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Abstract

The use of robust regression has gained popularity among applied econometri-

cians. Unfortunately, most practitioners who have used these estimators seem

to be unaware of the fact that their properties can be dramatically affected by

both heteroskedasticity and skewness of the errors. In this paper we reconsider

the interpretation of a specific robust regression estimator that has become pop-

ular in applied econometrics, and conclude that its use in this context cannot

be generally recommended. Alternatively, quantile and mode regression could

be used when the researcher wants to estimate conditional location functions

that are robust to the presence of outliers.
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1. INTRODUCTION

The expression “robust regression” denotes a set of estimation techniques that are

less sensitive than ordinary least squares (OLS) to the effect of possible influential

observations. The main argument invoked to justify the use of robust regression is that

it provides efficiency gains in the presence of errors with heavy-tailed distributions.1

In its various forms, robust regression has a well established tradition in statistics (see,

e.g., Huber, 1981; Hampel, Ronchetti, Rousseeuw and Stahel, 1986; Rousseeuw and

Leroy, 1987, and Maronna, Martin and Yohai, 2006). However, apart from median

regression and quantile regression in general (Koenker and Bassett, 1978), robust

regression was slow to gain popularity in economics and econometrics, and it is not

covered in leading modern econometric textbooks.2

Nevertheless, over the past decade, a form of robust regression based on Huber’s

(1964) M-estimator was made available in popular software packages3 and has been

frequently used both in leading research publications and in industry.4 The particular

version of this estimator that has become popular in applied econometrics is based on

1For example, in an often-cited book, Hamilton (2008, p. 253) states: “Robust regression methods

aim to achieve almost the efficiency of OLS with ideal data and substantially better-than-OLS

efficiency in non-ideal (for example, nonnormal errors) situations”.
2A rare exception is Peracchi (2001).
3This robust regression estimator is available, for example, in Stata via the command rreg (Stat-

aCorp., 2009), in SAS via PROC ROBUSTREG (SAS Institute Inc., 2008), in R and S-PLUS via

rlm (Venables and Ripley, 2002) and rreg (Heiberger and Becker, 1992), and in Matlab via robustfit

(Mathworks, 2008).
4For examples of top academic publications using this M-estimator see, among many others,

Alpizar, Carlsson and Johansson-Stenman (2008), Andersen and Aslaksen (2008), Baker and Hall

(2004), Chan, Godby, Mestelman and Muller (2002), Crinò (2010), Croxson, Propper and Perkins

(2001), Currie and Fahr (2004), Deschênes and Greenstone (2007), Freund and Bolaky (2008),

Lang and Kahn (1998), Rogers (2008), and Strömberg (2004). The recent merger appraisals of

Ryanair/Aer Lingus and StatoilHydro/ConocoPhillips (European Commission, 2007 and 2008) are

examples of the use of this estimator in industry. Baldauf advised Ryanair and StatoilHydro and

Santos Silva provided economic advice to StatoilHydro.
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the algorithm proposed by Li (1985), which is an iteratively reweighted least squares

algorithm using biweights (Beaton and Tukey, 1974).

However, perhaps because of the lack of appropriate references on its use in econo-

metrics, most practitioners who have used this estimator seem to be unaware of the

fact that its properties depend on strong assumptions about the symmetry and ho-

moskedasticity of the errors, and justify its use with misleading claims about its

advantages.

In this paper we discuss the interpretation of the specific robust M-estimator that

has become popular in applied econometrics, henceforth termed BWM-estimator,5

and give the conditions required for it to be consistent for the parameters of the

conditional mean. In particular, we emphasize that in the presence of skewed het-

eroskedastic errors this M-estimator will be inconsistent for these parameters and note

that its efficiency can be severely affected by heteroskedasticity. Although we focus

on the BWM-estimator, our results extend to other robust regression estimators as it

is illustrated both in the simulations and in the empirical application we present.

The paper is organized as follows. In the next section we describe in detail the

version of Huber’s (1964) M-estimator that has been used in applied econometrics,

and discuss its interpretation. Section 3 presents the results of simulation studies

illustrating the pitfalls of using robust regression estimators when the errors are het-

eroskedastic and/or skewed. Section 4 revisits the study of Strömberg (2004) on the

relation between mass media and public spending, and illustrates the importance of

defining the location measure of interest and using a suitable estimator for it. Finally,

Section 5 presents brief concluding remarks.

5We use this terminology in reference to the use of biweights and to distinguish this particular

estimator from other M-estimators.
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2. THE M-ESTIMATOR

2.1. Set-up and notation

We consider the problem of estimating a regression model of the form

yi = x0iβ + εi, i = 1, ..., n,

where yi is a scalar, xi and β are k dimensional vectors with k < n, and εi is a random

disturbance.

Part of the difficulty in interpreting the results obtained with robust regression

estimators is that the authors are often vague about the properties of the error term

and, consequently, about what location function of the conditional distribution of y

is being estimated.

For example, in his seminal contributions, Huber (1973, 1981) just states that the

errors are independent with approximately identical distributions. However, Huber

(1973, p. 800) adds that the desired estimate of β “will in some sense generalize

a robust alternative to the sample mean,” suggesting that x0iβ = E(yi), for fixed

regressors, or x0iβ = E(yi|xi), for random regressors. When further assumptions are

made about the errors, it is typically added that they are identically distributed with

E(εi) = 0 (see, among others, Li, 1985, and Wu, 1985), confirming the idea that the

objective is to make the usual mean regression more robust.

