ 0.6 mTorr with the argon gas flowing at a rate of 50 

sccm and a RF power of 8W. The sample was placed 8 cm away from the target, the 

deposition rate from the crystal thickness monitor was about 1.0 Å/s, and the average 

deposition time was 50 minutes. A thermal conductive paste was applied on the As2S3 

target to improve its thermal conductivity with the sputtering gun. The substrate holder 

and the target were both water cooled to 15 °C. Fig. 10 shows a typical 3-gun magnetron 

sputtering system and the basic operation of a magnetron sputtering process. The main 

difference between magnetron sputtering and other sputtering methods is the application 

of magnetic field around the target. The magnetic field enhances the plasma in the 

system by trapping the electrons in such a way that they are always around the target. As 

a result, the system will have higher argon ionization and bombarding rate, and thus a 

higher deposition rate even at low working pressure.  
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Fig. 10. A typical 3-gun magnetron sputtering system. The diagram illustrates the basic 
operation of a magnetron sputtering process. The main difference between magnetron 
sputtering and other sputtering methods is the application of magnetic field around the 
target. This will trap electrons around the target and enhances the plasma in system. As a 
result, the system will have higher ionization of argon atoms and thus increased 
deposition rate [28].  
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The refractive index n, extinction coefficient , and the thickness of the film, which 

includes the non-uniformity of the thickness, were measured by reflection spectroscopy 

over the wavelength range of 400 – 850 nm (F20, Filmetrics, Inc., San Diego, CA 

921123). The average non-uniformity of the films was around ± 15 nm and the film’s 

thickness was independently verified with a surface profiler. The variations in the 

measured thickness among the spectrometer, crystal thickness monitor, and surface 

profiler, were within ± 20 nm. In order to obtain the optical properties beyond the 

measured range, the real part of the measured dielectric constant of the film, 22

1  n , 

was fitted to the Drude model. The refractive index beyond the wavelength range of 400 

– 850 nm was then obtained by subtracting the extinction coefficient that was curve 

fitted to a logistic function from the real part of the dielectric constant of the film. In 

order to find out whether there are any differences in the optical properties between the 

as-deposited and the annealed films, thermal annealing was conducted in the dark at 

around 5 mTorr in an annealing oven at 160 °C for 2 hours. 

 

The magnetron sputtered a-As2S3 film was visually inspected for As2O3 surface crystals 

at 1000 magnification using an optical microscope fitted with a polarizer. In order to 

quantitatively analyze the elements at the surface, x-ray photoelectrons spectroscopy 

(XPS) was also carried out with a Kratos AXIS ULTRA system (Kratos Analytical Inc., 

Chestnut Ridge, NY 10977) on the a-As2S3 film and the As2S3 sputter target. XPS is a 

quantitative spectroscopic technique that measures the elemental composition, empirical 

formula, chemical state and electronic state of the elements that exist within a material. 
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The XPS spectra were obtained by irradiating a material with a beam of X-rays while 

simultaneously measuring the kinetic energy and number of electrons that escape from 

the top 1 to 10 nm of the material being analyzed. The instrument was calibrated using 

carbon 1s line (Binding Energy = 284.8 eV) as a reference energy. Any shifts in the 

binding energy of the carbon 1s line were used to correct the binding energy of the As2S3 

obtained from the high resolution scan to the surface of the film and the target. The 

analyzer is set to spectrum mode, the resolution is 40 eV, the current is 10 mA, and the 

anode HT is 12 kV. The End eV for each elements, namely O 1s, C 1s, S 2p, and As 3d, 

are all set to be 3 eV lower than the default value. The sweeps time is 60 s and the 

number of sweeps was five.  

 

3.2.2 Results and Discussion 

Table 1 contains the average optical properties of 26 magnetron sputtered a-As2S3 films 

that were measured immediately after the deposition. As seen from the table, the average 

refractive index of the as-deposited film is higher than those made from resistive thermal 

evaporation and pulsed laser deposition. The average Tauc’s optical bandgap, Eop, is 

2.35 eV and the reproducibility calculated was about 0.9% for the index of refraction n 

and 2.3% for the optical bandgap Eop.  

 

  



50 
 

 

Table 1. The optical properties a-As2S3. The average optical properties, refractive index 
n and absorption coefficient , of a-As2S3 bulk glasses and as-deposited thin films 
prepared by magnetron sputtering, thermal evaporation and PLD. The reproducibility, 
2deviations, of the refractive index taken from 26 sputtered samples with thicknesses 
ranging from 184 to 484 nm was around 1%. 

nm) Sputtered n Bulk n [50] Ref. n Ref. Method of Deposition 

632 

810 

1150 

2.586 

2.497 

2.437 

2.617 

2.522 

2.460 

2.44 

2.46 

2.33 

Resistive Thermal Evaporation [52] 

Pulsed Laser Deposition [46] 

Resistive Thermal Evaporation [52] 

nm) Sputtered  (per cm) Bulk (per cm) [16] 

454 

643 

4.1 

7.6 


 


 
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Fig. 11. The refractive index of a-As2S3. The refractive index of a magnetron sputtered 
a-As2S3 thin film (as-deposited and annealed) and a bulk As2S3 glass taken from the 
literature. The thickness of the film was 377 ± 20 nm and goodness of fit was 0.990. The 
measured result of the as-deposited film was obtained from a spectrometer with an 
extended measuring range from 400 – 1700 nm (F20EXR, Filmetrics, Inc., San Diego, 
CA 921123). 

 

 

The Fig. 11 describes the wavelength dependency of the refractive index of a magnetron 

sputtered a-As2S3 thin film and compares it to an As2S3 bulk glass reported in the 

literature [50]. It shows how close the refractive index of a magnetron sputtered film is 

to the bulk glass. In addition to the index of refraction, Fig. 12 shows the absorption 

coefficient of an As2S3 bulk glass, an as-deposited and an annealed magnetron sputtered 

a-As2S3 thin film, and a thermally evaporated a-As2S3 thin film that has been exposed to 

bandgap light [16, 51]. It can be seen that the absorption coefficient of the annealed 
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magnetron sputtered film approaches the value of the As2S3 bulk glass [39]. This is 

different from the evaporated a-As2S3 film, whose absorption coefficient only 

approaches the bulk glass when it was exposed to bandgap light, for example, from a 

514.5nm Argon laser. In fact, the absorption coefficient of the as-deposited film 

prepared by magnetron sputtering was closer to the As2S3 bulk glass than those (i.e. S-

Unexposed) prepared by thermal evaporation. 

 

 

 

Fig. 12. The absorption coefficient of a-As2S3. The absorption coefficient of a As2S3 
bulk glass taken from Young, and a-As2S3 thin films prepared by magnetron sputtering 
(as-deposited and annealed) and thermal evaporation (exposed and unexposed to 
bandgap light) taken from Keneman. The thickness of the magnetron sputtered film was 
377 ± 20 nm. 
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Table 2. The optical properties of an annealed a-As2S3 film. The average optical 
properties, refractive index n and absorption coefficient , of a-As2S3 bulk glasses and 
thermally annealed thin films prepared by magnetron sputtering, thermal evaporation 
and PLD. The reproducibility, 2deviations, of the refractive index taken from 10 
sputtered samples with thicknesses ranging from 184 to 484 nm was around 2%. N.A. 
refers to data not available. 

nm) Sputtered n Bulk
 
n [50, 53] Ref. n Ref. Method of Deposition 

632 

810 

1014 

1150 

1530 

2.599 

2.508 

2.450 

2.448 

2.425 

2.617 

2.522 

2.476 

2.460 

2.438 

2.598 

2.52 

N.A. 

2.453 

N.A. 

Resistive Thermal Evaporation [52]. 

Pulsed-Laser Deposition [46]. 

 

Resistive Thermal Evaporation [52]. 



nm) Sputtered  (per cm) Bulk (per cm) [16] 

454 

643 

3.5

4.0


 


 

 

 

 

The Table 2 contains the average optical properties of 10 thermally annealed a-As2S3 

films prepared by magnetron sputtering. As it can be seen from the table, these values 

are around those reported for bulk glass and other thin film deposition methods [16, 46, 

52, 53]. The average optical bandgap, Eop, of an annealed film from the Tauc plot was 

2.37 eV and was also within the published value for As2S3 bulk glass [54, 55]. The 
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reproducibility, 2 deviations, calculated was about 2.1% for the index of refraction n 

and 0.6% for optical bandgap Eop. By comparing the results in Table 1 and Table 2, and 

also Fig. 11 and Fig. 12, it is evident that the optical properties of the as-deposited a-

As2S3 film prepared by magnetron sputtering were closer to its equilibrium state than 

those prepared by resistive thermal evaporation and pulsed-laser deposition. Fig. 13 

shows how closely the calculated reflectance, which was regenerated using the optical 

properties and thickness obtained from the spectrometer, resembles the measured 

reflectance of our sputtered film.  

 

According to the literature, when as-deposited thin films of a-As2S3 were exposed to 

visible light of wavelengths longer than 428 nm, the molecular structure of the thin film 

was modified via photodarkening in such a way that it had the same X-ray Diffraction 

(XRD) spectra as that produced by thermal annealing [56]. Since it has been shown that 

at pressure lower than 10 mTorr, the Ar spectrum in the chamber has no UV (200–400 

nm) spectral lines and only contains wavelengths that are longer than 400 nm, it is 

therefore possible to photo-anneal or photo-polymerize an a-As2S3 film by sputtering it 

at a low pressure [57]. These attributes are unique to a magnetron sputtered a-As2S3 film 

and in our opinion cannot be easily achieved with other methods of deposition. This 

includes conventional non-magnetron RF sputtering, especially if very low RF power is 

required in the run to prevent excessive heat from cracking the 2-inch As2S3 target 

during the process. 
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Fig. 13. The reflectance spectroscopy of an a-As2S3 film. The measured and calculated 
reflectance of a magnetron RF-sputtered a-As2S3 film on a glass substrate (Fisher 
Scientific cat. #12-550-A3). The thickness of the film was 377 ± 20 nm and the 
goodness of fit was 0.993 with 1.0 being the maximum value. The measured result 
obtained in this figure was from a spectrometer with an extended measuring range from 
400 – 1700 nm (F20EXR, Filmetrics, Inc., San Diego, CA 921123). 
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Fig. 14. . The dielectric constants of a magnetron sputtered a-As2S3 film. The real part of 
the dielectric constants, 22

1  n , of a magnetron sputtered a-As2S3 thin film (as-
deposited) and a bulk As2S3 taken from the reference [16]. The fitted values were 
derived from Drude model using measured data obtained from the spectrometer. The 
thickness of the film was 377 ± 20 nm and goodness of fit was 0.996. 

 

 

The parameters, Ad, n0, F1, F2, 1, and 2, shown in Table 3 are the terms used in the 

fitting of the real part of the dielectric constant of magnetron sputtered a-As2S3 thin film 

to the Drude model, 
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where 

and 


 It also shows the average fitting 

parameters, Ak, b and k, of the model used in the extrapolation of the measured 



57 
 

 

extinction coefficient , where      [    (    ) ]  , and the parameters, An  and 

n, of the Sellmeier model,           (      ), that was fitted to the measured 

refractive index. Fig. 14 shows how the real part of the dielectric constant, ε1, of the as-

deposited magnetron sputtered a-As2S3 thin film compared with the published results for 

a bulk material [16].  

 

 

Table 3. The fitting parameters of the optical properties of a-As2S3 film. The average 
fitting parameters of the various models used in extending the optical properties of a 
magnetron sputtered a-As2S3 thin film (thermally annealed) beyond the measured 
wavelength. Ad, n0, F1, F2, 1, and 2, belongs to the Drude model used in fitting the 
dielectric constant (real part), Ak, b and k, are used for extending the extinction 
coefficient and An and n, are used in the Sellmeier model for describing the dispersion 
of refractive index. G.O.F. refers to goodness of fit with a maximum value of 1.0. 

An n (nm) G.O.F.  Ak b n (nm) G.O.F. 

4.640 284.2 0.988 0.482 19.39 429.0 0.998 

Ad (10
14

) F1 F2 n0 1 (m) 2 (nm) G.O.F.  

0.398 0.000 0.405 1.887 25.96 368.7 0.997 

 

 

 

The XPS spectrum in Fig. 15 shows the binding energy of the electrons inside the 3d 

shell of the arsenic atom (As-3d) in the magnetron sputtered a-As2S3 film (as-deposited) 

and the As2S3 sputter target. The film’s thickness is 303 ± 20 nm with a non-uniformity 
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of 6 nm and the refractive index at  = 640 nm is 2.580. From the diagram, it can be seen 

that the binding energy of the arsenic atom (3d shell) is 43.2 eV. This value is not only 

near to the As2S3 sputter target at 43.3 eV, but also agrees with what was reported for a 

uncontaminated thermally evaporated a-As2S3 film [58]. The binding energy of the 

arsenic atom (3d shell) in an As2S3 film with photo-decomposition at the surface will be 

greater than 43.9 eV. 

