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Abstract

This paper proposes a test to check the speci�cation of models with unob-

served individual e¤ects integrated out by quadrature and also a simple way of

increasing the �exibility of this type of model. The results of a Monte Carlo

study and an application using a well-known data set illustrate the �nite sample

properties of the proposed methods and their implementation in practice.

JEL classi�cation code: C12, C15, C23.
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1. INTRODUCTION AND SET-UP

Models where random e¤ects are integrated out using quadrature are becoming ever

more popular in applied statistics and econometrics. Because these models are based

on a parametric speci�cation of the distribution of the unobservable individual e¤ects,

there may be concern about potential departures from the maintained distributional
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assumptions. This paper proposes a simple procedure to test the speci�cation of the

distribution of the random e¤ects and also an easy way to make this kind of model

more �exible.

We consider fully parametric models for which the i-th observation has a contribu-

tion to the likelihood function speci�ed as

Li =

Z
f (yijx0i� + �"i) g ("i) d"i, (1)

where yi is the variate of interest; xi is a vector of covariates with its �rst element

equal to 1; � is a conformable vector of unknown parameters; "i is an unobservable

individual e¤ect; and � > 0 is an unknown parameter. As usual, it is supposed that

the researcher is willing to specify f (yij�), the conditional density of yi, and g ("i),

the marginal density of "i, which is assumed to be independent of the covariates and

such that G(e) =
R e
�1 g (z) dz is strictly increasing in e.

A standard example of models of this form is the Poisson log-normal model (see

Hinde, 1982, and Winkelmann, 2008), but the procedures developed here can easily

be applied to more complex models, such as the random e¤ects panel probit model

(Wooldridge, 2002, p. 485) and the mixed multinomial logit model (McFadden and

Train, 2000).

The key observation underlying our results is that replacing g (�) with some other

density is equivalent to transforming "i monotonically and keeping g (�). To see this,

let h (�) be the true density of "i and denote the corresponding distribution function

by H(e) =
R e
�1 h (z) dz, which is assumed to be strictly increasing. The correctly

speci�ed model then has likelihood contributions of the form

L�i =

Z
f (yijx0i� + �"i)h ("i) d"i =

Z
f (yijx0i� + �"i) dH ("i) :

Now, because ui = H ("i) is uniformly distributed on [0; 1], the variable G�1(ui) =

G�1(H ("i)) = m
�1("i) = � i has density g (�) and, by changing the variable of inte-

gration H ("i) = G(� i), the likelihood contributions can be written as

L�i =

Z
f (yijx0i� + �m(� i)) g(� i)d� i =

Z
f (yijx0i� + �m("i)) g("i)d"i; (2)
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which provides a generalisation of (1) and an alternative against which this model can

be tested. Indeed, the correct speci�cation of the distribution of "i can be checked by

testing H0 : m("i) = "i. If the null is rejected, the original model can be made more

�exible by replacing "i with some approximation to m("i).

Except for very special cases in which the integral in (1) has a closed form, Li

has to be evaluated using some form of numerical integration. Whatever the type of

numerical integration used, such as Monte Carlo methods or Gaussian quadrature,

the model that is actually estimated has individual contributions to the likelihood

function of the form

Qi =

qX
j=1

f (yijx0i� + �ej)wj; (3)

where e1; :::; eq is a set of appropriately chosen abscissas and w1; :::; wq are the corre-

sponding weights (see, e.g. Judd, 1998, for details). Naturally, the abscissas and the

weights are chosen as a function of g (�) so as to make Qi a close approximation of

Li. The �nite-mixture analogue of L�i is given by

Q�i =

qX
j=1

f (yijx0i� + �m (ej))wj:

In the next section, we give details on how H0 can be tested and develop �exible

alternatives to (1) based on (2).