More rarely, it is additionally assumed that εi has a symmetric distribution (e.g.,

Hogg, 1979, Hampel et al., 1986). In this case, typically, there is no difficulty in

interpreting the robust regression estimator because the location functions estimated

by these methods coincide with the mean. However, the symmetry assumption is not

explicitly mentioned in any of the empirical applications of this estimator that we

came across.
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Because in economic applications it is generally more appropriate to treat the

regressors as random, we will assume that x0iβ is the conditional expectation of yi

given xi, and consequently E(εi|xi) = 0.
Following Huber (1973), a M-estimator of β is defined as

β̂ = argmin
b

nX
i=1

ρ

µ
yi − x0ib

δ

¶
, (1)

where δ is a scale parameter, and ρ (·) is an even function that is non-decreasing in
the positive half-line. Generally speaking, β̂ will be an estimate of the parameters of

some location function of the conditional distribution of y given x and its properties

will naturally depend of the particular form of ρ (·) that is adopted. For example,
it is well known that OLS and least absolute deviations are special cases of (1) that

estimate the conditional mean and median, respectively.

The choice of ρ (·) is often based on robustness and computational considerations
(see, e.g., Li, 1985). However, it is clear that different choices of ρ (·) will affect not
only the efficiency of the estimator and the convergence properties of the algorithm

used in the minimization of the objective function (see, e.g., Li, 1985), but, more

importantly, the interpretation of the estimates. Consequently, in order to be able to

interpret the robust regression results that have appeared in the literature, it is now

important to study in detail the particular algorithm used to compute them.

2.2. Li’s algorithm

The algorithm described in Li (1985, pp. 335-6) has been used in virtually all econo-

metric applications of the M-estimator. This algorithm starts with an OLS regression

and proceeds with a set of iterations using weighted least squares regressions. These

iterations use Huber (1964) weights of the form

wH
i =

⎧⎨⎩ 1 if |yi − x0ib| ≤ s× cH
s×cH
|yi−x0ib| otherwise

, (2)
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where cH is a tuning constant and s is proportional to the median absolute deviation

defined as mad = med
i

½¯̄̄̄
(yi − x0ib)−med

j

¡
yj − x0jb

¢¯̄̄̄¾
, where b is evaluated at the

current estimate of β.6 The purpose of this first set of iterations is just to find

suitable starting values for the minimization of the objective function of interest.

After convergence with the first set of weights is achieved, a new set of iterations is

performed, this time using biweights (Beaton and Tukey, 1974) of the form

wB
i =

⎧⎪⎨⎪⎩
∙
1−

³
yi−x0ib
s×cB

´2¸2
if |yi − x0ib| ≤ s× cB

0 otherwise
,

where cB is a new tuning constant and s is defined as before.7 The use of this re-

weighted least squares algorithm with biweights is equivalent to finding the vector b

that minimizes the objective function

nX
i=1

(s× cB)
2

6

⎧⎨⎩1− I
∙¯̄̄̄
yi − x0ib
s× cB

¯̄̄̄
≤ 1

¸"
1−

µ
yi − x0ib
s× cB

¶2#3⎫⎬⎭ , (3)

where I [e] is the indicator function for event e (see Li, 1985, p. 293).8

To gain further insight into this estimator, it is interesting to notice that minimizing

(3) is equivalent to maximizing

1

nδ

nX
i=1

KT

µ
yi − x0ib

δ

¶
, (4)

where δ = s × cB and KT (u) =
35
32
I [|u| ≤ 1] (1− u2)

3 is the triweight kernel (see,

e.g., Wand and Jones, 1995). Expression (4) is immediately recognizable as a non-

parametric estimator of the density of yi at x0ib. Therefore, under appropriate reg-

6In all computations in sections 3 and 4, cH is set to 1.349, and s is set to mad/0.6745. These

choices, which affect the properties the estimator, are the default in the Stata (StataCorp., 2009)

command rreg, which was used in all the empirical applications we refer to.
7In all computations in sections 3 and 4, cB is set to 4.685, which is also the default in rreg

(StataCorp., 2009).
8The objective function defined by (3) can have multiple minima and that is why it is important

to have good starting values and the first set of iterations is needed.
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ularity conditions, the value of b that maximizes (4) corresponds to the conditional

mode of yi, assumed to be a linear function of xi.

Mode regression has been pioneered by Lee (1989 and 1993) and the estimator

defined by (3) can be seen as a member of the family of mode regression estimators

based on smooth kernels described in Lee and Kim (1998, pp. 214-5). Indeed, Lee and

Kim (1998) explicitly consider the mode regression estimator based on the objective

function of Andrews’ (Andrews, Bickel, Hampel, Huber, Rogers, and Tukey, 1972)

cosine M-estimator, and mention that the same approach can be used with related

objective functions, such as the quartic (or biweight) kernel (see, e.g., Wand and

Jones, 1995).

