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ABSTRACT 

 

Morphed Potential Energy Surfaces from the Spectroscopy of Weakly Bound 

Complexes. (May 2011) 

Luis A. Rivera-Rivera, B.S., University of Puerto Rico at Mayagüez; 

M.S., University of Puerto Rico at Mayagüez 

Chair of Advisory Committee: Dr. Robert R. Lucchese 

 

In this research the so-called potential morphing method was used to generate 

reliable interaction potential energy surfaces for weakly bound complexes.  The potential 

morphing method is based on the optimization of modified computed ab initio potential 

energy surfaces to give predicted spectroscopic data, in agreement with the experimental 

values.  In the standard potential morphing procedure the computed ab initio potential is 

adjusted by scaling, shifting, and dilating transformations to reproduce the experimental 

data. 

In this research, selected systems have been chosen to be studied based on the 

availability of varied and accurate sets of experimental data.  In the present work, 

accurate interaction potential energy surfaces are obtained for the weakly bound 

complexes: Ne:HCl, OC:HX (X = F, Cl, Br, I) and HI:CO2.  A comprehensive study on 

the interaction potential of these systems provides fundamental perspectives on the 

influence of different intermolecular forces.  In addition the ground state isotopic 
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isomerization observed in the OC:HI system may suggest a possible structural change of 

proteins, and other biological macromolecules, in deuterated solvents. 

In this dissertation, an alternative approach to morphing the potential energy 

surfaces of non-covalent interactions is also presented.  In this approach the morphed 

potential is generated as a linear combination of ab initio potentials, that are computed at 

different levels of theory.  This new morphing approach is applied to OC:HCl and is 

found to be of similar accuracy to that of the previous morphing method.  In addition, 

this new method is also extended from four-dimensions to six-dimensions and is applied 

to the OC:HF system to obtain a vibrationally-complete six-dimensional morphed 

potential. 
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NOMENCLATURE 

 

ACCD Approximate double substitution coupled cluster 
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pseudopotential basis set 
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Exp Experimental 
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IR Infrared 



 viii 
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NBF Number of basis functions  
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VSCF Vibrational self-consistent field 



 ix 

TABLE OF CONTENTS 

 

Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  ix 

LIST OF FIGURES...................................................................................................  xi 

LIST OF TABLES ....................................................................................................  xiii 

1. INTRODUCTION...............................................................................................  1 

  1.1 Aims .....................................................................................................  4 

2. PREVIOUS WORK ON POTENTIAL MORPHING METHODOLOGY........  6 

3. THEORETICAL METHODOLOGIES ..............................................................  10 

  3.1 Ab initio calculations of the interaction potentials ...............................  10 
  3.2 Fitting of the ab initio potentials ..........................................................  12 
  3.3 Calculation of rovibrational energy levels ...........................................  17 
  3.4 Calculation of the spectroscopic constants...........................................  26 
  3.5 Compound model morphing method....................................................  27 
 
4. APPLICATIONS ................................................................................................  31 

  4.1 Ne:HCl .................................................................................................  32 
  4.2 OC:HCl.................................................................................................  45 
  4.3 OC:HBr ................................................................................................  57 
  4.4 OC:HI ...................................................................................................  64 
  4.5 HI:CO2..................................................................................................  75 
  4.6 OC:HF ..................................................................................................  84 

5. CONCLUSIONS.................................................................................................  101 



 x 

TABLE OF CONTENTS (CONTINUED) 

 

Page 

REFERENCES..........................................................................................................  105 

VITA .........................................................................................................................  119 



 xi 

LIST OF FIGURES 

 

Page 

Figure 1 The Jacobi coordinates for different weakly bound systems.............  11 

Figure 2 G(γ) vs. γ curve for the CMM method ..............................................  29 

Figure 3 Morphed interaction potential of Ne:HCl .........................................  38 

Figure 4 Adiabatic potential surfaces for the 20Ne:H35Cl isotopomer .............  39 
 
Figure 5 Ground state probability densities for the 20Ne-H35Cl 
  isotopomer.........................................................................................  42 
 
Figure 6 Two-dimensional slices of the interaction potential of 
  16O12C:H35Cl generated using the CMM method..............................  52 
 
Figure 7 The corresponding estimated errors on the 16O12C:H35Cl 
  CMM potential, relative to the potential at infinite separation .........  53 
 
Figure 8 Differences between interaction potentials of 16O12C:H35Cl 
  generated by the PCM and CMM methods.......................................  54 
 
Figure 9 Two-dimensional slices of the   VCMM

3( )  interaction potential of 
  16O12C:H79Br .....................................................................................  61 

Figure 10 The corresponding estimated errors on the 16O12C:H79Br 
  CMM potential, relative to the potential at infinite separation .........  62 
 
Figure 11 Morphed potential of 16O12C:HI at R = 4.18 Å .................................  69 

Figure 12 Morphed potential of 16O12C:HI at R = 4.90 Å .................................  70 

Figure 13 Ground state probability densities for 16O12C-HI and 16O12C-IH .....  71 

Figure 14 Ground state probability densities for 16O12C-ID and 16O12C-DI .....  72 

Figure 15 Morphed interaction potential of HI:12C16O2 ....................................  79 



 xii 

LIST OF FIGURES (CONTINUED) 

 

Page 

Figure 16 Corresponding statistical uncertainties for the morphed 
  potential of HI:12C16O2 ......................................................................  80 
 
Figure 17 Energy level diagram for OC-DF......................................................  93 

Figure 18 Two-dimensional slices of the adiabatic   V
0,0( )  interaction 

  morphed potential (relativistic   VCMM
4( ) ), of 16O12C:HF........................  97 

 
Figure 19 The corresponding estimated errors on the 16O12C:HF morphed 
  potential, relative to the potential at infinite separation ....................  98 



 xiii 

LIST OF TABLES 

 

Page 

Table 1 Experimental data of Ne:HCl used in the fits 
  and fitted values, and the uncertainties used .....................................  36 
 
Table 2 Optimized morphing parameters Cα,i,j and their 
  corresponding uncertainties for Ne:HCl ...........................................  37 
 
Table 3 Correlation matrix of the morphing parameters (Cα,i,j) 
  for Ne:HCl.........................................................................................  37 
 
Table 4 Features of various Ne:HCl potentials ..............................................  40 

Table 5 Predicted spectroscopic constants from the morphed 
  potential for Ne-HCl..........................................................................  43 
 
Table 6 Experimental data of OC:HCl used in the fits and 
  fitted values, and their uncertainties..................................................  49 
 
Table 7 Optimized values for the morphing parameters of OC:HCl .............  50 

Table 8 Features of morphed potentials of OC:HCl.......................................  55 
 
Table 9 Comparison of predicted vibrational frequencies 
  and D0 energy of 16O12C-H35Cl .........................................................  55 
 
Table 10 Comparison of previous potentials of OC:HCl .................................  55 

Table 11 Experimental data of OC:HBr used in the fits 
  and fitted values, and their uncertainties ...........................................  60 
 
Table 12 Optimized values for the morphing parameters of OC:HBr .............  60 

Table 13 Predictions of  ν3  and  ν4
1  frequencies, for 16O12C-H79Br, 

  using the   VCMM
3( )  potential ...................................................................  60 

 
Table 14 Experimental data of OC:HI used in the fits 
  and fitted values, and their uncertainties ...........................................  67 



 xiv 

LIST OF TABLES (CONTINUED) 

 

Page 

Table 15 Optimized values for the morphing parameters of OC:HI................  68 
 
Table 16 Features of OC:HI potentials.............................................................  68 
 
Table 17 D0 value for 16O12C:HI and 16O12C:DI isomers 
  predicted from the morphed potential ...............................................  68 
 
Table 18 Experimental data of HI:CO2 used in the fits 
  and fitted values, and their uncertainties ...........................................  78 
 
Table 19 Optimized values for the parameters of the morphing 
  functions of HI:CO2 ..........................................................................  78 
 
Table 20 Experimental data of OC:HF used in the fits 
  and fitted values, and their uncertainties ...........................................  89 
 
Table 21 Optimized values for the morphing parameters of OC:HF ...............  90 

Table 22 Relativistic effects in the computed observables of OC:HF .............  91 

Table 23 Morphing parameters of the relativistic and 
  non-relativistic potentials ..................................................................  92 
 
Table 24 Accuracy of the relativistic   VCMM

4( )  potential of OC:HF .....................  92 

Table 25 Comparison of previous potentials of OC:HF...................................  99 

Table 26 Predictions of  ν3  and  ν4
1  frequencies of 16O12C-HF, 

  using the relativistic   VCMM
4( )  potential..................................................  99 



 1 

1. INTRODUCTION 

 

Intermolecular interactions such as the van der Waals interaction [1] and the 

hydrogen bond [2] are ubiquitous throughout nature.  These interactions underlie the 

physical, chemical, and biological properties of many condensed phase molecular 

systems.  For example, the properties of bulk materials and the dynamics of gas-phase 

molecular collisions are determined by such non-covalent interactions [3,4].  In addition, 

the stability and structure of biological macromolecules like proteins, ribonucleic acid 

(RNA), and deoxyribonucleic acid (DNA) are principally due to hydrogen bond 

interactions [2,5-7]. 

The concept of intermolecular interactions is closely related to that of the 

potential energy surface (PES).  In the Born-Oppenheimer approximation [8] for the 

separation of electronic and nuclear motion, the PES is the potential energy that 

determines the motions of the nuclei.  Consequently, the PES is a mathematical function 

of all coordinates that describes the relative orientation of all atoms in the molecule.  For 

weakly bound molecules the intermolecular PES is determined by the nature of the 

intermolecular forces, acting between the interacting molecules [9].  Weakly bound 

molecules have the characteristics of small dissociation energies and large interatomic 

distances relative to covalent molecules.  In addition, weakly bound complexes are 

bound not by normal chemical bonds, but by physical interactions, such as multipolar 

electrostatic, dispersion and induction forces, and the hydrogen bond interaction [10]. 

____________ 
This dissertation follows the style of Chemical Physics Letters. 
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Potential energy surfaces increase in complexity as the number of atoms in the 

molecules increase.  In this simple case, the potential energy curve for diatomic 

molecules depends only on one coordinate, the interatomic separation.  For a triatomic 

molecule the PES is a function of three coordinates, while for a four-atom molecule it is 

six.  In general for an n-atom molecule the PES is a function of 3n-6 coordinates [9].  A 

multidimensional surface can have multiple local minima, but only one global minimum 

that represents the most stable position of atoms in the molecule.  In contrast, the local 

minima represent a metastable position of the atoms.  Several equivalent global minima 

can be possible only if they are related to each other by symmetry.  Each minimum in 

the PES has an associated zero-point energy.  If the energy barrier between different 

minima is not too high and the molecule has enough energy, then it can move from one 

energy minimum to another by going over the top of the energy barrier.  However, if the 

energy of the molecule is not enough to overcome the energy barrier, it can tunnel from 

one energy minimum to another [11]. 

A potential energy surface for weakly bound complexes can be determined by 

[12-15]: (i) performing ab initio calculations; (ii) performing inversions of the 

experimental data such as spectroscopy, molecular-beam scattering, or reaction kinetics; 

or (iii) fitting parameters to the experimental data.  The accuracy of ab initio 

calculations, in which the Schrödinger equation is solved within the Born-Oppenheimer 

approximation, is limited by the available computer capabilities [8].  High accuracy ab 

initio potential energy surfaces are still limited to systems with small numbers of 

electrons.  In addition, ab initio potential energy surfaces often do not possess the 



 3 

accuracy to account for high quality spectroscopic and scattering data [12].  On the other 

hand, the inversion method consists in obtaining the PES by considering the 

experimental observables as functionals of the potential [12].  However, in the parameter 

fitting method the experimental data is fitted to a constrained form of the potential with a 

finite number of parameters [13].  Nevertheless, using experimental data to extract the 

PES is limited by the quality and availability of experimental data.  The experimental 

data is usually incomplete and can be affected by systematic errors, which can make the 

inversion process unstable and undetermined [12].  Contrary to the aforementioned, ab 

initio calculations unambiguously give one, and only one, PES that is unique to each 

molecular system [12]. 

A useful method to generate more reliable PES for weakly bound complexes is 

the so-called potential morphing method [16,17].  The potential morphing method is 

based on the optimization of computed ab initio potential energy surfaces to give 

predicted spectroscopic data, in agreement with the experimental value [16,17].  Several 

studies [18-32] have been concerned with the development of potential morphing 

methodology and applications to systems of higher vibrational dimensionality.  The 

methodology also permits the quantitative evaluation of uncertainties associated with the 

generated PES and predicted properties.  A number of elements are necessary to 

generate a reliable morphed PES [16,33]: (i) a reliable initial ab initio PES; (ii) accurate 

and varied sets of spectroscopic data such as rotationally resolved spectra, rovibrational 

transition energies, dissociation energies, and virial coefficients; (iii) a good functional 

form for interpolating the PES between the computed ab initio points, and (iv) an 
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accurate method for predicting the experimental observables from the fitted potential.  It 

should be noted that the accuracy of the generated morphed PES is directly related to the 

range and quality of the available experimental data. 

The generation of accurate interaction potential energy surfaces, of isolated 

dimers of weakly bound complexes, is indispensable in understanding weak binding due 

to intermolecular forces.  Also, the applicability of this approach to higher vibrational 

dimensionality, and the transferability of empirical parameters between different systems 

is a theoretical challenge that will be addressed in this dissertation.  In this dissertation, 

selected systems have been chosen to be studied based on the availability of varied and 

accurate sets of experimental data. 

 

1.1 Aims 

 

The first aim of this dissertation is to generate accurate and reliable morphed 

interaction potential energy surfaces of the systems: Ne:HCl, OC:HF, OC:HCl, OC:HBr, 

OC:HI, and HI:CO2.  These systems are prototype systems used to study van der Waals 

and hydrogen bond interactions.  A comprehensive study on the interaction potential of 

these systems will provide a fundamental perspective on the influence of different 

intermolecular forces.  The second aim is the development of a new method to generate 

morphed interaction potentials of weakly bound complexes, where the empirical 

parameters may be transferable and applied to other systems.  Lastly, the third aim is the 
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extension of the potential morphing method from four-dimension to six-dimension, in 

order to have a complete treatment of four-atom systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

2. PREVIOUS WORK ON POTENTIAL MORPHING 

METHODOLOGY∗ 

 

Even though different morphing methods have been developed they all have the 

same objective: achieving agreement with experimental data by making changes to a 

computed PES so that the average deviation is minimized [16].  There have been a 

number of advances since the early work on morphing intermolecular ab initio potentials 

of weakly bound complexes by Meuwly and Hutson, on the Ne:HF system [16], and 

Lucchese, Bevan, and coworkers, on Ar:HI [17].  The method of Meuwly and Hutson 

involved scaling functions for both the energy and intermolecular distance.  The 

morphing transformation being formulated [16] as 

  
Vmorphed R,θ( ) = ν R,θ( )Vab initio ρ θ( ) ⋅ R,θ( ) . (1) 

With the aim of determining the functions ν(R,θ) and ρ(θ), giving it an optimal fit to the 

experimental data.  This method was later applied to He:OCS [18], which is a system of 

higher dimension but the treatment was limited to two-dimensions. 

In contrast, the approach of Lucchese, Bevan, and coworkers was formulated to 

involve scaling parameters for both the energy and intermolecular distance, as well as a 

potential shifting factor [17].  In this approach the ab initio PES is morphed as 

  
Vmorphed R,θ( ) = c1Vab initio c2 R + c3,θ( ) , (2) 

                                                
∗Reproduced with permission from “A parameterized compound-model chemistry for morphing the 
intermolecular potential of OC-HCl” by L.A. Rivera-Rivera, R.R. Lucchese, J.W. Bevan, Chemical 
Physics Letters 460 (2008) 352-358.  Copyright 2008 Elsevier. 
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where   c1  and   c2  are the scaling parameters for the energy and intermolecular distance 

respectively, and   c3  is the potential shifting parameter.  These three parameters were 

then optimized to obtain the best fit of the spectroscopic constants of available 

experimental data.  This approach was later improved by adding the factor Rf and using 

scaling and shifting functions expanded in Legendre polynomials of the form [19-22] 

  
Vmorphed R,θ( ) = S1 θ( )Vab initio S2 θ( ) R − Rf( ) + 1+ S3 θ( )⎡⎣ ⎤⎦Rf ,θ{ } , (3) 

where 

  
Sα θ( ) = Cα ,i Pi cosθ( )

i
∑ . (4) 

The factor Rf was found to make the scaling (S2) and shifting (S3) functions less strongly 

correlated [19-22]. 

Subsequently, Lucchese, Bevan, and coworkers developed a three-dimensional 

morphing method for Ar:HBr, Kr:HBr, and Ne:HCl systems [23-27].  In this method, the 

ab initio PES is morphed into the form 

  
Vmorphed R,θ ,r( ) = S1 θ ,r( )Vab initio S2 θ ,r( ) R − Rf( ) + 1+ S3 θ ,r( )⎡⎣ ⎤⎦Rf ,θ ,r{ } , (5) 

where 

  
Sα θ ,r( ) = Cα ,i, j Pi cosθ( )

ij
∑ 1− exp -β

r-re

re

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

j

. (6) 

The values of the dimensionless morphing parameters   
Cα ,i, j  are obtained by minimizing 

the function in Eq. (7), using a regularized nonlinear least-squares optimization [23]. 
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F Cx ,γ( ) = Ok

expt − Ok
calc Cx( )

σ k

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

+
k=1

M

∑ γ 2 Cx − Cx
0( )( )

x
∑

2
 (7) 

In Eq. (7), γ is the regularization parameter, σk are the uncertainties in either the 

observed or computed values, the 

� 

Cx  are the 

� 

Cα ,i, j , and the   Cx
0( )

 are the 
  
Cα ,i, j

0( ) ; of which 

  
Cα ,i, j

0( )  are the morphing parameters which correspond to no morphing.  The quality of the 

fit of the experimental data is characterized by the root mean square (RMS) deviation 

from the experimental data 

  

G γ( ) = 1
M

Ok
expt − Ok

calc Cx( )
σ k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

k=1

M

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/ 2

, (8) 

where the 

� 

Cx  are the 

� 

Cα ,i, j .  The value of G(γ = ∞) is the deviation, from the 

experimental data, of the observables predicted from the ab initio potential (i.e., the 

unmorphed potential).  On the other hand, the value of G(γ = 0) would be the quality of 

the fit for the unconstrained or “nonregularized” fit of the potential. 

More recently, Lucchese, Bevan, and coworkers have further developed the 

method to morph interaction potentials of two linear rigid rotors, hereafter referred to as 

the potential coordinated morphing (PCM) method.  In this particular approach the ab 

initio potential is morphed using the transformation [28-30] 

  

Vmorphed R,θ1,θ2 ,φ( ) = S1 θ1,θ2 ,φ( )Vab initio S2 θ1,θ2 ,φ( ) R − Rf( ){
+ 1+ S3 θ1,θ2 ,φ( )⎡⎣ ⎤⎦Rf ,θ1,θ2 ,φ} , (9) 

where 
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Sα θ1,θ2 ,φ( ) = Cα ,i Fλα ,i θ1,θ2 ,φ( )

i
∑ . (10) 

In Eq. (10),   
Cα ,i  are the morphing parameters obtained by a regularized nonlinear least-

squares optimization [23] while Fλ are angular morphing functions characterized by five 

parameters, represented by the index λ = 
  
lx ,n, ′θ1, ′θ2 , ′φ( ) , and defined so that they 

approach Dirac delta function as lx increases.  They are given by [28] 

  
Fλ θ1,θ2 ,φ( ) = Nλ I l1 ,l2 ,l θ1,θ2 ,φ( )  

l= l1 − l2

l1 + l2

∑
l2 =0

lx

∑
l1 =0

lx

∑ I l1 ,l2 ,l θ1,θ2 ,φ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n

, (11) 

where the 
  
I l1 ,l2 ,l θ1,θ2 ,φ( )  functions are related to the angular expansion functions 

defined by [34] 

  
I l1 ,l2 ,l θ1,θ2 ,φ( ) = l1,m,l2 ,−m | l,0 Υ l1 ,m θ1,φ( )Υ l2 ,−m θ2 ,φ( )

m
∑ . (12) 

Even more recently Higgins and Klemperer have applied an alternative approach 

to the He:CH3F complex [31].  The method involves scaling of the correlation energy to 

correct the MP4 potential.  In this method, the morphed potential is constructed in the 

form 

  
Vmorphed R,θ ,φ( ) = Eint

HF R,θ ,φ( ) + cl Pl (cosθ)
l=0

n

∑ Eint
MP4 R,θ ,φ( ) − Eint

HF R,θ ,φ( )⎡⎣ ⎤⎦ , (13) 

where  cl  are morphing coefficients obtained by a nonlinear least-squares optimization 

[31]. 

