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ABSTRACT 

Role of Protein Acetylation, Formation and Dispersal of Biofilms, and Their Impact on Insects.  
 

(May 2011) 

Qun Ma, B.S., Zhejiang University 

Chair of Advisory Committee: Dr. Thomas K. Wood 

 

  Bacterial biofilms form on liquid/air and liquid/solid surfaces and consist of cells 

combined with an extracellular matrix such as exopolysaccharides, extracellular DNA, and 

glycoproteins. Bacteria have up to a 1000-fold increase of antibiotic resistance in biofilms 

compared to planktonic cells. Furthermore, biofilm cells show better tolerance to adverse 

environmental conditions such as nutrition limitations, temperature changes, pH changes, and 

non-optimal osmotic conditions.  

 In Escherichia coli, the outer membrane protein OmpA increased biofilm formation on 

polystyrene, polypropylene, and polyvinyl chloride surfaces while it decreased biofilm formation 

on glass surfaces. This surface-dependent phenotype was because OmpA inhibits cellulose 

production by inducing the CpxRA two-component signal transduction pathway, and cellulose 

inhibits biofilm formation on plastic due to its hydrophilic nature.  

 We discovered, and then engineered, BdcA (formerly YjgI), for biofilm dispersal. We 

found that in E. coli, BdcA increases motility and extracellular DNA production while it 

decreases exopolysaccharide production, cell length, and aggregation. We reasoned that the 3, 5-

cyclic diguanylic acid (c-di-GMP) levels increase upon deleting bdcA, and showed that BdcA 

binds c-di-GMP in vitro. In addition, we used protein engineering to evolve BdcA for greater c-

di-GMP binding and found that the single amino acid change E50Q causes nearly complete 

biofilm dispersal. 



 iv

 We isolated Proteus mirabilis from the blowfly Lucilia sericata, which swarmed 

significantly. By motility screening and complementation with putative interkingdom signal 

molecules that have been shown to attract flies, we found lactic acid, phenol, NaOH, KOH, 

putrescine, and ammonia restore the swarming motility of seven different swarming deficient 

mutants. These mutants and putative signal molecules will be further tested for fly attraction and 

oviposition.  

 Acetylation of lysine residues is conserved in all three kingdoms although its role in 

bacteria is not clear. We demonstrated that acetylation enables E. coli to withstand 

environmental stresses.  Specifically, the bacteria became more resistant to heat and oxidative 

stress.  Furthermore, we showed that the increase in oxidative stress resistance is due to the 

induction of catalase gene katG.  Hence we demonstrate for the first time a specific physiological 

role for acetylation in prokaryotes. 
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CHAPTER I 

INTRODUCTION 

1.1 Background  

Escherichia coli is the best-studied bacterium in the world with around 4000 genes in its 

genome. Although there are still many genes that have not been characterized, the availability of 

gene chips for DNA microarrays and libraries with 3985 single gene knockout mutants (KEIO 

collection (Baba et al., 2006)) and 4267 complementation plasmids (ASKA collection (Kitagawa 

et al., 2005)) makes it the most-suitable research model for understanding biological processes in 

living organisms.  

Biofilm are aggregated cells attached to an interface in the presence of water. The cells 

in biofilms are embedded in an extracellular matrix comprised of exopolysaccharide (Karatan 

and Watnick, 2009), extracellular DNA (Barken et al., 2008), and glycoproteins (Nakao et al., 

2008). Compared to free-swimming cells (planktonic cells), biofilm cells are more resistance to 

antimicrobial agents (bacteria in biofilms are as much as 1000-fold more resistant to antibiotics) 

(Mah et al., 2003) and are tolerant to adverse environmental conditions such as limited nutrients 

(Steinberger et al., 2002) and temperature fluctuations (Kubota et al., 2008). Thus, biofilms are 

very difficult to be remove and cause problems in regard to surgery (Bendouah et al., 2006) and 

industrial biofouling (Flemming et al., 1992).  

There are six stages for biofilm development, movement to the surface (Wood et al., 

2006), initial reversible attachment, irreversible attachment, formation of small aggregates, 

maturation of the biofilm, and biofilm dispersal (Van Houdt and Michiels, 2005). This process is 

dynamic (Wood et al., 2011). Cells can detach from a mature biofilm matrix and re-colonize in a 

new location in order to get more nutrition and expand.  

____________________ 
This dissertation follows the style of Environmental Microbiology. 
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Cell appendages play an important role in biofilm development and dispersal. These 

appendages include flagella, fimbriae, autotransporter proteins, curli, exopolysaccharide, and 

conjugative pili (Van Houdt and Michiels, 2005). For example, in the first stage of biofilm 

development, bacteria need flagella to move to solid surfaces (via motility). In the last stage of 

biofilm development, bacteria also need flagella to move away from biofilm matrix and change 

back to planktonic cells. Hence motility is considered to be a virulence factor since it is 

responsible for initial cell-to-surface contact. 

 Bacterial behavior is influenced by the environment. There are some signal transduction 

systems that can sense specific environmental cues and regulate gene expression as well as lead 

to cell physiology changes (Kjelleberg and Givskov, 2007). One important intracellular signal 

molecule that conveys these changes in the environment is 3, 5-cyclic diguanylic acid (c-di-

GMP). c-di-GMP is synthesized by diguanylate cyclases, characterized by the GGDEF motif, 

from two guanosine-5'-triphosphate molecules and is degraded by phosphodiesterases (PDEs) 

which are characterized by the EAL domain and HD-GYP domain (Kulshina et al., 2009). 

 Signal transduction not only occurs intracellularly to regulate cell physiology, but also 

occurs intercellularly to make cell-cell communication (termed quorum sensing (QS)).  Signal 

transduction also occurs between kingdoms (interkingdom signaling); for example, between 

bacteria and their hosts and involves small molecules that are produced by both eukaryotes and 

bacteria (e.g., hormone-like chemicals) (Hughes and Sperandio, 2008). For millions of years, 

prokaryotes and eukaryotes have maintained a close relationship. This relationship can be either 

beneficial or detrimental. The possibility of beneficial association indicates that bacteria can 

communicate with eukaryotes such as insects and mammals through some specific chemicals 

and these chemicals should be able to control both organisms’ physiology. 

 Protein acetylation is a post-translational modification conserved in both mammals and 
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microbes (Wang et al., 2010). In bacteria, previous work has focused primarily on histones and 

transcription-associated proteins (Hu et al., 2010). Recent reports showed that acetylation 

involves proteins in almost every aspect of cellular physiology (Yu et al., 2008).  

1.2 Motivation 

  Biofilm formation causes serious problems to industry and human health due to its 

resistance to extreme environments as well as to high concentrations of antimicrobial reagents. 

Biofilms can grow in extremely hot waters, frozen glaciers, very acidic conditions, and very 

alkaline conditions. Biofilm formation increases heat transfer resistance and leads to significant 

energy losses in heat exchange equipment (Characklis et al., 1981). Biofilms also cause 

substantial corrosion problems (20% of industry corrosion) in marine engineering systems, such 

as in pipelines of the offshore oil and gas industry (Duan et al., 2008).  Biofouling organisms 

increase fuel consumption by over 20% and cost the Navy each year $75-100M for drag-related 

fuel increases (Dürr and Thomason, 2009).  Biofilms also exist in humans and are intimately 

related to diseases. For example, infections of the Shiga toxin-producing E. coli O157:H7 have 

been estimated to be responsible for 73,000 illnesses annually in the United States, with more 

than 2,000 hospitalizations and 60 deaths (Frenzen et al., 2005). Hence understanding the 

mechanisms of biofilm development should lead to novel methods to remove biofilms is a 

powerful strategy with significant importance to the economy and health.  In addition, the 

characterizations of beneficial biofilms encourage people to think about the idea about using 

biofilms in a positive way. For example, Bacillus subtilis biofilm formation helps to control 

infection from plant pathogens (Morikawa, 2006) as well as to reduce mild steel corrosion 

(Jayaraman et al., 1999c; Jayaraman et al., 1999a). The potential of utilizing beneficial biofilms 

also requires a better understanding of the genetic basis of biofilm formation and dispersal. 
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1.3 Research objectives, importance, and novelty 

  This study seeks to improve the current understanding of biofilm formation and dispersal 

using E. coli as the reference organism. Engineering applications for controlling biofilms, the 

interaction between pathogen and host, and the effect of post-translational modifications on 

bacterial stress response are also discussed.  

  The specific aims are: 

•  Determine how OmpA influences E. coli biofilm formation 

• Determine how BdcA controls E. coli biofilm dispersal 

• Construct a powerful biofilm dispersal protein via protein engineering of  BdcA 

• Identify the interkingdom signal molecules between Proteus mirabilis and blowflies 

• Determine how acetylation changes cell stress resistance 

The Wood group discovered previously that OmpA is an outer membrane protein which 

influences biofilm formation (González Barrios et al., 2006a), and here we show OmpA 

influences biofilm formation in a surface-dependent manner. The ompA mutant has completely 

abolished biofilm formation on hydrophobic surfaces, and this phenotype can be complemented 

with OmpA production from a plasmid. Our goal was to explore the genetic basis of how OmpA 

influences biofilm formation in this manner.  Our novel finding was that OmpA inhibits 

cellulose production by inducing the CpxRA two-component signal transduction pathway, and 

cellulose inhibits biofilm formation on plastic due to its hydrophilic nature. 

BdcA (previously YjgI) was an uncharacterized protein involved in the transport of QS 

signal autoinducer 2 (AI-2) (Herzberg et al., 2006). Here we discovered that BdcA is a positive 

factor for biofilm dispersal. The novelty of our work is that we connected BdcA with the 

important intracellular signal c-di-GMP since BdcA was found to be a c-di-GMP-binding protein. 
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Protein engineering of BdcA was also performed by random mutagenesis and saturation 

mutagenesis of bdcA to obtain a more powerful protein for biofilm dispersal. The importance of 

this research is that we obtained a more effective biofilm dispersal protein (enhanced dispersal 

by an order of magnitude) with only one amino acid replacement that may be a general method 

for dispersing all bacterial biofilms. 

The interkingdom signaling between pathogen P. mirabilis and blowfly Lucilia sericata 

was also investigated.  Our goal was to discover QS signals and then use them to control insect 

behavior.  Our novel finding was that lactic acid, phenol, NaOH, KOH, putrescine, and ammonia 

restore the swarming motility of seven different swarming deficient mutants. These chemicals 

may be interkingdom signal molecules that work for the communication between P. mirabilis 

and L. sericata. 

The role of protein acetylation at lysine residue was also investigated.  We discovered 

that protein acetylation is related to bacterial stress resistance, especially oxidative stress and 

heat stress, and related this acetylation to the regulation of catalase genes by stress-activated 

two-component systems.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Escherichia coli 

 Escherichia coli is a typical Gram-negative bacterium which is commonly found in the 

lower intestine of warm-blooded organisms (Savageau, 1983). Some E. coli strains are harmful 

to humans by causing serious food poisoning, such as the O157:H7 (Johnsen et al., 2001). E. coli 

is also one of the most widely-used research models. The MG1655 was chosen as the first 

sequenced strain of E. coli K-12 by the Blattner lab (Blattner et al., 1997) since it has been 

maintained as a lab strain with minimal genetic manipulation. The E. coli K-12 BW25113 was 

used to make the Keio collection of single-gene knockouts (Baba et al., 2006), which further 

improves the speed of E. coli research by supplying thousands of ready-to-use single-gene 

knockouts. 

2.2 Genetic basis of biofilm development 

2.2.1 Biofilm development 

There are six stages for biofilm development (Fig. 2.1) and different cell adhesins are 

required for each stage (Table 2.1). In the first stage, bacteria need flagella to move to the solid 

surface (Wood et al., 2006; Wood, 2009); in the second stage, flagella help bacteria to attach to 

the solid surface reversibly (Van Houdt and Michiels, 2005); in the third stage, the initial 

attachment changes into irreversible attachment (Van Houdt and Michiels, 2005), and in this step, 

type 1 fimbriae is required while curli and polysaccharide also have a positive effect (Van Houdt 

and Michiels, 2005); in the fourth stage, small biofilm matrix forms with the help of extracellular 

matrix such as poly-β-1,6-GlcNAc polysaccharide (PGA) and autotransporter protein antigen 

43 (Ag43) protein (Van Houdt and Michiels, 2005); in the fifth stage, a mature biofilm is formed 

with architecture that is dependent on colanic acid, curli, and conjugative pili (Van Houdt and 
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Michiels, 2005); and in the sixth stage, bacteria leave biofilm matrix with the help of flagella and 

change back to free-swimming cells again (Van Houdt and Michiels, 2005). Among these cell 

adhesins, the conjugative plasmid is notable since it enhances biofilm formation while overriding 

the importance of flagella, type 1 fimbriae, Ag43, and curli (Reisner et al., 2003).  

 To understand the genetic pathway of biofilm formation, several sets of DNA 

microarrays were conducted to compare the gene transcription profile between biofilm cells and 

planktonic cells. Beloin et al. studied biofilm cells grown on removable glass slides with E. coli 

TG1 strains (Beloin et al., 2004). Schembri et al. used biofilm cells from glass surfaces in a flow 

chamber system to perform DNA microarray for E. coli MG1655 strain (Schembri et al., 2003). 

Ren et al. studied gene expression profile with E. coli JM109 and ATCC 25404 by comparing 

glass wool biofilm cells with planktonic cells (Ren et al., 2004a). Hancock et al. collected 

biofilm cells from Petri dish to check the gene expression profile with two uropathogenic E. coli 

isolates, CFT073 and 536 (Hancock and Klemm, 2007). Moreover, a temporal study showed a 

more detailed gene expression profile for biofilm cells at different time points (Domka et al., 

2007). The application of DNA microarrays for biofilm research rapidly unveiled many 

important genes that regulate various cell processes during biofilm development. The most 

important genes are selected and studied for their role in cell physiology and their mechanism for 

controlling biofilm development. 
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Figure 2.1 Biofilm development (Wood, 2009). (1) bacteria move to the solid surface; (2) reversible attachment; (3) 

irreversible attachment; (4) small biofilm matrix; (5) matured biofilm matrix; (6) biofilm dispersal. 
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Table 2.1 Cell adhesins in E. coli K-12 strains.   

Adhesins Locus Assays for detection 
curli csgBA Congo red assay (Zhang et al., 2007) 
flagella flh, flg, fli, and mot operons swimming and swarming motility (Wood et al., 2006; Inoue 

et al., 2007) 
type 1 fimbriae fimA yeast agglutination assay (García-Contreras et al., 2008) 
putative fimbriae ycb, yad, sfm, yeh, and ybg operons electron microscopy (for ycb, yad, and sfm) 

fimbriae isolation and SDS-PAGE (yeh and ybg) (Korea et 
al., 2010) 

conjugative pilus traA electron microscopy (Grossman and Silverman, 1989) 
Ag43 flu Western blotting (Sherlock et al., 2006) 
putative autotransporter yfaL, yeeJ, ypjA, and ycgV no direct evidence for their role as autotransporter (Roux et 

al., 2005) 
cellulose bcs operon, ompA cellulose assay using Congo red, calcofluor, and cellulose 

method (Ma and Wood, 2009) 
colanic acid wcaK colanic acid assay-using 6-deoxyhexose (Zhang et al., 2008) 
PGA pgaABCD FPLC (Wang et al., 2005) 
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2.2.2 Biofilm formation and toxin/antitoxin systems  

 hha and tomB are contiguous genes with 30-fold increase in gene expression in biofilms 

(Ren et al., 2004a). Further research showed that Hha controls biofilm formation by decreasing 

fimbriae production and controlling cell death (García-Contreras et al., 2008). Hha binds to rare 

codon tRNAs, represses fimbriae production, and activates prophage lytic genes (García-

Contreras et al., 2008). Hha works as a toxin and TomB works as an antitoxin which attenuates 

the toxicity by Hha (García-Contreras et al., 2008). Hha is also shown to be required for persister 

cell formation via MqsR overproduction by Kim et al. (Kim and Wood, 2010). 

 mqsR is induced 8 fold in biofilms (Ren et al., 2004a).  MqsR is a toxin and works as an 

RNase similar to RelE and YoeB (Brown et al., 2009). The antitoxin that works in conjunction 

with MqsR is MqsA which binds DNA via its helix-turn-helix (HTH) motif in the C-terminal 

domain and binds the toxin via its N-terminal zinc-binding domain (Brown et al., 2009). The 

MqsR/MqsA complex represses cspD, which encodes another toxin CspD (Kim et al., 2010). 

The MqsR and MqsA TA system are unique since they control much more than just cell death 

(Wang et al., 2011). The genes encoding MqsR and MqsA are the first locus that upon its 

deletion, decreases the formation of persister cells (Kim and Wood, 2010). The toxins CspD, 

Hha, and HokA require MqsR to influence persister cell formation (Kim and Wood, 2010). 

MqsR/MqsA is also the first TA system found to be induced in biofilms (Kim and Wood, 2010), 

the first to be related to quorum sensing (Ren et al., 2004a), cell motility (Ren et al., 2004a), and 

biofilm formation (Ren et al., 2004a). In addition, MqsA is the first antitoxin that regulates more 

than its own transcription as it binds the mqsRA, cspD, mcbR, and spy promoters (Brown et al., 

2009; Kim et al., 2010). Furthermore, the antitoxin MqsA represses rpoS, reducing the 

concentration of c-di-GMP, increasing motility, and decreasing biofilm formation (Wang et al., 

2011). The connection between MqsA and RpoS showed that the novel role of antitoxin MqsA 
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as regulating the general stress response (Wang et al., 2011). MqsA is degraded rapidly upon the 

addition of oxidative stress (Wang et al., 2011). This degradation leads to the switch from high 

motility to low motility, which is also the shift from planktonic state to biofilm state (Wang et 

al., 2011). 

2.2.3 Biofilm formation via cell signaling related genes 

Acylhomoserine lactones (AHL)  

 Cell signaling plays a role in biofilm formation. The AHLs are common quorum sensing 

signals in Gram-negative bacteria (Jayaraman and Wood, 2008). E. coli is not capable of 

synthesizing AHLs because it does not have an AHL synthase (Van Houdt et al., 2006). 

However, it can sense AHL signals with the AHL receptor SdiA (Van Houdt et al., 2006). In 

addition, the addition of exogenous AHLs represses E. coli biofilm formation via SdiA (Lee et 

al., 2007a). 

Indole 

 Indole is a quorum-sensing compound which can inhibit E. coli biofilm formation (Lee 

et al., 2007a). It is produced from tryptophan by the tryptophanase TnaA (Wood, 2009). Indole 

was initially reported to enhance biofilm formation in E. coli  S17-1 (Di Martino et al., 2003). 

However subsequent research showed that indole inhibits biofilm formation for 9 non-

pathogenic E. coli strains (Domka et al., 2006; Lee et al., 2007a; Zhang et al., 2007) and the 

pathogenic E. coli O157: H7 strain (Lee et al., 2007b). Interestingly, the AHL signal receptor 

SdiA is also required for indole to control biofilm formation (Lee et al., 2007a). Indole decreases 

E. coli biofilms by inhibiting motility, repressing acid resistance genes, repressing chemotaxis, 

and decreasing attachment to epithelial cells (Wood, 2009).   
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AI-2 

 The addition of AI-2 increases biofilm formation in E. coli (González Barrios et al., 

2006b). AI-2 is a non-specific signal in both Gram-negative and Gram-positive bacteria. It is 

synthesized by S-ribosylhomocysterine lyase (LuxS), which converts the S-ribosylhomocysteine 

to homocysteine and (S)-4,5-dihydroxy-2,3-pentanedione (DPD) then DPD simultaneously 

changes into AI-2 molecules (Wood, 2009).  

 Cell signaling is influenced by temperature. Indole has a more significant effect on cell 

physiology and biofilm formation at low temperatures (25 and 30°C) compared with 37°C (Lee 

et al., 2008).  In contrast, AI-2 addition has better effect at 37°C than 30°C (Lee et al., 2008). 

Hence it is quite possible that indole works primarily outside human host (relative lower 

temperature) while AI-2 works primarily inside the host (37°C) (Wood, 2009).  This is the first 

time that the reason for redundant signals was figured out (Lee et al., 2008). 

 Many proteins change biofilm formation by affecting cell signaling. MqsR  increases  

motility through quorum sensing signal AI-2 and QseBC (two-component motility regulatory 

system) and motility (González Barrios et al., 2006b) and by its RNase activity which results in 

conditions that degrade antitoxin MqsA which induces production of RpoS (Wang et al., 2011). 

In addition, MqsR induces yncC expression (González Barrios et al., 2006b). YncC (renamed to 

McbR) increases biofilm formation by repressing the production of colanic acid which is 

responsible colony mucoidy. YncC is also shown to work by repressing the predicted 

periplasmic protein-encoding gene ybiM (Zhang et al., 2008).  

 yliH and yceP are induced in biofilm cells vs. the planktonic cells (Schembri et al., 2003; 

Ren et al., 2004a). These two proteins are related to biofilm formation through catabolite 

repression by regulating the synthesis of quorum sensing signal indole and the stress response 

(Domka et al., 2006).  
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 Another uncharacterized protein important for biofilm formation is TqsA (previously 

YdgG) (Herzberg et al., 2006). The expression of tqsA is induced in biofilms after 7 h (Ren et al., 

2004a). The deletion of tqsA leads to a 7,000-fold increase in biofilm thickness and 574-fold 

increase in biomass in flow cells (Herzberg et al., 2006). The mechanism for TqsA controlling 

biofilm formation is that TqsA works as a transporter of the signal molecule AI-2 (Herzberg et 

al., 2006), which is tightly related to biofilm formation and exists both intercellular and 

intracellular. 

2.2.4 Biofilm formation via stress-related genes 

The expression of bhsA is induced 12 fold in E. coli biofilm cells compared to 

planktonic cells (Ren et al., 2004a). BhsA decreases biofilm formation in the presence of 

glucose. BhsA works as a multiple stress resistance protein which increases the cell resistance to 

acid, heat, hydrogen peroxide, and cadmium (Zhang et al., 2007). In addition, deleting bhsA 

changes cell hydrophobicity since it affects outer membrane proteins (Zhang et al., 2007). 

 The expression of the ymg locus is induced in biofilms in several DNA microarrays (Ren 

et al., 2004b; Herzberg et al., 2006; Domka et al., 2007; Lee et al., 2007a). The gene cluster 

ymgABC is important for cell acid resistance (many acid resistance-related genes are repressed in 

biofilms, such as gadABC and hdeABD) (Lee et al., 2007c). Critically, the 3D structure of YmgB 

is similar to the toxin Hha, while these two proteins have only 5% sequence identity. Thus 

YmgB (renamed to AriR) regulates acid-resistance and biofilm-related genes (Lee et al., 2007c). 

2.3 Engineering biofilm formation and dispersal 

2.3.1 Overview 

Engineered biofilms have applications in many different fields including bioremediation, 

wastewater treatment, biofuels, specialty/bulk chemicals, biocorrosion control, disease treatment, 



 

 

14

bioMEMS, and pharmaceutical testing (Wood et al., 2011). Progress has been making in 

controlling biofilm formation and dispersal to make biofilms useful. 

The first engineered biofilm was for the inhibition of sulfate-reducing bacteria biofilm 

formation which causes corrosion on steels (Jayaraman et al., 1999a).  The biocorrosion of the 

304 stainless steel and 1018 mild steel by Desulfovibrio vulgaris was inhibited by expressing the 

antimicrobial peptides indolicidin and bactenecin from Bacillus subtilis BE1500 and B. subtilis 

WB600 (Jayaraman et al., 1999a).   

Similar work was done by utilizing the Bacillus brevis 18 biofilm to produce Gramicidin 

S in situ and inhibit the corrosion by D. vulgaris on stainless steel (Jayaraman et al., 1999c). The 

pitting corrosion of aluminum 2024 was also reduced by secretion of anionic peptides by 

engineered and natural Bacillus biofilms (Örnek et al., 2002). The axenic aerobic biofilms of 

either Pseudomonas fragi K or B. brevis 18 also inhibit corrosion of copper and aluminum by D. 

vulgaris (Jayaraman et al., 1999b).  

The first engineered biofilm using a genetic circuit to control biofilm formation by an 

external stress (UV light) was in E. coli (Kobayashi et al., 2004). The stress from UV light 

converts double-stranded DNA into single-stranded DNA while the RecA protease is activated at 

the same time. The active RecA then degrades a phage λ cI repressor (this repressor represses 

traA expression) and thus the traA expression is induced. The traA gene is directly related to 

conjugation so enhanced traA expression increases conjugation and biofilm formation.  

The first synthetic circuit utilizing quorum sensing to control biofilm formation was 

performed with indole (Lee et al., 2007a). In a dual-species biofilm system with both E. coli and 

Pseudomonas fluorescens, The P. fluorescens cells were engineered to express toluene o-

monooxygenase which converts indole to insoluble indigoid. The decrease of extracellular indole 

led to an increase of E. coli biofilm since indole inhibits biofilm formation (Lee et al., 2007a). 
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2.3.2 Protein engineering 

SdiA 

AHL and indole control E. coli biofilm formation via SdiA (Lee et al., 2007a; Lee et al., 

2008). Protein engineering on SdiA was performed to obtain variants with altered biofilm 

formation (Lee et al., 2009a). With endogenous indole, two variants of SdiA1E11 (F7L, F59L, 

Y70C, M94K, and K153X) and SdiA14C3 (W9R, P49T, N87T, frameshift at N96, and L123X) 

were obtained that reduce biofilm formation 5 to 20 fold compared to wild-type SdiA (Lee et al., 

2009a). SdiA1E11 induced indole synthesis compared with wild-type SdiA. This result was 

confirmed by indole assay which showed 9-fold more indole production by SdiA1E11; this 

result also confirms the importance of both indole and SdiA in E. coli biofilm formation. In 

addition, another variant SdiA2D10 increases biofilm formation 7 fold in the presence of N-

octanoyl-DL-homoserine lactone and N-(3-oxododecatanoyl)-L-homoserine lactone. Hence SdiA 

can be evolved to both increase and decrease biofilm formation. 

H-NS 

H-NS is a global regulator in E. coli which controls genes related to stress response, 

biofilm formation and virulence (Hong et al., 2010a). By protein engineering via error-prone 

PCR, over two thousand mutants were screened for changed biofilm formation, and one mutant, 

H-NS K57N, is able to reduce biofilm formation dramatically (Hong et al., 2010a). The wild-

type H-NS increases biofilm formation and the H-NS K57N reduces biofilm formation. DNA 

microarray shows that H-NS K57N represses biofilm formation by interacting with nucleoid-

associated proteins Cnu and StpA. Critically, H-NS K57N enhances the excision of defective 

prophage Rac.  The excision of Rac prophage affects biofilm formation and cell lysis (by 

increasing the toxin HokD production). Hence the function of H-NS in biofilm formation may be 

engineered by only a one amino acid replacement. 
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Hha 

Hha is a global regulator which can decrease initial biofilm formation by repressing rare 

codon tRNAs and fimbrial genes transcription (García-Contreras et al., 2008). Hha is toxic and 

leads to cell lysis as well as biofilm dispersal. Protein engineering of Hha was performed to 

control biofilm dispersal and a variant Hha 13D6 (D22V, L40R, V42I, and D48A) was obtained 

(Hong et al., 2010b). Without changing initial biofilm formation, this mutant causes 96% biofilm 

dispersal in flow cells by increasing cell lysis. 

2.3.3 Engineering bacteriophage for biofilm dispersal 

Bacteriophage may be engineered to express biofilm-degrading enzymes during 

infection to bacterial cells (Lu and Collins, 2007). Lu et al. cloned dspB (encodes an enzyme that 

degrades the biofilm adhesin β-1,6-N-acetyl-D-glucosamine) into a T7 phage. The expression of 

DspB enzyme during the infection significantly improves the ability for removing biofilms 

(almost 100% dispersal). 

2.4 Interkingdom signaling 

2.4.1 Overview 

  Communication between prokaryotes and eukaryotes, no matter if it is beneficial or 

detrimental, has existed for millions of years (Hughes and Sperandio, 2008). An example is that 

there are 1013 human cells and 1014 bacterial cells in the human body. The existence of bacteria 

in human intestine helps nutrient assimilation while the intestine also maintains a proper living 

environment for these bacteria. Bacteria-host communication is definitely required for this 

beneficial mutual association. The medium for the communication between bacteria and the host 

are various hormones and hormone-like chemical compounds (Hughes and Sperandio, 2008), 

and several mechanisms are used for the hormonal communication between bacteria and hosts. 

The location of receptors usually coordinates with the structure of the hormone. More 
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specifically, amine and peptide hormones usually bind to cell-surface receptors (since they 

cannot penetrate the cell membrane) while steroid hormones usually bind to intracellular 

receptors (since they cannot cross the plasma membrane). 

Bacteria and flies may have a symbiotic relationship. For example, the nematode 

Howardula aoronymphium, a destructive macroparasite which can parasitize at least 10 

mushroom-feeding species of Drosophila, infects the female larvae of the fruit fly Drosophila 

neotestacea and prevents the eggs from developing (Jaenike et al., 2010). However, a maternally 

transmitted bacterium Spiroplasma sp. seems to be able to rescue female flies from the ill effects 

of the worm infection (Jaenike et al., 2010). The Spiroplasma sp. spreads in North American 

populations of D. neotestacea and this endosymbiont is spreading from east to west (Jaenike et 

al., 2010).  

The house fly has been considered a potential agent for disease transmission for long 

periods (Nazni et al., 2005). The habitual movement of the house fly makes it an ideal candidate 

for the transmission of various diseases such as cholera, shigellosis, and salmonellosis. There are 

three modes for bacterial transmission by flies, including the fecal-oral route of transmission 

(Thomas et al., 1992; Kelly et al., 1994), mechanical transmission of rotavirus by legs and wings 

(Tan et al., 1997), and fly landing which can contaminate clean surfaces with around 0.1 mg 

food each time (De Jesus et al., 2004). The close relationship between bacteria and flies requires 

communication between these two organisms using interkingdom signaling as the medium. 

Molecules constantly diffuse into the surrounding medium no matter it is the gas or 

liquid. These compounds can behave as attractants or repellents for insects (Dethier, 1947); 

hence, we are interested in the interkingdom signaling between insects and bacteria. The 

decomposition products of carrion, feces, and animal secretions such as sweat can be powerful 

attractants. Blowflies are attracted by the hydrolysis products (including sodium sulfide) from 
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keratin, egg albumin, lecithin, and butter; any kind of ammoniacal decomposition; mercaptans, 

indole, and skatole; several fatty acids; trimethylamine and isobutylamine; some organic sulfides, 

hydrogen sulfide, inorganic sulfides, and organic substances  

  Initial exploration of the attraction of bacterial culture to blowflies has been made by R. 

L. Emmens (Emmens and Murray, 1982). Blowflies lay eggs in response to the odours from the 

cultures of Pseudomonas aeruginosa, Bacillus subtilis, Proteus mirabilis and Enterobacter 

cloacae. P. aeruginosa and E. cloacae were not able to produce stimulants for oviposition with 

fleece components while B. subtilis was. In addition, P. mirabilis degraded wool fibres for 

sulphurous compounds. 

2.4.2 Insects and biofilms 

Maggot therapy is a type of biotherapy by which live and disinfected maggots are 

introduced into the non-healing skin and soft tissue wounds of humans or animals to selectively 

clean the necrotic tissue within a wound and promote the healing (Whitaker et al., 2007). 

Although this is an ancient method for healing infected wounds, it has been reintroduced into 

many hospitals in the twenty-first century after the appearance of bacterial antibiotic resistance 

(Jaklič et al., 2008). Maggot therapy is more simple and safe compared with antibiotic treatment. 

Hence the practice of this therapy is increasing around the world. The most often used flies are 

the facultative calliphorids and the most widely used species is the greenbottle fly Lucilia 

sericata (Whitaker et al., 2007). As described in above, bacteria gain a thousand-fold increase in 

antibiotic resistance in biofilms compared with free living cells. The advantage of maggot 

therapy over antibiotic therapy is that there is no need to worry about bacterial antibiotic 

resistance with the maggot therapy strategy. Hence the effect of maggots on the biofilm 

formation of pathogens is being studied by us. Cazander et al. have discovered that maggot 

excretions and secretions can inhibit the biofilm formation of PAO1 on polyethylene, titanium, 
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stainless steel surfaces (Cazander et al., 2009).  It can even break down existing biofilms 

(Cazander et al., 2009). In addition, the maggot excretions and secretions still have activity even 

after 1 month storage at room temperature (Cazander et al., 2009).  

2.5 Post-translational modification 

Post-translational modification is the chemical modification of a protein after the 

translation step (Krishna and Wold, 1993). This kind of modification occurs in the last step of 

protein synthesis while some biochemical functional groups (acetate, phosphate, lipids, and 

carbohydrates) are attached to the amino acids in protein. Post-translational modification is 

crucial and more frequently found for regulating the functions of many eukaryotic proteins 

(Wold, 1981). However, more and more reports show that post-translational modification, 

especially phosphorylation, is also important in prokaryotes (Cozzone, 1988). In addition, recent 

studies also found that the acetylation works in prokaryotes (Escalante-Semerena, 2010). The 

post-translational modification of acetylation occurs for all three domains of life  and regulates 

diverse aspects of metabolism in that 2700 proteins in mammals are acetylated related to central 

metabolism, mRNA splicing, protein synthesis, cell morphology, and cell cycle (Linda I et al., 

2010).  Although identified in 1963 for eukaryotes (Linda I et al., 2010), in bacteria, the role of 

acetylation has not been well characterized even though this modification is relatively common 

in that at least 91 proteins are acetylated in E. coli. 
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CHAPTER III 

OMPA INFLUENCES ESCHERICHIA COLI BIOFILM FORMATION BY 

REPRESSING CELLULOSE PRODUCTION THROUGH THE CPXRA TWO-

COMPONENT SYSTEM 

 

3.1 Overview 

Previously we discovered that OmpA of Escherichia coli increases biofilm formation on 

polystyrene surfaces (González Barrios et al., 2006a).  Here we show OmpA influences biofilm 

formation differently on hydrophobic and hydrophilic surfaces since it represses cellulose 

production which is hydrophilic.  OmpA increased biofilm formation on polystyrene, 

polypropylene, and polyvinyl surfaces while it decreased biofilm formation on glass surfaces.  

Sand column assays corroborated that OmpA decreases attachment to hydrophilic surfaces.  The 

ompA mutant formed sticky colonies, and the extracellular polysaccharide that caused stickiness 

was identified to be cellulose.  A whole-transcriptome study revealed that OmpA induces the 

CpxRA two-component signal transduction pathway that responds to membrane stress.  CpxA 

phosphorylates CpxR and results in reduced csgD expression.  Reduced CsgD production 

represses adrA expression and results in reduced cellulose production since CsgD and AdrA are 

responsible for 3,5-cyclic diguanylic acid synthesis and cellulose production.  Real-time 

polymerase chain reaction confirmed csgD and adrA are repressed by OmpA.  Biofilm and 

cellulose assays with double deletion mutants adrA ompA, csgB ompA, and cpxR ompA 

confirmed OmpA decreased cellulose production and increased biofilm formation on polystyrene  

___________ 
*Reprinted with permission from “OmpA influences Escherichia coli biofilm formation by repressing 
cellulose production through the CpxRA two-component system” by Qun Ma and Thomas K. Wood, 
2009, Environmental Microbiology 11: 2735-2746, Copyright 2009 Society for Applied Microbiology and 
Blackwell Publishing Ltd, doi:10.1111/j.1462-2920.2009.02000.x.  
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surfaces through CpxR and AdrA.  Further evidence of the link between OmpA and the CpxRA 

system was that overproduction of OmpA disrupted the membrane and led to cell lysis.  

