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Abstract
Ni-Fe containing enzymes are involved in the biological utilization of carbon monoxide, carbon
dioxide, and hydrogen. Interest in these enzymes has increased in recent years due to hydrogen
fuel initiatives and concerns over development of new methods for CO2 sequestration. One Ni-Fe
enzyme called carbon monoxide dehydrogenase (CODH) is a key player in the global carbon cycle
and carries out the interconversion of the environmental pollutant CO and the greenhouse gas
CO2. The Ni-Fe center responsible for this important chemistry, the C-cluster, has been the source
of much controversy, but several recent structural studies have helped to direct the field toward a
unifying mechanism. Here we summarize the current state of understanding of this fascinating
metallocluster.

While enzymes that utilize iron-containing active sites catalyze a wide range of well-known
chemical transformations, three remarkable enzymes combine iron and nickel into complex
metalloclusters that extend Nature’s biochemical toolkit and lie at the heart of fundamental
biological processes involving microbial hydrogen utilization and carbon fixation. [NiFe]-
hydrogenase can catalyze both H2 oxidation and evolution in anaerobic microbes to
consume or produce protons and electrons, the biological equivalent of the hydrogen fuel
cell anode [1,2]. Involved in carbon fixation, the enzyme acetyl-CoA synthase (ACS)
contains a Ni-Fe-S active site metal center called the A-cluster that combines carbon
monoxide (CO) with a methyl group and coenzyme A (CoA) to form acetyl-CoA,
generating a source of carbon and energy for a variety of microbes. CO is often provided to
ACS by another Ni-Fe enzyme called carbon monoxide dehydrogenase (CODH), a dimeric
enzyme which contains a distinctive Ni-Fe-S metal center termed the C-cluster that carries
out the reversible reduction of carbon dioxide (CO2) to CO, the biological equivalent of the
water-gas shift reaction and a mechanism for CO2 utilization. Interest in all three enzymes
has increased dramatically in recent years due to renewed attention in the development of
hydrogen fuel cells and the design of CO2 sequestration technologies. While the first X-ray
crystal structures of [NiFe]-hydrogenase [3], ACS [4], and CODH [5,6] revealed the overall
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architecture of these complex metallocenters, recent work has aimed to develop an
understanding of the mechanisms by which these clusters catalyze their respective reactions.
As major advances have been made on the C-cluster within the last three years, we have
focused this review on this metallocenter. Although the CODH literature has had its share of
controversies, the CODH community is now converging on a consensus mechanism, a
timely achievement toward understanding one of nature’s solutions for CO2 utilization.

CODH and the global carbon cycle
CODH plays a central role in the global carbon cycle in anaerobic microorganisms (Figure
1). Some microbes, such as Rhodospirillum rubrum and Carboxydothermus
hydrogenoformans depend upon a monofunctional CODH in their ability to use CO
oxidation as a sole carbon and energy source [7,8]. It is estimated that CODH activity
accounts for the annual removal of ~108 tons of CO from the environment [9]. Acetogenic
bacteria, such as Moorella thermoacetica, couple CODH-catalyzed reduction of CO2 to CO
with synthesis of acetyl-CoA in a bifunctional CODH/ACS complex [10]. Here, CO
produced from CO2 at the C-cluster is a gaseous intermediate that travels approximately 70
Å through an extraordinary hydrophobic tunnel within the enzyme complex [4,11–14] to the
ACS A-cluster, where it becomes the carbonyl of acetyl-CoA. Acetyl-CoA is then either
converted into cellular biomass, or its high energy thioester bond can be cleaved to drive
phosphorylation of ADP to ATP in supplying energy for the cell, producing acetate as a
waste product. It is estimated that ~1011 tons of acetate are produced globally from CO2
through this process every year by anaerobic acetogens [15]. Additionally, CODH and ACS
components are present in the acetyl-CoA decarbonylase/synthase (ACDS) complex, a
multienzyme machine that is a major route to methane production in methanogenic archaea,
which generate an estimated 109 tons of methane per year [16,17].