 

 

 

Fig. 15. The XPS spectrum of a-As2S3 film. No significant amount As2O3 was detected 
on the sputtered film. The thickness of the film was 303 ± 20 nm. The figure above 
shows the measured XPS spectrum of the As (3d shell) atom in the As2S3 sputter target 
and the as-deposited magnetron sputtered a-As2S3 film. No significant amount As2O3 
was detected on the sputtered film. The thickness of the film was 303 ± 20 nm. 
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Quantitative analysis of the elements at the surface is derived from the peak areas of the 

XPS multiplex after background subtraction using standard CASA XPS processing 

software [59]. The atomic concentration calculated from the survey scan of the sputtered 

film shows that it contains 38.3% of arsenics and 61.7% of sulfur, which is close to the 

values obtained for the As2S3 sputter target (5 mm thick) at 40.6% of arsenics and 59.4% 

of sulfur. Since the measurement accuracy depends on several parameters, some of 

which can be difficult to account for, such as surface volume homogeneity and degree of 

sample degradation due to analysis, a more meaningful indication of measurement error 

would be to compare the results obtained from our As2S3 sputter target to the typical 

value (i.e. 39.1% of arsenics and 60.9% of sulfur) specified by the manufacturer in its 

MSDS data sheet. Based on this calculation, the measurement error worked out to be 4%. 

In other words, our sputtered film contains 38.3 ± 1.5 % of arsenics and 61.7 ± 1.5 % of 

sulfur, which is close to the desired stoichiometric of an As2S3. From the XPS spectrum, 

we can also see that there is no signal around 44.4 eV that would indicate the presence of 

any photo-induced As2O3 crystals on our as-deposited film [58, 60]. The test was 

conducted on a 4 days old film that was kept in ambient condition. No special coating or 

arrangement was applied to prevent oxidation. The micrograph shown in Fig. 16 was 

taken at 1000 magnification by an optical microscope fitted with a polarizer. The 

picture shows a magnetron sputtered a-As2S3 film on top of a 7.0 µm straight Ti-diffused 

LiNbO3 waveguide with no visible sign of any photo-induced crystals on the surface.  
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Fig. 16. A micrograph of an a-As2S3 film on top of some Ti:LiNbO3 waveguides. The 
picture shows a magnetron sputtered a-As2S3 film on top of some Ti:LiNbO3 
waveguides taken by an optical microscope with a polarizer at 1000 magnification. 
The film looks smooth with no visible signs of any photo-induced As2O3 crystals on the 
surface. The straight Ti:LiNbO3 waveguide was 7 m wide and measured thickness of 
the a-As2S3 film was 310 ± 20 nm. 

 

 

3.3 Hybrid Integration of a Straight As2S3 Waveguide on LiNbO3 Substrate 

With the high-quality magnetron sputtered a-As2S3 thin films, we are now able to 

demonstrate some passive As2S3 waveguides designed for integrated optics on LiNbO3 

substrate. The vertically integrated a-As2S3 waveguides were made using standard 

semiconductor fabrication techniques. It begins with making the Ti:LiNbO3 waveguide 

underneath the a-As2S3. First of all, a titanium thickness of 60 or 90 nm ± 5 nm was 
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sputtered on a diced y-cut x-propagating LiNbO3 chip. The pattern was then formed by 

photolithography and etched onto the substrate using a reactive ion etching machine. 

After etching, the sample was put into a furnace and diffused for 5-6 hours at 1025C in 

wet breathing air ambient. The end facets of the waveguide chip are then polished to 

optical quality. A 290 ± 20 nm thick a-As2S3 film was then magnetron sputtered onto the 

Ti:LiNbO3 waveguide and a 200 ± 20 nm layer of spin-on-glass (Futurrex Inc., Franklin, 

NJ 07416) was covered on the a-As2S3 as a cladding. Contact photolithography was 

again used to define the pattern and a subsequent reactive-ion etching step forms the a-

As2S3 waveguides. The resulting structure is illustrated in Fig. 17. 

 

 

 

Fig. 17. The schematic diagram of a hybrid As2S3 straight waveguide. The picture shows 
a straight 3.0 m wide As2S3 waveguide with propagation distance, L2 = 0.5, 1.0, 1.5, or 
2.0 cm, fabricated on a 4.5 m wide Ti:LiNbO3 waveguide. This is an illustration of the 
waveguide structure used in the measurement of the propagation loss of a photo-
annealed a-As2S3 waveguide deposited by magnetron sputtering. 
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The sample was tested by butt coupling light into the waveguide ends using a single-

mode fiber. The laser source launched into the waveguides is a highly coherent laser that 

sweeps the wavelength from 1490 to 1570 nm. The mode of propagation was determined 

from a polarizer and the transmission loss was obtained from an Optical Vector Analyzer 

(OVA CTe, LUNA Tech., Roanoke, VA 24016). The propagation and the coupling 

losses were calculated from the insertion losses of several 3 m wide hybrid As2S3 

waveguides. The schematic diagram in Fig. 17 shows how these waveguides were 

vertically integrated with a 4.5 m wide Ti:LiNbO3 waveguide. The design allows us to 

couple optical signal in a relatively simple and low loss manner from a single mode fiber 

into our integrated optics. 

 

3.3.1 Results and Discussion 

Since the coupling of the TE propagation from the Ti:LiNbO3 waveguide into the As2S3 

waveguide suffers from various problems caused by the out-diffusion of Li ions during 

the diffusion process of the Ti:LiNbO3 waveguide, we have designed our devices to 

work with only TM propagation [61-63]. In this way, we eliminate the additional 

fabrication steps that have to be taken to prevent the formation of a unwanted planar 

waveguide that will interfere with the coupling of the TE propagation mode from the 

Ti:LiNbO3 channel waveguide. Fig. 18 displays the insertion losses of TM propagation 

at various wavelengths in the 4.5 m Ti:LiNbO3 waveguide with and without the vertical 
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integration of the 3.0 m a-As2S3 waveguide. The Ti:LiNbO3 waveguide had an initial 

thickness of 60 nm and has been diffused for 6 hours. The experimental result shows that 

the magnetron sputtered a-As2S3 waveguide was able to improve the TM propagation in 

the 4.5 m wide by 20 mm long Ti:LiNbO3 by at least 12 dB. 

 

 

 

Fig. 18. The insertion loss of an a-As2S3 waveguide. The figure shows the measured TM 
insertion loss of a 4.5 μm Ti:LiNbO3 optical waveguide (Ti thickness = 60 ± 5 nm and 
diffusion hours = 6 hours) with and without the vertical integration of the straight 3.0 m 
wide a-As2S3 waveguide prepared by magnetron sputtering. The measurement error was 
± 0.1 dB. 
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Fig. 19. The propagation loss of a hybrid a-As2S3 waveguide. The TM propagation loss 
of a magnetron sputtered a-As2S3 film at  = 1.5 m on a 4.5 m Ti:LiNbO3 (Ti 
thickness = 90 ± 5 nm and diffusion hours = 5 hours). The as-deposited a-As2S3 film 
was 290 ± 20 nm thick and its width was 3.0 m. The a-As2S3 waveguides were 0.5, 1.0, 
1.5, and 2.0 cm long, with a 200 ± 20 nm layer of spin-on-glass as an over-cladding. The 
measurement error of the insertion loss was ± 0.1 dB. 

 

 

The Fig. 19 displays the insertion loss, ± 0.1 dB, of the hybrid a-As2S3 waveguides for 

different propagation lengths at  = 1.5 m. The straight line in the figure represents the 

best linear fit to the insertion losses and it gave us the propagation loss and the coupling 

loss of the a-As2S3 waveguide on Ti:LiNbO3. The propagation and coupling losses, 

which includes fiber-to-waveguide coupling loss, calculated for a TM propagation mode 

at  = 1.5 m for a 3.0 m as-deposited hybrid a-As2S3 waveguide on a 4.5 μm 
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Ti:LiNbO3, (i.e. As2S3-on-Ti:LiNbO3 waveguide) was 0.20 ± 0.05 dB/cm and 2.75 ± 0.05 

dB/coupler respectively.  

 

We have measured the optical properties of a-As2S3 thin films and the propagation loss 

of a hybrid a-As2S3 straight waveguide on Ti:LiNbO3 deposited by magnetron 

sputtering. While the average Eop of an as-deposited film remains relatively unchanged 

at 2.35 ± 0.04 eV when annealed, its refractive index n at  = 1530 nm increased slightly 

from 2.42 to 2.43. The stoichiometry was correct and the binding energy of the As3d of 

the film was 43.2eV with no significant amount of As2O3 crystals found on the surface. 

The optical and structural properties agree with published results on As2S3 bulk glass and 

our as-deposited films are closer to the equilibrium state than a-As2S3 films made by 

thermal evaporation and PLD. These attributes are unique to a magnetron sputtered a-

As2S3 film and we attribute it to the photo-annealing effect caused by the visible light 

emitted by the argon plasma during the sputtering process. The TM propagation loss at  

= 1.5 m of a 3.0 m as-deposited hybrid a-As2S3 waveguide on a 4.5 m Ti:LiNbO3 

was 0.20 ± 0.05 dB/cm.  

 

This result compares favorably with a recent paper on the losses of an As2S3 waveguide 

prepared by thermal evaporation with sub-micrometer thickness [64]. From the 

reference, we realized that the same process used in the fabrication of a record low-loss 

As2S3 ridge waveguide (0.05 dB/cm), is now producing a waveguide with a loss of 0.2 

dB/cm.  Apparently, scattering losses from surface roughness can no longer be ignored 
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when the thickness of the waveguide is in the sub-micrometer range. The thickness of 

the As2S3 waveguide reported in the reference is 0.83 μm. This thickness is greater than 

the typical As2S3 thickness (~ 0.46 μm) used in the hybrid waveguides demonstrated 

here using magnetron sputtering.  

 

3.4 Hybrid Integration of an As2S3 Mach-Zehnder Interferometer 

A Mach-Zehnder interferometer (MZI) is a device that is used to determine the relative 

phase shift between two collimated beams from a coherent light source. It is a very 

versatile component and plays an essential role in any integrated photonics circuits as 

they are often made into more advance optical devices like multiplexer or high speed 

modulator [3, 4].  

 

Other than method used in the previous section (i.e. vertically coupling), As2S3 

waveguides can also be integrated with Ti:LiNbO3 by side coupling. In this section, we 

will demonstrate a hybrid integration of an As2S3 S-Bends with a straight Ti:LiNbO3 

waveguide by side coupling. The combined structure is a hybrid As2S3 Mach-Zehnder 

interferometer. An As2S3 MZI integrated with a Ti:LiNbO3 waveguide offers the ability 

for electrical tuning of the frequency response by making use of the inherent electro-

optic effect of the LiNbO3. This will further reduce the size of a LiNbO3 based 

modulator currently in used in the industry. In order to avoid the changes in physical 

properties caused by physical aging, the hybrid MZI was thermally annealed and photo-

exposed to completely saturate the aging process. 
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3.4.1 Experimental Techniques 

Titanium diffused lithium niobate (Ti:LiNbO3) waveguide was fabricated with a 

titanium thickness of 95 nm ± 5 nm on a 20-by-23 mm y-cut x-propagating LiNbO3 

chip. The chip was diffused for 9.5 hours at 1025 °C in wet breathing air ambient. The 

side coupled MZI, with an As2S3 thickness = 460 ± 20 nm, was integrated to the 

Ti:LiNbO3 waveguides using standard semiconductor fabrication techniques. The 

sputtering of As2S3 was done at a 1.5 mTorr with the argon flowing at 35 sccm and a RF 

power of 35W in an automated magnetron sputtering system (ATC 2200 IBAD, AJA 

Intl, Inc., Scituate, MA 02066). Thermal annealing was conducted in the dark in a 

vacuum oven at 130 °C for 27 hours. The photo-induced experiment was carried out on a 

well annealed film by a mercury vapor lamp (λc = 365.4 nm) at 2.5 mW/cm2 for 120 sec. 

The sample was then allowed to age in the dark for 6 days at room temperature and 

atmospheric pressure. The integrated hybrid MZI was tested with single-mode fiber by 

butt coupling method. The Jones matrix that represents the frequency response of the 

MZI is taken from the optical vector analyzer, (OVA CTe, LUNA Tech., Roanoke, VA 

24016). Fig. 20 shows the schematic drawing of a hybrid As2S3 MZI integrated with a 

Ti:LiNbO3 waveguide. The width of the Ti:LiNbO3 waveguide is 7 μm, the As2S3 

waveguide is 3.5 μm, and the 2-stage As2S3 taper vary from 1-to-1.6 μm and then 1.6-to-

3.5 μm. The As2S3 waveguide is designed to couple only the TM propagation mode in 

the Ti:LiNbO3 waveguide. Three integrated MZIs with different spacing between the 

two S-Bends were fabricated. The spacing was 2750 μm, 5500 μm, and 11000 μm.  