Therefore, OmpA inhibits cellulose production through the CpxRA stress response system, and 

this reduction in cellulose increases biofilm formation on hydrophobic surfaces. 

3.2 Introduction 

  Cell appendages promote biofilm formation for E. coli.  For example, flagella and type 1 

pili are required for biofilm formation (Pratt and Kolter, 1998).  In addition, the outer membrane 

protein antigen 43 increases biofilm formation in a fimbriae-independent way and facilitates 

multispecies biofilm formation (Danese et al., 2000b).  Curli is another outer surface appendage 

that increases biofilm formation (Vidal et al., 1998).  In curli-producing strains, other outer 

surface appendages, such as colanic acid and flagella, no longer influence biofilm formation 

(Prigent-Combaret et al., 2000).  Similarly, the conjugation pilus acts as an adhesion factor for 

cell-cell and cell-surface interactions which promotes biofilm formation, and this appendage 

overrides the importance of flagella, type 1 fimbriae, antigen 43, and curli (Reisner et al., 2003).  

Furthermore, exopolysaccharides (EPS), as well as its components such as colanic acid and 

cellulose, also affect biofilm formation (Sutherland, 2001).  Although colanic acid is critical for 

biofilm three dimensional structure formation based on the research of Danese et al (Danese et 

al., 2000a), overproduction of colanic acid inhibits biofilm formation in E. coli BW25113 strains 

(Zhang et al., 2008).  Cellulose synthesis is also required for E. coli 1094 biofilm formation on 

glass slides (Da Re and Ghigo, 2006).  However, in a csgD-overexpressing strain of E. coli 

MG1655, cellulose production negatively affects curli-mediated surface adhesion and 

aggregation on hydrophobic polypropylene microtitre plates (Gualdi et al., 2008).  

OmpA is a major protein of the outer membrane in E. coli K-12 strains (Chai and 

Foulds, 1977) with ~100,000 copies per cell (Smith et al., 2007).  It is a representative protein 
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for outer membrane protein assembly and structure (Kleinschmidt, 2003), is a receptor for 

bacteriophage including K3, Ox2, and M1, acts as an immune target and is involved in adhesion 

(Smith et al., 2007).  Due to its abundance in the bacterial outer membrane, and its interesting 

structure with four short loops that protrude from the cell (Smith et al., 2007), we hypothesized 

that it may play a role in bacterial biofilm formation.  Previously, we identified that OmpA 

promotes biofilm formation in E. coli K-12 on polystyrene surfaces (González Barrios et al., 

2006a), and Orme et al. found that OmpA is overproduced during biofilm formation using both 

laboratory and clinical strains of E. coli (Orme et al., 2006).  OmpA binds to silicon nitride 

surfaces (Lower et al., 2005), and we found OmpA participates in the regulation pathway 

through which conjugative plasmids increase biofilm formation (Yang et al., 2008).  In 

Acinetobacter baumannii, OmpA plays a role in biofilm formation on plastic as well as in the 

bacterial attachment to biotic surfaces such as Candida albicans filaments and A549 human 

alveolar epithelial cells (Gaddy et al., 2009).  At the genetic level, OmpA is negatively regulated 

by the σE-dependent small RNA MicA (Johansen et al., 2008). 

Cpx stress response system is a two-component signal transduction system that includes 

a sensor kinase CpxA and a response regulator CpxR (DiGiuseppe and Silhavy, 2003).  CpxA 

kinase autophosphorylates at His248 using ATP after sensing envelope stress, then transfers this 

phosphate to a conserved Asp51 of CpxR to form phosphorylated CpxR (CpxR-P) (Albert 

Siryaporn and Goulian, 2008).  The Cpx system has been linked to biofilm formation since the 

expression of Cpx-regulated genes are induced during initial adherence of E. coli to abiotic 

surfaces (Otto and Silhavy, 2002).  Mutations in cpxA also reduce biofilm formation by affecting 

microbial adherence to solid surfaces (Dorel et al., 1999), and the mechanism for this biofilm 

reduction is inactivation of the Cpx pathway which results in induction of CsgD which promotes 

curli synthesis as well as cellulose production under low temperatures (Dorel et al., 1999; 
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Prigent-Combaret et al., 2001; Gualdi et al., 2008).  

The regulation of cellulose production by CsgD is complex.  CsgD stimulates 

transcription of adrA (Zogaj et al., 2001), which encodes a putative transmembrane protein with 

a GGDEF domain (Römling et al., 2000).  AdrA then activates cellulose production post-

transcriptionally by interacting with the cellulose synthesis operons bcsABZC and bcsEFG, as 

well as producing an activator of cellulose biosynthesis (Gerstel and Römling, 2003).  In 

addition to the CsgD/AdrA pathway, there are alternative pathways for cellulose production in 

both E. coli (Da Re and Ghigo, 2006) and Salmonella sp. (García et al., 2004) that also involve 

3,5-cyclic diguanylic acid (c-di-GMP).  For example, E. coli 1094 uses YedQ for regulating 

cellulose production (Da Re and Ghigo, 2006), and in Salmonella sp., cellulose synthesis is 

independent of AdrA, but dependent on STM1987 (García et al., 2004).  In the probiotic E. coli 

strain Nissle 1917, neither the CsgD/AdrA pathway nor YedQ is required for cellulose 

production, although cellulose production is still regulated by c-di-GMP (Monteiro et al., 2009).  

After discovering that OmpA increases biofilm formation on plastic surfaces (González 

Barrios et al., 2006a), we find here that OmpA influences biofilm formation in a surface-

dependent manner (increases biofilm formation on plastic but decreases biofilm formation on 

glass).  Hence, our goal was to explore the genetic basis of how OmpA influences biofilm 

formation in this divergent manner.  Whole-transcriptome analyses were performed to identify 

pathways influenced by OmpA in biofilm formation, and we found the Cpx system might be 

activated by OmpA.  In addition, we found cellulose production increases upon deletion of ompA, 

which in turn leads to the surface-dependent biofilm formation due to the hydrophilic nature of 

this polymer.  
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3.3 Results 

3.3.1 OmpA increases biofilm formation on hydrophobic surfaces and decreases biofilm 

formation/attachment on hydrophilic surfaces   

We investigated whether deletion of ompA would affect biofilm formation on different 

surfaces (hydrophilic and hydrophobic surfaces) after discovering that this deletion decreased 

biofilm formation on hydrophobic polystyrene (PS) surfaces (González Barrios et al., 2006a).  

Here, upon deleting ompA, a 10- to 20-fold reduction of biofilm formation was found on 

polystyrene, polyvinyl chloride (PVC), and polypropylene (PP) surfaces (Fig. 3.1A).  This 

dramatic reduction in biofilm formation on hydrophobic surfaces was complemented by 

expressing OmpA from pCA24N_ompA with 0.2 mM isopropyl-β-D-thiogalactopyranoside 

(IPTG) (Fig. 3.1A) under conditions where these results were not influenced by cell density 

differences.   

In contrast, under the same conditions, the ompA mutant made ~10-fold more biofilm 

than the wild-type strain on glass (hydrophilic) surfaces (Fig. 3.1B).  We also tested the impact 

of deleting ompA via sand columns in order to study attachment to a hydrophilic surface (Fig. 

3.2); deleting ompA increased the percentage of attached cells by as much as 10 fold at 21 min.  

As expected, the fimA mutant (negative control) had less attachment than the wild-type strain 

(Van Houdt and Michiels, 2005) (Fig. 3.2).  Hence, OmpA reduces cell attachment to 

hydrophilic surfaces. 

Furthermore, the deletion of ompA did not change cell growth; the specific growth rate 

for the ompA mutant was 1.65 ± 0.04 h-1 while that of the wild-type strain was 1.63 ± 0.04 h-1.  

The effect of adding IPTG was also tested and 0.1 mM IPTG did not affect cell growth or 

biofilm formation for the ompA mutant.  Hence, OmpA influences biofilm formation in a 

surface-dependent fashion that is not related to growth but instead is dependent on the 
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hydrophobicity of the abiotic surface. 

 
     
 

 
Figure 3.1 Biofilm formation on different surfaces. Relative normalized biofilm formation 

(total biofilm/growth) in Luria-Bertani medium (LB) at 37°C after 24 h for the 
ompA mutant vs. the BW25113 wild-type strain in 96-well plates constructed of 
polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP), for the cpxR 
and cpxR ompA mutants in 96-well plates constructed of polystyrene, and for the 
wild-type/pCA24N, ompA/pCA24N, and ompA/pCA24N_ompA strains with 0.2 
mM IPTG in 96-well plates constructed of polystyrene (A).  Data are the average of 
10 replicate wells from two independent cultures, and one standard deviation is 
shown.  Biofilm formation for the BW25113 wild-type strain and the ompA mutant 
in LB at 37°C after 48 h in glass culture tubes (B).   
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Figure 3.2 Attachment to sand columns. The percentage of attached cells was measured for 

the wild-type strain and the BW25113 ompA mutant at 37°C in LB medium.  The 
BW25113 fimA mutant was used as fimbriae minus negative control.  Data for the 
wild-type strain and the ompA mutant are the average of two independent cultures, 
and one standard deviation is shown. 
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3.3.2 Overproduction of OmpA leads to cell lysis   

While deleting ompA did not affect cell growth, overproducing OmpA in shake flasks 

led to cell lysis (Fig. 3.3), which indicates OmpA expression increases envelope stress.  With the 

same level of induction (0.1 mM IPTG), cells aggregated in overnight cultures of 

ompA/pCA24N_ompA while no cell clumping was seen in the ompA/pCA24N strain (vector 

control). 

To corroborate the lysis seen upon visual inspection, cell lysis was quantified by 

measuring the genomic DNA released into the culture supernatants by the BW25113 

ompA/pCA24N and ompA/pCA24N_ompA strains.  Upon overproducing OmpA using 0.1 mM 

IPTG for 12.5 h, 48 ± 5% cell lysis occurred with ompA/pCA24N_ompA vs. 2.5 ± 0.9% cell lysis 

for the ompA/pCA24N strain.  Hence, overproduction of OmpA leads to a 20-fold increase in 

cell lysis.  These results were verified using an independent measure of cell lysis, via release of 

intracellular β-galactosidase activity.  Since E. coli BW25113 does not have β-galactosidase 

activity due to mutated lacZ, we used E. coli MG1655/pCA24N and MG1655/pCA24N_ompA.  

Upon overproducing OmpA using 0.05 mM IPTG β-galactosidase activity increased 250 fold in 

the supernatant compared to that of the MG1655/pCA24N strain and similar levels of cell lysis 

were found compared to the genomic DNA method (25 ± 9% cell lysis compared to 0.1 ± 0.1% 

cell lysis).  

 In addition, we also checked the influence of OmpA on other phenotypes.   No 

differences between the wild-type strain and the ompA mutant were found for cell swimming 

motility, pH of planktonic cultures, EPS production, and colanic acid formation.  
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Figure 3.3 OmpA leads to cell lysis. Growth for the BW25113 ompA/pCA24N and 

ompA/pCA24N_ompA strains in LB at 37°C.  Data are from two independent 
cultures (A). Cell clumping for ompA/pCA24N and ompA/pCA24N_ompA overnight 
cultures in LB at 37°C after 15 h (B).  IPTG (0.1 mM) was added to each culture at 
2.5 h to induce ompA expression. 
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3.3.3 OmpA induces cpxP expression  

To further explore the role of OmpA in biofilm formation, a whole-transcriptome 

analysis of the ompA mutant vs. the wild-type strain was performed using biofilm cells collected 

from a hydrophobic (polystyrene) surface after 15 h of incubation (Table 3.1).  cpxP was found 

to be the most repressed gene by deleting ompA (1.9 fold and 3.3 fold based on the two 

independent experiments).  This result was corroborated by quantitative, reverse-transcription 

polymerase chain reaction (qRT-PCR) with biofilm cells from a third independent culture which 

showed cpxP was repressed by 2.7 fold.  Hence, OmpA induces cpxP expression.  

3.3.4 OmpA represses cellulose production  

Colonies of the ompA mutant were found to be sticky compared to the wild-type strain, 

which indicated that the composition of the extracellular matrix may be changed by deleting 

ompA.  Thus we tested colony morphology for the ompA mutant relative to the wild-type strain 

on Congo red plates at 37oC (Fig. 3.4) and found a red circle was formed around the ompA 

colony, which indicates deleting ompA may lead to the overproduction of some extracellular 

matrix that binds Congo red.   

 In E. coli, Congo red binds to both cellulose and curli (Da Re and Ghigo, 2006).  To 

distinguish whether it is cellulose or curli that was overproduced in the ompA mutant, double 

mutants adrA ompA and csgB ompA (csgB encodes the curlin nucleator protein) were 

constructed by P1 transduction, and colony morphologies for these two strains were also tested 

with Congo red plates at 37oC.  The csgB ompA mutant formed the same red EPS circle outside 

the colony as the ompA single mutant formed (Fig. 3.4), which indicates that without the curli 

gene csgB, the ompA mutation still increases Congo red-binding to substances around its colony.  

Hence, the Congo red-binding substance formed upon deleting ompA was not curli.  The adrA 

ompA mutant lacked the outer red EPS circle, which indicates deleting adrA decreased Congo 
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red-binding.  Hence, deleting ompA increases primarily cellulose production.   

At 30°C (Fig. 3.4), the ompA mutant had a red, rough surface, which was due to the 

overproduction of primarily curli at this low temperature (Gualdi et al., 2008) since the wild-type 

strain, ompA, adrA, and adrA ompA all had red colonies due to curli formation whereas the curli-

deficient strains csgB, csgB ompA, and csgD mutants had white colonies.  Only the ompA mutant 

had a rough surface while the wild-type strain, the adrA mutant, and the adrA ompA mutant all 

had red, smooth surfaces which indicate increased cellulose production leads to a rough surface 

when curli are expressed at the same time. 

Congo red-binding and calcofluor-binding assays were then performed for quantification 

of the cellulose production in planktonic cultures at 37°C, a temperature where curli is not 

generally formed (Fig. 3.5).  Congo red was indicative of both curli formation and cellulose 

production while calcofluor was indicative for cellulose production (Da Re and Ghigo, 2006).  

Both assays showed the consistent result that the ompA mutation increases cellulose production 

by 6 to over 7 fold.  Also from this assay we can see that cellulose production for the wild-type 

strain and the adrA mutant were similar, which means cellulose production in the wild-type 

strain is usually repressed under these conditions (Gualdi et al., 2008). 

 To confirm that the cellulose production in the ompA mutant was indeed much higher 

than in the wild-type strain, we detected cellulose on the exterior of the cells directly by 

measuring the glucose evolved upon its digestion with cellulase.  Upon addition of cellulase, the 

glucose generated by digesting cellulose from the ompA mutant was 12 ± 4-fold higher than 

from the wild-type strain.  The amount of cellulose produced by the wild-type strain in this assay 

was 0.011 ± 0.001 mg cellulose/mg protein, which is consistent with our calcofluor-binding 

result (0.02 ± 0.01 mg cellulose/mg protein).   
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Table 3.1 Partial whole-transcriptome profiles to determine the impact of OmpA on 
biofilm formation.  Fold changes between polystyrene biofilm samples of the 
BW25113 ompA mutant vs. the BW25113 wild-type strain at 37°C after 15 h of 
incubation in LB are shown with two biological replicates PS-1 and PS-2.  The GEO 
accession number is GSE14064.  Important fold changes are shown in bold.  

 
Fold changes Description Gene b # 
PS-1 PS-2  

Signal transduction pathway 
cpxP b3913 -1.9 -3.3 regulator of the Cpx response and possible chaperone 

involved in resistance to extracytoplasmic stress 
Membrane proteins 
ompA b0957 -1097.5 -4096.0 outer membrane protein A 
htpX b1829 -1.7 -1.6 heat shock protein, integral membrane protein 
Metabolism 
fldA b0684 -1.5  -2.5  flavodoxin 1 
iscA b2528 -1.5  -2.5  recruit and deliver Fe for Fe-S cluster assembly in IscU; 

possibly an alternative scaffold for Fe-S cluster assembly 
iscU b2529 -1.4  -3.0  NifU-like protein 
iscS b2530 -1.4  -2.3  cysteine desulfurase used in synthesis of Fe-S cluster 
csrA b2696 -1.4  -2.6  carbon storage regulator 
ribB b3041 -1.4  -2.1  3,4-dihydroxy-2-butanone 4-phosphate synthase 
mgtA b4242 2.1 2.1 magnesium transporter 
Unknown 
ybeL b0643 -1.2 -3.3 conserved hypothetical protein 
ybjX b0877 2.8 1.3 putative enzyme 
ycfJ b1110 2.0 1.3 putative periplasmic protein 
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Figure 3.4 Colony morphology. The BW25113 wild-type strain, the ompA mutant, the adrA mutant, the adrA ompA mutant, the csgB 
mutant, the csgB ompA mutant and the csgD mutant were grown on Congo red plates at 37°C and 30°C.  Black arrows point 
to the red zone of cellulose production around the ompA and csgB ompA mutants.  Each panel is 2 cm by 2 cm in actual size 
on agar plates. 
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Figure 3.5 Quantification of cellulose production. Cellulose production quantification using 
Congo red for the wild-type strain, the BW25113 ompA mutant, the adrA mutant, 
the adrA ompA mutant, the csgB mutant, the csgB ompA mutant, the cpxR mutant, 
and the cpxR ompA mutant at 37°C in LB (A).  Cellulose production quantification 
using calcofluor for the wild-type strain, the ompA mutant, the adrA mutant, the 
adrA ompA mutant, the csgB mutant, the csgB ompA mutant, the cpxR mutant, the 
cpxR ompA mutant, the adrA/pCA24N strain, and the adrA/pCA24N_adrA strain at 
37°C in LB (B).  adrA was induced with 1 mM IPTG.  Data are the average of two 
independent cultures, and one standard deviation is shown. 
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To verify that the increase in cellulose upon deletion of ompA cellulose seen for 

planktonic cells also holds for biofilm cells, we repeated these three cellulose assays using 

biofilm cells collected from glass wool.  As with planktonic cells, we found the biofilm cells of 

the ompA mutant had much higher cellulose production than the wild-type strain: ~4 fold using 

the Congo red-binding assay, ~6 fold using the calcofluor-binding assay, and ~22 fold using the 

cellulase digestion assay.  

3.3.5 Short time induction of OmpA represses csgD and adrA expression  

Since cellulose production was induced by deleting ompA but none of the cellulose-

related genes had their expression changed in the whole-transcriptome studies with 15 h-old 

biofilm cells from polystyrene surfaces, we hypothesized that the expression of cellulose genes 

may be induced in the exponential phase ompA culture and change back to the wild-type levels 

after entering stationary phase, so they were not detected to have any transcription level 

difference in the whole-transcriptome studies performed with stationary-phase cells.  Thus we 

performed qRT-PCR using exponential phase cultures of ompA/pCA24N_ompA and 

ompA/pCA24N (OmpA was induced with 0.1 mM IPTG for 30 min in exponential phase 

cultures with the turbidity at 600 nm around 0.5) and found expression of gene csgD and adrA 

was repressed 4.0 fold and 3.5 fold due to the expression of ompA.  We used housekeeping gene 

rrsG as an internal reference for the qRT-PCR and calculated the changes of gene csgD and 

adrA expression based on the rrsG expression level.  CsgD and AdrA synthesize c-di-GMP (Da 

Re and Ghigo, 2006), which binds to BcsAB (cellulose synthase) to increase cellulose 

production (Zogaj et al., 2001).  Hence, OmpA represses csgD and adrA expression which 

should result in increased cellulose production as was seen upon deleting ompA (Fig. 3.4 & 3.5). 

OmpA expression was only induced for 30 min with IPTG in this qRT-PCR experiment 

and the cell viability was not changed within this short time since Fig. 3.3A shows that the 
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turbidity at 600 nm for the OmpA overproduction strain starts to decrease after 2 h of induction 

with IPTG (IPTG was added at 2.5 h and the turbidity at 600 nm started to decrease after 4.5 h).  

This result was confirmed by a time-course β-galactosidase activity measurement using culture 

supernatants of the MG1655/pCA24N and MG1655/pCA24N_ompA strains that showed 

significant cell lysis occurred after 2 h induction with 0.05 mM IPTG (data not shown).  Hence, 

OmpA causes cell lysis only when cell density and OmpA expression reaches some threshold 

level (after 2 h of induction by IPTG).  Therefore, this qRT-PCR result was not affected by cell 

viability. 

3.3.6 Cellulose inhibits biofilm formation on polystyrene plates   

To corroborate our hypothesis that cellulose inhibits biofilm formation on plastic due to 

its hydrophilic nature, we overproduced AdrA with the adrA/pCA24N_adrA strain and assayed 

biofilm formation on polystyrene plates.  With 1 mM IPTG, overproducing AdrA decreased 

biofilm formation by more than 10 fold on hydrophobic surfaces (Fig. 3.6).  This reduction in 

biofilm formation was accompanied by a 5-fold increase in cellulose production upon inducing 

AdrA (Fig. 3.5B).  Hence, cellulose inhibits biofilm formation on polystyrene plates. 
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Figure 3.6 Biofilm formation for double mutants with both ompA and cellulose genes 

deleted. Normalized biofilm formation (total biofilm/growth) with polystyrene 96-
well plates in LB at 37°C after 15 h. Data are the average of 10 replicate wells from 
two independent cultures, and one standard deviation is shown.  BW25113 adrA was 
induced with 1 mM IPTG.   
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3.3.7 OmpA influences cellulose production and biofilm formation through CpxR   

Since cpxP transcription was repressed in the ompA mutant cells that formed biofilm on 

polystyrene (Table 3.1) and since cpxP transcription depends almost exclusively on CpxR 

activity (Danese and Silhavy, 1998), we hypothesized that OmpA production may activate the 

two-component CpxRA system which increases CpxR phosphorylation.  To study the 

relationship between OmpA and the CpxRA system and also their relationship with cellulose 

production and biofilm formation, we constructed a cpxR ompA double mutant via P1 

transduction and measured its cellulose production (Fig. 3.5) and biofilm formation (Fig. 3.1A).  

The results show that without CpxR, deletion of ompA does not change cellulose production or 

biofilm formation.  Hence OmpA represses cellulose production and increases biofilm formation 

on polystyrene by activating CpxR. 

3.4 Discussion 

In this study, we show OmpA influences biofilm formation through the Cpx stress 

response system which reduces cellulose production (summarized in Fig. 3.7) and results in 

more biofilm formation on hydrophobic surfaces and less biofilm formation on hydrophilic 

surfaces.  The lines of evidence that support this are: (i) OmpA increases biofilm formation on 

hydrophobic surfaces and decreases biofilm formation on hydrophilic surfaces without affecting 

growth (Fig. 3.1), (ii) OmpA reduces attachment on hydrophilic surfaces (Fig. 3.2), (iii) OmpA 

overproduction leads to cell lysis (Fig. 3.3) indicating envelope stress, (iv) OmpA induces cpxP 

expression (Table 3.1) and qRT-PCR corroborated that OmpA induces expression of cpxP 

indicating an activation of the CpxRA signal transduction pathway (Danese and Silhavy, 1998), 

(v) the BW25113 cpxR ompA double mutant has a bigger colony size than either the cpxR or 

ompA single mutants (this phenotype was also observed in our study) which indicates a positive 

relationship between CpxR and OmpA as Typas et al. (Typas et al., 2008) reported, (vi) OmpA 
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represses cellulose production around colonies on the Congo red plate (Fig. 3.4, 37oC) and in 

planktonic cells as well as glass wool biofilm cells as shown three ways: via a Congo red assay, 

a calcofluor assay  (Fig. 3.5), and a cellulase-digestion assay in which glucose was measured, 

(vii) double mutant csgB ompA has similar colony morphology with the ompA mutant, indicating 

it is cellulose, not curli, that was induced by deleting ompA (Fig. 3.4), (viii) double mutants adrA 

ompA and cpxR ompA fail to increase cellulose production compared with the ompA single 

mutant, while the csgB ompA double mutant has more cellulose production than the csgB mutant 

(Fig. 3.5), indicating a connection among OmpA, AdrA, and CpxR for regulating cellulose 

production, (ix) qRT-PCR shows OmpA represses csgD and adrA transcription which should 

reduce cellulose, (x) overproduction of AdrA increases cellulose production (Fig. 3.5B) and 

decreases biofilm formation on polystyrene plates (Fig. 3.6) which matches the ompA mutant 

phenotype with high cellulose production and low biofilm formation on polystyrene plates, and 

(xi) double mutants adrA ompA (Fig. 3.6) and cpxR ompA (Fig. 3.1A) have no change in biofilm 

formation compared with the adrA and cpxR single mutants, which means OmpA functions 

through AdrA and CpxR for controlling biofilm formation.    

The Cpx-signaling pathway responds to stress from misfolded proteins from the inner 

membrane (Raivio and Silhavy, 1999) as well as to a lipoprotein located on the outer membrane, 

NlpE (Otto and Silhavy, 2002).  Here we discovered the Cpx-signaling pathway also responds to 

the most abundant outer membrane protein, OmpA.  Expression of cpxP was repressed in the 

ompA mutant (Table 3.1) and these results were corroborated by qRT-PCR. Transcription of 

cpxP is a result of CpxRA system activity and CpxR phosphorylation (Danese and Silhavy, 

1998; Wolfe et al., 2008).  In addition, cell lysis by overproduction of OmpA clearly indicates 

membrane stress occurred.  Hence we hypothesize that the production of OmpA can directly or 

indirectly activate the CpxRA two-component stress response system. 
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Figure 3.7 Hypothesized mechanism for cellulose production via OmpA.  OmpA may 
activate the CpxRA two-component system which forms CpxR-P.  CpxR-P induces 
cpxP transcription and represses csgD which leads to the repression of adrA.  AdrA 
is responsible for c-di-GMP expression and cellulose production.  → indicates 
induction and ⊥ indicates repression. 
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CpxR negatively regulates expression of csgB and csgD (Dorel et al., 2006).  For the 

regulation of csgD, OmpR binds to the csgD promoter and activates csgD expression, whereas 

CpxR-P binds to its own recognition site on the csgD promoter which overlaps the OmpR-

binding site and represses the csgD expression; thus, CpxR-P negatively affects csgD expression 

(Jubelin et al., 2005).  This repression is triggered by osmolarity and curli overproduction 

(Prigent-Combaret et al., 2001).  CsgD also regulates AdrA, a protein with a GGDEF domain, 

which is responsible for c-di-GMP synthesis and which is required for cellulose production 

(Zogaj et al., 2001; Gualdi et al., 2008).  Since cellulose biosynthesis genes bcsABZC are 

constitutively transcribed, cellulose synthesis depends only on AdrA for synthesizing c-di-GMP 

which can control cellulose production by binding with BcsB (works with BcsA as cellulose 

synthase) and regulating the cellulose synthase activity (Zogaj et al., 2001; Gualdi et al., 2008).  

Our qRT-PCR result for csgD and adrA shows that with overproduction of OmpA, expression of 

csgD and adrA were both repressed, resulting in a reduction of cellulose production.  Hence 

OmpA decreases cellulose production by inhibiting the CsgD/AdrA pathway.  There may also be 

some alternative regulation pathways (Da Re and Ghigo, 2006) such as YedQ for cellulose 

production that are influenced by OmpA.   

OmpA increases biofilm formation on hydrophobic surfaces (PS, PVC, and PP), 

decreases biofilm formation on hydrophilic surfaces (glass), and decreases attachment to sand by 

decreasing cellulose production.  We explain this interesting observation based on the 

hydrophilic property of cellulose, a polysaccharide consisting of a linear chain of several 

hundred to over ten thousand β (1→4) linked D-glucose units.  Previously, Römling et al. found 

AdrA is required for Salmonella typhimurium attachment to glass surfaces (Römling et al., 

2000).  In S. enteritidis, cellulose also increases biofilm formation on glass tubes (Solano et al., 

2002).  Therefore, cellulose promotes biofilm formation on glass, and we saw this with the ompA 
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mutant that produces more cellulose in that there was more biofilm formation on glass (Fig. 

3.1B) and more attachment to sand (Fig. 3.2).  We also found that increasing cellulose 

production by overproducing AdrA (Fig. 3.5B) decreases biofilm formation on hydrophobic 

polystyrene plates (Fig. 3.6).  Hence, cellulose decreases biofilm formation on polystyrene, and 

it is repression of cellulose synthesis that causes OmpA to work differently on different surfaces. 

Factors other than cellulose production can also influence biofilm formation, including 

curli formation, which is also regulated by CsgD (Römling et al., 2000).  The interaction 

between cellulose and curli makes their influence on biofilm formation complex.  Cellulose 

decreases curli-mediated biofilm formation on polypropylene microtitre plates (Gualdi et al., 

2008), which can be explained by the hydrophilic property of cellulose; however, similar results 

were obtained also on glass, a hydrophilic surface.  Curli helps adherence of E. coli to intestinal 

epithelial cells, and cellulose alone has no effect, but co-expression of cellulose and curli 

decreases this adherence (Wang et al., 2006).  In addition, with pure water contact angle 

measurements, co-expression of cellulose and thin aggregative fimbriae leads to formation of a 

highly hydrophobic network while cellulose alone shows hydrophilic properties in S. 

typhimurium (Zogaj et al., 2001).  In our biofilm and cellulose studies, we found the csgB 

mutant, deficient for curli formation, produces more cellulose than the wild-type strain and other 

mutants such as cpxR and adrA (Fig. 3.5).  The csgB ompA double mutant produced high 

amounts of cellulose, lost the ability to decrease biofilm on polystyrene plates (Fig. 3.6), and its 

phenotype became similar to the csgB single mutant for biofilm formation.  Hence we can make 

two hypotheses: (i) the deficiency of curli formation can lead to more cellulose production, or 

(ii) cellulose cannot decrease biofilm on polystyrene surfaces in the absence of curli.   

OmpA exists in E. coli and in many enterobacteria.  It is located on the outer membrane 

of bacterial cells, and functions as an adhesin and as an invasin (Smith et al., 2007).  The 



 

 

42

position of OmpA indicates its importance for adhesion and biofilm formation and also indicates 

that the regulation of OmpA may occur post-transcriptionally, which cannot be detected using 

transcription-level genetic tools such as whole-transcriptome studies and qRT-PCR.  Hence, in 

addition to CpxRA, whose activation by OmpA is reflected in an increase in cpxP transcription, 

there may be additional regulatory pathways that OmpA works through to alter biofilm 

formation. 

3.5 Experimental procedures 

3.5.1 Bacterial strains, media, growth conditions, and growth rate assay  

  All the strains and plasmids used in this study are listed in Table 3.2.  E. coli K-12 

BW25113 and its isogenic mutants (Baba et al., 2006) were obtained from the Genome Analysis 

Project in Japan (Mori et al., 2000) and were used for all experiments except the β-galactosidase 

cell lysis experiments in which E. coli MG1655 was used.  Plasmid pCA24N_ompA, carrying 

ompA under control of the PT5-lac promoter with tight regulation via the lacIq repressor, as well as 

the empty plasmid pCA24N, were also obtained from the Genomic Analysis Project in Japan 

(Kitagawa et al., 2005).  Expression of ompA and adrA was induced by 0.05 to 1 mM IPTG 

(Sigma, St. Louis, MO).   

   LB (Sambrook et al., 1989) was used to culture all the E. coli cells. Kanamycin (50 

μg/mL) was used for pre-culturing the isogenic knock-outs.  Chloramphenicol (30 μg/mL) was 

used for the strains harboring pCA24N and its derivatives.  The specific growth rates of the E. 

coli wild-type strain and the ompA mutant were determined by measuring the turbidity at 600 nm 

for two independent cultures of each strain as a function of time with values less than 0.7.  All 

experiments were performed at 37°C if not especially indicated. 
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Table 3.2 E. coli strains and plasmids used in this study.  Kmr, Cmr, and Apr denote 
kanamycin, chloramphenicol, and ampicillin resistance, respectively. 

 
Strain/Plasmid Genotype Source 
Strain 
BW25113 lacIq rrnBT14 ΔlacZWJ16 hsdR514 

ΔaraBADAH33 ΔrhaBADLD78 
(Datsenko and Wanner, 2000) 

MG1655 F- λ- ilvG rfb-50 rph-1 (Blattner et al., 1997) 
BW25113 ompA BW25113 ∆ompA Ω Kmr (Baba et al., 2006) 
BW25113 cpxR BW25113 ∆cpxR Ω Kmr (Baba et al., 2006) 
BW25113 adrA BW25113 ∆adrA Ω Kmr (Baba et al., 2006) 
BW25113 csgB BW25113 ∆csgB Ω Kmr (Baba et al., 2006) 
BW25113 csgD BW25113 ∆csgD Ω Kmr (Baba et al., 2006) 
BW25113 fimA BW25113 ∆fimA Ω Kmr (Baba et al., 2006) 
BW25113 cpxR ompA BW25113 ∆cpxR ∆ompA Ω Kmr This study 
BW25113 adrA ompA BW25113 ∆adrA ∆ompA Ω Kmr This study 
BW25113 csgB ompA BW25113 ∆csgB ∆ompA Ω Kmr This study 
Plasmid 
pCP20 Apr, Cmr; temperature-sensitive 

replication and thermal induction 
of FLP recombinase 

(Cherepanov and Wackernagel, 
1995) 

pCA24N Cmr; lacIq, pCA24N  (Kitagawa et al., 2005) 
pCA24N_ompA Cmr; lacIq, pCA24N pT5-lac::ompA (Kitagawa et al., 2005) 
pCA24N_adrA Cmr; lacIq, pCA24N pT5-lac::adrA (Kitagawa et al., 2005) 
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3.5.2 Crystal violet biofilm assay  

  The biofilm assay was performed in 96-well PS, PP, and PVC plates as reported 

previously (Kim et al., 2009).  Briefly, cells were inoculated at an initial turbidity at 600 nm of 

0.05 and grown for 15 or 24 h without shaking, and then the cell density and total biofilm were 

measured using crystal violet staining.  Each data point was averaged from at least twelve 

replicate wells (six wells from each of two independent cultures).  For biofilm formation on 

glass, 1 mL of culture at a turbidity of 0.05 at 600 nm was loaded into 85 mm sterile glass 

culture tubes and incubated for 48 h without shaking, and then 1 mL 0.1% crystal violet was 

added for 20 min to stain the biofilm.  At least two independent cultures were used with at least 

three tubes used for each strain.  

3.5.3 EPS and colanic acid assays  

  The amount of total EPS and colanic acid was determined as described previously 

(Zhang et al., 2008).  Briefly, about 60 mg of cell colony mass from overnight agar plates was 

boiled in water for 10 min.  The supernatant were then used for an anthrone-H2SO4 assay to 

determine EPS concentrations, and colanic acid was determined by measuring the amount of 

fucose using sulfuric acid and cysteine hydrochloride as reagents.  Each assay was performed 

with two independent cultures. 