 

 



 10 

3. THEORETICAL METHODOLOGIES∗ 

 

3.1 Ab initio calculations of the interaction potentials 

 

For two interacting monomers, the interaction potential can be expressed in terms 

of Jacobi coordinates.  For an atom-diatom system, Figure 1(a), R is the distance from 

the atom to the center of mass of the diatom.  The θ angle describes the orientation of the 

diatom and r is the diatom bond length.  In the case of two linear rigid rotors, Figure 

1(b), R is the distance between the center of mass of the two monomers.  The angles θ1 

and θ2 describe the orientation of the interacting monomers and the dihedral angle φ 

describes the relative internal orientation of both monomer components.  For the six-

dimensional interaction potential of the diatom-diatom system, Figure 1(c), R is the 

distance between the center of mass of the two monomers.  The monomers’ bond lengths 

are described by r1 and r2.  The angles θ1 and θ2 describe the orientation of the 

interacting monomers and the dihedral angle φ describes the relative internal orientation 

of both monomer components. 

 

                                                
∗Reproduced in part with permission from: “A three-dimensional morphed potential of Ne-HCl including 
the ground state deuterated Σ bending vibration” by L.A. Rivera-Rivera, B.A. McElmurry, S.P. Belov, 
R.R. Lucchese, J.W. Bevan, Chemical Physics Letters 444 (2007) 9-16.  Copyright 2007 Elsevier.  “A 
parameterized compound-model chemistry for morphing the intermolecular potential of OC-HCl” by L.A. 
Rivera-Rivera, R.R. Lucchese, J.W. Bevan, Chemical Physics Letters 460 (2008) 352-358.  Copyright 
2008 Elsevier.  “A four-dimensional compound-model morphed potential for the OC:HBr complex” by 
L.A. Rivera-Rivera, R.R. Lucchese, J.W. Bevan, Physical Chemistry Chemical Physics 12 (2010) 7258-
7265.  http://pubs.rsc.org/en/Content/ArticleLanding/2010/CP/C000972E Reproduced by permission of 
the PCCP Owner Societies. 
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Figure 1. The Jacobi coordinates for different weakly bound systems.  In Figures 1(b) 
and 1(c), the θ1 angle correspond to the CO or CO2 monomer, and the θ2 angle to the HX 
(X = F, Cl, Br, I) monomer. 
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The non-relativistic ab initio interaction energies of the complexes were 

calculated using the MOLPRO 2006 and 2009 electronic structure packages [35,36].  

The augmented correlation consistent polarized valence N-ζ basis set (aug-cc-pVNZ) 

was used, where the N represents triple (T), quadruple (Q), or quintuple (5) functions 

[37-39].  Also for the heavy atoms such as iodine the effective core potential (aug-cc-

pVNZ-pp) has been used.  The ab initio potentials calculated are: (i) coupled cluster 

singles and doubles with perturbative triples (CCSD(T)/aug-cc-pVNZ), (ii) Moller-

Plesset second order (MP2/aug-cc-pVNZ), and (iii) Hartree-Fock (HF/aug-cc-pVNZ).  

All the interaction energies were then corrected for the basis set superposition error 

(BSSE), using the counterpoise (CP) method of Boys and Bernardi [40].  The 

CCSD(T)/aug-cc-pVNZ potential without the CP correction was also calculated.  In 

addition, relativistic correction has been calculated at the Hartree-Fock level of theory 

(HF/aug-cc-pVNZ-DK CP corrected [41]) using a second order Douglas-Kroll-Hess 

Hamiltonian (DKH2) [42,43] available on MOLPRO. 

 

3.2 Fitting of the ab initio potentials 

 

For an atom-diatom system the computed interaction energies were then fitted to 

an analytical form, using a three-dimensional interpolation function, based on the Hilbert 

space reproducing kernel (HSRK) of Ho and Rabitz [44].  The fitting function used for 

the R direction was the distance-like HSRK of the form 



 13 

  
q

1

2,6 R, ′R( ) = 1
14R>

7 1−
7
9

R<

R>

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (14) 

Eq. (14) behaves asymptotically as 1/R7, and if a continuous set of HSRK is used it will 

yield the correct functional form of the potential (1/R6).  An angle-like HSRK was used 

for the θ direction, given by 

  
q2

2 y, ′y( ) = 1+ y> y< + 2y<
2 y> 1−

1
3

y<

y>

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (15) 

where 
  
y θ( ) = 1− cosθ( ) 2 .  Lastly, in the r direction the angle-like HSRK 

  
q2

2 z, ′z( )  was 

used, where 
  
z r( ) = 1− exp − r re( )⎡⎣ ⎤⎦  and re is the equilibrium bond length of the diatom 

[23].  In Eqs. (14) and (15) the x> and x< (x = R and y) are respectively the larger and 

smaller of x and 

� 

′ x . 

Then the fitted potential is obtained as [23] 

  
V int R,θ ,r( ) = Qijk

ijk
∑ R,θ ,r( )Cijk . (16) 

The 
  
Qijk R,θ ,r( )  in Eq. (16) are the three-dimensional orthogonalized fitting functions 

defined as [23] 

  
Qijk R,θ ,r( ) = q1,i

2,6 R( )q2, j
2 y θ( )( )q2,k

2 z r( )( ) . (17) 

In addition, the expansion coefficients,  
Cijk  in Eq. (16) can be obtained by the matrix 

multiplication of 
  
Qijk R ′i ,θ ′j ,r ′k( )  and 

  
V int R ′i ,θ ′j ,r ′k( )  [23]. 
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In order to have a global representation of the interaction potential, for two linear 

rigid rotors, the calculated ab initio points at each value of Ri, were fitted to the spherical 

expansion [45-47] 

  
VA Ri ,θ1,θ2 ,φ( ) = νΛ ,i

Λ
∑ AΛ θ1,θ2 ,φ( ) . (18) 

In Eq. (18), Λ is a collective symbol for the quantum numbers {L1,L2,L},   
νΛ ,i  are the 

expansion coefficients [34,45], and 
  
AΛ θ1,θ2 ,φ( )  is given by Eq. (19) [45]. 

  

AΛ θ1,θ2 ,φ( ) = −1( )M

M =0

min L1 ,L2( )
∑ 2 − δM ,0( )  L1, M ; L2 ,−M | L,0

L1 − M( )! L2 − M( )!
L1 + M( )! L2 + M( )!

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/ 2

×PL1

| M | cosθ1( )  PL2

| M | cosθ2( )  cos Mφ( )
 (19) 

An accurate representation of the interaction potential, for the systems studied in this 

work, can be obtained by using 55 angular functions.  These are defined in Eq. (19), with 

L1 = L2 = 0, 2, 3, 4; L = 0, 2, …, (L1+L2); and where L1+L2+L is an even number.  The 

expansion coefficients in Eq. (18) can be evaluated by a standard least-squares procedure 

[45,48], that minimizes 

  
I4D = Wς V Ri ,θ1,ς ,θ2,ς ,φς( ) − νΛ ,i

Λ
∑ AΛ θ1,ς ,θ2,ς ,φς( )⎛

⎝⎜
⎞
⎠⎟

2

ς
∑ . (20) 

In Eq. (20)  
Wς  is the weight function of the ab initio points in the fitting, given by [45] 

  

Wς =
1

1+ V Ri ,θ1,ς ,θ2,ς ,φς( ) − Emin( ) Fw

, (21) 
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where Emin is the minimum value of 
  
V Ri ,θ1,θ2 ,φ( ) , and Fw is the weight factor 

parameter. 

The four–dimensional potential was then obtained by interpolating the angular 

potential, on the grid of Ri points at fixed angular coordinates, using a one-dimensional 

radial reproducing kernel [28] of the form 

  
ln

V R,θ1,θ2 ,φ( ) +Vmin

Vmin

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= α i θ1,θ2 ,φ( )

i
∑ q1

2,6 Ri , R( ) , (22) 

where 
  
q1

2,6 Ri , R( )  is the one-dimensional distance-like HSRK, Eq. (14).  In Eq. (22), the 

expansion coefficients are then defined by [49] 

  
α i θ1,θ2 ,φ( ) = ln

VA R ′i ,θ1,θ2 ,φ( ) +Vmin

Vmin

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q1
2,6 R ′i , Ri( )⎡⎣ ⎤⎦

−1

′i
∑ . (23) 

In the case of the six-dimensional interaction potential of a diatom-diatom 

system, the ab initio points were interpolated in a way similar to the four-dimensional 

case.  At each value of Ri, r1,j, and r2,k the angular potential was fitted to the spherical 

expansion [47,50] 

  
VA Ri ,r1, j ,r2,k ,θ1,θ2 ,φ( ) = νΛ ,ijk

Λ
∑ θ1,θ2 ,φ( ) AΛ θ1,θ2 ,φ( ) . (24) 

The expansion coefficients 
  
νΛ ,ijk θ1,θ2 ,φ( )  are evaluated by an interpolating moving 

least-squares procedure [51], that minimizes 

  
I6D = Wζ θ1,θ2 ,φ( )

ζ
∑ V Ri ,r1, j ,r2,k ,θ1,ζ ,θ2,ζ ,φζ( ) − νΛ ,ijk θ1,θ2 ,φ( )

Λ
∑ AΛ θ1,ζ ,θ2,ζ ,φζ( )⎛

⎝⎜
⎞
⎠⎟

2

. (25) 
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In Eq. (25) 
  
Wζ θ1,θ2 ,φ( )  is the weight function of the ab initio points in the fitting and is 

given by 

  

Wζ θ1,θ2 ,φ( ) = exp −χdζ
2( )

dζ
n + ε( ) , (26) 

where the parameters χ and n control the rate of attenuation of the weight function, and ε 

removes the singularity that would otherwise be present as   
dζ → 0 .  In order for the 

fitting functions to provide an interpolation, i.e. reproduce the data that are being fitted, 

the weight function should go to infinity at each 
 
θ1,ζ ,θ2,ζ ,φζ( )  point and must attenuate 

rapidly to minimize the influence of remote points.  In Eq. (26)  
dζ  is the Euclidean 

distance function given by 

  
dζ θ1,θ2 ,φ( ) = θ1 −θ1,ζ( )2

+ θ2 −θ2,ζ( )2
+ min φ − φζ( )2

, 2π − φ −φζ( )2⎡
⎣⎢

⎤
⎦⎥

. (27) 

The radial potential is obtained by interpolating the angular potential, on the grid 

of Ri points, at each value of r1,j and r2,k, at fixed angular coordinates, using a one-

dimensional radial reproducing kernel of the form 

  

ln
V R,r1, j ,r2,k ,θ1,θ2 ,φ( ) + Vmin +VM

⎡⎣ ⎤⎦
Vmin +VM

⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= α i, j ,k θ1,θ2 ,φ( )

i
∑  q1

n,m Ri , R( ) . (28) 

In Eq. (28)   
Vmin  represents the absolute value of the minimum of 

  
VA R,r1, j ,r2,k ,θ1,θ2 ,φ( )  

and VM is a real positive parameter.  The function   q1
n,m  in Eq. (28) is the nth-order one-

dimensional radial reproducing kernel [44].  The order n and the smoothness m of   q1
n,m  
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are chosen such that the interpolation functions have the correct asymptotic form of the 

potential energy surface.  The expansion coefficients in Eq. (28) are then defined by [45] 

  

α i, j ,k θ1,θ2 ,φ( ) = ln
VA R ′i ,r1, j ,r2,k ,θ1,θ2 ,φ( ) + Vmin +VM

⎡⎣ ⎤⎦
Vmin +VM

⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
q1

n,m R ′i , Ri( )⎡⎣ ⎤⎦
−1

′i
∑ . (29) 

 

3.3 Calculation of rovibrational energy levels 

 

The rovibrational energy levels for an atom-diatom system were computed using 

the variational method previously described [23,52-55].  In the space-fixed frame, and 

using the Jacobi coordinates, (Figure 1(a)) the rovibrational Hamiltonian is then [23,52] 

   
H R,θ ,r( ) = −2

2µR
⎛

⎝⎜
⎞

⎠⎟
∂ 2

∂R2

⎛

⎝⎜
⎞

⎠⎟
R −


2

2 ′µ r
⎛

⎝⎜
⎞

⎠⎟
∂ 2

∂r 2

⎛

⎝⎜
⎞

⎠⎟
r + l2

2µR2 +
j2

2 ′µ r 2 +V R,θ ,r( ) , (30) 

where j2 and l2 are the rotational angular momentum operators associated with the 

rotation of r and R respectively.  The total angular momentum of the system is given by 

J = j + l.  In Eq. (30) 

� 

µ  is the reduce mass of the atom-diatom complex and 

� 

′ µ  is the 

reduce mass of the diatom.  In order to simplify the Hamiltonian in Eq. (30), the diatom 

stretching motion was adiabatically separated from the bending and stretching motions 

of the complex.  By doing this separation Eq. (30) becomes [23,52] 

   
H R,θ( ) = −2

2µR
⎛

⎝⎜
⎞

⎠⎟
∂ 2

∂R2

⎛

⎝⎜
⎞

⎠⎟
R +

l2

2µR2 + Bυ j2 +V υ( ) R,θ( ) , (31) 
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where 
  
V υ( ) R,θ( )  represents the intermolecular potential of the whole complex, averaged 

over the diatom vibrational states, and  Bυ  is the diatom rotational constant for the 

vibrational state υ . 

At each value of R and θ, the energy of the diatom stretching state 
  
Eυ R,θ( )  was 

determined.  This energy then became the potential for the determination of the bending 

and stretching motion of the complex.  The intermolecular rovibrational wave function 

was computed using a space-fixed frame, with the radial functions expanded in a 

distributed Gaussian basis set.  The radial functions were evenly distributed from Rstart 

(the first point of the radial grid) to Rend (the last point of the radial grid), while the 

angular basis set contained an expansion of the rotational wave function of the diatom 

monomer using states up to jmax.  All possible end-over-end rotational states, consistent 

with the value of jmax and the value of the total angular momentum of a given state, were 

included while the rovibrational states were computed in two steps.  Initially, a 

vibrational self-consistent field (VSCF) calculation was performed in which the angular 

state was computed in an angular potential.  This was obtained from the full 

intermolecular potential by averaging over the ground radial vibrational state.  The radial 

state was obtained from a one-dimensional vibrational calculation.  In turn, the potential 

was determined from the full intermolecular potential averaged over the bending state, 

and the VSCF equations were solved iteratively.  The converged VSCF bending and 

stretching wave functions were then combined in a direct product basis set which was 

used in a vibrational configuration interaction (VCI) calculation for the final 
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rovibrational states.  Derivatives of the rovibrational eigenvalues, with respect to the 

morphing parameters, were computed using the Hellmann-Feynman theorem.  The 

rotational constants used in the Hamiltonian, for the diatomic fragments, were taken to 

be the same as for the isolated molecules. 

In the simplest approximation for two interacting linear rotors, the vibrational 

problem is reduced to a four-dimensional problem.  This is done by freezing the 

intramolecular modes.  Within this approximation, the rovibrational energy levels were 

calculated by the pseudo-spectral approach discussed previously [45,56].  In the two-

angle embedded frame, the Hamiltonian of two interacting linear rigid rotors can be 

expressed as [57] 

   

H R,θ1,θ2 ,φ( ) = T1 + T2 +
−2

2µ1,2 R2

⎛

⎝
⎜

⎞

⎠
⎟
∂
∂R

R2 ∂
∂R

+
1

2µ1,2 R2

⎛

⎝
⎜

⎞

⎠
⎟ J 2 + j2 − 2j ⋅ J⎡⎣ ⎤⎦

+V R,θ1,θ2 ,φ( )
, (32) 

where 

i) µ1,2 is the dimer reduced mass, 

ii) Ti = B0i(ji)2 (i = 1, 2) are the kinetic energy expression for the rotational 

motion of monomers 1 and 2 with rotational angular momenta j1 and j2, and rotational 

constants B0i, 

iii) j = j1 + j2 is the coupled internal rotational angular momentum, 

iv) and J = l + j is the total angular momentum of the system (l is the angular 

momentum for the rotation about the center of mass of the complex). 
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In the pseudo-spectral approach, the Hamiltonian in Eq. (32) was split into six 

contributing terms [45,56] 

  
H R,θ1,θ2 ,φ( ) = T1 + T2 + TR + TDD + HOCC +V R,θ1,θ2 ,φ( ) , (33) 

where 

   
TR =

−2

2µ1,2 R2

⎛

⎝
⎜

⎞

⎠
⎟
∂
∂R

R2 ∂
∂R

, (34) 

  
TDD =

1
2µ1,2 R2

⎛

⎝
⎜

⎞

⎠
⎟ J 2 + j2 − 2 jz Jz
⎡⎣ ⎤⎦ , (35) 

and 

  
HOCC =

−1
2µ1,2 R2

⎛

⎝
⎜

⎞

⎠
⎟ j+J+ + j−J−⎡⎣ ⎤⎦ . (36) 

The TR term represents the kinetic energy for the stretching motion of the complex, TDD 

describes the rotational kinetic energy of the dimer, considered as a pseudo diatom, and 

HOCC represent the off-diagonal Coriolis interaction terms. 

Derivatives of the rovibrational eigenvalues with respect to the morphing 

parameters, were computed using the Hellmann-Feynman theorem.  The experimental 

values of the rotational constants B0i for the isolated monomers were used in the 

expression of the kinetic energy for all the calculations.  The accuracy of the resulting 

eigenvalues was controlled by the following parameters [45]: Rstart (the first point of the 

radial grid), Rend (the last point of the radial grid), NR (the number of grid points in the 

radial direction), 
  
Nθ1

 and 
  
Nθ2

 (the numbers of θ1 and θ2 points used in the grid), and Nφ 
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(the number of φ points).  The number of radial functions and the number of radial 

spectral basis functions are NF.  All of the summations over spectral states are truncated 

so that 
  
j1 ≤ jmax1

 and 
  
j2 ≤ jmax2

, and where all possible values of m1 and m2 were 

included.  The tolerance used to determine the convergence of the eigenvalues in the 

Lanczos procedure [58] is τL.  With this set of parameters the absolute energies are 

converged to 0.01 cm-1. 

In the case of the six-dimensional interaction potential of a diatom-diatom 

system, the monomers’ basis functions are obtained from the monomers’ RKR potentials 

[59].  The RKR potentials are fitted to Morse expansions as [60] 

  
Vx

RKR rx( ) = Bs 1− e−β rx − rx ,e( )( )s⎡

⎣
⎢

⎤

⎦
⎥

s=0

N

∑  for x = 1 and 2 . (37) 

Employing a modified Numerov-Cooley approach [61], the radial Schrödinger equation 

[Eq. (38)] can be solved numerically to obtain the monomer basis functions  
ϕ x

η( ) rx( ) . 

   

−2

2µxrx
2

⎛

⎝
⎜

⎞

⎠
⎟
∂
∂rx

rx
2 ∂
∂rx

+Vx
RKR rx( ) − Eη

RKR,x
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ϕ x

η( ) rx( ) = 0    for x = 1 and 2  (38) 

In Eq. (38), µx is the monomer reduce mass and η indicates the vibrational level which 

runs from zero to the number of basis functions 
  

NNC −1( ) .  The convergence of the 

Numerov-Cooley method will depend on the following parameters: r1,start (the first point 

of the r1 radial grid), r1,end (the last point of the r1 radial grid), r2,start (the first point of the 

r2 radial grid), r2,end (the last point of the r2 radial grid), 
  
Nr1

(the number of grid points in 
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the r1 radial direction), and 
  
Nr2

 (the number of grid points in the r2 radial direction).  The 

vibrational wave functions of the monomers in the complex are then defined as 

  
ψ x

υx( ) rx( ) = cx
υx ,η( )ϕ x

η( ) rx( )
η=0

NNC −1( )
∑   for x = 1 and 2 , (39) 

where   cx
υx ,η( )  are the expansion coefficients. 