More generally, although that does not seem to have been recognized in the litera-

ture on robust regression, (1) can define a mode-regression estimator when the distri-

bution of the errors εi has some degree of symmetry and ρ (·) = a1−a2K (·), where a1
and a2 > 0 are constants and K (·) is a kernel function such that R K (z) dz = 1 and

limz→±∞K (z) = 0. The link between mode regression and the M-estimator defined

by (3) is convenient because the conditions for it to be consistent for the parameters

of the conditional mean can be explicitly found in the results given by Lee (1989,

1993).

2.3. Properties of the M-estimator based on biweights

As in Lee (1989, 1993), the BWM-estimator suggested by Li (1985) treats δ as

a fixed parameter. That is, δ is not allowed to depend on the sample size and its

choice depends on the researcher’s preferences with respect to the trade-off between

efficiency and robustness.

For fixed δ, the sufficient conditions for the estimator based on (3) to be consistent

for the parameters of the conditional expectation of yi given xi are as follows (see

Lee, 1989, 1993, for further details):
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A1: The conditional density of εi is strictly unimodal with a finite mode at zero;

A2: Either of the following conditions holds:

(a) the conditional density of εi is symmetric around zero;9

(b) εi is statistically independent of xi.

Given A1, assumption A2 (a) is enough to ensure the consistent estimation of

all parameters of the conditional expectation. Assumption A2 (b) only ensures the

consistent estimation of the slope parameters (Lee, 1989), but the inconsistency of

the intercept estimator is generally only a minor nuisance.

What A2 makes clear, however, is that under asymmetry consistent estimation of

the slope parameters requires the statistical independence of εi and xi, which rules

out, for example, heteroskedasticity. Therefore, while A1 is possibly acceptable for

most practitioners, A2 is clearly too strong to be generally accepted in econometric

applications. Indeed, the ubiquitous use of the Eicker-White standard errors (Eicker,

1963, 1967, White, 1980) suggests that in many applications the researcher is not

willing to assume homoskedasticity. Moreover, the fact that in most econometric

problems the variate of interest is non-negative suggests that skewness is also pervasive

in this kind of applications. The widespread practice of logging the dependent variable

can be seen as evidence that researchers often try to partially eliminate the skewness

of the data. Of course, taking logs of the dependent variable not only makes it difficult

to interpret the estimation results, but it also does not ensure that the resulting model

has errors with a symmetrical distribution.10

9Notice that for consistent estimation of the conditional mode the conditional density of εi only

needs to be symmetric around zero up to ±δ. However, this milder condition does not ensure that
the conditional mode coincides with the conditional mean and therefore it is not enough to ensure

consistent estimation of the conditional expectation.
10The work of Box and Cox (1964) is the leading reference in a vast literature on transformations

of the dependent variable to achieve an approximately symmetrical distribution of the errors. In
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Even if the errors are symmetrically distributed, heteroskedasticity is also likely to

affect the efficiency of the BWM-estimator relative to OLS. Although we present no

formal results on this, the simulation evidence in section 3 clearly illustrates this point.

A related consequence of the possible presence of heteroskedasticity is that it invali-

dates the estimator of the covariance matrix proposed by Street, Carroll and Ruppert

(1988), which is generally used in practice (see Croux, Dhaene and Hoorelbeke, 2003).

Therefore, the presence of heteroskedasticity greatly reduces the attractiveness of the

BWM-estimator and, when coupled with skewed errors, it is likely to have devastating

consequences.

Of course, if δ is allowed to go to zero as the sample size passes to infinity, the

properties of the BWM-estimator based on (3) are very different. In this case, under

suitable regularity conditions, it can be shown that the estimator is consistent for the

conditional mode of yi given xi, even if the errors are skewed and heteroskedastic (see

Kemp and Santos Silva, 2010). However, it is important to note that, although of

interest in itself, the conditional mode does not generally coincide with the conditional

mean and has very different properties.11

3. SIMULATION EVIDENCE

In this section, we perform two simulation studies to illustrate the performance of

robust regression estimators when the errors of the regression model are heteroskedas-

tic and/or skewed. The first set of experiments considers in detail the relative perfor-

mance of the OLS and the BWM-estimator. The second set of experiments illustrates

that the sensitivity of the BWM-estimator to skewness and heteroskedasticity extends

to other robust regression estimators.

spite of this, skewness is rarely mentioned in econometric applications because it has little effect on

the properties of the OLS estimator.
11For instance, the mean of a population can be obtained as the weighted average of the means

of sub-populations, but the same is not true for the mode.
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3.1. Simulation design

The design of the experiments is inspired by the classic study of Arabmazar and

Schmidt (1981). In particular, data are generated by the model

yi = β0 + β1xi + k (1 + hxi) εi, i = 1, ..., 500,

where xi is a Bernoulli random variable with Pr (xi = 0) = p, εi is a random vari-

able with zero mean and variance one, h is a parameter controlling the degree of

heteroskedasticity, and k is set so that the population R2 is one half.12 Throughout,

we set β0 = β1 = 1 and p = 0.8.

To explore the effects of heteroskedasticity, we perform simulations with h ∈
{−4/5,−2/3, 0, 2, 4}. Notice that, for g positive, the degree of heteroskedasticity
is the same for h = g and h = −g/(g + 1).13 However, the two situations are quite
different in that h = g implies that the observations have the larger variance with

probability 1−p, whereas when h = −g/(g+1) the probability of the larger variance
is p. Therefore, the designs with h = g and h = −g/(g + 1) will have very different
implications for the performance of the estimators.