3.5.4 Sand column assay  

  The sand column assay was performed as described previously (Landini and Zehnder, 

2002) with modifications to prevent damage to fimbriae (Kim et al., 2009).  Rather than 

resuspending in PBS buffer, cells were directly inoculated into 250 mL LB medium with an 

initial turbidity of 0.05 at 600 nm and grown to a turbidity of 0.5 to 0.6. Then cells were added 

directly to the sand column (a 12 cm syringe column filled with 18 g of sterile sea sand) at a flow 

rate of 0.5 mL/min. Fourteen fractions (1.5 mL each) were collected, and the fraction of attached 



 

 

45

cells was calculated as 1 - efflux turbidity/input turbidity. The fimbriae minus strain BW25113 

fimA mutant was used as negative control. 

3.5.5 Cell swimming motility assay and pH  

  Cell swimming motility was performed as previously described (Sperandio et al., 2002; 

Domka et al., 2006).  Overnight cultures were used to inoculate into the plates.  At least five 

plates were used for each independent culture, and two independent cultures were used for each 

strain.  The pH of the supernatants of the overnight cultures was measured after removing cells 

by centrifuging at 16,000 g for 10 min. 

3.5.6 P1 transduction   

  Transduction with P1 bacteriophage was used to construct the cpxR ompA, adrA ompA, 

and csgB ompA mutants using the Rapid Gene Knockout method (Maeda, 2008).  Briefly, the 

kanamycin resistance gene (Kmr) was first removed by FLP recombinase (expressed from 

pCP20) from the ΔcpxR Ω Kmr, ΔadrA Ω Kmr, and ΔcsgB Ω Kmr mutants, then bacteriophage 

P1 was grown with BW25113 ΔompA Ω Kmr and the lysate was used for transduction into the 

three resulting kanamycin-sensitive strains.  All six of the mutations were verified by colony 

PCR with primer sites located upstream and downstream of the deleted gene (Table 3.3).  Single 

mutants were used as positive controls. 

3.5.7 Cellulose assay using Congo red and calcofluor  

  To detect curli/cellulose production in the ompA mutant using bacterial colonies, 2 µL of 

overnight culture (with 50 μg/mL kanamycin for mutants) was spotted onto LB plates (no NaCl) 

containing 0.004% Congo red and 0.002% brilliant blue (Da Re and Ghigo, 2006).  Plates were 

incubated for 24 h at 37°C and 48 h at 30°C.  Red colonies indicate the binding of Congo red. 

  To quantify cellulose production for planktonic cells, the Congo red method of Lee et al. 

(Lee et al., 2007d) was used with some modifications; similarly, calcofluor was also used to 
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measure cellulose.  Cells from two mL of a 14 to 15 h culture were centrifuged and resuspended 

in 1 mL 1% tryptone with 40 μg/mL Congo red or 16 μg/mL calcofluor and incubated for 2 h at 

250 rpm.  Bacterial bound Congo red or calcofluor were removed by centrifugation for 5-10 min 

at 17,000 g, and the amount of unbound Congo red or calcofluor was determined by measuring 

the absorbance of the supernatant at 490 nm for Congo red and at 350 nm for calcofluor. 

3.5.8 Cellulose assay using cellulase  

  Colonies of the wild-type strain and the ompA mutant were collected from the surface of 

LB agar plates after overnight incubation at 37°C.  For each strain, around 50 mg of cells were 

transferred into 400 μL 2.5M 2-(N-morpholino)-ethanesulfonic acid (MES) buffer (pH 5.5) with 

or without 6 U/mL cellulase (Aspergillus niger, MP Biomedicals) and incubated at 37°C for 16 h.  

Each sample was adjusted with 2.5 mM MES buffer to a turbidity of 40 at 600 nm and 

centrifuged.  The glucose amount in the supernatant was measured using the glucose (HK) assay 

kit (Sigma-Aldrich) and compared to the signal obtained with no cellulase treatment.   

3.5.9 Cellulose assay using biofilm cells   

  To quantify cellulose production in biofilm cells of the ompA mutant, cells were grown 

in 250 mL LB medium with 7 g glass wool for 14 to 15 h.  The glass wool was washed twice 

with 0.85% NaCl and sonicated 2 min at 22 W (FS3 sonicator, Fisher Scientific Co.) in 100 mL 

of cold 0.85% NaCl buffer to release the cells which were centrifuged at 10,000 g for 2 min (J2-

HS centrifuge, Beckman, Palo Alto, CA, USA).  The Congo red-binding assay, calcofluor-

binding assay, and cellulase treatment + glucose determination assay were then performed with 

these glass wool biofilm cells as indicated above. 



 

 

47

Table 3.3 Primers used for qRT-PCR and double mutant verification. 
 

Name Sequence  

qRT-PCR 
adrA Forward: 5’- ACGGCATGACGGGCGTGTATAACC -3’ 
 Reverse: 5’- CGCAGGGTAATTTGTAACTGTCGGG -3’ 
csgD Forward: 5’- ATACGCCTGAAGATTACCCGTACCG -3’ 
 Reverse: 5’- AGTAAGGAGGGCTGATTCCGTGC -3’ 
cpxP Forward: 5’- GAACATCAGCGTCAGCAGATGCGAG -3’ 
 Reverse: 5’- GGTTGCGGACTTTTGCCATCTCAAC-3’ 
ybjX Forward: 5’- TATGTCGCAGCTAACTGAACGGACC -3’ 
 Reverse: 5’- CCAGTGGGAAAGTTCGTTCATCCAC-3’ 
prpB Forward: 5’- GCCGCTGTTTACCACCGACG AATTA -3’ 
 Reverse: 5’- GATGCTTTCGTACAGCTCGTTGCGG -3’ 
Verification of double mutations 
adrA Forward: 5’- TATGAGTGCCTGCCTCAAGAAAGC -3’ 
 Reverse: 5’- GCGTACTGGAAGAGAAAGGCTTC -3’ 
csgB Forward: 5’- CGCAGACATACTTTCCATCGTAACGC -3’ 
 Reverse: 5’- CGCTACCGGAGAATACGATTGCTG -3’ 
cpxR Forward: 5’- CGTCTGATGACGTAATTTCTGCC -3’ 
 Reverse: 5’- GTGAATCGAGCTTGGGTAACATC -3’ 
ompA Forward: 5’- GTTGTAGACTTTACATCGCCAGG -3’ 
 Reverse: 5’- GCTGGGTAAGGAATAACTGACG -3’ 
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3.5.10 Cell lysis assays  

  Genomic DNA was used as in indicator of cell lysis.  BW25113 ompA/pCA24N and 

ompA/pCA24N_ompA were inoculated into 25 mL of LB medium with an initial turbidity of 

0.05 at 600 nm, and IPTG (0.1 mM) was added to both cultures after incubating for 2.5 h at 37°C 

with 250 rpm shaking.  After a total of 15 h of incubating, 1.8 mL was sampled and centrifuged. 

The supernatant was purified with phenol/chloroform/isoamyl alcohol followed by precipitating 

with an equal volume of isopropanol in 1/10 volume 3 M NaOAc.  The genomic DNA 

concentration was measured by quantitative PCR using primers for purA (encodes the subunit of 

adenylosuccinate synthetase), and the percentage of cell lysis was calculated as the ratio of 

genomic DNA concentration in the supernatant relative to that of the sonicated sample in which 

all genomic DNA was released. This experiment was performed with two independent cultures 

for each strain.   

  β-galactosidase was also used as in indicator of cell lysis.  This assay was performed as 

described previously (Rice et al., 2007) except the β-galactosidase was generated from a 

chromosomal copy of lacZ+
 by the addition of IPTG.  MG1655/pCA24N and 

MG1655/pCA24N_ompA were inoculated into 25 mL LB medium with an initial turbidity of 

0.05 at 600 nm, and IPTG (0.05 mM) was added to both cultures after incubating for 2.5 h at 

37°C with 250 rpm shaking. One mL of culture was harvested after 15 h and centrifuged for 2 

min at 17,000 g.  The β-galactosidase activity of the supernatant and sonicated cell pellet was 

measured as previously described (Wood and Peretti, 1991), and the percentage of cell lysis was 

calculated as the ratio of β-galactosidase activity in the supernatant relative to that of the 

sonicated cell pellet.  This experiment was performed with four independent cultures for each 

strain. 
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3.5.11 RNA isolation from biofilms  

  Thirty g of polystyrene foam shavings of approximately 1 mm diameter was submerged 

in 250 mL medium and autoclaved.  2.5 mL overnight culture of the wild-type strain and the 

ompA mutant were inoculated into 250 mL of medium.  After 15 h of incubation at 37°C, the 

polystyrene foam was washed twice in 200 mL of cold 0.85% NaCl buffer to remove planktonic 

cells, and the biofilm cells were removed by sonication at 22 W (FS3 sonicator, Fisher Scientific 

Co.) in 200 mL of cold 0.85% NaCl buffer.  The buffer containing biofilm cells was then 

centrifuged at 10,000 g for 2 min at -2°C (J2-HS centrifuge, Beckman, Palo Alto, CA, USA).  

This cell pellet was resuspended in RNAlater (Ambion) or RNAprotect (Qiagen), transferred to 

pre-chilled bead beater tubes, and centrifuged for 15 sec.  Cells were lysed with 0.1 mm 

Zirconia/Silica beads (Biospec Products, Inc., OK) in a bead beater (Ren et al., 2004a), and total 

RNA was isolated using a Qiagen RNeasy Mini Kit. 

3.5.12 Whole-transcriptome analysis  

 The E. coli GeneChip Genome 2.0 array (Affymetrix, P/N 900551) was used to analyze 

differential gene expression for the ompA mutant vs. the wild-type strain for biofilm cells on 

polystyrene.  The E. coli GeneChip Genome 2.0 array contains 10,208 probe sets for open 

reading frames, rRNA, tRNA, and intergenic regions in four E. coli strains (MG1655, CFT073, 

O157:H7-Sakai, and O157:H7-EDL933).  The cDNA synthesis, fragmentation, and 

hybridizations were performed as described previously (González Barrios et al., 2006b).  

Fragmented and labeled cDNA was hybridized for 16 h at 45°C, and global scaling was applied 

to make the average signal intensity 500.  The probe array images were inspected for any image 

artifacts.  Background values, noise values, and scaling factors of both arrays were examined and 

were comparable.  The intensities of polyadenosine RNA controls were used to monitor the 

labeling process, and signals of the araA and rhaA deleted genes of BW25113 (Table 3.2) were 
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low.  If the gene with the larger transcription rate did not have a consistent transcription rate 

based on the 11-15 probe pairs (P-value less than 0.05), these genes were discarded. A gene was 

considered differentially expressed when the P-value for comparing two chips was lower than 

0.05 (to assure that the change in gene expression was statistically significant and that false 

positives arise less than 5%) and if their fold change is higher than standard deviation for the 

whole genome (Ren et al., 2004b).  The expression data were deposited in the NCBI Gene 

Expression Omnibus and are accessible through accession number GSE14064. 

3.5.13 qRT-PCR   

  qRT-PCR was performed using the StepOne™ Real-Time PCR System (Applied 

Biosystems, Foster City, CA).  Total RNA (200 ng) was used for the qRT-PCR reaction using 

the SuperScriptTM III Plantinum® SYBR® Green One-Step qRT-PCR Kit (Invitrogen, 

Carlsbad, CA).  Primers used are listed in Table 3.3.  The housekeeping gene rrsG was used to 

normalize the gene expression data. The annealing temperature was 60°C for all of the genes in 

this study. 
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CHAPTER IV 

ENGINEERING A NOVEL C-DI-GMP-BINDING PROTEIN FOR BIOFILM 

DISPERSAL 

4.1 Overview 

 Bacteria prefer to grow attached to themselves or an interface, and it is important for an 

array of applications to make biofilms disperse.  Here we report simultaneously the discovery 

and protein engineering of BdcA (formerly YjgI) for biofilm dispersal using the universal signal 

3,5-cyclic diguanylic acid (c-di-GMP).  The bdcA deletion reduced biofilm dispersal, and 

production of BdcA increased biofilm dispersal to wild-type levels.  Since BdcA increases 

motility and extracellular DNA production while decreasing exopolysaccharide, cell length, and 

aggregation, we reasoned that BdcA decreases the concentration of c-di-GMP, the intracellular 

messenger that controls cell motility through flagellar rotation and biofilm formation through 

synthesis of curli and cellulose.  Consistently, c-di-GMP levels increase upon deleting bdcA, and 

purified BdcA binds c-di-GMP but does not act as a phosphodiesterase.  Additionally, BdcR 

(formerly YjgJ) is a negative regulator of bdcA.  To increase biofilm dispersal, we used protein 

engineering to evolve BdcA for greater c-di-GMP binding and found that the single amino acid 

change E50Q causes nearly complete removal of biofilms via dispersal without affecting initial 

biofilm formation.  

4.2 Introduction 

   Biofilm dispersal is the last stage of biofilm development in which cells detach from the 

biofilm and disperse into the environment (Kaplan, 2010).  The ability to control biofilm 

___________ 
*Reprinted with permission from “Engineering a novel c-di-GMP-binding protein for biofilm dispersal” 
by Qun Ma, Zhonghua Yang, Mingming Pu, Wolfgang Peti, and Thomas K. Wood, 2010, Environmental 
Microbiology, Copyright 2010, Society for Applied Microbiology and Blackwell Publishing Ltd, 
doi:10.1111/j.1462-2920.2010.02368.x. 
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formation is important, since bacteria in biofilms are responsible for most infectious diseases 

(Romero et al., 2008), and biofilms need to be controlled for engineering applications such as 

biocorrosion (Jayaraman et al., 1999a).  Dispersal occurs by two mechanisms: active dispersal 

which is initiated by the bacteria themselves and passive dispersal mediated by external forces 

such as fluid shear and abrasion (Kaplan, 2010). 

   Biofilm dispersal occurs both in unfavorable and favorable conditions. As biofilms 

grow, cells inside the biofilm may not be able to access nutrients and may not be able to release 

toxic compounds quickly, so biofilm dispersal allows cells to escape from the unfavorable 

conditions.  Hence, a change in environmental conditions (e.g., nutrition level and oxygen 

depletion) can lead to the removal of biofilms (Karatan and Watnick, 2009).  For example, 

Pseudomonas aeruginosa biofilms undergo dispersal in response to a sudden decrease/increase 

of substrates (Hunt et al., 2004; Sauer et al., 2004). Even when conditions are favorable, cells 

may leave the biofilm and attach to a new surface, where they can make more colonies.  

Therefore, biofilm dispersal is important for the survival of the species as it allows the bacterial 

population to expand (Kaplan, 2010).  For example, reproducible, periodic dispersal occurs in 

Actinobacillus actinomycetemcomitans (Kaplan, 2010), Pseudomonas putida (Gjermansen et al., 

2010), and Serratia marcescens (Rice et al., 2005).  In addition, for many pathogenic bacteria, 

biofilm dispersal plays a critical role in the transmission of bacteria from environmental 

reservoirs to human hosts, in the transmission of bacteria between hosts, and in the exacerbation 

and spread of infection within a single host (Kaplan, 2010).   

   Biofilms may be dispersed by several mechanisms including by (i) degrading or 

repressing production of adhesive components in the biofilm matrix, (ii) degrading the substrate 

on which the biofilm colony is growing, (iii) lysing a subpopulation of cells (e.g., phage-

mediated cell lysis), (iv) inducing motility, (v) producing extracellular surfactants such as 
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rhamnolipids, (vi) modulating fimbrial adherence, and (vii) increasing cell division at the outer 

surface of the biofilm colony (Kaplan, 2010).  Proteins that increase biofilm removal upon their 

production include CsrA which represses synthesis of the adhesin poly-β-1,6-N-acetyl-D-

glucosamine (Wang et al., 2005) in Escherichia coli, although it does not disperse biofilms in the 

presence of glucose (Jackson et al., 2002).  Other proteins have been identified that, upon 

inactivation, prevent dispersal including DspB of A. actinomycetemcomitans, which degrades a 

linear polymer of N-acetylglucosamine (Kaplan et al., 2003), BdlA of P. aeruginosa, which 

decreases adhesiveness by decreasing c-di-GMP (Morgan et al., 2006), and AlpP of 

Pseudoalteromonas tunicate, which kills cells by producing hydrogen peroxide from L-lysine 

(Mai-Prochnow et al., 2008).  In addition, NirS (Barraud et al., 2006) of P. aeruginosa produces, 

via BdlA, nitric oxide that is important for biofilm dispersal although nitric oxide alone removes 

63% of biofilms but the combination of nitric oxide and chlorine can remove 85-90% of biofilms 

(Barraud et al., 2009). 

   Active dispersal based on motility is regulated by the universal intracellular signal c-di-

GMP (Fig. 4.1A).  c-di-GMP is synthesized by diguanylate cyclases, enzymes that are identified 

by a typical GGDEF motif, from two guanosine-5'-triphosphate molecules and degraded by 

phosphodiesterases (PDEs) which are characterized by an EAL or a HD-GYP domains (Dow et 

al., 2006).  E. coli has 29 putative c-di-GMP related proteins, including 12 proteins with a 

GGDEF domain, 10 proteins with an EAL domain, and 7 proteins with both domains 

(Sommerfeldt et al., 2009).  As an important intracellular signal, c-di-GMP affects many 

phenotypes including extracellular polysaccharide (EPS) production, biofilm formation, rugose 

colony development in Vibrio vulnificus (Nakhamchik et al., 2008) and P. aeruginosa (Ueda and 

Wood, 2009), and biofilm formation, cell length, and swimming motility in E. coli (Méndez-

Ortiz et al., 2006).  
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Figure 4.1 BdcA increases biofilm dispersal.  Chemical structure of c-di-GMP (A).  Relative 

normalized biofilm dispersal after 42 h with static biofilms formed in 96-well 
polystyrene plates (B).  Biofilms were formed with Luria-Bertani medium (LB) and 
30 μg/mL chloramphenicol at 37°C using BW25113/pCA24N, bdcA/pCA24N, and 
bdcA/pCA24N_bdcA. Isopropyl-β-D-thiogalactopyranoside (IPTG) (0.1 mM) was 
added to each strain after 19 h of incubation.  Biofilm formation after 23 h of IPTG 
induction (42 h total) is compared to the biofilm formation after 12 h of IPTG 
induction (31 h total) to obtain biofilm dispersal.  Data are the average of 12 
replicate wells from two independent cultures, and one standard deviation is shown.  
Representative Imaris images of flow cell biofilms after 42.5 h and 64.5 h of 
incubation with LB medium (C).  Each strain has pCM18 for producing GFP to 
visualize the biofilms, and erythromycin (300 μg/mL) was added to retain pCM18.  
Imaris images of flow cell biofilms of BW25113 bdcA producing evolved BdcA 
from pCA24N (D).  After forming biofilms in LB for 24 hr, IPTG (0.5 mM) was 
added to induce BdcA production for 9 h (33 h total), 18.5 h (42.5 h total), and 27.5 
h (51.5 h).  Each strain has the pCM18 plasmid for producing GFP.  
Chloramphenicol (30 μg/mL) was used to retain the pCA24N-based plasmids, and 
erythromycin (300 μg/mL) was used to retain pCM18.  BdcA WT indicates native 
BdcA, BdcA E50V is the epPCR evolved BdcA, BdcA E50Q is the best saturation 
mutant.  Scale bars represent 10 μm. 
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   In this study, we focused on creating an engineered protein that causes bacteria to 

disperse.  Using a biofilm screen for uncharacterized genes related to biofilm formation and the 

transport of the quorum-sensing (QS) signal autoinducer 2 (AI-2) (Herzberg et al., 2006), we 

identified that YjgI (renamed BdcA for biofilm dispersal via c-di-GMP) is a positive factor for 

removing biofilms.   We explored the mechanism of how BdcA influences biofilm dispersal by a 

series of phenotype assays and determined that BdcA is a c-di-GMP-binding protein.  In 

addition, we evolved BdcA by random mutagenesis and saturation mutagenesis of bdcA to obtain 

a more effective biofilm dispersal protein.  Hence, we evolved the first protein for the enhanced 

biofilm dispersal, BdcA E50Q, resulting in nearly complete biofilm removal.   

4.3 Results 

4.3.1 BdcA increases biofilm dispersal   

   To identify proteins that may be used to remove biofilms, we screened biofilm formation 

with knockout mutants for 32 uncharacterized genes whose expression is altered by a tqsA 

deletion (Herzberg et al., 2006) (Table 4.1); TqsA is the putative exporter of QS signal AI-2, 

which enhances biofilm formation in E. coli (González Barrios et al., 2006b).  We found that the 

bdcA mutant decreased biofilm dispersal by 3 ± 1 fold compared with the wild-type strain in a 

static biofilm assay with 96-well polystyrene plates (Fig. 4.1B), which suggested BdcA controls 

biofilm removal.  To corroborate this biofilm result with a more rigorous assay and to further 

investigate the function of BdcA under other conditions (e.g., glass surface and continuous 

flow), we performed a flow cell assay and again found the bdcA mutant showed 6 ± 2-fold 

decreased biofilm dispersal (Fig. 4.1C and Table 4.2).  The lack of biofilm dispersal was 

complemented by expressing bdcA in trans (Fig. 4.1B); hence, BdcA increases biofilm dispersal. 
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Table 4.1 List of biofilm formation. Normalized biofilm formation (OD540 nm/OD620 nm) in LB 
medium at 37°C for mutations in uncharacterized genes that are related to AI-2 
transporter TqsA (Herzberg et al., 2006). 

  
Strains 7 h 15 h 24 h 
wild-type 0.052 ± 0.003 0.34 ± 0.01 0.1083 ± 0.0007 
oxc 0.97 ± 0.05 0.26 ± 0.03 0.071 ± 0.008 
ves 1.00 ± 0.02 0.42 ± 0.04 0.06 ± 0.02 
yadS 0.98 ± 0.09 0.21 ± 0.03 0.06 ± 0.01 
yafX 0.53 ± 0.03 0.27 ± 0.02 0.09 ± 0.02 
ybaW 0.91 ± 0.03 0.25 ± 0.03 0.069 ± 0.004 
ybfE 0.58 ± 0.02 0.25 ± 0.02 0.10 ± 0.01 
ybfG 0.02 ± 0.01 0.20 ± 0.02 0.16 ± 0.01 
ybfP 0.70 ± 0.05 0.25 ± 0.03 0.11 ± 0.02 
ybhM 1.10 ± 0.04 0.39 ± 0.04 0.06 ± 0.01 
ybjI 0.66 ± 0.03 0.28 ± 0.05 0.08 ± 0.02 
yceO 0.03 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 
yciE 0.85 ± 0.03 0.37 ± 0.03 0.069 ± 0.005 
yddJ 0.03 ± 0.01 0.25 ± 0.01 0.11 ± 0.01 
yecT 0.015 ± 0.003 0.09 ± 0.01 0.1 ± 0.1 
yfaA 0.80 ± 0.04 0.50 ± 0.03 0.085 ± 0.008 
yfaE 0.55 ± 0.01 0.18 ± 0.02 0.12 ± 0.02 
yfjR 0.47 ± 0.01 0.18 ± 0.03 0.20 ± 0.01 
ygfF 0.74 ± 0.04 0.38 ± 0.03 0.12 ± 0.01 
yghG 0.38 ± 0.01 0.46 ± 0.02 0.10 ± 0.01 
yhaC 0.05 ± 0.01 0.22 ± 0.04 0.06 ± 0.01 
yibE 0.75 ± 0.02 0.27 ± 0.03 0.10 ± 0.01 
yicF 0.77 ± 0.01 0.33 ± 0.03 0.09 ± 0.02 
yjbL 1.02 ± 0.04 0.30 ± 0.02 0.100 ± 0.009 
yjfM 1.28 ± 0.05 0.32 ± 0.02 0.06 ± 0.01 
yjgI (bdcA) 0.04 ± 0.01 0.12 ± 0.01 0.18 ± 0.02 
yjgN 0.026 ± 0.005 0.40 ± 0.07 0.27 ± 0.04 
yjiP 0.63 ± 0.02 0.40 ± 0.02 0.13 ± 0.02 
ykiB 0.77 ± 0.05 0.30 ± 0.05 0.12 ± 0.06 
ylbE 0.08 ± 0.01 0.31 ± 0.01 0.10 ± 0.01 
yoga 0.68 ± 0.02 0.37 ± 0.03 0.11 ± 0.05 
yodC 0.44 ± 0.01 0.040 ± 0.004 0.015 ± 0.004 
ytfA 0.20 ± 0.01 0.53 ± 0.04 0.11 ± 0.02 
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Table 4.2 Flow cell statistical analysis of biofilms via COMSTAT for biofilms formed at 37°C.  For the wild-type strain and the 
bdcA mutant, cultures were grown in LB for 24 h, 33 h, 42.5 h, 51.5 h, and 64.5 h.  For bdcA/pCA24N, bdcA/BdcA, 
bdcA/BdcA E50V, and bdcA/BdcA E50Q, cultures were grown in LB with 30 μg/mL chloramphenicol for 24 h, and then 
bdcA expression was induced by adding 0.5 mM IPTG.  Data were collected at 33 h, 42.5 h, and 51.5 h.  BdcA is the native 
protein, BdcA E50V is the epPCR variant, and BdcA E50Q is the saturation mutagenesis variant.   

 
COMSTAT 
values 

Time wild-type bdcA bdcA/pCA24N bdcA/BdcA bdcA/BdcA E50V bdcA/BdcA E50Q 

24 h 0.5 ± 0.8 0.4 ± 0.4     
33 h 2 ± 3 2 ± 4 3 ± 3 3 ± 2 4 ± 3 4 ± 2 
42.5 h 2 ± 4 3 ± 2 4 ± 2 3 ± 1 0.8 ± 0.5 0.17 ± 0.07 
51.5 h 0.4 ± 0.3 2 ± 1 3.7 ± 0.8 1.7 ± 0.8 0.2 ± 0.3 0.16 ± 0.08 

Biomass 
(µm3/µm2) 

64.5 h 0.3 ± 0.2 3 ± 2     
24 h 5 ± 2 5 ± 2     
33 h 6 ± 6 8 ± 3 10 ± 3 13 ± 6 13 ± 7 11 ± 5 
42.5 h 5 ± 5 15 ± 9 13 ± 5 12 ± 4 5 ± 2 2.2 ± 0.7 
51.5 h 3 ± 1 14 ± 6 12 ± 4 10 ± 5 2 ± 1 3.0 ± 0.9 

Surface 
coverage 
(%) 

64.5 h 2.6 ± 0.9 18 ± 9     
24 h 1 ± 1 0.8 ± 0.8     
33 h 3 ± 5 3 ± 6 4 ± 4 5 ± 4 5 ± 3 4 ± 2 
42.5 h 4 ± 7 4 ± 3 5 ± 2 4 ± 2 1.1 ± 0.6 0.2 ± 0.1 
51.5 h 0.6 ± 0.4 3 ± 2 4 ± 1 2.3 ± 0.9 0.3 ± 0.4 0.2 ± 0.1 

Average 
thickness 
(µm) 

64.5 h 0.5 ± 0.3 3 ± 2     
24 h 1.89 ± 0.07 1.8 ± 0.1     
33 h 1.8 ± 0.3 1.7 ± 0.2 1.6 ± 0.1 1.5 ± 0.2 1.5 ± 0.2 1.7 ± 0.1 
42.5 h 1.7 ± 0.3 1.5 ± 0.2 1.6 ± 0.2 1.6 ± 0.2 1.80 ± 0.07 1.92 ± 0.02 
51.5 h 1.89 ± 0.05 1.5 ± 0.1 1.60 ± 0.06 1.6 ± 0.2 1.91 ± 0.06 1.89 ± 0.04 

Roughness 
coefficient 

64.5 h 1.90 ± 0.04 1.5 ± 0.2     
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4.3.2 BdcA increases cell motility and extracellular DNA (eDNA) while decreasing EPS 

production, cell size, and cell aggregation   

   To provide insights into the mechanism by which BdcA increases biofilm dispersal, we 

tested other biofilm-related phenotypes for the bdcA mutant and the bdcA-expressing strain.  

BdcA increased cell swimming motility by 2.2 ± 0.4 fold (Fig. 4.2A) and eDNA production by 

3.05 ± 0.02 fold (Fig. 4.2B), while it decreased EPS production by 3 ± 2 fold (Fig. 4.2C), cell 

size by 2 ± 1 fold (Fig. 4.2D), and cell aggregation by 2.2 ± 0.7 fold (Fig. 4.2E).  All five 

phenotypes seen upon producing BdcA are consistent with decreasing c-di-GMP concentrations 

(D'Argenio and Miller, 2004; Méndez-Ortiz et al., 2006; Nakhamchik et al., 2008; Ueda and 

Wood, 2010).  Furthermore, the deletion of bdcA has the opposite effect on all these five 

phenotypes (Fig. 4.2), and production of BdcA from a plasmid complemented each of these 

phenotypes. Hence we hypothesized that BdcA may activate biofilm dispersal by decreasing the 

c-di-GMP concentrations in E. coli.  

   Importantly, four of the five phenotype changes found here (eDNA production, EPS 

production, cell aggregation, and cell size) were obtained with cells grown in biofilms. 

Planktonic cultures did not show differences in eDNA production, cell aggregation, and EPS 

production (cell size was not tested under this condition). This indicates that the physiological 

role of BdcA is strongly linked to biofilm formation. 
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Figure 4.2 BdcA binds c-di-GMP to alter swimming, eDNA, EPS, cell morphology, and aggregation.  Swimming motility after 15 h 

of growth on motility agar plates (A). eDNA production after 24 h in 96-well plates (B). EPS production after 24 h in 96-well 
plates (C). Cell length after 24 h in 96-well plates (D). Cell aggregation after 24 h in 96-well plates (E). c-di-GMP 
concentration after 24 h (static cultures) (F). All experiments were conducted in LB medium at 37ºC.  bdcA was induced 
from pCA24N_bdcA via 0.1 mM IPTG, and 30 μg/mL chloramphenicol was used to retain the pCA24N-based plasmids. 
Data are the average of at least two independent cultures, and one standard deviation is shown. 
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4.3.3 BdcA binds c-di-GMP to control phenotypes  

   To confirm that BdcA can change the c-di-GMP level, we performed high performance 

liquid chromatography (HPLC) as previously described (Ueda and Wood, 2009) and measured 

the concentrations of c-di-GMP upon deleting bdcA and upon producing BdcA from plasmid 

pCA24N_bdcA via 0.1 mM IPTG. We found that deleting bdcA increased the c-di-GMP 

concentration 8 fold compared to the wild-strain and that producing BdcA decreased c-di-GMP 

concentrations back to the wild-type levels (Fig. 4.2F).  Hence BdcA is directly or indirectly 

related to c-di-GMP levels in E. coli. 

   There are several ways BdcA may affect c-di-GMP concentrations. However, since 

BdcA has no DNA-binding motif and since there was no significant change in gene expression 

in the whole-transcriptome for the bdcA mutant vs. the wild-type strain (results not shown), 

BdcA is not likely to be a regulator that can change the transcription of c-di-GMP-related genes. 

Furthermore, since BdcA was annotated as putative enzyme, it seemed more plausible that BdcA 

controlled c-di-GMP concentrations as a phosphodiesterase or as a c-di-GMP-binding protein. 

Hence, we tested BdcA for PDE activity by purifying the His-tagged protein.  HPLC indicated 

BdcA reduces c-di-GMP; however, we could not detect the traditional c-di-GMP degradation 

products 5′-phosphoguanylyl-(3′→5′)-guanosine (Rao et al., 2010) and guanosine 

monophosphate (GMP) (Schmidt et al., 2005) (Fig. 4.3).  Therefore, BdcA decreases the 

concentration of c-di-GMP probably by binding rather than by catalyzing the degradation of c-

di-GMP as a PDE.  These results also show that no other effector is required for the binding of c-

di-GMP by BdcA.   

 To prove that BdcA acts as a c-di-GMP-binding protein, not a PDE, we used 31P nuclear 

magnetic resonance (NMR) spectroscopy since it shows a peak for c-di-GMP whether it is bound 

or unbound; hence, it may be used to quantify the amount of c-di-GMP after contact with BdcA. 
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Using NMR, we found the amount of c-di-GMP was not altered by treatment with purified BdcA 

(Fig. 4.4).  Furthermore, BdcA was found to have a binding constant of 11.7 μM for c-di-GMP 

(Fig. 4.5), and unaltered c-di-GMP was recovered from BdcA after digestion with trypsin.  

Therefore, BdcA is not a PDE but instead alters phenotypes by changing c-di-GMP 

concentrations in the cell.   

4.3.4 BdcR (YjgJ) regulates bdcA   

We performed quantitative, reverse transcription-polymerase chain reaction (qRT-PCR) 

to check the transcription of bdcA in biofilms at different time points (from 2 h to 24 h).  Gene 

expression of bdcA increases with incubation time and is maximum at 8 h (4.9 ± 0.3-fold more 

compared to 2 h) and decreases at 24 h (2.0 ± 0.2-fold less compared to 2 h).  In addition, to 

investigate the regulation of bdcA, we measured bdcA transcription via qRT-PCR for the yjgJ 

mutant (yjgJ is upstream of bdcA) and the yjgH mutant (yjgH is downstream of bdcA) relative to 

the wild-type strain with 8 h cultures since this was the maximum for bdcA induction. bdcA 

expression in the yjgJ mutant was increased 7.3 ± 0.9 fold comparing to the value in the wild-

type strain while bdcA expression in the yjgH mutant was not changed significantly (1.4 ± 0.2 

fold vs. the wild-type strain).  In addition, YjgJ is predicted to be a putative regulator with a 

helix-turn-helix motif, which is the most common DNA-binding motif in prokaryotic 

transcription factors (Ramos et al., 2005).  Hence we conclude that the transcription of bdcA is 

time-dependent in biofilms and is controlled by a repressor YjgJ.  We renamed the YjgJ as BdcR 

for its regulation of BdcA.   
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Figure 4.3 BdcA decreases free intracellular c-di-GMP. HPLC chromatogram for 10 μM 

guanosine monophosphate (GMP) (A).  HPLC chromatogram for 2.5 μM 5′-
phosphoguanylyl-(3′→5′)-guanosine (5’pGpG) produced by treating 2.5 μM c-di-
GMP with 2 μM of known phosphodiesterase YahA for 2 h at 37°C (B).  HPLC 
chromatogram for 10 μM c-di-GMP (C).  HPLC chromatogram after treating 10 μM 
c-di-GMP with 5 μM BdcA for 2 h at 37°C (D). 
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Figure 4.4 BdcA does not catalyze c-di-GMP degradation.  31P NMR spectrum for GMP 

and for c-di-GMP with and without BdcA E50Q.  85% phosphoric acid was used 
as an external standard for the chemical shift at 0 ppm. 
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Figure 4.5 BdcA binds c-di-GMP.  Binding curves for 10 μM BdcA, BdcA E50V, and BdcA 

E50Q with 0.5 to 20 μM c-di-GMP. 
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4.3.5 Protein engineering of BdcA for biofilm dispersal  

   After we indentified that BdcA reduces c-di-GMP concentrations, we used a novel 

protein engineering screen, based on higher motility (high motility indicates better dispersal due 

to reduction of c-di-GMP), to engineer superior biofilm dispersal.  This screen was used rather 

than measuring biofilm removal directly, since it is much more efficient than a comparison of 

biofilms formed on two plates at two different time points. 

   Using random bdcA mutagenesis and expression of these mutant bdcA genes using 

BW25113 bdcA/pCA24N_bdcA, we screened ~6000 colonies for enhanced swimming motility.  

From the motility screen, we obtained 13 alleles with better motility and sequenced them.  

