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Scalar Quantization with Random Thresholds

Vivek K Goyal

Abstract—The  distortion-rate  performance of certain X 17— Qo .
randomly-designed scalar quantizers is determined. The cdral )
results are the mean-squared error distortion and output ertropy _, (31
for quantizing a uniform random variable with thresholds dr awn : entropy
independently from a uniform distribution. The distortion is : coding
at most 6 times that of an optimal (deterministically-desiged) :
quantizer, and for a large number of levels the output entrofy )
is reduced by approximately (1 — v)/(In2) bits, where ~ is | Qr-1 |ZK’1
the Euler—-Mascheroni constant. This shows that the high-ree
asymptotic distortion of these quantizers in an entropy-
constrained context is worse than the optimal quantizer by & Fig. 1. Use ofK dithered uniform scalar quantizers in parallel. Quantizer
most a factor of 6e=2(1=7) ~ 2.58. Q. has threshold{(j + a;)A} ez, with ay, its offset

Index Terms—Euler—-Mascheroni constant, harmonic number,
high-resolution analysis, quantization, Slepian-Wolf cding, sub-

tractive dither, uniform quantization, Wyner—Ziv coding. then be achieved through a variety of means [2]-[6]. The

same figure could represent a distributed setting, in wikich
sensors measure highly-correlated quantities (all madate

. INTRODUCTION X); with a Slepian—-Wolf code [2] or universal Slepian—Wolf
code [7], the sensors can quantize and encode their samples

dithered uniform scalar quantizers with the same step siZ&/lonomously. Variations in the,s could also arise unin-
used in parallel? The essence of this question—and a predfgdfionally, through process variation in sensor manuféreg
analysis under high-resolution assumptions—is captured $u€ 0 cost reduction or size reduction; mitigation of pesce
answering another fundamental question: What is the medAiiations is expected to be of increasing importance [B]sT
squared error (MSE) performance offacell quantizer with !e_tter add_resses the performance loss r_elat|ve to (_jetmtmm
randomly-placed thresholds applied to a uniformly-distted joint design of the channels or coordinated action by the

source? For both (equivalent) questions, it is not obvio@stributed sensors.

a priori that the performance penalties relative to optimal Collectively, theX parallel quantizers specify inpuf with

K—-1 .
deterministic designs are bounded; here we find concise A¥€SholdsJ;— {(j +ax)A};ez. One would expect the best

. K—1 . .
swers that demonstrate that these performance penalges Rgrformance from havingay};—," uniformly spaced irf0, 1]
through a;, = k/K; this intuition is verified under high-

small. Specifically, the multiplicative penalty in MSE for : : : ;
quantization of a uniform source is at mésin the codebook- '€Solution assumptions, where the optimal entropy-caimd

constrained case and abdlt (=) ~ 2.58 in the entropy- qqar}tizers_are u_niform [9]. To analyze performance .redaandy
constrained case at high rate, wheris the Euler—Mascheroni this |d_eal, it suffices to study one interval of lengthin the .
constant [[1]. The translation of these results is that ﬂqlé)ma_m of the quantizers _be_cause the thr_eshold_s repeat with
multiplicative penalty in MSE for high-rate parallel ditlel & Period ofA. This analysis is completed in Sectib II. The
quantization is at mos6 when there is no expoitation of "amifications for the system in Figl 1 are made explicit in-Sec
statistical dependencies between channels and &boeft! —) tlonm Section 1V cor:15|ders unnform qua!'l_tlzers with um@h
when joint entropy coding or Slepian-Wolf coding] [2] istep sizes, and Sectién V provides additional connections t

employed and the number of channels is large. related results and concludes the note.
Quantization with parallel channels is illustrated in HIj.
Each of K quantizers is a subtractively-dithered uniform scalar

guantizer with step size\. Denoting the dither, ooffset eK level quantizer forX is designed by choosinds — 1
f ti by ax, the thresholds of th ti ) i ; . L
of quantizerQ;. by ax, the thresholds of the quantizer ar thresholds independently, each with a uniform distributio

