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Abstract

In many distributed sensing applications, not all agents have valuable informa-
tion at all times. Therefore, requiring all agents to communicate at all times can be
resource intensive. In this work, the notion of Value of Information (VoI) is used to
improve the efficiency of distributed sensing algorithms. Particularly, only agents
with high VoI broadcast their measurements to the network, while others censor
their measurements. New VoI realized data fusion algorithms are introduced, and
an in depth analysis of the costs incurred by these algorithms and conventional
distributed data fusion algorithms is presented. Numerical simulations are used
to compare the performance of the VoI realized algorithms with traditional data
fusion algorithms. A VoI based algorithm that adaptively adjusts the criterion for
being informative is presented and shown to strike a good balance between reduced
communication cost and increased accuracy.

1 INTRODUCTION
Distributed computing and sensing systems are becoming increasingly common as
sensing and communication capabilities become available in compact packages. The
problem of estimating parameters using a distributed set of sensors has been widely
studied (see for example [1–8]). Since distributed sensing approaches are robust to
single point failures, they arise in numerous domain, including networked Unmanned
Aerial Vehicles, smart power grids, and distributed Sensor Networks. The key issue in
distributed estimation is to ensure the scalability of the distributed sensing algorithms
to systems with large number of agents, while ensuring the accuracy of the estimation.

Several authors have studied distributed inference using Bayesian techniques, a re-
view is available in [5]. Yedidia et al. have studied Belief Networks which use acyclic
graphs to represent random variables and their dependence which is often extracted
from agents’ local properties [9]. In these methods, nodes communicate with each
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other whenever new measurements are available. In Channel Filter algorithms [10]
the goal is to estimate a set of common variables observed by a network of sensors.
These methods require that the network be acyclic, furthermore, elimination of the
acyclic constraint is complicated and costly in terms of computation and communica-
tion. Consensus is a set of algorithms in which agents reach asymptotic agreement
using only locally available information (see e.g. [8,11,12]).

However, the relationship between the accuracy of the distributed estimation algo-
rithms and the cost incurred in communication have not been deeply studied.In several
real world distributed sensing situations, the measurements of all agents at all time are
not equally informative for improving the global parameter estimation. Examples of
such situations include situations where the observed process varies slowly (such as
temperature in a building) or situations where the observed process is spatially dis-
tributed and not all agents are in a good position to take informative measurements.
This situation is depicted in Figure 1, where the dark colored nodes are the only ones
with valuable information, however, all the nodes in the network are communicating,
resulting in wasted resources. Uney, Cetin et al., Msechu et al. and Tay et al. have
studied the notion of censoring nodes in a sensing network to reduce communication
cost [13–18]. In their work, a central node decides on which sensors can get good
measurements and censors others to save resources. Chen et al. use a simple met-
ric on value of information to determine whether a new piece of measurement will be
broadcasted in a data association problem in a distributed sensor network [19].

The research presented here was motivated by the question of whether there are
more efficient algorithms for performing distributed fusion than the standard consen-
sus algorithms that have been proposed in the literature. In particular, we explore the
notion of Value of Information (VoI), which quantifies how informative an agent be-
lieves its measurements are. The approach taken is to have the agents in the network
check the quality of their data, and then only have informative agents communicate
with others about their data while uninformative ones censor themselves, though they
may be tasked with acting as relays. New methods for information fusion using VoI are
introduced, and compared in depth with a consensus based algorithm. Furthermore, an
adaptive algorithm that adjusts the VoI criterion is introduced to ensure a good balance
between the communication cost and estimation accuracy. This paper further explores
the communication cost savings afforded by a censoring based approach by providing
detailed estimates of cost incurred for several distributed sensing algorithms. Further-
more, numerical simulations are employed to compare the performance and cost of
distributed sensing algorithms. Our results indicate that VoI based data fusion can have
significant cost savings over consensus based approaches while ensuring good estima-
tion performance.