Among them, the strain producing BdcA E50V showed 2.8 ± 0.4-fold higher swimming motility 

and 6 ± 2-fold increased biofilm dispersal in 96-well plates compared to native BdcA.  With only 

one amino acid changed (E50V), the binding constant of BdcA for c-di-GMP was reduced from 

11.7 μM (native BdcA) to 4.2 μM (BdcA E50V) (Fig. 4.5), which indicates the BdcA E50V 

variant has higher affinity for c-di-GMP. 

   Since a single mutation randomly placed in codons generates on average only 5.6 out of 

19 possible substitutions (Rui et al., 2004), we performed saturation mutagenesis on the codon of 

E50 and screened for mutants with higher motility than the bdcA/BdcA E50V strain.  Over 400 

colonies were screened to ensure the probability of trying all the possibilities is nearly 100% 

(Rui et al., 2004).  By substituting all 20 amino acids into this position, we obtained the 

bdcA/BdcA E50Q mutant with 2.0 ± 0.2-fold higher swimming motility and 2 ± 1-fold increased 

biofilm dispersal ability compared to E50V.  The binding constant of BdcA E50Q was measured 

as 3.0 μM (Fig. 4.5), which is smaller than BdcA E50V, indicating a further improved binding 

affinity to c-di-GMP. 

   Improved biofilm dispersal for strains producing the BdcA E50V and BdcA E50Q 
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protein engineering variants was confirmed using the flow cell assay (Fig. 4.1D and Table 4.2).  

After 33 h, biofilm formation was similar for the strains that lacked BdcA, that produce wild-

type BdcA, that produce error-prone PCR (epPCR) variant BdcA E50V, and that produce 

saturation mutagenesis variant BdcA E50Q, indicating the four strains produce initially about the 

same amounts of biofilm.   After IPTG induction for 18.5 h (42.5 h), the strains that produce 

BdcA E50V and BdcA E50Q showed 3.8-fold and 18-fold less biomass than the strain that 

produces native BdcA.  This trend was consistent after IPTG induction for 27.5 h (51.5 h).  

Hence, the E50V and E50Q amino acid replacements (Fig. 4.6) dramatically increased the ability 

of BdcA to cause biofilm dispersal, and biofilm formation is almost completely removed. 

4.4 Discussion 

 Protein engineering and recombinant engineering are promising strategies to control 

biofilm formation, but they have not been applied previously for enhancing biofilm dispersal.  

The first report for engineering biofilm formation via a genetic circuit used external stress from 

DNA-damaging agents to control the biofilm formation of E. coli (Kobayashi et al., 2004). 

Previously, we created the first synthetic circuit utilizing quorum-sensing signals to control 

biofilm formation by manipulating concentrations of the signal indole via toluene o-

monooxygenase in a consortium of Pseudomonas fluorescens and E. coli (Lee et al., 2007a).  In 

addition, we controlled E. coli biofilm formation by evolving the quorum-sensing regulator 

SdiA; upon addition of the extracellular signal N-acylhomoserine lactone, biofilm formation was 

increased with SdiA variant 2D10, and SdiA variant 1E11 was created that reduced biofilm 

formation by increasing concentrations of the inhibitor indole (Lee et al., 2009a).  We also 

engineered the global regulator H-NS to control biofilm formation via prophage excision and 

cell death (Hong et al., 2010a).  These results showed that bacterial biofilm formation may be 

controlled by manipulating key regulatory proteins and enzymes.  Here we created the first 
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engineered protein for biofilm dispersal. 

 

 

 

 
 
 
 
Figure 4.6 Swiss-model for evolved BdcA.  The E50 residue is indicated in yellow, the 

E50V variant is indicated in red, and the E50Q variant is indicated in blue. The 
typical phosphodiesterase for c-di-GMP contains EALXR for coordinating Mg2+, 
Q/R/D/D for c-di-GMP binding, and T/E for catalysis. The degenerate 
phosphodiesterase domains of BdcA are indicated: EAL in pink as part of the 
EALXR motif, Q49/D136/D180 in turquoise as part of the Q/R/D/D motif, and 
E220 in orange as part of the T/E motif.  The amino and carboxy termini are 
marked as N and C. 
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 BdcA is predicted to be an oxidoreductase with a Rossmann fold to bind nucleotides 

(Gherardini et al., 2010).  Unlike PDEs, BdcA does not have complete amino acid domains for 

enzymatic activity as it lacks R of EALXR for coordinating Mg2+, lacks R of Q/R/D/D for c-di-

GMP binding, lacks T of the T/E catalytic domain (Sommerfeldt et al., 2009), and lacks 

completely HD-GYP (Dow et al., 2006) for catalysis (Fig. 4.6).  BdcA is also smaller (237 aa) 

than most PDEs.  Hence, BdcA does not catalyze c-di-GMP degradation.  Intracellular 

measurements show that BdcA decreases c-di-GMP concentrations, and the in vitro studies 

indicate BdcA directly reduces unbound c-di-GMP concentrations.  Since 31P NMR spectroscopy 

showed that c-di-GMP is not degraded, since the usual c-di-GMP degradation products were not 

detected, and since we recovered fully c-di-GMP from BdcA after trypsin digestion, we 

conclude that BdcA controls biofilm removal and many other biofilm-related phenotypes 

(motility, EPS, eDNA, cell length, and aggregation) through its direct binding of c-di-GMP.  

Also, our estimate is that upon producing BdcA from pCA24N_bdcA, BdcA levels are 200-fold 

greater than c-di-GMP on a molar basis; hence, binding of c-di-GMP by BdcA is reasonable to 

explain the phenotypes seen. 

 It is not necessary for BdcA to interact with other proteins to control these phenotypes; 

for example, by decreasing the concentration of free c-di-GMP, motility is enhanced by releasing 

the brake on motility via YcgR.  YcgR reduces bacterial swimming by binding c-di-GMP and 

interacting with MotA to act as a brake that limits individual stator complexes (Boehm et al., 

2010) as well as interacts with flagellar proteins FliG and FliM in the presence of c-di-GMP to 

reduce torque (Paul et al., 2010).   

c-di-GMP also controls many other vital processes in bacteria; however, the mechanisms 

by which c-di-GMP affects these phenotypes are diverse and our understanding is not always 

complete.  c-di-GMP riboswitches bind the second messenger to control complex physiological 
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processes such as biofilm formation, virulence gene expression, and persistence of infection in V. 

cholerae (Kulshina et al., 2009).  Alternatively, the transcriptional regulator VpsT in V. cholerae 

directly senses c-di-GMP by oligomerizing upon c-di-GMP binding to control extracellular 

matrix production, motility, and biofilm formation (Krasteva et al., 2010).  LapD of 

Pseudomonas fluorescens regulates surface attachment via LapA by binding to intracellular c-di-

GMP (Newell et al., 2009).  Our results show we have identified a novel class of protein that 

controls cellular activity (i.e., biofilm dispersal) by binding c-di-GMP.   

Without knowing the detailed mechanism about how c-di-GMP affects biofilm 

formation in E. coli, we evolved BdcA to create a better biofilm-dispersing protein.  These 

results provide further evidence of the tight relationship between c-di-GMP and biofilm 

dispersal.  The most important amino acid replacements occurred at the E50 position.  By 

replacing glutamic acid with valine (E50V) and glutamine (E50Q), these one amino acid changes 

progressively increase the binding affinity of BdcA for c-di-GMP, which subsequently reduces, 

in a corresponding manner, the intracellular c-di-GMP concentrations.  Supporting increased c-

di-GMP binding, the E50 position is adjacent to the Q49 position of the remnant Q/R/D/D motif 

for c-di-GMP binding by PDEs.   

 With BdcA, we demonstrate that we can control the final stage in biofilm development, 

dispersal, by performing protein engineering on a single regulator.  Therefore, although there are 

myriad genetic paths leading to biofilm formation, biofilm dispersal may be triggered via a 

single engineered protein.  Furthermore, this work is promising in terms of broad applications 

since c-di-GMP is utilized by diverse bacteria (D'Argenio and Miller, 2004) and in nearly all 

these strains it controls motility; hence, reduction of c-di-GMP concentrations may be a 

universal mechanism for increasing bioiflm dispersal.  Also, bdcA shows high sequence 

conservation with other species with the highest similarity to a homolg in Shigella sp. (98%). 
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Furthermore, the genera Klebsiella, Salmonella, Xanthomonas, Citrobacter, Sphingopyxis, 

Pantoea, Roseomonas show bdcA sequence conservation above 70%. In addition, 17 other 

bacteria show over 50% protein sequence identity with BdcA in the E. coli BW25113 strain (Fig. 

4.7).  Thus, BdcA is well conserved in many bacteria and may be used for biofilm dispersal by 

many strains. 

 

 

 

 
 
 
Figure 4.7 Phylogenetic tree of BdcA. 
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 By discovering BdcA and creating the E50V and E50Q variants, we have also obtained 

important new tools that along with H-NS K57N (evolved to decrease biofilm formation through 

cell lysis by inducing cryptic prophage Rac) (Hong et al., 2010a), SdiA 1E11 (evolved to 

decrease biofilm formation by increasing indole concentrations) (Lee et al., 2009a), and SdiA 

SD10 (evolved to increase biofilm with the addition of homoserine lactone signals) (Lee et al., 

2009a), allow the control of biofilm formation for various applications.  These applications 

include decreasing biocorrosion on carbon steel (Jayaraman et al., 1999a) and performing 

biocatalysis for producing biofuels, chemicals, and food additives (Rosche et al., 2009).  

Therefore our study here shows the feasibility of controlling biofilm development via protein 

engineering using E. coli K-12 as a model organism.  Extrapolating these results, one can 

imagine that with similar strategies, each stage of biofilm development may be controlled by 

synthetic biology using these and other engineered biofilm proteins.  This would allow multi-

species biofilms to be formed and dissolved and even controlled temporally and spatially 

(including at various depths and lengths) to expedite chemical transformations in biofilm 

reactors.   
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4.5 Experimental procedures 

4.5.1 Bacterial strains, media, growth conditions, and growth rate assay   

 The strains and plasmids used in this study are listed in Table 4.3.  E. coli K-12 

BW25113 and its isogenic mutants (Baba et al., 2006) were obtained from the Genome Analysis 

Project in Japan.  Plasmid pCA24N_bdcA, carrying bdcA under control of the PT5-lac promoter 

with tight regulation via the lacIq repressor, and the empty plasmid pCA24N were also obtained 

from the Genomic Analysis Project in Japan (Kitagawa et al., 2005).  Expression of bdcA was 

induced by 0.1 mM IPTG (Sigma, St. Louis, MO) unless otherwise indicated.   

   LB (Sambrook et al., 1989) and 37oC were used for all the experiments.  Kanamycin (50 

μg/mL) was used for pre-culturing the isogenic knock-outs.  Chloramphenicol (30 μg/mL) was 

used for the strains harboring pCA24N and its derivatives, and 300 μg/mL erythromycin was 

used for pCM18.   

4.5.2 Static biofilms for screening biofilm dispersal   

Biofilm formation was assayed in 96-well polystyrene plates using 0.1% crystal violet 

staining (Corning Costar, Cambridge, MA) as previously described (Fletcher, 1977) with small 

modifications.  Briefly, each well was inoculated with overnight cultures at an initial turbidity at 

600 nm of 0.05 and grown without shaking for 19 h with 30 μg/mL chloramphenicol, then 0.1 

mM IPTG was added to the culture to induce bdcA. The mixture was shaken at 150 rpm for 1 

min and incubated for another 12 to 23 h (42 h total). Biofilm formation after 12 h of IPTG 

induction (31 h total) was used to establish the extent of mature biofilm formation.  Biofilm 

dispersal was determined after 23 h of IPTG induction (43 h total). Comparison of these two 

values gave the percentage of biofilm dispersal.  At least two independent cultures were used for 

each strain. 
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Table 4.3 E. coli strains and plasmids used in this study.  Kmr, Cmr, and Emr denote 
kanamycin, chloramphenicol, and erythromycin resistance, respectively. 

 
Strain/Plasmid Genotype Source 

Strain 

BW25113 lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 
ΔrhaBADLD78 

(Datsenko and Wanner, 
2000) 

BW25113 bdcA BW25113 ∆bdcA Ω Kmr (Baba et al., 2006) 

Plasmid 

pCA24N Cmr; lacIq, pCA24N  (Kitagawa et al., 2005) 

pCA24N_bdcA Cmr; lacIq, pCA24N pT5-lac::bdcA (Kitagawa et al., 2005) 

pCA24N_yahA Cmr; lacIq, pCA24N pT5-lac::yahA (Kitagawa et al., 2005) 

pCM18 Emr; pTRKL2-PCP25RBSII-gfpmut3*-T0-T1 (Hansen et al., 2001) 

 
 



 

 

74

4.5.3 Flow cell biofilms and image analysis   

 The flow cell experiments were performed as previously described (Yang et al., 2008).  

pCM18 (Hansen et al., 2001) was used to produce the green fluorescent protein (GFP) for 

imaging each strain.  The flow cells were inoculated with cultures at an initial turbidity at 600 

nm of 0.05 at a flow rate of 10 mL/min for 2 h, and then fresh medium was added at 10 mL/min. 

For the wild-type strain and the bdcA mutant, biofilm images were taken after 24 h, 33 h, 42.5 h, 

51.5 h, and 64.5 h. For bdcA/pCA24N, bdcA/pCA24N_bdcA, bdcA/BdcA E50V, and bdcA/BdcA 

E50Q, 0.5 mM IPTG was added to each flow cell system after 24 h, and images were taken 9 h, 

18.5 h, and 27.5 h after IPTG addition (i.e., at 32, 42.5, and 51.5 total h). Biofilm images from 

nine random positions were taken and analyzed with Imaris confocal software (Bitplane, Zurich, 

Switzerland) and COMSTAT confocal software, respectively, as previously described (Yang et 

al., 2008).  

4.5.4 EPS, swimming motility, aggregation, and eDNA assays  

The amount of total EPS was determined as described previously (Zhang et al., 2008) 

with slight modifications.  Briefly, cell cultures grown in 96-well plates for 24 h without shaking 

were collected and boiled in water for 10 min.  The supernatant were then used for an anthrone-

H2SO4 assay to determine EPS concentrations.  This assay was performed with two independent 

cultures. 

 Swimming motility was performed as previously described (Sperandio et al., 2002).  

Single colonies or overnight cultures were used to inoculate the plates.  The swimming halo was 

measured after 15 h.  At least five plates were used for each independent culture, and two 

independent cultures were used for each strain.   

Cell aggregation was assayed by comparing the cell turbidity at 600 nm near the surface 

of cultures in 96-well plates after 24 h of growth without shaking. This assay was performed 
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with two independent cultures. 

eDNA was measured as previously described (Ma and Wood, 2009) using cultures 

grown in 96-well plates for 24 h without shaking.  This assay was performed with two 

independent cultures.  

4.5.5 RNA isolation from biofilms  

  To analyze differential gene expression for the bdcA mutant vs. the wild-type strain in 

biofilms, overnight cultures (2.5 mL) of the wild-type strain and the bdcA mutant were 

inoculated into 250 mL of LB medium with 10 g glass wool (Corning Glass Works, Corning, 

NY).  After 15 h, the biofilm cells on the glass wool were collected as previously described (Ren 

et al., 2004a).  To determine temporal bdcA expression, overnight cultures of the wild-type strain 

were inoculated into 130 mL of LB medium with 5 g of glass wool, and biofilm cells were 

collected from the glass wool after 2 h, 4 h, 8 h, 15 h, and 24 h.  For the qRT-PCR for bdcA 

expression with the yjgJ deletion and the yjgH deletion, overnight cultures of the wild-type 

strain, the yjgJ mutant, and the yjgH mutant were inoculated into 130 mL LB medium with 5 g 

glass wool, and biofilm cells were collected after 8 h incubation. Cell pellets were resuspended 

in RNAlater (Ambion Inc., Austin, TX), and total RNA was isolated using the RNeasy Mini Kit 

(Qiagen Inc., Valencia, CA) (Ren et al., 2004a).   

4.5.6 Whole-transcriptome analysis  

  The E. coli GeneChip Genome 2.0 array (Affymetrix, P/N 900551) was used, and cDNA 

synthesis, fragmentation, and hybridizations were performed as described previously (González 

Barrios et al., 2006b).  If the gene with the larger transcription rate did not have a consistent 

transcription rate based on the 11-15 probe pairs (P-value less than 0.05), these genes were 

discarded. A gene was considered differentially expressed when the P-value for comparing two 

chips was lower than 0.05 (to assure that the change in gene expression was statistically 
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significant and that false positives arise less than 5%) and if their fold change is higher than 

standard deviation for the whole genome (Ren et al., 2004b).  The expression data were 

deposited in the NCBI Gene Expression Omnibus and are accessible through accession number 

GSE22057. 

4.5.7 Quantification of c-di-GMP   

 c-di-GMP was quantified using HPLC as described previously (Ueda and Wood, 2009).  

Strains were grown from overnight cultures in 1 L of medium with 30 μg/mL chloramphenicol 

and 0.1 mM IPTG for 24 h without shaking.  A photodiode array detector (Waters, Milford, MA) 

was used to detect nucleotides at 254 nm after the HPLC separation step.  Commercial c-di-GMP 

(BIOLOG Life Science Institute, Bremen, Germany) was used as the standard.  The c-di-GMP 

peak was verified by spiking the bdcA/pCA24N sample with the commercial c-di-GMP.  This 

experiment was performed with two independent cultures. 

4.5.8 PDE assay   

 PDE activity was assayed as previously described (Schmidt et al., 2005).  His-tagged 

proteins (BdcA, BdcA E50V, and BdcA E50Q) were purified with Ni-NTA agarose (Qiagen) 

and contacted with 5 to 80 μM c-di-GMP in PDE assay buffer (50 mM Tris-HCl, 5 mM MgCl2, 

0.5 mM EDTA, 50 mM NaCl, pH ~6.0) for 0.5 h and 1 h. The reaction was stopped by heating at 

95°C for 5 min after the addition of 10 mM CaCl2.  After centrifugation, the c-di-GMP 

concentration in the supernatant was analyzed by HPLC.  Phosphodiesterase YahA from E. coli 

was used as a positive control and to generate the 5′-phosphoguanylyl-(3′→5′)-guanosine 

(Schmidt et al., 2005) from c-di-GMP.  Guanosine monophosphate was obtained from Sigma.  

These data also provided rough estimates of the binding constants. 
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4.5.9 31P NMR   

 BdcA E50Q (5 μM) was incubated with 200 μM c-di-GMP for 8 h in PDE assay buffer.  

The  31P NMR spectrum was obtained using a Varian INOVA 400 spectrometer and a broad 

band probe (proton decoupled, acquisition time 1.6 s, first delay 1.0 s, 90º pulse width 8.5 µs, 

line broadening 2 Hz, and number of transients 2000). 85% phosphoric acid was used as an 

external standard for the chemical shift 0 ppm. The 31P NMR spectrum for GMP was obtained in 

the same manner. 

4.5.10 c-di-GMP binding assays   

 Purified His-tagged proteins (10 μM) were incubated with 0.5 to 20 μM c-di-GMP for 

0.5 h.  Free c-di-GMP and BdcA-bound c-di-GMP were separated using a 10 kDa protein filter 

unit (Millipore, Cork, Ireland).  The amount of free c-di-GMP for each sample was measured 

with HPLC (Schmidt et al., 2005).  BdcA-bound c-di-GMP was recovered using 1.6 μg trypsin 

(Agilent Technologies, Inc., Santa Clara, CA) for 16 h to remove the protein and release c-di-

GMP from BdcA.  The released c-di-GMP was measured via HPLC to confirm the c-di-GMP 

was bound to the protein. 

4.5.11 Random mutagenesis and saturation mutagenesis   

bdcA expressed from pCA24N_bdcA was mutated by epPCR using primers epPCR-f and 

epPCR-r (Table 4.4). A 100 μL reaction contained 7.5 mM MgCl2, 0.7 mM MnCl2, 1 M betaine, 

100 ng template DNA, 0.2 mM dATP and dGTP, 1 mM  dCTP and dTTP, 5U Taq DNA 

polymerase (New England Biolabs, Beverly, MA), and 0.3 μM of each primer in 1X epPCR 

buffer (Sigma).  The PCR program was set as 94°C for 5 min, followed by 30 cycles at 94°C for 

1 min, 55°C for 1 min, and 72°C for 2 min, with a final extension step of 72°C for 7 min. The 

epPCR product was cloned into pCA24N_bdcA using restriction enzymes BseRI and HindIII 

after treating the plasmid with Antarctic phosphatase (New England Biolabs).  The ligation 
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mixture was electroporated into BW25113 bdcA.  Screening based on swimming motility was 

performed by inoculating single colonies into 150 x 15 mm 0.3% agar plates (1% tryptone, 

0.25% NaCl, and 0.3% agar) with autoclaved toothpicks.  At least one control sample 

(bdcA/pCA24N_bdcA) was used on each plate (no IPTG was required for induction of bdcA).  

The plates were incubated for 15 h, and colonies with increased motility were selected for a 

second round of screening based on motility.  Plasmids were isolated, re-electroporated into 

BW25113 bdcA, and the best strains were re-tested for motility to ensure the changes in motility 

were due to mutated bdcA rather than chromosomal changes.  Biofilm dispersal ability was then 

tested with these mutants.  Over 6000 colonies were screened in this experiment.  Plasmids that 

resulted in improved BdcA activity were sequenced by a BigDye Terminator Cycle Sequencing 

Kit (Applied Biosystems, Foster City, CA).   

 Saturation mutagenesis of bdcA at the E50 codon was performed in a 50 μL system with 

125 ng of primers BdcASM-f and BdcASM-r (Table 4.4), 1 μL dNTP mix, 2.5 U Pfu 

polymerase, 30 ng template plasmid, and 1X Pfu reaction buffer (10 mM KCl, 6 mM (NH4)2SO4, 

20 mM Tris-HCl (pH 8.8), 2 mM MgSO4, 0.1% triton X-100, and 0.1 mg/mL BSA).  The PCR 

program was 95°C for 1 min, followed by 16 cycles of 95°C for 50 sec, 60°C for 1 min, and 

68°C for 6 min, with a final extension step of 68°C for 6 min. The PCR product was treated with 

10 U Dpn I restriction enzyme (New England Biolabs) for 3 h, and the mixture was directly used 

for electroporation.  PCR Screening was based on motility.   

4.5.12 Electron microscopy  

Electron microscopy was performed using cultures grown in 96-well plates for 24 h 

without shaking.  Each sample was diluted in LB to a turbidity at 600 nm of 0.2-0.5, stained in 

ammonium molybdate, and checked under JEOL 1200EX electron microscopy. This assay was 

performed with two independent cultures.  
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Table 4.4 DNA oligonucleotides used in this study. N represents A, T, G, or C, while S 
represents G and C. 

 
Name Primer sequence 
epPCR-f 5’-GCCCTTTCGTCTTCACCTCG-3’ 
epPCR-r 5’-GAACAAATCCAGATGGAGTTCTGAGGTCATT-3’ 
BdcASM-f 5'-CCGCTAAACGCCTGGCACAANNSACTGGAGCGACAGCA G-3' 
BdcASM-r 5’-CTGCTGTCGCTCCAGTSNNTTGTGCCAGGCGTTTAGCGG-3’ 
bdcA-rt-f 5’-GGGCGCTTTTACAGGTAAGACA-3’ 
bdcA-rt-r 5’-CGTCTCTGTCAGCACTATCTGTG-3’ 

 

 

4.5.13 qRT-PCR  

  qRT-PCR was performed as previously described (Ma and Wood, 2009). Primers used 

are listed in Table 4.4 as bdcA-rt-f and bdcA-rt-r.  The housekeeping gene rrsG was as the 

internal reference, and the annealing temperature was 60°C. 

4.5.14 Protein modeling   

   The three-dimensional model was obtained using the SWISS-MODEL server 

(http://swissmodel.expasy.org/) (Peitsch, 1995; Arnold et al., 2006; Kiefer et al., 2009) using L-

xylulose reductase from E. coli (PDB 3d3w), which has 24% sequence identity. The protein 

image was made with PyMOL (http://pymol.sourceforge.net/). 

4.5.15 Phylogenetic tree construction  

   The phylogenetic tree was constructed with the DNASTAR-Lasergene MegAlign 

software (DNASTAR, Madison, WI).  The Kimura distance formula was used to calculate 

distance values. The values computed are the mean number of differences per site and fall 

between 0-1. Zero represents complete identity and 1 represent no identity. The phylogenetic 

tree scale uses these values multiplied by 100.  The bootstrap analysis was performed with 

number of trials as 1000 and random seed as 111.    
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CHAPTER V 

QUORUM-SENSING SWARMING SIGNALS FOR PROTEUS MIRABILIS AND THEIR 

RELATION TO BLOWFLIES 

 
5.1 Overview 

 Flies transport specific bacteria for their larvae, at the same time the bacteria gain a 

wider range of nutrients. This symbiotic interaction of the two organisms may depend on 

interkingdom signaling.  Two kinds of bacteria were identified by us in the salivary gland 

extracts of the blowfly Lucilia sericata: Proteus mirabilis and Providencia stuartii.  Here, we 

focus on P. mirabilis since it aggressively out-competed both Pseudomonas aeruginosa and 

Escherichia coli during biofilm formation, since it swarmed significantly, and since it is 

expected that the swarming phenotype depends on quorum sensing. In addition, P. mirabilis 

produces a strong smell during its growth, which probably attracts blowflies. We performed 

transposon mutagenesis with the P. mirabilis strain and screened ~3000 swarming-deficient 

mutants to identify seven genes related to swarming (rfaL, ureR, fis, hybG, zapB, fadE and 

PROSTU_03490); among these, ureR, fis, hybG, zapB, fadE and PROSTU_03490 are novel. 

Furthermore, swarming was tested with these mutants in the presence of eight chemicals (at 10 

μM and 250 μM) which were previously identified as attractants for blowflies (benzoic acid, 

butyric acid, indole, lactic acid, p-cresol, phenol, KOH, and NaOH), and two other chemicals 

important in P. mirabilis metabolism (putrescine and ammonia). We found lactic acid, phenol, 

NaOH, KOH, putrescine, and ammonia restore swarming motility of seven different mutants. 

Hence, these compounds are necessary for swarming, and 5 of these compounds have never been 

associated with swarming previously with this strain (NaOH, KOH, NH3, phenol, and lactic 

acid).  These mutants were also tested for their ability to attract blowflies. Hence, we have 

identified several potential interkingdom signals for P. mirabilis and blowflies.  



 

 

81

5.2 Introduction 

Bacteria consumed by immature blowflies (Diptera: Calliphoridae) feeding on a resource 

(Ahmad et al., 2006) survive larval molting and pupation, and are present in emergent adult 

insects which serve as a dispersal mechanism (Ahmad et al., 2006).  These flies and their 

relatives disperse over 100 pathogens (Greenberg, 1973), many of which are responsible for the 

estimated 76 million food-borne illnesses occurring annually in the U.S.  E. coli O157:H7, which 

is responsible for hemorrhagic colitis and hemolytic uremic syndrome (Sanderson et al., 2006), 

accounts for 73,000 illnesses and 61 deaths (FoodNet, June 2006).  

 Proteus species are Gram-negative bacteria belonging to the Enterobacteriaceae family 

and cause serious infection problem in humans (Liu, 2010). Proteus mirabilis causes 90% of 

Proteus infections. It serves as a common inhabitant of dogs, cows, and birds and causes 

nosocomial infections from the source of human feces. Lucilia sericata is a common blowfly 

existing in most areas of the world. It is typically one of the first organisms that get attracted by 

the odours produced by cadaver decomposition and arrive at a body after death (Clark et al., 

2006). The larvae of L. sericata are the most commonly used ones in maggot therapy 

(Schmidtchen et al., 2003). 

 Flies may be attracted and repelled by various factors, including temperature, light, and 

odours (Dethier, 1947). Flies can sense and respond to attractants by receptors on eggs, cerci, 

and antennae. Odours by attractants in nature help recognize potential mates and kin, the 

oviposition site, and a food source. Odours as repellents usually help protect insects from danger. 

Proteins, fats, and oils are the major materials of living organisms. There is no odour by proteins 

and fats themselves. However, their decomposition products in carrion, feces, urine, animal 

secretions (sweat, decomposing plant material, fungi, and algae) are usually notably odorous. 

Among all the decomposition compounds from fats and proteins, ammonia appears to be the 
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most common single nitrogenous product. It is a major constituent of urine by acting as the 

primary excretion product as well as the secondary product by urea decomposition. Skatole, 

indole, mercaptans, and the sulfides are the most penetrating odours of putrefaction. Another 

large group of attractants are fatty acids, which are usually the fermentation products and 

decomposition components.  

Quorum sensing (QS) is the regulation of gene expression in bacteria as a function of the 

concentration of secreted small molecules that reflect cell density (Miller and Bassler, 2001). 

Gram-positive and Gram-negative bacteria both use QS communication to regulate their 

physiology behavior including  symbiosis, virulence, competence, conjugation, antibiotic 

production, motility, sporulation, and especially biofilm formation (Davies et al., 1998; González 

Barrios et al., 2006b). Acylhomoserine lactones (AHL) in Gram-negative bacteria, indole, and 

autoinducer 2 (AI-2) in both Gram-negative and Gram-positive bacteria (Jayaraman and Wood, 

2008; Han et al., 2010) are typical QS signals. QS regulates swarming motility (Daniels et al., 

2004).  

Swarming is a flagella-driven movement of differentiated hyperflagellated, elongated, 

and multinucleated swarmer cells by which bacteria spread as a biofilm over a surface (Daniels 

et al., 2004). Glycolipid or lipopeptide biosurfactants work as wetting agents by reducing surface 

tension. The QS signal AHL enhances swarming motility in Serratia liquefaciens (Daniels et al., 

2004), while indole diminishes P. aeruginosa swarming motility (Lee et al., 2009b). The quorum 

quenching signal brominated furanone inhibits E. coli swarming motility via inhibiting both 

AHL- and AI-2-mediated signaling (Ren et al., 2001).  

Bacteria and fruit flies share a common cell-cell communication system (Waters and 

Bassler, 2005). The inner membrane protein AarA of P. stuartii is required for the release of an 

extracellular quorum-sensing signal whose structure has not been identified yet (Waters and 
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Bassler, 2005). The homolog of AarA in the fruit fly Drosophila melanogaster is a rhomboid 

protein RHO that controls fly wing vein development and eye organization. Expression of P. 

stuartii aarA in a D. melanogaster rho mutant rescued wing vein development while expression 

of rho in a P. stuartii aarA mutant complemented the QS signaling defect.  

Interkingdom signals can help bacteria recognize activity of the host immune system 

(Hughes and Sperandio, 2008). For example, the P. aeruginosa OprF protein on the cell surface 

binds to host interferon-γ, activates the QS system by inducing rhlI (RhlI synthesizes the QS 

signaling molecule C4-homoserine lactone), induces the expression of lecA (encodes virulence 

determinant type I P. aeruginosa lectin (PA-I lectin)), and increases the production of pyocyanin 

(Wu et al., 2005).   P. aeruginosa also detects adenosine of injured host cells and activates its 

PA-1 lectin virulence factor (Patel et al., 2007). Indole works as a beneficial signal in intestinal 

epithelial cells by increasing epithelial-cell tight-junction resistance and attenuating 

inflammation indicators (Bansal et al., 2010). 

The rationale for the work here is that since swarming is based on QS (Daniels et al., 

2004), and since flies respond to compounds produced by bacteria, we hypothesized that 

bacterial strains deficient in swarming QS signals may also be deficient in interkingdom 

signaling with flies.  After generating P. mirablis transposon mutants that are deficient in 

swarming, we tested 10 compounds which were previously reported to be able to attract flies 

(Table 5.1) for their ability to restore swarming and to restore interkingdom signaling between P. 

mirabilis and L. sericata. Using this approach we identified five new chemicals related to 

swarming, identified seven new pathways related to the synthesis of these compounds, and found 

the genetic basis for the interkingdom signaling.   
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Table 5.1 List of attractants used in P. mirabilis TN mutants swarming test. Anastrepha 
ludens is a Mexican fruit fly. The other insects are blowflies. 

 
 
Attractants Insects References 

L. sericata (Dethier, 1947) indole 
Cochliomyia/Chrysomya (Monika Hilker, 2002) 

sodium hydroxide L. cuprina (Dethier, 1947) 
potassium hydroxide L. cuprina (Dethier, 1947) 
lactic acid L. sericata 

/Calliphora erythrocephala 
(Dethier, 1947) 

ammonia L. sericata (Monika Hilker, 2002) 
putrescine Anastrepha ludens (Robacker, 2001) 
p-cresol Cochliomyia 

/Chrysomya 
(Monika Hilker, 2002) 

benzoic acid Cochliomyia 
/Chrysomya 

(Monika Hilker, 2002) 

butyric acid Cochliomyia (Broce, 1980) 
phenol Cochliomyia 

/Chrysomya 
(Monika Hilker, 2002) 
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5.3 Results 

5.3.1 P. mirabilis isolated from fly salivary glands 

 By adding L. sericata maggot salivary gland extracts to E. coli and P. aeruginosa 

cultures, we found that one bacterium had notable swarming motility ability that outcompeted 

the growth of both E. coli and P. aeruginosa. The bacteria from the fly salivary glands were then 

identified using both a biochemical test (the 20-test system API Rapid 20E from bioMérieux, 

Inc. for identifying Enterobacteriaceae members) and pyrosequencing (Roche 454 FLX 

pyrosequencing platform of 454 Life Science, Branford, CT). This bacterium with the enhanced 

swarming was identified as P. mirabilis and another bacterium from the salivary gland extracts 

was identified as P. stuartii.   

It was expected to find bacteria associated intimately with flies. Previously Providencia 

sp., E. coli O157:H7, Enterococcus faecalis (Orla-Jensen), and Ochrobactrum sp. were isolated 

from the screw-worm fly Cochliomyia macellaria (Ahmad et al., 2006). P. mirabilis was also 

isolated from maggots of the blowfly Calliphora vicina (Erdmann, 1987).  

5.3.2 Swarming deficient mutants 

 Transposon mutagenesis was performed by introducing the Tn5 transposon randomly 

into the genome of P. mirabilis. Around 3,000 colonies were obtained, and 50 swarming 

deficient mutants were identified. After confirming the swarming phenotype, 23 mutations were 

sequenced to identify which genes were related to swarming in P. mirabilis.  

 Six groups of genes were identified to be related to swarming motility of P. mirabilis 

(Table 5.2), including genes related to metabolism (hybG, proC, pdxA, adhE, and fadE), 

regulation (fis, PMI2857, and yojN), transcription/translation (PMIr001, pnp, rhlB, rpsM, rrfG, 

ugd, and ureR), cell surface (rfaL and zapB), flagella (flgK and flhD), and uncharacterized 

functions (PROSTU_03490).  
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Table 5.2 Summary of sequencing results. Transposon insertion site and the relative insertion position is listed (middle indicates that 
the transposon is inserted in the coding portion of the gene, and upstream indicates that the transposon is inserted in the 
upstream intergenic region). The organism used for the Basic Local Alignment Search Tool (BLAST) is also listed. P. 
mirabilis HI4320 is the best fit organism for the sequence BLAST while Providencia strains are also used for the BLAST 
search since these two bacteria both exist in L. sericata.   

