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A novel shortfiber composite in which the microscopic advanced fiber reinforcements 

are coated with radially aligned carbon nanotubes (CNTs) is analyzed in this study. A 

shear-lag model is developed to analyze the load transferred to such coated fibers from 

the aligned-CNT reinforced matrix in a hybrid composite application. It is found that if 

the carbon fibers are coated with radially aligned CNTs, then the axial load transferred 

to the fiber is reduced due to stiffening of the matrix by the CNTs. Importantly, it is 

shown that at low loading of CNTs in the polymer matrix, there is a significant reduction 

in the maximum interfacial shear stress, e.g., at 1% CNTs, there is an ~25 % reduction 

in this maximum stress. Further, the modification in the load sharing between the fiber 

and the matrix plateaus at ~2% CNT matrix loading, indicating a small but critical 

window for engineering the interface in this manner. Effects of the variation of the 

aspect ratio of the fiber, CNT volume fraction and the application of radial load on the 

load transferred to such CNT coated fibers are also investigated. 
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1.  Introduction 

The identification of carbon nanotubes1 (CNTs) has stimulated extensive 

research devoted to the prediction of their elastic properties through experiments and 

theoretical modeling. Of interest is to determine elastic properties of the CNTs as an 

input to models that predict composite behaviour. Early work by Treacy et al.2 

experimentally determined that CNTs have Young’s modulus in the terapascal (TPa) 

range. Li and Chou3 linked structural and molecular mechanics (MM) approaches to 

compute elastic properties of CNTs. Sears and Batra4 used three MM potentials to 

simulate axial and torsional deformations of a CNT assuming that the tube can be 

regarded as a hollow cylinder of mean diameter equal to that of the CNT and 

determined the wall thickness, Young’s modulus and Poisson’s ratio of the CNT. Shen 

and Li5 assumed that a CNT should be modeled as a transversely isotropic material 

with the axis of transverse isotropy coincident with the centroidal axis of the tube.  They 

determined values of the five elastic constants by using a MM potential and an energy 

equivalence principle.  Batra and Sears6 proposed that the axis of transverse isotropy of 

a CNT is a radial line rather than the centroidal axis of the tube and found that Young’s 

modulus in the radial direction equals about 1/4th of that in the axial direction. Wu et al.7 

developed an atomistic based finite deformation shell theory for single-walled CNT and 

found its stiffness in tension, bending and torsion.  

 A great deal of research has also been carried out on the prediction of effective 

elastic properties of CNT-reinforced composites. For example, Thostensen and Chou8 

have estimated the elastic moduli of CNT-reinforced composite through 

micromechanical analysis. Gao and Li9 derived a shear lag model of CNT reinforced 
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polymer composites by replacing the CNT with an equivalent solid fiber. Song and 

Yoon10 numerically estimated the effective elastic properties of CNT-reinforced polymer 

based composites. Siedel and Lagoudas11 carried out a micromechanical analysis to 

estimate the effective properties of CNT-reinforced composites. Guzman de Villoria and 

Miravete devolped a model to estimate the effect of the CNTs dispersion in composites 

matrix by micromechanical analysis12. Jiang et al.13 derived a continuum based model 

to study the effect of CNT/matrix interface on the macroscopic properties of CNT-

reinforced composites. Odegard et al.14, 15 have modeled CNT-reinforced composite to 

estimate effective elastic moduli using an equivalent-continumm modeling method that 

connects computational chemistry and solid mechanics models. To avoid the long times 

of simulation of materials at nanoscale level, Yamakov and Glaessgen16 have linked 

continuum mechanics in with atomic-level simulations, in one case to study the fracture 

tip of several metals. Zhang and He17 theoretically investigated the viscoelastic behavior 

of CNT-reinforced composites developing a three-phase shear-lag model. Most 

recently, Ray and Batra18 carried out a micromechanical analysis to estimate the 

effective elastic and piezoelectric properties of CNT and piezoelectric fiber reinforced 

hybrid composite. Several review articles have appeared that summarize the various 

advances in these two-phase (CNTs plus a matrix) nanocomposites19-21.  