68 
 

 

 

 

 

Fig. 20. The schematic drawing of a hybrid As2S3 MZI. A set of As2S3 S-Bend and 
reversed S-Bend is integrated with a straight Ti:LiNbO3 to create a MZI. The width of 
the Ti:LiNbO3 waveguide is 7 μm, the As2S3 waveguide is 3.5 μm, and the 2-stage As2S3 
taper vary from 1-to-1.6 μm and then 1.6-to-3.5 μm. The arc length of the S-Bend is 
1536.353 μm. TM refers to transverse magnetic propagation mode and TE refers to 
transverse electric mode. Three integrated MZIs with different spacing between the two 
S-Bends were fabricated. The spacing was 2750 μm, 5500 μm, and 11000 μm. 

 

 

3.4.2 Results and Discussion  

The Fig. 21 shows the frequency responses of three well annealed hybrid As2S3 MZIs. 

Basically it resembles a typical interferometric response, i.e. constructive and destructive 

interferences, one get from mixing two coherent lights together. In this case, the TM 

signal that travel through the As2S3 waveguide arrives at the output and recombined with 

the TM signal that travels through the Ti:LiNbO3 waveguide. From the free spectral 
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range (FSR) of their frequency responses, which is defined as the spacing in optical 

frequency or wavelength between two successive optical intensity maxima or minima of 

an interferometer, the average group index of the three integrated As2S3 waveguide was 

calculated to be 2.36 ± 0.01. This average value represents the group index of the 

complete signal path through the As2S3 structure, which includes not only the 3.5 μm 

straight waveguide and the S-bends but also the 2-stage tapers. The 2-stage taper is 

specially designed to have a taper width that is linearly increasing at two different rates. 

The index was calculated from the definition of free spectral range derived for our 

interferometer, FSR = λ2 / (nA×dA – nT×dT), where λ is the central wavelength of the 

nearest transmission peak, nA and dA are the group index and signal path length of the 

As2S3, and nT and dT are the group index and signal path length of the Ti:LiNbO3 

waveguide for a TM mode. The group index of the Ti:LiNbO3 waveguide is obtained 

from the design tool, FIMMWAVE, and is 2.27 ± 0.01.   
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Fig. 21. Frequency response of thermally annealed hybrid MZI. The “red” line is from 
an annealed MZI shown in Fig. 20. The MZI represented by the “blue” line is similar to 
the one in Fig. 20 except that its Ti and As2S3 optical path length is longer by 2750 μm. 
The MZI represented by the “green” dash line is also similar to the one in Fig. 20 except 
that its Ti and As2S3 optical path length is longer by 8250 μm. 
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The impulse response of the hybrid MZI can be obtained from performing an inverse 

Fourier transform of the measured frequency response. The difference in the group 

delay, τg, of the TM pulse travelling in the Ti:LiNbO3 waveguide and the one 

propagating in the As2S3 waveguide can be expressed as, Δτg = (nA×dA – nT×dT) / c,  

where c is the speed of light in vacuum, nA and dA are the group index and signal path 

length of the As2S3, and nT and dT are the group index and signal path length of the 

Ti:LiNbO3 waveguide for a TM mode. The group index calculated from the average 

group delay of a well annealed hybrid As2S3 MZI as shown in Fig. 20 is ng = 2.353. This 

is close to the average group index extracted from the frequency response. Fig. 22 

compares the frequency response of the well annealed hybrid interferometer to the 

frequency response taken six days after the exposure. It shows the FSR increases from 

2.1 ± 0.1 nm (“red” dash line) to 2.5 ± 0.1 nm (“blue” solid line). The average group 

index of the exposed integrated As2S3 waveguide is 2.35 ± 0.01. 
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Fig. 22. Photo-induced phenomenon of an As2S3 hybrid MZI. The “red” line is from an 

annealed MZI shown in Fig. 20 and the “blue” line is the frequency response taken 6 
days after the exposure. 

 

 

Fig. 23 shows the transfer function of the thermally annealed hybrid MZI shown in Fig. 

20 taken 6 months after the last exposure. It shows the frequency response of the TM 

propagating mode in the hybrid MZI, and also the cross polarization terms represented 

by TMin-TEout terms in the figure. In other words, if the MZI is represented by a four-

port network, then the term TMin-TEout is the signal detected at the TE mode output of 

the MZI for a TM mode input. The relatively low magnitude of the cross polarization 
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terms indicates no significant amount of cross polarizations in our hybrid MZI. This 

result is important as unintended polarization conversion which distorts the output can 

sometime happened at the coupling regions, both at the tapers and at the fiber to 

waveguide regions. The FSR measured at around λ = 1566 nm is 2.2 ± 0.1 nm. This is 

closed to the FSR of the annealed state, FSR = 2.1 ± 0.1 nm, 6 months before the 

exposure. 

 

We have successfully demonstrated the feasibility of integrating an As2S3 Mach-Zehnder 

interferometer on a Ti:LiNbO3 waveguide with magnetron sputtering. The impulse 

response confirms the splitting of the TM propagation mode into two pulses, one 

travelling in the Ti:LiNbO3 and the other in the As2S3 waveguides.  The photo-induced 

change in the average group index of the integrated As2S3 waveguide is -0.4% and is 

lower than the photo-induced change experienced by an As2S3 ring resonator prepared by 

thermal evaporation [65]. 
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Fig. 23. The transfer function of an integrated As2S3 MZI. The result was taken from a 
thermally annealed MZI taken 6 months after the exposure. It shows the frequency 
response of the TM propagating mode in the hybrid MZI. 
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4. ERBIUM-DOPED LITHIUM NIOBATE WAVEGUIDE AMPLIFIER 

 

4.1 Background 

Erbium is a chemical element in the lanthanide series, with the symbol Er and atomic 

number 68. A silvery-white solid metal when artificially isolated, natural erbium is 

always found in chemical combination with other elements on Earth. This lanthanide 

series begins with the element lanthanum (Z = 57) and ends with the elements lutetium 

(Z = 71).  The elements of this series are generally found in the +3 oxidation state and 

the 4f shell can accommodate a total of 14 electrons in total.  The Er3+ ion contains 11 

electrons in its 4f shell and the ground state has the term 4I15/2.  The electrons from this 

ground state can be promoted to any one of the higher energy states through the 

absorption of a photon of sufficient energy.  The trivalent erbium ion, Er3+, exhibits a 

strong emission band that is situated around 1535 nm wavelength from the emission of a 

photon due to the transition of an electron from the 4I13/2 meta-stable state to the 4I15/2 

ground state.  The 4I13/2 is the meta-stable state that exhibits long luminescent lifetimes 

enabling this atom to sustain population inversion.   

 

Since the Er3+ ion can sustain population inversion at telecommunication frequencies, it 

has been heavily employed for use in devices that operate in the popular “C”-band (1530 

nm to 1565 nm wavelength) and “L”-band (1565 to 1625 nm wavelength) of the optical 

telecommunications spectrum.  One of the most important uses of Er3+ is its inclusion 

into silica to form the erbium doped fiber amplifier (EDFA).  The EDFA is particularly 
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attractive because it allows the amplification of an optical signal without the need to first 

take the optical signal out of the fiber and converting it into an electrical signal before 

the amplification step, thus enabling a dramatic simplification in the equipment that is 

used.  Secondly, because Er3+ ions display photoluminescence covering both the C- and 

L- bands, it is well suited for a high-capacity wavelength-division-multiplexed system.   

 

In this section, we will demonstrate the fabrication and characterization of erbium-doped 

optical waveguide amplifiers (EDWA) in x-cut y-propagating lithium niobate (LiNbO3) 

by erbium (Er) and titanium (Ti) diffusion.  

 

4.2 Experimental Technique 

A 20-by-20 mm and 40-by-20 mm sample of commercially available x-cut y-

propagating LiNbO3 was cleaned and dehydrated. An erbium film of 19 ± 5 nm and 13 ± 

5 nm were deposited respectively onto the 20-by-20 mm and 40-by-20 mm samples by 

magnetron sputtering from a 2-inch 99.9% pure erbium target (American Elements Inc., 

Los Angeles, CA 90024). The film thickness was estimated from a calibrated thickness 

monitor installed in the sputtering system. The run was carried out at 5.0 mTorr with a 

DC current of 100 mA and 8 sccm of argon. The Er samples were then placed in a 

furnace for thermal diffusion at 1100 °C for 120 hrs in a dry oxygen atmosphere at a 

flow rate of 150 sccm for the 20-by-20 mm sample and 103 sccm of argon for the 40-by-

20 mm. Thereafter, a 80 ± 5 nm and 105 ± 5 nm layer of Ti film were deposited 

respectively onto the 20-by-20 mm and 40-by-20 mm samples by magnetron sputtering a 
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2-inch 99.9% pure titanium target (American Elements Inc., Los Angeles, CA 90024). 

Various straight waveguides with a width of 7 and 11 μm were then photo-

lithographically patterned over the Ti film. Optical channel waveguides were formed by 

thermal diffusion of the Ti stripes into the sample in a furnace at a temperature of 

1025 °C for 9 to 11 hrs with breathing air at a flow rate of 150 sccm. Once the Ti is 

diffused into the Er-diffused samples, the edges of the samples were mechanically 

polished using diamond lapping microfilms and the sample tested for insertion loss. Fig. 

24 illustrates the typical fabrication process for an Er-doped Ti-diffused LiNbO3 

waveguide amplifier. 

 

Over the past two decades, a number of papers have reported on various kinds of Er-

doped waveguide amplifiers (EDWAs), which have the potential for application in 

optical fiber communication system. Many nomenclatures such as internal gain, net gain, 

signal enhancement, on–off gain, internal net gain, net internal gain, etc were proposed 

for the description of the amplification performance of the EDWA device. Among these 

nomenclatures, the internal gain, net gain, and signal enhancement are often cited in the 

literatures. 
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Fig. 24. The fabrication process for a Er:Ti:LiNbO3 waveguide amplifier. 

 

 

However, the definitions for these three physical quantities are rather confusing in the 

literature. We have decided to follow the definitions described in this reference [66]. The 

definition of each parameter will be described as follows using the measurement setup 

illustrated in Fig. 25. 
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Fig. 25. Measurement setup for Er:Ti:LiNbO3 waveguide amplifier. SMF refers to single 
mode optical fiber and WDM is wavelength division multiplexer. 

 

 

Input signal from the optical vector analyzer (OVA) is multiplexed (via WDM) with the 

1488 nm pump laser and then butt coupled into the Er:Ti:LiNbO3 waveguide amplifier 

by a single mode optical fiber. The output signal from the amplifier is then routed 

through another WDM to filter out the pump signal before being sent back to the OVA. 

The optical power of the signal is read from the OVA and the input pump power to the 

Er:Ti:LiNbO3 waveguide amplifier is measured by a calibrated power meter. The 

definition of the various performance parameters, such as net gain and internal gain, of 

an EDWA is described in the following ways.  
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With reference to Fig. 26, the net gain of the amplifier, which is defined as a fiber-to-

fiber optical power ratio with the pump laser turned on, is expressed as,  

 
 0

10logGainNet
s

s

10
P

LP
        (20) 

and the internal gain of the amplifier, which is defined as the power ratio within the 

waveguide with the pump laser turned on, is described as follows, 
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Fig. 26. The definition of net gain and internal gain of EDWA. The length of the 
amplifier is L. Ps refers to the optical power of the input signal. 
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4.3 Results and Discussion 

The Fig. 27 shows the measured insertion gain or net gain of an 11 μm waveguide 

amplifier on the 20-by-20 mm sample. From the figure, we can see that the maximum 

net gain of the amplifier measured for a TM mode at 182mW of pump power is 2.29 ± 

0.05 dB at around λ = 1532 nm. Since the input and output coupling losses of the 11 μm 

waveguide were estimated to be about 0.4 dB each, the internal gain of the amplifier 

worked out to be 3.1 ± 0.1 dB. The backward pump in the figure refers to the case when 

the pump signal is travelling in a direction opposite to the input signal. This is 

accomplished by connecting another pump laser to the WDM responsible for filtering 

out the pump signal. It is the WDM that is placed in between the output of the device 

under test and the OVA in Fig. 25. The backward pump laser is not shown in the 

measurement setup in Fig. 25. 