To complete the design, it is necessary to define how εi is generated. We consider

two cases. As it is standard in the analysis of the performance of robust estimators,

we conduct some experiments in which εi is obtained from a contaminated normal.

In particular, following Tukey (1960), we generate data such that, with probability

(1− α), εi is drawn from a standard normal distribution and, with probability α, it

is drawn from a normal distribution with zero mean and variance 9. In our exper-

iments we consider α ∈ {0.00, 0.01, 0.05, 0.10}. The second case we study considers
errors with different degrees of asymmetry. Specifically, εi is generated from a χ2(ν)

12Specifically, k =
p
p(1− p)/ [p+ (1− p)(1 + h)2].

13Arabmazar and Schmidt (1981) consider cases where the ratio between the larger and smaller

variances goes up to 100. In our experiments, the maximum value for this ratio is 25.
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distribution, with ν ∈ {3, 6, 12, 24, 48}.14 As mentioned above, in all experiments εi
is centred and scaled so that it has zero mean and unit variance.

For each of the designs, yi, xi and εi were newly generated for each replication. All

computations were performed using Stata (StataCorp., 2009), which has been used

by most applied econometricians to implement the BWM-estimator.15

3.2. Main simulation results

We start by considering the relative performance of the OLS and the BWM-

estimator. Tables 1 and 2 summarize the results obtained with 100, 000 replications

for each design point. To conserve space, we only report results for the more inter-

esting parameter β1. Specifically, for each design point, we report the mean of the

estimates of β1 obtained with the OLS and the BWM-estimator, as well as the ratio

of the variance of the OLS to that of the BWM-estimates, labelled variance ratio.

3.2.1. Homoskedastic errors

As expected, the results obtained with h = 0 confirm that under homoskedasticity

the estimates for the slope parameter obtained with the BWM-estimator have means

very close to 1, even for the heavily skewed χ2(3) errors. Moreover, the BWM-estimator

has a smaller variance than the OLS for distributions with reasonable excess-kurtosis,

i.e., for α ∈ {0.01, 0.05, 0.10} when the errors are generated as normal mixtures, and
ν ∈ {3, 6, 12} when the errors have a χ2(ν) distribution.
Therefore, under homoskedasticity, the BWM-estimator may have clear advantages

over OLS and this is the sort of results that has been used to advocate its use.

However, the results obtained for h 6= 0 paint a very different picture.
14The coefficient of skewness for the χ2(ν) distribution is

p
8/ν.

15The algorithm used in Stata (StataCorp., 2009), via the command rreg, is slightly different

from the one described in subsection 2.2. above in that observations with Cook’s (1977) distance

larger than 1 are discarded after the initial OLS estimation (see Hamilton, 2008). However, with

the particular design used in these experiments, that difference is immaterial.
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Table 1: Results for β1 with contaminated normal errors

h = −4
5

h = −2
3

h = 0 h = 2 h = 4

α = 0.00 OLS 1.00007 1.00009 1.00018 1.00028 1.00031

BWM 1.00004 1.00007 1.00021 1.00028 0.99966

Variance ratio 0.86551 0.91170 0.95027 0.42778 0.17851

α = 0.01 OLS 1.00007 1.00009 1.00017 1.00026 1.00028

BWM 1.00004 1.00006 1.00019 1.00027 0.99978

Variance ratio 0.92036 0.96476 1.00851 0.46143 0.19306

α = 0.05 OLS 1.00007 1.00008 1.00014 1.00022 1.00023

BWM 1.00003 1.00004 1.00016 1.00028 0.99999

Variance ratio 1.12106 1.15442 1.21997 0.59467 0.25106

α = 0.10 OLS 1.00008 1.00010 1.00019 1.00031 1.00033

BWM 1.00002 1.00005 1.00014 1.00017 0.99991

Variance ratio 1.31486 1.32430 1.42105 0.75468 0.32296

3.2.2. Heteroskedastic symmetrical errors

For the experiments with the contaminated normal errors, we again find that the

estimates of β1 obtained with the BWM-estimator have means very close to 1, even

when h 6= 0. However, the presence of heteroskedasticity has a detrimental effect on
the performance of the BWM-estimator. For h ∈ {−4/5,−2/3}, the variance of this
estimator is smaller than that of OLS only for α > 0.01, but even in these cases the

gains from the BWM-estimator are now smaller than in the homoskedastic case. For

positive h, however, the variance of the BWM-estimator is up to 5 times larger than

that of the OLS estimator. Moreover, this advantage of the OLS is substantial even

when there is noticeable excess-kurtosis.