 Here we analyze a new hybrid composite composed of micron-scale diameter 

advanced fibers with in situ grown radially aligned CNTs and a polymer matrix. Growth 

of aligned CNTs on advanced fibers (see examples in Figure 1) have been investigated 

by several groups22-26  and recently, bulk composites have been realized using aligned 

‘fuzzy’ fibers27-29. The objective of this work is to investigate the load transferred to a 
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carbon fiber from the matrix in the case where the micon-scale fuzzy fiber is 

discontinuous (see Figure 2). A closed-form shear lag model is developed for such 

investigation, incorporating a micromechanics model for predicting the radially-

orthotropic properties of the aligned-CNT reinforced polymer matrix. Such composites 

can be described as a hybrid nano-engineered composite, where the polymer matrix is 

reinforced with radially aligned-CNT resulting in an aligned-CNT nanocomposite matrix 

that surrounds the micron-scale advanced fiber (see Figure 3). Such nano-engineered 

composites can be fabricated using capillarity-driven wetting of the aligned CNTs by 

advanced polymers29, 30. 

 

2.  Shear lag model 

 A schematic sketch of the cylindrical representative volume element (RVE) of the 

composite analyzed here is shown in Figure 3. The cylindrical coordinate system ( , r θ  

and ) is considered in such a way that the axis of the RVE coincides with the  axis 

while the CNTs are aligned along the -direction. The model is derived by dividing the 

RVE into three zones. The portion of the RVE in the zone 

x x

r

ff LxL ≤≤−  consists of a 

discontinuous micro-scale advanced fiber (carbon is considered here) reinforcement on 

which radially aligned CNTs have been grown. When this resulting fuzzy fiber is 

embedded in a polymer material, the CNT forest is filled with the polymer creating a 

nano-reinforced polymer matrix, what many have called a polymer nanocomposite 

(PNC) 31, 32. Thus, the radially aligned CNTs reinforce the polymer matrix and the 

portion of the RVE in the zone ff LL x ≤≤−  can be viewed as a hybrid composite 

comprised of the carbon fiber reinforcement embedded in the CNT-reinforced polymer 
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matrix composite phase. The radius and the length of the carbon fiber are denoted by 

and , respectively. The inner and outer radii of the CNT-reinforced matrix phase 

are  and 

a fL2

a R , respectively. The portions of the RVE in the zones fLxL −≤≤−  and 

 are treated in the model as an imaginary fiber and the matrix phase, both 

composed of the polymer material. The radius of the imaginary fiber is also denoted by 

while the inner and outer radii of the matrix phase are also represented by a and 

L≤x≤Lf

a R , 

respectively. Thus, the shear lag model developed for the zone ff LxL ≤≤−  can be 

applied to derive the shear lag models for the zones fLxL −≤≤−  and .  LxLf ≤≤

ff xL L≤≤−In what follows, the shear lag model for the zone  is first derived. A 

tensile stress  is applied to the RVE along x  direction at 0σ Lx ±=  while the RVE is 

subjected to a radial normal stress  at 0q Rr = . In order to derive this shear lag model, 

the effective properties of the aligned CNT-reinforced matrix phase are needed. This 

PNC matrix phase has transverse isotropy in a radial coordinate system due to the CNT 

alignment and isotropic nature of the polymer. This is a slight approximation because 

the grown CNTs have reduced volume fraction as they grow radially, but volume 

fraction may be considered constant over the small (microns) CNT lengths considered. 

Micromechanics is used to calculate properties in this region as they have not been 

determined experimentally to date. A micromechanics model by Ray and Batra18 is used 

to calculate the effective elastic constants for a forest of aligned single-walled CNTs 

(properties from Ref.5 given in Table 1) embedded in a polymer (results summarized in 

Table 2). These results are used as an input to the shear-lag model. 

