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Abstract

A product A D F1 : : : FN of invertible block-diagonal matrices will be banded with a banded

inverse. We establish this factorization with the number N controlled by the bandwidths w

and not by the matrix size n: When A is an orthogonal matrix, or a permutation, or banded

plus finite rank, the factors Fi have w D 1 and generate that corresponding group. In the

case of infinite matrices, conjectures remain open.

1 Introduction

Banded matrices with banded inverses are unusual, but these exceptional matrices do

exist. Block diagonal matrices are the first examples. Products of block diagonal matrices

give many more examples (including useful ones). The main theorem in an earlier paper

Œ10� is that all examples are produced this way, from multiplying invertible block diagonal

matrices of bandwidth 1.

When A and B are banded with banded inverses, A�1 and AB also have those

properties. This group of matrices is all of GL.n/ in the finite case (every matrix has

bandwidth less than n). For singly infinite matrices this appears to be a new group. In

both cases the key point of the theorem is that the number N of block diagonal factors is

controlled by the bandwidth w and not by the matrix size n.

Theorem 1 The factors in A D F1F2 : : :FN can be chosen block diagonal, with 2 by 2

and 1 by 1 blocks. Then each generator F and F�1 has bandwidth¨ 1.

Here w is the larger of the bandwidths of A and A�1. So Aij D 0 and
�

A�1
�

ij
D 0 for|i�j | ¡w. The number of factors F could be as large as C w2 (just to carry out ordinary

elimination) but N does not increase with n.

Important banded matrices with banded inverses arise in constructing orthogonal

polynomials on the unit circle Œ5�. They also yield filter banks with perfect reconstruction,

the key to wavelets. Those are block Toeplitz matrices in the wavelet case, and

“CMV matrices” in other cases. Our earlier paper Œ10� applied an observation of Ilya

Spitkovsky to separate these matrices into the minimum number N D w of factors F (each

with bandwidth 1). We believe that these special (and short) factorizations can lead to

useful algorithms.

For other A, the main step of the proof is to reach A D BC , two factors with diagonal

blocks of size 2w. One of those factors begins with a block of size w, and it is this “offset”

between the block positions in B and C that makes the proof work.
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The form of this “offset product” is important even for w D 1 :
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: (1)

The second row of BC has 2 times Œ3 4 � followed by 3 times Œ5 6 �. The third row of

BC has 4 times Œ3 4 � followed by 5 times Œ5 6 �. A pair of singular matrices lies side by

side in the product BC :
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When a column of B multiplies a row of C , the nonzeros sit in a 2 by 2 matrix of rank

1. These 2 by 2 matrices don’t overlap in BC . So when those column-row products are

added (a legal way to compute BC ), the result is a “CMV matrix.” This matrix BC has

two diagonals of singular 2 by 2 blocks.

The inverse matrix .BC /�1 D C�1B�1 has a similar multiplication in the opposite

order. The pattern of nonzeros is just the transpose of the pattern above. This product is

another CMV matrix (singular 2 by 2 blocks side by side).

This paper will describe a corresponding factorization for other (smaller or larger) groups

of matrices. Here are four of those groups, not an exhaustive list :

1. Banded orthogonal matrices. The inverse is the transpose (so automatically banded).

The factors F will now be orthogonal matrices with w D 1 : block diagonal with

small orthogonal blocks.

2. Banded permutation matrices. In this case w D max |i�p.i/| measures the

maximum movement from i in .1; : : : ;n/ to p.i/ in .p.1/; : : : ;p.n//. Each factor

F is then a permutation with w D 1; it exchanges disjoint pairs of neighbors.

We conjectured that fewer than 2w factors F would be sufficient. Greta Panova

has found a beautiful proof Œ6�. Other constructions Œ1;9� also yield N ¨ 2w�1.

3. Banded plus finite rank. For infinite matrices A, banded with banded inverse, we

enlarge to a group B by including also ACZ. The perturbation Z allows any matrix

of finite rank such that ACZ is invertible. Then its inverse will be A�1 CY , also

perturbed with rank .Y /¨ rank.Z/, and we have a group.

In this case, we include the new factors F D I C.rank 1/ along with the block

diagonal F ’s. These factors generate the enlarged group.
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4. Cyclically banded matrices. Cyclic means that “n is adjacent to 1.” The distance

from diagonal i to diagonal j is the smaller of |i�j | and n�|i�j |. The cyclic

bandwidth of A is the largest distance for which Aij ¤ 0. Then wc is the larger of

the cyclic bandwidths of A and A�1.