12



Table 2: Results for β1 with χ2(ν) errors

h = −4
5

h = −2
3

h = 0 h = 2 h = 4

ν = 3 OLS 0.99997 0.99995 0.99986 0.99973 0.99970

BWM 1.10175 1.09147 1.00048 0.70863 0.55824

Variance ratio 0.87080 0.99762 1.41690 1.32088 0.54299

ν = 6 OLS 1.00002 1.00003 1.00004 1.00005 1.00005

BWM 1.07640 1.06792 1.00051 0.76061 0.66009

Variance ratio 0.83509 0.94588 1.14814 0.71333 0.24686

ν = 12 OLS 0.99988 0.99986 0.99975 0.99963 0.99961

BWM 1.05611 1.04900 1.00006 0.82090 0.75717

Variance ratio 0.83725 0.93130 1.04387 0.52054 0.20013

ν = 24 OLS 1.00011 1.00012 1.00015 1.00017 1.00016

BWM 1.04084 1.03529 1.00040 0.87184 0.82916

Variance ratio 0.84279 0.91717 0.99341 0.46127 0.18672

ν = 48 OLS 1.00000 1.00001 1.00001 1.00001 1.00001

BWM 1.02908 1.02499 1.00016 0.90917 0.87967

Variance ratio 0.85442 0.91592 0.97345 0.44467 0.18342

3.2.3. Heteroskedastic skewed errors

With skewed errors the consequences of the heteroskedasticity are even more dra-

matic. First of all, with the χ2(ν) errors, the variance of the BWM-estimator is larger

than that of the OLS for all cases with h 6= 0, except when h = 2 and ν = 3. Again,

we find that for positive h, the variance of the BWM-estimator can be more than 5

times larger than that of OLS.

What is more serious, however, is that now the means of the BWM-estimates of β1

are often quite different from 1. In particular, we observe that for h < 0 the estimator

is biased upwards, with the reverse happening for h > 0. In this case, the bias of the
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BWM-estimator is particularly severe, e.g. in excess of −40% for h = 4 and ν = 3.

Even for the χ2(48) errors, which are almost symmetrical, the BWM-estimator can be

severely biased in the presence of moderate heteroskedasticity.

3.3. Results with other robust estimators

The sensitivity of the BWM-estimator to skewness and heteroskedasticity extends

to other robust estimators. This is obvious for estimators that explicitly depend

on symmetry, such as the Gastwirth and trimean estimators introduced by Koenker

and Bassett (1978), and the trimmed least squares estimator of Ruppert and Carroll

(1980). However, more modern robust estimators are also sensitive to departures

from the assumption of symmetric homoskedastic errors.

To illustrate this, we used the design described before to perform a small scale

simulation experiment based only on 5, 000 replications, where we also studied the

estimators implemented in Stata (StataCorp., 2009) by Verardi and Croux (2009)

and by Jann (2010). The additional estimators considered are an M-estimator using

Huber weights as defined in (2), the S-estimator of Rousseeuw and Yohai (1987), the

MM-estimator of Yohai (1987), and the least median of squares and least trimmed

squares of Rousseeuw (1984).16

In the interest of space, we do not report in detail the results of these experiments,

which are available on request, but provide a brief overview of our findings. For

homoskedastic errors, as expected, the means of the estimates of β1 are always very

close to 1 and, again, the robust estimators can be more efficient than OLS for high-

kurtosis distributions. However, some robust estimators, notably the least median

of squares, the least trimmed squares, and the S-estimators, are substantially less

efficient that OLS for all the designs considered. With heteroskedastic symmetrical

errors, the means of the estimates are again generally very close to 1, the exceptions

16To our knowledge, of these estimators, only the least trimmed squares has been used in economics

(see, e.g., Temple, 1998, and Zaman, Rousseeuw and Orhan, 2001).
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being the S- and MM-estimators as implemented by Verardi and Croux (2009), for

which the mean of the estimates of β1 can be as low as 0.941 when h is positive. Like

in the main set of experiments, we find that the efficiency of the robust estimators is

greatly affected by heteroskedasticity, especially when h is positive. For example, for

h = 4 and α = 0.10, only the M-estimator using Huber weights is more efficient than

the OLS. Finally, for heteroskedastic skewed errors, the mean of the estimates of β1

is very different from 1 for all robust estimators. Specifically, the means of β1 can be

substantially above 1 for h < 0, or substantially below 1 for h > 0.

This set of results confirms that, when the distribution of the errors is skewed and

heteroskedastic, the so-called robust estimators do not identify the parameters of the

conditional mean. Moreover, these estimators are also inconsistent for the parameters

of the conditional median and mode. For example, for χ2(3) errors with h = 4, the slope

parameters for the conditional median and mode are 0.828 and 0.458, respectively,

whereas the mean of the BWM-estimates is 0.558. Therefore, unless very strong

assumptions are made about the shape of the conditional density of the variate of

interest, robust estimators like the BWM-estimator do not identify the parameters of

any well understood measure of central tendency, making them, at best, difficult to

interpret.

4. RADIO’S IMPACT ON PUBLIC SPENDING REVISITED

To illustrate the critical importance of defining the location function that is of

interest and of choosing an appropriate estimator for it, we revisit the recent study by

Strömberg (2004) on how mass media influences policy-making and public spending.

Strömberg (2004) develops an economic model that yields three testable implica-

tions: 1) government spending is higher on groups with better access to mass media,

2) government spending is higher on groups where a high percentage of people vote,

and 3) turnout is higher in groups where many have access to media.
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To test the first two implications of the model, Strömberg (2004) uses data on a

cross-section of U.S. counties to study how radio penetration affected the distribution

of funds in an important New Deal program providing unemployment relief between

1933 and 1935. The econometric model estimated by Strömberg (2004) has the form

ln (zc) = c1 ln (rc) + c2 ln (tc) + x0cβ + μs + εc,

where zc is the per capita cumulative spending in the program from April 1933 to

December 1935 in county c, rc is the share of households in county c with a radio,

tc denotes voter turnout in gubernatorial elections in county c, xc is a set of control

variables, μs are state fixed-effects, and εc is an error term uncorrelated with the

regressors. According to the model, c1 > 0 and 0 < c2 < 1.