Initial structural and mechanistic studies of CODH
Although it had been well established that CODH harbored a Ni-Fe-S active site (see [18]
for review), it was not until the initial X-ray crystal structures of CODH from R. rubrum
(RrCODH) (Figure 2A) [6], C. hydrogenoformans (ChCODH) [5], and M. thermoacetica
CODH/ACS (MtCODH/ACS) (Figure 2B) [4,13] that the arrangement and geometry of the
metals were determined. Early spectroscopic studies had suggested that the C-cluster was
composed of a [4Fe-4S] cubane with a unique Ni site nearby [18,19]. However, all of these
CODH structures revealed an unprecedented metallocluster that can be described as a
distorted [Ni-3Fe-4S] cubane coordinated to a unique Fe site, also called ferrous component
II (FCII).

Despite exhibiting the same arrangement of metals in the C-cluster, these initial structures
possessed key differences that hindered full mechanistic understanding. Perhaps most
importantly, the ChCODH C-cluster contained an additional sulfide ligand in a position
bridging Ni of the distorted cubane and the unique Fe (Figure 2C), a feature absent in the
RrCODH and MtCODH/ACS structures (Figure 2D). This inconsistency led to controversy
over the correct composition of the cluster, and further experiments were conducted which
argued either for [20] or against [21,22] a catalytic role for the sulfide bridge.

Related to the issue of the sulfide bridge is the crucial question of where substrates bind to
the C-cluster for the interconversion of CO and CO2. In the direction of CO oxidation, CO
and H2O must bind the C-cluster, H2O is deprotonated, and CO2 is formed, generating two
protons and two electrons that reduce the cluster. Although the pathway by which protons
exchange with the bulk solvent is not firmly established, a network of histidine residues that
link the buried C-cluster with the solvent exterior has been suggested as a possible route
[6,23]. Electrons are passed from the C-cluster to the surface of the protein through
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additional [4Fe-4S] clusters that form a wire seen in all CODH structures (Figure 2A).
Ferredoxin, pyruvate:ferredoxin oxidoreductase (PFOR), and hydrogenase have been
proposed as ultimate electron acceptors [24,25]; intermolecular electron transfer has been
suggested to be rate-limiting [26], with specific activity depending upon the electron
acceptor employed [27,28]. In the direction of CO2 reduction, CO2 must bind the two-
electron reduced C-cluster [29,30], and with the addition of two protons, H2O and CO are
formed.

While there remained uncertainties surrounding the transfer of electrons and protons to the
buried C-cluster, the most attention has been paid to binding sites for CO and H2O on the
metals of the C-cluster. Studies conducted prior to the ChCODH and RrCODH structure
determinations had indicated that Ni and Fe are involved in binding the substrate CO and
water molecules, respectively [19,31]. In the ChCODH structure, however, the sulfide
bridge fills coordination sites to complete square planar geometry around Ni and distorted
tetrahedral geometry around the unique Fe, making the substrate binding locations unclear.
Although RrCODH and two independent MtCODH/ACS structures contain empty
coordination sites in place of the sulfide bridge, electron density for an unassigned ligand
apical to Ni was present in the RrCODH structure and one MtCODH/ACS structure [6,13].
Without a clear identification of substrate binding sites, the mechanism of the C-cluster
remained enigmatic.

Substrate- and inhibitor-bound C-cluster structures identify the active site
Over the past three years, many crystal structures have been solved that depict substrates
bound to the C-cluster. Structures of ChCODH [32] and MtCODH/ACS [33] show the
substrate water molecule bound to the unique Fe site in an identical fashion, completing a
distorted tetrahedral geometry (Figure 3A). These observations are consistent with previous
studies which also suggest that water binds Fe [31]. None of these structures contain the
sulfide bridge, as the water molecule occupies the sulfide coordination site on Fe.