The natural conjecture is A D F1 : : :FN with factors that have cyclic bandwidth

1 (so that F1n and Fn1 may be nonzero). The number N should be controlled by wc .

No proof of this conjecture is to be found in the present paper.

2 Banded orthogonal matrices

We need to recall how to obtain A D BC with block diagonal factors B and C . We

construct orthogonal B and C when A is orthogonal. Then the final step will separate

B and C into orthogonal factors with w D 1.

The key is to partition A into blocks H and K of size 2w. Each of those blocks has

rank exactly w. This comes from a theorem of Asplund about ranks of submatrices of A,

when the inverse matrix has bandwidth w. The display shows a matrix for which A and

A�1 have bandwidth at most w D 2.

H1

X x x

K1
x X x x

x x X x x

x x X x x

H2

x x X x x

K2
x x X x x

x x X x x

x x X x x

Asplund’s theorem applies to submatrices like the K’s that are above subdiagonal w, and

like the H ’s that are below superdiagonal w. “Those submatrices have rank ¨wŒ2;11�.”

In our case the ranks are exactly w because each set of 2w rows of A must have full rank

2w (since A is invertible).

The two columns of H1 are orthonormal. Choose a 4 by 4 orthogonal matrix Q1, such

that we get two columns correct in the identity matrix :

Q1 H1 D
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D R:

Since the four rows of Q1ŒH1 K1 � D ŒR Q1K1 � are orthonormal, the first two rows of

Q1K1 must be zero. Then there is a 4 by 4 orthogonal matrix C1
T acting on the columns
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of Q1K1 that produces RT in the next two rows :

Q1K1C1
T D
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D

�

0T

RT

�

in rows 1�4

columns 3�6

At this stage the first 2w D 4 rows are set. Q1A C1
T agrees with the first four rows of I .

If B1 D Q�1
1 is placed into the first block of B , and C1 in rows=columns 5 to 8 of C , then

four rows of A D BC are now correct.

Moving to the next four rows, our goal is to change those into four more rows of the

identity matrix. This will put the 8 by 10 submatrix of H ’s and K’s in its final form :

"
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Columns 3 and 4 end with the zero matrix as indicated, because those columns are

orthonormal and they already have 1’s from RT.

Rows 5 to 8 are now in exactly the same situation that we originally met for rows 1 to

4. There is an orthogonal matrix Q2 that produces R in columns 5 and 6, as shown. The

rest of rows 5 and 6 must contain 0T, as shown. Then an orthogonal C2
T produces RT in

rows 7 and 8. We now have eight rows of QA C T D I . The construction continues to rows

9 to 12, and onward :

QAC T D
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4
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7

5
A
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D I:

Q and C are block diagonal with orthogonal 4 by 4 blocks, except for the 2 by 2 block

I2. We have shown that every banded orthogonal matrix A with w D 2 can be factored into

A D QTC D BC . The reasoning is the same for any w.

Theorem 2 Every banded orthogonal matrix A, finite or singly infinite, has orthogonal

block diagonal factors A D Q�1C D BC . The blocks Bi and Ci have size 2w except that

C0 D I has size w (to produce the offset).

This completes the main step in the factorization—we have B and C with orthogonal

blocks Bi and Ci . The final step is to reach 2 by 2 blocks. A straightforward construction

succeeds for each Bi and Ci . At the end we factor all Bi at once and all Ci at once.

Lemma Any orthogonal matrix Q of size 2w can be reduced to the identity matrix by a

sequence of multiplications, GM : : :G1 Q D I . Each factor G differs from I only in a 2 by
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2 orthogonal block (a plane rotation) :

G D
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: (2)

Proof Start at the bottom of column 1. Choose c D cos � and s D sin � to produce zero

from s Qn�1;1 Cc Qn;1 in that corner of G1Q. (Take s D 1 and c D 0 in case Qn�1;1 D 0.)

Move up column 1, producing a new zero with each factor G. At the top of column 1,

choose signs to produce 1 as the diagonal entry in this unit vector.

Continue from the bottom of column 2. The new factors G that produce zeros below

the diagonal will not affect the zeros in column 1. The .1;2/ entry in column 2 is already

zero because the columns remain orthogonal at every step. At the end, we have the columns

of I from M D O
�

w2
�

orthogonal matrices Gi .