2. MAIN RESULTS

2.1. The proposed test

We propose to check the correct speci�cation of (1) by testing Qi against Q�i . This

test will not only check the assumptions about the distribution of the unobservables

but also provide a test for other assumptions underlying the speci�cation of (3). Two

particular cases are worth considering. First, there is a degree of duality between the

misspeci�cation of g (�) and the misspeci�cation of f (yij�). Indeed, by comparing (1)

and (2), we can see that the misspeci�cation of g (�) can be interpreted as a misspec-
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i�cation of the way the unobserved individual e¤ect enters f (yij�).1 Therefore, any

appropriate test is likely to have power not only against misspeci�cation of the mixing

distribution but also against misspeci�cation of the assumed conditional distribution

of yi, given xi and "i. Second, Qi can be severely misspeci�ed even if Li is not. In-

deed, if the quadrature method used is too crude, Qi will be a poor approximation of

Li. Therefore, a test for the correct speci�cation of (3), which is the model actually

estimated, will also provide a check on the quality of the numerical approximation

used in the estimation.

Several avenues can be pursued in order to obtain an appropriate test. If the

researcher is willing to specify a function m (�) that depends on a small number of

parameters and that has the identity function as a special case, standard tests can be

used to check the validity of the restrictions. For example, the researcher may follow

MacKinnon and Magee (1990) and consider a test against alternatives of the form

m (z) = l (�z) =�, where l (�) is such that l (0) = 0, l0 (0) = 1 and l00 (0) 6= 0, with l0

and l00 denoting the �rst two derivatives of l (�).2

However, if one prefers to be agnostic about possible departures from the speci�ed

distribution of the individual e¤ects, a test can be based on a Taylor series expansion

of m("i), as in the RESET test (see Ramsey, 1969, and also Cramer and Ridder,

1988). In practice, the order of the polynomial used to construct the test has to be

chosen by the researcher. The simulation evidence provided in Section 3 suggests that

a one-degree-of-freedom test based on a quadratic approximation to m("i), which is

locally equivalent to testing � = 0 when the alternative is m (z) = l (�z) =�, has good

power in a variety of circumstances. Nevertheless, for greater generality, we consider

1The reverse, however, is not always true. For example, if f (yij�) depends on xi in a complex

way, it may not be possible to write a correctly speci�ed model based on a single-index speci�cation

of f (yij�) and a change of the speci�cation of g (�).
2Note that m (z) = l (�z) =� has the identity function as a limiting case as � passes to zero.
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a cubic approximation of the form

m("i) = m (�) + ("i � �)m0 (�) + ("i � �)2
m00 (�)

2
+ ("i � �)3

m000 (�)

6
+R,

where � is the point around which the expansion is made, R is the remainder term,

and m0, m00 and m000 denote the �rst three derivatives of m (�).

Using this expansion, L�i can be approximated by

L��i =

Z
f
�
yijx0i� + �1"i + �2"2i + �3"3i

�
g ("i) d"i,

where the constants in the Taylor series expansion are subsumed in the intercept of

the model and �1 / � (m0 (�)� �m00 (�) + 0:5�m000 (�)), �2 / � (m00 (�)� �m000 (�)),

and �3 / �m000 (�). When �2 = �3 = 0, then L��i reduces to Li with �1 = �. Therefore,

�1 provides no information on the adequacy of the speci�cation of Li. By contrast,

whenever �2 or �3 are non-zero, m (�) is not the identity function. Therefore, rejection

of H 0
0 : �2 = �3 = 0 implies the rejection of H0 : m ("i) = "i.

To perform the test when the model is estimated by quadrature, the signi�cance

of �2 and �3 has to be checked in the �nite-mixture analogue of L��i , which is

Q��i =

qX
j=1

f
�
yijx0i� + �1ej + �2e2j + �3e3j

�
wj. (4)

Because the model de�ned by Q��i is estimated by maximum likelihood, the standard

trilogy of testing principles is available to check the signi�cance of �2 and �3. In what

follows, we focus on the score test because it has the advantage of not requiring the

estimation of the model under the alternative, which can be cumbersome. Moreover,

if the researcher prefers to consider the family of alternatives m (z) = l (�z) =�, the

use of the score test for � = 0 avoids the need to specify l (�).