A structure of the CODH component of the ACDS complex from Methanosarcina barkeri
(MbCODH) depicts CO bound to Ni of the C-cluster in a position adjacent the water
molecule, which remains bound to the unique Fe (Figure 3B) [34]. With both substrates
bound to the cluster, it was hypothesized that the low pH of the crystallization condition
(4.6) prevented turnover by disfavoring deprotonation of water to the active hydroxide
nucleophile, allowing the capture of the C-cluster state immediately before catalysis. CO is
bound to Ni in an unexpected bent conformation, with a Ni-C-O bond angle of 103°,
completing a distorted tetrahedral geometry. Interestingly, a structure of cyanide, a CODH
inhibitor, bound to the MtCODH/ACS C-cluster illustrates analogous bent geometry (Figure
3B), with a Ni-C-N bond angle of ~114° [33]. The substrate water molecule in this structure
also remains bound to the unique Fe. A conserved isoleucine residue is seen in both
structures to sterically block linear binding of CO and cyanide to Ni (Figure 3B). Such bent
coordination is not likely to be stable; indeed, infrared spectroscopy had suggested that there
is no single, stable site for CO binding to the C-cluster [35]. Thus, it is possible that binding
of CO to give bent geometry is mechanistically important, as the enhanced stability of a
linear binding mode may impede turnover. In this model, isoleucine would contribute to
ground state destabilization, lowering the activation barrier to catalysis by preventing linear
substrate binding.

The structures of CO and cyanide bound to the C-cluster place the carbon atom and water
molecule too far apart for catalysis; a shift in coordination must occur during the reaction.
The crystal structure of the product CO2 bound to the ChCODH C-cluster [32] provides a
unique perspective on how such a shift may occur. Here, the CO2 carbon is bound to Ni,
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while one CO2 oxygen is bound to the unique Fe. A superposition of CO2-bound ChCODH
with CO-bound MbCODH and cyanide-bound MtCODH/ACS structures exhibits a nearly
identical position of all substrate atoms except for the carbon atom (Figure 3C). While the
oxygen/nitrogen atoms remain stationary across the structures, the carbon atom has shifted
closer to the water molecule in the CO2-bound structure. This “carbon shift” has been
proposed [33] to alter the Ni coordination geometry from distorted tetrahedral in the CO-
and CN-bound forms to square planar in the CO2-bound form.

Taken together, these structures reveal the active site on the C-cluster of CODH. In the
direction of CO oxidation, crystal structures from ChCODH, MbCODH, and MtCODH/ACS
depict water bound to the unique Fe, while structures of MbCODH and MtCODH/ACS
show CO or an inhibitor CN− bound to Ni, respectively. Meanwhile, one structure of
ChCODH shows CO2, the substrate in the direction of CO2 reduction, bound to the cluster.
In all structures, regardless of the organism, no sulfide bridge is present when a substrate
molecule is bound. Consistent with these structures, a catalytic mechanism is proposed
(Figure 4).

The complexity of cyanide inhibition
A distinguishing feature of all Ni-containing CODHs is potent inhibition by cyanide
[24,27,36–40]. Although direct binding to the C-cluster has been implicated as the root of
cyanide inhibition, years of study have not led to a clear inhibitory mechanism. On one
hand, cyanide has been described as a competitive inhibitor that binds Ni: Ni-deficient
RrCODH does not bind cyanide [37,38], and X-ray absorption spectroscopy (XAS)
indicated that cyanide shares with CO a binding site on Ni with a Ni-C distance of 1.81–1.84
Å [40]. In contrast, other studies have suggested that cyanide binds Fe: electron-nuclear
double resonance (ENDOR) spectroscopy indicated that cyanide displaces the Fe-bound
water molecule [31], and Mössbauer spectroscopy showed a change in quadrupole splitting
(ΔEQ) of the unique Fe signal upon cyanide treatment [19]. It has also been suggested that
cyanide may bind at multiple sites [26].

However, these data appear to be in conflict only if it is assumed that cyanide must adopt a
single binding mode. Indeed, two crystal structures of cyanide bound to the C-cluster show
that the same inhibitor can actually adopt multiple binding modes. As mentioned above, the
cyanide-bound MtCODH/ACS structure [33] shows cyanide bound to Ni in a bent
conformation, in an analogous fashion as CO in the MbCODH structure, with water still
bound to Fe (Figure 3B). The cyanide carbon completes distorted tetrahedral geometry
around Ni and mimics how CO binds to the active C-cluster. On the other hand, a cyanide-
bound ChCODH structure [41] shows CN− bound to Ni with effectively linear geometry
(Ni-C-N bond angle of 175°), conferring square planar geometry around Ni. Notably, the
substrate water molecule is absent in this structure, which represents an inhibited form
where neither substrate is bound to the cluster. A superposition of the two cyanide-bound C-
clusters is shown in Figure 3D.