This paper is organized as follows. Section 2 introduces related probability, graph
theory, and distributed estimation concepts. Section 3 and 4 develop VoI based data
fusion algorithms. Section 5 presents an adaptive VoI realized data fusion algorithms.
Results of numerical simulations are provided in 6, the paper is concluded in 7.
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Figure 1: Cost VoI Realized Fusion

2 BACKGROUND

2.1 Bayesian Parameter Estimation
Bayesian parameter estimation algorithms (Bayesian inference algorithms) use Bayes
law to update the posterior distribution of parameters of interest as new measurements
arrive. Let Θ denote a random variable (RV) representation of the parameters of inter-
est, and let θ be a realization of Θ. Let Z be a RV denoting possible measurements and
let z be an actual measurement, which is a sample of Z. Let pΘ(θ) be the prior distribu-
tion on Θ, and pΘ|Z(θ|z) be the posterior distribution after incorporating measurement
z. Then, Bayesian inference can be stated as follows (see for example [20])

pΘ|Z(θ|z) =
pZ|Θ(z|θ)pΘ(θ)∫
pZ|Θ(z|θ)pΘ(θ) dθ

. (1)

In the above equation pZ|Θ(z|θ) is the likelihood function of Z given prior estimate of
parameters θ.

2.2 Conjugate Prior and Linear Updates
In many cases, prior knowledge about the distribution of parameters can be expressed
as parameterized functions of the form pΘ(θ) = pΘ|Ω(θ|ω), where ω is referred as the
hyperparameters of the distribution [20,21]. The set of all possible hyperparameters ω



is denoted by Ω. With this notation ( 1) can be rewritten as

pΘ|Ω(θ|ωpost) = pΘ|Z,Ω(θ|z, ωprior)

=
pZ|Θ(z|θ)pΘ|Ω(θ|ωprior)∫
pZ|Θ(z|θ)pΘ|Ω(θ|ωprior) dθ

.
(2)

It is shown in [20,21] that if the likelihood function is in the family of exponential
distributions, and if the prior distribution is conjugate to the likelihood function, the
posterior distribution will have the same form as the prior. Furthermore, hyperparame-
ters can be updated using a linear update law of the form

ωpost = ωprior + h(z, p(z|θ)). (3)

2.3 Distributed Estimation of Hyperparameters
Consider the situation in which distributed agents collaborate to estimate the posterior
distribution of a quantity of interest by combining distributed measurements [2,4,6,10].
The posterior distribution of the quantity of interest will be referred to as the global pos-
terior. A simple example of this situation is the estimation of temperature distribution
in a building using distributed temperature sensors that can communicate. One way to
perform distributed estimation is to set up a fusion center, which communicates with
all the agents, and gets measurements to computes the centralized posterior [13]. How-
ever, this approach may not be robust or scalable in all scenarios. This paper focuses
on distributed approaches to information fusion, that is approaches which calculate the
global posterior without assuming access to a centralized fusion center.

We employ a graph theoretic representation of a communication enabled network.
Particularly, the network is represented as a graphG 〈v,E〉, with v = 1, ..., N denoting
the set of vertexes or nodes of the network, and E denoting the set of edges E ⊂ v×v,
with the pair (i, j) ∈ E if and only if the agents i can communicate with or otherwise
sense the state of agent j. In this case, agent j is termed as a neighbor of agent i. Set of
all i’s neighbors is defined as agent i’s neighborhood, denoted by Ni. If the elements
of the edge set (that is the pairs (i, j)) are unordered, the graph is termed as undirected.
This paper focuses on the case of undirected graphs for the ease of exposition, however,
the result can be extended to the directed case in a relatively straight forward manner.

Furthermore, in order to simplify analysis, this paper considers the case of a syn-
chronized communication network, in which it is assumed that the clocks of all agents
are synchronized. The result can be extended to asynchronous scenarios. In the syn-
chronous case, time can be indexed by the integer t ∈ R+, and all variables can be
indexed by t. The measurements agent i takes at t is denoted by zi[t] ∈ Rmi[t]]. The
jth (j ∈ [1,mi[t]]]) measurement node i takes at t is denoted by zji [t]. For convenience,
let hi[t] = h(zi[t], p(zi[t]|θ), and hji [t] = h(zji [t], p(z

j
i [t]|θ). The global posterior can

be expressed as:

p(θ|ωc[t]) = p(θ|z1[1 : t], z2[1 : t], · · · , zN [1 : t], ωc[0]) (4)

The following assumptions put restrictions on the types of networks we consider.
Assumption 1: The network is strongly connected. That is, for every i, j in the vertex
set a path exists from i to j that can be formed using pairs in the edge set.