 

In order to gauge the performances of our EDWA, we have to compare our results to the 

highest gain reported in the literature for an erbium doped LiNbO3 amplifier [67, 68].  

However, due to a different definition of net gain used by those groups, we have to 

define a new term in our measurement before we can compare our results. 
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Fig. 27. Small-signal TM net gain of a 11 μm Er:Ti:LiNbO3 waveguide amplifier. The 
backward pump refers to the case when the pump signal is travelling in a direction 
opposite to the input signal via the WDM responsible for filtering out the pump signal. 
The measured net gain at 182mW of pump power is 2.29 ± 0.05 dB around λ = 1532 nm.  
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In their definition, the net gain of the amplifier is measured with respect to another 

similar waveguide that is not doped with any erbium, i.e. comparing the insertion loss of 

a Er:Ti:LiNbO3 waveguide to a Ti:LiNbO3 waveguide. The “net gain” that they have 

used is different than our definition where 0 dB gain implies transparent transmission. In 

Fig. 27, we defined our Er gain as the power ratio of the maximum insertion gain at λ = 

1532 nm to the insertion gain of the amplifier away from the absorption region, which in 

our case is λ = 1585 nm. In our opinion, this is equivalent to comparing the net gain of 

the Er:Ti:LiNbO3 waveguide amplifier to an undoped  Ti:LiNbO3 waveguide as will be 

explained in the followings based on the measurement shown in Fig. 28.  

 

The Fig. 28 shows the measured Er absorption for a TE propagation mode as a function 

of the length of a Er:Ti:LiNbO3 amplifier fabricated by co-diffusion [69]. As we can see 

in the figure, at a wavelength, e.g. at λ = 1570 nm, away from the main absorption region 

of Er centered around λ = 1525 nm to 1555 nm, the absorption approaches zero. Since an 

undoped Ti-diffused waveguide is just like a Er:Ti:LiNbO3 waveguide with zero 

absorption or “no erbium”, the insertion loss of the Er:Ti:LiNbO3 waveguide amplifier at 

this wavelength, i.e. at λ = 1570 nm, can be said to be equivalent to an undoped Ti-

diffused LiNbO3 waveguide.  
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Fig. 28. The absorption spectra of Er:Ti:LiNbO3 waveguide amplifier. The figures shows 
the measured Er absorption for a TE propagation mode as a function of the length of a 
Er:Ti:LiNbO3 amplifier fabricated by co-diffusion [69]. τEr refers to the initial thickness 
of the erbium film before diffusion. 
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Fig. 29 The TE small-signal gain of Er-doped Ti:LiNbO3 waveguide amplifiers. The 
open circle represents the results obtained by our group on a 4 cm long x-cut LiNbO3 and 
the open square values were obtained from the results published in the literature for a 4.8 
cm long z-cut LiNbO3 [67]. The Er gain of our 4 cm long amplifier at 110mW is just 0.2 
dB below the longer 4.8 cm amplifier. 

 

 

Having established the same set of reference, we can now compare our results with those 

reported in the literatures. In Fig. 29, we have the TE small-signal gain of two Er-doped 

Ti:LiNbO3 waveguide amplifiers. The open circle represents the results obtained by our 

group on a 40-by-20 mm Er:Ti:LiNbO3 waveguide amplifier and the open square values 

were obtained from the reference for a 4.8 cm long Er:Ti:LiNbO3 waveguide amplifier 
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[67]. Their initial Er and Ti thickness was respectively 13 nm and 95 nm. Both results 

were obtained from a 7 μm wide Er:Ti:LiNbO3 waveguide.  As we can see from the 

figure, the Er gain of our 40 mm long amplifier at 110mW is just 0.2 dB below the 

longer 48 mm EDWA.  

 

 

Table 4. The incremental small-signal internal gain (Er gain) of Er-doped LiNbO3 
amplifier. Unlike Er:Ti:LiNbO3, Ti:Er:LiNbO3 refers to a Ti diffused Er-doped LiNbO3 
waveguide, i.e. erbium is introduced into the LiNbO3 substrate not by diffusion but by 
mixing erbium powder in the melt during the making of the LiNbO3 wafer.    

Sample Max. Er Gain  

Pump=180-200mW 

TE (dB/cm) 

Kogahara (Z-cut Ti:Er:LiNbO3) [68]  2.1 

Texas A&M (X-Cut Er:Ti:LiNbO3) 1.8 ± 0.1 

Brinkmann (X-Cut Er:Ti:LiNbO3) [67] 1.0 

Brinkmann (Z-Cut Er:Ti:LiNbO3) [67] 1.4 

 

 

In Table 4, we have compared the amount of amplification per unit length measured for 

TE mode of our 40-by-20 mm Er:Ti:LiNbO3 waveguide amplifier to those reported in 

the literature. From the table, we can see that the result we have obtained from our 

process is among the highest reported by others for an EDWA fabricated on LiNbO3 

substrate. Although the amplifier with the highest gain in the table is from a Z-cut 
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Ti:Er:LiNbO3 waveguide amplifier, the fabrication of an Er-doped amplifier on LiNbO3 

in this way is not practical from the stand point of an integrated optics. This is because 

unlike our Er:Ti:LiNbO3, the erbium in the Ti:Er:LiNbO3 amplifier is introduced into the 

LiNbO3 substrate not by diffusion but by mixing erbium powder in the melt during the 

making of the LiNbO3 wafer. As a result, all regions on the Ti:Er:LiNbO3 will have 

erbium ions in it and thus renders the whole wafer useless for other passive devices as 

they will be very lossy due to the erbium absorption at the 1.5 μm wavelength range.    

 

We have demonstrated on-chip optical amplification through the fabrication of Er-doped 

Ti:LiNbO3 waveguide amplifier.  The doping of erbium was carried out in a diffusion 

furnace at 1100 °C in dry oxygen and argon. The maximum net gain or fiber-to-fiber 

device gain for an 11 μm wide and 20 mm long Er:Ti:LiNbO3 waveguide amplifier is 2.3 

± 0.1 dB at around λ = 1532 nm. This includes the fiber to waveguide coupling losses 

and was reached at a combined pump power of 182mW with two 1488 nm lasers. 

Optical small-signal internal gain of 1.8 dB/cm (TE mode) and 1.5 dB/cm (TM mode) at 

1531 nm was also obtained from a 7 μm wide and 40 mm long Er:Ti:LiNbO3 waveguide 

amplifier . The internal gain discounts the fiber to waveguide coupling losses and was 

also reached at a combined pump power of 182mW with two 1488 nm lasers. Although 

the optical gain of our Er:Ti:LiNbO3 waveguide amplifier is among the highest reported 

so far, we have decided to explore other ways of making EDWA with our fabrication 

processes. This will further increase the versatility of our hybrid waveguides. 
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5. ERBIUM-DOPED AS2S3 THIN FILM BY MULTI-LAYER SPUTTERING 

 

5.1 Background 

Chalcogenide hosts such as As2S3 is particularly suited as a host for erbium because this 

material exhibits very low phonon energies and does not inherently contain any hydroxyl 

or silicon oxide groups. Hosts with low-phonon energy are desired for rare-earth ions 

because multi-phonon relaxation pathways can result in a rapid depopulation of the 

upper excited state and cause quenching of the photoluminescence.  As a rule-of-thumb, 

the rare-earth photoluminescence will be completely quenched by multi-phonon 

relaxations if the phonon cut-off energy of the matrix is greater than 25 % of the energy 

gap between the upper excited state and the lower electronic state of the rare earth ion.  

Since the phonon energy of As2S3 was reported to be about 6.9 % of the energy gap of 

erbium, quenching due to multi-phonon relaxation in As2S3 will be negligible [27].   

 

As is mentioned in section 4, the telecommunications spectrum is not a continuous 

spectrum, but it is separated into low-loss windows. The reason for this division is 

because silica, which is used in the manufacturing of optical glass fibers, intrinsically 

contains hydroxyl- and Si-O groups. The free-radical and vibration overtones of these 

hydroxyl- and Si-O species are situated at  950 nm, 1240 nm, and 1400 nm and the 

presence of these absorption bands is the reason why the telecommunications spectrum 

is divided into several low-loss windows.   Although, a decrease in Rayleigh scattering 

through the reduction of impurities is technically achievable by using highly pure quartz 
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as the precursor material, the presence of hydroxyl- and Si-O groups are intrinsic to 

silica and cannot be eliminated. Therefore, the added benefit of using chalcogenide 

based glasses such as As2S3 is its absence of the hydroxyl- and Si-O groups.  In fact, 

As2S3 is free of absorbers between the wavelengths of 700 nm to 3 µm and is therefore 

highly transparent at these wavelengths.  This suggests that devices fabricated with this 

material can access the entire telecommunications spectrum from 1200 nm wavelength 

to 1600 nm wavelength thus enabling access to an extra 100 nm or 25 % more 

wavelength channels over silica based devices [27]. 

 

There are a several ways to incorporate rare earth elements into chalcogenide films. It 

can be done by RF sputtering from custom made target or vacuum co-evaporation of 

chalcogenide glass and rare earth doped chalcogenide powder [25, 70, 71]. The custom-

made sputtering target can either be from a commercial undoped target with erbium 

pieces on the surface, or made from grounding a rare earth doped chalcogenide bulk 

glass ingot into powder and hot pressing the power into a disk. Similar methods have 

also been adopted to incorporate erbium into As2S3 thin film. To date, demonstrations 

include co-evaporation method and the ion implantation method, which the As2S3 films 

were formed by thermal evaporation and the erbium was doped into the film by 

subsequent ion implantation [27, 72].  

 

Since a direct current sputtering process is often very stable and reproducible, and we 

can independently control the sputtering rate of erbium, we believe that multi-layer 
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magnetron sputtering can provides a more precise control on the doping concentration of 

erbium. Once calibrated, the concentration level can either be determined by the number 

of erbium layers in the film or by the sputtering rate. Moreover, the region with the 

highest concentration of erbium in the Er:As2S3 can be tailored to match the mode 

profiles of both the pump laser and the signal propagating in the waveguide. In this way, 

we can increase the effective absorption and emission cross-sections of erbium in the 

Er:As2S3  and raise the gain of the erbium doped waveguide amplifier. 

 

Another major motivation for magnetron sputtering Er:As2S3 is that the process will 

produce an As2S3 film that is closer to their ideal stoichiometry. Any deviation from the 

ideal stoichiometry is undesired because it would not only change the optical properties 

of the film, e.g. refractive index, which is a critical parameter in waveguide design, but 

also make the material more susceptible to room temperature oxidation such as photo-

induced As2O3 crystals. This is especially important for the fabrication of As2S3 

waveguides, as very often the as-deposited As2S3 film prepared by resistive thermal 

evaporation or pulsed laser deposition, will oxidize into As2O3 when it comes into 

contact with oxygen in the ambient environment [39, 47, 48]. Even though a number of 

advanced processing methods have been proposed to solve these problems, the proposed 

methods in the literature still require the breaking of vacuum after the film is deposited 

and so will not effectively stop the oxidation process in the As2S3 film [43-46].  
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5.2 Experimental Techniques 

Multi-layer sputtering of Er and As2S3 on LiNbO3 substrate can be done by staggered 

deposition of erbium from a 2-inch 99.99% pure erbium target (American Elements Inc., 

Los Angeles, CA 90024)) and As2S3 from a 2-inch AMTIR-6 target (Amorphous 

Materials, Inc., Garland, TX 75042) in a sputtering system. However, due to the need to 

keep both plasmas lit throughout the process and to balance a relatively slower 

deposition rate of As2S3 (~ 0.06 nm/s) with the tiny amount of erbium needed (~ 0.5 – 

2.0 at. % Er), we will have to slow down the deposition rate of erbium by modulating its 

shutter during the run. Lowering the DC power alone is not enough to slow down erbium 

deposition rate, as the process is usually fixed at the working pressure and flow rate of 

argon of As2S3 due to the very demanding deposition conditions of magnetron sputtering 

As2S3 [49]. By setting the on and off time of the shutter, we are then able to maintain the 

deposition rate of erbium at a fractional rate of As2S3. This allows us to eventually 

control the desired concentration level of erbium in the composite film. Fig. 30 

illustrates the multi-layer film structure created by the staggered deposition of Er and 

As2S3 and by modulating the erbium shutter.  
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Fig. 30. A staggered deposition of a multi-layer Er:As2S3 film. The film structure of a 
multi-layer Er:As2S3 film prepared by staggered deposition. If the shutter of the As2S3 
target is closed during the deposition of Er, the process is called layered sputtering, 
otherwise it is semi-cosputtering. 