Returning to the shear-lag model, the governing equations for the different 
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phases of this RVE concerning equilibrium along  direction are given by x
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in which  and  represent the axial and radial displacements at any point of the i -th 

phase along x  and r , directions, respectively.  The traction boundary conditions are 

given by 

iu iw
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Where,  is the transverse shear stress at the interface between the carbon fiber and 

the PNC matrix phase The average axial stresses in the different phases are defined as 
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Since the radial dimension of this RVE is very small, it is reasonable to assume that the 

gradient of   with respect to the axial coordinate ( x ) is independent of the radial 

coordinate (r ). Thus let us assume that  

m
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Integrating the governing equation (1) for the PNC matrix phase from  to r R , it can be 
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Solving Eq. (11), the axial displacement of the matrix phase along x  direction can be 

derived as follows: 
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The radial displacements in the two phases can be assumed as in33 : 
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Invoking the continuity condition 
ar

m
rar

f
r ==

σ=σ  and satisfying the boundary condition 

0q
Rr

m
r =σ

=
, the following equations for solving  and  are derived :  fA mA

 

                           
xCA

q
CC

CC
A
A

AA
AA i

mf

f
x

m

fm

m

f

∂
τ∂

⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

−
+

σ

⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

132
0

1113

1213

2221

1211 0
1

0
                    

(16) 

where, 

mm
f

f
ff CC

C
)C(

CCA 2333
11

2
12

121111
2

−+−+= , , mCA 3312 2−= f

fm
mm

C
CC

R
a)CC(A

11

1213
2

2

233321
2

+−= ,  

 

2

2

2333332322 R
a)CC(CCA mmmm −++= , RrAA

=
= 12 . 

 

From Eq. (16), the solutions of  and  can be expressed as: fA mA
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Using Eqs. (6), (17) and the constitutive relations, Eq. (18) can be reduced to  
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Substitution of Eq. (7)1 into Eq. (19) yields the governing equation for the average axial 

stress in the carbon fiber coated with radially aligned CNTs as follows: 
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( pf
xσ ) in the imaginary fiber made of the polymer material lying in the zones 

 and  can be written as fLxL −≤≤− LxLf ≤≤

                                                        00
2

12

2

q
x

pf
x

pf
x μ−ση−=σα−

∂

σ∂
                                                 

(22) 

 

In the above equation, the expressions for , 2
1α η  and μ  are similar to those of , 2α η  

and , respectively. But these are to be derived by considering . 

Solutions of Eqs. (21) and (22) are given by: 

μ p
ij

m
ij

f
ij CC = C=

                                                      qecec xxf
x 2221 α

μ
+σ

α
η

++=σ α−α                                                

(23) 

 

                                              02
1

02
1

43 qecec xxpf
x

α

μ
+σ

α

η
++=σ α−α                                             

(24) 

 



 13

in which , ,  and  are the constants of integrations to be evaluated from the 

following end conditions: 

1c 2c 3c 4c
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In the case that the fiber and matrix are isotropic, and with =0, the above model 

reduces to that presented by Gao and Li9 for a CNT reinforced polymer composite. 

Finally, substitution of Eq. (27) into Eq. (7) yields the expression for the interface shear 

stress as follows:           
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3. Results and Discussion 

The elastic coefficients of arm chair type CNTs with respect to the coordinate system 

considered here are obtained from Shen and Li5 which are listed in Table 1. The 

polymer material and the carbon fiber are elastically isotropic. The isotropic elastic 

coefficients ( ) of the polymer materia18 and the elastic constants ( ) of the high 

modulus M40 carbon fiber34 needed for computing the numerical results are as given by 

p
ijC f

ijC

 

GPa.Cp 3511 = , ,  and . GPa.Cp 1312 = GPa.Cf 8937311 = GPa.Cf 5612 =

 

A discussion on the effective properties of the PNC matrix is now in order. 

Recently, Ray and Batra18 derived a micromechanics model to predict the effective 

properties of CNT and piezoelectric fiber reinforced hybrid composite. In the absence of 

piezoelectric fibers this micromechanics model is reduced to a model which predicts the 

effective elastic properties of the transversely isotropic PNC matrix with radially aligned 

CNTs considered here and is given by: 
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The various matrices appearing in (29) are presented in the Appendix. At a particular 

value of CNT volume fraction ( =1.0%), the effective values of the elastic constants 

 of the PNC matrix predicted from Eq. (29) are presented in Table 2 for different 

types of armchair CNTs. Also, for =1.0%, the elastic constants  of the PNC 
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ijC
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matrix with (10, 10) CNTs presented in Table 2 yield the values of the Young’s modulus 

( ) in the radial direction and the Poisson’s ratio ( ) as 14.34 GPa and 0.369, 

respectively. The values of the same are also predicted identically from simple rule of 

mixtures validating the micromechanics model given by Eq. (29). Thus Eq. (29) can be 

used to compute the effective elastic constants  of the PNC matrix for evaluating the 

numerical results.  