 

Mutant name Gene Insertion 
position 

Organism Gene function 

Metabolism 
Mutant A hybG middle  P. mirabilis HI4320 hydrogenase nickel incorporation protein  
R20 proC middle P. mirabilis HI4320 pyrroline-5-carboxylate reductase  
Mutant E&H pdxA upstream P. mirabilis HI4320 4-hydroxythreonine-4-phosphate dehydrogenase 
7_18&7_40&7_28 adhE middle P. mirabilis HI4320 bifunctional acetaldehyde-CoA/alcohol dehydrogenase
Mutant I fadE middle P. mirabilis HI4320 acyl-CoA dehydrogenase  
Regulator 
R5 fis middle P. mirabilis HI4320 DNA-binding protein Fis 
R7 PMI2857 middle P. mirabilis HI4320 helix-turn-helix XRE-family like proteins 
Mutant F yojN middle Providencia rettgeri DSM 

1131 
putative two-component sensor protein like YojN  

Nucleotide related 
R18 PMIr001 middle P. mirabilis HI4320 16S ribosomal RNA  
R27 pnp middle P. mirabilis HI4320 polynucleotide phosphorylase/polyadenylase  
R54 rhlB middle P. mirabilis HI4320 ATP-dependent RNA helicase  
R11 rpsM upstream P. mirabilis HI4320 30S ribosomal protein S13 
R51 rrfG middle P. mirabilis HI4320 dTDP-D-glucose-4,6-dehydratase 
R39&O ugd middle P. mirabilis HI4320 UDP-glucose 6-dehydrogenase  
R30 ureR middle P. mirabilis HI4320 urease operon transcriptional activator 
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Table 5.2 continued 
Mutant name Gene Insertion 

position 
Organism Gene function 

Cell surface-related 
7 14 rfaL middle P. mirabilis HI4320 O-antigen ligase  
R24 zapB middle P. mirabilis HI4320 cell division protein 
Others 
R26 PROSTU_03490 middle P. stuartii ATCC 25827 hypothetical protein  
Flagellar 
R58 flgK middle P. mirabilis HI4320 flagellar hook-associated protein 1  
R52&R15 flhD upstream P. mirabilis HI4320 transcriptional activator FlhD for flagellar 



 

 

88

Three of these genes were previously identified to be related to P. mirabilis swarming motility; 

hence, our method was able to recover some known swarming-related mutations for P. mirabilis. 

The flhDC activator is the central component for regulating swarmer cell differentiation in P. 

mirabilis and other bacteria (Clemmer and Rather, 2007), and P. mirabilis flhDC mutants are 

unable to swarm. The flgK gene encodes the flagellar hook-associated proteins  and is tightly 

associated with bacterial swarming motility (Fraser et al., 1999). In P. mirabilis, the ZapA 

protein (IgA-degrading metalloprotease) works as a virulence factor expressed specifically in 

swarmer cells although the zapA mutant does not show decreased swarming (Walker et al., 

1999). The zapB gene that we identified is necessary for ZapA activity (Walker et al., 1999).  

5.3.3 Complementation of swarming mutations via known fly attractants  

To determine if any of the swarming mutations are part of interkingdom signaling with 

blow flies, ten known fly attractants (Table 5.1) were added to the swarming plates with the 

swarming mutants to see if swarming could be restored; i.e., to see whether the mutations that 

disrupted swarming also disrupted interkingdom signaling between the bacterium and the flies. 

The addition of six known fly attractants restored the swarming motility of different swarming 

deficient mutants. Hence, in addition to attracting flies, these attractants can also function as the 

molecules that control swarming of P. mirabilis. Therefore, we identified six chemicals 

(putrescine, NaOH, KOH, NH3, phenol, and lactic acid) that function both as fly attractants and 

bacterial swarming signals.  Furthermore, we identified seven (RfaL, UreR, Fis, HybG, ZapB, 

FadE, and PROSTU_03490) biochemical pathways these attractants work through by identifying 

the genes disrupted by the transposon mutagenesis. The motility complementation results are 

summarized in Tables 5.3, 5.4, and 5.5. 

 From Table 5.4, the rfaL mutant (7_14) has increased motility upon addition of 10 

μg/mL and 250 μg/mL of NaOH, 250 μg/mL KOH, 10 μg/mL putrescine, 250 μg/mL putrescine, 
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Table 5.3 Swarming complementation with indole (compared with DMF), benzoic acid (compared with ethanol), and p-cresol 
(compared with ethanol). The values are swarming halos (mm) on Luria-Bertani (LB) plates (the ~ 4 mm colony size is not 
included). The swarming motility was tested after 10 h of incubation at 37°C. 

 
indole   Benzoic acid p-cresol  Mutant name Transposon 

insertion site DMF 
10 µg/mL 250 µg/mL 

Ethanol 
10 µg/mL 250 µg/mL 10 µg/mL 250 µg/mL 

WT  16 ±10 26±10 16 ±10 21 ± 9 16 ± 2 14 ± 1 21 ± 7 22 ± 7 
7_18/40/28 adhE 1 2 1.4 0.8 1 1.6 0.6 1.3 
I fadE 0 0 0 0 0 0 0 0 
R5 fis 0 0 0 1 ± 1 0 0 1 ± 2 1 ± 2 
A hybG 2.9 3.25 3 0 0 0 0.2 1 ± 2 
E pdxA 0 0 0 0 0 0 0 0 
R7 PMI2857 0 0 0 0 0 0 0 0 
R18 PMIr001 0 0 0 0 0 0 0 0 
R27 pnp 0 0 0 0 0 0 0 0 
R20 proC 7.6 8.4 5.5 7.3 7.5 6.1 8 8.4 
R26 PROSTU_03490 0 0 0 2 ± 3 0 0 2 2 ± 2 
7_14 rfaL 0 0 0 0 0 0 0 0 
R54 rhlB 0 0 0 0 0 0 0 0 
R51 rrfG 6.95 2.12 2.4 0 0 0 0 0 
R39/O ugd 0 0 0 0 0 0 0 0 
R30 ureR 0 0 0 0 0 0 0 0 
F yojN 0 0 0 0 0 0 0 0 
R24 zapB 0 0 0 0 0 0 0 0 
R58 flgK 0 0 0 0 0 0 0 0 
R52/R15 flhD 0 0 0 0 0 0 0 0 
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Table 5.4 Swarming complementation with NaOH, KOH, putrescine, and ammonia (compared with H2O). The values are 
swarming halos (mm) on LB plates (the ~ 4 mm colony size is not included). The swarming motility was tested after 10 h 
incubation at 37°C. Interesting results are shown in bold. 

NaOH  KOH  Putrescine NH3  Mutant name Transposon 
insertion site 

H2O 
10 μg/mL 250 μg/mL 10 μg/mL 250 μg/mL 10 μg/mL 250 μg/mL 2 μL 15 μL 

WT  23 ± 7 25 ± 8 26 ± 10 26 ± 10 24 ± 7 22 ± 9 23 ± 7 20 10.1 
7_18/40/28 adhE 6.7 8 1 11.9 2 10.2 8.9 0 0 
I fadE 0 4 ± 6 1.2 7 ± 9 1 ± 2 4 ± 5 6 ± 10 0 0 
R5 fis 0.3 ± 0.3 0 0.2 0.1 ± 0.6 2 ± 3 0 6 ± 4 3.3 0 
A hybG 0 4 ± 6 9.7 6 ± 3 1 ± 2 0 0 0 0 
E pdxA 0 0 0 0 0 0 0 0 0 
R7 PMI2857 0 1 0.2 1.4 2 0.3 0 0 0 
R18 PMIr001 0 0 0 0 0 0 0 0 0 
R27 pnp 0 0 0 0 0 0 0 0 0 
R20 proC 4 1 2.1 2 2 2 2 0 0 
R26 PROSTU_03490 1 ± 2 2 ± 3 3 ± 3 0 4 ± 1 5 ± 5 7 ± 10 1.5 0 
7_14 rfaL 0 16 ± 10 4 ± 5 2.6 ± 0.3 8 ± 8 7 ± 4 16 ± 10 0 4.8 ± 0.5 
R54 rhlB 0 1±2 1.2 0 1 ± 1 0 2 ± 3 0 0 
R51 rrfG 5.55 9.89 6.7 11.72 4.45 5 5 5 2 
R39/O ugd 1.3 ± 0.4 1 ± 2 0 4.2 ± 0.7 3 ± 1 6 ± 3 5.5 ± 0.5 0 0 
R30 ureR 6 ± 6 1 ± 2 0.3 1 ± 2 1 ± 2 0 0 22 ± 4 14 ± 2 
F yojN 0 0 0 0 0 0 0 0 0 
R24 zapB 1 ± 1 0.4 ± 0.9 1.2 2 ± 3 3 ± 5 0 0 1.1 0 
R58 flgK 0 0 0 0 0 0 0 0 0 
R52/R15 flhD 0 0 0 0 0 0 0 0 0 
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Table 5.5 Swarming complementation with phenol, butyric acid, and lactic acid (compared with H2O). The values are swarming 
halos (mm) on LB plates (the ~ 4 mm colony size is not included). The swarming motility was tested after 10 h incubation at 
37°C. Interesting results are shown in bold. 

 
Phenol  Butyric acid Lactic acid Mutant name Transposon 

insertion site H2O 
10 μg/mL 250 μg/mL 10 μg/mL 250 μg/mL 10 μg/mL 250 μg/mL 

WT  23 ± 7 26 ± 10 26 ± 10 26 ± 10 31 ± 9 24 ± 7 21 ± 7 
7_18/40/28 adhE 6.7 2 1.7 6 2 2 9.4 
I fadE 0 2.5 9.2 15 2 4 ± 6 4 ± 7 
R5 fis 0.3 ± 0.3 0 2 0.9 2 ± 4 8 ± 5 5 ± 5 
A hybG 0 6 ± 3 9 ± 3 2 ± 7 3 ± 3 0 0 
E pdxA 0 0 0 0 0 0 0 
R7 PMI2857 0 0 2 0.9 2 0.2 0.9 
R18 PMIr001 0 0 0 0 0 0 0 
R27 pnp 0 0 0 0 0 0 0 
R20 proC 4 2 0 4.9 2 15.1 4.6 
R26 PROSTU_03490 1 ± 2 0 0 0 0 2 ± 3 2 ± 3 
7_14 rfaL 0 0 0 0 0 0 0 
R54 rhlB 0 1.3 2.57 1.7 2.1 1 ± 1 1 ± 1 
R51 rrfG 5.55 9.75 8.3 8.35 8.65 9.35 2.5 
R39/O ugd 1.3 ± 0.4 0 0 0.3 ± 0.8 1 ± 2 0 0.3 ± 0.8 
R30 ureR 6 ± 6 2 1.5 0.9 2 0 0.4 ± 0.9 
F yojN 0 0 0 0 0 0 0 
R24 zapB 1 ± 1 2 1.5 0.9 2 10 ± 6 12 ± 7 
R58 flgK 0 0 0 0 0 0 0 
R52/R15 flhD 0 0 0 0 0 0 0 
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and 15 μL ammonium hydroxide (by evaporation) (control sample did not swarm).  The ureR 

(R30) mutant has 3.6-fold and 2.3-fold increased motility upon the addition of 2 μL and 15 μL 

ammonium hydroxide (by evaporation).  Additionally, the fadE mutant (I) has increased 

swarming motility upon addition of 10 μg/mL KOH, 10 μg/mL and 250 μg/mL putrescine 

(control sample did not swarm), the fis mutant (R5) has 20-fold increased swarming motility 

upon addition of 250 μg/mL putrescine, and the PROSTU_03490 mutant (R26) has 5-fold and 7-

fold increased swarming motility upon addition of 10 μg/mL and 250 μg/mL putrescine. From 

Table 5.5, the fis mutant (R5) had increased swarming with 10 μg/mL and 250 μg/mL of lactic 

acid (26-fold and 16-fold increases, respectively), the hybG mutant (mutant A) had increased 

swarming with 10 μg/mL and 250 μg/mL phenol (fold change is infinity since control sample did 

not swarm), and the zapB mutant (R24) has 10-fold and 12-fold increased swarming with 10 

μg/mL and 250 μg/mL lactic acid. 

5.3.4 RfaL is required for fly attraction and oviposition 

 Initial tests for fly attraction and oviposition were performed with the rfaL mutant vs. the 

wild-type strain since the rfaL mutant has complemented swarming motility with the addition of 

known signaling molecule putrescine. The wild-type strain showed ~1.7-fold better fly attraction 

than the rfaL mutant based on the average of three replicates. In addition, the only oviposition 

we observed from four trials occurred in the wild-type strain. Therefore, RfaL is required for fly 

attraction and oviposition, it is necessary for swarming, and this swarming deficiency may be 

complemented by the addition of putrescine. Hence, putrescine may be interkingdom signals for 

this insect. 

5.4 Discussion 

P. mirabilis is a Gram-negative urinary tract pathogen for humans (Morgenstein et al., 

2010). The prominent feature of this bacterium is its ability to swarm. The swarming behavior 
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involves a complex repeating cycle of differentiation between two cell types, the vegetative 

(swimmer) and swarmer cells (Janda and Abbott, 2005). The swimmer cells dominate in liquid 

and are Gram-negative rods. These cells change into the swarmer cells with longer cell length 

and more flagella after 3 to 4 h when they are placed on solid surfaces (Morgenstein et al., 

2010). The flagellar rotation is inhibited during this conversion, and extracellular signal is 

required to control this multicellular behavior.  Genes related to lipopolysaccharide, flagellar, 

cell wall synthesis, cell division, proteolysis (Belas et al., 1995), as well as virulence-related 

genes such as haemolysin, protease, and urease (Liaw et al., 2001) are involved in this 

conversion. Hence it is reasonable to consider that the swarming motility is tightly connected to 

the virulence of P. mirabilis. The host-bacterium interaction that virulence genes control and the 

bacterium-bacterium QS behavior that swarming requires are interrelated. 

 An initial test showed that P. mirabilis has significant swarming motility on LB plates 

regardless of the temperature (room temperature or 37°C, data not shown). So when this 

bacterium is brought onto the surface of a human wound, it can spread and cover the wound area 

quickly. The QS signal for P. mirabilis is produced and functions during the swarming. This 

signal may also work as an attractant for flies for oviposition on the wound surface. The fly eggs 

grow to maggots and eat the dead tissues in the wounds as well as perhaps the bacteria.  

Probably that is the reason that we can isolate P. mirabilis from the larvae salivary gland extract.  

 In this study we identified six chemicals (putrescine, NaOH, KOH, NH3, phenol, and 

lactic acid) that are important for restoring swarming with seven mutants (rfaL, ureR, fis, hybG, 

zapB, fadE and PROSTU_03490). Except rfaL, the other six genes identified to be important for 

swarming are novel.   Except putrescine, the other five chemicals (NaOH, KOH, NH3, phenol, 

and lactic acid) that restored swarming are novel. 
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 Along with the novel chemicals for swarming, putrescine was identified.  Putrescine is 

an extracellular signal required for swarming in P. mirabilis (Sturgill and Rather, 2004). It 

belongs to the group of polyamines including putrescine, agmatine, and spermidine. Putrescine is 

a constituent of the outer membrane of P. mirabilis. In addition, the extracellular putrescine 

regulates gene expression in many organisms. Putrescine is the product of SpeB in P. mirabilis 

and it can repress its own expression (Sturgill and Rather, 2004). Mutation in speA (encoding 

arginine decarboxylase) or speB (encoding agmatine ureohydrolase) block the major pathway for 

putrescine production and results in a two to three hour delay in swarmer cell differentiation 

(Stevenson and Rather, 2006). Adding 25 µM exogenous putrescine can completely restore the 

swarmer cell differentiation of the speA mutant (Stevenson and Rather, 2006). In addition, the 

swarming motility of speA mutant can be restored by deleting its extragenic suppressor gene 

disA (Stevenson and Rather, 2006). Furthermore, putrescine showed the ability to attract 

Mexican fruit fly Anastrepha ludens (Robacker, 2001).  

RfaL (WaaL) is the lipopolysaccharide O-antigen ligase. In P. mirabilis the deletion of 

rfaL causes disability lack of differentiating into swarmer cell (Morgenstein et al., 2010). The 

rfaL mutation also inhibits the flhDC operon expression (Morgenstein et al., 2010). In P. 

aeruginosa, the RfaL protein is a membrane protein with 11 potential transmembrane segments 

(Abeyrathne and Lam, 2007). We show for the first time that putrescine can restore the 

swarming of an rfaL mutant. In addition, we show the deletion of rfaL decreases fly attraction. 

Hence we propose that RfaL may work as a transporter for putrescine and putrescine may be the 

interkingdom signal that can be sensed by both blowfly L. sericata and the bacteria P. mirabilis. 

 Ammonia is another important chemical that is proposed to be the interkingdom signal 

molecule. Ammonia is produced by almost all organisms. It is one of the most characteristic 

odours in fresh manure (Richardson, 1916). It can attract blowfly L. sericata (Monika Hilker, 



 

 

95

2002). Urease is the enzyme that catalyzes the hydrolysis of urea into carbon dioxide and 

ammonia (Nicholson et al., 1993). In P. mirabilis, urease is encoded by the ure operon which 

contains eight genes. UreR is the transcription regulator of P. mirabilis urease. The activation of 

urease causes the hydrolysis of urea to ammonia, which leads to the increase of pH and the 

formation of stones. Hence urease is the virulence factor (Mobley and Belas, 1995). Here we 

show for the first time that ammonia can complement the swarming deficiency that the ureR 

mutant causes. And we propose for the first time that ammonia may be the interkingdom signal 

that controls both blowfly L. sericata and bacteria P. mirabilis activity. 

5.5 Future work 

 We will need to test the fly attraction and oviposition activity for all the mutants we 

obtained and identify those with increased fly attraction and oviposition. In addition, the 

complementation test for fly attraction and oviposition assay will need to be conducted by 

adding chemicals that complemented swarming motility back into mutant strains. The 

concentration of effective signal molecules should be tested in P. mirabilis wild-type and the 

corresponding mutants.  
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5.6 Experimental procedures 

5.6.1 Maggot salivary gland extraction 

 L. sericata larvae were grown at room temperature on beef liver until the third instar. 

They were removed from the jar and checked to make sure the crop was full before each 

experiment. Each maggot was removed and quickly rinsed in diluted bleach solution (1.25% 

sodium hypochlorite) followed by two phosphate buffered saline solutions (0.8% NaCl, 0.02% 

KCl, 0.144% Na2HPO4, and 0.024% KH2PO4, pH 7.4) before dissection. The salivary gland was 

removed and put into the sterile microcentrifuge tube filled with appropriate volume of sterile 

PBS (20 µL per pair of salivary glands to be extracted).  

5.6.2 P. mirabilis identification  

Once the salivary glands were removed, the glands were collected in a microcentrifuge 

tube, mashed, and spread onto bacterial media. Trypticase soy agar plates with 5% sheep blood 

(TS-blood agar; BVA Scientific, San Antonio, TX) were used for the recovery of aerobic 

microbial species.  Plates were incubated aerobically for 24 h at 37°C.  Phenotypically distinct 

colonies were chosen and subcultured onto fresh media to attain cultural purity.  Multiple 

subculturing was performed as necessary for isolation of bacterial species.  P. mirabilis was 

identified using API Rapid 20E manual identification test strips.  API RAPID 20E is a 4 hour 

identification kit for Gram-negative Enterobacteriaceae via biochemical analysis via 20 tests 

including those for glucose acidification, sucrose acidification, β-galactosidase, and indole 

production  (Izard et al., 1984).  

The microbial community members in the salivary glands were also evaluated using 

pyrosequencing.  DNA samples were processed with FastDNA*SPIN (MP Biomedical LLC, 

Solon, OH) using a cell homogenizer (MP Biomedical, Solon, OH) according to the 

manufacturer’s instructions and frozen at -80°C until pyrosequencing analysis. Each of the 
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combined samples was individually analyzed based upon the Roche 454 FLX pyrosequencing 

platform (https://www.roche-applied-science.com/sis/sequencing/flx/index.jsp) using the 

bacterial tag-encoded FLX amplicon pyrosequencing method previously described  (Dowd et al., 

2008c; Dowd et al., 2008a; Dowd et al., 2008b).  Sequences from each sample assembled at 3% 

divergence were processed along with the number of reads integrated into each consensus. The 

resulting TC FASTA for each sample was evaluated using BLASTn against a custom SRDS 

database derived from the RDP-II database and GenBank (http://ncbi.nlm.nih.gov).  

5.6.3 Transposon mutagenesis and swarming-based screening  

Transposon mutagenesis was performed with the EX-Tn5TM <DHFR-1> Tnp 

transposome kit (Epicentre, Madison, WI). After electroporation with 50 μL of competent cells 

and 1 μL transposome supplied by the kit, we obtained around 3,000 colonies with Tn5 

transposon randomly inserted in the genome. Mueller-Hinton agar plates (Atlas, 2004) were used 

to select mutants with transposons inserted using 10 μg/mL trimethoprim. The agar 

concentration was adjusted to 3% to prevent swarming during this step. We then screened 3,000 

colonies for swarming motility on LB agar plates with 1.5% agar at 37°C with after 

approximately 4 h. Fifty mutants with at least 3-fold decreased swarming were selected and 

confirmed as swarming deficient strains using the same condition. 

5.6.4 DNA sequencing to identify transposon insertion positions  

Genomic DNA was isolated from the swarming mutants via the UltraClean Microbial 

DNA isolation kit (MO BIO, Carlsbad, CA). For sequencing, arbitrary PCR was performed; the 

first round of arbitrary PCR reaction (PCR1) was performed using 100 ng genomic DNA, 0.5 μL 

10 mM dNTP, 0.5 μL Pfu polymerase, 5 μL betaine, 2.5 μL 10X Pfu buffer, 0.75 μL 100 μM 

arbitrary primer 1 (5’-GGCCAGGCCTGCAGATGATGNNNNNNNNNNGTAT-3’), 0.75 μL 

10 μM internal specific primer (5’-ACGGATTCGCAAACCTGTCACG-3’), and water for a 25 
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μL reaction. The PCR1 reaction conditions were 94°C 5 min; 6 cycles of 94°C 30 sec, 30°C 30 

sec, 72°C 1 min; 30 cycles of 94°C 30 sec, 58°C 30 sec, 72°C 1 min; and 72°C 5 min. The 

second arbitrary PCR reaction (PCR2) was performed with 0.75 μL of PCR1 product, 0.5 μL 10 

mM dNTP, 0.5 μL Pfu polymerase, 5 μL 5M betaine, 2.5 μL 10X Pfu buffer, 0.75 μL 10 μM 

arbitrary primer 2 (5’-GGCCAGGCCTGCAGATGATG-3’), 0.75 μL 10 μM external specific 

primer I (5’-AGGTGGCGGAAACATTGGATG-3’), and water for a 25 μL reaction . The PCR2 

reaction conditions were 30 cycles of 94°C 30 sec, 55°C 30 sec, and 72°C 1 min. The third 

arbitrary PCR reaction was performed with 1 μL PCR2 product, 0.5 μL 10 mM dNTP, 0.5 μL 

Pfu polymerase, 5 μL 5M betaine, 2.5 μL 10X Pfu buffer, 0.75 μL 10 μM arbitrary primer 2 (5’-

GGCCAGGCCTGCAGATGATG-3’), 0.75 μL 10 μM external specific primer II (5’-

GGCGGAAACATTGGATGCGG-3’), and water to make it final 25 μL. The PCR3 reaction 

conditions were 30 cycles of 94°C 30 sec, 55°C 30 sec, and 72°C 1 min. The final PCR product 

after three sets of arbitrary PCR was purified and sequenced using Perkin Elmer ABI Big Dye 

Reaction Mix. The external specific primer II is also used here as sequencing primer. NCBI blast 

was used to compare sequences and identify the transposon insertion site. 

5.6.5 Swarming complementation  

For the swarming complementation test, 10 μg/mL and 250 μg/mL of each chemical 

were added to LB agar plates (1.5% agar). The stock solutions of indole and benzoic acid were 

dissolved in DMF. The p-cresol was dissolved in ethanol. The other chemicals phenol, butyric 

acid, lactic acid, NaOH, KOH, and putrescine were dissolved in H2O.  Two μL exponential 

phase cultures (OD600 ~1.0) were added on the surface of the agar plates and incubated at 37˚C. 

For the swarming complementation test with ammonia, 2 μL and 15 μL ammonium hydroxide 

were dropped on the lid of Petri dishes because ammonium hydroxide can easily release 
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ammonia, and the evaporated ammonia can be sensed by bacteria in this way. Swarming halos 

were measured after 10 h.  

5.6.6 Fly attraction and oviposition assay 

The fly attraction assay was performed by the instrument shown in Fig. 5.1A. Roughly 

hundreds of 7 to 9 day-old blowflies L. sericata ((East Lansing, MI) were put into the clean 

plastic box without water or food. Agar plates with 24 h-old P. mirabilis cultures (107 bacteria 

were plated initially and incubated at 37°C for 24 h) were put on each side of the plastic box and 

were connected to the box by a white tunnel (Charlotte Pipe, Charlotte, NC). There was a plastic 

screen in the middle part of the tunnel to prevent flies from flying into the agar plates. Two 

pieces of sticky traps (Bell Laboratories Inc., Chicago, IL) were put on the tunnel wall to catch 

the attracted flies. After 24 h, female and male flies on the sticky traps were counted separately. 

Female flies were dissected to check the gravid condition. 

 The oviposition assay was performed using the system shown in Fig. 5.1B. Hundreds of 

7 to 12 days old blowflies were put in the cage with water and sugar (Wal-Mart, Bentonville, 

AR) supplied. Fresh agar plates with 107 bacteria plated and incubated for 30 min at 37°C were 

put inside the cage to see whether flies had a preference for where they laid eggs. A steel screen 

was put on the top of each agar plate to prevent oviposition directly on the agar surface. Wet 

paper towels underneath each plate provided the surface for egg-laying since flies prefer to lay 

eggs on rough (Crombie, 1941), wet (Kamal, 1958) surfaces. The paper towel was taken out 

after 6 h and the egg number was counted.   The temperature was set to be 21°C for both assays. 
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Figure 5.1 Instrument for fly attraction assay (A) and fly oviposition assay (B). 
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CHAPTER VI 

PROTEIN ACETYLATION IN ESCHERICHIA COLI  INCREASES STRESS 

RESISTANCE 

6.1 Overview 

  Acetylation of lysine residues is conserved in all three kingdoms; however, its role in 

prokaryotes is unknown.  Here we demonstrate that acetylation enables the reference bacterium 

Escherichia coli to withstand environmental stress.  Specifically, the bacterium becomes more 

resistant to heat and oxidative stress when its proteins are acetylated as shown by deletion of the 

gene encoding acetyltransferase YfiQ and the gene encoding deacetylase CobB and by 

overproducing YfiQ and CobB.  Furthermore, we show that the increase in oxidative stress 

resistance with acetylation is due to the induction of catalase activity through enhanced katG 

expression.  This is the first demonstration of a specific environmental role of acetylation in 

prokaryotes. 

6.2 Introduction 

  The post-translational modification of acetylation occurs for all three domains of life 

(Escalante-Semerena, 2010) and regulates diverse aspects of metabolism in that 2700 proteins in 

mammals are acetylated related to central metabolism, mRNA splicing, protein synthesis, cell 

morphology, and cell cycle (Linda I et al., 2010).  Although identified in 1963 for eukaryotes 

(Linda I et al., 2010), in bacteria, the role of acetylation has not been well characterized even 

though this modification is relatively common in that at least 91 proteins are acetylated in the 

best-studied strain, E. coli, including the stress related heat shock proteins like DnaK and 

superoxide dismutase (Yu, 2008; Zhang et al., 2009). 

  In Salmonella enterica, there is only one major bacterial protein acetyltransferase, Pat, 

and one nicotinamide adenine dinucleotide-dependent deacetylase, CobB. These two enzymes 
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control the status of lysine acetylation for acetyl-CoA synthetase as well as the acetylation of a 

number of central metabolic enzymes in S. enterica (Wang et al., 2010). In E. coli, there are 23 

putative lysine acetyltransferases that add acetyl groups to the epsilon amine of lysine using 

acetyl-coenzyme A as a substrate (Escalante-Semerena, 2010).  Ten Gcn-5 acetyltransferases in 

E. coli are confirmed for their function while the other thirteen remain enigmatic, including YfiQ 

which is the homolog of the single acetyltransferase in S. enteric (Escalante-Semerena, 2010). 

Hence we chose to study YfiQ as the acetyltransferase because we expect that it also plays an 

important role in E. coli similar to Pat in S. enteric (Escalante-Semerena, 2010), and chose to 

study CobB as the deacetylase since it is the only confirmed deacetylase activity in E. coli (Li et 

al., 2010), and studied the bacterial physiology by changing the acetylation status controlled by 

these two genes in E. coli.  

  Bacteria respond to various stresses by producing global regulators (Farr and Kogoma, 

1991). The universal stress proteins UspA and UspD are required for the resistance to 

superoxide-generating agents (Nachin et al., 2005). Catalases KatG and KatE break down the 

H2O2 into H2O and O2 (Robbe-Saule et al., 2001). OxyR regulates the peroxide-mediated stress 

response in which at least 30 proteins are elevated over the basal levels upon the addition of 

peroxide stress (Farr and Kogoma, 1991). In addition, the sigma factor RpoS is regulates katG in 

an OxyR-dependent way (Ivanova et al., 1994). The RpoS regulator is also required for acid, 

heat, and salt resistance in  E. coli O157:H7 (Cheville et al., 1996).  

  Since the ability of bacteria to respond rapidly to stress is a hallmark of their success and 

since protein modifications allow the most rapid response, we hypothesized that conserved 

protein acetylation may be related to the ability of the cell to withstand stress.  Here we 

demonstrate that cells with decreased acetylation, through enhanced deacetylase CobB activity, 

are less resistant to heat and oxidative stress.  DNA microarrays and quantitative, reverse-
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transcription polymerase chain reaction (qRT-PCR) both showed induction of katG under 

oxidative stress conditions. Hence we propose that the activity of some regulator that controls 

stress gene expression especially the katG expression is altered by acetylation.  

6.3 Results 

6.3.1 YfiQ increases stress resistance and CobB decreases stress resistance   

  To test our hypothesis that lysine acetylation is related to stress resistance, we subjected 

E. coli yfiQ and cobB mutants to heat and oxidative stress (Fig. 6.1).  Decreasing acetylation by 

deleting yfiQ decreased heat and oxidative stress by 10 fold and 4 fold, respectively, while 

increasing acetylation by deleting cobB increased heat and oxidative stress resistance by 3 fold 

and 100 fold, respectively.  These results were complemented by increasing acetylation by 

producing YfiQ via plasmid pCA24N_yfiQ (370-fold increase in heat resistance and 110-fold 

increase in oxidative stress resistance) and by decreasing acetylation by producing CobB via 

plasmid pCA24N_cobB (27-fold reduction in heat resistance and 10-fold reduction in oxidative 

stress resistance).  Therefore, acetylation by YfiQ increases resistance to heat and oxidative 

stress while deacetylation by CobB decreases it.        

6.3.2 CobB decreases catalase activity   

  Since producing CobB decreased resistance to hydrogen peroxide (Fig. 6.1A), we 

investigated whether this phenotype was related to RpoS since RpoS is a positive regulator of 

catalase activity via katG and katE (Lacour and Landini, 2004).  Catalase deactivates H2O2 by 

converting it to H2O and O2 (Robbe-Saule et al., 2001).  Using two independent assays, we 

found that removing acetylation by producing CobB abolished catalase activity and increasing 

acetylation by deleting cobB increased catalase activity by 4.4 fold (Fig. 6.2).  Therefore, 

acetylation increases catalase activity.  However, the catalase activity was not changed much by 

YfiQ (Fig. 6.2). This is probably because of the contribution of other nine functional 
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Figure 6.1 Resistance to oxidative and heat stress. E. coli BW25113 wild-type/pCA24N, cobB/pCA24N, cobB/pCA24N_cobB, 

yfiQ/pCA24N, and yfiQ/pCA24N_yfiQ were tested for H2O2 resistance ability (A) and heat resistance ability (B) in Luria-
Bertani medium (LB) medium at 37˚C.  
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Figure 6.2 Catalase activity. The E. coli BW25113 wild-type/pCA24N, cobB/pCA24N, 

cobB/pCA24N_cobB, yfiQ/pCA24N, and yfiQ/pCA24N_yfiQ were compared for 
their catalase activity using the spectrophotometric method (A) and colorimetric 
method using dicarboxidine/lactoperoxidase (B). 
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acetyltransferases in E. coli (Escalante-Semerena, 2010).  

6.3.3 Catalase related proteins KatG, KatE, and RpoS are not acetylated  

  Since catalase activity was affected by acetylation (Fig. 6.2), we investigated whether 

catalases KatG and KatE, as well as the regulator that controls catalase gene expression, RpoS, 

are acetylated. After analyzing around 100 peptide sequences, the mass spectrometry (MS) 

results indicated that none of these proteins are directly acetylated on lysine residues. Hence, the 

KatG, KatE, and RpoS are all not acetylated and the increased catalase activity by acetylation is 

not because of direct modification of these three proteins. 

6.3.4 Catalase genes are induced by acetylation  

  To check if there are any differences in transcription of the catalase genes caused by 

acetylation,   we measured gene expression via qRT-PCR for rpoS, katG, and katE (Table 6.1). 

katG was repressed 3.8 ± 0.3 fold in the cobB/pCA24N_cobB strain compared to the 

cobB/pCA24N strain without H2O2 addition. With the addition of 10 mM H2O2 for 10 min, katG 

was repressed even more (25 ± 2 fold) for cobB/pCA24N_cobB vs. cobB/pCA24N. Hence, 

catalase genes are induced due to acetylation of some unknown cellular proteins. Probably stress 

activates some regulator via post-translational modification which leads to induction of katG.  
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Table 6.1 qRT-PCR results for catalase-related genes rpoS, katG, and katE. ΔCt is the threshold difference between each gene and 
the housekeeping gene rrsG. Fold change indicates the gene transcription difference between the cobB/pCA24N_cobB strain 
vs. the cobB/pCA24N strain in LB medium at 37°C with 20 mM H2O2 for 10 min. Fold changes are relative to the 
cobB/pCA24N sample. 

 
rpoS  katG  katE  Strain name 
ΔCt Fold change ΔCt Fold change ΔCt Fold change

No stress       
cobB/pCA24N 12.36 ± 0.07 1.00 8.96 ± 0.07 1.00 11.8 ± 0.1 1.00 
cobB/pCA24N_cobB 11.8 ± 0.1 1.47 10.90 ± 0.07 -3.84 12.48 ± 0.04 -1.60 
1 min H2O2 treatment       
cobB/pCA24N 11.0 ± 0.3 1.00 7.7 ± 0.3 1.00 10.1 ± 0.3 1.00 
cobB/pCA24N_cobB 13.5 ± 0.1 -5.66 11.87 ± 0.07 -18.00 13.03 ± 0.08 -7.62 
10 min H2O2 treatment      
cobB/pCA24N 11.7 ± 0.1 1.00 7.4 ± 0.3 1.00 10.9 ± 0.3 1.00 
cobB/pCA24N_cobB 13.2 ± 0.2 -2.83 12.05 ± 0.09 -25.11 13.1 ± 0.1 -4.59 
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6.3.5 Acetylation induces the transcription of genes involved for various stresses 

To analyze the global effect of acetylation on gene transcription, a whole-transcriptome 

analysis was performed with the cobB/pCA24N_cobB strain vs. the cobB/pCA24N strain with 

the rationale that production of CobB should remove the acetyl groups on all the cell proteins. 