 

 

In Fig. 31, the picture shows the location of the three sputtering targets used for 

preparing the Er:As2S3 film. To the left we have the As2S3 target, Er target is at the 

center of the chamber and the SiO2 target is to the right. All the shutters are positioned in 

such a way that the argon plasma can still be maintained at the closed position. The 

working pressure and argon flow rate of our process is kept at 2.0 mTorr and 35 sccm 

respectively. The film is deposited using 25 W of DC power for erbium and 35 W of RF 

power for As2S3. After the film is deposited, the Er:As2S3 film can then be thermally 

annealed at 130°C to relieve the stress in the multi-layer film. The erbium distribution 
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can be further improved by keeping the As2S3 shutter opened during the deposition of 

erbium. Although we termed this process cosputtering, strictly speaking it is semi-

cosputtering because the erbium shutter is closed during As2S3 deposition.  

 

 

 

Fig. 31. A photograph of the deposition chamber inside the magnetron sputter. The 
picture shows the location of the three sputtering targets used for preparing the Er;As2S3 
film. To the left we have the As2S3 target, Er target is at the center of the chamber and 
the SiO2 target is to the right. All the shutters are positioned in such a way that the Ar 
plasma can still be maintained at the closed position. 
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The optical properties, refractive index n and extinction coefficient , and the thickness 

of the film were measured by reflection spectroscopy over the wavelength range of 400 

– 850 nm with a spectrometer (F20, Filmetrics, Inc., San Diego, CA 921123). The 

average non-uniformity of the films was around ± 15 nm and the film’s thickness was 

independently verified with a surface profiler. The variations in the measured thickness 

among the spectrometer and surface profiler were within ± 20 nm. 

 

X-ray photoelectron spectroscopy (XPS) is used to examine the chemical composition 

on the surface of the film. This will determine the degree of deviation from ideal As2S3 

stoichiometry the multilayer sputtering process has introduce into the Er:As2S3 film, as 

we have just incorporated an Er dopant into the As2S3 host matrix. Any deviation from 

the ideal stoichiometry is undesired because it would not only change the optical 

properties of the film, e.g. refractive index, which is a critical parameter in waveguide 

design, but also made the material more susceptible to room temperature oxidation such 

as photo-induced As2O3 crystals [49]. Although XPS is only a surface analysis tool, a 

surface examination that shows little deviation from its ideal stoichiometry is also a 

strong indication of the overall integrity of the chemical composition of the film. Since 

all the surface of the film is exposed to the environment and thus most prone to any 

contaminations. This can be verified with Rutherford backscattering spectroscopy. 

 

The XPS analysis is carried out on a Kratos Axis Ultra Imaging X-ray photoelectron 

spectrometer (Kratos Analytical Inc., Chestnut Ridge, NY 10977). The scanning of the 
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kinetic energy of the electrons is done at a chamber pressure, P < 9×10-7 Torr. The 

analyzer is set to spectrum mode, the resolution is 40 eV, the current is 10 mA, and the 

anode HT is 12 kV. The End eV for each elements, namely O 1s, C 1s, S 2p, and As 3d, 

are all set to be 3 eV lower than the default value. The sweeps time is 60 second and the 

number of sweep is five. All the binding energies were corrected to reflect the correct 

binding energy of C 1s at 284.8 eV. 

 

We study the stoichiometry and homogeneity of the Er:As2S3 thin films prepared by 

multi-layer magnetron sputtering using Rutherford back-scattering spectroscopy (RBS). 

In RBS, the Rutherford backscattering of an elastic (hard-sphere) collision between a 

high kinetic energy particle from the incident beam (the projectile) and a stationary 

particle located in the sample (the target) is measured. The energy loss of a backscattered 

ion is dependent on two processes: the energy lost in scattering events with sample 

nuclei, and the energy lost to small-angle scattering from the sample electrons.  

 

The first process is dependent on the scattering cross-section of the nucleus and thus on 

its mass and atomic number. For a given measurement angle, nuclei of two different 

elements will therefore scatter incident ions to different degrees and with different 

energies, producing separate peaks on an N(E) plot of measurement count versus energy. 

These peaks are characteristic of the elements contained in the material, providing a 

means of analyzing the composition of a sample by matching scattered energies to 
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known scattering cross-sections. Relative concentrations can be determined by 

measuring the heights of the peaks. 

 

The second energy loss process, the stopping power of the sample electrons, does not 

result in large discrete losses such as those produced by nuclear collisions. Instead it 

creates a gradual energy loss dependent on the electron density and the distance 

traversed in the sample. This energy loss will lower the measured energy of ions which 

backscatter from nuclei inside the sample in a continuous manner dependent on the 

depth of the nuclei. The result is that instead of the sharp backscattered peaks one would 

expect on an N(E) plot, with the width determined by energy and angular resolution, the 

peaks observed trail off gradually towards lower energy as the ions pass through the 

depth occupied by that element. Elements which only appear at some depth inside the 

sample will also have their peak positions shifted by some amount which represents the 

distance an ion had to traverse to reach those nuclei. 

 

In practice, a compositional depth profile can then be determined from an RBS N(E) 

measurement. The elements contained by a sample can be determined from the positions 

of peaks in the energy spectrum. Depth can be determined from the width and shifted 

position of these peaks, and relative concentration from the peak heights. This is 

especially useful for the analysis of a multilayer sample, for example, or for a sample 

with a composition which varies more continuously with depth. 
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The RBS analysis for our films is carried out with a 2 MeV He beam incident along the 

sample normal direction, with backscattered He atoms detected by a solid state detector 

with an energy resolution of 20 keV. The detector is located 165 degrees away from the 

beam incident directions. 

 

Other than Rutherford back-scattering spectroscopy, Raman spectroscopy can also be 

used to examine the chemical composition of our film. It is a spectroscopic technique 

used to study vibrational, rotational, and other low-frequency modes in a system. It relies 

on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser 

in the visible, near infrared, or near ultraviolet range. The laser light interacts with 

molecular vibrations, phonons or other excitations in the film, resulting in the energy of 

the laser photons being shifted up or down. The shift in energy gives information about 

the phonon modes in the film. Typically, a sample is illuminated with a laser beam. 

Light from the illuminated spot is collected with a lens and sent through a 

monochromator. Wavelengths close to the laser line, due to elastic Rayleigh scattering, 

are filtered out while the rest of the collected light is dispersed onto a detector. In this 

application, Raman spectroscopy is especially useful for detecting any clustering of 

erbium dopants with the host elements, especially sulphur, in the As2S3 host matrix. 

 

The Raman analysis is carried out on the Horiba Jobin-Yvon LabRam IR system, which 

combines both the confocal Raman microscopy and complementary FTIR micro-

spectroscopy in a single benchtop system. The CCD detector has a spectral range of 400 
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to 950 nm. The excitation is done with a 633 nm He Ne laser capable of reaching 17 

mW. The pinhole is set to 200 μm, the grating is 1800 lines per mm, the objective lens is 

at 50 times, and the optical density filter is set at 0.6.  

 

5.3 Results and Discussion 

Once we have determined the deposition conditions required for generating the Er:As2S3 

film, the optical properties, thickness, chemical composition and erbium concentration 

must also be determined before it can be used for device fabrication.  

 

In Fig. 32, we have the refractive index of an as-deposited As2S3 and two as-deposited 

Er:As2S3 films with 4 and 16 layers of erbium. This constitutes about 0.6 and 0.7 atomic 

percent of erbium in the Er:As2S3 films respectively. All the films including the As2S3 

were prepared by magnetron sputtering. It can be seen from the figure that both the 4-

layer and 16-layer Er:As2S3 films follow closely the As2S3 with a maximum difference 

in the refractive index of about 0.02. Moreover, increasing the number of erbium layers 

four times to increase the homogeneity of erbium in the Er:As2S3 film does not result in 

any drastic changes in refractive index. In fact, the index of refraction looks almost 

identical to the sputtered As2S3 film. The film thickness of the Er:As2S3 with four layers 

of erbium is 276 ± 2 nm and 460 ± 20 nm for the sixteen layers of erbium. The thickness 

of the magnetron sputtered As2S3 film is 461 ± 20 nm. 
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Fig. 32. The refractive index of as-deposited As2S3 and Er:As2S3 films. The films were 
prepared by magnetron sputtering. In the figure, As2S3 refers to a magnetron sputtered 
As2S3 film. It shows both the 4-layer and 16-layer Er:As2S3 films follow closely the 
As2S3 film and increasing the number of erbium layers four times to increase the 
homogeneity of erbium in the Er:As2S3 film does not result in any drastic changes in 
refractive index. The film thickness of the Er:As2S3 with four layers of erbium is 276 ± 2 
nm and 460 ± 20 nm for the sixteen layers of erbium. The magnetron sputtered As2S3 
film is 461 ± 20 nm.  
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Fig. 33. The absorption coefficient of as-deposited As2S3 and Er:As2S3 films. The films 
were prepared by magnetron sputtering. It shows both the 4-layer and 16-layer Er:As2S3 
films follow closely the As2S3 film and increasing the number of erbium layers 4 times 
to increase the homogeneity of erbium in the Er:As2S3 film caused no drastic changes in 
the absorption coefficient of the film. The film thickness of the Er:As2S3 with four layers 
of erbium is 276 ± 2 nm and 460 ± 20 nm for the sixteen layers of erbium. The 
magnetron sputtered As2S3 film is 461 ± 20 nm. 

 

 

The Fig. 33 shows the absorption coefficient of the as-deposited As2S3 and Er:As2S3 

films with 4 and 16 layers of erbium. Similar to the refractive index measurement, the 

absorption coefficient of the 4-layer and 16-layer Er:As2S3 films, which can be easily 

derived from the extinction coefficient taken from the spectrometer, also follow closely 
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the As2S3 film. Increasing the number of erbium layers 4 times to increase the 

homogeneity of erbium in the Er:As2S3 film also does not result in any drastic changes in 

the coefficient. The result proves that the doping process will not change the optical 

properties of As2S3 film and thus the same design parameters developed for As2S3 

waveguide can be used for Er:As2S3 waveguide. 

 

X-ray photoelectron spectroscopy is used to examine the chemical composition on the 

surface of the film. In Fig. 34, we have the XPS high resolution spectrum of the 

electrons in arsenic 3d shell in four magnetron sputtered Er:As2S3 films on a 1 cm2 

silicon wafer. From the peaks of the binding energy, we can see that no amount of 

oxidation can be found on the surface of the film as the energy peaks of the electrons in 

the arsenic 3d shell (As-3d) of all the films are lower than 44.0 eV. This result implied 

that the surface of our films, whether as-deposited or annealed at 130 °C, have not 

oxidized into As2O3 or As2O5. According to data published by NIST, the binding energy 

of the electrons in arsenic 3d shell in a film with As2O3 ranges from 43.9 eV to 46.3 eV 

and for As2O5 it ranges from 45.9 eV to 46.5 eV. The refractive index of the film at λ = 

640 nm with four layers of erbium is 2.61 and 2.64 for the one with eight layers of 

erbium and 4 layers of erbium. Thermal annealing was carried out at 130 °C in a vacuum 

oven in the dark. 
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Fig. 34. High resolution XPS spectrum of As-3d shell in Er:As2S3 films. Since binding 
energy of the electrons in the arsenic 3d shell in all the sputtered films are lower than 
44.0eV, the figure shows that the films, whether as-deposited or annealed at 130 °C, 
have not oxidized into As2O3 or As2O5 crystals on the surface. As-Dep refers to as-
deposited. The film thickness of the Er:As2S3 with four layers of erbium is 276 ± 2 nm 
and 523 ± 20 nm for the eight layers of erbium. 
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The Fig. 35 shows the high resolution x-ray photoelectron spectroscopy spectrum of the 

arsenic 3d shell in four as-deposited Er:As2S3 films on a 1 cm2 silicon wafer. All the 

binding energies were corrected to reflect the correct binding energy of C 1s at 284.8 eV 

and 4CoSput in the figure refers to the film with four layers of semi-cosputtered erbium. 