These dissimilar crystal structures depicting cyanide binding mirror the seemingly
contradictory spectroscopic results described above. It has been recently suggested that a
rapid, reversible cyanide binding step is followed by a slow rearrangement step to achieve
tighter binding [26,41], explaining how cyanide could be both a rapid, reversible inhibitor
under some conditions as well as a slow-binding inhibitor under others [38]. Here, we
reason that the MtCODH/ACS cyanide structure illustrates an “easily reversible” cyanide
binding mode, where cyanide binds Ni in the same bent manner as CO. This bent, Ni-bound
cyanide structure is consistent with studies indicating that cyanide is a competitive inhibitor
of CO and, like CO, binds Ni. In a subsequent, slow rearrangement step, the substrate water
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molecule bound to the unique Fe may then be displaced, freeing space to allow cyanide to
relax into a more favored linear binding mode, represented by the ChCODH cyanide
structure. One would expect this structure to represent cyanide in a “tight binding” mode.
The displacement of the Fe-bound water molecule upon cyanide treatment seen in the
ChCODH structure is consistent with the ENDOR experiments [31] and further clarifies that
water displacement is not a result of direct binding of cyanide to Fe, an assumption made in
the ENDOR study. Water displacement and linear cyanide binding can also explain why
Mössbauer spectroscopy showed a change in ΔEQ of the unique Fe signal upon cyanide
treatment [19]. Therefore, while neither cyanide-bound C-cluster structure can alone
reconcile all of the spectroscopic studies, both structures together can provide an explanation
for the seemingly inconsistent data on CODH cyanide inhibition, a twenty-year mystery in
the field.

In asking why the ChCODH and MtCODH/ACS structures revealed different cyanide
binding modes, the most likely answer lies in the dissimilar cyanide crystal soaking
protocols. ChCODH crystals were soaked for 30 min in 70 mM KCN [41], while MtCODH/
ACS crystals were soaked for 1 h in only 100 μM KCN [33]. Because ChCODH crystals
were exposed to cyanide concentrations a few orders of magnitude higher than MtCODH/
ACS crystals, it is possible that the equilibrium was shifted towards displacement of Fe-
bound water bound and linear cyanide binding. Regardless, these structures have offered a
clearer picture of the mechanism of cyanide inhibition (Figure 4).

Conclusions
The truly distinctive NiFe4S4 CODH C-cluster has inspired decades of biochemical
research; however, the literature has been fraught with controversy and contradictions
regarding the C-cluster’s structure, mechanism, and mode of inhibition. Crystal structures of
CODHs from several organisms have brought the C-cluster into focus and allowed us to
rationalize the abundance of seemingly inconsistent biochemical data. From these structural
studies, a unified view of the C-cluster has emerged, presenting key insights into the
function of this remarkable and environmentally important metallocluster.

Acknowledgments
Work in the Drennan laboratory on carbon monoxide dehydrogenase has been supported by the National Institutes
of Health (GM69857) and the MIT Energy Initiative. C.L.D. is a Howard Hughes Medical Institute Investigator.