{(j + ar)A},;cz. One may imagine several stylized appli- : ;
cations in wjhich it is advantageous to allow thgs to be n[0,1). Put in ascending ord_er, the randc_)m thresholds are
Henoted{ak}kK:_ll, and for notational convenience, le§ = 0

arbitrary or chosen uniformly at random. For example, wit . .
y y b ax = 1. A regular quantizer with these thresholds has

parallel quantizer channels, one may turn channels on a den - : b
off adaptively based on available power or the desired $ig gssy encodet : [0,1) = {1, 2, ..., K} given by

fidelity [3]. Alteration of the lossless coding block could alz) = k for x € [ak—1,ak).

What is the performance of a collection &f subtractively-

Il. RANDOM QUANTIZER FOR A UNIFORM SOURCE
Let X be uniformly distributed or0,1). Suppose that a
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We are interested in the average rate and distortion of thi: 6
random quantizer as a function &f, both with and without codebook-constrained
entropy coding.

Theorem 1:The MSE distortion, averaging over both the
source variableX and the quantizer thresholday,} ', is

1
. 1
2(K+1)(K+2) @)
Proof: Let L(z | {a)}+_,") denote the length of the quan-
tizer partition cell that contains when the random thresholds
are {ax};_"); i.e.,

K—-1 -1
Lz [{ar}p—;) = length(a™ (a(z))).
. . . L . Fig. 2. MSE penalty factor as a function &f. For quantization of uniform
Since X is uniformly distributed and the thresholds are Ind%’ource on[0, 1], K is the number of codewords (Sectibd I1). For parallel

pendent ofX, the quantization error is conditionally uniformlydithered quantizationk is the number of channels (Sectionl I11).

distributed for any values of the thresholds. Thus the condi

tional MSE given the thresholds B[ L? [{ax}25t] /12, and

averaging over the thresholds as well gives= E LQ} /12. Proof: The desired expected conditional entropy is the
The possible values of the interval lengffa,; — a; 1 }%,, expectation of the self-information; log, P (a(X)). Let L

are called spacingsin the order statistics literaturg_[10,be defined as in the proof of Theoréih 1 to be the length of

Sect. 6.4]. With a uniform parent distribution, the spasinghe interval containing¥. Since the probability of\" falling

are identically distributed. Thus they have the distribatbf into any subinterval of0, 1) of lengthc is ¢, we have

the minimum,a;: R = E[-log,I]

fa1(a’) = (K_l)(l_a’)K72a Ogagl
The density ofL is obtained from the density af; by noting

that the probability t_hatX falls in an interval is proportional which equalsi{2) by direct calculation; see alsd [11]] [26].
to the length of the interval: An alternative proof is outlined in the Appendix. n

4]

I

w

D = E[(X - B(a(X))?*] =

MSE Penalty Factor

N

=
o

10 10 10
K (log scale)

_ —/1(10g2 0) - K(K - 1)e(1— 052 ar,
0

Lfa, (£) Ko To compare again against an optint&llevel quantizer, note
frll) = W = K(E -1 -7, that evenly-spaced thresholds would yigtd= log, K while
0 i the rate in[(R) is also essentially logarithmic/in The quantity
for 0 < ¢ < 1. Now @) includes theharmonic numberH,, = Y";_, 1/k, which
D - iE 7] = 1 /1 @2 K(K = 1)0(1 — 0K—2 0 has been studied extensively. For example,
12 12 J, 1 1
_ 1 6 724(71_’_1)2 < Hn—v—ln(n—ké) < an?

_12 (K+1DE+2) ) ) ) ) wherey ~ 0.577216 is called the Euler—Mascheroni con-
completing the proof. An alternative proof is outlined ireth gi5nt [1].