For this kind of model, the score vector and any estimate of its variance matrix are

highly nonlinear functions of the data, so one should not expect the asymptotic �2

distribution to be a good approximation of the �nite sample distribution of the score

statistic, even in relatively large samples. Therefore, it is advisable to implement the
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test with critical values estimated by the parametric bootstrap (see, e.g. Beran, 1988,

and Horowitz, 1994 and 2001), which are second-order accurate.

One �nal issue must be mentioned. Even when Li is correctly speci�ed, there is a

non-zero probability in �nite samples that the estimate of � is equal to zero. In these

cases, it is obviously not possible to test the correct speci�cation of the distribution

of the unobserved individual e¤ects. Therefore, the test we propose is conditional

on the estimate of � being positive. Of course, this will not a¤ect the asymptotic

distribution of the proposed test statistic but will have an impact on its �nite sample

behaviour.

2.2. More �exible models

In many situations �for example, if the null is rejected �the researcher may want

to estimate a more �exible model, like the one de�ned in (2). Given the lack of in-

formation on the appropriate transformation to use, one possibility is to approximate

m (�) by a cubic polynomial, as in L��i . However, if the estimated polynomial is not

one-to-one, the model cannot be interpreted as a generalisation of (1) obtained by

considering a more �exible distribution of the individual e¤ects. Therefore, although

using a polynomial in "i is possibly the easiest way to generalise (1), it is of interest

to consider other choices of m (�).

Even if g (�) is not the standard normal density, guidance about the choice of

m (�) can be obtained from the vast literature on transformations to normality. In

particular, m (�) can be de�ned as any of the transformations proposed to achieve

normality, such as those introduced by Box and Cox (1964) and MacKinnon and

Magee (1990), or their inverses.

As an illustration of this approach, consider the case in which g (�) is the standard

normal density and the researcher wants to allow for excess kurtosis while main-

taining symmetry. In this case, the sinh�1 transformation studied by MacKinnon

and Magee (1990) and Burbidge, Magee and Robb (1988) may be used to obtain
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m (z) = sinh (�z) =�, which has the identity function as the limiting case when �

passes to zero. If the symmetry assumption is considered too restrictive, this trans-

formation can be generalised by including a location parameter as in MacKinnon and

Magee (1990, p: 325).

Finally, if the researcher wants to relax the assumption that the marginal density

of "i is independent of the covariates, the parameters of m (�) can be written as

functions of the covariates.3 However, unless a parsimonious parameterization is

adopted, estimation of the e¤ects of the covariates on the parameters of m (�) is likely

to be too noisy, except in very rich data sets.

3. FINITE SAMPLE PROPERTIES AND AN APPLICATION

In a classic paper, Cameron et al. (1988) studied the relation between the demand

for health care and health insurance. They used a sample of 5190 single individuals

from the 1977-78 Australian Health Survey to estimate count data models (NegBin1)

for various measures of the demand for health care. We use the same data here to

study the �nite sample properties of the proposed test and to apply the test and the

suggested �exible models in an empirical setting. We focus on models for the variable

Nonpresc, which measures the number of non-prescribed medications used in the

two days preceding the survey. The regressors used are as in Cameron et al. (1988),

and are described in Table 1.
3It is worth noting that, by allowing m (�) to be a function of xi, it is also possible to test the

assumption that the density of "i is independent of the covariates.
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Table 1: Description of the regressors

Sex 1 if female
Age Age in years divided by 100
Income Annual income in Australian dollars divided by 1000
Levyplus 1 if covered by private health insurance for private patient in public hospital
Freepoor 1 if covered by government due to low income, recent immigrant, unemployed
Freeother 1 if covered by government due to old age, disability pension, invalid veteran or

family of deceased veteran
Illness Number of illnesses in past 2 weeks, top coded at 5
Activdays Number of days of reduced activity in past 2 weeks due to illness or injury
GHQ General health questionnaire score using Goldberg�s method
Limchron 1 if chronic condition(s) and limited in activity
Nlimchron 1 if chronic condition(s) but not limited in activity

3.1. Simulations

We ran three sets of Monte Carlo experiments, all centred around the Poisson log-

normal model. The �rst was run with data generated under the null to study level

distortions and the other two with data generated under deviations from the null to

study the power of the test. Each experiment was run with 10000 replications.