The benchmark results of Strömberg (2004) are obtained by estimating the model

by OLS using a sample with data from 2492 counties.17 Table 3 provides a brief de-

scription of the variables used; for further details on the data, including a description

of the sources, see Strömberg (2004). The first column of Table 4 replicates the bench-

mark estimates presented in Table II in Strömberg (2004, p. 206). In accordance with

the predictions of the model, the estimate of the coefficient associated with the log of

the share of radios per household his positive and the coefficient associated with the

log of voter turnout is between zero and one.

As part of the checks to assess the robustness of these results, Strömberg (2004)

also estimated the model using the BWM-estimator, whose results are presented in

the second column of Table 4. Although the results obtained with the two estimators

are generally close, there are a few instances where the differences are substantial,

including the coefficient of one of the main variables of interest, ln (rc), whose effect

is halved when the BWM-estimator is used.18

17The author also considers instrumental variables estimation, but focuses on the least squares

results when discussing the effects of radio on spending.
18In the interest of space, we do not report in detail the results obtained with other robust

estimators, but for completeness we note that the estimated coefficients of ln (rc) (and corresponding
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Table 3: Description of the variables
zc : Spending Per capita cumulative disbursement within the program from April 1933

to December 1935

rc : Radios Share of families reporting radio sets in 1930

tc : Turnout Voter turnout in gubernatorial elections

Share illiterate Share of persons ten years of age and over who are illiterate in 1930

School enrolment Share of persons 7—18 years of age attending school in 1930

Marginal voter Standard deviation of the county democratic vote shares in

gubernatorial elections, 1922—1932

Unemp. 1930 Unemployment rate in 1930

Unemp. 1937 Unemployment rate in 1937

Bank deposits Bank deposits per capita in 1934

%∆bank deposits Percentage change in bank deposits per capita between 1930 and 1934.

Dwelling value Median value of owner-occupied dwelling units in 1930

Farm value Per capita value of farm buildings in 1930

Retail wage Average wage in retail establishments in 1930

Crop value Per capita value of all crops harvested in 1929

Rent Median monthly rent of tenant-occupied dwelling units in 1930

Share 21+ Share of persons 21 years of age or older in 1930

Share 65+ Share of persons 65 years of age or older in 1930

Females Percentage of females in 1930

Blacks Percentage of African-Americans in 1930

Immigrants Percentage of foreign-born white persons in 1930

Partisans Share of voters who voted for the winning gubernatorial candidate

Urban Share of urban population in 1930

Rural 1 for counties where share urban equals zero, 0 otherwise

Gas sales Per capita sales of filling stations in 1934

Pop. density Population per square mile in 1930

Population 0.6×population 1930+0.4×population 1940

t-statistics) obtained with the the M-estimator using Huber weights as defined in (2), the S-estimator

of Rousseeuw and Yohai (1987) and the MS-estimator of Maronna and Yohai (2000) are, respectively,

0.082 (2.396), 0.015 (0.284), and 0.003 (0.067).
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In view of the results presented before, it is interesting to investigate whether the

difference between the estimates of the coefficient of ln (rc) obtained with the two

methods is the result of the OLS sensitivity to influential observations, or rather the

consequence of applying the BWM-estimator in a situation where it does not identify

the parameters of the conditional mean.

We start by checking whether the OLS results are critically affected by influential

observations. Figure 1 displays the plot of the usual leverage indicator against the

Studentized least squares residuals (see, e.g., Cook and Weisberg, 1982). This plot

shows that there are both several high leverage points and some large residuals,

especially in the left tail of the distribution. However, the observations with high

leverage have reasonably small residuals, and the observations with large residuals

tend to have little leverage, suggesting that none of the observations is particularly

influent. To confirm this, we computed the percentage change of the fitted value of

ln (zc) that would result from deleting each single observation, and reestimated the

model excluding the set of five observations whose deletion would lead to changes

of over 5 percent of the fitted value. The estimates for the two main parameters of

interest changed by less than 7 percent (less than 0.2 of a standard error), confirming

that no single observation is particularly influential.
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Figure 1: Leverage versus Studentized residual plot for the least squares regression.
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Although these results suggest that the least squares results are not driven by a

handful of influential observations, this kind of single-case diagnostics may not reveal

the role of a group of influential observations masking each other’s effects. Because

there is no well-established method to deal with the possible masking effects of groups

of influential observations, we developed a very simple bootstrap procedure to investi-

gate this problem. In particular, we looked at the distribution of the estimates of the

coefficient of ln (rc) obtained using pairs-bootstrap. If all observations of the sample

come from a common population, the pairs-bootstrap estimates of the coefficient of

interest should have a distribution close to a normal with mean and standard error

close to the OLS estimates obtained with the full sample. On the contrary, if there is

a group of influential observations, the distribution of the pairs-bootstrap estimates

of the coefficient of ln (rc) should be bimodal, reflecting the fact that in bootstrap

samples that exclude the influential observations the estimate of this parameter is sub-

stantially different from the result obtained with the full sample. Moreover, in this

case, the mean of the bootstrap estimates should be between the OLS and BWM-

estimates obtained with the full sample.