In the non-orthogonal case, elimination in this order (climbing up each column) yields

N D O
�

w2
�

factors F in Theorem 1. Each zero is produced by a “Gauss matrix” that has

a single nonzero next to its diagonal part I. The O
�

w3
�

estimate in Œ10� was over-generous.

This lemma applies to each orthogonal block Bi (of size 2w) in the matrix B .

The key point is that we can simultaneously reduce all those blocks to I . The matrices

G1; : : : ; GM for all the different blocks of B go along the diagonals of F1; : : : ; FM . Then

FM : : :F1B D I .

Similarly the lemma applies to the blocks Ci of C . Then we have A D BC D
�

F�1
1 : : :F�1

M

��

F�1
MC1 : : :F�1

2M

�

. This completes the orthogonal case.

3 Wavelet Matrices

The matrices that lead to wavelets are banded with banded inverses. Furthermore they are

block Toeplitz (away from the first and last rows) with 2 by 2 blocks. In this case the factors

F will also be block Toeplitz (away from those boundary rows). This means that each Fi

will have a 2 by 2 block repeating down the diagonal.

In the analysis of wavelets it is often convenient to work with doubly infinite matrices

A8 (purely block Toeplitz, with no boundary rows). Suppose A8 and its inverse have

bandwidth w D N , coming from N blocks centered on each pair of rows. We showed in

Œ10� how to find N block diagonal factors in A8D F1 : : :FN : First find N �1 factors

Gi , each with two singular 2 by 2 blocks per row .w D 2/. Then split each Gi into block

diagonal factors Fi1Fi2. Those are offset as in equation (1) above, and we choose the

factors so that Fi2 is not offset compared to FiC1;1. Then Fi2FiC1;1 is a block diagonal F ,

and the banded matrix A8 has N factors :

A8 D .F11F12/.F21F22/ � � � .FN�1;1FN�1;2/

D F11 .F12F21/.F22F31/ � � �.FN�2;2FN�1;1/ FN�1;2:
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The 4-coefficient Daubechies wavelet matrix has N D 2. It is the single matrix G1. It

was factored in Œ5� into block diagonal F11 times F12 :
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Again, column 2 times row 2 gives one singular block and column 3 times row 3 gives the

other. Dividing by the lengths
?

8 and
?

4 of their rows, those factors become orthogonal

matrices. Their product shows the 4C4 Daubechies coefficients. The 6C6 coefficient

matrix for the next orthogonal Daubechies wavelet was factored by Raghavan Œ8�.

These factors are plane rotations through �=12 and �=6. TeKolste also observed Œ12�

that the Daubechies matrices are offset products of plane rotations. He recognized that the

N rotation angles add to �=4. This connects to the fact that the coefficients in the second

row of A8 add to zero (a highpass filter). There should be additional conditions on the

angles to determine the multiplicity of this zero in the highpass frequency response (the

polynomial whose coefficients come from that second row of A8).

A task for the future is to construct useful matrices A8 and An starting from well-

chosen factors. Wavelets need not be orthogonal (the most popular choices are not). And

they need not be restricted to block Toeplitz matrices. It seems feasible to construct time-

varying wavelets by starting with factors F in which the blocks are not constantly repeated

down the diagonal. The matrix still has a banded inverse.

4 Banded Permutation Matrices

The bandwidth of a permutation is the maximum distance |i�p.i/| that any entry is moved.

Thus w D 1 for a “parallel exchange of neighbors” like 2, 1, 4, 3. The matrix F for this

permutation is block diagonal with a 2 by 2 block for each exchange.

It is straightforward to reach the identity by a sequence of these F ’s. At each step we

move from left to right, exchanging pairs of neighbors that are in the wrong order :

4 5 6 1 2 3Ñ 4 5 1 62 3Ñ 4 1 5 2 63Ñ 1 4 2 5 3 6Ñ 1 2 4 3 56Ñ 1 2 3 4 5 6:

The original permutation has w D 3 (in fact all entries have |i�p.i/|D 3). Five steps

were required to reach the identity. So the banded permutation matrix is the product of

N D 5 D 2w�1 matrices F .

We conjectured in Œ10� that N ¨ 2w�1 in all cases. A beautiful proof is given by Greta

Panova Œ6�, using the “wiring diagram” to decide the sequence of exchanges in advance.