Table 1: Brute Force Fusion
step description cost
1 Initialization

set a global prior ωi[0] = ω[0]: Cinit
2 At time t,∀i

take measurements zi[t]
compute local update hi[t]

3 Broadcast and relay updates
broadcast hi[t] Ci
∀j 6= i, relay hi[t] (N − 1)Ci

Compute posterior

ωi[t] = ωi[t− 1] +
N∑
i=1

hi[t] = ω[t]

6 t = t+ 1, goes to step 2
Total cost in [1 : T ], Cinit +NT

∑N
i=1 Ci

Assumption 2: Every agent has a unique identifying sequence that it can transmit to
differentiates its measurements from others.
Assumption 3: The network topology is known.

Assumption 1 indicates that all agents can have access to each others measurement
through intermediate communication. Assumption 2 guarantees that agents can tell
each others measurements apart using a label. Assumption 3 can be restrictive in some
scenarios, however, if agents begin by not knowing the network topology, Assumption
1 and 2 allow the agents to communicate with each other to figure out the network
topology. More efficient alternatives are available, including [22–24].
Assumption 4: Relaying a message relay is much faster than recording a local mea-
surement, processing it, and then broadcasting it.

It is also assumed that the agents begin a common global prior over the hyperpa-
rameters. Alternatively, one can introduce an initialization process during which agents
agree on the global prior hyperparameter ωi[0] = ω[0]. Global prior can be externally
provided to the network, or computed by the network from local priors.

2.4 Brute Force Distributed Data Fusion
Using assumption 1 and 2, a brute force method of fusion can be envisioned by having
every agent broadcast its own measurement hi[k] to its neighbors and relay updates
from every neighbor to every other neighbors. Under this protocol, every agent will
end up eventually with a copy of all other agents’ measurements. The agents can
then compute the global posterior locally by adding all measurements to its local prior
hyperparameters using (3). The Brute Force algorithm is depicted in Table 1.

Cost: Let N be the number of agents in the network, and let their cost of broad-
casting one message to their neighbors is Ci. In the Brute Force information fusion
method, at each time step, each node needs to broadcast its own update and relay up-
dates for all other nodes. Therefore, the total number of messages every node sends



out is N . The cost for all nodes at time t is N
∑
i Ci.During a time period [0, T ], the

total cost would be TN
∑
i Ci.

2.5 Hyper Parameter Consensus
It is well known that the Brute Force approach of Section 2.4 is computationally in-
effective. An approach often pursued in the literature is that of consensus (see for
example [6], [11], [8]). In this approach at each time step t, an agent receives mes-
sages from its neighbors, updates its local estimate of the parameters, and sends out
the updated estimate back to its neighbors. Because every agent communicates only
with its neighbors, the number of messages agents need to sent out is greatly reduced.
Fraser et al. extended the consensus approach to hyperparameter estimation in [25],
they termed the approach Hyper Parameter Consensus (HPC). Using assumptions 1–3
and the property of conjugate priors Fraser et al. prove the following lemma.
Lemma [25]: Start with the same hyperparameters on the global prior ωc[0], let each
agent i takes mi[t] unique local measurements z1

i [t], z2
i [t], · · · , zmi

i [t]] at t, then the
fused distribution is of the same form as the global prior but with global posterior at t
given by:

ωc[t] = ωc[0] +

t∑
k=1

N∑
i=1

hi[k]

=

t∑
k=1

N∑
i=1

mi[t]∑
j=1

hji [k].

(5)

Let A = {aij} denote the weighted adjacency matrix for the graph of the sen-
sor network [8], whose rows sum up to one. Let v = [v1, v2, · · · , vN ]T denote the
eigenvector of corresponding to eigenvalue 1 of A, then the HPC algorithm depicted in
Table 2 guarantees that the agents converge to the global posterior asymptotically.

Cost: At each time step, each agent sends out only one message containing an
update of its local hyperparameters. Therefore, the cost of all nodes at time t is

∑
i Ci.

During a time period [0, T ], the total cost would be T
∑
i Ci.