From the peaks of the binding energy, we can see that some amount of As2O3 crystals 

have been found on the surfaces of the Er:As2S3 with one layer of erbium and four layer 

of semi-cosputtered erbium. This is indicated by the binding energy of the electrons in 

the arsenic 3d shell in the film. Both films displayed binding energy greater than 43.8 eV, 

which according to the data published by NIST, is within the binding energy of As2O3 of 

43.9 eV to 46.3 eV. The refractive index of the film at λ = 640 nm with four layers of 

semi-cosputtered erbium is 2.63 and 2.61 for the one with one layers of erbium and 4 

layers of erbium. As for the Er:As2S3 film with eight layers of erbium, its refractive 

index at the wavelength of 640 nm is 2.64. 
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Fig. 35. High resolution XPS spectrum of As-3d shell in as-deposited Er:As2S3 film. In 
the figure, 4CoSput refers to a four layer semi-cosputtered erbium film. The figure 
shows that some amount of As2O3 crystals have been found on the surfaces of the 
Er:As2S3 film with one layer of erbium and four layer of semi-cosputtered erbium in the 
as-deposited state. The film thickness of the Er:As2S3 with four layers of erbium is 276 ± 
2 nm and 523 ± 20 nm for the eight layers of erbium. The film with single layers of 
erbium is 456 ± 18 nm while the one with four layers of semi-cosputtered erbium is 491 
± 20 nm.   
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Fig. 36. High resolution XPS spectrum of As-3d shell in annealed Er:As2S3 films. In the 
figure, 4CoSput refers to four layers of semi-cosputtered Er film. The figure shows that 
except for the Er:As2S3 film with one layer of erbium, all other films showed no signs of 
oxidation. The film thickness of the Er:As2S3 with four layers of erbium is 276 ± 2 nm 
and 523 ± 20 nm for the eight layers of erbium. The film with single layers of erbium is 
456 ± 18 nm while the one with four layers of semi-cosputtered erbium is 491 ± 20 nm. 
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The Fig. 36 shows the high resolution x-ray photoelectron spectroscopy spectrum of the 

arsenic 3d shell in Er:As2S3 film on a 1 cm2 silicon wafer in their as-deposited and 

annealed states. All the binding energies were corrected to reflect the correct binding 

energy of C 1s at 284.8 eV and 4CoSput in the figure refers to the film with four layers 

of semi-cosputtered erbium. From the peaks of the binding energy, we can see that 

except for the Er:As2S3 with one layer of erbium, no oxidation can be found on the 

surface of all the other Er:As2S3 films. This is indicated by the binding energy of the 

electrons in the arsenic 3d shell in their films. Of all the films in the figure, only the film 

with a single layer of erbium displayed a binding energy greater than 44 eV, which 

according to the data published by NIST, is within the binding energy of As2O3 of 43.9 

eV to 46.3 eV. Thermal annealing was carried out at 130 °C in a vacuum oven in the 

dark. For the film with four layers of semi-cosputtered erbium, the refractive index at λ = 

640 nm is 2.63. It is 2.61 for the film with four layers of erbium and 2.64 for the film 

with eight layers of erbium. The film with one layers of erbium has a refractive index of 

2.61 at λ = 640 nm. 

 

We study the stoichiometry and homogeneity of the Er:As2S3 thin films prepared by 

multi-layer magnetron sputtering using Rutherford back-scattering spectroscopy. In the 

RBS experimental spectrum, the signal of each element can be clearly resolved in its 

own channel.  The channel beginning at 460 is assigned to erbium, 400 assigned to 

arsenic, 285 assigned to sulfur, 235 and 215 are assigned to silicon. There are two 

channels for silicon because elements which only appear at some depth inside the sample 
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will also have their peak positions shifted by some amount which represents the distance 

an ion had to traverse to reach those nuclei. Fig. 37 shows the RBS spectrum of two 

thermally annealed Er:As2S3 films on a 1 cm2 Si wafer. In the figure, 16-Layer refers to 

the Er:As2S3 film with sixteen layers of erbium and 4-cosput refers to four layers of 

semi-cosputtered erbium. The spectrums of pure Er and As2S3 films are included as a 

reference to help us differentiate the various elements, e.g. Er, As and S, in our Er:As2S3 

films. The figure confirms we have the right type element in our Er:As2S3 film. There 

are no unknown elements in the spectrum that indicate contamination or oxidation. It 

also shows that the semi-cosputtered film is thicker than the Er:As2S3 film with sixteen 

layers of erbium.  

 

The Fig. 38 shows the RBS spectrum of the Er element in those thermally annealed 

Er:As2S3 films prepared by multi-layer magnetron sputtering.  In the figure, 16-Layer 

refers to Er:As2S3 film with sixteen layers of erbium and 4-cosput refers to four layers of 

semi-cosputtered erbium. The spectrum of pure Er is included as a reference to help us 

locate the elements in the Er:As2S3. The figure not only shows the staggered nature of 

the semi-cosputtered Er:As2S3, but also confirms we have produced a homogeneously 

doped Er:As2S3 film with sixteen layers of erbium. Bad homogeneity of a glass during 

fabrication can lead to the presence of stripes with different densities, which will cause 

additional losses in the optical signal due to scattering.  
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Fig. 37. The RBS spectrum of thermally annealed Er:As2S3 films on Si wafer. In the 
figure, 16-Layer refers to sixteen layers of erbium and 4-cosput refers to four layers of 
semi-cosputtered erbium. The spectrum of pure Er and As2S3 are included as a reference 
to help us differentiate the various elements, Er, As and S, in the Er:As2S3. The figure 
confirms no unknown elements in the spectrum that can indicate contamination or 
oxidation in Er:As2S3. The thickness of the erbium film is 200 ± 20 nm and 461 ± 20 nm 
for As2S3. The film with sixteen layers of erbium is 460 ± 20 nm while the one with four 
layers of semi-cosputtered erbium is 491 ± 20 nm. 
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Fig. 38. The RBS spectrum of Er element in thermally annealed Er:As2S3 films. In the 
figure, 16-Layer refers to sixteen layers of erbium and 4-cosput refers to four layers of 
semi-cosputtered erbium. The spectrum of pure Er film is included as a reference to help 
us locate the elements in Er:As2S3. The figure confirms we have achieved a 
homogeneously doped Er:As2S3 film with sixteen layers of erbium. It also shows the 
staggered nature of the semi-cosputtered Er:As2S3. The number of layers agrees with the 
deposition process. The thickness of the erbium film is 200 ± 20 nm and 461 ± 20 nm for 
As2S3. The film with sixteen layers of erbium is 460 ± 20 nm while the one with four 
layers of semi-cosputtered erbium is 491 ± 20 nm. 
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To analyze the data, the erbium, arsenic and sulfur channels in the experimental 

spectrum were simulated with a box shaped profile as shown in Fig. 39.  In the 

simulation, the overall width of the peak was proportional to the physical thickness of 

the film, and its area beginning at the high energy edge and ending at the low energy 

edge, represented the concentration of each element in the film.  In order to extract the 

compositional information from the experimental data, each peak is simulated by a 

summation of thin slices.  Physically, the thickness of each thin slice in the simulation 

represented a planar layer inside the film that was parallel to the substrate.  The height of 

each slice represented the concentration of that element at a particular planar layer. Fig. 

39 shows the simulation of a RBS spectrum of a thermally annealed Er:As2S3 film. The 

film has four layers of semi-cosputtered erbium.  

 

The simulation software, RBX, found 4 layers of As2S3 and Er in the film. Starting from 

the substrate, we have 120 nm of As2S3, follow by 0.5 nm of Er. This is follows by 130 

nm of As2S3 and 0.5 nm of Er, and top up by another 130 nm of As2S3 and 0.5 nm of Er. 

Finally a 100 nm of As2S3, and 0.5 nm of Er at the top. The density of the As2S3 and Er 

are around 3.3 × 1022 atoms per cm3 and 3.2 × 1022 atoms per cm3 respectively. Using 

the density and the total thickness of all the erbium layers from the simulation, the 

erbium concentration in the Er:As2S3 film with four layers of semi-cosputtered erbium is 

calculated to be 0.4 atomic percent. The measured thickness of the Er:As2S3 with four 

layers of semi-cosputtered erbium is 491 ± 20 nm and this is closed to the thickness of 

482 nm obtained from the simulation. 
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Fig. 39. The simulation of a RBS spectrum of a thermally annealed Er:As2S3 film. The 
film has four layers of semi-cosputtered erbium. The simulation software, RBX, found 
four layers of As2S3 and Er in the film. Starting from the substrate, we have 120 nm of 
As2S3, follow by 0.5 nm of Er, follow by 130 nm of As2S3, follow by 0.5 nm of Er, 
follow by another 130 nm of As2S3, follow by another 0.5 nm of Er, and finally a 100 
nm of As2S3, and 0.5 nm of Er at the top. The density of the As2S3 and Er are 3.3 × 1022 
atoms per cm3 and 3.2 × 1022 atoms per cm3 respectively. The erbium concentration in 
the film is calculated to be 0.4 atomic percent. The measured thickness of the Er:As2S3 
with four layers of semi-cosputtered erbium is 491 ± 20 nm and this is closed to the 
thickness of 482 nm obtained from the simulation.  

 

 

Si 

S 

As 
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The Fig. 40 shows the simulation of the RBS spectrum of another Er:As2S3 film 

prepared by multi-layer magnetron sputtering. The film is thermally annealed and has 

sixteen layers of erbium in it. From the figure, we can see that the width of the boxes 

representing each of the elements is approximately equal to each other and the tops of 

the boxes are relatively flat.  This indicates that the film is homogenously doped as each 

element present in the film had a constant concentration throughout the thickness of the 

film. According to the simulation, the stoichiometry of the film is Er0.7As39.1S60.2,  the 

film thickness is 475 nm, the density of the film is 3.6 × 1022 atoms per cm3 and the 

erbium concentration in the film is calculated to be 2.35 wt. %. This agrees with the 

measured thickness taken from a spectrometer is 460 ± 20 nm and the average thickness 

taken from a surface profiler is 467 ± 21 nm. The RBS spectrum obtained looks very 

similar to a homogeneously Er-doped As2S3  photo-resist fabricated by co-evaporation 

reported in the literature [73]. These RBS results clearly showed that the multi-layer 

technique was able to produce homogeneous Er:As2S3 film with controlled 

stoichiometry that is  free of contamination too.   
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Fig. 40. The simulation of a RBS spectrum of a homogeneously doped Er:As2S3. The 
film is thermally annealed and has 16 layers of erbium in it. The figure shows that the 
simulation agrees well with the measured spectrum and the erbium is uniformly 
distributed in the film. The stoichiometry of the film is Er0.7As39.1S60.2 and according to 
the simulation, density of the film is 3.6 × 1022 atoms per cm3 and the erbium 
concentration in the film is calculated to be 2.35 wt. %.  
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Raman spectroscopy was also be used to examine the chemical composition of our film. 

The Fig. 41 shows the Raman spectrum of some as-deposited Er:As2S3 films on Si 

substrate. In the figure, 16-Layer refers to an Er:As2S3 films with sixteen layers of 

erbium and 4-Cosput refers to four layers of semi-cosputtered erbium. The Raman 

spectrum of As2S3 film and the Si wafer are included as a reference for identifying the 

various Raman’s peaks in the Er:As2S3 film. As is evident from the figure, the spectrum 

shows no characteristic Raman signature for Er2S3. It implies that Er dopant has not 

agglomerated into Er2S3 or Er-S clusters inside the As2S3 host matrix during the 

sputtering process and the film is homogeneous. This result is important because the 

clustering of Er centers in a host material will enhance the cooperative upconversion of 

Er and is detrimental to an Er-doped waveguide amplifier. According to the reference in 

the literature, the characteristic Raman shift of Er2S3 is around 700 to 900 cm-1 [27]. The 

refractive index of the magnetron sputtered As2S3 film is 2.638 (error = 1.29 %). 
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Fig. 41. Raman spectrum of as-deposited Er:As2S3 films on Si substrate. In the figure, 
16-Layer refers to an Er:As2S3 films with sixteen layers of erbium and 4-Cosput refers to 
an Er:As2S3 films four layers of semi-cosputtered erbium. The spectrum shows no 
Raman’s peak for Er2S3. This implies that Er dopant has not agglomerated into Er2S3 
clusters inside the As2S3 host matrix during the sputtering process. The Raman spectrum 
of As2S3 film and the Si wafer are included as a reference for the various Raman’s peaks 

in the Er:As2S3 films. The thickness of the As2S3 film is 461 ± 20 nm. The film with 
sixteen layers of erbium is 460 ± 20 nm while the one with four layers of semi-
cosputtered erbium is 491 ± 20 nm. 
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Fig. 42. The green luminescence from an Er:As2S3 MZI waveguide. The film was 
deposited by multi-layer magnetron sputtering.  The 1488 nm pump signals are butt 
coupled into a 7 μm Ti:LiNbO3 waveguide from a single mode fiber and then transfer 
over to the Er:As2S3 MZI by side coupling. The Er:As2S3 contains four layers of erbium 
deposited by cosputtering As2S3 during erbium deposition. The film is 490 ± 20 nm and 
the Er:As2S3 waveguide is 3.5 μm wide.  The Er concentration in the film is measured to 

be 0.4 at. %. 
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In Fig. 42 we show the typical green luminescence from an integrated Er:As2S3 MZI 

waveguide prepared by multi-layer magnetron sputtering. The result implied that first of 

all, the coupling tapers that we have designed is able to couple the 1488 nm pump signal 

up into the Er:As2S3 waveguide. Secondly, the presence of active erbium ions in the 

integrated Er:As2S3 MZI waveguide is evident from the green luminescence it emitted 

when it was pumped by 1488 nm diode laser. The Er:As2S3 contains eight layers of 

erbium deposited by cosputtering As2S3 during erbium deposition. The film is thermally 

annealed at 130 C for a day, its thickness is 490 ± 20 nm and the Er:As2S3 waveguide is 

3.5 μm wide.  The measured concentration of erbium in the film is found to be 0.4 

atomic percent (at. %).  