The VSCF calculations, discussed next, can be sped up by pre-calculating all the 

integrals and matrix elements needed in the calculation.  This can be achieved by 

evaluating the integral of the fitting functions in the r1 and r2 radial coordinates over the 

RKR basis functions.  For these two coordinates the angle-like reproducing kernel [44], 

  
q2

2 Zx , ′Zx( ) , defined in Eq. (15) was used and the function  Zx  is given by 

  
Zx rx( ) = rx − rx ,start( )

rx ,end − rx ,start( )    for x = 1 and 2 . (40) 

For each coordinate the set of raw fitting functions, 
  

q2
2 Zx ,Zxκ( ) :κ = j and k{ }  can be 

transformed into a set of orthogonal fitting functions by canonical orthogonalization 

[62].  The matrix q is defined as 
  
qκ ′κ = q2

2 Zxκ
,Zx ′κ

( )  and the matrix S is defined by 

  S = qTq . (41) 

The matrix S can be diagonalized by the unitary transformation U such that 

  U
TSU = s , (42) 

where s is a diagonal matrix.  The canonical transformation matrix is then given by 

  X = Us−1 2 . (43) 
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The orthogonalized fitting functions are then defined as 

 
  
q2,κ

2 Zx( ) = q2
2 Zx ,Zx ′κ
( ) X ′κ κ

′κ
∑ , (44) 

and the two-dimensional orthogonalized fitting functions are defined by 

  
Qjk r1,r2( ) = q2, j

2 Z1( )q2,k
2 Z2( ) . (45) 

By defining Ω to be a fixed point in the four-dimensional grid   
R,θ1,θ2 ,φ( ) , then 

for each value of Ω a two-dimensional potential is determined in the form 

  
V Ω,r1,r2( ) = C jkQjk r1,r2( )

jk
∑ , (46) 

where the indexes j and k run over the interpolated r1,j and r2,k points.  The expansion 

coefficients  
C jk  are obtained by simple matrix multiplication 

  
C jk = Qjk r1, ′j ,r2, ′k( )V Ω,r1, ′j ,r2, ′k( )

′j ′k
∑ , (47) 

due to the orthogonality of the fitting functions.  This procedure avoids the necessity of 

inverting an ill-conditioned matrix which can occur if the direct product of the original 

reproducing kernel fitting functions is used.  Hence the matrix elements in the VSCF 

calculation can then be calculated as follows. 

  

ψ 1
υ1( ) r1( ) V Ω,r1,r2( ) ψ 1

υ1( ) r1( ) = C jkq2,k
2 Z2( )

jk
∑

× c1
υ1 ,η( )c1

υ1 , ′η( ) ϕ1
η( ) r1( ) q2, j

2 Z1( ) ϕ1
′η( ) r1( )

′η =0

NNC −1( )
∑

η=0

NNC −1( )
∑

 (48) 
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ψ 2
υ2( ) r2( ) V Ω,r1,r2( ) ψ 2

υ2( ) r2( ) = C jkq2, j
2 Z1( )

jk
∑

× c2
υ2 ,η( )c2

υ2 , ′η( ) ϕ2
η( ) r2( ) q2,k

2 Z2( ) ϕ2
′η( ) r2( )

′η =0

NNC −1( )
∑

η=0

NNC −1( )
∑

 (49) 

  
ϕ1

η( ) r1( ) V υ2( ) Ω,r1( ) ϕ1
′η( ) r1( ) = C j ϕ1

η( ) r1( ) q2, j
2 Z1( ) ϕ1

′η( ) r1( )  
j
∑  (50) 

  
ϕ2

η( ) r2( ) V υ1( ) Ω,r2( ) ϕ2
′η( ) r2( ) = Ck ϕ2

η( ) r2( ) q2,k
2 Z2( ) ϕ2

′η( ) r2( )  
k
∑  (51) 

  

ψ 1
υ1( ) r1( )ψ 2

υ2( ) r2( ) V Ω,r1,r2( ) ψ 1
υ1( ) r1( )ψ 2

υ2( ) r2( ) = C jk
jk
∑

× c1
υ1 ,η( )c1

υ1 , ′η( ) ϕ1
η( ) r1( ) q2, j

2 Z1( ) ϕ1
′η( ) r1( )( )

′η =0

NNC −1( )
∑

η=0

NNC −1( )
∑

× c2
υ2 ,η( )c2

υ2 , ′η( ) ϕ2
η( ) r2( ) q2,k

2 Z2( ) ϕ2
′η( ) r2( )( )

′η =0

NNC −1( )
∑

η=0

NNC −1( )
∑

 (52) 

In Eqs. (48) to (52), the indexes j and k run over the interpolated r1,j and r2,k points, while 

integrals of the reproducing kernel fitting functions, over the RKR basis sets, can be 

evaluated using the extended Simpson’s rule [62]. 

In order to simplify the six-dimensional potential in Eq. (28), the stretching 

motion of the monomers are adiabatically separated from the bending and stretching 

motions of the complex.  By doing this separation, the six-dimensional potential in Eq. 

(28) becomes   
V υ1 ,υ2( ) R,θ1,θ2 ,φ( )  [23,52], ( υ1  is the first monomer vibrational quantum 

number and  υ2  is the second monomer vibrational quantum number) which represents 

the intermolecular potential of the complex averaged over the monomers vibrational 

states. 
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At each value of Ω the energy of the monomers stretching state, 
  
Eυ1

Ω( )  and 

  
Eυ2

Ω( ) , are determined by using the VSCF calculation proposed by Bowman [63], 

solving the Eqs. (53) to (56) iteratively. 

  
V υ2( ) Ω,r1( ) = ψ 2

υ2( ) r2( )V Ω,r1,r2( )ψ 2
υ2( ) r2( )  (53) 

  
V υ1( ) Ω,r2( ) = ψ 1

υ1( ) r1( )V Ω,r1,r2( )ψ 1
υ1( ) r1( )  (54) 

   
Hη ′η

1( ) = Eη
RKR,1δη ′η + ϕ1

η( ) r1( ) V υ2( ) Ω,r1( ) ϕ1
′η( ) r1( )  (55) 

   
Hη ′η

2( ) = Eη
RKR,2δη ′η + ϕ2

η( ) r2( ) V υ1( ) Ω,r2( ) ϕ2
′η( ) r2( )  (56) 

Where the potential matrix elements are computed as shown in Eqs. (48) to (51).  Then 

the   
V υ1 ,υ2( ) R,θ1,θ2 ,φ( )  potential is determined by 

  

V υ1 ,υ2( ) Ω( ) = Eυ1
Ω( ) − Eυ1

RKR,1( ) + Eυ2
Ω( ) − Eυ2

RKR,2( )
− ψ 1

υ1( ) r1( )ψ 2
υ2( ) r2( ) V Ω,r1,r2( ) ψ 1

υ1( ) r1( )ψ 2
υ2( ) r2( )

, (57) 

where 
  
Eυx

RKR ,x  (x = 1 and 2) are the energies of the monomers stretching state, 

determined from the monomers RKR potentials and where the potential matrix element 

is computed using Eq. (52).  With an initial guess of the expansion coefficients   cx
υx ,η( )  (x 

= 1 and 2), the 
  
Hη ′η

1( )  and 
  
Hη ′η

2( )  matrixes can be diagonalized until the 
  
Eυ1

Ω( )  and 

  
Eυ2

Ω( )  energies converge to a given tolerance τVSCF. 
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The simplification of a six-dimensional potential to a four-dimensional potential 

by adiabatically separating the stretching motion of the monomers from the bending and 

stretching motions of the complex, significantly reduces the difficulty of the 

rovibrational energy calculations.  Within this approximation, the rovibrational 

Hamiltonian becomes similar to the one used for two interacting linear rotors, Eq. (32), 

where the vibrational problem is reduced to a four-dimensional problem.  Thus, the 

rovibrational energy levels can be calculated by the pseudo-spectral approach discussed 

previously [45,56].  Derivatives of the rovibrational eigenvalues, with respect to the 

morphing parameters, were computed using the Hellmann-Feynman theorem.  The 

rotational constants 
  
Bυx

x = 1, 2( )  for monomers 1 and 2, in the vibrational state  υx , 

were used in the expression of the kinetic energy for all the calculations.  A consequence 

of the adiabatic approximation is that the value of 
 
Bυx

will depend on Ω.  To simplify the 

calculation, the value of 
 
Bυx

was calculated at the equilibrium distance Re, and at fixed 

angular coordinates as 

   
Bυx

Re ,θ1
f ,θ2

f ,φ f( ) = 
2

2µx

ψ x
υx( ) 1

rx
2 ψ x

υx( )   for x = 1 and 2 . (58) 

 

3.4 Calculation of the spectroscopic constants 

 

Vibrational frequencies were calculated as the energy differences between the 

initial and final vibrational states involved in the transition, with the same J value.  The 
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rotation and distortion constants have been calculated from first and second differences 

of the calculated rovibrational energy levels [23,49].  The expectation values of 

〈P1(cosθ)〉 and 〈P2(cosθ)〉 were calculated by perturbation theory [23,64], with the 

perturbation 
  
δPn cosθ( ) , where the expectation value of the given operator 

� 

ˆ x  was 

calculated by 

  
i | x | i =

1
δ

Ei
δ( ) − Ei

δ =0( )( ) + O δ( ) . (59) 

In the present study, a value of δ = 0.01 cm-1 was chosen for both P1 and P2 expectation 

values.  Finally, the J dependence of 〈P2(cosθ)〉, Dθ, was calculated by [23] 

  
Dθ

( J ,J −1) =
1

2J
P2 cosθ( )

J
− P2 cosθ( )

J −1{ } . (60) 

 

3.5 Compound model morphing method 

 

In the compound model morphing (CMM) method the potential is generated as 

  

VCMM R( ) = C1 VMP2 ′R( )⎡⎣ ⎤⎦QZ

CP
+ C2 VCCSD(T) ′R( )⎡⎣ ⎤⎦TZ

CP
− VCCSD(T) ′R( )⎡⎣ ⎤⎦TZ

NO CP{ }
+C3 VCCSD(T) ′R( )⎡⎣ ⎤⎦TZ

CP
− VMP2 ′R( )⎡⎣ ⎤⎦TZ

CP

TZ

CP{ } + C4 VHF/R ′R( )⎡⎣ ⎤⎦QZ

CP
− VHF/NR ′R( )⎡⎣ ⎤⎦QZ

CP{ }
+C5 VHF ′R( )⎡⎣ ⎤⎦5Z

CP
− VHF ′R( )⎡⎣ ⎤⎦QZ

CP{ }
′R = C6 R − Rf( ) + 1.0 + C7( )Rf

, (61) 

where the Cα are the unitless morphing parameters.  The reference, or unmorphed 

potential   VCMM
0( ) , is obtained by making C1 = 1.0, C2 = 0.0, C3 = 1.0, C4 = 1.0, C5 = 1.0, C6 
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= 1.0, and C7 = 0.0.  The morphing parameters Cα are obtained by a regularized 

nonlinear least-squares optimization [23], and by then minimizing the Eq. (7) were the 

Cx are the Cα.  In Eq. (61) the parameter C1 is the scaling parameter for the interaction 

energy of the dimer at the MP2/aug-cc-pVQZ level of theory, including the CP 

correction for the BSSE.  The second term gives the correction for the BSSE at the 

CCSD(T) level of theory.  The third term gives corrections for the correlation energy at 

the CCSD(T) level of theory.  The fourth term gives the relativistic corrections which 

can be important in a six-dimensional potential, and the fifth term gives corrections for 

larger basis sets.  Lastly, the radial transformation is included, with the parameters C6 

and C7, to improve the fit of the rotational and distortion constants in the six-dimensional 

potential.  Not all of these parameters are varied in any given morphed potential.  The 

quality of the fit of the experimental data is characterized by the root mean square 

deviation of the experimental data, Eq. (8), where the 

� 

Cx  are the 

� 

Cα . 

Figure 2 shows the dependence of G(γ) on γ for the CMM method, generated by 

using the OC:HCl data in Table 6.  The value of G(γ) varies between G(γ = ∞) = 22.3 

and G(γ = 1) = 2.9.  The interesting feature of the G(γ) vs. γ  curve is the break in the 

curve at γ  ≤ 40.  This implies that lowering γ below 40 does not lead to further 

improvement on the fit.  Thus, the most reliable morphed potential is obtained when the 

value of γ is chosen as large as possible, while still consistent with a good fit to the 

experimental data.  Therefore, the value of γ used in the CMM fitting was chosen to be 

10.0. 
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Figure 2. G(γ) vs. γ curve for the CMM method.  The figure was generated using the 
OC:HCl data in Table 6.  The value of G(γ = ∞) = 22.3 corresponds to the value of G for 
the unmorphed potential,   VCMM

0( )  in Table 6. 
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The optimal value of σk should be the experimental uncertainties of the 

observables.  In general, vibrational frequencies are fitted to 0.01-0.05 cm-1.  The P1 and 

P2’s expectation values can be fitted to 0.001-0.005.  Rotational and distortion constants 

are normally fitted to 10-5 and 10-9 of a wavenumber, respectively.  However, the 

specific value of σk for each observable depends on the system and the ability of the 

potential surface to predict each observable.  Observables that are accurately predicted 

can have smaller uncertainties.  On the other hand, with observables that are inaccurately 

predicted, such as distortion constants, should have significantly higher uncertainties.  In 

addition, 1/σk can also be viewed as weights in the least-square procedure.  Thus for 

strongly correlated data, sometimes σk must be increased in order to not overweight one 

type of data.  It is important to point out that, since the morphing procedure is a 

nonlinear least-squares fit, there is always the possibility of other similar or better fits.  

In order to obtain a unique fit, the experimental data is fitted by adding the data to a 

least-squares fitting in a sequential manner.  The CMM method can be easily applied to 

systems of any vibrational dimensionality. 
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4. APPLICATIONS∗ 

 

In this section, applications of potential morphing methodology are presented for 

the systems: Ne:HCl, OC:HX (X = F, Cl, Br, I), and HI:CO2.  In section 4.1, the three-

dimensional morphing method is applied to the atom-diatom system Ne:HCl.  The PCM 

method for two linear rotors is applied to the system OC:HCl in section 4.2, OC:HI, in 

section 4.4, and HI:CO2, in section 4.5.  In addition, the CMM method is applied to 

morph the four-dimensional potential of the OC:HCl (section 4.2) and OC:HBr (section 

4.3).  Also, a comparison of the PCM and CMM methods is presented in the case of 

OC:HCl, and the advantages and disadvantages of both methods discussed.  Lastly, in 

section 4.6, the CMM method is used to morphed the six-dimensional potential of 

OC:HF system.  It is noted that the CMM method was not used for the OC:HI and 

HI:CO2 systems, because ab initio potentials with large basis set are currently 

                                                
∗Reproduced in part with permission from: “A three-dimensional morphed potential of Ne-HCl including 
the ground state deuterated Σ bending vibration” by L.A. Rivera-Rivera, B.A. McElmurry, S.P. Belov, 
R.R. Lucchese, J.W. Bevan, Chemical Physics Letters 444 (2007) 9-16.  Copyright 2007 Elsevier.  “A 
morphed intermolecular bending potential of OC-HCl” by L.A. Rivera-Rivera, R.R. Lucchese, J.W. 
Bevan, Chemical Physics Letters 429 (2006) 68-76.  Copyright 2006 Elsevier.  “A parameterized 
compound-model chemistry for morphing the intermolecular potential of OC-HCl” by L.A. Rivera-Rivera, 
R.R. Lucchese, J.W. Bevan, Chemical Physics Letters 460 (2008) 352-358.  Copyright 2008 Elsevier.  “A 
four-dimensional compound-model morphed potential for the OC:HBr complex” by L.A. Rivera-Rivera, 
R.R. Lucchese, J.W. Bevan, Physical Chemistry Chemical Physics 12 (2010) 7258-7265.  
http://pubs.rsc.org/en/Content/ArticleLanding/2010/CP/C000972E Reproduced by permission of the 
PCCP Owner Societies.  “A ground state morphed intermolecular potential for the hydrogen bonded and 
van der Waals isomers in OC:HI and a prediction of an anomalous deuterium isotope effect” by L.A. 
Rivera-Rivera, Z. Wang, B.A. McElmurry, F.F. Willaert, R.R. Lucchese, J.W. Bevan, R.D. Suenram, F.J. 
Lovas, Journal of Chemical Physics 133 (2010) 184305-13.  Copyright 2010 American Institute of 
Physics.  http://jcp.aip.org/resource/1/jcpsa6/v133/i18/p184305_s1  “Microwave-based structure and four-
dimensional morphed intermolecular potential for HI-CO2” by W. Jabs, F.F. Willaert, B.A. McElmurry, 
L.A. Rivera-Rivera, R. Montuoro, R.R. Lucchese, J.W. Bevan, R.D. Suenram, Journal of Physical 
Chemistry A 111 (2007) 11976-11985.  Copyright 2007 American Chemical Society. 
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computationally too expensive to be calculated for these systems.  Thus, in these cases 

the PCM method is preferred over the CMM method. 

 

4.1 Ne:HCl 

 

In the Ne:HCl complex, the rovibrational states are labeled using the notation 

  
ν1,ν2

l ,ν3( )
J

, as in linear triatomic molecule.  In this notation, the quantum number l 

describes the vibrational angular momentum of the triatom and it is used with  ν2 , the 

bending quantum number, to characterize the bending mode of the complex with the 

label   ν2
l .  The quantum number  ν1  labels the intramolecular stretch of the diatom H-Cl, 

and  ν3  describes the intermolecular vibrational motion of the complex.  Lastly, the 

quantum number J is the total angular momentum.  The Coriolis interactions split the Π 

states (l = 1) into the (l = 1e or +1) and (l = 1f or -1) states, where e and f, or + and -, 

refer to the parity of the state [65]. 

Ne-HCl was first observed experimentally in supersonic expansions by Novick et 

al. [66].  Their results were consistent with the almost free rotation of the HCl molecule 

within the complex.  Barton et al. [67] subsequently investigated ground vibrational state 

microwave and radiofrequency Stark spectra for Ne-DCl, and a partially resolved 

rotational spectrum of Ne-HCl was obtained by Prout [68].  Hutson and Howard [69] 

calculated an anisotropic PES for Ne:HCl, and determined a small barrier to internal 

rotation in the complex.  It was found that PES has a global minimum at the linear Ne-
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HCl configuration, and a secondary minimum at the Ne-ClH configuration.  Lovejoy and 

Nesbitt [70] later obtained a near-infrared spectrum of jet-cooled Ne-HCl, reporting the 

HCl stretching fundamental and three combination bands.  The latter included those of 

the van der Waals stretching and bending modes in the excited state.  Subsequently, 

Hutson [71] calculated a two-dimensional PES for Ne:HCl with HCl in its  ν1 = 1  state, 

by least-squares fitting to the near infrared laser spectra.  This surface was also 

characterized by a global minimum at the linear Ne-HCl geometry, and a secondary 

minimum at the Ne-ClH linear geometry.  Schuder et al. [72] later observed the Ne-DCl 

complex in a slit-jet supersonic expansion, analyzing the mid-infrared absorption spectra 

for the DCl stretch fundamental, and the DCl bending combination bands.  The DCl 

component was also found to be a nearly free rotor from anomalous intensity patterns for 

Ne-DCl, which is in contrast to the more restricted librational motion of DCl in Ar-DCl.  

More recently Rivera-Rivera et al. [27] reported the ground state submillimeter 

spectrum, of the Σ bending vibration of Ne-DCl, recorded in a coaxially-configured 

supersonic jet. 

Potentials based on ground state ab initio calculations are available for the 

complex [73,74].  Those potentials also indicated a global minimum Ne-HCl and a 

secondary minimum Ne-ClH.  Recently, Jiang et al. [75] performed ab initio calculations 

at the CCSD(T)/aug-cc-pVTZ-332 level of theory and found that Ne-ClH linear 

geometry is more stable than the Ne-HCl linear geometry, thus contradicting previous 

studies.  However, a further investigation by Cagide Fajín et al. [76] at the 

CCSD(T)/aug-cc-pV5Z-33211 level of theory attributed the results of Jiang et al. [75] to 



 34 

the use of an inadequate basis set.  This surface was characterized by two linear minima, 

the global minimum Ne-HCl and the secondary minimum Ne-ClH, with a difference in 

energy less than 3 cm-1. 