3 VALUE OF INFORMATION REALIZED INFOR-
MATION FUSION

In this section communication cost-efficient methods that rely on the notion of value
of information for information fusion are introduced. In several real world sensing sit-
uations, the measurements of all agents at all time are not equally informative for im-
proving the global parameter estimation. Examples of such situations include situations
where the observed process varies slowly (such as temperature) or situations where the
observed process is spatially distributed and not all agents are in a good position to
take informative measurements. The Brute Force method and HPC both communicate
measurements across agents without differentiating high value information. A strategy



Table 2: Hyperparameter Consensus
step description cost
1 Initialization

set a global prior ωi[0] = ω[0]: Cinit
2 At time t,∀i

take measurements zi[t]
compute local update hi[t]

3 Compute local posterior
ωi[t] = ωi[t] + hi[t]

vi
4 broadcast to neighbors and update

ωi[t] =
∑
j∈Ni

aijωj [t] Ci

5 t = t+ 1, goes to step 2

Total cost in [1 : T ], Cinit + T
∑N
i=1

in which only high value information is transmitted may lead to significant savings in
communication cost. The value of information realized information fusion methods
of this section communicate information across the network only when agents decide
locally that the information they have is informative for the distributed computation of
the global posterior distribution.

3.1 Value of Information
We consider value of information metrics in the f -Divergence family of functions
that measure the difference between two probability distributions [26]. The Kullback-
Leibler (KL) divergence, also called relative entropy, is a widely used value of infor-
mation metric in this family [27,28]. For two distributions P andQ, the KL divergence
is defined as DKL(P ||Q) =

∑
i P (i) ln P (i)

Q(i) in discrete case, and DKL(P ||Q) =∫∞
−∞ p(x)p(x)

q(x) dx in continuous case. The value of agent i’s measurement at t, zi[t], is
quantified by how much it can change the local posterior distribution:

VoIi(ωi[t], zi[t]) = DKL(p(θ|zi[t], ωi[t])||p(θ|ωi[t])). (6)

It should be noted that for general probability distributions, KL divergence can be ex-
pensive to compute since one needs to go through all possible values of the random
variable. However, under the assumption of conjugate prior, the KL divergence func-
tion has a closed form, which only depends on the hyperparameters [29]:

VoIi(ωi[t], zi[t]) = f(ωi[t], ωi[t] + hi[k],

= f(ωi[t], hi[k]).
(7)

3.2 VoI Realized Information Fusion Algorithm
The algorithm is initialized by agreeing on the global prior. Upon recording a new
measurement, agent updates a buffer ẑi[t] by adding the new measurement into it. At



every time instant t, agents compute the local posterior by adding local update ĥi[t] to
its current estimate of the global prior as follows

ωi[t] = ω[t] + ĥi[t],

ĥi[t] = h(ẑi[t], p(ẑi[t]|θ)),
= h(zi[k + 1 : t], p(zi[k + 1 : t]|θ)),

k = max{κ} s.t. κ < t and i ∈ ν[κ].

(8)

The agents then compare the KL divergence between the local posterior and its current
estimate of the global prior. If the value exceeds a predefined threshold V ∗, the agent
labels itself as informative, otherwise the agent labels itself as uninformative. The set
of informative agents at any time t is denoted by ν(t), and can be represented as follows

ν(t) = {i|Vi[t] > V ∗},

Vi[t] = VoIi(ω[t], ĥi[t]).
(9)

The number of informative agents in the network at any time t is denoted by |ν(t)|. The
informative agents broadcast a message containing its local updates to their neighbors,
and reinstates the measurement process by re-initializing its buffer. All agents relay
every message they receive from an informative agent or a relaying agent. Since each
agent has a unique identifying label, it is possible to ensure that messages are not
duplicated during relay.

Therefore at the end of tth time slot agents obtain an updated estimate of the global
posterior by adding relayed measurements to their previous estimates of global prior:

∀i, ωi[t] = ω[t] = ωi[t− 1] +
∑
i∈ν

ĥi[k]. (10)

The algorithm is depicted in Table 3.

3.3 Cost
At t, each agent relays updates for all the informative agents, the number of messages
sent out is |ν[t]|. The cost of all agents at t is |ν[t]|

∑N
i=1 Ci. During period [0, T ],

the total cost is
∑T
t=1 |ν[t]|

∑N
i=1 Ci. In the worst case, |ν[t]| = N and the cost of

VoI Realized Fusion is the same as Brute Force Fusion. However, with an appropriate
choice of the threshold V ∗, |ν[t]| � N most of the time, therefore VoI Realized Fusion
has less communication cost.