In this particular application we found that a standard test for the normality of

the estimates of the coefficient of ln (rc) in 5, 000 pair-bootstrap replicas has a p-value

of 0.767. Moreover, the mean of these estimates is equal to 0.138, and its standard

error is 0.037. These results are remarkably close to the OLS estimates obtained with

the full sample and therefore suggest that indeed influential observations are not an

issue.

Turning now to the conditions for the BWM-estimator to be consistent for the pa-

rameters of the conditional mean, we investigate the skewness and heteroskedasticity

of the conditional distribution of ln (zc). For this particular model and sample, the

statistic for the non-normality-robust symmetry test of Godfrey and Orme (1991)

has a value of 5.21, to which corresponds a p-value of 0.02, thus confirming the sig-
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nificance of the skewness revealed by Figure 1. As for heteroskedasticity, we use

the non-normality-robust version of the Breusch and Pagan (1979) test proposed by

Koenker (1981) to check whether the variance of εc depends on ln (rc), the regressor

of interest whose coefficient is more sensitive to the choice of estimator. The test

statistic in this case has a value of 22.26, to which corresponds a p-value virtually

equal to zero.19 Therefore, in this particular application, there are signs of skewness

and very strong heteroskedasticity, and therefore the OLS and the BWM-estimator

are likely to identify measures of central tendency with different slope parameters.

The differences between the results of the OLS and BWM-estimator suggest that,

even focusing only on measures of central tendency, one regression is not enough to

understand the effect of radio penetration on the program expenditures. To further

explore this issue, it is interesting to see how ln (rc) and ln (tc) affect the conditional

median and the conditional mode, two measures of central tendency known for their

robustness properties.

The last two columns of Table 4 display the estimation results for the conditional

median and mode, respectively.20 As noted by Strömberg (2004), the conditional

median estimates (labelled LAD in Table 4) are remarkably close to those of the

BWM-estimator, although the coefficient of ln (rc) is not statistically significant in

the conditional median. Therefore, although that is not a general rule, it looks like in

this particular case the measure of location identified by the BWM-estimator is close

to the conditional median.

The results obtained for the mode are, however, substantially different from those

obtained for the other conditional locations measures. In particular, not only the

estimated coefficients of several important control variables (e.g., School enrolment,

19Under the null, both test statistics are asymptotically distributed as χ2(1) variates.
20The conditional mode was estimated using the method described in Kemp and Santos Silva

(2010), with smoothing parameter equal to 1.05madn−0.143, where as beforemad denotes the median

absolute deviation of the residuals. Comparable results can be obtained with the rreg command in

Stata (StataCorp., 2009) by using a tuning constant 7 times smaller that the default value.
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Table 4: Estimation results

OLS BWM LAD Mode

ln (Radios) 0.138 (3.796) 0.068 (2.219) 0.066 (1.652) -0.072 (2.397)

ln (Turnout) 0.165 (4.779) 0.133 (3.883) 0.129 (2.947) 0.115 (2.082)

Share illiterate -1.111 (2.198) -1.170 (2.453) -1.309 (2.314) -1.675 (3.617)

School enrolment 0.856 (2.817) 0.766 (2.853) 0.505 (1.537) -1.034 (2.733)

Marginal voter 0.034 (0.129) 0.288 (1.288) 0.171 (0.560) -0.490 (1.102)

Unemp. 1930 7.837 (4.506) 7.848 (5.109) 9.018 (4.405) 10.723 (6.258)

Unemp. 1937 9.750 (12.87) 9.706 (14.59) 9.872 (11.94) 11.380 (13.90)

Bank deposits -0.093 (5.271) -0.064 (4.286) -0.081 (3.874) 0.005 (0.298)

%∆bank deposits -0.013 (1.177) -0.008 (0.507) -0.008 (0.901) 0.075 (4.053)

Dwelling value 0.000 (0.009) 0.034 (0.881) 0.060 (1.234) -0.073 (1.210)

Farm value -0.144 (4.028) -0.141 (4.982) -0.106 (2.471) -0.125 (3.652)

Retail wage 0.016 (0.181) 0.033 (0.408) -0.021 (0.199) 0.588 (3.861)

Crop value 0.017 (0.710) 0.014 (0.761) -0.002 (0.069) 0.018 (0.950)

Rent -0.063 (1.052) -0.086 (1.544) -0.108 (1.548) 0.018 (0.352)

Share 21+ -1.908 (3.742) -0.994 (2.428) -0.937 (1.645) 1.908 (5.192)

Share 65+ -2.181 (1.323) -2.854 (2.075) -3.079 (1.683) -8.367 (6.672)

Females 1.923 (1.713) 2.389 (2.889) 2.333 (2.165) 5.470 (8.393)

Blacks 0.105 (0.950) -0.007 (0.072) 0.005 (0.046) -0.291 (2.990)

Immigrants 0.319 (0.853) 0.772 (2.762) 0.639 (1.505) 1.527 (5.292)

Partisans 0.052 (0.438) 0.041 (0.439) 0.017 (0.156) -0.066 (0.550)