m
rE m

xrυ

m
ijC

For presenting the results, following nondimensional parameters are adopted: 
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Unless otherwise mentioned, the values of the geometrical parameters of the RVE are 

taken as: 

 

m.a μ= 53 , maR μ+= 10 , 10=a/Lf  and 21.L/ fL =  

 

Arm chair type (10, 10) CNTs are used to compute the numerical results for the axial 

stress and the interface shear stress, unless specifically varied. In order to validate the 

model derived in the previous section, first the normalized average axial stress in the 

fiber without coated with CNTs and the interface shear stress are compared with those 

obtained by an existing model9 as shown in Figure 4. For this comparison, the fiber is 

an arm chair (10, 10) CNT as considered in Ref.9. It may be noted that the good 
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agreement between the two sets of results have been obtained verifying the present 

model. The marginal differences observed may be attributed to the fact that the model 

in Ref.9 did not consider the radial deformation, whereas in the present model radial 

deformations have been taken into account. Next, results are computed for carbon 

fibers coated with radially aligned CNTs. 

The variations of the axial normal stress in the short carbon fiber and the 

transverse shear stress at the interface between the fiber and the PNC matrix along the 

length of the fiber are shown in Figure 5. It may be observed that the carbon fiber 

coated with radially aligned-CNTs shares less load than the fiber without coated with 

CNTs. This is attributed simply to the radial and axial stiffening of the polymer matrix by 

the CNTs. Note that the axial Young’s moduli of the PNC matrix with 1% (10, 10) CNT 

and the polymer are  and , respectively while the radial 

Young’s moduli are  and , respectively. The CNTs create 

a radially orthotropic PNC matrix and an increase in the CNT volume fraction increases 

both the axial and radial modulii. Importantly, the maximum interfacial shear stress is 

reduced in the case of CNTs reinforcing the matrix. A critical parameter in the design of 

polymer matrices for composites is the ratio of this maximum stress to the strength of 

the matrix. Load sharing improves this ratio with the presence of only 1% CNTs by 23%, 

and it is also expected that the strength of the interface should increase due to the 

CNTs as well, further improving the effect. The axial load transferred to the carbon fiber 

and the interfacial shear stress decreases with the increase in the radial stiffness of the 

PNC matrix as shown in Figure 6 and Figure 7, respectively. Also, compared in Figure 6 

and Figure 7is the case where the matrix remains isotropic but the value of its Young’s 

GPa.Em
x 413=

GPa.m
r 3414=

GPa.Ep
x 013=

GPa.Ep
r 013=E
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modulus is increased to that of  of the PNC with =1.0% (Poisson’s ratio is 

assumed as 0.33). It may be observed from these figures that isotropically stiffening the 

matrix causes (as expected) a significant increase in load carried by the matrix and a 

reduction in the interfacial maximum shear stress beyond what is seen at 1% radially-

aligned PNC.  

m
rE CNTV

a/R In Figure 8, it may be seen that if the value of ( ) decreases then the load 

transfer from the matrix to the fiber coated with radially aligned CNTs significantly 

decreases as expected due to the larger proportion of overall load carried by the 

enhanced-stiffness matrix relative to the fiber. Beyond a few percent volume fraction of 

CNTs in the matrix, overall load sharing is not signficantly affected as evidenced both in 

Figure 8 and Figure 9. In Figure 9 the effect of CNT volume fraction on the critical length 

( ) of the fiber is presented. Here,  is measured from the center of the fiber and 

determined based on the situation when  of the maximum value of . It may 

be noted from this figure that as the CNT volume fraction increases, the critical length of 

the fiber decreases rapidly in the region V

critL critL

*σ %98= *σ

%.01CNT <  and then decreases 

monotonically. For a particular value of volume fraction of the carbon fiber, the critical 

length increases if the aspect ratio of the fiber increases, while for a particular value of 

aspect ratio of the fiber this critical length decreases with the increase in the volume 

fraction of the carbon fiber. In Figure 10 a critical value of  is shown to exist 

beyond which the radial orthotropy of the PNC matrix does not appreciably alter load 

sharing capability of the fiber.  After ~2% , there is little change in the load sharing 

between the PNC matrix and the fiber. 