References
* - of special interest

** - of outstanding interest

1. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y. Structure/Function Relationships of
[NiFe]- and [FeFe]-Hydrogenases. Chem Rev. 2007; 107:4273–4303. [PubMed: 17850165]

2. Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: An
Overview. Chem Rev. 2007; 107:4206–4272. [PubMed: 17927159]

3. Volbeda A, Charon M-H, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC. Crystal structure
of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995; 373:580–587. [PubMed:
7854413]

4*. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. A Ni-Fe-Cu center in a
bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science. 2002; 298:567–572.
The crystal structure of MtCODH/ACS (2.20 Å resolution) was first described in this paper. The

Kung and Drennan Page 5

Curr Opin Chem Biol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



C-cluster here did not contain the μ2-S ligand seen in the structure of ChCODH that bridges Ni
and the unique Fe. [PubMed: 12386327]

5*. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. Crystal Structure of a Carbon Monoxide
Dehydrogenase Reveals a [Ni-4Fe-5S] Cluster. Science. 2001; 293 The crystal structure of
ChCODH (1.63 Å resolution) was first shown and depicted a C-cluster similar to that of
RrCODH, except for the presence of a μ2-S ligand bridging Ni and the unique Fe. Although no
ligand apical to Ni was present, it was suggested that CO may bind to this site.

6*. Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW. Life on Carbon Monoxide: X-ray
Structure of Rhodospirillum rubrum Ni-Fe-S Carbon Monoxide Dehydrogenase. Proc Natl Acad
Sci USA. 2001; 98:11973–11978. This paper presented the 2.80 Å resolution crystal structure of
RrCODH, which is similar to that of ChCODH but contains an unknown ligand apical to Ni of
the C-cluster and lacks a μ2-S ligand bridging Ni and the unique Fe. [PubMed: 11593006]

7. Uffen RL. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as
sole carbon and energy substrate. Proc Natl Acad Sci US A. 1976; 73:3298–3302.

8. Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA.
Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic
bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol. 1991;
14:254–260.

9. Bartholomew GW, Alexander M. Microbial Metabolism of Carbon Monoxide in Culture and in
Soil. Appl Environ Microbiol. 1979; 37:932–937. [PubMed: 485139]

10. Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl Pathway of CO2 fixation. Biochim
Biophys Acta. 2008; 1784:1873–1898. [PubMed: 18801467]

11. Maynard EL, Lindahl PA. Evidence of a Molecular Tunnel Connecting the Active Sites for CO2
Reduction and Acetyl-CoA Synthesis in Acetyl-CoA Synthase from Clostridium thermoaceticum.
J Am Chem Soc. 1999; 121:9221–9222.

12. Seravalli J, Ragsdale SW. Channeling of Carbon Monoxide during Anaerobic Carbon Dioxide
Formation. Biochemistry. 2000; 39:1274–1277. [PubMed: 10684606]

13. Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC. Ni-Zn-
[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon
monoxide dehydrogenase. Nat Struct Biol. 2003; 10:271–279. [PubMed: 12627225]

14*. Doukov TI, Blasiak LC, Seravalli J, Ragsdale SW, Drennan CL. Xenon in and at the end of the
tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry.
2008; 47:3474–3483. This 2.51 Å resolution crystal structure of MtCODH/ACS pressurized with
xenon depicts how CO generated at the C-cluster from CO2 reduction can make its way through
a buried tunnel to the A-cluster for acetyl-CoA synthesis. [PubMed: 18293927]

15. Drake, HL.; Daniel, SL.; Matthies, C.; Küsel, K. Acetogenesis, acetogenic bacteria, and the acetyl-
CoA pathway: past and current perspectives. In: Drake, HL., editor. Acetogenesis. Chapman and
Hall; 1994. p. 3-60.

16. Grahame DA. Catalysis of Acetyl-CoA Cleavage and Tetrahydrosarcinapterin Methylation by a
Carbon Monoxide Dehydrogenase-Corrinoid Enzyme Complex. J Biol Chem. 1991; 266:22227–
22233. [PubMed: 1939246]

17. Thauer RK. Biochemistry of Methanogenesis: A Tribute to Marjory Stephenson. Microbiology.
1998; 144:2377–2406. [PubMed: 9782487]

18. Ragsdale SW, Kumar M. Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA
Synthase. Chem Rev. 1996; 96:2515–2539. [PubMed: 11848835]

19. Hu Z, Spangler HJ, Andersen ME, Xia J, Ludden PW, Lindahl PA, Münck E. Nature of the C-
Cluster in Ni-Containing Carbon Monoxide Dehydrogenases. J Am Chem Soc. 1996; 118:830–
845.