A second proof Œ1� by Albert, Li, Strang, and Yu confirms that the algorithm illustrated

above also has N ¨ 2w�1. A third proof is proposed by Samson and Ezerman Œ9�.
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5 Finite Rank Perturbations

We now consider the larger set of invertible matrices M D ACZ, when A and A�1 have

bandwidth¨w and Z has rank¨ r . The inverse matrix M�1 has the same properties, from

the Woodbury-Morrison formula (which has many discoverers). Write Z as �U V where

U has independent columns and V has independent rows. Then the formula yields

M�1 D .A�U V /�1 D A�1 CY D A�1 CA�1U.I �VA�1U /�1VA�1: (3)

The rank of Y is not greater than the ranks (both ¨ r) of U and V .

The product M1M2 will be the sum of A1A2 with bandwidth¨ 2w, and A1Z2 CA2Z1 C

Z1Z2 with rank¨ 3r . So we have a group B of invertible matrices M D ACZ, in which

A and A�1 belong to our original group and rank.Z/ is finite. As before, B is all of GL.n/

for finite size n. It is apparently a new group for n D8.

We want to describe a set of generators for this group. They will include the same block

diagonal factors F with bandwidth 1, together with new factors of the form I C.rank1/.

We show how to express A�1M D I CA�1Z using at most r of these new factors.

Theorem 3 If L D A�1Z has rankr , there are vectors u1;v1; : : : ;ur ;vr so that

I CL D
�

I Cur vT
r

�

: : :
�

I Cu1vT
1

�

: (4)

Proof We will choose vectors such that vT
i uj D 0 for i ¡ j . Then if the columns of V and

U are v1; : : : ;vr and u1; : : : ;ur , the product V TU is upper triangular.

Under this condition, the expression (4) reduces to I CurvT
r C � � �Cu1vT

1 D I CU V T.

So the goal is to achieve U V T D L with V TU upper triangular.

The usual elimination steps reduce L to a matrix W with only r nonzero rows. Thus

EL D W or L D E�1W D
�

E�1
�

r
Wr , where we keep only those first r rows of W and

the first r columns of E�1. In the opposite order, Wr

�

E�1
�

r
may not be triangular, but

every matrix is similar to an upper triangular matrix :

For some r by r matrix S , S Wr

�

E�1
�

r
S�1 is upper triangular.

Now take V T D SWr and U D
�

E�1
�

r
S�1. Then V TU is triangular and U V T D L.

6 Cyclically Banded Matrices

A cyclically banded n by n matrix A (with bandwidth w) has three nonzero parts. There

can be w nonzero diagonals in the upper right corner and lower left corner, in addition to

the 2w C1 diagonals in the main band. Call the new parts in the corners b and c :

A D
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6

6

4

b

0

a

0

c

3
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7

7

7

5

Aij D 0 if |i�j | ¡w

and also n�|i�j | ¡w:
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Thus “cyclic bandwidth w D 1” now allows A1n ¤ 0 and An1 ¤ 0.

There is a corresponding infinite periodic matrix that has bandwidth w in the normal

way. “Periodic” means that AiCn;j Cn D Aij for all integers i and j . When we identify

0 with n and every i with nC i , the corner parts b and c move to fill the gaps at the

start and end of the main band. Here is an example with b D 4 and c D 3 and all 1’s in the

tridiagonal a :

Periodic A8D
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6

6

4

1 1 3

4 1 1

1 1 1

1 1 3

4 1 1

3
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7

7

7

5

with cyclic w D 1

Notice that the periodic matrix A8 is block Toeplitz. The banded blocks a repeat down

the main diagonal, and blocks b and c (all 3 by 3) go down the adjacent diagonals.

Multiplication AB of cyclically banded matrices corresponds to A8B8 for periodic

matrices. Inversion A�1 corresponds to .A8/�1. The cyclic bandwidth for A is the normal

bandwidth for A8.

The reader will make the same conjecture as the author :

Conjecture If A and A�1 have cyclic bandwidth ¤w, they are products of N D O.w2/

factors for which F and F�1 have cyclic bandwidth ¤ 1. The number N does not depend

on n.

For cyclically banded permutation matrices this conjecture is proved by Greta Panova.