We found that in addition to katG and katE, various stress-related genes are repressed by 

deacetylation, including the heat shock genes dnaK (Seyer et al., 2003), osmotic stress genes 

osmB (Jung et al., 1990) and osmY (Hengge-Aronis et al., 1993), acid resistance genes gadABCE 

and hdeABD (Lee et al., 2007c), cold shock genes cspAB (Ulusu and Tezcan, 2001), carbon 

starvation gene csiD and slp (Alexander and St John, 1994), and general stress gene yhbO 

(Abdallah et al., 2006) (Table 6.2). Hence, protein acetylation is involved in various bacterial 

stress response systems. 

6.3.6 YfiQ increases growth yield and CobB decreases it   

  We found that cells with acetylation from producing YfiQ had a dramatically increased 

growth yield in rich medium while cells that lacked acetylation had reduced yield (Fig. 6.3).  

Therefore, acetylation helps cells cope with the stress associated with stationary phase growth. 
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6.4 Discussion and future work 

Previously, the stress proteins heat shock protein DnaK (Yu et al., 2008), heat shock 

chaperone HtpG, superoxide dismutase SodA (Yu et al., 2008), SodB (Zhang et al., 2009), 

alkylhydroperoxide reductase AhpC (Zhang et al., 2009), and thioredoxin TrxA (Zhang et al., 

2009) were acetylated in E. coli. However, there has been no prior report connecting the post-

translational modification of acetylation and resistance to any environmental stress, and there has 

been no connection made between acetylation and a specific stress pathway. We discovered here 

that acetylation plays a significant role in the resistance to both oxidative stress and heat 

resistance. We also found using DNA microarrays that acetylation controls an even broader 

range of stresses by altering expression of genes related to stress resistance (including osmotic, 

acid, cold, and carbon starvation); this is the first whole-transcriptome study for acetylation. 

Bacteria sense stresses via some two-component systems and then regulate various genes 

transcription. Since these stress resistance genes are activated less in the CobB overproduction 

strain (due to deacetylation), we predict that one or more proteins (a sensor or regulator) in the 

signal transduction pathway of a two-component system, or the essential genes that the regulator 

directly controls, need the acetylation step to be activated. Thus, the acetylation state of all two-

component systems in E. coli should be investigated.  Here we connected protein acetylation to 

the resistance to specific stresses (oxidative and heat) and showed that for oxidative stress, the 

resistance stems from changes in transcription of the katG gene which encodes catalase. 
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Table 6.2 Summary of the DNA microarray results showing the stress genes that are 
repressed by production of CobB. Fold change indicates the gene transcription 
difference between the cobB/pCA24N_cobB strain vs. the cobB/pCA24N strain 
when cultured in LB medium at 37°C with 20 mM H2O2 for 10 min and with 0.1 
mM IPTG to induce production of CobB.  

 
Gene Fold 

change 
Gene function 

dnaK -4.0 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins 
osmB -3.3 osmotically inducible lipoprotein 
osmY -3.0 hyperosmotically inducible periplasmic protein 
gadC -12.1 predicted glutamate-GABA antiporter; glutamate-dependent enzyme, may 

function in protection against cytoplasmic acidification 
gadB -18.4 glutamate decarboxylase isozyme 
gadE -6.5 transcriptional regulator of the gadABC operon 
gadA -14.9 glutamate decarboxylase A; RpoS regulon.  EvgAS regulon.  H-NS 

repressed.  Induced by acid shock and salt stress.  
cspB -3.2 cold shock protein 
cspA -3.0 cold shock protein 
katE -3.7 catalase; hydroperoxidase HPII(III) 
katG -4.9 catalase; hydroperoxidase HPI(I) 
csiD -3.2 carbon starvation induced gene 
yhbO -3.5 stress-resistance protein, protease homolog 
slp -11.3 outer membrane protein induced after carbon starvation 
hdeB -16.0 periplasmic chaperone of acid-denatured proteins; H-NS repressed 
hdeA -14.9 periplasmic chaperone of acid-denatured proteins; H-NS repressed 
hdeD -7.5 putative membrane transporter, H-NS repressed 
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Figure 6.3 Growth curves. The strains were grown in LB medium with 30 μg/mL 

chloramphenicol to retain the plasmids at 37°C, and 0.1 mM IPTG was added to 
induce cobB and yfiQ expression after 2 h. 
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6.5 Experimental procedures 

6.5.1 Bacterial strains, plasmids, and growth conditions   

  The bacterial strains and plasmids used in this study are listed in Table 6.3.  E. coli K-12 

BW25113 and its isogenic mutants (Baba et al., 2006) were obtained from the Genome Analysis 

Project in Japan.  Plasmids pCA24N_cobB and pCA24N_yfiQ, carrying cobB and yfiQ under 

control of the PT5-lac promoter with tight regulation via the lacIq repressor, and the empty plasmid 

pCA24N were also obtained from the Genomic Analysis Project in Japan (Kitagawa et al., 

2005). Expression of cobB and yfiQ was induced by 0.1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) (Sigma, St. Louis, MO).  All experiments were conducted in LB 

medium (Sambrook et al., 1989) at 37°C.  Kanamycin (50 μg/mL) was used for pre-culturing the 

isogenic knock-outs. Chloramphenicol (30 µg/mL) was used for maintaining the pCA24N-based 

plasmids.  

  For the growth tests, overnight cultures for wild-type/pCA24N, cobB/pCA24N, 

cobB/pCA24N_cobB, yfiQ/pCA24N, and yfiQ/pCA24N_yfiQ were diluted to a turbidity of 0.05 

at 600 nm and grown in LB with 30 μg/mL chloramphenicol for 2 h at 37°C. Then 0.1 mM IPTG 

was used to induce cobB and yfiQ expression. One mL culture was taken out at each time point 

and cell turbidity at 600 nm was measured. 

6.5.2 Stress assays  

  Overnight cultures for wild-type/pCA24N, cobB/pCA24N, cobB/pCA24N_cobB, 

yfiQ/pCA24N, and yfiQ/pCA24N_yfiQ were diluted to a turbidity of 0.05 at 600 nm and grown 

in LB with 30 μg/mL chloramphenicol for 2 h at 37°C. Then 0.1 mM IPTG was used to induce 

cobB and yfiQ expression for 10 to 12 h.  Cells were centrifuged and resuspended in phosphate 

buffered saline (PBS) to a turbidity of 1.0. For heat resistance assay, samples were treated at 
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65°C for 20 min at 37°C (Zhang et al., 2007). For the H2O2 resistance assay, samples were 

mixed with 20 mM H2O2 for 20 min at 37°C (Wang et al., 2011). 

 

 

 

Table 6.3 E. coli strains and plasmids used in this study.  Kmr and Cmr denote kanamycin 
and chloramphenicol resistance, respectively. 

 
Strain/Plasmid Genotype Source 
Strain 

BW25113 lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 
ΔrhaBADLD78 

(Datsenko and Wanner, 
2000) 

BW25113 cobB BW25113 ∆cobB Ω Kmr (Baba et al., 2006) 
BW25113 yfiQ BW25113 ∆yfiQ Ω Kmr (Baba et al., 2006) 
Plasmid 
pCA24N Cmr; lacIq, pCA24N  (Kitagawa et al., 2005) 
pCA24N_cobB Cmr; lacIq, pCA24N pT5-lac::cobB (Kitagawa et al., 2005) 
pCA24N_yfiQ Cmr; lacIq, pCA24N pT5-lac::yfiQ (Kitagawa et al., 2005) 
pCA24N_tnaA Cmr; lacIq, pCA24N pT5-lac::tnaA (Kitagawa et al., 2005) 
pCA24N_rpoS Cmr; lacIq, pCA24N pT5-lac::rpoS (Kitagawa et al., 2005) 
pCA24N_katG Cmr; lacIq, pCA24N pT5-lac::katG (Kitagawa et al., 2005) 
pCA24N_katE Cmr; lacIq, pCA24N pT5-lac::katE (Kitagawa et al., 2005) 

 

 

 
6.5.3 Catalase assays   

Overnight cultures for wild-type/pCA24N, cobB/pCA24N, cobB/pCA24N_cobB, 

yfiQ/pCA24N, and yfiQ/pCA24N_yfiQ were diluted to a turbidity of 0.05 at 600 nm and grown 

for 2 h in LB with 30 μg/mL chloramphenicol at 37°C. 0.1 mM IPTG was added and the cultures 

were grown for another 4 h. Catalase activity was then measured in two different ways in this 

study.   For the spectrophotometric assay (Gusarov and Nudler, 2005), one mL culture for each 
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sample was washed and resuspended into PBS buffer for a turbidity at 600 nm of 0.5. For each 

sample, catalase activity was measured by checking the rate of H2O2 decrease which is reflected 

by the rate of change of absorbance at 240 nm value at 37°C. Two tubes were used for each 

sample, and 5 mM H2O2 was added for one while the other one was used as a control. The 

conversion between H2O2 concentration and absorbance was that 10 mM H2O2 is equal to 0.36 at 

OD 240 nm (Gusarov and Nudler, 2005). 

The second method for catalase activity check used a colorimetric assay with 

dicarboxidine/lactoperoxidase (Macvanin and Hughes, 2010). The cultures were washed and 

resuspended in M9 glucose medium with 30 μg/mL chloramphenicol for a turbidity of 1.0 at 600 

nm. IPTG (0.1 mM) was added to each sample to induce the expression of cobB and yfiQ. The 

cultures were then incubated at 37°C for 4 h.  Before the test, a solution of 50 µg/mL of 

lactoperoxidase was mixed with an equal volume of 1 mM dicarboxidine solution in water 

(dicarboxidine is converted into a yellow product  in a reaction catalyzed by the activity of 

lactoperoxidase, and the amount of color developed is directly proportional to the amount of 

H2O2 present in the medium). To start the reaction, 10 mM H2O2 was added to the culture, and. 

samples (10 μL) were taken after every 2 minutes at the beginning and 5 to 10 minutes later. The 

samples were added to a 200 μL reaction mixture. The absorbance (OD 450 nm) was measured 

immediately. Higher catalase activity causes faster decrease of OD 450 nm. 

6.5.4 qRT-PCR   

  qRT-PCR was performed using the StepOne™ Real-Time PCR System (Applied 

Biosystems, Foster City, CA).  After isolating RNA (Ren et al., 2004a) using RNAlater™ 

(Ambion, Austin, TX), 50 ng of total RNA was used for the qRT-PCR reaction using the Power 

SYBR® Green RNA-to-CT™ 1-Step Kit (Applied Biosystems).  The primers are listed in Table 

6.4.  The housekeeping gene rrsG was used to normalize gene expression data (Lee et al., 2009a).  



 

 

115

The annealing temperature was 60°C for all the genes in this study.  To investigate the 

transcription level of rpoS, katG, and katE under oxidative stress conditions, overnight cultures 

of BW25113 wild-type/pCA24N, cobB/pCA24N, cobB/pCA24N_cobB, yfiQ/pCA24N, and 

yfiQ/pCA24N_yfiQ were cultured to a turbidity of 0.05 at 600 nm, grown 2 h, then 0.1 mM 

IPTG was added for another 4 h to induce cobB and yfiQ expression, and then the cells were 

exposed to 20 mM H2O2 for 10 min.  

 

 

 

Table 6.4 Primers used for qRT-PCR in this study. 
 

Primer name Sequence 

rpoS-f 5’-AGAGTAACTTGCGTCTGGTGGTAAA-3’ 
rpoS-r 5’-ATAGTACGGGTTTGGTTCATAATCG-3’ 
katG-f 5’-CTGGTGTGGTTGGTGTTGAG-3’ 
katG-r 5’-AGTGACTCGGTGGTGGAAAC-3' 
katE-f 5’- GATCTTCTCGATCCAACCAAAC-3’ 
katE-r 5’-CACCAAGACGACTGATTTGTGT-3’ 
rrsG-f 5’-TATTGCACAATGGGCGCAAG-3’ 
rrsG-r 5’-ACTTAACAAACCGCTGCGT-3’ 

 

 

 

6.5.5 Whole-transcriptome analysis  

  Overnight cultures of BW25113 cobB/pCA24N and cobB/pCA24N_cobB were cultured 

to a turbidity of 0.05 at 600 nm, grown 2 h, then 0.1 mM IPTG was added for another 4 h to 

induce cobB expression, and then the cells were exposed to 20 mM H2O2 for 10 min. Cell pellets 
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were collected and resuspended in RNAlater (Ambion Inc., Austin, TX), and total RNA was 

isolated using the RNeasy Mini Kit (Qiagen Inc., Valencia, CA) (Ren et al., 2004a).  The E. coli 

GeneChip Genome 2.0 array (Affymetrix, P/N 900551) was used, and cDNA synthesis, 

fragmentation, and hybridizations were performed as described previously (González Barrios et 

al., 2006b).  If the gene with the larger transcription rate did not have a consistent transcription 

rate based on the 11-15 probe pairs (P-value less than 0.05), these genes were discarded. A gene 

was considered differentially expressed when the P-value for comparing two chips was lower 

than 0.05 (to assure that the change in gene expression was statistically significant and that false 

positives arise less than 5%) and if their fold change is higher than standard deviation for the 

whole genome (Ren et al., 2004b).   

6.5.6 MS  

His-tagged RpoS, KatG, and KatE were purified from pCA24N-based plasmids in the 

cobB mutant (to purify potential acetylated proteins) and in the yfiQ mutant (to purify the 

potential unacetylated proteins). Overnight cultures were diluted in 1 L LB medium to a turbidity 

as 0.05 at 600 nm. Each sample was grown at 37°C until the cell turbidity at 600 nm reaches 0.6 

to 1.0. Cultures were kept at 4°C for 45 min and then induced with 0.1 mM IPTG overnight at 

room temperature. Cell pellets were collected and lysed with a French Press. Supernatants were 

treated with 1 mL Ni-NTA agarose resin for 2 h.  Purified His-tag proteins were digested with 

trypsin and cleaned with a zip-tip cleaning method. Samples were eluted with 4 μL 0.1% formic 

acid plus 25% and 50% acetonitrile. The MS results were obtained using 4800 MALDI 

TOF/TOF Analyzer (Applied Biosystems/MDS Sciex, Carlsbad, CA) (Sherrod et al., 2008).  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

We show OmpA influences the biofilm formation of E. coli differently on hydrophobic 

and hydrophilic surfaces since we found that it represses cellulose production which is 

hydrophilic in Escherichia coli.  Production of OmpA increased biofilm formation on 

polystyrene, polypropylene, and polyvinyl surfaces while it decreased biofilm formation on glass 

surfaces.  Sand column assays corroborated that OmpA decreases attachment to hydrophilic 

surfaces.  The ompA mutant formed sticky colonies, and the extracellular polysaccharide that 

caused stickiness was identified as cellulose.  A whole-transcriptome study revealed that OmpA 

induces the CpxRA two-component signal transduction pathway that responds to membrane 

stress.  CpxA phosphorylates CpxR and results in reduced csgD expression.  Reduced CsgD 

production represses adrA expression and results in reduced cellulose production since CsgD and 

AdrA are responsible for 3,5-cyclic diguanylic acid (c-di-GMP) synthesis and cellulose 

production.  Real-time polymerase chain reaction confirmed csgD and adrA are repressed by 

OmpA.  Biofilm and cellulose assays with double deletion mutants adrA ompA, csgB ompA, and 

cpxR ompA confirmed OmpA decreased cellulose production and increased biofilm formation on 

polystyrene surfaces through CpxR and AdrA.  Further evidence of the link between OmpA and 

the CpxRA system was that overproduction of OmpA disrupted the membrane and led to cell 

lysis.  Therefore, OmpA inhibits cellulose production through the CpxRA stress response 

system, and this reduction in cellulose increases biofilm formation on hydrophobic surfaces. 

We also report simultaneously the discovery and protein engineering of BdcA (formerly 

YjgI) for biofilm dispersal using the universal signal c-di-GMP in E. coli.  The bdcA deletion 

reduced biofilm dispersal, and production of BdcA increased biofilm dispersal to wild-type 
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levels.  Since BdcA increases motility and extracellular DNA production while decreasing 

exopolysaccharide, cell length, and aggregation, we reasoned that BdcA decreases the 

concentration of c-di-GMP, the intracellular messenger that controls cell motility through 

flagellar rotation and biofilm formation through synthesis of curli and cellulose.  Consistently, c-

di-GMP levels increase upon deleting bdcA, and purified BdcA binds c-di-GMP but does not act 

as a phosphodiesterase.  Additionally, BdcR (formerly YjgJ) is a negative regulator of bdcA.  To 

increase biofilm dispersal, we used protein engineering to evolve BdcA for greater c-di-GMP 

binding and found that the single amino acid change E50Q causes nearly complete removal of 

biofilms via dispersal without affecting initial biofilm formation.  

We identify two kinds of bacteria in the salivary gland extracts of the blowfly Lucilia 

sericata: Proteus mirabilis and Providencia stuartii.  We focus on P. mirabilis since it 

aggressively out-competed both Pseudomonas aeruginosa and E. coli during biofilm formation, 

since it swarmed significantly, and since it is expected that the swarming phenotype depends on 

quorum sensing. In addition, P. mirabilis produces a strong smell during its growth, which 

probably attracts blowflies. We performed transposon mutagenesis with the P. mirabilis strain 

isolated from the L. sericata salivary gland and screened ~3000 swarming-deficient mutants to 

identify 60 mutants with at least a 3-fold decrease in swarming motility (23 were sequenced). 

Furthermore, swarming was tested with these 23 mutants in the presence of eight chemicals (at 

10 μM and 250 μM) which were previously identified as attractants for blowflies (benzoic acid, 

butyric acid, indole, lactic acid, p-cresol, phenol, KOH, and NaOH), and two other chemicals 

important in P. mirabilis metabolism (putrescine and ammonia). We found lactic acid, phenol, 

NaOH, KOH, putrescine, and ammonia have the ability to restore the swarming motility of seven 

different mutants to 25 to 100% of the wild-type level. Hence, these compounds are necessary 
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for swarming (5 of these compounds have never been associated with swarming previously with 

this strain) and they have been linked to specific genes in P. mirabilis.   

  We also demonstrate that acetylation enables the reference bacterium E. coli to 

withstand environmental stress.  Specifically, the bacterium becomes more resistant to heat and 

oxidative stress when proteins are acetylated.  Furthermore, we show that the increase in 

oxidative stress via acetylation is due to the induction of catalase genes especially katG.  A 

whole-transcriptome profile shows that the acetylation changes transcription of genes involved 

in various stresses including heat, cold, starvation, osmotic, acid, and oxidative stresses. Hence 

acetylation is proved to be an important post-translational modification that is required for 

bacterial stress resistance. This is the first demonstration of a specific environmental role of 

acetylation in prokaryotes. 

7.2 Recommendations 

By testing biofilm formation with mutants of important genes from the TqsA microarray 

list (Herzberg et al., 2006), we identified BdcA as an important biofilm dispersal protein, as well 

as identified some other proteins that obviously changed biofilm formation (Table 4.1). YecT is 

repressed -4.6 fold with the expression of tqsA. An initial biofilm test showed that the yecT 

mutant has over 8-fold decreased biofilm formation at 15 h in LB medium at 37°C. This 

phenotype is complemented using YecT overproduced from the pCA24N plasmid. 

Bioinformatics search showed that YecT is located on the membrane and has one 

transmembrane helix. In addition, the YecT protein is predicted to be a DNA-binding protein. It 

has signal peptide sequence which may direct the transport of protein. YecT did not change cell 

aggregation, swimming motility, pH, or the concentration of the cell signaling molecules indole 

and AI-2. DNA microarrays showed in the yecT knockout mutant that the envelope stress 

response system genes rseA, rpoESHL, cpxP were repressed 2.3 to 2.6 fold, and DLP12 



 

 

120

prophage genes were induced 2.1 to 2.3 fold. Hence the mechanism about how YecT works for 

controlling biofilm formation is promising.  

By performing a whole-genome transcriptome temporal study, we identified that cold 

shock proteins were induced 2 to 23 fold in the biofilm cells relative to the suspension cells after 

4 to 7 h incubation at 37˚C in E. coli (Domka et al., 2007).  Additionally, in our other biofilm 

DNA microarray studies involving biofilm stress protein BhsA (Zhang et al., 2007), AI-2 

transporter TqsA (Herzberg et al., 2006), E. coli O157:H7 biofilms treated with epinephrine, 

norepinephrine, and indole (Bansal et al., 2007), and cell signal 7-hydroxyindole (Lee et al., 

2007b), cold shock proteins were also differentially expressed.  Therefore, we investigated their 

role in biofilm formation for E. coli BW25113.  Static biofilm assay showed that among 

cspABFGI, deletion of cspG caused some of the most significant biofilm increases in glucose-

containing medium, so we focused on CspG.  Flow cell experiments and COMSTAT analysis in 

M9C glucose medium corroborated that CspG decreases biofilm formation.  Since there were no 

significant changes in specific growth rates for the cspABFGI mutations, the phenotypic changes 

are not due to growth defects.  To determine the genetic basis of CspG-based reduction of 

biofilms, a whole transcriptome analysis was performed using biofilm cells at both 30oC and 

37oC.  Both 30oC and 37oC microarray analyses showed that CspG represses expression of acid 

resistance genes (e.g., gadABCE and hdeABD) and fatty acid genes (e.g., prpBCD).  CspG also 

influenced expression of genes for outer membrane proteins (e.g., CspG induced nmpC and 

ompW at 37oC and CspG repressed ompACX at 30oC).  Similarly, CspG induced genes related to 

sulfur metabolism (e.g, cysDNPUW) at 37oC and repressed these genes at 30oC.  Furthermore, 

more cold shock proteins were expressed at the lower temperature. Overexpressing cspG in 29 

isogenic mutants revealed that 15 genes (astC, cysKP, dctA, gatBCD, nmpC, prpBD, putP, rbsC, 

tnaA, ybiM and yfiD) may be necessary for CspG to control biofilm formation; normally 
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overproduction of CspG reduces biofilm yet in these 15 mutants, biofilm formation was 

unchanged or increased.  Expression of CspG had a negligible effect on extracellular indole, cell 

growth rate, pH, cell aggregation, hydrophobicity, and curli formation; however, inactivation of 

cspG increased motility 4-fold. Moreover, we identified that CspG is a RNA-binding protein. 

Hence it is possible that the RNA is critical for CspG function. Further study should focus on 

identifying the sequence and role of the CspG-binding RNA. We can first isolate His-tagged 

CspG which comes out together with the RNA pieces. The next step is to use protease to remove 

CspG and get purified RNA. Reverse transcription should be performed then to convert RNA 

into single-strand cDNA (with reverse transcriptase), and then double-strand DNA (with DNA 

polymerase). Finally we can use blunt-end cloning to insert this piece of DNA into a vector and 

do a sequencing to see what this RNA is. We can remove the corresponding gene from the cspG 

mutant then to see if CspG still can change biofilm formation and swimming motility without the 

RNA-binding. If CspG cannot work on controlling phenotypes without this RNA, then it will be 

clear that this cold shock protein needs a nucleotide chaperone to work. 

Although we successfully identified BdcA as a c-di-GMP-binding protein and 

engineered it for better binding, the binding motif on this protein remains to be elucidated. A 

straight-forward method would be to perform random mutagenesis with this protein and screen 

for mutations that abolish BdcA function as evidenced as by reduced swimming motility and 

dispersal due to reduced binding of c-di-GMP. The nucleotide sequences for c-di-GMP binding 

by BdcA are critical and their identification may allow further improvements in BdcA function. 

It would also be beneficial to get the crystal structure of this protein to model its binding to c-di-

GMP. 

To make BdcA a general and useful tool for removing biofilm rather than a mere lab toy, 

we need to prove that BdcA will work for removing biofilms in other bacteria. A broad host 
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plasmid such as pMMB206 should be used to express bdcA instead of the pCA24N plasmid 

which is limited to use with E. coli. Our initial results show that BdcA can cause biofilm 

dispersal in P. aeruginosa. More tests on different strains should be performed (Pseudomonas 

putida, Pseudomonas fluorescens, Rhizobium meliloti, and Proteus mirabilis), and BdcA is 

expected to work for biofilm dispersal in any organism as where c-di-GMP is utilized an internal 

signal for biofilm formation (which may be all bacteria as none are known to date that do not use 

c-di-GMP this way).  

To practically control biofilm dispersal, conjugation may be combined with BdcA 

biofilm dispersal to treat multi-species biofilms. By using an E. coli host with both the biofilm 

dispersal plasmid pMMB206_BdcAE50Q and the conjugation helper plasmid pRK2013, the 

pMMB206_BdcAE50Q plasmid may be mobilized via conjugation into target bacteria which are 

desired to be removed.  After the target bacteria receive the gene for the BdcAE50Q, we can 

induce the production of BdcAE50Q with IPTG and remove the biofilms of both the donor E. 

coli and the recipient bacteria. 

We have already identified several putative interkingdom signals that work for 

complementing P. mirabilis swarming. To test if they can also affect fly behavior, the fly 

attraction and oviposition assay should be applied for all the swarming-deficient mutants. For the 

mutants that are unable to attract flies as well as the wild-type strain, it is desirable to add back 

the chemical which can complement mutant swarming motility and test if this chemical can 

complement mutants for fly attraction and oviposition ability.  In addition, the concentration of 

these chemicals that the P. mirabilis wild-type normally produces should also be checked. In this 

way, we will be able to confirm that these effective chemicals can be called as interkingdom 

signals that not only change the P. mirabilis swarming motility, but also attract flies for 

oviposition. 
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We discovered that acetylation plays a significant role in the resistance to both oxidative 

stress and heat resistance. We also found that acetylation controls an even broader range of 

stresses by altering expression of genes related to stress resistance (osmotic, acid, cold, and 

carbon starvation) using DNA microarrays which is the first whole transcriptome study for 

acetylation. Bacteria sense stresses via some two-component systems and then regulate various 

genes transcription. Since these stress resistance genes are activated less in the CobB 

overproduction strain (due to deacetylation), we predict that one or more proteins (a sensor or 

regulator) in the signal transduction pathway of a two-component system, or the essential genes 

that the regulator directly controls, need the acetylation step to be activated. Thus, the acetylation 

state of all two-component systems in E. coli should be investigated.   
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 APPENDIX 

THE R1 CONJUGATIVE PLASMID INCREASES ESCHERICHIA COLI BIOFILM 

FORMATION THROUGH ENVELOPE STRESS RESPONSE 

 

Abstract 

  Differential gene expression in biofilm cells suggests that adding the derepressed 

conjugation plasmid R1drd19 increases biofilm formation by affecting envelope stress (rseA, 

cpxAR), biofilm-related genes (bssR, cstA), energy production (glpDFK), acid resistance 

(gadABCEX, hdeABD), cell motility (csgBEFG, yehCD, yadC, yfcV), outer membrane proteins 

(ompACF), phage shock proteins (pspABCDE), cold shock proteins (cspACDEG), and phage-

related genes.  To investigate the link between the identified genes and biofilm formation upon 

adding R1drd19, 40 isogenic mutants were classified according to their different biofilm 

formation phenotypes.  Cells with Class I mutations (rseA, bssR, cpxA, and ompA) exhibited no 

difference in biofilm formation compared to the wild-type strain and no increase upon adding 

R1drd19.  Class II mutations (gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, 

slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) increased biofilm formation compared to the wild-

type strain but decreased biofilm formation upon adding R1drd19.  Class III mutations increased 

biofilm formation compared to the wild-type strain and increased biofilm upon adding R1drd19.  

Class IV mutations increased biofilm formation compared to the wild-type strain but had little 

difference upon adding R1drd19, and Class V mutations had no difference compared to the wild-

type strain but increased upon adding R1drd19.  Therefore, proteins encoded by the 

___________ 
*Reprinted with permission from “The R1 conjugative plasmid increases Escherichia coli biofilm 
formation through an envelope stress response” by Xiaole Yang, Qun Ma, and Thomas K. Wood, 2008, 
Applied and Environmental Microbiology 74:2690-2699, Copyright 2008, American Society for 
Microbiology, doi:10.1128/AEM.02809-07.  
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genes of Class I are involved in R1drd19-promoted biofilm formation, primarily through their 

impact on cell motility.  We hypothesize that the pili formed upon adding the conjugation 

plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as 

well as the other envelope stress response system, RseA-σE, both of which, along with BssR, 

play a key role in bacterial biofilm formation. 

Introduction 

  Conjugation transfers genetic material between bacteria through cell-to-cell contact (59); 

hence, it spreads virulence factors (20) and influences bacterial resistance to antibiotics (38).  

Conjugation is affected by growth conditions and biofilm structure (26), and biofilms promote 

conjugation (41).  The reverse is also true as conjugative plasmids promote biofilm formation 

(20, 47), and Ghigo has proposed that conjugative pili act as adhesion factors.  In addition, 

thicker biofilms were observed in mature biofilms harboring conjugation plasmids (46).  

  Plasmid R1, originally from the host Salmonella enterica ser. paratyphi (20), is a F-like 

conjugative plasmid of the IncFII incompatibility group (13).  The transfer region of R1 consists 

of four DNA transfer genes (traYALE), a large tra operon constituting at least 34 genes that have 

high homology with the F plasmid (35), finP and finO which encode the fertility inhibition 

complex FinPO (66), traM and traJ which lie outside of the tra operon (4), as well as the 

conjugative transfer origin locus oriT (4).  TraM is a positive regulator of the tra genes (43), and 

TraJ disrupts the host nucleoid-associated protein, a repressor of the tra operon (62). The tra 

promoter is repressed by FinO and FinP (36); therefore, disruption of finO in R1drd19 promotes 

conjugation constitutively (46).  Plasmid RI represses conjugal pili synthesis, but R1drd19 

synthesizes these pili constitutively (20).  Since, the genetic mechanism by which conjugation 

plasmids control biofilm formation has not been elucidated (we found previously addition of 

R1drd19 increases biofilm formation by increasing aggregation and decreasing cell motility 
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(21)), our goal here was to use DNA microarrays and isogenic mutants to investigate this 

mechanism.   

  Single time point DNA microarrays have been used to explore the genetic basis of E. 

coli K-12 biofilm formation (5, 24, 32, 49, 54) and one temporal study has been completed (14); 

one common trend is that stress genes are induced.  With DNA microarrays, we identified five 

induced stress response genes (hslST, hha, soxS, and ycfR) in 7 h E. coli biofilm cells harboring a 

conjugative plasmid compared to suspension cells with a conjugative plasmid (49), and recently 

we showed how YcfR mediates this stress response in E. coli and how stress increases E. coli 

biofilm formation (67).  In addition, the envelope stress response genes, such as pspABCDE, 

cpxAR, rpoE, and rseA, were induced in E. coli 8-day-old biofilms cells compared to 

exponentially-growing planktonic cells regardless of the presence of a conjugation plasmid (5).  

rpoS plays a key role during biofilm formation because it encodes the sigma S factor which 

regulates a number of stress-related genes (54).  yeaGH were also identified as putative stress 

response genes (54) since they are regulated by RpoS in Salmonella enterica.  In addition, cold-

shock protein regulators cspABFGI and the heat-shock protein regulator htgA were induced in a 

temporal fashion during biofilm formation (14).  In human urine, stress genes were also induced 

in asymptomatic bacteriuria E. coli during biofilm formation (e.g., cspAGH, ibpAB, pphA, soxS, 

yfiD) (24).   

      CpxAR is a two component system for response to cell envelope stress (10).  CpxAR 

also controls the synthesis of adhesive organelles (45) and appears to help cells respond to 

adverse conditions (16).  CpxA is a histidine kinase that functions in the inner membrane (12) as 

the sensor to envelope stress (e.g., cell invasion, high pH (40), and unassembled P-pilus subunits 

(11)).  CpxR is the response regulator which resides in the cytoplasm (12); it is phosphorylated 

by CpxA which auto-phosphorylates and then transfers the phosphate to CpxR (CpxR~P).  
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Accumulation of surface adherence factors such as pili subunits in the cytoplasm or in the outer 

membrane leads to activation of the Cpx system (16). The outer membrane protein NlpE 

activates the Cpx system when NlpE is overproduced, but the Cpx pathway is activated in an 

NlpE-independent manner in the presence of envelope stress (12).  CpxR~P positively regulates 

virulence (39) and the porin OmpC (3), but negatively regulates both genes which encode 

adherence factors (e.g., csgBD) (31) and motility genes (e.g., motAB, cheAW) (10).  At the post-

transcription level, CpxR-P controls pili monomer secretion (16).  

  Sigma E (σE ) specifically responds to cell envelope stress (1), and it is required in the 

expression of periplasmic folding catalysts, proteases, and other outer membrane components of 

the envelope (19).  RseA is a 216 aa, trans-membrane, anti-sigma factor that can form an 

inhibitory complex that blocks σE from binding to RNA polymerase (7); hence, this anti-sigma 

factor can control envelope stress (9).  The stability of RseA (and therefore its effect on σE) is 

based on outer membrane protein OmpC which activates the protease DegS which cleaves RseA 

(1).  In the presence of envelope stress, the two-component system CpxAR is the dominant 

regulator over RseA-σE (16). Another outer membrane protein, OmpA, is linked to σE through 

the small RNA MicA (60); MicA is a negative antisense regulator of OmpA synthesis, and this 

sRNA is induced by overexpression of σE (60).   

  Recently, we found BssR (YliH) is a biofilm repressor because it repressed motility of E. 

coli in LB, induced indole which is an inhibitor of biofilm formation, and repressed autoinducer-

2 (AI-2) induced genes (15).  DNA microarray analysis reveals that 13 stress response genes 

(e.g., sdiA, ydaD, ydaK) are induced and that 51 stress response genes (e.g., yodC, yjbJ, rpoS) 

are repressed by deletion of bssR in E. coli K-12 wild-type (15).   

  Here, five pairs of DNA microarrays (E. coli BW25113 with and without R1drd19 at 7 h, 

15 h, and 24 h in complex medium, E. coli ATCC25404 with and without R1drd19 at 24 h in 
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complex medium, and E. coli MG1655 with and without R1drd19 at 24 h in minimal medium) 

were used to identify genes related to enhanced biofilm formation upon adding a conjugative 

plasmid.  Based on the identified genes, forty isogenic knockout mutations were investigated and 

classified.  It was determined that R1drd19 mediates an increase in biofilm formation through its 

interaction with CpxAR, RseA, BssR, and OmpA. 

Materials and methods 

Bacterial strains, plasmids, and growth conditions.   

  The E. coli strains and plasmids used are listed in Table 1.  The three E. coli strains were 

chosen since their biofilm formation has been studied in our lab: BW25113 (14), MG1655 (22), 

ATCC25404 (63).  pCM18 (25) constitutively expresses the green fluorescence protein (GFP), 

so it was used to visualize the biofilms; this plasmid was maintained by the addition of 300 

μg/mL erythromycin.  Luria-Bertani (LB) (52) was used for overnight cultures. LB and M9 

minimal medium with 0.4% casamino acids and 0.4% glucose (M9C glu) (50) were used to form 

biofilms.  To maintain R1drd19 (20), 30 μg/mL chloramphenicol was added to the overnight 

cultures, and 50 μg/mL of kanamycin was added to the overnight cultures for growing the 

isogenic knock-out strains (2).  After the overnight cultures, antibiotics were omitted in the 

crystal-violet biofilm assay, the aggregation assay, and the motility assay.  Vibrio harveyi was 

cultured in Autoinducer Bioassay (AB) medium for the AI-2 assay (58).  