 

Fig. 43 compares the photoluminescence of a 7 μm Er:Ti:LiNbO3 waveguide amplifier 

described in section 4 to the Er:As2S3 MZI shown in Fig 44. As we can see from the 

figure, unlike the broad photoluminescence spectrum obtained for the Er:Ti:LiNbO3 

waveguide amplifier, a portion of the  photoluminescence spectrum of the Er:As2S3 MZI 

is missing. This is different from the photoluminescence reported in the literature for 

Er:As2S3 glass and Er:As2S3 film prepared by thermal evaporation [24, 72]. Although we 

have no evident, we suspect it might be due the two linear tapered couplers in the hybrid 

MZI. This is because the proper functioning of the couplers depends on the fabrication 

conditions. Any unintentional changes, e.g. taper width, to the physical dimensions of 

the couplers during fabrication might change the coupling wavelength of the MZI. In 
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this case wavelength above 1530 nm is no longer able to couple up into the Er:As2S3 

waveguide. 

 

 

 

Fig. 43. The photoluminescence of Er-doped waveguides. The figure compares the 
photoluminescence of a 7 μm Er:Ti:LiNbO3 waveguide amplifier described in section 4 
to the Er:As2S3 MZI shown in Fig. 42.  
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Fig. 44. The schematic drawing of an integrated Er:As2S3 MZI. A set of As2S3 S-Bend 
and reversed S-Bend is integrated with a straight Ti:LiNbO3 to create a MZI. The width 
of the Ti:LiNbO3 waveguide is 7 μm, the As2S3 waveguide is 3.5 μm, and the 2-stage 
As2S3 taper vary from 1-to-1.6 μm and then 1.6-to-3.5 μm. The arc length of the S-Bend 
is 1536.353 μm. TM refers to transverse magnetic propagation mode and TE refers to 
transverse electric mode. 

 

 

In Fig. 44 we show the schematic diagram of the hybrid Er:As2S3 MZI. The 1488 nm 

pump signals are butt coupled into a 7 μm Ti:LiNbO3 waveguide from a single mode 

fiber and then transfer over to the Er:As2S3 MZI by side coupling. The integrated 

Er:As2S3 MZI waveguide is pumped in both direction with a forward pump and a 

backward pump, which is travelling in the opposite direction to the signal. The 

maximum pump power obtained in this way is about 182 mW. The coupling of the pump 

signal is accomplished with a two-stage taper. The tip width of the first stage taper varies 

linearly from 1.0 μm to 1.6 μm and the taper length is about 1000 μm long. The tip width 

of the second stage taper varies linearly from 1.6 μm to 3.5 μm and the taper length is 

also about 1000 μm long. The MZI was designed using the commercial software, 
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OptiBPM, and consists of two cosine S-bends with one a mirror image of the other. The 

calculated bending radius of the S-Bend is 380 μm. 

 

To summarize, we have demonstrated the feasibility of incorporating erbium into As2S3 

film using multi-layer magnetron sputtering. The RBS spectrum of the Er:As2S3 film 

with sixteen layers of erbium shows a homogeneous film and Raman spectroscopy 

confirms there is no significant amount of  Er-S clusters in the sputtered film. Moreover, 

the atomic concentration (39.1% of arsenics and 60.2% of sulfur) calculated from RBS is 

also close to the values obtained from the XPS survey scan of the sputtered As2S3 film 

(38.3% of arsenics and 61.7% of sulfur) and the As2S3 sputter target (40.6% of arsenics 

and 59.4% of sulfur). The presence of active erbium ions in the integrated Er:As2S3 MZI 

waveguide is evident from the green luminescence it emitted when it was pumped by 

1488 nm diode laser.  
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6. SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

We have measured the optical properties of a-As2S3 thin films and the propagation loss 

of a-As2S3 thin films on Ti:LiNbO3 deposited by magnetron sputtering. While the 

average Eop of an as-deposited film remains relatively unchanged at 2.35 ± 0.04 eV 

when annealed, its refractive index n at  = 1530 nm increased slightly from 2.42 to 

2.43. The stoichiometry was correct and the binding energy of the As3d of the film was 

43.2eV with no significant amount of As2O3 crystals found on the surface. The optical 

and structural properties agree with published results on As2S3 bulk glass and thus our 

as-deposited films are closer to the equilibrium state than a-As2S3 films made by thermal 

evaporation and PLD. These attributes are unique to a magnetron sputtered a-As2S3 film 

and we attribute it to the photo-annealing or photo-polymerizing effect caused by the 

visible light emitted by the argon plasma during the sputtering process. The TM 

propagation loss at  = 1.5 m of a hybrid straight waveguide is 0.20 ± 0.05 dB/cm.  

This result compare favorably with a recent paper on the propagation loss of an As2S3 

waveguide with a sub-micrometer thickness of 0.83 m.  

 

Using the process developed, a hybrid Mach-Zehnder interferometer has been 

successfully fabricated with magnetron sputtering. The impulse response confirms the 

splitting of the TM light mode into the two pulses, one travelling in the Ti:LiNbO3 and 
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the other in the As2S3 waveguide. The average group index of the integrated As2S3 

waveguide is 2.36 when it is annealed and 2.35 when it is exposed to bandgap light. 

 

On-chip optical amplification was achieved through the fabrication of Er-doped 

Ti:LiNbO3 waveguide amplifier.  The doping of erbium was carried out in a diffusion 

furnace at 1100 °C in dry oxygen and argon. The TM net gain or fiber-to-fiber device 

gain for an 11 μm wide and 20 mm long Er:Ti:LiNbO3 waveguide amplifier is 1.2 ± 0.1 

dB/cm at around λ = 1532 nm. This includes the fiber to waveguide coupling losses and 

was reached at a combined pump power of 182mW with two 1488 nm lasers. The TE 

internal gain, which discounts any coupling losses, obtained for a 7 μm wide and 40 mm 

long Er:Ti:LiNbO3 waveguide amplifier is 1.8 dB/cm at around λ = 1532 nm. This was 

also reached at a combined pump power of 182mW with two 1488 nm lasers. This result 

put the optical gain of our Er:Ti:LiNbO3 waveguide amplifier among the highest 

reported so far for a similar device. 

 

We have also successfully demonstrated the feasibility of incorporating erbium into 

As2S3 film using a novel deposition method with multi-layer magnetron sputtering. The 

RBS spectrum of the Er:As2S3 film with 16 layers of erbium shows a homogeneous film 

and Raman spectroscopy confirms there is no significant amount of  Er-S clusters in the 

sputtered film. The deposition method was used to fabricate an Er:As2S3 hybrid MZI and 

the presence of active erbium ions in the waveguide is evident from the green 

luminescence it emitted when it was pumped by 1488 nm diode laser. It also 



123 
 

 

demonstrated the viability of transferring the pump signal up into the Er:As2S3 

waveguide with our unique two-stage coupler. 

 

6.2 Conclusion 

While telecommunications and other applications already use lasers to transmit 

information, current technologies are too expensive and bulky to be used across a wide 

range of industry. Integrated photonics research aims to bring down the dramatic cost of 

production and reach a data rates of more than one Tera bits per second. Tomorrow's 

datacenter or supercomputer may see components spread throughout a building or even 

an entire campus, communicating with each other at high speed, as opposed to being 

confined by heavy copper cables with limited capacity and reach. This will allow 

datacenter users, such as government agencies, universities, financial institutions, or 

internet companies like Google to increase their performance, and lower the costs in 

space and energy. With the success in magnetron sputtering As2S3 thin film and the 

fabrication of various active and passive hybrid devices on LiNbO3 substrate, we have 

achieved the main purpose of this work.  We have demonstrated the feasibility of a 

hybrid integration of As2S3 and LiNbO3 waveguides with magnetron sputtering.  

 

6.3 Future Work 

First of all, The TM and TE propagation loss of As2S3 waveguide could still be lowered 

to reached the lowest ever reported value of about 0.05 dB/cm. This was obtained for a 4 

μm wide ridge waveguide with a thickness of about 2 to 3 μm.  It can be accomplished 
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by fine tuning the waveguide fabricating process and paying special attention on how to 

reduce the surface roughness of the As2S3 waveguide.  

 

The net gain of the Er:Ti:LiNbO3 waveguide amplifier can be further improved by 

increasing the overlap between the propagating mode profile of both the pump and 

signal, and the distribution of erbium in the amplifier. Based on some preliminary 

findings, both experimental and simulated, we have realized that a well-placed As2S3 

waveguide near the Er:Ti:LiNbO3 waveguide amplifier might alter the pump signal in 

such a way that the overall gain of the amplifier can be improved. 

 

As for the doping of erbium into As2S3 film with multi-layer magnetron sputtering, we 

could upgrade the semi-cosputtering process to full co-sputtering. This would require the 

simultaneous sputtering of As2S3 and Er throughout the run. This should distribute the 

erbium even more evenly in the film and further decrease the cooperative upconversion 

of erbium in the erbium doped waveguide amplifier.  



125 
 

 

REFERENCES 

 

1. A. Lamprechter, "Photonics – The key technology for tomorrow's computers and 
entertainment electronics," (2010), 
http://download.intel.com/pressroom/pdf/photonics/SiliconPhotonics_Backgroun
der.pdf?iid=pr_smrelease_vPro_materials3. 

2. R. Soref, and B. Bennett, "Electrooptical effects in silicon," Quantum 
Electronics, IEEE Journal of 23, 123-129 (1987). 

3. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and 
M. Paniccia, "High-speed optical modulation based on carrier depletion in a 
silicon waveguide," Opt. Express 15, 660-668 (2007). 

4. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, "Silicon-on-
insulator eight-channel optical multiplexer based on a cascade of asymmetric 
Mach-Zehnder interferometers," Opt. Lett. 33, 530-532 (2008). 

5. M. Paniccia, "The 50G silicon photonics link " (2010), 
http://download.intel.com/pressroom/pdf/photonics/50G_Silicon_Photonics_Lin
k.pdf?iid=pr_smrelease_vPro_materials1. 

6. Y. Kang, L. Han-Din, M. Morse, M. Paniccia, M. Zadka, S. Litski, G. Sarid, A. 
Pauchard, K. Ying-Hao, C. Hui-Wen, W. Zaoui, J. Bowers, A. Beling, D. 
McIntosh, Z. Xiaoguang, and J. Campbell, "Monolithic germanium/silicon 
avalanche photodiodes with 340 GHz gain-bandwidth product," Nature 
Photonics 3, 59-63 (2009). 

7. Y. Vlasov, "Silicon integrated nanophotonics," (2010), 
http://domino.research.ibm.com/comm/research_projects.nsf/pages/photonics.ind
ex.html. 

8. C. Andrews, "Made in IBM labs: breakthrough chip technology lights the path to 
exascale computing," (2010), http://www-
03.ibm.com/press/us/en/pressrelease/33115.wss. 

9. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. 
Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, 
"Integrated optical devices in lithium niobate," Opt. Photon. News 19, 24-31 
(2008). 

10. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. 
Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. 



126 
 

 

Bossi, "A review of lithium niobate modulators for fiber-optic communications 
systems," IEEE Journal of Selected Topics in Quantum Electronics 6, 69-82 
(2000). 

11. T. J. Wang, and J. S. Chung, "Electrooptically wavelength-tunable polarization 
converter utilizing strain-optic effect on X-cut LiNbO3," IEEE Photonics 
Technology Letters 16, 2275-2277 (2004). 

12. H. Jung, and Y. Chung, "Polarization-independent electro-optically tuned 
add/drop multiplexers in LiNbO3 utilizing strain optic effect," Japanese Journal 
of Applied Physics 47, 1579-1583 (2008). 

13. M. Kazumasa, M. Masamitsu, and K. Jiro, "Optical waveguide isolator in Ti-
diffused LiNbO3," Optics Communications 27, 361-364 (1978). 

14. M. Asobe, and K. i. Suzuki, "Nonlinear refractive index measurement in 
chalcogenic-glass fibers by self-phase modulation," Applied Physics Letters 60, 
1153 (1992). 

15. S. Ramachandran, and S. Bishop, "Photoinduced integrated-optic devices in 
rapid thermally annealed chalcogenide glasses," IEEE Journal of Selected Topics 
in Quantum Electronics 11, 260-270 (2005). 