4 VoI REALIZED FUSION OVER A SUBNETWORK
RELAY

In the previous algorithms considered, it was required that all agents relay information.
However, this approach may not be very efficient when the set of informative agents
is small. If the number of agents in the informative set ν[t] increases by one, the



Table 3: VoI Realized Fusion with Full Network Relay
step description cost
1 Initialization

set a global prior ωi[0] = ω[0]: Cinit
2 At time t

∀i,update buffer ĥi[t]
all agents check whether in informative set

i ∈ ν[t] if Vi > V ∗

3 broadcast and relay updates for informative set ∀i,|ν[t]|Ci
∀i ∈ ν, broadcast ĥi[t]
∀j, relay ĥi[t], i ∈ ν[t]

4 update
∀i,ωi[t] = ωi[t− 1] +

∑
j∈ν[t]

ĥj [t])

5 t = t+ 1, goes to step 2

Total cost in [1 : T ], Cinit +
∑T
t=1 |ν[t]|

∑N
i=1 Ci

communication cost increases by
∑
i Ci. This can be a potential waste of resource,

because most agents in the network need not know every single update but rather are
interested only in the final estimate of the global posterior. In this section, we consider
the case of VoI realized fusion over a smaller subnetwork.

4.1 Algorithm
The agents initialize similar to the algorithm of Section 3.2. In addition, at every time
step the agents agree on what the informative set is. Based on the informative set
and network topology, agents can locally run an algorithm to work out a connected
subgraph of the original graph of the network that contains all informative agents. The
set of all agents in this subgraph is denoted as ν̃. This problem can be solved by
variations of Shortest Path algorithms, e.g., Dijkstra’s algorithm [30], Floyd-Warshall
algorithm [31]. The VoI Realized Fusion is now performed on the subnetwork. After
the agents in the subnetwork compute the posterior distribution, they broadcast the
result to others. The algorithm is depicted in Table 4.

4.2 Cost
The total cost consists of two parts, the first is the communication cost incurred when
the agents determine the set of informative agents at each time step ci, and the second
is cost of hyperparameter updates Ci. In most cases ci � Ci. At every time step
t, every node needs to relay messages indicating whether every other node is in the
informative set, the cost therefore is N

∑N
i=1 ci. The cost of fusion in subnetwork is

|ν[t]|
∑
i∈ν̃[t] Ci. The cost of broadcasting agreed posterior on subnetwork is

∑N
i=1 Ci

During period [0, T ], the cost would be T
∑N
i=1(Nci + Ci) +

∑T
t=1 |ν[t]|

∑
i∈ν̃[t] Ci.



Table 4: VoI Realized Fusion with Sub Network Relay
step description cost
1 Initialization

set a global prior ωi[0] = ω[0]: Cinit
2 At time t

∀i,update buffer ĥi[t]
all agents check and agree on the informative set
∀i,i ∈ ν[t] if Vi > V ∗ Nci

3 Compute strongly connected subnetwork
∀i, compute ν̃[t] ⊇ ν[t],
s.t. ν̃[t] is minimal and connected

4 VoI Realized fusion on ν̃[t]

∀i ∈ ν̃, ωi[t] = ωi[t− 1] +
∑
j∈ν̃[t]

ĥj [t]) |ν[t]|

5 Broadcast and relay result to non sub-net agents ∀i, Ci
6 t = t+ 1, goes to step 2
Total cost in [1 : T ], Cinit +

∑T
t=1

∑
j∈ν̃[t] |ν[t]|Cj

+T
∑T
i=1(Nci + Ci)

Therefore, it is seen that this approach avoids the full network relay, but adds an over-
head on communicating the informative set and computing subnetwork. In situations
where the set of informative agents is large, savings in the total cost would be realized
even with this overhead. If the set of informative agents is small, the overhead can de-
teriorate any cost savings obtained due to communicating only over a smaller network.
It is possible to reduce the overhead cost by increasing the time between deciding on
the informative set.

5 Adaptive VoI Realized Fusion
The growth of cost at different stages of estimation can be unbalanced in VoI Realized
fusion of Section 3.2. At the early stage of estimation, agents know little about the
parameters to be estimated, therefore new measurements tend to contain more infor-
mation, |ν[t]| is larger and the communication cost builds up quickly. But at later stages
of the estimation process, agents have developed a good understanding of the param-
eters and new measurements are less informative therefore agents declare themselves
informative less frequently. Consequently, the growth of the cost slows down. From
the analysis of cost, it can be seen that the cost grows with increasing |ν[t]|, which in
turn is dependent on the VoI threshold V ∗. The Adaptive VoI Realized Fusion algo-
rithm developed in this section adjusts the VoI threshold V ∗ to control how fast the cost
grows.