20. Dobbek H, Svetlitchnyi V, Liss J, Meyer O. Carbon Monoxide Induced Decomposition of the
Active Site [Ni-4Fe-5S] Cluster of CO Dehydrogenase. J Am Chem Soc. 2004; 126:5382–5387.
[PubMed: 15113209]

21. Feng J, Lindahl PA. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide
Dehydrogenases. J Am Chem Soc. 2004; 126:9094–9100. [PubMed: 15264843]

Kung and Drennan Page 6

Curr Opin Chem Biol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Gu W, Seravalli J, Ragsdale SW, Cramer SP. CO-Induced Structural Rearragement of the C
Cluster in Carboxydothermus hydrogenoformans CO Dehydrogenase-Evidence from Ni K-Edge
X-ray Absorption Spectroscopy. Biochemistry. 2004; 43:9029–2035. [PubMed: 15248760]

23. Kim EJ, Feng J, Bramlett MR, Lindahl PA. Evidence for a Proton Transfer Network and a
Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide
Dehydrogenases. Biochemistry. 2004; 43:5728–5734. [PubMed: 15134447]

24. Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL. Properties of Purified Carbon
Monoxide Dehydrogenase from Clostridium thermoaceticum, a Nickel, Iron-Sulfur Protein. J Biol
Chem. 1983; 258:2364–2369. [PubMed: 6687389]

25. Menon S, Ragsdale SW. Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/
Acetyl-CoA Synthase and Pyruvate:Ferredoxin Oxidoreductase. Biochemistry. 1996; 35:15814–
15821. [PubMed: 8961945]

26. Seravalli J, Ragsdale SW. 13C NMR Characterization of an Exchange Reaction between CO and
CO2 Catalyzed by Carbon Monoxide Dehydrogenase. Biochemistry. 2008; 47:6770–6781.
[PubMed: 18589895]

27. Andersen ME, DeRose VJ, Hoffman BM, Lindahl PA. Identification of a Cyanide Binding Site in
CO Dehydrogenase from Clostridium thermoaceticum Using EPR and ENDOR Spectroscopies. J
Am Chem Soc. 1993; 115:12204–12205.

28. Svetlitchnyi V, Peschel C, Acker G, Meyer O. Two Membrane-Associated NiFeS-Carbon
Monoxide Dehydrogenases from the Anaerobic Carbon-Monoxide-Utilizing Eubacterium
Carboxydothermus hydrogenoformans. J Bacteriol. 2001; 183:5134–5144. [PubMed: 11489867]

29. Andersen ME, Lindahl PA. Spectroscopic States of the CO Oxidation/CO2 Reduction Active Site
of Carbon Monoxide Dehydrogenase and Mechanistic Implications. Biochemistry. 1996; 35:8371–
8390. [PubMed: 8679595]

30. Seravalli J, Kumar M, Lu W-P, Ragsdale SW. Mechanism of Carbon Monoxide Oxidation by the
Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase from Clostridium thermoaceticum:
Kinetic Characterization of the Intermediates. Biochemistry. 1997; 36:11241–11251. [PubMed:
9287167]

31. DeRose VJ, Telser J, Andersen ME, Lindahl PA, Hoffman BM. A Multinuclear ENDOR Study of
the C-Cluster in CO Dehydrogenase from Clostridium thermoaceticum: Evidence for HxO and
Histidine Coordination to the [Fe4S4] Center. J Am Chem Soc. 1998; 120:8767–8776.

32**. Jeoung J-H, Dobbek H. Carbon Dioxide Activation at the Ni, Fe-Cluster of Anaerobic Carbon
Monoxide Dehydrogease. Science. 2007; 318:1461–1464. Three structures of ChCODH
presented here identified both the water and CO2 binding sites of the C-cluster and provided the
first images of substrates bound to the cluster. Water was bound in the same fashion to the unique
Fe of the C-cluster in two structures (1.40 and 1.48 Å resolution) at differing redox states. The
redox state was modulated by soaking crystals in solutions at different reduction potentials. CO2
binding was observed in one structure (1.50 Å resolution) after soaking crystals in sodium
bicarbonate. [PubMed: 18048691]