Substantial differences exist between the available two-dimensional potentials of 

Ne:HCl.  These discrepancies make the comparison between the potentials for  ν1 = 0  

and  ν1 = 1  states of HCl difficult and unreliable.  Furthermore, it has been claimed that 

high quality ab initio potentials are more reliable than the semi-empirical ones [76].  

Consequently, in order to get more insight about the dependence of the potential on the 

HCl bond length r, a three-dimensional surface is indispensable. 

In this work, the non-relativistic interaction energy of the Ne:HCl complex was 

calculated at the CCSD(T)/aug-cc-pVTZ level of theory.  The PES was calculated on a 

grid of 780 points.  The HCl bond distance was varied using 6 grid points (1.074552 Å, 

1.174552 Å, 1.274552 Å, 1.374552 Å, 1.474552 Å, and 1.574552 Å); the distance Ne-Cl 

was varied using 13 grid points (3.00 Å, 3.30 Å, 3.40 Å, 3.50 Å, 3.70 Å, 3.80 Å, 3.85 Å, 

3.90 Å, 4.00 Å, 4.50 Å, 5.00 Å, 5.50 Å, and 6.00 Å); and the H-Cl-Ne angle was varied 

using 10 equally spaced points between 0° and 180°. 

The fully BSSE corrected three-dimensional PES was obtained using 

  
V R,θ ,r( ) =V int R,θ ,r( ) +V HCl r( ) , (62) 

where 
  
V int R,θ ,r( )  is the ab initio BSSE corrected interaction energy, and 

  
V HCl r( )  the 

interatomic potential for the isolated HCl molecule.  The 
  
V HCl r( )  potential was chosen 
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to be a one-dimensional Morse potential, defined in Eq. (63) [77] with the parameters 

[78,79] 2β = 2.232932, D = 42341.90 cm-1, and re = 1.274552 Å. 

  
V HCl r( ) = D 1− exp −2β

r − re

re

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 (63) 

The value of the parameters used in the calculation of the rovibrational energy 

levels were: NRF = 50 (the number of radial functions), Rstart = 2.70 Å, Rend = 6.60 Å, and 

jmax = 14.  In addition, the rotational constants for the diatomic fragments were taken to 

be the same as for the isolated molecules: 10.4401992 cm-1 [80] for H35Cl 
 
ν1 = 0( ) , 

10.136228 cm-1 [78] for H35Cl 
 
ν1 = 1( ) , 5.3922717 cm-1 [80] for D35Cl 

 
ν1 = 0( ) , 5.27978 

cm-1 [72] for D35Cl 
 
ν1 = 1( ) , and 5.3764902 cm-1 [80] for D37Cl 

 
ν1 = 0( ) . 

The ab initio potential was morphed using the transformation described by Eqs. 

(5) and (6), where Rf was selected to be 3.70 Å and β was chosen to be 1.0.  The 

experimental data used in the morphed potential energy surface of Ne:HCl is shown in 

Table 1.  The data includes previously reported submillimeter, microwave, and infrared 

(IR) experiments [27,67,70,72].  Rotational constants and centrifugal distortion constants 

for the states (1,20,0), (1,00,1), and (1,11e,0) were not included in the fitting because such 

constants are significantly perturbed by Coriolis interactions.  The values of G in Table 1 

for the ab initio and morphed potentials are G = 161.1 and G = 3.9 respectively, thus 

indicating the improvement in the overall agreement with experimental data; obtained 

from the morphing procedure. 
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Table 1 
Experimental data of Ne:HCl used in the fits and fitted values, and the uncertainties 
used. 

Observable Vab initio Vmorphed Exp Reference σk 
20Ne-D35Cl {E[(0,20,0)0]- E[(0,00,0)0]}/cm-1 13.54 8.41 8.64 [27] 0.05 
20Ne-D37Cl {E[(0,20,0)0]- E[(0,00,0)0]}/cm-1 13.65 8.41 8.61 [27] 0.05 
20Ne-H35Cl {E[(1,00,0)0]- E[(0,00,0)0]}/cm-1 -0.17 0.29 0.30 [70] 0.03 
20Ne-D35Cl {E[(1,00,0)0]- E[(0,00,0)0]}/cm-1 -0.28 0.14 0.31 [72] 0.03 
20Ne-H35Cl {E[(1,20,0)0]- E[(1,00,0)0]}/cm-1 18.86 15.79 15.68 [70] 0.05 
20Ne-D35Cl {E[(1,20,0)0]- E[(1,00,0)0]}/cm-1 13.57 8.30 8.20 [72] 0.05 
20Ne-H35Cl {E[(1,00,1)0]- E[(1,00,0)0]}/cm-1 20.65 20.82 20.85 [70] 0.05 
20Ne-H35Cl {E[(1,11f,0)1]- E[(1,00,0)1]}/cm-1 25.15 22.95 22.52 [70] 0.05 
20Ne-D35Cl {E[(1,11f,0)1]- E[(1,00,0)1]}/cm-1 17.92 13.55 13.57 [72] 0.05 
20Ne-H35Cl B[(0,00,0)1,0]/(0.01 cm-1) 8.193 9.105 9.111 [69] 0.003 
20Ne-D35Cl B[(0,00,0)1,0]/(0.01 cm-1) 8.103 9.006 9.000 [67] 0.003 
20Ne-D37Cl B[(0,00,0)1,0]/(0.01 cm-1) 7.958 8.836 8.836 [67] 0.003 
20Ne-D35Cl B[(0,20,0)1,0]/(0.01 cm-1) 7.830 8.845 8.855 [27] 0.003 
20Ne-D37Cl B[(0,20,0)1,0]/(0.01 cm-1) 7.702 8.729 8.722 [27] 0.003 
20Ne-H35Cl B[(1,00,0)1,0]/(0.01 cm-1) 8.146 9.053 9.057 [70] 0.003 
20Ne-D35Cl B[(1,00,0)1,0]/(0.01 cm-1) 8.060 8.957 8.949 [72] 0.003 
20Ne-H35Cl B[(1,11f,0)2,1]/(0.01 cm-1) 8.152 9.097 9.091 [70] 0.003 
20Ne-D35Cl B[(1,11f,0)2,1]/(0.01 cm-1) 8.099 9.038 9.040 [72] 0.003 
20Ne-H35Cl DJ [(0,00,0)2,1,0]/(10-7 cm-1) 36.9 70.0 69.1 [70] 4.0 
20Ne-D35Cl DJ [(0,00,0)2,1,0]/(10-7 cm-1) 28.7 66.2 61.1 [67] 4.0 
20Ne-D37Cl DJ [(0,00,0)2,1,0]/(10-7 cm-1) 27.4 63.4 59.0 [67] 4.0 
20Ne-D35Cl DJ [(0,20,0)2,1,0]/(10-7 cm-1) 21.7 42.4 22.5 [27] 4.0 
20Ne -D37Cl DJ [(0,20,0)2,1,0]/(10-7 cm-1) 21.9 48.0 24.3 [27] 4.0 
20Ne-H35Cl DJ [(1,00,0)2,1,0]/(10-7 cm-1) 36.4 69.6 70.4 [70] 4.0 
20Ne-D35Cl DJ [(1,00,0)2,1,0]/(10-7 cm-1) 28.0 65.4 66.0 [72] 4.0 
20Ne-H35Cl DJ [(1,11f,0)3,2,1]/(10-7 cm-1) 50.2 76.0 66.9 [70] 4.0 
20Ne-D35Cl DJ [(1,11f,0)3,2,1]/(10-7 cm-1) 47.0 73.8 66.5 [72] 4.0 
20Ne-H35Cl 〈P1(cosθ)〉 for (0,00,0)0 0.40 0.19 0.20 [69] 0.03 
20Ne-D35Cl 〈P1(cosθ)〉 for (0,00,0)0 0.67 0.34 0.42 [67] 0.03 
20Ne-D37Cl 〈P1(cosθ)〉 for (0,00,0)0 0.67 0.36 0.42 [67] 0.03 
20Ne-H35Cl 〈P2(cosθ)〉 for (0,00,0)0 0.166 0.085 0.081 [69] 0.004 
20Ne-D35Cl 〈P2(cosθ)〉 for (0,00,0)0 0.370 0.175 0.197 [67] 0.004 
20Ne-D37Cl 〈P2(cosθ)〉 for (0,00,0)0 0.374 0.181 0.198 [67] 0.004 
20Ne-D35Cl 〈P2(cosθ)〉 for (0,20,0)0 0.264 0.417 0.459 [27] 0.004 
20Ne-D37Cl 〈P2(cosθ)〉 for (0,20,0)0 0.261 0.415 0.459 [27] 0.004 
20Ne-D35Cl Dθ

(1,0)/10-6 for (0,00,0) 17.4 76.4 73.0 [67] 4.0 
G 161.1 3.9    

 

 

 

 
 



 37 

Table 2 
Optimized morphing parameters Cα,i,j and their corresponding uncertainties for Ne:HCl. 

(α,i,j) 
  Cα ,i, j  

  Cα ,i, j
0( )  σ 

(1,0,0) 1.5339 1.0 0.0060 
(1,0,1) -1.2605 0.0 0.0352 
(2,0,0) (1.0) 1.0 Constrained  
(2,1,0) 0.1767 0.0 0.0014 
(2,2,0) 0.1314 0.0 0.0027 
(3,0,0) 0.0893 0.0 0.0001 
(3,1,0) 0.0195 0.0 0.0003 
(3,2,0) 0.0222 0.0 0.0006 

 
 
 
 
 
 
 
 
Table 3 
Correlation matrix of the morphing parameters (Cα,i,j) for Ne:HCl. 

(α,i,j) (1,0,0) (1,0,1) (2,1,0) (2,2,0) (3,0,0) (3,1,0) (3,2,0) 
(1,0,0) 1.00       
(1,0,1) -0.38 1.00      
(2,1,0) 0.37 -0.18 1.00     
(2,2,0) 0.29 -0.19 0.54 1.00    
(3,0,0) -0.45 0.12 -0.07 0.47 1.00   
(3,1,0) 0.47 -0.09 0.47 -0.36 -0.66 1.00  
(3,2,0) 0.33 -0.12 0.34 0.88 0.26 -0.43 1.00 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Morphed interaction potential of Ne:HCl.  A two-dimensional cut of the 
morphed interaction potential is shown in the top of the figure.  The corresponding 
statistical uncertainties relative to the value of the potential, at infinite separation, are 
shown in the bottom of the figure.  All contours are given in cm-1.  The coordinates used 
(R,θ,r) are the Jacobi coordinates for the 20Ne:H35Cl isotopomer, defined in Figure 1(a). 
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Figure 4. Adiabatic potential surfaces for the 20Ne:H35Cl isotopomer.  In the top of the 
figure, the H-35Cl  ν1 = 0  surface is shown, and in the bottom, the H-35Cl  ν1 = 1  surface.  
All contours are given in cm-1.  The coordinates used (R,θ,r) are the Jacobi coordinates 
defined in Figure 1(a). 
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Table 4 
Features of various Ne:HCl potentials. 

Parameter Vmorphed 

 
ν1 = 0( )  

Vmorphed 

 
ν1 = 1( )  

M4a M5a H6
 
ν1 = 1( ) a 

Vmin(0°)/cm-1 -81.4 -84.4 -67.36 -68.22 -64.26 
Vmin(180°)/cm-1 -57.5 -56.6 -56.02 -53.50 -56.83 
Vmin(0°)-Vmin(180°)/cm-1 -23.9 -27.8 -11.34 -14.72 -7.43 
Barrier height/cm-1 40.4 44.0 27.16 27.87 22.04 
Rmin(0°)/Å 3.84 3.84 3.79 3.76 3.78 
Rmin(180°)/Å 3.21 3.21 3.51 3.52 3.44 
Rmin(0°)-Rmin(180°)/Å 0.63 0.63 0.28 0.24 0.34 
Parameter Vab initio Vmorphed ab initiob ab initioc  
Vmin(0°)/cm-1 -58.58 -90.2(37) -58.99 -66.85  
Vmin(180°)/cm-1 -48.49 -74.8(30) -61.55 -65.10  
Vmin(0°)-Vmin(180°)/cm-1 -10.09 -15.4(48) 2.56 -1.75  
Barrier height/cm-1 30.38 46.7(41) 21.11 21.85  
Rmin(0°)/Å 3.91 3.45(1) 3.87 3.83  
Rmin(180°)/Å 3.45 3.13(1) 3.41 3.40  
Rmin(0°)-Rmin(180°)/Å 0.46 0.32(2) 0.46 0.43  

aFrom [71]. 
bFrom [75] CCSD(T)/aug-cc-pVTZ-332 level of theory. 
cFrom [76] CCSD(T)/aug-cc-pV5Z-33211 level of theory. 
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In Table 2, the final morphing parameters that yielded the best fit of the 

experimental data are given.  The correlation matrix for the final morphing parameters is 

given in Table 3.  The morphed potential is characterized by two linear minima (see 

Figures 3 and 4), with the Ne-H-Cl minimum having R = 3.45(1) Å corresponding to 

Vmin = -90.2(37) cm-1, and the Ne-Cl-H minimum having R = 3.13(1) Å and Vmin = -

74.8(30) cm-1. 

In Table 4, the generated three-dimensional morphed potential has been 

compared with other available potentials for Ne:HCl.  The three-dimensional morphed 

potential is found to give significantly deeper minima than the corresponding parameters 

in other determined potentials.  Furthermore, the values of R(0°) and R(180°) are 

significantly smaller for the three-dimensional morphed potential.  However, the 

dissociation energy, D0, is determined to be within the same range of previous calculated 

values [27,69,71,72,75,76].  In addition, the absolute value of the energy difference 

between the two minima, in the three-dimensional morphed potential of 15.4(48) cm-1, 

compares with the 14.72 cm-1 obtained from the M5 potential [71]; but is significantly 

larger than the value determined from the H6
 
ν1 = 1( )  potential (Table 4).  Lastly, the 

barrier height for the internal rotation of HCl subunit was determined to be 46.7(41) cm-

1, which is considerably larger than the previously determined values [71,75,76] (Table 

4). 
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Figure 5. Ground state probability densities for the 20Ne-H35Cl isotopomer.  In the top of 
the figure the probability density for H-35Cl in the  ν1 = 0  state is shown, and in the 
bottom of the figure the probability density for the H-35Cl  ν1 = 1 state is shown. 
 
 
 

 



 43 

Table 5 
Predicted spectroscopic constants from the morphed potential for Ne-HCl. 

Isotopomer 
 

State B (×10-2 cm-1) DJ (×10-7 cm-1)  〈P1(cosθ)〉 〈P2(cosθ)〉 

20Ne-H35Cl (0,20,0) 9.326 95.17 -0.1592 0.3424 
20Ne-H35Cl (0,00,1) 7.364 -78.71 -0.0294 0.0929 
20Ne-H35Cl (0,11f,0) 9.116 75.25 0.0337 -0.1832 
20Ne-D35Cl (0,00,1) 7.951 181.14 -0.1725 0.0698 
20Ne-D35Cl (0,11f,0) 9.051 73.44 0.0593 -0.1658 
20Ne-D35Cl (1,00,1) 7.923 184.67 -0.1775 0.0710 
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Additional experimental data for Ne:H(D)Cl, with H(D)Cl in its  ν1 = 0  state, 

especially D0, will be necessary in order to determine an accurate potential well depth, 

De.  The fact that the D0 does not change with a deeper morphed potential can be 

attributed to the fact that the morphed potential has a bigger barrier for the internal 

rotation of HCl subunit.  Since the wave functions (see Figure 5) for the states 

considered here are delocalized, corresponding to nearly free rotor states, the net shift of 

the rovibrational energy levels, upon morphing, results from the near cancellation of the 

positive shift in the energies, due to the increase in the barrier height, and a negative 

shift in the energies, due to deeper minima. 

The morphed potentials in the  ν1 = 0  and  ν1 = 1  states of HCl, in Table 4, 

provide a more relevant comparison with the M4, M5, and H6
 
ν1 = 1( )  potentials 

respectively.  The well depth for the morphed potentials in the  ν1 = 0  and  ν1 = 1  states 

are deeper in the Ne-HCl configuration, but substantially the same in the Ne-ClH 

configuration.  This is noted when compared to the M4, M5, and H6
 
ν1 = 1( )  potentials.  

In addition, the barrier height is larger for the morphed potentials in the  ν1 = 0  and 

 ν1 = 1  states when again compared to the M4, M5, and H6
 
ν1 = 1( )  potentials.  

Furthermore, the values of R(0°) and R(180°) for the morphed potentials, in the  ν1 = 0  

and  ν1 = 1 states, are significantly different from the values determined for the M4, M5, 

and H6
 
ν1 = 1( )  potentials.  Lastly, in Table 5, predictions from the morphed potential 

have been given to some yet to be observed transitions in 20Ne-H35Cl and 20Ne-D35Cl.  
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Experimental observation of such transition will provide a valuable criterion for 

determining the preferred model for the complex. 

The morphed potential for the Ne:HCl complex is a double minimum potential 

with Vmin(0°) = -90.2(37) cm-1, R(0°) = 3.45(1) Å, and Vmin(180°) = -74.8(30) cm-1, 

R(180°) = 3.13(1) Å with a barrier of 46.7(41) cm-1.  From the present analysis, it can be 

concluded that the global and local minima in Ne-HCl, have significantly deeper 

minima, a larger barrier, and smaller Rmin(0°) and Rmin(180°), than what was determined 

in previous potentials.  Comparable trends have been determined from the extensive 

morphing studies of the Ar:HBr complex [23,26].  This is in contrast to the 

corresponding morphed potentials determined for Ne:HBr [21], particularly Ne:HI [20] 

which gave convincing evidence for the existence of Ne-XH (X = Br, I) global minima.  

This occurred in cases where multipole-induced multipole interactions are expected to be 

smaller, and dispersion effects larger, thus favoring van der Waals global minima. 

 

4.2 OC:HCl 

 

In the previous section, the three-dimensional morphed potential was generated 

for the Ne:HCl complex.  In this section, the potential morphing methodology is applied 

to OC:HCl, which is a system of higher dimension than considered previously.  The 

OC:HCl system is treated as two interacting linear rotors, thus the vibrational problem is 

reduced to a four-dimensional problem. 
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The linear OC:HX (X = F, Cl, Br, I) dimers have five modes of intermolecular 

vibrational motion: one stretch of the intermolecular hydrogen bond  ν3 , a doubly 

degenerate high-frequency bending vibration  ν4
1

 (libration of HX), and a doubly 

degenerate low-frequency bending vibration  ν5
1

 (libration of CO).  In addition, the dimer 

has the intramolecular H-X and C-O stretching vibrations,  ν1  and  ν2  respectively. 

Experiment and theory concur that the hydrogen-bonded complex OC-HCl has a 

linear equilibrium geometry [81-92].  Ab initio calculations [84,86,89,90] also suggest 

that the CO-HCl isomer has linear equilibrium geometry, although experimentally it has 

not yet been observed in the gas phase.  Initial experimental work using pulse-nozzle 

Fourier transform microwave spectroscopy [91,93] provided a precise ground state 

molecular structure for the OC-HCl isomer.  A Rabi-type molecular beam electric 

resonance spectrometer gave additional microwave and radio-frequency data [81].  The 

values of the  ν1 ,  ν2 , and  ν4
1

 vibrational frequencies were initially determined to be 

2815.2(3) cm-1, 2154.3(3) cm-1, and 247.1(5) cm-1 by using infrared spectra in solid 

argon matrices [94].  In the gas phase, the analysis of the intramolecular bands  ν1  and 

 ν2 , located at 2851.761(2) cm-1 and 2155.500(2) cm-1, were reported using diode-laser 

[92] and Fourier transform supersonic-jet spectroscopy [88].  Subsequently, the static 

gas-phase Fourier transform IR spectrum was recorded [87] and used to evaluate [83] the 

 ν5
1  bending band, which was found to be at 48.9944(2) cm-1.  Recently, a gas phase 

study of the OC-HCl dimer, using synchrotron radiation, was reported [85] and the  ν4
1
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intermolecular vibrational frequency of OC-HCl was determined to be 201.20464(27) 

cm-1. 