Table 5: Adaptive VoI Realized Fusion with Full Network Relay
step description cost
1 Initialization

set a global prior ωi[0] = ω[0]: Cinit
2 At time t

∀i,update buffer hi[t]
locally check whether in informative set ∀i,NCi

i ∈ ν[t] if Vi > V ∗

3 broadcast and relay updates for informative set
∀i ∈ ν, broadcast hi[t]
∀j, relay hi[t], i ∈ ν

4 update
∀i,ωi[t] = ωi[t− 1] +

∑
j∈ν

hj [t])

5 adjust V ∗ according to (11)
∀i,V ∗ = γV ∗,γ ∈ {γ1, γ2}

6 t = t+ 1, goes to step 2

Total cost in [1 : T ], Cinit +
∑T
t=1 |ν[t]|

∑N
i=1 Ci

5.1 Algorithm
The Adaptive VoI Realized Fusion algorithm is similar in most parts to the VoI Real-
ized Fusion algorithm. The main difference is that after the calculation of the global
posterior, agents adaptively adjust V ∗ according to (11). Note that the algorithm de-
pends only on |ν(t)|. When |ν[t]| is large, V ∗ is reduced to reduce communication
cost, whereas when |ν[t]| is small, V ∗ is increased to improve the accuracy. If all
agents have the same estimate of |ν[t]|, their estimates of V ∗ will be the same. In (11)
C∗u and C∗l denote the tunable upper bound and lower bound on ν̄[t− l+ 1 : t], which
is the average of |ν(t)| over the interval [t− l + 1 : t].

V ∗ =

 γ1V
∗ ῡ[t− l + 1 : t] < C∗l

V ∗ C∗l ≤ ῡ[t− l + 1 : t] < C∗u
γ2V

∗ ῡ[t− l + 1 : t] ≥ C∗u
γ1 < 1, γ2 > 1

(11)

5.2 Cost
The cost function for the adaptive VoI case is the same as VoI Realized Fusion:

∑T
t=1 |ν[t]|

∑N
i=1 Ci.

However, the cost incurred is different, since in the long run, |ν[t]| is bounded between
[C∗l , C

∗
u].

Table 5.2 compares the communication cost of the algorithms discussed in this
paper.



Table 6: Cost Summary

Algorithm Total Cost

Brute Force Cinit +NT
∑N
i=1 Ci

HPC Cinit + T
∑N
i=1 Ci

Full Network VoI Cinit +
∑T
t=1 |ν[t]|

∑N
i=1 Ci

Sub Network VoI Cinit +
∑T
t=1

∑
j∈ν̃[t] |ν[t]|Cj +

T
∑T
i=1(Nci + Ci)

Adaptive VoI Cinit +
∑T
t=1 |ν[t]|

∑N
i=1 Ci

6 NUMERICAL STUDY
The algorithms described in previous sections are compared in terms of communication
cost incurred in this section using numerical simulations. The goal of the agents is to
estimate the parameter γ of a Poisson distribution. The conjugate prior of Poisson
distribution is Gamma distribution pΛ|A,B . The likelihood function from which the
measurements are drawn from is a Poisson distribution pX|Λ,T .

pX|Λ,T =
(λt)xe−λt

x!

pΛ|A,B =
βαλα−1e−βλ

Γ(α)

(12)

The hyperparameters are α and β. The update law is: [29]

α← α+ x, β ← β + t. (13)

The total number of agents in the network is a hundred. Measurements from each agent
have a bias which is normally distributed λi ∼ N(5, 2). At each time step, every agent
take one measurement, zi[t] ∼ Poi(λi). The communication cost for each message
containing the updated hyperparameters is Ci = 1.

6.1 VoI Realized Information Fusion
Figure 2 shows the cost incurred during the simulation of the Brute Force, HPC, and
VoI Realized information fusion algorithms with V ∗ = 0.02, 0.1, 0.5. As expected, the
cost of the consensus based approach (HPC) is significantly better than Brute Force. At
the beginning, VoI Realized Fusion with lower thresholds has higher cost, however the
growth of the cost slows down quickly. The KL divergence to the centralized estimate
of the posterior is compared in Figure 3. Note that the centralized estimate is the same
as that of the Brute Force method. It can be seen that the HPC error is decreasing over
time but is non-zero, this is in agreement with the fact that the consensus algorithm
is guaranteed to converges asymptotically. The error of VoI realized fusion decreases



with decreasing threshold V ∗. The lower thresholds have performance comparable to
that of HPC.