3.1.1. Level distortions

For the experiments under the null, we generated data from a q-point �nite mixture

model, which can be seen as a Gauss-Hermite approximation of a Poisson log-normal

model. In particular, yi was generated as

yijxi; "i � Poisson(�i); �i = exp (x
0
i� + �"i) ; (i = 1; :::; n); (5)

where x0i� = �0 + �1x1i + �2x2i and (x1i; x2i) � EDF(Income;Levyplus).4 The

individual e¤ect "i was drawn, independently of xi, from the q-point distribution

de�ned by

Pr["i = ej] =
wjp
�
; ej =

p
2zj; (j = 1; :::; q); (6)

4The variables Income and Levyplus were chosen because they are fairly representative of the

kind of regressors used in applications.
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where z1; :::; zq and w1; :::; wq are the abscissas and weights of the q-point Gauss-

Hermite integration rule (see, e.g., Abramowitz and Stegun, 1972, p. 924). All draws

of (yi; xi; "i) were independent across observations, replications and design points. We

set � = (�:5; :5;�:25)0, � = :5, q = 10 and n = 250; 1000; 4000. These choices ensure

that yi has a realistic range of variation.

The parameters � and � were estimated as b� and b� by maximizing the log-likelihood
nX
i=1

log

 
1

yi!

qX
j=1

exp (� exp (x0i� + �ej) + yi (x0i� + �ej))
wjp
�

!
; (7)

corresponding to (5)�(6). One may view (7) as a q-point Gauss-Hermite approxi-

mation of the log-likelihood of the Poisson log-normal model in which "i � N(0; 1)

instead of (6) (see, e.g. Winkelmann, 2008). Conditional on b� > 0, we computed one-
d.f. and two-d.f. score test statistics for testing �2 = 0 and �2 = �3 = 0 in the extended

model (4).5 We considered three versions of the statistics based on the Hessian, the

OPG, and the robust �sandwich�estimator of the covariance matrix. Denote these

as SH , SO and SR, respectively. For each statistic, say S, we computed the asymp-

totic p-value from the �2 distribution and the p-value from the parametric bootstap

distribution of S. The latter was estimated as the EDF of S(Yb; X), b = 1; :::; B,

where S(Yb; X) is S computed from (Yb; X) conditional on b�b > 0; X is the covariate

data set in that replication; Yb is the bth bootstrap data set on the dependent variable

(generated as above but with X held �xed and b�; b� replacing �; �); and B is the

number of bootstrap draws. We set B = 999.

The results are presented in the form of p-value discrepancy plots (Davidson and

MacKinnon, 1998), which graph the level error of a test against its nominal level.

Deviations from the zero line indicate level distortions: a test overrejects (or under-

rejects) at a given level when the ordinate of the p-value discrepancy plot is positive

(or negative). Figure 1 shows p-value discrepancy plots for the tests with asymptotic

p-values. All three versions of the test are severely level-distorted with the two-d.f. test

5In the one-d.f. test, �3 is set to 0 and this restriction is not tested.
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Figure 1: Asymptotic p-value discrepancy plots
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Figure 2: Bootstrap p-value discrepancy plots
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being the most level-distorted. Therefore, the tests should generally not be used with

�2 critical values. Figure 2 shows p-value discrepancy plots (the jagged curves) for the

tests with bootstrap p-values. All three tests are now nearly level-correct. Note that

the jagged appearance of the curves is a consequence of the level distortions being

small. We added pointwise 95% error bounds �1:96
p
x(1� x)=104 for an unbiased

test (the smooth curves) as an indication of experimental randomness.

We also experimented with � = :25; :75 and q = 4; 20.6 The results changed very

little with q but they did change with �. The level distortions (with and without

bootstrap) decreased as � increased, presumably due to the conditioning on b� 6= 0.
Nevertheless, even when � = :75, the level distortions of the two-d.f. asymptotic tests

remained large. In contrast, even when � = :25, the level distortions were mild when

the bootstrap was used; in particular, the tests based on SO were nearly level-correct,

while those based on SH and SR erred on the conservative side but had a rejection

rate of at least 2.5% uniformly over the design when the nominal level is 5%.