CNTV

CNTV

Variations of maximum values of the axial stress in the carbon fiber coated with 
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radially aligned CNTs (  =1.0%) and the interface shear stress with the aspect ratio 

of the fiber are presented in Figure 11. The maximum value of the axial load shared by 

the fiber increases sharply with the increase in the value of the aspect ratio as long as 

. For , the axial load sharing capability of the fiber becomes 

independent of the variation of the aspect ratio of the fiber. In case of interface shear 

stress, its maximum value also increases rapidly with the increase in the value of the 

aspect ratio of the fiber till 

CNTV

20>12<a/Lf a/Lf

8<a/Lf . The maximum value of  becomes saturated for 

.  

*τ

10>a/Lf

The effect of application of radial load on the load transferred to the fiber is 

presented in Figure 12. If the applied radial load is compressive, then the maximum 

values of the axial normal stress in the fiber and the interface shear stress are higher 

than those without the application of radial load ( 00 =q ), and vice versa. The variations 

of axial normal stress in the carbon fiber and the interface shear stress along its length 

are presented in Figure 13 and Figure 14, respectively, for different arm chair type 

CNTs in Table 1. It may be observed from these figures that for a particular value of 

, as the diameter of CNT increases, both the axial normal load transferred to the 

fiber and the interface shear stress increase. This may be attributed to the fact that as 

the diameter of CNT increases, elastic coefficients of CNT decreases (see Table 1) 

which results in the decrease in the values of the effective elastic properties of the CNT-

reinforced PNC matrix. Overall, the type of CNT has a small effect on the composite 

fiber load sharing relative to varying volume fraction of the CNTs in the PNC matrix. 

CNTV
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4.  Conclusions 

In this paper, load sharing in a shortfiber  composite where the matrix is reinforced with 

radially-aligned CNTs has been analyzed. The fiber reinforcement of the composite is a 

discontinuous carbon fiber coated with radially aligned CNTs. A shear lag model 

considering radial and axial deformations of the different phases of the RVE has been 

developed to analyze the axial load transferred to this carbon fiber. Since the radially 

aligned CNTs grown on the carbon fiber reinforce the polymer matrix, the effective 

elastic properties of the resulting CNT-reinforced PNC matrix are modified. Hence, if the 

fiber is coated with CNTs, the axial load transferred to the carbon fiber and the shear 

stress at the interface between the fiber and the PNC matrix decrease, and the CNT-

reinforced matrix carries more of this load. If the volume fraction of CNTs increases, 

both the axial load transferred to the fiber and the interface shear stress decrease, 

including importantly the maximum shear stress at the fiber-matrix interface. The critical 

length of the carbon fiber varies little with CNT volume fraction beyond a few percent. 

For a particular value of CNT volume fraction, compressive radial load applied to the 

RVE increases the axial load transferred to the fiber and the interface shear stress. 

Future work should consider load-transfer in randomly-oriented shortfiber composites, 

and also load transfer around a broken fiber in continuous filament composites, in 

addition to load sharing in the presence of applied shear stress. 
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Appendix 

 

The various matrices appearing in Eq. (29) are given by 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000000
000000
000000
000
000000
000000

332313
1

nnn

n
CCC

v]C[ , , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p

p

p

p
p

p
p

p
p

ppp

ppp

C
C

C
CvCvCv

CCC
CCC

]C[

44

44

44

111212

121112

121211

2

00000
00000
00000
000
000
000

 

CNTn V
aR

Rv 22

2

−
= , , , , np vv −= 1 ]C[]C][V[]V[]V[ 3

1
4213

−+= ]C[]C][V[]V[]V[ 4
1

3124
−+=

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

n

n

nnn

nnn

C
C

C

CCC
CCC

]C[

66

55

44

232212

131211

3

00000
00000
00000
000100
000
000

, , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p

p

p

ppp

ppp

C
C

C

CCC
CCC

]C[

44

44

44

121112

121211

4

00000
00000
00000
000100
000
000

 

                 and              

(2) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

n

n

n

n

v
v

v

v
v

]V[

00000
00000
00000
000000
00000
00000

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

p

p

p

p

p

v
v

v

v
v

]V[

00000
00000
00000
000100
00000
00000

2



 21

 

 In the above matrices,  and  are the elastic coefficients of the CNT and the 

polymer material, respectively. The volume fractions of the polymer and the CNT with 

respect to the volume of the PNC are represented by  and  while  denotes 

the volume fraction of CNTs with respect to the volume of the RVE. 

n
ijC p

ijC

pv nv CNTV
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List of tables 

 

Table 1. Material properties of CNTs (Ref. 5). The 3-axis is aligned with the long 

axis of the CNT. 