6.2 VoI Realized Fusion in Sub-Net
In this section the VoI realized information fusion algorithm on a subnetwork (see
Section 4) is analyzed. The cost incurred in communicating the informative set of
agents is assumed to be ci = 0.01. Figure 4 and Figure 5 show the communication cost
and the KL divergence to centralized posterior of VoI Realized fusion with subnetwork
relay (V ∗ = 0.1) and fusion with full-network relay (V ∗ = 0.02, 0.1, 0.5). The error
traces of VoI and subnetwork VoI with V ∗ = 0.1 overlap, this is expected, because they
share the same algorithm for calculating the informative set, and are run on the same
set of data. The figure highlights the fact that the error for VoI and subnetwork fusion
will be the same. The cost of subnetwork VoI is less because relay is limited within a
small set. However, the reduction in cost is not significant. These results indicate that
information fusion over a subnetwork may not result in significant cost savings due to
the overhead in communicating the informative set.

6.3 Adaptive VoI Realized Fusion
The parameters of the adaptive algorithm of 11 are set to C∗u = 15, C∗l = 1, γ1 =
0.99,γ2 = 1.01, l = 10. The adaptive VoI V ∗ is initialized at 0.5. The cost is com-
pared in figure 6 and the KL divergence to the centralized estimate of the posterior is
compared in Figure 7. The results indicate that adaptive VoI Realized fusion strikes
a good balance between the cost incurred and the estimation error. The rate of cost
increase is bounded, and cost is seen to increase in almost a linear pattern. Further-
more, the error reduces over time. It can be observed that with a cost of no more than
V ∗ = 0.1 of VoI Realized Fusion, this adaptive method can achieve similar error with
V ∗ = 0.02 of VoI Realized Fusion. The evolution of V ∗ is shown in Figure 8. The
adaptive algorithm (11) increases the V ∗ initially in response to the presence of a large
number of informative agents in the network, and then reduces V ∗ as the number of
informative agents drop.

6.4 Comparison of cost and estimation accuracy
In Figure 9 the performance of the algorithms discussed is compared in cost-error co-
ordinates. The horizontal axis represents the final cost at the end of simulation and the
vertical axis represents the average KL-divergence to centralized result in last 300 time
steps. An ideal algorithm would be situated in the bottom left corner of that graph,
since it would have low error and low communication cost. The consensus algorithm
(HPC) is situated in the bottom right corner, with low error but high cost. VoI Realized
Fusion with bigger V ∗ thresholds (e.g. V ∗ = 0.5) are in the left corner, with low cost
(because the agents do not declare themselves as informative easily) but high error.
Adaptive VoI Realized Fusion is situated closest to the lower left corner than fixed VoI
algorithms.



7 CONCLUSION
In this paper we considered the problem of distributed estimation in presence of nodes
with disparate Value of Information (VoI). The problem of hyperparameter estimation
was formulated through a consensus framework as well as a VoI based information
fusion framework. The results agree with the current state-of-the art that the com-
munication cost when using a consensus based approach is better than a brute force
information fusion approach where every agent relays every other agent’s information.
However, the results also indicated that an information fusion approach, in which only
informative agents communicate their measurements, and others censor their measure-
ments based on a VoI based metric outperforms the consensus algorithm in terms of
communication cost. The accuracy of the solution achieved by the consensus was
found to be in general better than VoI based approach. An adaptive-VoI information
fusion approach was presented that adjusted the set of informative agents based on cost
of information. The results indicated that the adaptive approach strikes an excellent
balance between cost of communication and accuracy of estimates.
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Figure 2: Cost VoI Realized Fusion

Figure 3: KL-divergence to centralized posterior, VoI Realized Fusion



Figure 4: VoI Realized Fusion Sub-Net

Figure 5: KL-divergence to centralized posterior, VoI Realized Fusion Sub-Net



Figure 6: Adaptive VoI Realized Fusion

Figure 7: KL-divergence to centralized posterior, Adaptive VoI Realized Fusion



Figure 8: Change of VoI threshold V ∗ in Adaptive VoI Realized Fusion



Figure 9: KL-divergence to centralized posterior vs Cost