In view of these results, we conclude that the use of bootstrap critical values makes

the test nearly level-correct or leaves, at worst, only mild level distortions. We also

note that, interestingly, the results parallel those obtained in the very di¤erent context

of the information matrix test (see, e.g., Horowitz, 1994 and 2001; Davidson and

MacKinnon, 1998; Horowitz and Savin, 2000).

3.1.2. Power

We considered two types of deviations from the null. In the �rst, the mixing distrib-

ution (6) was altered; in the second, excess zeroes were introduced.

In the �rst set of alternatives, data were simulated as under the null above but now

with "i generated as

"i =
�i � � + (1 + �i)uip

1 + 2� + 3�2
; �i � Exp(�); ui � N(0; 1); (8)

6We ran a full factorial design over � = :25; :5; :75; q = 4; 10; 20; n = 250; 1000; 4000, and B = 99.

The results are availabale on request.
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where �i and ui are independent and Exp(�) is the exponential distribution with mean

�. For any � � 0, "i has zero mean and unit variance, and its skewness and kurtosis

increase in �. We set � = :5 and � = :5, implying that "i has skewness :71 and

kurtosis 5:73. We used q = 10 quadrature points to compute estimates (maximizing

(7), as before) and score statistics, and B = 999 to compute bootstrap p-values.

Figure 3 displays power as a function of nominal level. The tests based on SO

always have the least power (sometimes below the level), regardless of the level. The

tests based on SH and SR have approximately the same power, with the one-d.f. tests

being more powerful than the two-d.f. tests. The power increases rapidly with n.

The results for � = :25; q = 4; 20; � = 0; 1 (available on request) exhibit the same

patterns. Again, altering q gives nearly identical results. When � = :25, the power

drops uniformly, as expected, but remains important when � and n are su¢ ciently

large. Also as expected, the power increases in �. When � = 0, the tests have

virtually no power in excess of the level, which indicates that the Gauss-Hermite

approximation Qi is very close to Li.7

To gain some insight into the ability of the test to detect other sorts of misspeci�ca-

tion, we also ran simulations with zero-in�ated data. Here, data were �rst simulated

as above, but with � = 0. On obtaining yi, misspeci�cation was introduced by setting

yi to zero with probability � regardless of the value of yi that was obtained. This is

equivalent to having "i � N(0; 1) with probability 1 � �, and "i = �1 with proba-

bility �. Figure 4 presents power plots for � = :2 with, as before, � = :5; q = 10, and

B = 999. Again, the one-d.f. tests are more powerful than the two-d.f. tests, but now

the tests based on SR have the least power. At conventional levels, the one-d.f. test

based on SO is somewhat more powerful than the one based on SH for n up to 1000.

7This changes, however, when � is very large and q very small. For example, when � = 0, q = 4,

� � :75 and n � 1000, the tests have non-trivial power.
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Figure 3: Power plots, non-normal mixture
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Figure 4: Power plots, zero-in�ated data
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Considering the sample sizes typically available when this sort of model is esti-

mated, the results of this and the preceding experiments suggest that the proposed

speci�cation test, especially the one-d.f. version based on SH , is an interesting ad-

ditional tool that can be used in the evaluation of models estimated by quadrature

methods.

3.2. Empirical illustration

Table 2 contains the estimation results for the NegBin1 regression model as speci�ed

by Cameron et al: (1988) and for the Poisson log-normal model estimated using

Gauss-Hermite integration with q = 10. According to the value of the maximized

log-likelihood, the latter model �ts the data somewhat better than does the former.

Despite the improvement in the �t provided by the Poisson log-normal model, it is

important to test if this speci�cation is adequate for this data set. The two-d.f. score

statistics in the Poisson log-normal model have values SH = 12:44, SO = 6:85 and

SR = 26:91 with associated p-values based onB = 9999 bootstrap draws equal to :027,

:226 and :049. The corresponding one-d.f. test statistics are SH = 8:74, SO = 6:02,

and SR = 16:11 with associated bootstrap p-values equal to :004, :044, and :005,

respectively. Recalling that the one-d.f. tests typically have better power than the

two-d.f. versions, the results provide clear evidence against the hypothesis that this

speci�cation is appropriate.