Urban 0.994 (8.972) 0.861 (9.855) 0.930 (7.123) 0.217 (2.099)

Rural 0.253 (7.837) 0.203 (7.455) 0.203 (6.038) 0.181 (5.672)

Gas sales 0.015 (0.863) 0.021 (1.393) 0.012 (0.570) 0.030 (1.484)

Pop. density -0.064 (2.592) -0.052 (2.753) -0.052 (2.003) 0.027 (1.178)

Population -0.092 (3.462) -0.127 (6.004) -0.134 (4.465) -0.222 (10.51)

Intercept 4.807 (4.314) 3.969 (4.981) 4.691 (3.655) -2.000 (1.941)

Dependent variable is log of cumulative spending per capita from 1933 to 1935;

t statistics in parentheses: robust for OLS, LAD, and Mode, standard for BWM;

results based on 2492 observations; all regressions include state dummies.
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Bank deposits, %∆bank deposits, Share 21+, Share 65+, Females, Blacks, and Im-

migrants) are substantially different in the mode regression, but more importantly

the estimate of the coefficient of ln (rc), one of the main regressors of interest, is now

negative and statistically significant. Although at first sight it may be surprising to

find that a regressor has coefficients with opposite signs in two conditional measures

of central tendency, this is indeed entirely possible as a result of heterocliticity.21

Therefore, in this application, by changing the measure of central tendency that is

estimated it is possible to make the effect of ln (rc) on spending to go all the way from

positive and significant to negative and significant. This clearly illustrates that, as

noted by Portnoy and Welsh (1992), it is important to define which location function

of the distribution is of interest because that determines the estimator to use, and

the results obtained may depend critically on this choice. In the case of the model

considered by Strömberg (2004), the maintained assumption is that εc is uncorrelated

with the regressors, and therefore the functional of interest is either the conditional

mean or a linear approximation to it. Consequently, OLS is the appropriate estimator

for the parameters of the model proposed by Strömberg (2004).

Nevertheless, even if interest is mainly focused on the mean regression results, the

estimation of other location measures of the conditional distribution provided addi-

tional information that enriched our understanding of the effects of radio penetration

on the distribution of funds in the program being considered. Taking into account

the results of all the estimators, it appears that an increase in radio penetration does

not shift the conditional distribution of spending upwards, but rather that it changes

its shape in complex ways so that the mean shifts upwards, as found by Strömberg

(2004), but the mode moves in the opposite direction. Therefore, the positive effect

of media access on public spending is not uniform, and the bulk of the counties may

21Kemp and Santos Silva (2010) note that it is possible that a regressor has a positive effect in

all quantiles, but a negative effect on the mode. Indeed, that seems to be the case in one of the

empirical examples they consider.
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not benefit at all from an increased access to media. This heterogeneous effect of

information on public spending raises interesting questions and deserves additional

scrutiny, both theoretical and empirical. That endeavour is, however, beyond the

scope of this paper.

5. CONCLUDING REMARKS

The BWM-estimator has a long and well justified tradition of successful application

in different areas of statistics. However, this is no guarantee that this particular

estimator can also be generally useful in econometrics. On the contrary, the results

presented in Sections 3 and 4 show that, in typical econometric problems, the BWM-

estimates are difficult to interpret and can be very misleading. Therefore, the use

of the BWM-estimator in econometrics cannot be generally recommended, and it

certainly should not be used as an alternative to OLS.

This is perhaps why most modern textbooks in econometrics completely ignore the

BWM-estimator. However, by ignoring it, these textbooks also fail to alert poten-

tial users to the pitfalls of this estimator in econometric applications. This lack of

information on the potential drawbacks of the estimator, coupled with the attrac-

tive “robustness” label that is often attached to it and with its ready availability in

popular software packages, helps to understand the recent rise in popularity of the

BWM-estimator among applied econometricians.

It is, however, important to recall that the BWM-estimator was introduced at a

time when there were no robust alternatives to least squares estimators. Given that

in practice the presence of outliers is often a source of concern, these estimators were

a very welcomed step in the long path towards the development of estimators for

location measures that are less sensitive to the presence of atypical observations. The

main limitation of this approach, however, is that it tries to obtain a robust estimator

of the mean which, by definition, is not itself a “robust” location function. Conse-

quently, the so-called robust regression methods are only valid under very stringent
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conditions. The natural next step in this path was the development of estimators for

conditional location functions that are intrinsically robust, like the quantiles (Koenker

and Bassett, 1978) and the mode (Lee, 1989, 1993, and Kemp and Santos Silva, 2010).

These estimators combine the desired robustness to the presence of outliers with both

a clear interpretation and validity under mild distributional assumptions. Moreover,

as illustrated in Section 4, they also provide important informational gains in many

contexts.

Therefore, practitioners have at their disposal appropriate tools to perform regres-

sion analysis when they want to shield their results from the effects of possible outliers.

Indeed, both median and mode regression are consistent for the parameters of the con-

ditional mean when the BWM-estimator is valid, and they continue to be consistent

for interesting and clearly interpretable sets of parameters when the BWM-estimator

is invalid. In view of this, it is recommended that practitioners should consider using

both quantile and mode regression when the information provided by the standard

OLS is somehow deemed inappropriate or insufficient.
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