Appendix. . . . _ u Combining [1) and [{[2) while exploiting the asymptotic
The natural comparison fdrl(1) is against an optirialevel approximationl,, = y + In(n + 1) yields

qguantizer for the uniform source. The optimal quantizer has

evenly-spaced thresholds, resulting in partition cellieafyth R ~ (y=14+In(K +3))/(In2)

1/K and thus MSE distortion of /(12K?). Asymptotically

in K, Distortion [1) is worse by a factor o8 K?/((K +

1)(K +2)), which is at most and approachesas K — cc. D ~ 17207928 (3)

In other words, designing aodebook-constrainedr fixed-

rate quantizer by choosing the thresholds at random createg.gteret.N repredsedr?;fs a ratio approachhlngolgqncreases ;or
multiplicative distortion penalty of at most 6. Istortions :and ditterence approaching sincreases for

Now consider thentropy-constrainedr variable-ratecase. rates. The exact performance frof (1)—(2) is shown in Eig. 2

If an entropy code for the indexes is designed without kngwiﬁNIth normalization through division bh%2 .

the realization of the thresholds, the rate remaing K bits

per sample. However, conditioned on knowing the thresholds Il. PARALLEL DITHERED QUANTIZERS

the quantizer indexy(X) is not uniformly distributed, so the Let us now return to the system depicted in Kig. 1. High-

performance penalty can be reduced. resolution analysis of this system for any number of chanel
Theorem 2:The expected quantizer index conditional enk follows easily from the results of the previous section.

tropy, averaging over the quantizer thresho{dg}kK:jl, is For notational convenience, let us assume that the source

LK X has a continuous density supported [0nl). Fix A < 1
R = E[H (a(X)] {ak}kK—llﬂ - = kz = (2) and consider< uniform quantizers with step siza applied

and a distortion—rate performance of

to X. QuantizerQ, has lossy encodet, with thresholds at



integer multiples ofA. The remainingK’ — 1 quantizers are Let M be the length of the partition cell with left edge at
offset byaA, i.e., the thresholds of Quantiz€y, with lossy 0. Clearly M is related toa; by

encoderay, are at{(j + ax)A}j—o,1,...,|a1]- ar, if ar € [0, A];
We would like to first approximate the distortion in joint M = { Ao, if a1 € (Ag, Ay). (7)

reconstruction fronfa(X), a1 (X), ..., ax—1(X)). The first ) ) . ) )
quantizer indexy,(X) isolatesX to an intervalog (g (X)) So M is a mixed random variable with (generalized) p.d.f.

of length A. Since X has a continuous density andl < 1, 1 Ag
we may approximat& as conditionally uniformly distributed fu(m) = AL + (1 A, d(m — Do), m € [0, Ao).
on this interval. Thus we may apply Theoréin 1 to obtain With L defined (as before) as the length of the partition cell
A2 that containsX,
D ~ ; 4
2(K+1)(K+2) ful0) = Lfa(0)
where ~ represents a ratio approaching 1 As— 0. The fOAU L (0) de
average of the joint entropy is increased fram (2) by prégise B L n A — Ay 50— Ay)
H(ao(X)). Since T OAo(AL - TAg) AL - IA o
lim H(ao(X)) —h(X) —log, A~ = 0, for 0 < ¢ < Ay. The average distortion is given by
A—0
. . . 1 o A3 A - 3 A0
whereh(X) is the differential entropy ofX [13], D = 12E [L?] = A 1A, (8)
K
_ 1 1 This expression reduces fd (4) (with = 2) for Ag = A; =
1 —_ —
R MX) +log, A7 + In2 ; i’ ©) A. Also, it approachef\3/12 as A; — oo consistent with

_ . the second quantizer providing no information. The average
where~ represents a difference approaching Qas» 0. For ate is

a large number of channels, eliminating A gives . 1 Ao
K .1 R = E [— 10g2 L] = 10g2 AO + m m (9)
D (a) exp(2) ;007 ") 92h(X)9—2R (6) ! 0
2K +1)(K +2) This reduces to[{5) (withtk = 2 and h(X) = 1) for Ay =
A = A,

() exp(2(y — 1+ In(K + %))) 92h(X)9—2R
2(K+1)(K+2)

One way in which unequal quantization step sizes could
arise is through the quantization of a frame expansion [14].