  The knockout deletions of all the strains were confirmed by Baba et al. (2) using the 

polymerase chain reaction (PCR) by amplifying the regions flanking the deleted gene using two 

specific primers in the kanamycin gene (K1: 5’-CAGTCATAGCCGAATAGCCT and K2: 5’-

CGGTGCCCTGAATGAACTGC).  For example, to confirm the cpxA deletion, forward primer 

5’-GCCAATAAAATCCTGTTAGTTGA was used with K1 and reverse primer 5’-

GCCCGATATCCGGTTGATGTATA was used with K2.  For rseA, forward primer 5’-
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GCCAGCGAGCAGTTAACGGACCA and reverse primer 5’-

CCTTGCGCTGCCCCGAACTTAAT were used. For ompA, forward primer 5’-

GCCTACACTTCAGGCTATGCACA and reverse primer was 5’-

GCCAAATATCAACAACTTGAAAA were used.  For bssR, forward primer 5’-

CCAACCCGGCTACCCCACAAATC and reverse primer 5’-

CCATTGCGTGGGCTAACTTTAAG were used. 

Conjugation.   

  Plasmid R1drd19 was conjugated (65) into the 40 isogenic mutants using donor strain E. 

coli BW25113 cysB/R1drd19.  The recipient colonies were selected on M9C glu plates 

containing 30 μg/mL of chloramphenicol, and the presence of R1drd19 was confirmed using 

four antibiotics (100 μg/mL of ampicillin, 50 μg/mL of kanamycin, 30 μg/mL of 

chloramphenicol, and 100 μg/mL of streptomycin ) (20). 

Crystal violet biofilm assay.   

  This assay was based on that of Pratt and Kolter (44) but was modified to achieve 

consistent biofilm formation upon addition of the conjugation plasmid.  E. coli strains were 

grown in LB medium for 16 h then the overnight cultures were inoculated into fresh LB; when 

the turbidity reached 1.5 at 600 nm, these cultures were diluted to a turbidity of 0.05 at 600 nm 

in LB and added to polystyrene 96-well plates and incubated at 37°C for 7 h without shaking.  

Each biofilm assay data point was the average from 10 wells for each of 3 to 20 independent 

cultures. 

Flow cell biofilm experiment and image analysis.   

  Strains were cultured overnight in LB medium with erythromycin to maintain pCM18 

and chloramphenicol to maintain R1drd19.  All the flow cells (14) were inoculated at a turbidity 

of 0.05 at 600 nm at 37°C for two hours at a flow rate of 13 mL/h, then fresh LB medium with 
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300 μg/mL erythromycin was added at 13 mL/h.  After 24 h, a TCS SP5 confocal microscope 

(Leica Microsystems GmbH, Wetzlar) was used to view the flow cell biofilms by imaging 

approximately eight random positions; for each position, 25 images were taken.  IMARIS 

confocal software (BITplane, Zurich, Switzerland) was applied to process the images.  Those 

200 color confocal flow chamber images were converted to gray scale by using Image Converter 

(Neomesh Microsystems, Wainuiomata, Wellington, New Zealand).  COMSTAT confocal 

software (27) was used to determine the biofilm parameters.  

Growth rate measurement.  

  Strains and the mutants carrying the conjugation plasmid R1drd19 were grown in LB 

medium with appropriate antibiotics, and the turbidity at 600 nm was measured from 0.08 to 0.6 

as function of time.  Two independent cultures were used for each growth rate. 

RNA isolation and DNA microarrays.   

  To study the impact of R1drd19 on E. coli wild-type biofilm formation, E. coli 

BW25113 biofilms with and without R1drd19 were developed on glass wool (Corning Glass 

Works, Corning, NY) for 7 h, 15 h, and 24 h in LB.  Similarly, E. coli ATCC25404 biofilms 

with and without R1drd19 were developed on glass wool for 24 h in LB, and E. coli MG1655 

biofilms with and without R1drd19 were developed on glass wool for 24 h in M9C glu.  

Different media were chosen for the different strains because they are the media in which 

R1drd19 influenced biofilm formation to the largest extent (data not shown). Biofilm cells were 

removed by sonicating the glass wool in 200 mL of sterile 0.85% NaCl solution at 0°C, then the 

total RNA was isolated as described previously (49).  The E. coli Genechip antisense genome 

array (Affymetrix, P/N 900381) was used to analyze the complete E. coli transcriptome as 

described previously (22). Based on the manufacturer’s guidelines, each array contains probes 

for more than 4200 open reading frames (ORFs).  Each ORF is covered by 15 probe pairs 
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consisting of a perfect match and a mismatch pair.  Expression of each gene is evaluated by 

comparing intensity of the perfect match probe and the mismatch probe in each of the 15 probe 

pairs, leading to reliable gene expression profiles 

(http://www.affymetrix.com/products/arrays/specific/ecoli_antisense.affx).  Total signal intensity 

was scaled automatically in the software to an average value of 500. Genes were identified as 

differentially expressed if the P value was less than 0.05 and if the expression ratio was greater 

than 2 to 2.5-fold for all genes since the standard deviation for the expression ratio for the genes 

in the data was 1.3 to 3.3 (48).  The gene functions were obtained from the National Center for 

Biotechnology Information database (http://www.ncbi.nlm.nih.gov/) (18) the Institute for 

Genomic Research, University of California at San Diego, and the UNAM database 

(http://ecocyc.org/) (34).  

Motility assay.   

  Cell motility (56) was examined by inoculating 16 h overnight cultures into fresh LB, by 

growing until the turbidity at 600 nm reached around 1, and by inoculating motility agar plates 

(1% tryptone, 0.25 % NaCl, and 0.3 % agar) with these exponentially-growing cells using a 

toothpick.  Motility halos were quantified using at least three plates for each culture, and two 

independent cultures for each strain.  

Aggregation assay.   

  This assay was modified slightly (51); E. coli strains were cultured for 16 h overnight in 

LB, and these overnight cultures were inoculated into fresh LB to create exponentially-growing 

cells at a turbidity 1.5 at 600 nm. The cells were washed with LB medium to remove antibiotics, 

and diluted in 3 mL of LB to a turbidity at 600 nm of 2.5.  The cultures were placed in 14 mL 

sterile tubes, and incubated quiescently at 37°C for 7 h.  The turbidity was measured 5 mm 

underneath the surface to determine the cell concentration which is an indirect determination of 
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cell aggregation.  Each data point was the average of two tubes for each independent culture, and 

two independent cultures were conducted for each strain.  

AI-2 assay.   

  V. harveyi BB170 was inoculated in AB medium and cultured at 30°C at 250 rpm for 16 

hours.  E. coli LB overnight cultures with antibiotics (16 h, 30°C) were inoculated into fresh LB 

medium without antibiotics, and 1.5 mL of the cell culture was taken at intervals and quickly 

centrifuged at 16,000 g for 5 min.  The samples were filter sterilized and stored at 0°C.  

Overnight cultures of V. harveyi BB170 were diluted 5000-fold in 50 mL of AB medium.  The 

diluted V. harveyi BB170 culture (1.8 mL) and 0.2 ml of E. coli supernatants were mixed 

together and incubated at 30˚C at 250 rpm for four hours as at that time V. harveyi BB170 has 

the lowest bioluminescence. Luminescence of cultures (0.1 mL) was measured with a 

luminometer (Turner Design 20/20 luminometer) after the mixture was preheated at 37°C for 2 

min. Two independent cultures were performed, and the average was used to conclude. 

Microarray data accession numbers.   

  The expression data have been deposited in the NCBI Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession Number 

(GSM147162 ~ 147165 and GSM153383 ~ 153388) (18). 

Results 

Conjugation plasmid R1drd19 promotes E. coli biofilm formation.  

  Addition of R1drd19 had no affect on the growth rate of E. coli BW25113 wild-type 

strain in LB medium (1.53 ± 0.00 h-1 for the wild-type vs. 1.56 ± 0.05 h-1 with R1drd19) (Table 

2).  However, in 96-well plates, adding R1drd19 increased BW25113 biofilm formation 1.9 ± 

0.6-fold in LB at 7 h and increased ATCC25404 biofilm formation 3.5 ± 0.5 fold in LB at 24 h.  
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  To corroborate the 96-well biofilm assay, continuous flow cells were used to study the 

E. coli BW25113 biofilm architecture with and without R1drd19 in LB at 37°C after 24 h.  

COMSTAT analysis (Table 2) indicated that upon adding R1drd19, the biofilm biomass of 

BW25113 increased 3.7-fold and the mean thickness of BW25113 increased 3.5-fold.  Hence, 

R1drd19 increases biofilm formation considerably without affecting planktonic growth.   

Gene expression profiles upon adding R1drd19.   

  To gain insight into the genetic basis of the increased biofilm formation upon adding 

conjugation plasmid R1drd19, gene expression profiles of the biofilm cells were determined at 7 

h, 15 h, and 24 h for BW25113 in LB, at 24 h for MG1655 in M9C glu, and at 24 h for 

ATCC25404 in LB.  The specific media were chosen to maximize the effect of R1drd19 on 

biofilm formation of each strain as well as to see the effect of the conjugation plasmid in both 

minimal and rich media.  Multiple strains were used so that a general effect of R1drd19 on 

biofilm formation could be discerned, and the microarrays were conducted at multiple times with 

BW25113 to get a temporal response.  The most induced and repressed genes for the five sets of 

microarray data are summarized in Table 3.  The genes differently expressed upon adding 

R1drd19 involved amino acid transport and metabolism, carbohydrate transport and metabolism, 

cell motility, cell wall/membrane biogenesis, defense mechanisms, energy production and 

conversion, inorganic ion transport and metabolism, lipid transport and metabolism, 

posttranslational modification, protein turnover, chaperones, replication, recombination and 

repair, secondary metabolites biosynthesis, transport and catabolism, signal transduction 

mechanisms, transcription, phage and phage related genes, and genes with unknown functions.  

  The gene expression profile varies in different strains and medium backgrounds.  At 7 h 

with BW25113, adding R1drd19 induced 451 genes (10% of the genome) more than 2.0 fold and 

repressed 291 genes (7% of the genome) more than 2.0 fold.  At 15 h with BW25113, adding 
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R1drd19 induced 112 genes (2.5% of the genome), and repressed 10 genes more than 2.0 fold 

(0.2% of the genome).  At 24 h with BW25113, adding R1drd19 induced 30 genes more than 2.0 

fold (0.7% of the genome), and repressed 275 genes more than 2.0 fold (6% of the genome).  At 

24 h with MG1655, adding R1drd19 induced 39 genes more than 2.5 fold (0.9% of the genome), 

and repressed 50 genes more than 2.5 fold (1.1% of the genome).  At 24 h with ATCC25404, 

adding R1drd19 induced 53 genes more than 2.0 fold (1.2% of the genome), and repressed 9 

genes (0.2% of the genome) more than 2.0 fold. The only set of genes consistently induced 

among the five microarray data sets including both strains and growth conditions is the 

replication, recombination and repair genes insA_1, insA_2, and insA_5.  The genes encoding 

oligopeptide ABC transporters oppABCDF were induced up to 4-fold in the BW25113 7 h and 

15 h microarrays.  Also, energy production and conversion genes (sdhABCD, sucABCD, 

nuoABCEFGHIJKLM, and atpEFH) were induced 2 to 7-fold, in the BW25113 7 h and 15 h 

microarrays.  Within the same set of microarray data, the most consistent group of genes with 

differential expression upon adding R1drd19 is the 23 e14 phage genes in MG1655 at 24 h in 

M9C glu which were induced 3- to 104-fold.  The psp operon was also induced consistently in 

BW25113 at 15 h in LB. The genes that were chosen for further study (40 isogenic mutants) are 

based primarily on two criteria: (i) they were significantly induced or repressed upon adding 

R1drd19 to BW25113 (hence their study was facilitated using the Keio collection of single gene 

knock-outs for this strain) or (ii) they were located just upstream or downstream of those with 

marked differential expression. 

Biofilm formation of isogenic mutants.   

   Based on the microarray results, biofilm formation was tested with R1drd19 for 40 

related isogenic knockout mutants of BW25113 at 7 h in LB using the crystal violet assay (Fig. 

1).  To aid in their analysis, the isogenic mutants were categorized into five classes: cells with 
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Class I mutations (rseA, bssR, cpxA, and ompA) exhibited no difference in biofilm formation 

compared to the wild-type strain and no increase upon adding R1drd19 (Fig. 1A); Class II 

mutations (gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, 

cstA, rseC, ompF and yqjD) increased biofilm formation compared to the wild-type strain and 

the addition of R1drd19 decreased biofilm formation relative to that formed by the mutant (Fig. 

1B); Class III mutations (gadA) increased biofilm formation compared to the wild-type strain 

and increased biofilm upon adding R1drd19 (Fig. 1C); Class IV mutations (aceB, glgS, glpD, 

csgG, hdeD, pspA, gadB, tnaA, and crl) increased biofilm formation compared to the wild-type 

strain but had little change in biofilm upon adding R1drd19 (Fig. 1D); and Class V mutations 

(flhC, nmpC, flhD, pspE, icdA, atpF, atpH, rseB, and sodB) had no difference compared to the 

wild-type strain but increased biofilm upon adding R1drd19 (Fig. 1E).  It appears that the 

deletion of Class I or II genes blocked the effects of R1drd19 on BW25113, which indicates that 

these genes are key genes involved in R1drd19-related induction of biofilm formation. 

   To corroborate the 96-well biofilm results for the Class I mutants, we also conducted 

flow cell experiments in the presence and absence of R1drd19 (rseA/R1drd19, bssR/R1drd19, 

cpxA/R1drd19, and ompA/R1drd19) in LB at 37°C after 24 h (Fig. 2C/2D/2E/2F).  Flow cells 

experiments were also conducted with rseA, bssR, cpxA, and ompA as negative controls.  

COMSTAT analysis (Table 2) indicated there is no increase in biomass or mean thickness by 

adding R1drd19 to cells with the rseA, bssR, cpxA, and ompA mutations compared to the wild-

type strain. Hence, the biofilm biomass of rseA/R1drd19, bssR/R1drd19, cpxA/R1drd19, and 

ompA/R1drd19 decreased dramatically compared to BW25113/R1drd19 (4.1-fold, 3.7-fold, 2.2-

fold, and 3.5-fold, respectively), as did the biofilm mean thickness (2.8-fold, 2.8-fold, 2.3-fold, 

and 13-fold, respectively) (Table 2).  In contrast to the wild-type strain, adding R1drd19 

decreased or did not alter biomass, substratum coverage, and mean thickness of the four Class I 
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mutants (Table 2).  Therefore, the Class I mutations (rseA, bssR, cpxA, and ompA) prevent 

R1drd19 from increasing biofilm formation as it does with the wild-type strain, and there was 

good agreement between the 96-well and the flow cells biofilm experiments. Furthermore, 

normalization of biofilm formation by cell growth does not affect the classification of the Class I 

genes (data not shown). 

R1drd19 increases aggregation through Class I genes.   

   To study the role of aggregation in biofilm formation of E. coli with R1drd19, we tested 

the aggregation of the four E. coli BW25113 Class I mutants and the 17 Class II mutants that we 

identified as related to R1drd19 and biofilms.  For the wild-type strain, addition of R1drd19 

increases aggregation 3 ± 1-fold in LB.  Except for cstA, Class II mutations have an apparent 

inverse effect of these mutations on biofilm enhancement by R1drd19 and aggregation 

stimulated by the presence of the plasmid in that the mutations alone have no significant effect 

on aggregation of the wild-type strain, but they increased aggregation 4- to 47-fold upon adding 

R1drd19 relative to the wild-type strain (except cpxR which is the partner of class I gene cpxA 

and is part of the same two-component system) (Table 4).  However, for Class I, the mutations 

again have no effect on aggregation compared to the wild-type strain, but addition of R1drd19 

did not increase aggregation except for rseA where there was an extraordinary increase in 

aggregation (267-fold) upon adding R1drd19 (Table 4).  Since the addition of R1drd19 increased 

the aggregation of the wild-type strain, but not aggregation for 3 of the 4 Class one mutants, 

R1drd19 enhanced aggregation of the wild-type strain requires Class I genes bssR, cpxA, and 

ompA.  In contrast, the Class II proteins repress aggregation since their inactivation results in 

increased aggregation.  Also, this increase in aggregation is inversely proportional to biofilm 

formation as shown in Fig. 1B. Therefore, R1drd19 increases aggregation using Class I proteins, 

and Class II proteins repress aggregation. 
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R1drd19 increases biofilm formation by decreasing motility through Class I and Class II 

genes.   

   Addition of R1drd19 decreased BW25113 wild-type motility 24 ± 7%.  The motility of 

wild-type BW25113 was not substantial, forming only a diameter of 0.6 ± 0.1 cm after 8 h.  

Similar to the aggregation results, we conducted motility assays for the Class I and II mutants 

(Table 4).  88% of the 17 Class II mutants increased wild-type motility from 1.6- to 7.0-fold, and 

except for slp, all of them were more motile upon adding R1drd19 compared to the wild-type 

strain although for 88% of them, the relative increase was less than without R1drd19 (Table 4).  

Hence, one of the reasons for the failure of the conjugation plasmid to increase biofilm formation 

appears to be the enhanced motility that occurs with the Class II mutants. 

   Supporting this idea, deletion of the Class I genes prevented R1drd19 from decreasing 

motility as it did for the wild-type strain (Table 4), and motility was increased for rseA, bssR, 

and ompA.  One of the Class I genes, cpxA, encodes the upstream protein CpxA in the CpxR-P 

regulation pathway that down-regulates motility genes (10) (Fig. 4).  cpxA, cpxR, and cpxP were 

induced by adding R1drd19 1.3-fold, 2.5-fold, and 6.1-fold at 7 h in LB respectively (Table 3), 

which indicates activation of the two-component system that led to 16 motility genes being 

repressed by adding R1drd19 upon addition to the wild-type strain (Table 3).  Therefore, it 

appears that R1drd19 increases wild-type biofilm because it initiates the pathway which 

represses cell motility through the Class I genes.   

R1drd19 increases biofilm formation by increasing the quorum sensing signal AI-2.   

   In the microarray data of ATCC25404 in LB at 24 hours (Table 3), adding R1drd19 

repressed glpDKF 3.0- to 5.7-fold; the glpD mutation represses lsr transcription, which results in 

accumulation of extracellular AI-2 (64).  Therefore, we studied the effect of R1drd19 on 

extracellular AI-2 concentrations.  As expected, extracellular AI-2 concentrations in both the 
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wild-type strain BW25113 and BW25113/R1drd19 accumulated in the stationary phase (61) and 

decreased at the end of the stationary phase (Fig. 3). However, the addition of R1drd19 increased 

extracellular AI-2 3.4-fold at a turbidity of 3.5 (Fig. 3).  As a positive control, AI-2 

concentrations for the glpD mutant were assayed and this mutation increased AI-2 7.1-fold as 

expected (64). Therefore, adding R1drd19 increases the cell quorum sensing signal AI-2 

probably by repressing glpD which leads to an increase of biofilm formation in E. coli as has 

been seen with direct addition of AI-2 (22).    

Discussion 

  In this study, we show clearly that E. coli biofilm formation is induced by adding 

R1drd19 in different strains (E. coli BW25113, MG1655, and ATCC25404) and in different rich 

and minimal media.  Using a whole-transcriptome approach, we discovered the addition of this 

conjugation plasmid affects consistently Class I gene expression (rseA, bssR, cpx operon, and 

ompA) in different E. coli strains. We discovered that mutations in these genes prevent the 

addition of R1drd19 from increasing biofilm formation as it does in the wild-type strain.   

  We hypothesize that the pili formed by the conjugation plasmid lead to unassembled or 

misfolded proteins in the membrane that increase E. coli K-12 biofilm formation through the 

associated stress response (Fig. 4) much like acid, heat, hydrogen peroxide, and cadmium stress 

have been shown by us to increase E. coli biofilm formation (67).  The envelope stress response 

system responds to pili (11), and regulates genes involved in biofilm formation.  RseA and CpxA 

are the sensors in the two different envelope stress response systems respectively, the RseA-σE 

envelope stress response system and the CpxAR two component system.  Although highly 

speculative, the Class I protein OmpA may also sense the signal from pili in the outer membrane, 

and act as the activator of CpxAR two-component system.  Therefore, three of the four Class I 

genes are involved in early regulation of the biofilm pathway by sensing the signal from 



 

 

156

conjugative pili which initiates the envelope stress response system and regulates biofilm-related 

genes, including adherence genes and motility genes.  Upon deletion of rseA, cpxA, and ompA, 

E. coli is not able to sense the signal upon adding R1drd19, and thus this conjugation plasmid 

fails to increase biofilm formation.   

  The envelope stress gene rseA was induced 2.3-fold in the 7 h microarray data with 

BW25113, and this gene was differentially expressed in other microarray studies (repressed 2.5-

fold in BW25113 at 24 h in LB and repressed 2.3 fold in MG1655 at 24 h in M9C glu) (Table 3).  

RseA, the anti-sigma E factor (1), is induced by adding R1drd19 in E. coli strains.  It appears 

conjugation promotes RseA binding to σE, and σE is blocked from binding RNA polymerase, and 

thus possibly represses certain biofilm-related genes.  Furthermore, rseA is induced by cold-

shock (42), and is down-regulated by OmpC, which is up-regulated in biofilm cells compared to 

stationary cultures (54).  Here, cold-shock genes cspACDG were induced 2.5 to 3.5-fold by 

R1drd19 in the BW25113 strains (Table 3).  Hence, we also speculate that cold shock proteins 

are possibly involved in the mechanism of biofilm increase upon adding R1drd19 through the 

RseA system. 

  The relationship between Cpx, stress, and biofilm is more clear.  Cpx expression in 

relation to envelope stress is derived from the expression of protein folding catalysts (DsbA, 

PpiA, and PpiD) and degrading factors like DegP, which cleaves RseA and releases σE (17).  At 

the transcriptional level, Cpx represses genes for adherence, taxis, and motility, whereas it 

activates genes involved in folding factor/protein degradation, outer membrane proteins, and 

multidrug resistance (16).  cpxAR and cpxP were induced in BW25113 upon R1drd19 addition at 

7 h in LB (1.3-, 2.5- and 6.1-fold respectively), and cpxR and cpxP were induced 3.5-fold in 

BW25113 at 15 h in LB.  Possibly associated with cpxAR and cpxP induction, 16 cell motility 

genes were repressed 1.7 to 4.9-fold upon adding R1drd19 in BW25113 at 7 h in LB. Curli 
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genes, csgBEFG, were also repressed 2.8-, 3.7-, 2.3-, and 6.5-fold, respectively.  Hence, our 

DNA microarray data showed that at the transcriptional level, the genes related to motility were 

repressed by adding R1drd19, and CpxR is the potential regulator involved in this mechanism 

(Table 3).   

  The function of OmpA upon R1drd19 addition is less clear even though we found it is 

necessary for R1drd19 to increase E. coli biofilm formation. ompACF, the genes encoding outer 

membrane proteins, were induced 3.0-, 2.8-, and 2.5-fold respectively, upon R1drd19 addition in 

BW25113 at 7 h in LB.  ompA was also induced 2.8- and 3.0-fold respectively, upon R1drd19 

addition in BW25113 at 15 h in LB and in ATCC25404 at 24 h in LB.  We predict that OmpA, 

similar with another outer membrane protein, NlpE, is positioned early in the stress response 

system.  Adding R1drd19 induces ompA gene expression; consequently, overproduced OmpA 

activates the two-component system CpxAR to mediate biofilm formation.  In addition, OmpA 

enhances E. coli swarming without significantly affecting swimming (30); usually swarming and 

biofilm formation are correlated (55), so addition of R1drd19 increase OmpA which may then 

facilitate biofilm formation through its link to swarming.   

  bssR was repressed in two out of five sets of microarray data (Table 3).  In LB medium, 

the deletion of bssR repressed mtr, which encodes the protein importing indole and induced 

acrEF that encode proteins involved in the export of indole (15).  DNA microarrays indicated 

that BssR regulates genes involved in biofilm formation (15), and 130 genes out of them were 

affected by quorum sensing via AI-2.  However, how R1drd19 interacts with BssR is not clear.  

It is possible that R1drd19 increases biofilm formation through indole regulated by BssR.  As the 

deletion of bssR decreased indole concentration in BW25113 in LB glu and BssR decreased 

biofilm formation in LB glu, adding indole to bssR mutant with R1drd19 would possibly recover 
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the biofilm formation back to the same level as the wild-type strain with R1drd19.  Class II 

mutations also prevent R1drd19 from increasing biofilm formation. 

  Supporting the hypothesis of the link between the cell envelope stress response system 

and R1drd19 addition, we found that the genes that encode murein were induced upon adding 

R1drd19 to the E. coli strains: murE, glmS, and yeaF were induced 2.5- to 3.3-fold in BW25113 

in LB at 7 h (Table 3).  Murein contributes to the mechanical stability of the E. coli cell wall 

(29).  We postulate that the murein genes were induced due to the response to the cell envelope 

stress upon adding R1drd19.  lpp, the gene encoding murein lipoprotein, was also induced 2.8 

and 2.1-fold upon adding R1drd19 in LB for BW25113 at 7 hours and 15 hours, and for 

ATCC25404 at 24 hours (Table 3). bolA, a possible regulator of murein genes (53), was also 

induced 2.0 -fold in BW25113 in LB at 15 hours, but repressed 2.0-fold in ATCC25404 in LB at 

24 hours upon adding R1drd19.  In addition, the operon encoding oligopeptide permeases, 

oppABCDF (28), were induced 2.8 to 4.0-fold upon adding R1drd19 in BW25113 in LB at 7 

hours; these permeases assist murein recycling (23). Hence, induction of the murein genes upon 

R1drd19 addition corroborates that the cell experienced envelope stress.  

 The conjugation plasmid may also increase cell persistence by inducing persistence 

genes in E. coli.  Persisters are responsible for high resistance in biofilm due to various 

antimicrobials (57).  Our microarray data indicated the conjugation plasmid has a significant 

effect on persistence gene transcription.  In MG1655, 23 e-14 prophage genes (b1137 ~ 1159) 

were induced 3- to 104-fold by adding R1drd19; we also identified CP 4-6 prophage genes were 

induced (b0275 in all the BW25113 microarrays and yafXZ in BW25113 15 h microarray data).  

Both e-14 prophage and CP 4-6 prophage genes were reported as induced in persister cells (37).  

Another operon associated with cell persistence, pspABCDE (33), was also induced upon 

R1drd19 addition (Table 3).  The psp genes in this operon were induced 3.5- to 6.5-fold in 



 

 

159

BW25113 at 15 hours in LB, 1.6- to 2.5-fold in ATCC25404 at 24 hours in LB, and repressed 

3.5- to 4.3-fold in MG1655 at 24 hours in M9C glu upon adding R1drd19.  Therefore, the 

addition of the conjugation plasmid may influence cell persistence.   

 By investigating the differentially expressed genes of the host rather than the R1 plasmid 

itself, it was discovered here that cell envelope stress is one of the key reasons for the increase in 

biofilm formation upon addition of a conjugation plasmid.  Understanding how biofilms form 

when they are influenced by a conjugation plasmid is important since these plasmids enhance 

biofilm formation while overriding the importance of flagella, type I fimbriae, Ag43, and curli 

(46).   

Reference 

1. Alba, B. M., and C. A. Gross. 2004. Regulation of the Escherichia coli sigma E-
dependent envelope stress response. Mol. Microbiol. 52:613-619. 

2. Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, 
M. Tomita, B. L. Wanner, and H. Mori. 2006. Construction of Escherichia coli K-12 
in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol.:online. 

3. Batchelor, E., D. Walthers, L. J. Kenney, and M. Goulian. 2005. The Escherichia 
coli CpxA-CpxR envelope stress response system regulates expression of the porins 
OmpF and OmpC. J. Bacteriol. 187:5723-5731. 

4. Bayer, M., R. Eferl, G. Zellnig, K. Teferle, A. Dijkstra, G. Koraimann, and G. 
Högenauer. 1995. Gene 19 of plasmid R1 is required for both efficient conjugative 
DNA transfer and bacteriophage R17 infection. J. Bacteriol. 177:4279-4288. 

5. Beloin, C., J. Valle, P. Latour-Lambert, P. Faure, M. Kzreminski, D. Balestrino, J. 
A. J. Haagensen, S. Molin, G. Prensier, B. Arbeille, and J.-M. Ghigo. 2004. Global 
impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. 
Microbiol. 51:659-674. 

6. Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. 
Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, 
H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The 
complete genome sequence of Escherichia coli K-12. Science 277:1453-1474. 

7. Campbell, E. A., J. L. Tupy, T. M. Gruber, S. Wang, M. M. Sharp, C. A. Gross, 
and S. A. Darst. 2003. Crystal structure of Escherichia coli sigmaE with the 
cytoplasmic domain of its anti-sigma RseA. Mol. Cell. 11:1067-1078. 

8. Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal 
genes in Escherichia coli K-12 using PCR products. PNAS 97:6640-6645. 

9. De Las Peñas, A., L. Connolly, and C. A. Gross. 1997. The sigmaE-mediated response 
to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two 
negative regulators of sigmaE. Mol. Microbiol. 24:373-385. 



 

 

160

10. De Wulf, P., O. Kwon, and E. C. C. Lin. 1999. The CpxRA signal transduction system 
of Escherichia coli: growth-related autoactivation and control of unanticipated target 
operons. J. Bacteriol. 181:6772-6278. 

11. De Wulf, P., A. M. McGuire, X. Liu, and E. C. C. Lin. 2002. Genome-wide profiling 
of promoter recognition by the two-component response regulator CpxR-P in 
Escherichia coli. J. Biol. Chem. 277:26652-26661. 

12. DiGiuseppe, P. A., and T. J. Silhavy. 2003. Signal detection and target gene induction 
by the CpxRA two-component system. J. Bacteriol. 185:2432-2440. 

13. Dionisio, F., I. C. Conceição, A. C. R. Marques, L. Fernandes, and I. Gordo. 2005. 
The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol. 
Lett. 1:250-252. 

14. Domka, J., J. Lee, T. Bansal, and T. K. Wood. 2007. Temporal gene-expression in 
Escherichia coli K-12 biofilms. Environ. Microbiol. 9:332-346. 

15. Domka, J., J. Lee, and T. K. Wood. 2006. YliH (BssR) and YceP (BssS) regulate 
Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. 
Microbiol. 72:2449-2459. 

16. Dorel, C., P. Lejeune, and A. Rodrigue. 2006. The Cpx system of Escherichia coli, a 
strategic signaling pathway for confronting adverse conditions and for settling biofilm 
communities? Res. Microbiol. 157:306-314. 

17. Duguay, A. R., and T. J. Silhavy. 2004. Quality control in the bacterial periplasm. 
Biochim. Biophys. Acta. 1694:121-134. 

18. Edgar, R., M. Domrachev, and A. E. Lash. 2002. Gene Expression Omnibus: NCBI 
gene expression and hybridization array data repository. Nucleic Acids Res. 30:207-210. 

19. Egler, M., C. Grosse, G. Grass, and D. H. Nies. 2005. Role of the extracytoplasmic 
function protein family sigma factor RpoE in metal resistance of Escherichia coli. J. 
Bacteriol. 187:2297-2307. 

20. Ghigo, J. M. 2001. Natural conjugative plasmids induce bacterial biofilm development. 
Nature 412:442-445. 

21. González Barrios, A. F., R. Zuo, D. Ren, and T. K. Wood. 2006. Hha, YbaJ, and 
OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids 
abolish motility. Biotechnol. Bioengr. 93:188-200. 

22. González Barrios, A. F., R. Zuo, Y. Hashimoto, L. Yang, W. E. Bentley, and T. K. 
Wood. 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a 
novel motility quorum sensing regulator (MqsR, B3022). J. Bacteriol. 188:305-306. 

23. Goodell, E. W. 1985. Recycling of murein by Escherichia coli. J. Bacteriol. 163:305-
310. 

24. Hancock, V., and P. Klemm. 2007. Global gene expression profiling of asymptomatic 
bacteriuria Escherichia coli during biofilm growth in human urine. Infect. Immun. 
75:966-976. 

25. Hansen, M. C., R. J. Palmer, Jr, C. Udsen, D. C. White, and S. Molin. 2001. 
Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of 
low pH and low oxygen concentration. Microbiology 147:1383-1391. 

26. Hausner, M., and S. Wuertz. 1999. High rates of conjugation in bacterial biofilms as 
determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65:3710-3713. 

27. Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, 
and S. Molin. 2000. Quantification of biofilm structures by the novel computer program 
COMSTAT. Microbiology 146:2395-2407. 



 

 

161

28. Higgins, C. F., and M. M. Hardie. 1983. Periplasmic protein associated with the 
oligopeptide permeases of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 
155:1434-1438. 

29. Höltje, J. V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus 
of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:181-203. 

30. Inoue, T., R. Shingaki, S. Hirose, K. Waki, H. Mori, and K. Fukui. 2007. Genome-
wide screening of genes required for swarming motility in Escherichia coli K-12. J. 
Bacteriol. 189:950-957. 

31. Jubelin, G., A. Vianney, C. Beloin, J. M. Ghigo, J. C. Lazzaroni, P. Lejeune, and C. 
Dorel. 2005. CpxR/OmpR interplay regulates curli gene expression in response to 
osmolarity in Escherichia coli. J. Bacteriol. 187:2038-2049. 

32. Junker, L. M., J. E. Peters, and A. G. Hay. 2006. Global analysis of candidate genes 
important for fitness in a competitive biofilm using DNA-array-based transposon 
mapping. Microbiology 152:2233 - 2245. 

33. Kaldalu, N., R. Mei, and K. Lewis. 2004. Killing by ampicillin and ofloxacin induces 
overlapping changes in Escherichia coli transcription profile. Antimicrob. Agents 
Chemother. 48:890-896. 

34. Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. 
Paulsen, M. Peralta-Gil, and P. D. Karp. 2005. EcoCyc: a comprehensive database 
resource for Escherichia coli. Nucleic Acids Res. 33:D334-D337. 

35. Koraimann, G., and G. Högenauer. 1989. A stable core region of the tra operon 
mRNA of plasmid R1-19. Nucleic Acids Res. 17:1283-1298. 

36. Koraimann, G., C. Koraimann, V. Koronakis, S. Schlager, and G. Högenauer. 
1991. Repression and derepression of conjugation of plasmid R1 by wild-type and 
mutated finP antisense RNA. Mol. Microbiol. 5:77-87. 

37. Lindsay, S., M. Tasab, A. Rickard, M. Kertesz, P. Gilbert. 2007. Persister cells: 
mechanisms towards biofilm recalcitrance. Quebec, Canada, Fourth ASM conference on 
Biofilms. 

38. Mazel, D., and J. Davies. 1999. Antibiotic resistance in microbes. Cell. Mol. Life Sci. 
56:742-754. 

39. Nakayama, S., and H. Watanabe. 1998. Identification of cpxR as a positive regulator 
essential for expression of the Shigella sonnei virF gene. J. Bacteriol. 180:3522-3528. 

40. Nakayama, S., and H. Watanabe. 1995. Involvement of cpxA, a sensor of a two-
component regulatory system, in the pH-dependent regulation of expression of Shigella 
sonnei virF gene. J. Bacteriol. 177:5062-5069. 