In the ab initio calculation, the bond lengths of the monomer components were 

fixed at the experimental re: 1.128323 Å for CO [79] and 1.274552 Å for HCl [79].  The 

five ab initio potentials calculated for the OC:HCl complex were: (i) CCSD(T)/aug-cc-

pVTZ, (ii) MP2/aug-cc-pVQZ, (iii) MP2/aug-cc-pVTZ, (iv) HF/aug-cc-pV5Z, and (v) 

HF/aug-cc-pVQZ.  These five potentials were corrected for the BSSE.  The 

CCSD(T)/aug-cc-pVTZ potential without the CP correction was also calculated.  All six 

of these ab initio potentials were calculated in a four-dimensional grid of 1,813 

  
R,θ1,θ2 ,φ( )  points, defined in Figure 1(b).  R, which is the distance between the center 

of mass of CO and HCl, takes the values of 3.00 Å, 4.00 Å, 4.25 Å, 4.50 Å, 4.75 Å, 5.50 

Å, and 8.00 Å.  The angles θ1 and θ2 take the values of 18.0º, 54.0º, 90.0º, 126.0º, and 

162.0º.  Lastly, the dihedral angle φ takes the values of 18.0º, 54.0º, 90.0º, 126.0º, 162.0º, 

198.0º, 234.0º, 270.0º, 306.0º, and 342.0º.  The four-dimensional grid was supplemented 

with additional points at all values of R, and with φ = 0.0º, θ1 = 2.0º, 8.0º, and 14.0º, and 

θ2 = 166.0º, 172.0º, and 178.0º.  In the fitting of the ab initio potential the weighing 

factor, in Eq. (21), Fw = 25 cm-1 was used.  This was selected in order to obtain an 

absolute average difference less than 6.0 cm-1 between the ab initio and fitted potential 

for the points within 270 cm-1 from the minimum of the potential [45,49].  The value of 

the Vmin in Eq. (22) was chosen to be 1000 cm-1.  The values of the parameters used in 

the rovibrational calculations were: Rstart = 3.50 Å, Rend = 8.00 Å, NR = 38, 
  
Nθ1

= 48, 
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Nθ2

= 24, Nφ = 40, NF = 34, 
  
jmax1

 = 20, 
  
jmax2

 = 16, and τL = 10-12 atomic units.  In 

addition, the rotational constants for the diatomic fragments selected were [91]: 

1.92252905 cm-1 for 12C16O, 1.83792976 cm-1 for 13C16O, 10.4401992 cm-1 for H35Cl, 

10.42451578 cm-1 for H37Cl, and 5.392271676 cm-1 for D35Cl. 

The CMM method in Eq. (61) was used to morph the interaction potential of 

OC:HCl.  The PCM method described in Eqs. (9) to (12) was also applied to the OC:HCl 

system, where the Rf value was selected to be 4.30 Å.  For the CMM method the 

parameters C4 and C7 were constrained to zero, and C6 to one, i.e. no relativistic and 

radial corrections for the CMM potential of OC:HCl.  The experimental data used to 

morph the intermolecular PES of OC:HCl is shown in Table 6.  This data includes 

ground vibrational state microwave spectra [91] as well as supersonic jet infrared spectra 

[83].  The values of G shown in Table 6 for the   VCMM
0( )  and CCSD(T)/aug-cc-pVTZ 

potentials are G = 22.3 and G = 37.1, respectively.  When using the same data and σk, 

for the morphed potentials, the values of G are G = 2.9 (for the CMM method) and G = 

9.3 (for the PCM method).  Thus there is an indication of improvement in the overall 

agreement with experimental data obtained from the application of the morphing 

procedure. 
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Table 6 
Experimental data of OC:HCl used in the fits and fitted values, and their uncertainties. 

Observablea Isotopomer 
  VCMM

0( )    VCMM
2( )  

  
VCCSD(T)( )

TZ

CP
 VPCM

b Exp σk 

B (GS)/10-2 
cm-1 

16O12C-H35Cl 5.525 5.583 5.481 5.580 5.576c 0.002 

DJ (GS)/10-8 
cm-1 

16O12C-H35Cl 15.7 15.8 16.1 16.2 16.0c 0.2 

B (GS)/10-2 
cm-1 

16O12C-D35Cl 5.538 5.597 5.495 5.595 5.590c 0.002 

DJ (GS)/10-8 
cm-1 

16O12C-D35Cl 14.6 14.8 15.0 15.1 15.0c 0.2 

B ( ν5
1 )/10-2 

cm-1 

16O12C-H35Cl 5.597 5.655 5.550 5.649 5.657d 0.002 

DJ ( ν5
1 )/10-8 

cm-1 

16O12C-H35Cl 18.4 18.7 18.7 18.8 19.1d 0.5 

〈P2(cosθ2)〉 
(GS) 

16O12C-H35Cl 0.807 0.780 0.806 0.808 0.770c 0.002 

〈P2(cosθ2)〉 
(GS) 

16O12C-D35Cl 0.859 0.829 0.858 0.860 0.820c 0.002 

 ν5
1 /cm-1 

16O12C-H35Cl 48.60 48.98 48.34 48.99 48.99d 0.01 

G  22.3 2.9 37.1 9.3   
aGS = ground state. 
bThe ab initio potential used in the PCM procedure was the CCSD(T)/aug-cc-pVTZ, with the CP 
correction, which is the same potential used in the CMM procedure. 
cFrom [91]. 
dFrom [83]. 
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Table 7 
Optimized values for the morphing parameters of OC:HCl. 

PCM method 
α i λα,i = (lx n 

 ′θ1   ′θ2  ′φ ) 
  Cα ,i

0( )    Cα ,i  σ 

1 1 0     1.0 1.0210 0.0004 
2 1 0     1.0 1.0125 0.0047 
3 1 0     0.0 0.0092 0.0001 

CMM method 
α       

  Cα
0( )    Cα

2( )  σ 

1       1.0 0.9602 0.0009 
2       0.0 (0.0) Constrained 
3       1.0 0.5408 0.0078 
4       0.0 (0.0) Constrained 
5       1.0 (1.0) Constrained 
6       1.0 (1.0) Constrained 
7       0.0 (0.0) Constrained 
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In Table 7, final morphing parameters are given that yield the best fit compared 

to the experimental data.  The magnitude of the values of these parameters gives the 

contribution needed in order to improve the   VCMM
0( )  and CCSD(T)/aug-cc-pVTZ potentials 

and obtain the best agreement with the experimental data.  The value of the C5 parameter 

in the CMM potential shown in Table 7 was constrained to one because its value could 

not be determined with statistical significance and it did not change the quality of the 

final fit.  Similarly, the value of the C2 parameter in the CMM potential could not be 

determined with statistical significance, and was consequently constrained to zero.  In 

addition, as expected the C3 parameter is close to 0.5.  Since the MP2 potential 

overestimates the correlation energy and the CCSD(T) potential under estimates the 

correlation energy, it is reasonable that this value of the C3 parameter be close to 0.5.  In 

contrast to the PCM method [28-30], the CMM approach does not involve angular 

morphing functions (Eq. (11)).  In Table 7, the morphing parameters of the PCM and 

CMM methods are compared.  The parameter C1 in the CMM approach is similar to the 

parameter C1,1 in the PCM method, which is the scaling of the reference potential. 
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Figure 6. Two-dimensional slices of the interaction potential of 16O12C:H35Cl generated 
using the CMM method.  The coordinates used are the Jacobi coordinates defined in 
Figure 1(b).  All contours are in cm-1. 
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Figure 7. The corresponding estimated errors on the 16O12C:H35Cl CMM potential, 
relative to the potential at infinite separation.  The coordinates used are the Jacobi 
coordinates defined in Figure 1(b).  All contours are in cm-1. 
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Figure 8. Differences between interaction potentials of 16O12C:H35Cl generated by the 
PCM and CMM methods.  The coordinates used are the Jacobi coordinates defined in 
Figure 1(b).  All contours are in cm-1. 
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Table 8 
Features of morphed potentials of OC:HCl. 

Isomer Parameter PCM method 

  VCMM
2( ) CMM method 

OC-HCl De/cm-1 677(4) 705(3) 
 R/Å 4.255(2) 4.258(8) 

CO-HCl De/cm-1 341(2) 325(4) 
 R/Å 4.11(2) 4.11(4) 

 
 
 
 
 
Table 9 
Comparison of predicted vibrational frequencies and D0 energy of 16O12C-H35Cl. 

Observable PCM method 

  VCMM
2( ) CMM method Exp 

D0/cm-1 365(3) 387(2) - 

 ν3 /cm-1
 62(4) 63.3(1) - 

B ( ν3 )/10-2 cm-1 5.43(2) 5.454(8) - 

DJ ( ν3 )/10-8 cm-1 24(1) 25.5(2) - 

 ν4
1 /cm-1 194.0(7) 199.1(6) 201.20464(27)a 

B ( ν4
1 )/10-2 cm-1 5.44(2) 5.442(6) 5.42994(13)a 

DJ ( ν4
1 )/10-8 cm-1 23(3) 21.90(8) 21.42(15)a 

aFrom [85]. 
 
 
 
 
Table 10 
Comparison of previous potentials of OC:HCl. 

Reference De (cm-1) 16O12C-H35Cl De (cm-1) 12C6O-H35Cl 
[84]a 340 323 
[89]a 899 745 
[90]a 740 480 
[86]a 750.16 485.88 
[91]b 443 - 
[91]c 569 - 
[85]a 654 - 
PCMc 677(4) 341(2) 
CMMc 705(3) 325(4) 

aAb initio calculations. 
bMMC calculations. 
cEmpirical model. 
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In Figure 6, two-dimensional slices of the CMM interaction potential of 

16O12C:H35Cl are shown.  The corresponding estimated errors relative to the potential at 

infinite separation are given in Figure 7.  The CMM potential has a global minimum 

with a well depth of 705(3) cm-1, that corresponds to the linear structure 16O12C-H35Cl 

with a R = 4.258(8) Å.  The linear isomer 12C16O-H35Cl has a corresponding well depth 

of 325(4) cm-1 with R = 4.11(4) Å.  This results in a ∆E of 380(5) cm-1 between the 

minima in the potential energy of two isomers.  Furthermore, the PCM and CMM 

methods give very similar surfaces (see Figure 8 and Table 8).  However, the principal 

difference between these two surfaces lies in the relative well depth of the OC-HCl and 

CO-HCl isomers.  The value of De of 705(3) cm-1 from the CMM potential compares to 

the 696 cm-1 from the complete basis set limit predicted by Larsen and coworker [85]. 

To test the accuracy of both surfaces, the  ν4
1  frequency of 16O12C-H35Cl was 

predicted as is shown in Table 9, and compared with the experimental value.  It is found 

that the CMM surface gives more accurate predictions than did the PCM surface.  The 

binding energies, De and D0, for the isomers 16O12C-H35Cl and 12C16O-H35Cl have been 

predicted in different theoretical and empirical studies [82,84-86,89-91].  Moreover, a 

comparison for the predicted values of De and D0, with previous theoretical and 

empirical calculations, is given in Table 10.  It is found that the predictions from the 

morphed potential are at an intermediate range within the calculated values. 

One advantage of the CMM method is that the fitting procedure involves fewer 

arbitrary choices.  However, larger basis set potentials are needed in order to implement 

the CMM method.  There can thus be a disadvantage in using the CMM method in 
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systems with large vibrational dimensionality, and in systems that contain heavy 

elements and thus more electrons such as iodine.  In contrast, the PCM method offers the 

advantage of being able to add localized angular morphing functions to better fit the 

experimental observables.  However, the location on the potential where these localized 

angular morphing functions are placed is arbitrary.  In addition, as the number of 

localized angular morphing functions increases, the morphing parameters associated 

with these functions may become linearly dependent.  Consequently, the inversion 

process (i.e., obtaining a potential from a set of experimental observables) can become 

ill conditioned [23].  The CMM method has been compared with the PCM method and is 

found to generate very similar surfaces in the specific case of the OC:HCl system.  With 

only two morphing parameters, the CMM method gives a more accurate surface than the 

PCM method, which uses three morphing parameters, for OC:HCl. 

 

4.3 OC:HBr 

 

In the previous section, the CMM method was applied to the OC:HCl complex, 

and it was found to be more accurate than the PCM method.  In this section, the CMM 

method is applied to the OC:HBr system to investigate the transferability of the 

morphing parameters. 

The OC:HBr complex was first observed using pulsed microwave Fourier 

transform spectroscopy [95,96].  These results were found to be consistent with the 

linear equilibrium ground state structure OC-HBr.  For the 16O12C-H79Br isotopomer, the 
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ground state structural parameters were determined to be: R = 4.5469 Å, θ2 = 23.16˚, and 

θ1 = φ = 0.0˚ [96].  The values of the fundamental frequencies of  ν1 ,  ν2 , and  ν4
1 , for 

16O12C-H79Br, were reported to be 2520.1(3) cm-1, 2152.4(3) cm-1, and 158.3(5) cm-1 

using matrix infrared spectroscopy [94].  Subsequently, the  ν1  and  ν2  vibrations, in 

isolated 16O12C-H79Br, were determined, with greater accuracy to be 2542.45245(13) cm-

1 and 2152.605023(60) cm-1 respectively [97-99].  Lastly, the low frequency 

intermolecular bending vibration  ν5
1 , in 16O12C-H79Br, was determined to be 

39.65242(42) cm-1 using frequency differences observed by near infrared diode-laser cw 

slit jet spectroscopy [99].  It is important to point out that in 16O12C-H79Br, the 

intermolecular hydrogen bond stretching ( ν3 ), and the high frequency intermolecular 

bending vibration ( ν4
1 ), have yet to be observed experimentally in the gas phase. 

The ab initio potentials calculated in this work are: (i) CCSD(T)/aug-cc-pVTZ, 

(ii) MP2/aug-cc-pVQZ, (iii) MP2/aug-cc-pVTZ, (iv) HF/aug-cc-pV5Z, and (v) HF/aug-

cc-pVQZ.  These five potentials were corrected for BSSE.  In addition, the 

CCSD(T)/aug-cc-pVTZ potential, without the CP correction, was calculated.  All six of 

these ab initio potentials were calculated on a four-dimensional grid 
  

R,θ1,θ2 ,φ( )  of 2032 

points, defined in Figure 1(b).  The variable R, which is the distance between the center 

of masses of CO and HBr, takes the values of 2.75 Å, 3.75 Å, 4.25 Å, 4.50 Å, 4.75 Å, 

5.25 Å, 6.25 Å, and 8.25 Å.  The angles θ1 and θ2 take the values of 10.0º, 50.0º, 90.0º, 

130.0º, and 170.0º.  Lastly, the dihedral angle φ takes the values of 10.0º, 50.0º, 90.0º, 
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130.0º, 170.0º, 190.0º, 230.0º, 270.0º, 310.0º, and 350.0º.  The four-dimensional grid 

was supplemented with additional points at all values of R, and with φ = 0.0º, and θ1 = θ2 

= 0.0º and 180.0º.  In all calculations, the bond lengths of both monomer components 

were fixed at re of 1.128323 Å for CO and 1.41443 Å for HBr [79].  In the fitting of the 

ab initio potential, the weighing factor, in Eq. (21), Fw = 50 cm-1 was used.  This was 

undertaken in order to obtain an absolute average difference less than 6.0 cm-1, between 

the ab initio and fitted potential, for the points within 200 cm-1 from the minimum of the 

potential [45,49].  The value of the Vmin in Eq. (22) was chosen to be 800 cm-1.  The 

value of the parameters used in the rovibrational calculations were: Rstart = 2.80 Å, Rend = 

8.25 Å, NR = 46, 
  
Nθ1

 = 24, 
  
Nθ2

 = 24, Nφ = 36, NF = 42, 
  
jmax1

 = 16, 
  
jmax2

= 16, and τL = 

10-12 atomic units.  In addition, the rotational constants for the diatomic fragments used 

were [96]: 1.92252905 cm-1 for 12C16O, 8.35106099 cm-1 for H79Br, and 4.24819356 cm-

1 for D79Br. 

The CMM method in Eq. (61) was used to morph the interaction potential of 

OC:HBr.  The parameters C4 and C7 were constrained to zero and C6 to one, i.e. no 

relativistic and radial corrections for the CMM potential of OC:HBr.  The experimental 

data used to morph the intermolecular potential energy surface of OC:HBr is shown in 

Table 11.  This data includes ground vibrational state microwave spectra, as well as 

supersonic jet infrared spectra [96,99]. 
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Table 11 
Experimental data of OC:HBr used in the fits and fitted values, and their uncertainties. 

Observablea Isotopomer 
  VCMM

0( )    VCMM
3( )  Exp σk 

B (GS)/10-2 cm-1 16O12C-H79Br 3.810 3.841 3.838b 0.002 
DJ (GS)/10-8 cm-1 16O12C-H79Br 8.83 9.05 9.02b 0.02 
B (GS)/10-2 cm-1 16O12C-D79Br 3.816 3.849 3.849b 0.002 
DJ (GS)/10-8 cm-1 16O12C-D79Br 8.27 8.48 8.39b 0.02 
B ( ν5

1 )/10-2 cm-1 
16O12C-H79Br 3.871 3.902 3.911c 0.002 

DJ ( ν5
1 )/10-8 cm-1 

16O12C-H79Br 10.5 10.8 12.0c 0.5 

〈P2(cosθ2)〉 (GS) 16O12C-H79Br 0.793 0.774 0.770b 0.002 
〈P2(cosθ2)〉 (GS) 16O12C-D79Br 0.845 0.824 0.824b 0.002 

 ν5
1 /cm-1 

16O12C-H79Br 39.99 39.66 39.65c 0.01 

G  16.2 2.5   
aGS = ground state. 
bFrom [96]. 
cFrom [99]. 
 
 
 
 
Table 12 
Optimized values for the morphing parameters of OC:HBr. 
α 

  Cα
0( )    Cα

3( )  σ 

1 1.0 0.9703 0.0014 
2 0.0 0.1645 0.0109 
3 1.0 0.4849 0.0200 
4 (0.0) (0.0) Constrained 
5 (1.0) (1.0) Constrained 
6 (1.0) (1.0) Constrained 
7 (0.0) (0.0) Constrained 

 
 
 
 
Table 13 
Predictions of  ν3  and  ν4

1  frequencies, for 16O12C-H79Br, using the   VCMM
3( )  potential. 

B ( ν3 ) (×10-2  
cm-1) 

B ( ν4
1 ) (×10-2 
cm-1) 

DJ ( ν3 ) (×10-8 
cm-1) 

DJ ( ν4
1 ) (×10-8 

cm-1) 
 ν3  (cm-1)  ν4

1  (cm-1) 

3.770(7) 3.767(5) 14.03(9) 12.1(1) 48.2(1) 157(1) 
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Figure 9. Two-dimensional slices of the   VCMM

3( )  interaction potential of 16O12C:H79Br.  
The coordinates used are the Jacobi coordinates defined in Figure 1(b).  All contours are 
in cm-1. 
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Figure 10. The corresponding estimated errors on the 16O12C:H79Br CMM potential, 
relative to the potential at infinite separation.  The coordinates used are the Jacobi 
coordinates defined in Figure 1(b).  All contours are in cm-1. 
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The values of G for the   VCMM
0( )  and morphed potential (  VCMM

3( ) ), given by Table 11, 

are G = 16.2 and G = 2.5, respectively.  This indicates the improvement in the overall 

agreement with experimental data obtained through the morphing procedure.  In Table 

12, final morphing parameters are given that yield the best fit of the experimental data.  

The value of the C5 parameter was constrained to one, because its value could not be 

determined with statistical significance and it did not change the quality of the final fit. 

In Figure 9, two-dimensional slices of the   VCMM
3( )  interaction potential of 

16O12C:H79Br are shown.  The corresponding estimated errors relative to the potential, at 

infinite separation, are given in Figure 10.  The potential has a global minimum with 

well depth of 564(5) cm-1, corresponding to the equilibrium linear structure 16O12C-

H79Br, with R = 4.525(7) Å.  The linear isomers 12C16O-H79Br and 16O12C-79BrH have 

corresponding local well depths of 273(7) cm-1 and 269(2) cm-1, with R = 4.35(4) Å and 

4.24(3) Å respectively.  This results in a ∆E of 293(9) cm-1, between the minima, of the 

potential energy of three isomers. 