1
_exp(y — 1)K+ 5)222h(X)272R Suppose the scalar sourdgis encoded by dithered uniform
2(K +1)(K +2) scalar quantization of = (X cos, X sinf) with step size
Q 1,—2(1=7)92h(X)9—2R A < 1 for each component of . This is equivalent to using
2

guantizers with step sizes
where (a) is exactad — 0, (b) |s_the standard_app_roxmatlon Ao = AJ|cos) and A, = A/|sind|
for harmonic numbers, and (c) is an approximation for large

K. This distortion exceeds the distortion of optimal entropydirectly on X. Fixing 6 € (0,7/4) so thatA, < Ay, we can

constrained quantization by the facter—2(1—7), express the distortiol](8) as
Do — A?sec?d — 3 tand
IV. QUANTIZERS WITH UNEQUAL STEP SIZES o = 12 1 Ltan

The methodology introduced here can be extended to cag@g the rate[{9) as
with unequal quantizer step sizes. The details become lyuick 1 tan 0
more complicated as the number of distinct step sizes is Ry = log, A7 +log, cos + ——

increased, so we consider only two step sizes. We also limit, , 2In2 2 — tanf
attention to sourceX uniformly distributed on[0, 1). The quotient

Let quantizeray be a uniform quantizer with step size B Dy 11— %tan& tan ¢ 10
Ao < 1 and thresholds at integer multiples &f, (no offset). 40 = L2k 1 ltang Fexp (m) (10)

Let a; be a uniform quantizer with step siz®; < 1 and
thresholds offset byi;, wherea; is uniformly distributed on
[0, Ay). Without loss of generality, assund, < A;. (It does
not matter which quantizer is fixed to have no offset; it onl
simplifies notation.) Wlo—rss = €/2,

Mimicking the analysis in Sectiohlll, the performance o#vhich is consistent with evaluating](6) @& = 2. Thus,
this pair of quantizers is characterized by the p.d.f. of thjeint entropy coding of the quantized components largely
length of the partition cell into whichX falls. Furthermore, compensates for the (generally disadvantageous) expaokio
because of the random dither, the partition cell lengths are X into a higher-dimensional space before quantization; the
identically distributed. penalty is only are/2 distortion factor or~ 0.221 bits.

can be interpreted as the multiplicative distortion pgnak
compared to using a single uniform quantizer. This is bodnde
)a}bove by



V. DISCUSSION

This note has derived distortion—rate performance foagert E [(X = Bla(X))? | {aj}j(:ll]
randomly-generated quantizers. The thresholds (anasotgou K
offsets in a dithered quantizer) are chosen according to a = > E[X = B(a(X))? | a(X) =k, {a;}1]
uniform distribution. The technique can be readily extehtie k=1
other quantizer threshold distributions; however, thefarm
distribution is motivated by the asymptotic optimality of
uniform thresholds in entropy-constrained quantization. =

The analysis in Sectiollll puts S|gn|f|ca}nt purden on The theorems are proved by averaging over the joint distri-
the entropy coder to remove the redundancies in the quan-. . Ko e :
. S . o . ution of the quantizer thresholds;};> 7", which is uniform
tizer outputs(io, i1, ..., ix—1). This is similar in spirit to ¥

the universal coding scheme of Ziv |15], which employs 8'C" the simplex) < ay <as < -+ <ax— < 1.

dithered uniform scalar quantizer along with an ideal gmtro ACKNOWLEDGMENTS
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