In view of this �nding, it is of interest to make the model more �exible by consid-

ering one of the speci�cations suggested in Section 2. The last two columns in Table

2 display the results obtained by estimating the model � labelled �exible Poisson

log-normal �de�ned in (2), with m (z) = sinh (�z) =� (again using Gauss-Hermite

integration with q = 10).

Since all the models estimated here have the same speci�cation of the mean func-

tion, it is not surprising to �nd that the estimates of the slope parameters do not
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vary much across the models.8 However, judging by the value of the maximized

log-likelihood, the �exible Poisson log-normal �ts the data better than do the two

competitors considered here.

Table 2: Estimates

NegBin1 Poisson
log-normal

Flexible Poisson
log-normal

estimates s.e. estimates s.e. estimates s.e.

Intercept �1:021 :207 �2:646 :206 �2:612 :203
Sex :239 :057 :251 :060 :254 :059
Age 4:816 1:055 4:904 1:123 5:084 1:103
Age2 �6:124 1:181 �6:181 1:244 �6:434 1:226
Income :055 :080 :092 :083 :075 :083
Levyplus �:045 :065 �:043 :070 �:046 :068
Freepoor �:077 :142 �:037 :138 �:106 :152
Freeother �:285 :101 �:288 :105 �:303 :104
Illness :205 :020 :212 :022 :210 :021
Activdays �:005 :008 :000 :009 :001 :008
GHQ :028 :012 :030 :013 :032 :012
Limchron :014 :091 :000 :098 :013 :096
Nlimchron :135 :061 :153 :063 :167 :063
� 3:435 :331 � � � �
� � � :790 :035 :618 :094
� � � � � :525 :172
log likelihood �3929:09 �3923:15 �3919:31
Note: OPG-based standard errors.

In order to check if the di¤erences in the �t of the models are signi�cant, �2

goodness-of-�t tests (see Cameron and Trivedi, 1998, pp. 155-157) were performed.

Essentially, these tests check whether the predicted probabilities of certain counts are

compatible with what is observed in the data. The results of the �2 goodness-of-�t

tests are summarized in Table 3. Using the 5% level, the results in this table show

that only the �exible Poisson log-normal model passes the three goodness-of-�t tests.

8This does not imply that the estimated partial e¤ects are similar: the partial e¤ect of Age di¤ers

by up to 26% across the di¤erent models, and the di¤erences for the partial e¤ect of Nlimchron

can be larger than 40%.
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Table 3: Goodness-of-�t tests

NegBin1 Poisson
log-normal

Flexible Poisson
log-normal

d.f. statistic p-value statistic p-value statistic p-value

Count of 0 1 9:47 :002 6:05 :014 1:46 :226
Counts of 0 to 2 3 14:12 :003 11:16 :011 2:35 :503
Counts of 0 to 5 6 15:46 :017 11:54 :073 8:50 :204

In conclusion, although the Poisson log-normal model represents a substantial im-

provement over the NegBin1 model, both the speci�cation test proposed in this paper

and the goodness-of-�t tests suggest that it is misspeci�ed for this data set. The �ex-

ible Poisson log-normal model seems to provide a more accurate description of the

data.

4. CONCLUDING REMARKS

Models estimated using quadrature methods rely on strong distributional assumptions

that are often untested. One of the reasons why departures from these assumptions

are not tested more often may be because no simple test for these hypotheses has

been suggested in the literature. The test suggested in this paper may contribute to

change this state of a¤airs by providing researchers with a simple score test to check

the validity of the distributional assumptions in these models. If the null hypothesis

is found to be too restrictive, the researcher may want to estimate a more �exible

model. The simple generalisations proposed in Section 2 are attractive because they

allow considerable �exibility without substantially increasing the computational cost.
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