In Table 13, predictions of the  ν3  and  ν4
1  frequencies for 16O12C-H79Br, using the 

  VCMM
3( )  potential are given.  The prediction of 157(1) cm-1 for  ν4

1  can be compared with 

158.3(5) cm-1, obtained using matrix infrared spectroscopy.  This is expected to be 

frequency shifted, relative to the gas phase value, due to the matrix environment [94].  In 

addition, the  ν3  vibrational frequency in 16O12C-H79Br is predicted to be 48.2(1) cm-1. 

An ab initio potential for the OC:HBr interaction has been morphed, using 

spectroscopic data, to give a compound model morphed potential.  The fact that the 
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12C16O-H79Br and 16O12C-79BrH isomers have about the same local well depths, within 

the estimated errors, indicates the importance of the dispersion contributions to the 

interaction potential.  It is found that the counterpoise method under corrected the BSSE 

in OC:HBr by 16(7)%, as seen by the positive value of the   C2
3( )  parameter in Table 12, 

and the definition of the morphing parameters in Eq. (61). 

 

4.4 OC:HI 

 

In the previous section, it was found that dispersion interactions make a 

significant contribution to the interaction potential of OC:HBr.  This implies that in 

OC:HBr, the van der Waals interactions make larger contributions to the interaction 

potential than in the OC:HCl complex.  It is also expected that in the OC:HI complex the 

van der Waals interactions would dominate over the hydrogen bond interactions.  In this 

section, the potential morphing methodology is applied to the OC:HI complex to gain 

insight concerning intermolecular forces acting in this family of complexes. 

The OC:HI complex has been characterized by microwave [100], and near 

infrared diode-laser spectroscopy [101,102], giving a linear OC-HI ground state 

structure.  In addition, the values of the  ν1 ,  ν2 , and  ν5
1  vibrational frequencies were 

determined to be 2228.31996(11) cm-1, 2148.54904(3) cm-1, and 25.89167(41) cm-1 

respectively [101].  The isomer OC-IH was also identified by near infrared diode-laser 

spectroscopy, providing the values for the  ν1 ,  ν2 , and  ν5
1  vibrational frequencies which 
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were 2222.6684(1) cm-1, 2146.68233(16) cm-1, and 28.31000(25) cm-1 respectively 

[101,102].  Finally, ab initio calculations suggested the existence of the isomers CO-HI 

and CO-IH [102]. 

In the ab initio calculation, the bond lengths of the monomer components were 

fixed at the experimental re: 1.128323 Å for CO [79] and 1.60916 Å for HI [79].  The 

interaction energy of the OC:HI dimer was calculated at the CCSD(T) level of theory.  

The aug-cc-pVTZ basis set was used for all of the atoms except for iodine, for which the 

basis set was the pseudopotential aug-cc-pVTZ-pp [103].  The potential energy surface 

was calculated on a grid built, taking 14 different R points (3.00 Å, 3.30 Å, 3.60 Å, 3.90 

Å, 4.20 Å, 4.50 Å, 4.70 Å, 4.90 Å, 5.20 Å, 5.50 Å, 6.00 Å, 6.50 Å, 7.00 Å, and 8.00 Å), 

5 points for both θ1 and θ2 (30.0°, 60.0°, 90.0°, 120.0°, and 150.0°), and 10 points for φ 

(30.0°, 60.0°, 90.0°, 120.0°, 150.0°, 210.0°, 240.0°, 270.0°, 300.0°, and 330.0°).  This 

set of points was supplemented with additional points at all values of R and with θ1 = θ2 

= φ = 0.0° and 180.0°; θ1 = θ2 = 2.0° and 178.0°, and φ = 0.0° and 180.0°; θ1 = θ2 = 5.0° 

and 175.0°, and φ = 0.0° and 180.0°; giving a final grid composed of 3,836 points, 

defined in Figure 1(b).  In the fitting of the ab initio potential, the weighing factor, in Eq. 

(21), Fw = 75 cm-1 was used.  This was done in order to obtain an absolute average 

difference less than 6.0 cm-1, between the ab initio and fitted potential, for the points 

within 250 cm-1 from the minimum of the potential [45,49].  The value of the Vmin in Eq. 

(22) was chosen to be 700 cm-1.  The value of the parameters used in the rovibrational 

calculations were: Rstart = 3.50 Å, Rend = 8.00 Å, NR = 38, 
  
Nθ1

 = 48, 
  
Nθ2

 = 24, Nφ = 40, 
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NF = 34, 
  
jmax1

 = 20, 
  
jmax2

 = 16, and τL = 10-12 atomic units.  In addition, the value of the 

rotational constants for the diatomic fragments were taken to be: 1.92252905 cm-1 [104] 

for 12C16O, 1.83797220 cm-1 [105] for 13C16O, 1.746408537 cm-1 [105] for 13C18O, 

6.4263650 cm-1 [80] for HI, and 3.25348718 cm-1 [80] for DI. 

Ab initio potentials, with a large basis set, are computationally expensive to be 

calculated for the OC:HI complex.  Thus, the PCM method is preferred over the CMM 

method.  For the OC:HI system the PCM method, described in Eq. (9), was used with Rf 

selected to be 4.20 Å.  However, the Sα has been expanded in Legendre polynomials 

P1(cosθ) in terms of θ1 and θ2 as 

  
Sα θ1,θ2( ) = Cα ,0,0 + Cα ,1,0 cosθ1 + Cα ,0,1 cosθ2 . (64) 

The dimensionless morphing parameters   
Cα ,i, j , in Eq. (64), are obtained by a regularized 

nonlinear least-squares optimization that minimizes the function in Eq. (7). 

The experimental data used to morph the interaction potential of OC:HI is shown 

in Table 14.  Such data includes previously reported IR experiments [101] as well as 

new microwave and IR data [106].  The values of G for the ab initio and morphed 

potentials, in Table 14, are G = 265.2 and G = 2.9 respectively, indicating the 

improvement in the overall agreement with experimental data obtained from the 

morphing procedure.  In Table 15, final morphing parameters that yielded the best fit of 

the experimental data are given. 
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Table 14 
Experimental data of OC:HI used in the fits and fitted values, and their uncertainties. 

Observablea Isotopomer/Isomer Vab initio Vmorphed Exp σk 

B (GS)/10-2 cm-1 16O12C-HI 2.954 3.009 3.005b 0.003 
DJ (GS)/10-8 cm-1 16O12C-HI 7.9 10.0 8.4b 0.5 
B (GS)/10-2 cm-1 16O12C-DI 2.946 2.999 3.000b 0.003 
DJ (GS)/10-8 cm-1 16O12C-DI 7.2 8.9 7.5b 0.5 
B (GS)/10-2 cm-1 16O13C-HI 2.894 2.948 2.944b 0.003 
DJ (GS)/10-8 cm-1 16O13C-HI 7.6 9.5 8.0b 0.5 
B (GS)/10-2 cm-1 16O13C-DI 2.887 2.938 2.940b 0.003 
DJ (GS)/10-8 cm-1 16O13C-DI 6.8 8.5 7.1b 0.5 
B (GS)/10-2 cm-1 18O13C-HI 2.708 2.758 2.755b 0.003 
DJ (GS)/10-8 cm-1 18O13C-HI 6.5 8.2 6.9b 0.5 
B ( ν5

1 )/10-2 cm-1 
16O12C-HI 3.046 3.132 3.110c 0.005 

DJ ( ν5
1 )/10-8 cm-1 

16O12C-HI 12.4 18.6 12.7c 2.0 

〈P2(cosθ2)〉 (GS) 16O12C-HI 0.764 0.752 0.736b 0.005 
〈P2(cosθ2)〉 (GS) 16O12C-DI 0.831 0.821 0.804b 0.005 
〈P2(cosθ2)〉 (GS) 16O13C-HI 0.766 0.754 0.738b 0.005 
〈P2(cosθ2)〉 (GS) 16O13C-DI 0.832 0.823 0.806b 0.005 
〈P2(cosθ2)〉 (GS) 18O13C-HI 0.767 0.755 0.739b 0.005 

 ν5
1 /cm-1 

16O12C-HI 30.41 25.96 25.89c 0.01 

D0 (16O12C-HI) - D0 (16O12C-IH) 18.35 3.46 3.47b 0.01 
B (GS)/10-2 cm-1 16O12C-IH 3.710 3.866 3.865b 0.003 
DJ (GS)/10-8 cm-1 16O12C-IH 14.8 16.2 15.1b 1.0 
B (GS)/10-2 cm-1 16O12C-ID 3.716 3.871 3.869b 0.003 
DJ (GS)/10-8 cm-1 16O12C-ID 13.0 14.3 13.2b 1.0 
B (GS)/10-2 cm-1 16O13C-IH 3.639 3.793 3.791b 0.003 
DJ (GS)/10-8 cm-1 16O13C-IH 14.3 15.6 14.5b 1.0 
B ( ν5

1 )/10-2 cm-1 
16O12C-IH 3.737 3.893 3.932c 0.005 

DJ ( ν5
1 )/10-8 cm-1 

16O12C-IH 18.0 21.2 18.8c 2.0 

〈P2(cosθ2)〉 (GS) 16O12C-IH 0.811 0.814 0.817b 0.005 
〈P2(cosθ2)〉 (GS) 16O12C-ID 0.867 0.868 0.873b 0.005 
〈P2(cosθ2)〉 (GS) 16O13C-IH 0.813 0.816 0.819b 0.005 

 ν5
1 /cm-1 

16O12C-IH 29.97 28.24 28.31c 0.01 

B (GS)/10-2 cm-1 12C 16O-IH 4.069 4.045 4.044b 0.005 
DJ (GS)/10-8 cm-1 12C 16O-IH -108.2 23.6 20.9b 5.0 
B (GS)/10-2 cm-1 12C 16O-HI 3.403 3.101 3.114b 0.005 
DJ (GS)/10-8 cm-1 12C 16O-HI 31.5 19.4 12.3b 5.0 
G  265.2 2.9   

aGS = ground state. 
bFrom [106]. 
cFrom [101]. 
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Table 15 
Optimized values for the morphing parameters of OC:HI. 

(α,i,j) 
  Cα ,i, j

0( )    Cα ,i, j  σ 

(1,0,0) 1.0 1.2556 0.0012 
(1,1,0) 0.0 -0.2203 0.0007 
(1,0,1) 0.0 0.0309 0.0006 
(2,0,0) 1.0 0.8789 0.0084 
(2,1,0) 0.0 0.0727 0.0035 
(2,0,1) 0.0 0.0219 0.0087 
(3,0,0) 0.0 0.0041 0.0003 
(3,1,0) 0.0 0.0173 0.0003 
(3,0,1) 0.0 (0.0) Constrained 

 
 
 
 
 
 
Table 16 
Features of OC:HI potentials. 

 Ab initio Morphed 
Isomer De (cm-1) R (Å) ∆De (cm-1) De (cm-1) R (Å) ∆De (cm-1) 
OC-IH 388.828 4.271 0.000 415(3) 4.180(11) 0 
OC-HI 380.108 4.940 8.720 382(2) 4.900(7) 33(4) 
CO-IH 240.882 4.029 147.946 363(3) 4.058(19) 52(4) 
CO-HI 224.686 4.723 164.142 325(3) 4.941(17) 90(4) 

 
 
 
 
 
 
Table 17 
D0 value for 16O12C:HI and 16O12C:DI isomers predicted from the morphed potential. 

OC:HI OC:DI 
Isomer D0 (cm-1) ∆D0 (cm-1) Isomer D0 (cm-1) ∆D0 (cm-1) 

16O12C-HI 213(1) 0.0 16O12C-ID 243(1) 0.0 
16O12C-IH 209(1) 3.46(6) 16O12C-DI 238(1) 5.30(8) 
12C 16O-IH 200(2) 13(2) 12C 16O-ID 226(2) 17(2) 
12C 16O-HI 198(2) 15(2) 12C 16O-DI 217(2) 26(2) 
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Figure 11. Morphed potential of 16O12C:HI at R = 4.18 Å.  In the top of the figure a two-
dimensional slice of the interaction potential of 16O12C:HI is shown.  The corresponding 
estimated errors relative to the potential at infinite separation are shown in the bottom of 
the figure.  The coordinates used are the Jacobi coordinates defined in Figure 1(b).  All 
contours are in cm-1. 
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Figure 12. Morphed potential of 16O12C:HI at R = 4.90 Å.  In the top of the figure, a two-
dimensional slice of the interaction potential of 16O12C:HI is shown.  The corresponding 
estimated errors relative to the potential at infinite separation are shown in the bottom of 
the figure.  The coordinates used are the Jacobi coordinates defined in Figure 1(b).  All 
contours are in cm-1. 
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Figure 13. Ground state probability densities for 16O12C-HI and 16O12C-IH.  The 16O12C-
HI isomer is the overall ground state of the complex.  The coordinates used are the 
Jacobi coordinates defined in Figure 1(b). 
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Figure 14. Ground state probability densities for 16O12C-ID and 16O12C-DI.  The 16O12C-
ID isomer is the overall ground state of the complex.  The coordinates used are the 
Jacobi coordinates defined in Figure 1(b). 
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The global minimum from the morphed potential (Figures 11 and 12) is 

consistent with a linear van der Waals OC-IH structure, with a value of R = 4.180(11) Å.  

Table 16 indicates the minimum energy (expressed as De) associated with the four 

minima, OC-IH, OC-HI, CO-IH, and CO-HI, and the corresponding R values that are 

associated with each minimum.  The predicted ground state energies, or D0, from the 

morphed potential, for the isomers of 16O12C:HI and 16O12C:DI, are given in Table 17.  

Furthermore, the ground state probability densities for the two lowest isomers of 

16O12C:HI and 16O12C:DI are shown in Figures 13 and 14. 

As it had been previously proposed [100-102], the present results are consistent 

with the previously proposed ground state structure, which is indeed the OC-HI 

configuration (see Figure 13).  However, these results indicate as well that the global 

minimum does not have the OC-HI structure but the OC-IH structure.  This is a 

characteristic that is very similar to what occurs in Ar:HBr [23,107], Kr:HBr [25], and 

He:CH3F [31].  The global minimum structure OC-IH is predicted to be 33(4) cm-1 more 

stable than the corresponding local minimum associated with the OC-HI structure.  

Thus, the ground state and global minimum structures are predicted to be different, 

giving a further indication that this system is a potential candidate for demonstrating 

ground state isotopic isomerization.  This unusual isomerization gives cause for extreme 

caution when applying generalized methods, such as the application of Kraitchman’s 

equations [108] to determine rs, and the determination of rm [109], using limited data 

from spectroscopic investigation of weakly bound dimers and clusters. 
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The fundamental conclusion that can be made from the determined morphed 

potential is the prediction that the OC:DI dimer ground state has an OC-ID structure, and 

that it is predicted to be 5.30(8) cm-1 more stable than the corresponding hydrogen bond 

OC-DI structure (see Figure 14).  The significantly higher barrier (382(4) cm-1) of 

isomerization results in more localized wave functions than those that occur in Ar:HBr, 

and consequently, significantly lowers transition cross-sections; particularly for direct 

transitions between respective deuterated isomers.  Thus, the experimental observation 

of the isomerization of OC-DI to OC-ID will be extremely challenging, unless infrared 

double resonance techniques are applied. 

It is emphasized that the ground state isotopic isomerization found in OC:HI is 

probably not unique.  The current study involves ground state isomerization from a 

hydrogen-bonded structure to a deuterated van der Waals structure.  However, there are 

some indications that such isomerization may be occurring in the van der Waals ground 

state structure of CO2:BrH [110], as well as in Ar:H2S [111].  Further studies will be 

needed to confirm such effects. 

The intermolecular morphed potential of OC:HI, that has been generated, is 

consistent with four linear isomeric structures.  The global minimum is characterized to 

be the linear OC-IH isomer with R = 4.180(11) Å.  In addition, the present results are 

consistent with the ground state having the OC-HI configuration.  The ground state 

molecular isotopic isomerization is predicted from the morphed potential.  From this 

potential, it is found that the OC-ID structure is 5.30(8) cm-1 more stable than the 

corresponding hydrogen bound OC-DI structure.  It is emphasized that confirmation of 
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this anomalous isotopic effect must await further spectroscopic investigations. 

The differences in stability of the OC-IH and CO-IH can be attributed to the 

interactions of the carbon and oxygen lone pairs, with the anti-bonding orbital on HI 

[112].  Since the orbital energy of the lone pair electrons of carbon are higher that the 

corresponding energy levels in oxygen, it makes it a better electron density donor to the 

anti-bonding orbital on HI.  On the other hand, the stability of OC-IH over OC-HI, and 

CO-IH over CO-HI, is due to the fact that the polarization interactions of the HI is 

smaller, with larger dispersion effects; thus favoring van der Waals interaction over the 

hydrogen bond interaction. 

 

4.5 HI:CO2 

 

In the previous sections it was concluded that the global minimum, in the 

potential surfaces of the OC:HCl and OC:HBr complexes, were the OC-HCl and OC-

HBr linear configurations.  However, for the OC:HI complex, it was found that the 

global minimum in the potential surface have an OC-IH linear configuration.  These 

results imply a competition between the hydrogen bond and the van der Waals 

interactions in the OC:HX (X= Cl, Br, I) complexes.  In this section, the HI:CO2 system 

is studied to investigate the competition of intermolecular forces that occur in the 

HX:CO2 complexes, compare to those observed in the OC:HX complexes. 

Although the HI:CO2 complex has been extensively studied in photodissociation 

experiments [113-117], studies on the structure of the complex have been limited.  The 
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complex has been used to control the orientation of the collision in bimolecular reactions 

like H + CO2.  Recently Jabs et al. [30] reported the microwave spectra of HI:CO2 using 

pulsed-nozzle Fourier transform microwave spectroscopy.  The equilibrium and ground 

state of the complex was found to be planar, with a quasi-T-shaped geometry with the 

hydrogen atom tilted toward the CO2 moiety. 

In the ab initio calculation, the bond length of the HI was fixed at the 

experimental re: 1.60916 Å [79].  The C-O bond lengths in CO2 were taken to be 

1.162453 Å [118], which is the averaged distance in the ground rovibrational state of the 

isolated molecule.  The interaction energy of the HI:CO2 complex was calculated at the 

CCSD(T) level of theory.  The aug-cc-pVTZ basis set was used for all the atoms, except 

for the iodine, for which the basis set was the pseudopotential aug-cc-pVTZ-pp.  The 

potential energy surface was calculated on a grid built taking 9 different R points (3.50 

Å, 4.00 Å, 4.25 Å, 4.50 Å, 4.75 Å, 5.00 Å, 5.50 Å, 6.50 Å, and 8.00 Å), 5 points for both 

θ1 and θ2 (25.02°, 57.42°, 90.00°, 122.58°, and 154.98°), and 10 points for φ (18.0°, 

54.0°, 90.0°, 126.0°, 162.0°, 198.0°, 234.0°, 270.0°, 306.0°, and 342.0°).  This set of 

points was supplemented with a selection of 20 specific angular points 
 
θ1,θ2 ,φ( )  for 

each value of R, giving a final grid composed of 2,430 points, defined in Figure 1(b).  

These 20 specific angular points are (0.0°, 0.0°, 0.0°), (0.0°, 180.0°, 0.0°), (60.0°, 0.0°, 

0.0°), (60.0°, 120.0°, 0.0°), (60.0°, 160.0°, 0.0°), (72.0°, 125.0°, 0.0°), (80.0°, 100.0°, 

0.0°), (90.0°, 80.0°, 0.0°), (90.0°, 80.0°, 180.0°), (90.0°, 90.0°, 0.0°), (90.0°, 90.0°, 

180.0°), (90.0°, 110.0°, 0.0°), (90.0°, 110.0°, 180.0°), (100.0°, 100.0°, 180.0°), (108.0°, 
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125.0°, 180.0°), (120.0°, 0.0°, 180.0°), (120.0°, 120.0°, 180.0°), (120.0°, 160.0°, 

180.0°), (180.0°, 0.0°, 180.0°), and (180.0°, 180.0°, 180.0°).  In the fitting of the ab 

initio potential, the weighing factor, in Eq. (21), Fw = 75 cm-1 was used.  This was done 

in order to obtain an absolute average difference less than 6.0 cm-1, between the ab initio 

and fitted potential, for the points within 350 cm-1 from the minimum of the potential 

[45,49].  The value of the Vmin in Eq. (22) was chosen to be 700 cm-1.  The value of the 

parameters used in the rovibrational calculations were: Rstart = 3.50 Å, Rend = 8.00 Å, NR 

= 38, 
  
Nθ1

= 48, 
  
Nθ2

= 24, Nφ = 54, NF = 34, 
  
jmax1

 = 26, 
  
jmax2

= 22, and τL = 10-12 atomic 

units.  In addition, the value of the rotational constants for the diatomic fragments were 

taken to be: 0.390219027 cm-1 [119] for 12C16O2, 0.368185104 cm-1 [119] for 12C16O18O, 

0.346817311 cm-1 [119] for 12C18O2, 6.4263650 cm-1 [80] for HI, and 3.25348718 cm-1 

[80] for DI. 