Her wiring diagrams move to a cylinder, for periodicity. The number of factors still satisfies

N ¤ 2w�1 (for permutations). The parallel transpositions in a factor F can include an

exchange of 1 with n. Two new factors are allowed that also have cyclic bandwidth 1 —

these are the cyclic shifts. They permute 1; : : : ;n to n;1; : : : ;n�1 or to 2; : : : ;n;1. The

inverse of one cyclic shift is the other.

Allow us to close the paper with preliminary comments on a proof of the conjecture.

The non-cyclic proof began with Asplund’s condition on a matrix A whose inverse has

bandwidth ¤w. All submatrices of A above subdiagonal w and below superdiagonal w

have rank¤w. We expect this condition to extend to periodic infinite matrices A8, but

one change is important : The cyclic shift S (and its periodic form S8) is inverted by its

transpose. The finite matrix obeys Asplund’s rule :

S D

2

6

6

4

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

has rank 1 above subdiagonal 1 :

then S�1 has upper bandwidth 1

has rank 3 below superdiagonal 3 :

then S�1 has lower bandwidth 3.

But S8 needs a revised rule. It is lower triangular (rank zero above the diagonal) but its

inverse (the transpose shift) is upper triangular.

The second obstacle, perhaps greater, lies in the factorization of A8 into block diagonal

periodic matrices B8C8: As in Section 2 above, their diagonal blocks may have size 2w
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(independent of n). The further factorization into periodic matrices F with 2 by 2 blocks

would be straightforward, but how to reach B8 and C8? The elimination steps we used

earlier are now looking for a place to start.

In our original proof of the (non-cyclic) factorization into A D F1 : : :FN , a decomposi-

tion of “Bruhat type” was the first step — in order to reach triangular factors :

A D (triangular) (permutation) (triangular) D LP U . (5)

With P factored into F ’s, this leaves the triangular L and U to be factored. L; P; U are all

banded with banded inverses; their bandwidths come from A and A�1. Note that

Bruhat places P between the triangular factors, where numerical linear algebra places it

first. (The standard Bruhat triangular factors are both upper triangular.)

In the periodic case, P8 will be an affine permutation. The banded periodic matrix

A8 is naturally associated with a rational matrix function a.z/. The blocks in A8 are the

coefficients in a.z/. For our block tridiagonal matrix, this function will be bz�1 CaCcz:

Then the triangular L8P8U8 factorization of A8 is associated with a factorization

of this n by n matrix function, as in

a.z/ D l.z/p.z/u.z/ with p.z/ D diag.zk1 ; : : : ;zkn /: (6)

The integers k1; : : : ;kn are the (left) partial indices of a.z/. They determine the periodic

permutation matrix P8; the 1 in row i lies in column i Cki n: The factors u.z/ and l.z/

are analytic for |z|   1 and |z| ¡ 1: Their matrix coefficients appear as the blocks in the

triangular factors U8 and L8:

Matrix factorization theory began with the fundamental paper of Plemelj Œ7�.

A remarkable bibliography and a particularly clear exposition and proof of (6) are in the

survey paper Œ4� by Gohberg, Kaashoek, and Spitkovsky. They include a small example

that we convert from a.z/ D l.z/p.z/u.z/ to A8D L8P8U8 with U8D I . Rows 1 to

4 show the pattern in these infinite block Toeplitz matrices :

a.z/D

�

z 0

1 z�1

�

D

�

1 0

z�1 1

��

z

z�1

��

1 0

0 1

�

D l p u

A8D

2

6

6

4

0 0 0 0 1 0

0 1 1 0 0 0

0 0 0 0 1 0

0 1 1 0 0 0

3

7

7

5

D L8P8D

D

2

6

6

4

0 0 1 0 0 0

1 0 0 1 0 0

0 0 1 0 0 0

1 0 0 1 0 0

3

7

7

5

2

6

6

4

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

3

7

7

5

:

Important : The inverse of A8 is also banded in this example because the determinant of

a.z/ is a monomial. The inverse of this L8 reverses signs below the diagonal, and the

inverse of a permutation P8 is always the transpose. With indices k1 D 1 and k2 D�1 and

n D 2, rows 1 and 2 of P8 have ones in columns 1C2 D 3 and 2�2 D 0.
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Two key questions stand out :

1. Block diagonal factorization of the periodic matrices U8 and L8.

2. Nonperiodic infinite matrices A, banded with banded inverses: Do they factor into

F1 : : :FN (block diagonal and shifts)?
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