33**. Kung Y, Doukov TI, Seravalli J, Ragsdale SW, Drennan CL. Crystallographic Snapshots of
Cyanide- and Water-Bound C-Clusters from Bifunctional Carbon Monoxide Dehydrogenase/
Acetyl-CoA Synthase. Biochemistry. 2009; 48:7432–7440. Two crystal structures of MtCODH/
ACS were presented in this paper (both at 2.15 Å resolution). The first showed water bound to
the unique Fe of the C-cluster in the same fashion as in the ChCODH C-cluster. The second
structure, obtained after crysals were soaked in 100 μM KCN for 1 h, illustrated water bound to
the unique Fe and cyanide bound to Ni with bent geometry. [PubMed: 19583207]

34**. Gong W, Hao B, Wei Z, Ferguson DJJ, Tallant T, Krzycki JA, Chan MK. Structure of the α2ε2
Ni-Dependent CO Dehydrogenase Component of the Methanosarcina barkeri acetyl-CoA
decarbonylase/synthase complex. Proc Natl Acad Sci USA. 2008; 105:9558–9563. This paper
described a 2.00 Å resolution crystal structure of MbCODH with the substrate water molecule
bound to the unique Fe of the C-cluster and CO bound to Ni with bent geometry. MbCODH was
proposed to have not turned over due to the acidic conditions of the crystallization condition.
[PubMed: 18621675]

Kung and Drennan Page 7

Curr Opin Chem Biol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



35. Chen J, Huang S, Seravalli J, Gutzma HJ, Swartz DJ, Ragsdale SW, Bagley KA. Infrared Studies
of Carbon Monoxide Binding to Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase from
Moorella thermoacetica. Biochemistry. 2003; 42:14822–14830. [PubMed: 14674756]

36. Grahame DA, Stadtman TC. Carbon Monoxide Dehydrogeanse from Methanosarcina barkeri:
Disaggregation, Purification, and Physicochemical Properties of the Enzyme. J Biol Chem. 1987;
262:3706–3712. [PubMed: 3818661]

37. Ensign SA, Bonam D, Ludden PW. Nickel is Required for the Transfer of Electrons from Carbon
Monoxide to the Iron-Sulfur Center(s) of Carbon Monoxide Dehydrogenase from Rhodospirillum
rubrum. Biochemistry. 1989; 28:4968–4973. [PubMed: 2504284]

38. Ensign SA, Hyman MR, Ludden PW. Nickel-Specific, Slow-Binding Inhibition of Carbon
Monoxide Dehydrogenase from Rhodospirillum rubrum by Cyanide. Biochemistry. 1989;
28:4973–4979. [PubMed: 2504285]

39. Andersen ME, Lindahl PA. Organization of Clusters and Internal Electron Pathways in CO
Dehydrogenase from Clostridium thermoaceticum: Relevance to the Mechanism of Catalysis and
Cyanide Inhibition. Biochemistry. 1994; 33:8702–8711. [PubMed: 8038160]

40. Ha S-W, Korbas K, Klepsch M, Meyer-Klaucke W, Meyer O, Svetlitchnyi V. Interaction of
Potassium Cyanide with the [Ni-4Fe-5S] Active Site Cluster of CO Dehydrogenase from
Carboxydothermus hydrogenoformans. J Biol Chem. 2007; 282:10639–10646. [PubMed:
17277357]

41**. Jeoung J-H, Dobbek H. Structural Basis of Cyanide Inhibition of Ni, Fe-Containing Carbon
Monoxide Dehydrogenase. J Am Chem Soc. 2009; 131:9922–9923. This paper describes the 1.36
Å resolution crystal structure of ChCODH with cyanide bound to Ni of the C-cluster with near-
linear geometry. In this structure, obtained after crystals were soaked in 70 mM KCN for 30 min,
the substrate water molecule is notably absent, unlike the structure of MtCODH/ACS with both
cyanide and water bound to the C-cluster. [PubMed: 19583208]