In a similar manner to the OC:HI system, ab initio potentials with large basis set 

are computationally too expensive to be calculated for the HI:CO2 complex.  Thus, the 

PCM method is preferred over the CMM method.  For HI:CO2, the PCM method 

described in Eqs. (9) to (12) was used, with Rf selected to be 3.90 Å.  The experimental 

microwave data [30] used to morph the interaction potential of the HI:CO2 complex is 

shown in Table 18. 
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Table 18 
Experimental data of HI:CO2 used in the fits and fitted values, and their uncertainties. 

Isotopomer Observablea Units Vab initio Vmorphed Expb σk 
HI-12C16O2 A cm-1 0.459 0.416 0.421 0.003 
 (B+C)/2 10-2 cm-1 3.191 3.462 3.462 0.002 
 ΔJK 10-8 cm-1 2325.8 520.0 560.5 10.0 
 〈P2(cosθ2)〉  -0.317 -0.351 -0.350 0.001 
HI-12C18O2 A cm-1 0.414 0.374 0.379 0.003 
 (B+C)/2 10-2 cm-1 2.989 3.243 3.243 0.002 
 ΔJK 10-8 cm-1 2483.8 520.4 475.7 10.0 
 〈P2(cosθ2)〉  -0.316 -0.351 -0.350 0.001 
HI-12C18O16O A cm-1 0.362 0.358 0.355 0.003 
 (B+C)/2 10-2 cm-1 3.093 3.354 3.351 0.002 
 〈P2(cosθ2)〉  -0.309 -0.345 -0.346 0.001 
HI-12C16O18O A cm-1 0.363 0.360 0.356 0.003 
 (B+C)/2 10-2 cm-1 3.084 3.340 3.342 0.002 
 〈P2(cosθ2)〉  -0.324 -0.357 -0.355 0.001 
 G  101.5 2.0   

aObservables for the ground vibrational state of the complex. 
bFrom [30]. 
 

 

 
 
 
 
 
 
Table 19 
Optimized values for the parameters of the morphing functions of HI:CO2. 
α i λα,i = (lx n 

 ′θ1   ′θ2  ′φ ) 
  Cα ,i

0( )    Cα ,i  σ 

1 1 0     1.0 1.0433 0.0084 
2 1 0     1.0 (1.0) Constrained 
3 1 0     0.0 0.0380 0.0002 
1 2 2 2 90 90 0 0.0 0.2181 0.0039 
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Figure 15. Morphed interaction potential of HI:12C16O2.  The coordinates used are the 
Jacobi coordinates defined in Figure 1(b).  All contours are given in cm-1. 
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Figure 16. Corresponding statistical uncertainties for the morphed potential of 
HI:12C16O2.  The statistical uncertainties are relative to the minimum of the potential 
which occurs at R = 3.780(1) Å, θ1 = 77.9(1)º, θ2 = 114.3(1)º, and φ = 0.0(1)º, with V = -
457(14) cm-1.  The coordinates used are the Jacobi coordinates defined in Figure 1(b).  
All contours are given in cm-1. 
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The ab initio potential was morphed using three morphing functions, two with no 

angular dependence (i.e. lx = 0), and one localized angular function with lx = 2 (Table 

19).  During the fitting procedure, the morphing parameter C2,1 was not included as it 

could not be determined with statistical significance, and it did not change the quality of 

the final fit.  The final RMS after the morphing was G = 2.0, which indicates an 

improved agreement with the experimental data, when compared to the original ab initio 

data of G = 101.5. 

Two equivalent global minima (see Figures 15 and 16), with a well depth of 

457(14) cm-1, were determined to correspond to the geometries R = 3.780(1) Å, θ1 = 

77.9(1)°, θ2 = 114.3(1)°, φ = 0.0(1)°, and R = 3.780(1) Å, θ1 = 102.1(1)°, θ2 = 114.3(1)°, 

φ = 180.0(1)°; separated by a barrier of 181(17) cm-1.  The top of the barrier was located 

at the geometry R = 3.818(1) Å, θ1 = 90.0(1)°, θ2 = 98.1(1)°, φ = 90.0(1)°, which 

corresponds to a T-shaped geometry with the hydrogen being located out-of-plane.  The 

morphed potential also has a secondary minimum, with a well depth of 405(14) cm-1, at 

the geometry R = 3.875(1) Å, θ1 = 124.4(1)°, θ2 = 35.4(1)°, φ = 0.0(1)°.  The determined 

global minimum for the HI-CO2 complex, 457(14) cm-1, compares the values of 837 cm-

1, 576 cm-1, and 397 cm-1, for CO2-HF, CO2-HCl, and HBr-CO2 respectively [120].  In 

addition, an MP2 calculation [121] predicts a value of 392 cm-1 for HBr-CO2.  The 

morphed potential predicts the dissociation energy, D0, of HI-CO2 to be 341(14) cm-1.  

As a comparison, the D0 for CO2-HF was experimentally determined to be 672(4) cm-1 

[122], while it is estimated to be 430 cm-1 for CO2-HCl [123]. 
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It should be noted that in Table 18, the values of A in HI-12C16O2 and HI-12C18O2 

are significantly larger that those in the mono-18O substituted complexes.  This 

difference is not commensurate with an isotopic effect, but can be interpreted as a 

consequence of the hindered rotation of the HI monomer in the HI-CO2 complex.  The 

hindered rotation of the HI monomer can occur via two significant pathways: in-plane 

and out-of-plane.  Based on the morphed potential, the most probable pathway for the 

hindered rotation occurs out-of-plane, around the a-axis of the molecule, and as 

described by the angle φ (see Figure 15).  Along this pathway, the estimated height of 

the barrier of 181(17) cm-1 can be compared to the value of 184 cm-1 for HBr-CO2 [121].  

This gives the frequency of tunneling through the barrier the following values: 0.037 cm-

1 for HI-12C16O2, 0.035 cm-1 for HI-12C18O2 and 0.001 cm-1 for DI-12C16O2.  As a 

consequence of the Bose-Einstein statistics, for the spin-zero oxygen nuclei, only 

symmetric states were allowed, in the ground vibrational state, for even Ka, and only 

antisymmetric states for odd Ka.  Consequently, rotation-tunneling transitions were 

observed for the complexes HI-12C16O2 and HI-12C18O2.  Thus, the observed discrepancy 

in the rotational constant A can be attributed to the allowed transitions in the symmetric 

complexes, from the Ka=0 symmetric state to the Ka=1 antisymmetric state.  Therefore, 

the rotational constant A for the symmetric complexes will have a larger magnitude by 

the value of the tunneling splitting.  In the case of the mono-18O substituted complexes, 

the morphed potential confirms the picture of pure rotational spectra observed in the 

experimental data.  Since the oxygen atoms are not equivalent, the tunneling does not 

occur.  The experimental data determined the ground state geometry of the HI-CO2 
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complex to be planar, with the heavy atoms having a quasi-T-shape configuration and a 

geometry of θ1 = 82.30(1)° and θ2 = 108.45(1)° [30].  This quasi-T-shaped geometry 

differs significantly from the one observed in HBr-CO2
 [110], and the linear geometries 

found for CO2-HCl [124] and CO2-HF [125].  In contrast to the systems CO2-HX (X = F, 

Cl, Br) there is no experimental data available for DI-CO2.  However, based on the 

morphed potential, it is possible to predict the values of the spectroscopic constants, for 

the ground vibrational state, of DI-12C16O2 to be: A = 0.361(6) cm-1, (B+C)/2 = 

0.03460(4) cm-1, and 〈P2(cosθ2)〉 = -0.367(2). 

The determined morphed potential of HI:CO2 is characterized by two equivalent 

global minima with a well depth of 457(14) cm-1.  It has a planar quasi-T-shaped 

structure, with the hydrogen atom tilted toward the CO2 moiety, and separated by a 

barrier of 181(17) cm-1.  Also, the morphed potential has a secondary minimum with a 

well depth of 405(14) cm-1, and a planar quasi-T-shaped structure with the hydrogen 

atom tilted away from the CO2 moiety.  An interesting feature revealed by the morphed 

potential of HI:CO2 is that the complex has a linear OCO-HI geometry when the 

separation of the monomers is large (i.e., R = 6.0 Å).  In addition, when the distance 

between the monomers is shorter than the equilibrium distance (i.e., R = 3.0 Å), the 

complex has a T-shaped geometry with θ1 = 92.0º, θ2 = 96.1º and φ = 0.0º.  The model 

obtained in this study has direct relevance to further understanding the photoinitiated 

reactions in HnX:CO2 complexes (X = Cl, Br, I, n =1 and X = S, n = 2).  The determined 

structure is now available for interpreting regiospecific effects, in photoinitiated reaction 

dynamics, of the HI:CO2 complex and its clusters. 
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4.6 OC:HF 

 

In the previous sections, the potential morphing methodology was applied to 

systems in four-dimensional vibrational approximation.  In this section, the potential 

morphing methodology is extended to six-dimensions, in order to morph the 

vibrationally-complete six-dimensional potential of OC:HF system.  The results 

presented in this section are a key step in the future development of potential morphing 

theories in systems of higher dimensions, as OC:HF is a prototypical system for the 

simplest heteromolecular hydrogen bonds. 

The OC:HF complex was first observed experimentally using pulsed supersonic 

jet Fourier transform microwave spectroscopy [93,95].  These studies demonstrated that 

the equilibrium geometry is linear with the atoms in the order OC-HF.  In addition, 

electric and magnetic properties of OC-HF have also been studied [126,127].  The values 

of the  ν1 ,  ν2 , and  ν4
1

 vibrational frequencies were initially determined to be 3789.3(3) 

cm-1, 2162.4(3) cm-1, and 389.5(5) cm-1, using infrared spectra in solid argon matrices 

[94].  Analysis of the intramolecular bands  ν1  and  ν2 , located at 3844.0294(50) cm-1 and 

2167.69904(11) cm-1 were reported using a single frequency mode hop color center laser 

[128] and diode-laser spectroscopy [129].  A reinvestigation of the sub-Doppler 

resolution infrared spectrum, of the  ν1  intramolecular band [130], provided a precise 

evaluation, of the lifetime of the excited state, of 0.9(1) ns.  A further investigation 

provided hot bands, associated with the  ν1  intramolecular band [131], and the  ν5
1  
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vibrational frequency was estimated to be 80(12) cm-1.  Subsequent studies of the  ν1  

intramolecular band have been undertaken [132,133].  This includes the analysis of the 

18O and 13C isotopic species in the complex, which shows an anomalous shift of the  ν1  

band origin, attributed to anharmonic coupling of the zero-point CO bending motion 

[132].  In addition, the values of  ν1  and  ν2  for OC-DF were recorded using a supersonic 

jet Fourier transform infrared spectrometer [134].  Afterwards, the analysis of state-to-

state dissociation dynamics [135] determined the dissociation energy D0 = 732 ± 2 cm-1.  

Lastly, valuable spectroscopic constants of the OC-HF complex at the  υHF = 3  level 

have been observed [136]. 

The OC:HF complex has also been the subject of extensive theoretical work 

[84,112,137-149].  The theory included in such work varies, from ab initio calculations 

[84,112,137-144,147] to density functional theory (DFT) [143-145,149], to molecular 

mechanics for clusters (MMC) [146], and to natural bond orbital (NBO) [112,147] 

analysis.  A model based on atom-atom potentials and multipole moments [148] has also 

been applied to the OC:HF complex and other weakly bound systems.  In general, the 

computed properties include: dimer equilibrium geometry, vibrational frequencies, and 

binding energies.  All theoretical work agrees that the global minimum of the PES is the 

linear OC-HF, which is in agreement with the experiments.  However, the theory 

predicted a secondary minimum in the surface, which is the linear CO-HF.  The 

observations of the CO-HF isomer until now have been limited to high-pressure gas 

phase and matrix isolation experimental studies [150-153].  Besides all the extensive 
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work on the OC:HF system, a six-dimensional potential energy surface is needed in 

order to provide insights into the dissociation dynamics of the complex [135].  Lastly, as 

it has been pointed out by Curtiss et al. [112,147], the differences in stability of the OC-

HF and CO-HF is attributed to the interactions of the carbon and oxygen lone pairs with 

the anti-bonding orbital on HF, rather than to the low order electrostatic contributions. 

The six ab initio potentials calculated for the OC:HF complex are: (i) 

CCSD(T)/aug-cc-pVTZ, (ii) MP2/aug-cc-pVQZ, (iii) MP2/aug-cc-pVTZ, (iv) HF/aug-

cc-pVQZ, (v) HF/aug-cc-pVQZ-DK, and (vi) CCSD(T)/aug-cc-pVTZ without the CP 

correction.  All of these six ab initio potentials were calculated in a six-dimensional grid 

of 149,940 
  

R,r1,r2 ,θ1,θ2 ,φ( )  points, defined in Figure 1(c).  The R distance was varied 

by using a 17 point grid (2.90 Å, 2.95 Å, 3.00 Å, 3.10 Å, 3.30 Å, 3.50 Å, 3.65 Å, 3.80 Å, 

4.00 Å, 4.25 Å, 4.50 Å, 4.75 Å, 5.00 Å, 5.50 Å, 6.00 Å, 6.50 Å, and 7.00 Å); the CO 

bond length, r1, was varied by using a 5 point grid (0.978902 Å, 1.053438 Å, 1.128323 

Å, 1.219632 Å, and 1.362541 Å); the HF bond length, r2, was varied by using a 7 point 

grid (0.701767 Å, 0.733069 Å, 0.784496 Å, 0.916808 Å, 1.113087 Å, 1.254045 Å, and 

1.380656 Å); the angles θ1 (the CO angle) and θ2 (the HF angle) was varied by using a 5 

point grid (10.0°, 50.0°, 90.0°, 130.0°, and 170.0°); and the dihedral angle φ was varied 

by using a 10 point grid (10.0°, 50.0°, 90.0°, 130.0°, 170.0°, 190.0°, 230.0°, 270.0°, 

310.0°, and 350.0°).  The six-dimensional grid was supplemented with additional points 

at all values of R, r1, and r2, and with θ1 = 0.0º and 180.0º, θ2 = 180.0º, and φ = 0.0º. 
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In the interpolating moving least-squares procedure an accurate representation of 

the interaction potentials was obtained using 55 angular functions, defined in Eq. (19), in 

which L1 = L2 = 0 to 4, L = 0 to (L1+L2), and L1+L2+L is an even number.  The 

parameters χ, n, and ε in Eq. (26) were chosen to be 0.423 radians-2, 2, and 10-12 radians2 

(5.730×10-11 degrees2) respectively.  The parameter VM in Eq. (28) was chosen to be 300 

cm-1.  For the OC:HF system in Eq. (28), the   q1
2,3 radial reproducing kernel was used.  

The   q1
2,3  function is defined in Eq. (65) and it accounts for the asymptotic form 1/R3, of 

the dipole-dipole interaction potential, in OC:HF. 

  
q

1

2,3 R, ′R( ) = 1
5R>

4 1−
2
3

R<

R>

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (65) 

Eq. (65) behaves asymptotically as 1/R4, and if a continuous set of radial reproducing 

kernel is used, it will yield the correct functional form of the potential (1/R3).  The R> 

and R< in Eq. (65) are respectively the larger and smaller of R and 

� 

′ R . 

In Eq. (37), the value of N for the CO RKR potential [154] was N = 18, for the 

HF RKR potential [155] it was N = 26, and it was N = 20 for the DF RKR potential 

[155].  The convergence of the adiabatic potential, and rovibrational energy calculations, 

depends on the selection of the following parameters: Rstart = 2.90 Å, Rend = 7.00 Å, 

rCO,start = 0.90 Å, rCO,end = 1.50 Å, rHF,start = 0.55 Å, rHF,end = 1.80 Å, NR = 54, 
  
NrCO

= 
  
NrHF

= 

701, 
  
NθCO

= 
  
NθHF

= 24, and Nφ = 38.  The number of radial spectral basis functions is NF = 

50.  All of the summations, over spectral states, are truncated so that 
  
jmaxCO

= 20 and 

  
jmaxHF

= 16, as well as including all possible values of mCO and mHF.  The tolerance (τL) 
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used to determine the convergence, of the eigenvalues, in the Lanczos procedure [58] 

was 10-12 atomic units.  In the VSCF calculations, NNC = 8 and τVSCF = 10-11 atomic 

units.  In addition, the value of the rotational constants for the diatomic fragments, in Eq. 

(58), were calculated with the fixed angular coordinates 
 
θCO

f ,θHF
f ,φ f( )  chosen to be 

(20.0°, 160.0°, 0.0°). 

The CMM method in Eq. (61) was used to morph the interaction potential of 

OC:HF.  In Eq. (61), the value of Rf was chosen to be 3.65 Å.  The parameter C5 was 

constrained to zero because the six-dimensional HF/aug-cc-pV5Z potential, for OC:HF, 

was not available.  The experimental data used to morph the PES of OC:HF is shown in 

Table 20.  The values of G, for the   VCMM
0( )  and morphed potential (  VCMM

4( ) ), given in Table 

20 are G = 57.4 and G = 0.9, respectively, indicating the improvement in the overall 

agreement with experimental data obtained through the morphing procedure.  In Table 

21, the final morphing parameters that yielded the best fit of the experimental data are 

given.  As apparent in Table 21, the values of the C4 and C6 parameters were constrained 

to one, because their value could not be determined with statistical significance, and they 

did not change the quality of the final fit.  Contrary to the four-dimensional cases, the 

radial correction was found to be important in order to fit the experimental data.  If the 

C7 parameter is constrained to zero, the value of G for the morphed potential (  VCMM
3( ) ), in 

Table 20, is G = 3.1.  As a comparison, the non-relativistic CCSD(T)/aug-cc-pVTZ ab 

initio potential gave a value of G = 181.5. 
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Table 20 
Experimental data of OC:HF used in the fits and fitted values, and their uncertainties. 