41. Nancharaiah, Y. V., P. Wattiau, S. Wuertz, S. Bathe, S. V. Mohan, P. A. Wilderer, 
and M. Hausner. 2003. Dual labeling of Pseudomonas putida with fluorescent proteins 
for in situ monitoring of conjugal transfer of the TOL plasmid. Appl. Environ. 
Microbiol. 69:4846-4852. 

42. Polissi, A., W. De Laurentis, S. Zangrossi, F. Briani, V. Longhi, G. Pesole, and G. 
Dehò 2003. Changes in Escherichia coli transcriptome during acclimatization at low 
temperature. Res. Microbiol. 154:573-580. 

43. Pölzleitner, E., E. L. Zechner, W. Renner, R. Fratte, B. Jauk, G. Högenauer, and G. 
Koraimann. 1997. TraM of plasmid R1 controls transfer gene expression as an 
integrated control element in a complex regulatory network. Mol. Microbiol. 25:495-
507. 



 

 

162

44. Pratt, L. A., and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm 
formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:285-
293. 

45. Raivio, T. L., and T. J. Silhavy. 1999. The sigmaE and Cpx regulatory pathways: 
overlapping but distinct envelope stress responses. Curr. Opin. Microbiol. 2:159-165. 

46. Reisner, A., J. A. J. Haagensen, M. A. Schembri, E. L. Zechner, and S. Molin. 2003. 
Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 
48:933-946. 

47. Reisner, A., B. M. Höller, S. Molin, and E. L. Zechner. 2006. Synergistic effects in 
mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. 
J. Bacteriol. 188:3582-3588. 

48. Ren, D., L. A. Bedzyk, S. M. Thomas, R. W. Ye, and T. K. Wood. 2004. Differential 
gene expression shows natural brominated furanones interfere with the autoinducer-2 
bacterial signaling system of Escherichia coli. Biotechnol. Bioengr. 88:630-642. 

49. Ren, D., L. A. Bedzyk, S. M. Thomas, R. W. Ye, and T. K. Wood. 2004. Gene 
expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 64:515-524. 

50. Rodriguez, R. L., and R. C. Tait. 1983. Recombinant DNA Techniques: An 
Introduction. Benjamin/Cummings Publishing, Menlo Park, CA. 

51. Roux, A., C. Beloin, and J. M. Ghigo. 2005. Combined inactivation and expression 
strategy to study gene function under physiological conditions: application to 
identification of new Escherichia coli adhesins. J. Bacteriol. 187:1001-1013. 

52. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, A Laboratory 
Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

53. Santos, J. M., M. Lobo, A. P. A. Matos, M. A. De Pedro, and C. M. Arraiano. 2002. 
The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting 
normal morphology in Escherichia coli. Mol. Microbiol. 45:1729-1740. 

54. Schembri, M. A., K. Kjærgaard, and P. Klemm. 2003. Global gene expression in 
Escherichia coli biofilms. Mol. Microbiol. 48:253-267. 

55. Shrout, J. D., D. L. Chopp, C. L. Just, M. Hentzer, M. Givskov, and M. R. Parsek. 
2006. The impact of quorum sensing and swarming motility on Pseudomonas 
aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62:1264-
1277. 

56. Sperandio, V., A. G. Torres, and J. B. Kaper. 2002. Quorum-sensing Escherichia coli 
regulators B and C (QseBC): a novel two-component regulatory system involved in the 
regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43:809-
821. 

57. Spoering, A. L., and K. Lewis. 2001. Biofilms and planktonic cells of Pseudomonas 
aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183:6746-
6751. 

58. Surette, M. G., and B. L. Bassler. 1998. Quorum sensing in Escherichia coli and 
Salmonella typhimurium. Proc. Natl. Acad. Sci. U S A 95:7046-7050. 

59. Tatum, E. L., and J. Lederberg. 1947. Gene recombination in the bacterium 
Escherichia coli. J. Bacteriol. 53:673-684. 

60. Udekwu, K. I., and E. G. H. Wagner. 2007. Sigma E controls biogenesis of the 
antisense RNA MicA. Nucleic Acids Res. in press. 

61. Wang, L., Y. Hashimoto, C. Tsao, J. Valdes, and W. Bentley. 2005. Cyclic AMP 
(cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular 
Autoinducer 2 in Escherichia coli. J. Bacteriol. 187:2066-2076. 



 

 

163

62. Will, W. R., and L. S. Frost. 2006. Characterization of the opposing roles of H-NS and 
TraJ in transcriptional regulation of the F-plasmid tra operon. J. Bacteriol. 188:507-514. 

63. Wood, T. K., A. F. G. Barrios, M. Herzberg, and J. Lee. 2006. Motility influences 
biofilm architecture in Escherichia coli. Appl. Microbiol. Biotechnol. 72:361-367. 

64. Xavier, K. B., and B. L. Bassler. 2005. Regulation of uptake and processing of the 
quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187:238-248. 

65. Yee, D. C., J. A. Maynard, and T. K. Wood. 1998. Rhizoremediation of 
trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain 
expressing toluene ortho-Monooxygenase constitutively. Appl. Environ. Microbiol. 
64:112-118. 

66. Yoshioka, Y., H. Ohtsubo, and E. Ohtsubo. 1987. Repressor gene finO in plasmids 
R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. 
J. Bacteriol. 169:619-623. 

67. Zhang, X., R. García Contreras, and T. K. Wood. 2007. YcfR (BhsA) influences 
Escherichia coli biofilm formation through stress response and surface hydrophobicity. 
J. Bacteriol. 189:3051-3062. 

 



 

 

164

Table 1.  Bacterial strains and plasmids used in this study. 

 E. coli strain/plasmid Genotype Reference 
Strains 
K-12 BW25113 lacIq rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 

ΔrhaBADLD78 
(8) 

K-12 BW25113 mutants 
(all) 

BW25113 ∆gene Ω KmR (2) 

K-12 ATCC25404 Wild-type E. coli ATCC 
K-12 MG1655 F- lambda- ilvG- rfb-50 rph-1 (6) 
Vibrio harveyi BB170 BB120 luxN :: Tn5 (AI-1 sensor-, AI-2 sensor+) (58) 
Plasmids 
R1drd19 Ampr Kmr Cmr Smr; IncFII finO (20) 
pCM18 Emr; pTRKL2-PCP25RBSII-gfp3*-To-T1 (25) 

a Ampr, Kmr, Cmr, Smr, and Emr denote ampicillin, kanamycin, chloramphenicol, streptomycin, 
and erythromycin resistance, respectively.   
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Table 2.  Specific growth rates of E. coli strains in LB medium and flow cell COMSTAT 
analysis of biofilms formed in LB medium at 37°C after 24 h.  One standard 
deviation is shown. 

 
Strain Growth Rate, 

h-1 
Biomass, 
μm3/μm2 

Substratum 
Coverage, % 

Mean 
Thickness, 
μm 

Roughness 
Coefficient  

BW25113 WT 1.53 ± 0.00 3 ± 3 3 ± 2 4 ± 4 1.7 ± 0.2 
BW25113/R1drd19 1.56 ± 0.05 11 ± 4 39 ± 16 14 ± 6 0.7 ± 0.3 
rseA/R1drd19 1.22 ± 0.02 2.7 ± 0.5 4 ± 3 5 ± 1 1.4 ± 0.1 
bssR/R1drd19 1.36 ± 0.00 3 ± 3 4 ± 5 5 ± 4 1.4 ± 0.4 
cpxA/R1drd19             1.24 ± 0.05 5 ± 2 22 ± 7 6 ± 2 1.3 ± 0.2 
ompA/R1drd19            0.98 ± 0.03 3 ± 1 5± 5 4 ± 1 1.6 ± 0.2 
rseA 1.6 ± 0.1 9 ± 8 29 ± 9 11 ± 7 1.1 ± 0.1 
bssR 1.37 ± 0.04 12 ± 9 47 ± 26 15 ± 9 0.9 ± 0.4 
cpxA 1.22 ± 0.02 2.5 ± 0.5 23 ± 6 5 ± 1 1.11 ± 0.09 
ompA 1.15 ± 0.00  3 ± 3 18 ± 10 4 ± 3 1.4 ± 0.2 
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Table 3. Differential gene expression upon adding the conjugation plasmid R1 to BW25113 in LB (temporal arrays), upon 
adding R1 to MG1655 in minimal medium after 24 h, and for adding R1 to ATCC25404 in LB after 24 h. Columns 3 to 
7: fold changes (p ≤ 0.05) between biofilm samples of BW25113/R1drd19 vs. BW25113 at 7 h in LB (B/7/LB), at 15 h in LB 
(B/15/LB), at 24 h in LB (B/24/LB), at 24 h for MG1655/R1drd19 vs. MG1655 in M9C glu (M/24/M9Cglu), and at 24 hr for 
ATCC25404/R1drd19 vs. ATCC25404 in LB (A/24/LB). Complete results available via GEO access numbers GSM147162 ~ 
147165 and GSM153383 ~ 153388.   

 
Gene b # B/7/LB B/15/LB B/24/LB M/24/M9Cglu A/24/LB Description 
 Signal transduction mechanisms 
cstA b0598 5.7 3.2 -1.9 2.8 1.6 peptide transporter induced by carbon starvation 
rseA b2572 2.3 1.4 -2.5 -2.3 -1.7 anti-sigma factor that inhibits sigmaE 
csrA b2696 1.1 1.6 -2.8 -2.3 -1.7 carbon storage regulator, activator of flhDC, regulates 

biofilm formation 
bssR  (yliH) b0836 1.1 1.3 -3.5 -2.5 -1.3 biofilm signal 
crp b3357 2.5 1.5 -1.2 1.0 -1.1 CRP transcriptional dual regulator 
cpxAR two component system 
cpxA b3911 1.3 -1.2 1.0 1.1 -1.2 membrane sensor kinase/phosphatase, periplasmic 

stress sensor 
cpxR b3912 2.5 3.5 1.2 -1.2 -1.1 response regulator, periplasmic stress response 
cpxP b3913 6.1 3.5 1.0 1.1 -1.5 inhibitor of the cpx response; periplasmic adaptor 

protein 
b3914 b3914 3.0 2.8 -1.4 -1.4 -1.5   
 Cell wall/membrane biogenesis 
nmpC b0553 4.0 2.3 1.1 1.4 1.1 outer membrane porin protein; locus of qsr prophage 
ompX b0814 1.3 1.3 -2.0 -1.9 1.5 outer membrane protease, receptor for phage OX2 
ompF b0929 2.5 1.2 -1.2 1.0 1.1 Beta barrel porin (OMP Functional Superfamily) 
ompA b0957 3.0 2.8 -1.7 -1.3 3.0 outer membrane protein 3a (II*;G;d) 
ompC b2215 2.8 2.8 1.1 1.0 1.6 outer membrane porin OmpC 
 Amino acid transport, acid resistance, and metabolism 
tnaA b3708 6.5 -1.2 -1.1 1.1 1.5 L-cysteine desulfhydrase / tryptophanase 
ariR (ymgB) b1166 -2.8 1.3 -2.1 -1.1 -1.1 Hha-like regulator of acid resistance and biofilm 

formation 
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gadA b3517 -1.1 -1.9 -1.1 -1.4 4.0 glutamate decarboxylase A subunit 
gadB b1493 -3.7 -1.2 -1.3 -1.5 8.6 glutamate decarboxylase B subunit 
gadC b1492 -1.3 1.0 1.0 -1.1 2.3 XasA GABA APC transporter 
yhiE b3512 -3.7 1.0 -1.4 -1.3 7.5 GadE transcriptional activator 
yhiX b3516 -1.1 1.2 -1.6 -1.4 2.5 GadX transcriptional activator 
hdeA b3510 2.0 1.2 -1.4 -1.4 11.3 acid-resistance protein, possible chaperone 
hdeB b3509 -1.3 1.0 -1.1 -1.3 9.8 10K-L protein, related to acid resistance protein  
hdeD b3511 1.2 -1.4 1.2 1.0 3.0 protein involved in acid resistance 
oppA b1243 4.0 3.2 1.0 1.2 -1.2 OppA-oligopeptide ABC transporter substrate-

binding 
oppB b1244 2.8 1.6 1.0 1.1 -1.3 oligopeptide ABC transporter 
oppC b1245 3.2 1.7 1.0 1.2 -1.3 oligopeptide ABC transporter 
oppD b1246 3.7 1.5 -1.3 1.1 -1.2 oligopeptide ABC transporter 
oppF b1247 2.8 1.2 1.1 1.2 -1.2 oligopeptide ABC transporter 
gcvH b2904 5.7 1.5 -1.1 -1.1 1.1 dihydrolipoyl-GcvH-protein 
tdcR b3119 -7.0 -1.4 1.5 1.1 -1.4 threonine dehydratase operon activator protein 
rhsB b3482 -10.6 -1.2 1.2 -1.1 -1.1 RhsB protein in RhsB element 
 Carbohydrate transport and metabolism 
gatD b2091 4.3 1.1 2.3 1.1 1.2 galactitol-1-phosphate dehydrogenase 
gatC b2092 5.3 1.2 1.6 1.0 -1.2 phosphotransferase Systems (PEP-dependent PTS) 
gatB b2093 2.5 1.4 -1.2 -1.3 -1.2 phosphotransferase Systems (PEP-dependent PTS) 
gatA b2094 2.6 1.5 -1.1 -2.3 -1.1 phosphotransferase Systems (PEP-dependent PTS) 
gatZ b2095 4.3 1.6 -1.7 -3.0 1.5 tagatose-1,6-bisphosphate aldolase 2 
gatY b2096 4.9 1.6 -2.5 -2.0 1.2 tagatose-1,6-bisphosphate aldolase 2 
mglB b2150 5.3 1.4 -1.3 1.0 -1.1 galactose ABC transporter 
 Cell motility and curli 
yadC b0135 -4.9 -1.4 1.2 1.1 -1.1 putative fimbrial-like protein, pilus 
htrE b0139 -2.0 -1.2 1.2 1.1 -1.7 putative outer membrane fimbrial subunit export 

usher protein 
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ecpD b0140 -2.0 -1.3 1.2 1.1 -1.6 putative periplasmic pilus chaperone 
sfmA b0530 -2.3 1.0 1.2 1.3 -1.1 putative fimbrial-like protein, pilus 
sfmC b0531 -2.3 -1.1 -1.2 1.2 -1.2 chaperoning, repair (refolding) 
ybgP b0717 -2.0 -1.1 1.2 1.5 -1.3 chaperoning, repair (refolding) 
csgG b1037 -6.5 -1.2 1.1 1.1 -1.2 curli production assembly/transport component, 2nd 

curli operon 
csgF b1038 -2.3 -1.1 1.2 1.1 -1.4 curli production assembly/transport component, 2nd 

curli operon 
csgE b1039 -3.7 -1.1 1.3 1.4 -1.6 curli production assembly/transport component, 2nd 

curli operon 
csgB b1041 -2.8 -1.2 1.2 -1.3 -1.3 minor curlin subunit precursor, nucleator for adhesive 

surface organelles 
flgN b1070 -2.3 1.0 1.0 1.1 1.0 flagellar biosynthesis; believed to be export 

chaperone for FlgK and FlgL 
ycgR b1194 -2.1 -1.1 1.2 1.2 -1.4 motility, chemotaxis, energytaxis (aerotaxis, 

redoxtaxis etc) 
flhC b1891 -1.7 1.0 1.2 1.2 -1.3 transcriptional activator of flagellar Class II operons 
flhD b1892 1.2 1.0 1.2 1.3 1.0 transcriptional activator of flagellar Class II operons 
yehC b2110 -4.6 -1.2 1.2 1.3 -1.4 chaperoning, repair (refolding) 
yehD b2111 -3.0 -1.2 1.1 1.3 -1.6 putative fimbrial-like protein, pilus 
b2339 b2339 -4.3 -1.1 1.2 1.2 -1.4 putative fimbrial-like protein 
yhcA b3215 -2.5 -1.4 1.2 1.3 -1.1 chaperoning, repair (refolding) 
fimA b4314 2.6 1.6 1.2 1.1 -1.3 major type 1 subunit fimbriae (pilin) 
fimH b4320 -2.0 -1.2 1.2 1.0 -1.1 minor fimbrial subunit 
Murein related genes 
murE b0085 3.3 1.1 -1.1 -1.1 1.1 murein 
bola b0435 1.0 2.0 -2.0 -1.1 -1.1 a possible regulator of murein genes 
lpp b1677 2.8 2.1 1.1 1.0 2.3 murein lipoprotein; Braun's lipoprotein 
yeaF b1782 2.5 1.2 -1.2 1.0 1.3 MltA-interacting protein; outer membrane  
glmS b3729 2.5 1.5 1.2 -1.2 -1.2 glucosamine 
 Defense mechanisms 
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serT b0971 -2.1 1.0 5.3 1.1 1.0 serine tRNA (UGA) 
proL b2189 2.5 -1.2 7.0 1.0 1.7 tRNA 
glyU b2864 -5.3 1.1 1.2 1.6 1.1 tRNA 
glyY b4165 4.0 -1.1 4.3 2.8 1.3 tRNA 
mcrC b4345 -5.3 -1.3 1.0 1.2 -1.7 component of 5-methylcytosine-specific restriction 

enzyme McrBC 
 Energy production and conversion 
gltA b0720 4.0 2.5 -1.3 -1.2 -1.1 citrate synthase monomer, anaerobic respiration 
sdhC b0721 3.2 2.1 1.2 -1.1 1.5 succinate dehydrogenase membrane protein 
sdhD b0722 3.2 2.1 -1.2 1.1 1.2 succinate dehydrogenase membrane protein 
sdhA b0723 4.6 3.0 -1.2 -1.1 1.4 succinate dehydrogenase flavoprotein 
sdhB b0724 2.1 2.1 1.2 1.1 1.1 succinate dehydrogenase iron-sulfur protein 
sucA b0726 2.5 2.6 -1.2 -1.1 1.5 subunit of E1(0) component of 2-oxoglutarate 

dehydrogenase 
sucB b0727 3.2 3.2 -1.2 1.0 1.7 2-oxoglutarate dehydrogenase 
sucC b0728 2.8 3.5 -1.6 -1.2 1.7 succinyl-CoA synthetase, beta subunit 
sucD b0729 2.1 2.6 -1.3 1.0 1.1 succinyl-CoA synthetase, alpha subunit 
aldA b1415 2.8 2.6 -2.1 1.3 1.2 putative succinate-semialdehyde dehydrogenase / 

aldehyde dehydrogenase 
nuoN b2276 2.3 -1.1 1.2 1.1 1.0 NADH dehydrogenase I 
nuoM b2277 2.3 1.3 1.1 1.1 1.1 NADH dehydrogenase I 
nuoL b2278 3.7 1.3 1.2 1.1 1.1 NADH dehydrogenase I 
nuoK b2279 3.5 1.2 -1.1 -1.3 1.1 NADH dehydrogenase I 
nuoJ b2280 4.0 1.2 -1.1 1.0 1.1 NADH dehydrogenase I 
nuoI b2281 4.3 1.2 1.2 1.1 1.2 NADH dehydrogenase I 
nuoH b2282 3.0 1.4 -1.3 1.0 1.5 NADH dehydrogenase I 
nuoG b2283 4.3 1.4 1.1 1.1 1.1 NADH dehydrogenase I 
nuoF b2284 3.2 1.5 -1.2 1.0 1.2 NADH dehydrogenase I 
nuoE b2285 4.9 1.6 -1.1 1.2 1.4 NADH dehydrogenase I 
nuoC b2286 4.9 1.5 -1.2 1.0 1.4 NADH dehydrogenase I 



 

 

170

nuoB b2287 3.0 1.9 -1.2 -1.1 1.4 NADH dehydrogenase I 
nuoA b2288 3.2 2.0 -1.9 1.1 1.5 NADH dehydrogenase I 
gabD b2661 1.9 2.6 -1.7 -1.2 2.3 succinate-semialdehyde dehydrogenase I, NADP-

dependent 
mdh b3236 4.3 2.6 -2.0 -1.1 1.2 malate dehydrogenase 
glpA b2241 -1.2 -1.1 1.5 3.2 -1.2 sn-glycerol-3-phosphate dehydrogenase (anaerobic), 

large subunit 
glpD b3426 1.1 1.2 -1.2 5.3 -4.3 sn-glycerol-3-phosphate dehydrogenase (aerobic) 
glpK b3926 3.5 1.0 1.4 6.1 -3.0 glycerol kinase 
glpF b3927 1.2 1.2 1.4 7.0 -5.7 MIP channel, glycerol diffusion 
atpH b3735 5.7 1.7 -1.5 1.0 -1.1 ATP synthase, F1 complex, delta subunit 
atpF b3736 6.5 2.0 -1.5 1.0 1.0 ATP synthase, F0 complex, b subunit 
atpE b3737 4.3 2.1 -1.9 1.1 1.0 ATP synthase, F0 complex, c subunit 
aceB b4014 5.3 1.6 -2.4 2.0 1.7 malate synthase A 
 Inorganic ion transport and metabolism 
sodB b1656 7.0 2.5 1.2 -1.3 1.3 superoxide dismutase (Fe) 
 Lipid transport and metabolism 
fabB b2323 6.1 2.0 -2.1 -1.9 1.1 beta-ketoacyl-ACP synthase I / malonyl-ACP 

decarboxylase 
  
Posttranslational modification, protein turnover, chaperones 
mopB b4142 5.3 1.3 -1.7 -2.1 1.1 GroES, 10 Kd chaperone binds to Hsp60 in presence 

of Mg-ATP 
 Replication, recombination and repair 
insA_2 b0275 3.0 3.0 2.1 3.7 4.6 IS1 protein InsA, CP 4- 6 prophage 
insA_1 b1894 3.2 3.2 2.6 3.7 4.0 IS1 protein InsA 
insA_5 b1894 2.8 3.2 3.7 4.0 5.3 IS1 protein InsA 
 Secondary metabolites biosynthesis, transport and catabolism 
glgS b3049 2.0 2.1 -2.1 -2.5 1.0 glycogen biosynthesis, rpoS dependent 
 Transcription 
crl b0240 2.8 2.1 -1.6 -1.5 3.0 Crl transcriptional regulator 
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ybdO b0603 -7.0 -1.4 1.2 1.0 -1.5 putative transcriptional regulator (LysR familiy) 
cspD b0880 1.5 2.5 -2.5 -1.2 1.5 DNA replication inhibitor, nucleic acid-binding 

domain 
cspG b0990 2.5 1.2 1.0 1.1 1.2 CspG transcriptional regulator, temperature extremes 
cspC b1823 2.8 3.5 -1.1 1.7 1.9 Cold shock protein 
cspA b3556 2.0 1.4 -1.6 -2.1 2.5 CspA transcriptional activator 
pspA b1304 1.7 6.5 1.3 -4.3 2.3 phage shock protein, inner membrane protein 
pspB b1305 1.7 6.1 1.2 -3.7 2.1 phage shock protein 
pspC b1306 -1.1 6.5 1.6 -4.0 2.5 phage shock protein: activates phage shock-protein 

expression 
pspD b1307 2.3 6.1 1.4 -4.0 2.5 phage shock protein 
pspE b1308 2.8 3.5 1.4 -3.5 1.6 phage shock protein 
rpsK b3297 5.7 1.5 -2.3 -2.0 1.6 30S ribosomal subunit protein S11 
rpsJ b3321 5.3 -1.2 -2.8 -1.5 -1.1 30S ribosomal subunit protein S10 
rpmD b3302 6.5 1.3 -1.5 -1.1 1.5 50S ribosomal subunit protein L30 
rplV b3315 5.7 1.1 -2.1 -1.2 -1.1 50S ribosomal subunit protein L22 
rplW b3318 5.7 1.1 -2.8 -1.3 1.0 50S ribosomal subunit protein L23 
Phage and phage related genes 
yafX b0248 1.4 -1.6 2.0 1.1 1.5 CP 4- 6 prophage 
yafZ b0252 1.1 -1.5 2.1 1.3 1.1 CP 4- 6 prophage 
yagI b0272 1.4 1.1 1.2 -1.4 1.2 function unknown, CP4-6 putative prophage remnant 
icdA b1136 4.6 2.5 -1.5 1.0 1.1 isocitrate dehydrogenase, NADP+-specific 
lit b1139 -2.5 -1.2 1.0 45.3 1.0 cell death peptidase, expression of T4 late genes; e14 

prophage 
intE b1140 -2.1 1.2 1.2 16.0 -1.7 e14 integrase, in defective prophage 
b1141 b1141 -2.3 1.1 1.4 52.0 -1.1 e14 excisionase, in defective prophage 
ymfD b1137 -3.2 -1.7 1.2 104.0 2.0 putative SAM- methyltransferase, function unknown; 

e14 prophage 
ymfE b1138 -1.7 -1.2 -1.1 39.4 -4.3 predicted membrane protein, function unknown, e14 

prophage 
ymfH b1142 -1.9 1.1 1.1 8.6 -1.2 spurious translation, e14 prophage 
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ymfI b1143 -1.5 1.4 1.2 84.4 1.1 function unknown, e14 prophage 
ymfJ b1144 -1.7 -1.1 1.2 14.9 -3.5 function unknown, e14 prophage 
ymfK b1145 -1.7 1.1 -1.1 7.0 4.3 putative CI-like repressor, e14 prophage 
ymfT b1146 -2.0 1.2 -1.2 5.7 -1.1 putative Cro-like repressor, e14 prophage 
ymfL b1147 -1.6 -1.1 1.4 21.1 -1.1 function unknown, e14 prophage 
ymfM b1148 -1.2 -1.2 1.1 9.8 9.8 function unknown, e14 prophage 
ymfN b1149 -1.1 -1.2 1.2 18.4 3.2 function unknown, e14 prophage 
ymfR b1150 1.5 -1.2 -1.1 2.6 5.3 function unknown, e14 prophage 
ymfO b1151 1.7 -1.1 1.0 4.9 2.3 function unknown, e14 prophage 
ymfP b1152 1.3 -1.2 -1.1 3.5 -1.1 function unknown, e14 prophage 
ymfQ b1153 1.4 -1.3 -1.1 3.7 -1.5 function unknown, e14 prophage 
ymfS b1155 -1.9 -1.3 -1.2 9.8 1.6 function unknown, e14 prophage 
ycfK b1154 -1.2 -1.3 1.2 10.6 1.0 putative tail fiber protein, e14 prophage 
ycfA b1156 -1.9 -1.3 1.1 4.3 1.3 phage lambda tail fiber assembly gene homolog, e14 

prophage 
stfE b1157 -1.7 -1.2 -1.1 8.6 1.5 side-tail fiber protein, e14 prophage 
pin b1158 1.1 -1.3 -1.2 4.0 1.0 DNA invertase, site-specific recombination, e14 

prophage 
mcrA b1159 -2.0 -1.5 1.1 12.1 -1.1 5-methylcytosine-specific restriction endonuclease B, 

e14; prophage gene 
b1364 b1364 -6.5 1.2 -1.2 1.1 -1.4 Rac prophage 
ydfO b1549 -6.1 -1.3 -1.1 1.0 -1.6 Qin prophage 
yfjW b2642 -7.5 -1.3 -1.1 1.0 -1.2 CP4-57 prophage 
yjhB b4279 -6.1 -1.2 1.2 1.4 -1.2 KpLE2 phage-like element; putative transport protein 

(MFS family) 
 Function unknown 
ykgI b0303 -6.1 -1.2 1.4 1.5 -1.2 hypothetical protein 
ymgA b1165 -1.2 1.3 -2.6 -1.3 1.1 hypothetical protein 
b1471 b1471 -10.6 -1.2 1.4 1.1 -1.4 putative glycoprotein 
b1720 b1720 -7.5 -1.5 -1.2 1.1 -1.3   
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b2649 b2649 -6.5 -1.3 1.2 1.4 -1.4 hypothetical protein 
yqeJ b2848 -9.2 -1.5 -1.2 1.3 -1.6 hypothetical protein 
yqjD b3098 5.3 2.1 -2.6 -1.1 1.6 conserved hypothetical protein 
yhaC b3121 -9.8 -1.5 1.1 1.1 1.1 hypothetical protein 
slp b3506 -1.2 1.3 -1.6 -1.7 3.0 outer membrane protein induced after carbon 

starvation 
yjcF b4066 -7.0 -1.6 1.3 1.3 1.0 hypothetical protein 
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Table 4  Motility and aggregation assay results for E. coli BW25113 Class I and Class II 
mutants.  Motility was determined after 8 h at 37°C, and aggregation was determined 
after 7 hr in LB at 37°C.  Results are expressed as the ratio of the measurement for the 
indicated mutant to the measurement of the wild-type. Data are the average of two 
independent cultures, and one standard deviation is shown. 

 
Change (n-fold) Relative to Wild-type (WT) 

     Motility, 8h   Aggregation, 7h, LB 
Mutant Biofilm Classification 

Without 
R1drd19 

With 
R1drd19 

Without 
R1drd19 

With 
R1drd19 

cpxA Class 1 0.4 ± 0.1 0.39 ± 0.09 1.04 ± 0.06 1.1 ± 0.1  
rseA Class 1 2.8 ± 0.6 2.2 ± 0.5 1.13 ± 0.05 267 ± 43 
bssR Class 1 1.6 ± 0.4 1.7 ± 0.4 1.04 ± 0.04 1.14 ± 0.06 
ompA Class 1 1.0 ± 0.1 1.1 ± 0.1 1.01 ± 0.05 1.3 ± 0.1 
ymgA Class 2 7 ± 1 2.0 ± 0.4 1.01 ± 0.03 47 ± 24 
slp Class 2 1.2 ± 0.1 0.59 ± 0.07 1.00 ± 0.03 37 ± 6 
cstA Class 2 4.4 ± 0.4 3.2 ± 0.3 3.3 ± 0.5 9 ± 3 
gatC Class 2 3.9 ± 0.8 3.6 ± 0.7 1.11 ± 0.02 8.5 ± 0.8 
yqjD Class 2 2.2 ± 0.2 1.6 ± 0.2 0.94 ± 0.03 10.2 ± 0.6 
cpxR Class 2 4.4 ± 0.2 2.8 ± 0.1  1.38 ± 0.06 1.19 ± 0.07 
cpxP Class 2 4.1 ± 0.7 3.6 ± 0.6 1.37 ± 0.02 4.6 ± 0.5 
yagI Class 2 1.6 ± 0.3 1.4 ± 0.3 1.01 ± 0.03 11 ± 1 
ompC Class 2 2.1 ± 0.4 1.9 ± 0.5 1.10 ± 0.05 13.2 ± 0.5 
cspA Class 2 3.2 ± 0.6 2.9 ± 0.7 1.32 ± 0.07 9.3 ± 0.5 
pspD  Class 2 3.9 ± 0.7 3.4 ± 0.6 1.08 ± 0.04 17 ± 3 
pspB Class 2 1.0 ± 0.4 2.1 ± 0.4 1.2 ± 0.2 13 ± 3 
ymgB Class 2 1.7 ± 0.6 2.0 ± 0.2 1.16 ± 0.02 9 ± 1 
gadC Class 2 3.6 ± 0.8 2.1 ± 0.5 1.1 ± 0.1 12 ± 2 
pspC Class 2 2.8 ± 0.5 2.1 ± 0.4 1.04 ± 0.04 4 ± 1 
rseC Class 2 3.0 ± 0.5 2.4 ± 0.4 1.23 ± 0.08 15 ± 2 
ompF Class 2 4.3 ± 0.8 3.6 ± 0.7 1.5 ± 0.3 19 ± 2 
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Figure 1 Biofilm formation of E. coli BW25113 biofilm Class I through V mutants in LB 

medium after 7 h at 37°C in 96-well.  (A) Class I mutations have no difference in 
biofilm formation compared to the wild-type strain and do not increase biofilm 
formation upon adding R1drd19.  (B) Class II mutations increase biofilm formation 
compared to the wild-type strain but decrease biofilm formation upon adding 
R1drd19.  (C) Class III mutations increase biofilm formation compared to the wild-
type strain and increase biofilm formation upon adding R1drd19.  (D) Class IV 
mutations increase biofilm formation compared to the wild-type strain but have no 
difference in biofilm formation upon adding R1drd19.  (E) Class V mutations have no 
difference in biofilm formation compared to the wild-type strain but increase biofilm 
formation upon adding R1drd19.   
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Figure 2  IMARIS images of flow cells E. coli biofilms in LB medium after 24 h at 37°C. (A) E. coli BW25113/pCM18, (B) E. coli 
BW25113/R1drd19/pCM18, (C) E. coli BW25113 rseA/R1drd19/pCM18, (D) E. coli BW25113 bssR/R1drd19/pCM18, (E) 
E. coli BW25113 cpxA/R1drd19/pCM18, and (F) E. coli BW25113 ompA/R1drd19/pCM18, (G) E. coli BW25113 
rseA/pCM18, (H) E. coli BW25113 bssR/pCM18, (I) E. coli BW25113 cpxA/pCM18, (J) E. coli BW25113 ompA/pCM18. 
Scale bar is 10 µm. 
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Figure 3 Extracellular AI-2 concentrations reported by V. harveyi bioluminescence for E. 

coli BW25113, BW25113/R1drd19, and BW25113 glpD.  Two replicates are 
shown. 
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Figure 4 The hypothesized mechanism of E. coli biofilm formation with R1drd19. 

Envelope stress caused from conjugative pili initiates the network. OmpA is the 
potential outer-membrane protein that receives the signal from conjugative pili which 
then translates the signal to the sensor, CpxA, of the two-component system in which 
CpxR is the response regulator. Phosphorylated CpxR (CpxR-P) then regulates 
biofilm-related genes expression. RseA-σE is another system involved in the 
envelope-stress response system, and to some extent, overlaps with CpxAR system. 
In this pathway, RseA is the sensor to detect the envelope stress caused by 
conjugative pili. MicA is a negative antisense regulator of OmpA synthesis, and this 
sRNA is induced by overexpression of σE. OM is outer membrane and IM is inner 
membrane. 
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	  Biofilm formation causes serious problems to industry and human health due to its resistance to extreme environments as well as to high concentrations of antimicrobial reagents. Biofilms can grow in extremely hot waters, frozen glaciers, very acidic conditions, and very alkaline conditions. Biofilm formation increases heat transfer resistance and leads to significant energy losses in heat exchange equipment (Characklis et al., 1981). Biofilms also cause substantial corrosion problems (20% of industry corrosion) in marine engineering systems, such as in pipelines of the offshore oil and gas industry (Duan et al., 2008).  Biofouling organisms increase fuel consumption by over 20% and cost the Navy each year $75-100M for drag-related fuel increases (Dürr and Thomason, 2009).  Biofilms also exist in humans and are intimately related to diseases. For example, infections of the Shiga toxin-producing E. coli O157:H7 have been estimated to be responsible for 73,000 illnesses annually in the United States, with more than 2,000 hospitalizations and 60 deaths (Frenzen et al., 2005). Hence understanding the mechanisms of biofilm development should lead to novel methods to remove biofilms is a powerful strategy with significant importance to the economy and health.  In addition, the characterizations of beneficial biofilms encourage people to think about the idea about using biofilms in a positive way. For example, Bacillus subtilis biofilm formation helps to control infection from plant pathogens (Morikawa, 2006) as well as to reduce mild steel corrosion (Jayaraman et al., 1999c; Jayaraman et al., 1999a). The potential of utilizing beneficial biofilms also requires a better understanding of the genetic basis of biofilm formation and dispersal.
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