Kung and Drennan Page 8

Curr Opin Chem Biol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Schematic of NiFe-containing CODH in the microbial carbon cycle and its contributions to
CO, CO2, and methane production and consumption. CODH is shown as a dimer in light
and dark blue ovals, ACS as light and dark red ovals, and the methanogenic ACDS complex
as a green rectangle containing both CODH and ACS components in an unknown
arrangement.
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Figure 2.
CODH and C-cluster structures. (A) The RrCODH homodimer (PDB ID: 1JQK) and (B) the
bifunctional MtCODH/ACS complex (PDB ID: 1MJG); CODH subunits in blue and cyan
ribbons, and ACS subunits in dark and light pink ribbons. Metalloclusters in spheres: Ni in
green, Cu in brown, Fe in orange, S in yellow. Active site A- and C-clusters are labelled in
green and are NiFe4S4 and Ni2Fe4S4 clusters, respectively. B- and D-clusters are labelled in
yellow and are Fe4S4 cubanes involved in electron transfer, with red arrows in (A)
indicating the direction of electron flow during CO oxidation. (C) The C-cluster of
ChCODH (PDB ID: 1SU8, cyan ribbons), which contains a sulfido ligand (labelled μ2-S)
that bridges Ni and the unique Fe. (D) The C-cluster of MtCODH/ACS (pink ribbons),
which does not contain the bridging sulfide. C-clusters in ball-and-stick: Ni in green, Fe in
orange, and S in yellow. Protein ligands in sticks: N in blue, S in yellow, and C following
protein ribbon coloring. Residue numberings follow the respective protein sequences.
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Figure 3.
Substrate and inhibitor bound C-cluster structures. (A) Superposition of water-bound C-
clusters from ChCODH and MtCODH/ACS. (B) Superposition of CO/water- and cyanide/
water-bound C-clusters from MbCODH and MtCODH/ACS, respectively. A conserved
isoleucine residue (Ile641 in MbCODH and Ile591 in MtCODH/ACS) that is believed to
sterically impede linear CO/CN-binding is shown in ball-and-stick. (C) Superposition of the
structures in (B) plus the CO2-bound C-cluster from ChCODH. (D) Superposition of the
cyanide-bound C-clusters from MtCODH/ACS and ChCODH. Protein chains in ribbons:
ChCODH in cyan, MtCODH/ACS in pink, and MbCODH in gray. C-clusters in ball-and-
stick, and protein ligands to the cluster in sticks: Ni in green, Fe in orange, S in yellow, N in
blue, O in red, and C following protein ribbon coloring. The Ni and unique Fe sites are
labeled “Ni” and “Fe”, respectively. For clarity, not all protein ligands to the cluster are
shown.
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Figure 4.
Proposed catalytic and inhibitory mechanisms of the CODH C-cluster, consistent with
crystal structures containing bound substrate and inhibitor molecules. To begin the reaction,
a water molecule binds the unique Fe of the C-cluster (State I), as seen in ChCODH and
MtCODH/ACS structures. CO binds Ni with bent geometry (State II), as seen in CO-bound
MbCODH and CN-bound MtCODH/ACS. Upon deprotonation of water, a “carbon shift”
may occur to position the carbon in close proximity to the resulting hydroxide (State III),
promoting nucleophilic attack to yield a Ni-COOH intermediate (State IV). A second
deprotonation gives a Ni-COO− species (State V). The crystal structure of CO2-bound
ChCODH resembles States IV and V, which differ only in protonation state. CO2 may then
be released, with the C-cluster becoming reduced by two electrons (State VI). Electrons are
then passed to external electron acceptor proteins through a wire of [4Fe-4S] clusters within
the CODH dimer, as seen in Figure 2A, completing the catalytic cycle. Protons generated
during CO oxidation may access the external solvent through a histidine-lined channel. In
the proposed inhibitory mechanism, cyanide competes with CO for binding to Ni of the C-
cluster with bent geometry, as seen in the structure of cyanide-bound MtCODH/ACS (State
CN-A). Following displacement of Fe-bound water, cyanide may relax to a tighter linear
binding mode, as seen in the structure of cyanide-bound ChCODH (State CN-B).
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