Observablea Isotopomer 
  VCMM

0( )    VCMM
3( )    VCMM

4( )  
Exp σk 

B (GS)/10-2 cm-1 16O12C-HF 10.158 10.203 10.221 10.220b 0.003 
DJ (GS)/10-8 cm-1 16O12C-HF 33.0 32.6 32.8 32.6b 3.0 
B (GS)/10-2 cm-1 16O12C-DF 10.103 10.145 10.164 10.167b 0.003 
DJ (GS)/10-8 cm-1 16O12C-DF 31.2 30.9 31.1 31.4b 3.0 
Δ ν1 /cm-1 16O12C-HF -115.80 -117.38 -117.39 -117.39c 0.01 

B ( ν1 )/10-2 cm-1 16O12C-HF 10.362 10.407 10.426 10.425c 0.005 

DJ ( ν1 )/10-8 cm-1 16O12C-HF 30.3 30.1 30.3 30.2c 5.0 

B ( ν1 )/10-2 cm-1 16O12C-DF 10.246 10.288 10.307 10.311d 0.005 

DJ ( ν1 )/10-8 cm-1 16O12C-DF 29.5 29.3 29.5 31.1d 5.0 

Δ ν2 /cm-1 16O12C-HF 24.35 24.43 24.46 24.43e 0.01 

B ( ν2 )/10-2 cm-1 16O12C-HF 10.095 10.140 10.158 10.155e 0.005 

DJ ( ν2 )/10-8 cm-1 16O12C-HF 33.3 32.9 33.1 34.5e 5.0 

Δ ν2 /cm-1 16O12C-DF 25.49 25.54 25.58 25.59d 0.01 

B ( ν2 )/10-2 cm-1 16O12C-DF 10.040 10.083 10.101 10.104d 0.005 

DJ ( ν2 )/10-8 cm-1 16O12C-DF 31.4 31.1 31.3 33.6d 5.0 

 ν5
1 /cm-1 16O12C-HF 80.96 82.02 81.98 81.97f 0.01 

B ( ν5
1 )/10-2 cm-1 16O12C-HF 10.240 10.285 10.304 10.303f 0.005 

DJ ( ν5
1 )/10-8 cm-1 16O12C-HF 36.7 36.2 36.4 37.0f 5.0 

Δ ( ν1 + ν5
1 −ν5

1 )/cm-1 16O12C-HF -110.30 -111.99 -111.98 -111.98g 0.01 

B ( ν1 + ν5
1 )/10-2 cm-1 16O12C-HF 10.446 10.491 10.510 10.506g 0.005 

DJ ( ν1 + ν5
1 )/10-8 cm-1 16O12C-HF 33.5 33.2 33.4 33.0g 5.0 

Δ ( ν2 + ν5
1 )/cm-1 16O12C-HF 103.97 105.11 105.10 105.12f 0.01 

B ( ν2 + ν5
1 )/10-2 cm-1 16O12C-HF 10.177 10.223 10.242 10.239f 0.005 

DJ ( ν2 + ν5
1 )/10-8 cm-1 16O12C-HF 37.1 36.5 36.8 36.3f 5.0 

G  57.4 3.1 0.9   
aGS = ground state. 
bFrom [93].  cFrom [132].  dFrom [134].  eFrom [129]. 
fUnpublished data provided by Dr. J. W. Bevan. 
gFrom [131]. 
 
 

 
 
 
 



 90 

Table 21 
Optimized values for the morphing parameters of OC:HF. 
α 

  Cα
0( )    Cα

3( )  σ for   Cα
3( )    Cα

4( )  σ for   Cα
4( )  

1 1.0 0.9869 0.0004 0.9894 0.0004 
2 0.0 -0.2617 0.0036 -0.2362 0.0040 
3 1.0 0.9745 0.0008 0.9786 0.0008 
4 (1.0) (1.0) Constrained (1.0) Constrained 
5 (0.0) (0.0) Constrained (0.0) Constrained 
6 (1.0) (1.0) Constrained (1.0) Constrained 
7 0.0 (0.0) Constrained 0.0012 0.0001 
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Table 22 
Relativistic effects in the computed observables of OC:HF. 

Observablea Isotopomer 
  VCMM

0( )  
Relativistic 

  VCMM
0( )  

Non-
Relativistic 

  VCMM
4( )  

Relativistic 
  VCMM

4( )  
Non-

Relativistic 
B (GS)/10-2 cm-1 16O12C-HF 10.158 10.162 10.221 10.221 
DJ (GS)/10-8 cm-1 16O12C-HF 33.0 32.9 32.8 32.9 
B (GS)/10-2 cm-1 16O12C-DF 10.103 10.106 10.164 10.164 
DJ (GS)/10-8 cm-1 16O12C-DF 31.2 31.1 31.1 31.1 
Δ ν1 /cm-1 16O12C-HF -115.80 -116.84 -117.39 -117.40 

B ( ν1 )/10-2 cm-1 16O12C-HF 10.362 10.368 10.426 10.426 

DJ ( ν1 )/10-8 cm-1 16O12C-HF 30.3 30.2 30.3 30.3 

B ( ν1 )/10-2 cm-1 16O12C-DF 10.246 10.251 10.307 10.308 

DJ ( ν1 )/10-8 cm-1 16O12C-DF 29.5 29.4 29.5 29.5 

Δ ν2 /cm-1 16O12C-HF 24.35 24.43 24.46 24.46 

B ( ν2 )/10-2 cm-1 16O12C-HF 10.095 10.099 10.158 10.158 

DJ ( ν2 )/10-8 cm-1 16O12C-HF 33.3 33.2 33.1 33.1 

Δ ν2 /cm-1 16O12C-DF 25.49 25.56 25.58 25.57 

B ( ν2 )/10-2 cm-1 16O12C-DF 10.040 10.044 10.101 10.101 

DJ ( ν2 )/10-8 cm-1 16O12C-DF 31.4 31.3 31.3 31.3 

 ν5
1 /cm-1 16O12C-HF 80.96 81.17 81.98 81.98 

B ( ν5
1 )/10-2 cm-1 16O12C-HF 10.240 10.244 10.304 10.304 

DJ ( ν5
1 )/10-8 cm-1 16O12C-HF 36.7 36.5 36.4 36.5 

Δ ( ν1 + ν5
1 −ν5

1 )/cm-1 16O12C-HF -110.30 -111.30 -111.98 -111.98 

B ( ν1 + ν5
1 )/10-2 cm-1 16O12C-HF 10.446 10.451 10.510 10.510 

DJ ( ν1 + ν5
1 )/10-8 cm-1 16O12C-HF 33.5 33.3 33.4 33.4 

Δ ( ν2 + ν5
1 )/cm-1 16O12C-HF 103.97 104.26 105.10 105.10 

B ( ν2 + ν5
1 )/10-2 cm-1 16O12C-HF 10.177 10.181 10.242 10.242 

DJ ( ν2 + ν5
1 )/10-8 cm-1 16O12C-HF 37.1 36.9 36.8 36.8 

G  57.4 31.1 0.9 0.9 
aGS = ground state. 
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Table 23 
Morphing parameters of the relativistic and non-relativistic potentials. 
α 

  Cα
0( )  

Relativistic 
  Cα

0( )  
Non-

relativistic 

  Cα
4( )  

Relativistic 
  Cα

4( )  
Non-

relativistic 

σ for   Cα
4( )  

Relativistic 
σ for   Cα

4( )  
Non-

relativistic 
1 1.0 1.0 0.9894 0.9844 0.0004 0.0004 
2 0.0 0.0 -0.2362 -0.2473 0.0040 0.0040 
3 1.0 1.0 0.9786 0.9850 0.0008 0.0008 
4 (1.0) (0.0) (1.0) (0.0) Constrained Constrained 
5 (0.0) (0.0) (0.0) (0.0) Constrained Constrained 
6 (1.0) (1.0) (1.0) (1.0) Constrained Constrained 
7 0.0 0.0 0.0012 0.0010 0.0001 0.0001 

 
 
 
 
 
 
 
Table 24 
Accuracy of the relativistic   VCMM

4( )  potential of OC:HF. 
Observable (cm-1) Isotopomer 

  VCMM
4( )  

Relativistic 

Exp 
Exp -   VCMM

4( )  

D0 16O12C-HF 743* 732(2)a -11 

 ν1  16O12C-HF 3844.03007 3844.02937(22)b -0.00070 

 ν1
 16O12C-DF 2821.20156* 2819.90114(14)c -1.30042 

 ν2  16O12C-HF 2167.72983 2167.69904(11)d -0.03079 

 ν2  16O12C-DF 2168.84648 2168.86239(16)c 0.01591 

 ν5
1  

16O12C-HF 81.98015 81.96825(12)e -0.01190 

 ν2 +ν5
1  

16O12C-HF 2248.37280 2248.38623(10)e 0.01343 

 ν1 +ν5
1 −ν5

1  16O12C-HF 3849.4391 3849.4400(3)f 0.0009 

 3ν1  16O12C-HF 10893.97* 10894.46(1)g 0.49 
*Data not included in the morphing procedure. 
aFrom [135].  bFrom [132].  cFrom [134].  dFrom [129]. 
eUnpublished data provided by Dr. J. W. Bevan. 
fFrom [131].  gFrom [136]. 
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Figure 17. Energy level diagram for OC-DF.  The CO and DF frequencies in the 
complex were calculated using the relativistic   VCMM

4( )  potential.  The D0 of OC-DF is 
predicted to be 827(5) cm-1. 
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In Table 22 a comparison between the relativistic (i.e. C4 = 1) and non-relativistic 

(i.e. C4 = 0) unmorphed potentials show significant relativistic effects on the interaction 

potential, for the computed observables.  It is noted that using the RKR potential, it 

already includes most significant relativistic effects.  In addition, a comparison of the 

morphing parameters is also given in Table 23.  It is found that the optimized morphing 

parameters are very similar for the relativistic and non-relativistic potentials.  The values 

of G for the relativistic and non-relativistic unmorphed potentials, given by Table 22, are 

G = 57.4 and G = 31.1, respectively.  Thus, indicating that the non-relativistic 

unmorphed potential is in better agreement with the experimental observables.  

However, after the morphing optimization, both surfaces have the same predictions 

within the errors.  This indicates that the morphing procedure has the advantage of 

correcting for errors in the computed relativistic effects, which may not be appropriate at 

the Hartree-Fock level. 

To test the accuracy of the relativistic   VCMM
4( )  potential, the calculated and 

experimental vibrational frequencies for OC:HF are compared in Table 24.  As apparent 

in Table 24, some of the vibrational frequencies were not included in the fitting.  The 

predicted value for D0, of 743(5) cm-1, agrees with the experimental determined value of 

732(2) cm-1, within two standard deviations.  The relatively large deviation observed in 

the prediction of  ν1  in OC-DF, is very likely to be caused by Fermi, and/or Coriolis, 

coupling.  As shown in Figure 17, the more likely choice for the perturbing states are the 

states that belong to the CO part of the potential, that are close in energy to the  ν1  
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frequency.  Since these perturbing states are in different adiabatic potentials, than the 

one used to calculate the fundamental  ν1  of OC-DF, the current methodology cannot 

correct for these perturbations.  Yet, the current methodology was able predict the 

unperturbed vibrational frequencies.  In contrast, the experimental frequencies may be 

perturbed, thus they were unable to be accurately predicted.  Using the relativistic   VCMM
4( )  

potential, two Σ states with energies of 2818.262 cm-1 and 2825.802 cm-1, and two Π 

states with energies of 2817.320 cm-1 and 2825.085 cm-1, were found in the  υCO = 1  

potential surface of OC-DF.  These states are within 5 cm-1 of the calculated value of  ν1 , 

of 2821.202 cm-1, in OC-DF.  However, it is currently difficult to carry out a 

deperturbation of these interactions by using the currently available spectroscopic data. 

The prediction for  3ν1 , of 10893.97(50) cm-1 in OC-HF, agrees within the 

computational errors, with the experimental determined value of 10894.46(1) cm-1.  In 

addition the  ν4
1 , of OC-HF in the  υHF = 3  potential surface, is predicted to be 501.33(5) 

cm-1, which can be compared to the 538.20(1) cm-1 observed value [136].  The 

discrepancy in this band is attributed to the fact that the measured data does not actually 

belong to the assigned state.  Another Π state, in the  υHF = 3  potential surface, is 

predicted to have a frequency of 534.49(5) cm-1, and a rotational constant of 0.10880(4) 

cm-1 which, is closer by 3.71 cm-1 to the measured value.  This Π state is assigned to the 

 3ν1 + 3ν3 + 3ν5
1  combination band.  Moreover, a calculated value, for  ν4

1  in the  υHF = 3  

potential surface that is in reference [136] of 493.1 cm-1, agrees very well with our 
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prediction of 501.33(5) cm-1.  It is noteworthy that the rest of the vibrational frequencies 

presented in Table 24 are very close to the experimentally measured values.  The 

deviations in the calculated observables are primarily considered to be results of 

numerical errors, in the interpolation methods, that have been used in the current 

calculations.  The best way to minimize the interpolation errors is by having a denser 

grid of ab initio points.  However, this will be limited to do when large basis sets are 

needed in the calculation.  On the other hand, highly accurate interpolation methods may 

be developed, but this constitutes a challenging mathematical problem. 

In Figure 18, two-dimensional slices of the adiabatic   V
0,0( )  interaction potential, 

of the relativistic   VCMM
4( )  potential, of 16O12C:HF are shown.  The corresponding estimated 

errors relative to the potential at infinite separation are given in Figure 19.  The potential 

has a global minimum, with a well depth of 1311(10) cm-1, corresponding to the 

equilibrium linear structure 16O12C-HF with R = 3.598(1) Å.  The linear isomer 12C16O-

HF has a corresponding local well depth of 637(10) cm-1 with an R = 3.444(1) Å.  This 

results in a ∆E of 674(10) cm-1, between the minima, in the potential energy of two 

isomers.  In Table 25, a comparison of the predicted values for De, with previous 

calculations, is given.  It is found that the morphed potential results are intermediate 

within a range of calculated values.  Lastly, in Table 26 predictions for the  ν3  and  ν4
1  

fundamental frequencies are given.  The predicted value of 368.45(7) cm-1 for the  ν4
1  

frequency can be used to refine the angular force constant correlation with dissociation, 

previously discussed by Yu and Klemperer [156]. 
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Figure 18. Two-dimensional slices of the adiabatic   V

0,0( )  interaction morphed potential 
(relativistic   VCMM

4( ) ), of 16O12C:HF. The coordinates used are the Jacobi coordinates 
defined in Figure 1(c).  All contours are in cm-1. 
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Figure 19. The corresponding estimated errors on the 16O12C:HF morphed potential, 
relative to the potential at infinite separation.  The coordinates used are the Jacobi 
coordinates defined in Figure 1(c).  All contours are in cm-1. 
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Table 25 
Comparison of previous potentials of OC:HF. 

Reference Method  De OC-HF (cm-1) De CO-HF (cm-1) 
This Worka Morphed 1311(10) 637(10) 

[84] Ab initio, HF 733 659 
[139] Ab initio, ACCD 1066 603 
[112] Ab initio, MP2 1340 549 
[146] MMC 732 458 
[149] Ab initio, CCSD(T) 1222 584 
[149] DFT, HCTH38 1265 489 

aThe potential used for this predictions is the adiabatic   V
0,0( )  potential from the relativistic   VCMM

4( )  
potential of 16O12C:HF. 
 

 

 
 
 
 
 
 
Table 26 
Predictions of  ν3  and  ν4

1  frequencies of 16O12C-HF, using the relativistic   VCMM
4( )  potential. 

B ( ν3 ) (×10-2  
cm-1) 

B ( ν4
1 ) (×10-2 
cm-1) 

DJ ( ν3 ) (×10-8 
cm-1) 

DJ ( ν4
1 ) (×10-8 

cm-1) 
 ν3  (cm-1)  ν4

1  (cm-1) 

9.958(3) 9.888(3) 39.84(4) 45.11(9) 108.04(2) 368.45(7) 
 

 

 

 

 

 

 



 100 

The application of the CMM method to symmetric dimers, such as HX (X = F, 

Cl, Br, I) dimers, must await future work, where the inclusion of non-adiabatic coupling 

in the rovibrational Hamiltonian will be indispensable.  The current application to 

OC:HF dimer may improved by considering the proper calculation of 
 
Bυx

Ω( ) .  

Consequently, this will also increase the difficulties for the evaluation of the derivatives 

of the rovibrational eigenvalues with respect to the morphing parameters. 

A complete six-dimensional morphed PES has been generated for the OC:HF 

hydrogen-bonded dimer.  It is found that the CP method over corrected the BSSE by 

24(2)%, as seen by the negative value of the   C2
4( )  parameter in Table 21, and the 

definition of the morphing parameters in Eq. (61).  The calculated vibrational 

frequencies from the morphed potential are in very good agreement with the 

experimental values.  The small errors in the calculated observables primarily come from 

numerical errors in the interpolation methods.  Nevertheless, the current morphed 

potential is quantitatively good and it can be claimed that it has nearly spectroscopic 

accuracy. 
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5. CONCLUSIONS 

 

In this dissertation, reliable morphed interaction potential energy surfaces have 

been calculated for the prototypical systems of non-covalent interaction: Ne:HCl, 

OC:HF, OC:HCl, OC:HBr, OC:HI, and HI:CO2.  Also, the compound model morphing 

method has been presented and shown to be as accurate and reliable as the potential 

coordinate morphing method.  The compound model morphing method was extended, 

from four-dimensions to six-dimensions, and applied to the OC:HF system to morph the 

vibrationally-complete six-dimensional potential of this complex.  It has been found that 

the morphing parameters in the CMM method are similar for the OC:HCl and OC:HBr 

systems.  However, for the OC:HF system, the morphing parameters in the CMM 

method are different from those for OC:HCl and OC:HBr.  In the OC:HCl and OC:HBr 

complexes, the value of the C3 parameter was found to be close to 0.5, whereas for 

OC:HF it was close to one.  These results imply that the CCSD(T) calculation is better 

suited for OC:HF, rather than to OC:HCl or OC:HBr.  In addition, a comparison of the 

morphing parameters in the CMM method for OC:HF, OC:HCl, and OC:HBr gave a 

fundamental insight about the nature of the BSSE.  It was found that the CP method 

successfully corrected the BSSE in OC:HCl, but under corrected, by 16(7)%, in OC:HBr 

and over corrected, by 24(2)%, in OC:HF.  These results support the conclusion by 

Tuma et al. [149] where it is stated that BSSE becomes less important with strong 

interactions.  This implies a connection between the BSSE and the contributions for the 

interaction potential in the OC:HX (X = F, Cl, Br) complexes. 
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The interaction potential of non-covalent systems is governed by different 

contributions to the interaction energy, i.e. electrostatic, induction, electron 

delocalization, exchange repulsion, and dispersion [157].  In the families Rg-HX, OC-

HX, and CO2-HX (Rg = Ne, Ar, Kr; X = F, Cl, Br, I) [21,30,89,96,146] there exists a 

competition between the hydrogen bond and van der Waals interactions.  As the number 

of electrons (from F to I) increases in the atom X, the dipole moment of H-X decreases, 

and the dispersion effects increase; thus favoring van der Waals interactions.  For 

fluorine the hydrogen bond interactions dominates, while for iodine the van der Waals 

interactions dominates.  On the other hand, for chlorine and bromine the two different 

types of interactions make comparable contributions to the interaction potential.  In 

addition, for the OC:HX complexes, the differences in stability of the OC-HX and CO-

HX can be attributed to the interactions of the carbon and oxygen lone pairs, with the 

anti-bonding orbital on HX [112].  Since the lone pair orbitals of carbon are at higher 

energy than those of oxygen, it makes it a better electron density donor to the anti-

bonding orbital on HX.  Consequently, the hydrogen bond and van der Waals 

interactions work in opposing directions to create a natural balance of intermolecular 

interactions in real systems. 

The results from this study are relevant to understand differences in the 

thermodynamics of hydration of H2O and D2O [158-160].  Previous studies have shown 

a difference in the stability and flexibility of protein in H2O and D2O solvents [161-165].  

This difference in stability and flexibility has been attributed to the different abilities of 

H2O and D2O to solvate polar and non-polar groups in the protein [158].  Consequently, 
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the ground state isotopic isomerization, observed in the OC-HI complex, may suggest a 

structural change of biological macromolecules in deuterated solvents [166-169]. 

Hydrogen bonding is a very old concept in chemistry, but still a phenomenon not 

well understood [157].  Non-covalent interactions, in particular the hydrogen bond and 

van der Waals interaction, are one of the most important concepts, not only in chemistry, 

but in all branches of molecular science as well.  Above all, there are problems that 

remain open, and further research needs to be done to gain new insight into the nature of 

intermolecular interactions.  Some possible directions to extend the current research are 

as follow: 

i) An important improvement in the potential morphing methodology would 

be the development of an analytical derivative treatment of the intramolecular modes. 

ii) The reduction of interpolation errors, by calculating a very dense grid of 

ab initio points, will be feasible in the near future as better and faster computers become 

available.  In addition, highly accurate interpolation methods may be developed, but this 

will constitute a challenging mathematical problem. 

iii) In the case of degenerate vibrations, such as in the six-dimension 

calculation of HX (X = F, Cl, Br, I) dimers, a vibrational multiconfigurational self-

consistent field calculation [170] would be needed.  Also, the inclusion of non-adiabatic 

coupling, and the proper calculation of 
 
Bυx

Ω( ) , in the rovibrational Hamiltonian will be 

indispensable. 

iv) A challenging step in the potential morphing theory would be an increase 

in the dimensionality of the system to a nine-dimension treatment of triatom-diatom 
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systems, such as HCN:HF.  Also, the development of a methodology to morph the 

interaction potential of dimers that have one or two non-linear monomer constitutes a 

formidable computational challenge. 
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