16. P. A. Young, "Optical properties of vitreous arsenic trisulphide," Journal of 
Physics C: Solid State Physics, 93 (1971). 

17. V. Ta'eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. 
C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, 
"Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 
9205-9221 (2007). 

18. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. 
Richardson, "Fabrication and testing of planar chalcogenide waveguide 
integrated microfluidic sensor," Optics express 15, 2307-2314 (2007). 

19. M. E. Solmaz, W. C. Tan, O. Eknoyan, C. K. Madsen, D. B. Adams, X. Xia, and 
S. Grover, "Compact bends for achieving higher integration densities for LiNbO 
3 waveguides," IEEE Photonics Technology Letters 21, 557-559 (2009). 

20. M. Solmaz, D. Adams, and W. Tan, "Vertically integrated As2S3 ring resonator 
on LiNbO3," Optics letters 34, 1735-1737 (2009). 

21. V. G. Ta'eed, S. Madden, B. Eggleton, K. Finsterbusch, D. Choi, D. Moss, H. 
Nguyen, N. Baker, M. R. E. Lamont, B. Luther-Davies, and L. Fu, "Ultrafast all-



127 
 

 

optical chalcogenide glass photonic circuits," Optics Express 15, 9205-9221 
(2007). 

22. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. 
Duguay, K. A. Richardson, and T. Cardinal, "Fabrication and characterization of 
integrated optical waveguides in sulfide chalcogenide glasses," Journal of 
Lightwave Technology 17, 1184-1191 (1999). 

23. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. 
Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast 
waveguides in chalcogenide glass and polymer," IEEE Journal of Selected 
Topics in Quantum Electronics 11, 539-546 (2005). 

24. S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. 
G. Bishop, "Photoluminescence and excitation spectroscopy of Er-doped As2S3 
glass: Novel broad band excitation mechanism," Journal of Applied Physics 77, 
3365 (1995). 

25. A. Fuchs, J. Fick, V. Balan, C. Vigreux, and A. Pradel, "Photoluminescence and 
waveguiding in sputtered films of Er-doped chalcogenide glasses," Proceedings 
of SPIE 5451, 327-336 (2004). 

26. C. Meneghini, J. F. Viens, A. Villeneuve, É. J. Knystautas, M. A. Duguay, and 
K. A. Richardson, "Luminescence from neodymium-ion-implanted As2S3 
waveguides," Journal of the Optical Society of America B 15, 1305-1308 (1998). 

27. S. H. E. Wong, "Inorganic arsenic trisulfide photoresist for three-dimensional 
photolithography," in Faculty of Chemistry and BioSciences (Karlsruhe Institute 
of Technology, Karlsruhe, Germany, 2008), p. 225. 

28. W. C. Tan, "Optical properties of amorphous selenium films," in Electrical 

Engineering (University of Saskatchewan, Saskatoon, 2006), p. 128. 

29. N. F. Mott, "Electrons in disordered structures," Advances in Physics 50, 865-
945 (2001). 

30. M. H. Cohen, "Review of the theory of amorphous semiconductors," Journal of 
Non-Crystalline Solids 4, 391-409 (1970). 

31. J. M. Marshall, and A. E. Owen, "Drift mobility studies in vitreous arsenic 
triselenide," Philosophical Magazine 24, 1281 (1971). 

32. J. Tauc, Amorphous and liquid semiconductors (Plenum, New York, 1974). 



128 
 

 

33. J. Singh, and K. Shimakawa, Advances in amorphous semiconductors (Taylor & 
Francis, London, 2003). 

34. W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, "Fundamental optical 
properties of materials I," in Optical properties of condensed matter and 

applications, J. Singh, ed. (John Wiley & Sons Ltd, West Sussex, 2006), pp. 1-
25. 

35. S. H. Wemple, and Didomeni.M, "Behavior of the electronic dielectric constant 
in covalent and ionic materials," Physical Review. B, Solid State 3, 1338 (1971). 

36. P. J. L. Herve, and L. K. J. Vandamme, "Empirical temperature dependence of 
the refractive index of semiconductors," Journal of Applied Physics 77, 5476 
(1995). 

37. C. Lopez, "Evaluation of the photo-induced structural mechanisms in 
chalcogenide glass materials," in College of Optics and Photonics (University of 
Florida, Orlando, 2004), p. 231. 

38. R. P. Wang, A. Rode, S. Madden, and B. Luther-Davies, "Physical aging of 
arsenic trisulfide thick films and bulk materials," Journal of the American 
Ceramic Society 90, 1269-1271 (2007). 

39. J. S. Berkes, S. W. Ing, and W. J. Hillegas, "Photodecomposition of amorphous 
As2Se3 and As2S3 " Journal of Applied Physics 42, 4908 (1971). 

40. H. Hisakuni, and K. Tanaka, "Giant photoexpansion in As2S3 glass," Applied 
Physics Letters 65, 2925-2927 (1994). 

41. Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, "Simultaneous microscopic 
measurements of photodarkening and photoexpansion in chalcogenide films," 
Journal of Physics D: Applied Physics 42, 135412-135416 (2009). 

42. K. Tanaka, A. Saitoh, and N. Terakado, "Giant photo-expansion in chalcogenide 
glass," Journal of Optoelectronics and Advanced Materials 8 (2006). 

43. M. Solmaz, X. Cheng, H. Park, and C. K. Madsen, "Patterning chalcogenide 
glass by direct resist-free thermal nanoimprint," Journal of Vacuum Science & 
Technology. B, Microelectronics and Nanometer Structures 26, 606-610 (2008). 

44. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, 
"Fabrication and characterization of low loss rib chalcogenide waveguides made 
by dry etching," Optics Express 12, 5140-5145 (2004). 



129 
 

 

45. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, "Advanced 
processing methods for As2S3 waveguide fabrication," in IEEE Conference on 

Optoelectronic and Microelectronic Materials & Devices (IEEE 2006), pp. 132-
135. 

46. A. V. Rode, R. B. Charters, B. Luther-Davies, A. Zakery, E. G. Gamaly, and M. 
Samoc, "Laser-deposited As2S3 chalcogenide films for waveguide applications," 
Applied Surface Science 197-198, 481-485 (2002). 

47. P. J. Allen, B. R. Johnson, R. T. Baran, N. C. Anheier, S. K. Sundaram, M. H. 
Engelhard, and B. T. Broocks, "Surface degradation of As2S3 thin films," 
Physics and Chemistry of Glasses 47, 681-687 (2006). 

48. J. Dikova, N. Starbov, and K. Starbova, "The mechanism of photoinduced 
transformations in amorphous As2S3 thin films," Journal of Non-Crystalline 
Solids 167, 50-58 (1994). 

49. W. C. Tan, M. E. Solmaz, J. Gardner, R. Atkins, and C. Madsen, "Optical 
characterization of a-As2S3 thin films prepared by magnetron sputtering," 
Journal of Applied Physics 107, 033524 (2010). 

50. W. S. Rodney, I. H. Malitson, and T. A. King, "Refractive Index of arsenic 
trisulfide," Journal of the Optical Society of America 48, 633-635 (1958). 

51. S. A. Keneman, J. Bordogna, and J. N. Zemel, "Evaporated films of arsenic 
trisulfide: dependence of optical properties on light exposure and heat cycling " 
Journal of the Optical Society of America 68, 32-38 (1978). 

52. G. Stewart, R. H. Hutchins, and P. J. R. Laybourn, "Controlled growth of arsenic 
trisulphide films for coupling integrated optical devices " Journal of Physics. D, 
Applied Physics 14, 323-331 (1981). 

53. A. R. Hilton, G. Whaley, and J. McCord, "Production of arsenic trisulfide glass," 
Proceedings of SPIE 3060, 335-343 (1997). 

54. J. Tauc, and A. Menth, "States in the gap," Journal of Non-Crystalline Solids 8-

10, 569-585 (1972). 

55. D. L. Wood, and J. Tauc, "Weak absorption tails in amorphous semiconductors," 
Physical Review. B, Solid State 5, 3144-3151 (1972). 

56. P. J. Allen, B. R. Johnson, and B. J. Riley, "Photo-oxidation of thermally 
evaporated As2S3 thin films," Journal of Optoelectronics and Advanced 
Materials 7, 1759-1764 (2005). 



130 
 

 

57. R. Kawakami, and T. Inaoka, "Effect of argon plasma etching damage on 
electrical characteristics of gallium nitride," Vacuum 83, 490-492 (2008). 

58. M. K. Bahl, R. O. Woodall, R. L. Watson, and K. J. Irgolic, "Relaxation during 
photoemission and LMM auger decay in arsenic and some of its compounds " 
The Journal of Chemical Physics 64, 1210-1218 (1976). 

59. N. Fairley, and A. Carrick, The casa cookbook: recipes for XPS data processing 

(Acolyte Science, Knutsford, U. K. , 2005). 

60. S. Seal, K. A. Richardson, C. Lopez, A. Graham, D. K. Verma, A. Saliminia, T. 
Galstian, and A. Villeneuve, "Structure and chemical studies of As2S3 glasses 
used for waveguide applications," Physics and Chemistry of Glasses 43, 59-65 
(2002). 

61. J. Noda, M. Fukuma, and S. Saito, "Effect of Mg diffusion on Ti-diffused 
LiNbO3 waveguides " Journal of Applied Physics 49, 3150-3154 (1978). 

62. C. Canali, C. De Bernardi, M. De Sario, A. Loffredo, G. Mazzi, and S. Morasca, 
"Effects of water vapor on refractive index profiles in Ti:LiNbO3 planar 
waveguides," Journal of Lightwave Technology 4, 951-955 (1986). 

63. B. Chen, "Elimination of LiO2 out-diffusion waveguide in LiNbO3 and 
LiTaO3," Applied Physics Letters 30, 570 (1977). 

64. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, 
"Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical 
devices," Photonics Technology Letters, IEEE 22, 495-497 (2010). 

65. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, 
"Demonstration of chalcogenide glass racetrack microresonators," Opt. Lett. 33, 
761-763 (2008). 

66. D. L. Zhang, P.-R. Hua, and E. Y. B. Pun, "Correct determination of net gain in 
Er-doped optical waveguide amplifier from pump-on/off measurement," Optics 
Communications 279, 64-67 (2007). 

67. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, "Erbium-
doped single- and double-pass Ti:LiNbO3 waveguide amplifiers," Quantum 
Electronics, IEEE Journal of 30, 2356-2360 (1994). 

68. Kogahara, "Optical amplification characteristics of Ti-diffused waveguides on 
Erbium-doped LiNbO3 crystal," IEICE Electronics Express 4 (2007). 



131 
 

 

69. R. Salas-Montiel, M. E. Solmaz, W. C. Tan, X. Song, W. T. Snider, and C. K. 
Madsen, "Selective co-doped erbium Ti:LiNbO3 waveguide amplifiers," 
Proceedings of SPIE 7605, 76050L-76058 (2010). 

70. J. A. Frantz, J. S. Sanghera, L. B. Shaw, G. Villalobos, I. D. Aggarwal, and D. 
W. Hewak, "Sputtered films of Er3+-doped gallium lanthanum sulfide glass," 
Materials Letters 60, 1350-1353 (2006). 

71. V. Lyubin, M. Klebanov, B. Sfez, and B. Ashkinadze, "Photoluminescence and 
photodarkening effect in erbium-doped chalcogenide glassy films," Materials 
Letters 58, 1706 (2004). 

72. J. Fick, E. J. Knystautus, A. Villeneuve, F. Schiettekatte, S. Roorda, and K. A. 
Richardson, "High photoluminescence in erbium-doped chalcogenide thin films," 
Journal of Non-Crystalline Solids 272, 200-208 (2000). 

73. S. Wong, O. Kiowski, M. Kappes, J. K. N. Lindner, N. Mandal, F. C. Peiris, G. 
A. Ozin, M. Thiel, M. Braun, M. Wegener, and G. von Freymann, "Spatially 
localized photoluminescence at 1.5 micrometers wavelength in direct laser 
written optical nanostructures," Advanced Materials 20, 4097 (2008). 

 

 



132 
 

 

VITA 

 

Name:               Wee Chong Tan  

 

Address:    Department of Electrical and Computer Engineering, 

   Texas A&M University,  

   214 Zachry Engineering Center, TAMU 3128 

   College Station, Texas 77843-3128 

 

Email Address:     weechng@tamu.edu  

  

Education:            B. Sc., Electrical and Computer Engineering, University of 

Saskatchewan, 2003. 

                             M. Sc., Electrical and Computer Engineering, University of 

Saskatchewan, 2006. 

   Ph.D., Electrical Engineering, Texas A&M University 2011.

 

 

 