 

CNT 

Type 

nC11  

(GPa) 

nC22  

(GPa) 

nC33  

(GPa) 

nC12  

(GPa)

nC13  

(GPa)

nC44  

(GPa)

nC55  

(GPa) 

nC66  

(GPa)

(5,5) 668 668 2143 404 184 791 791 132 

(10,10) 288 288 1088 254 87.7 442 442 17 

(20,20) 138 138 545 134 43.5 227 227 2 

(50,50) 55.1 55.1 218 54.9 17.5 92 92 0.1 
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Table 2. Material properties of PNC with different arm chair type CNTs  

( %.VCNT 01= ). 

 

PNC with 

CNT Type 

mC11 22 33 12 13 44 55 66 

(GPa) 

mC  

(GPa) 

mC  

(GPa) 

mC  

(GPa)

mC  

(GPa)

mC  

(GPa)

mC  

(GPa) 

mC  

(GPa) 

(5,5) 5.357 5.357 27.565 3.133 3.115 1.112 1.112 1.112 

(10,10) 5.356 5.356 16.628 3.134 3.114 1.112 1.112 1.112 

(20,20) 5.349 5.349 10.956 3.139 3.114 1.112 1.112 1.112 

(50,50) 5.235 5.235 7.546 3.248 3.111 1.112 1.112 1.112 
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List of figures 
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Figure 1. Fibers coated with in situ grown radially aligned CNTs. Fuzzy alumina (left) 

and carbon fiber (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29

 
qo 

 

 

 

 

 

 

 

 

 

 

 

σ0 σ0 

y

x 
z 

 

Figure 2. Model nano-engineered composite with representative volume element 

(RVE) indicated at the center. 
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Figure 3. RVE of the composite containing a fiber reinforcement coated with radially-

aligned CNTs. 
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Figure 4. Model validation by comparison to Ref.9  for the case of an isotropic matrix 

phase (no CNTs) around the fiber.  =10 a/Lf
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Figure 5.  Variation of normalized axial normal stress in the carbon fiber and 

the interface shear stress along the fiber length ( 00 =q ). 
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Figure 6. Variation of axial normal stress in the carbon fiber along its length 

( 00 =q ) 
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Figure 7. Variation of transverse shear stress at the interface between the 

matrix and the carbon fiber along the length of the fiber for different CNT 

volume fraction and considering isotropic stiffening of the matrix (

 

00 =q ). 
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Figure 8. Load transfer in the carbon fiber for different values of   a/R  

( %.VCNT 01= , 00 =q ) 
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Figure 9. Effect of CNT volume fraction on the critical length of a fiber for full 

load transfer ( 00 =q ). 
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Figure 10. Variation of maximum axial stress and interfacial shear stress on the carbon 

fiber ( ) as a function of CNT volume fraction ( ). 10=a/f_L 00 =q
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Figure 11.  Variation of maximum values of the axial normal stress and the 

transverse shear stress at the interface between the matrix and the carbon 

fiber with the aspect ratio of the fiber ( 00 =q , %.VCNT 01= ). 
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Figure 12. Variation of maximum values of the axial normal stress and the transverse 

shear stress at the interface between the matrix and the carbon fiber with the applied 

radial load ( 10=a/Lf , %.VCNT 01= ). 
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Figure 13. Variation of the axial normal stress in the carbon fiber along its 

length when the fiber is coated with different arm chair type CNTs ( 00 =q , 

%.VCNT 01= ). 
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Figure 14.  Variation of the transverse shear stress at the interface between 

the matrix and the carbon fiber along its length when the fiber is coated with 

different arm chair type CNTs ( 00 =q , %.VCNT 01=   ). 

 


