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Abstract

This paper considers tests for a unit root in a flow variable when the span of data and/or
the sampling frequency are allowed to vary. The limiting distributions of the statistics are
obtained under both the null and alternative hypotheses, thereby enabling an analysis of
the consistency properties of the tests to be conducted. Contrary to the situation with a
stock variable, it is found that it is possible to consistently test for a unit root in a flow
variable even when the span of the data is fixed, and, furthermore, that increasing the span
of the data is not in itself sufficient for consistent testing. Some new simulation results are
provided while the theoretical results obtained help to explain recent simulation findings by
other authors involving unit root tests with flow variables.
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1. Introduction

Although there is an enormous literature on testing for a unit root in a time series,

only a relatively small amount of this research has been concerned with the differing ways

in which the variable itself can be observed. By far the most intensively researched topic in

this category is testing for unit roots in processes observed at seasonal frequencies, giving

rise to the possibility of seasonal unit roots in addition to the more common zero frequency

unit root. But there are also more fundamental differences in the ways in which variables are

recorded that arise due to their very nature. Some variables, such as prices, interest rates,

and the capital stock, can in principle be observed at any given point in time, while others,

such as consumption expenditures, income and dividends, are observed as the accumulation

of an underlying rate of flow over a given time interval. While the effects of such temporal

aggregation are well known in the estimation of (at least asymptotically) stationary systems,

such effects have received rather less attention in the unit root literature. This paper aims

to fill at least part of that gap.

The issue of unit root test consistency when the sampling frequency is allowed to vary

was analysed by Perron (1991). He dealt with a stock variable generated by an Ornstein-

Uhlenbeck process and considered the effects of allowing data span and/or sampling fre-

quency to vary. One of his main findings was that a test for a unit root is only consistent if

the span of data is allowed to increase. This implies that it is not sufficient merely to rely on

more frequent observations for a given span (and hence a larger sample) in order for a test

to be consistent. So far, however, there appear to be no theoretical results for the case in

which the variable is a flow and is observed as the accumulation of the underlying rate over

the sampling interval, although two simulation studies have been published on this topic,

by Choi (1992) and by Ng (1995). These simulation studies are discussed in more detail

later in this paper in the light of the theoretical results obtained. One might be tempted

to conjecture that the way in which a variable is sampled (as a stock or a flow) will have

no bearing on the properties of unit root tests. But, as will be seen, this is not so. The

temporal aggregation inherent in observing a flow variable acts not only to induce a moving

average disturbance but also to change the order of magnitude of the variance (in terms of

sampling frequency) as compared to a stock. If h denotes the sampling interval, e.g. a year

or a quarter, then the variance of a flow is O(h3) as h ↓ 0, compared with O(h) for a stock.

As a consequence, the orders of magnitude of various sample moments involving flow data

are different to the stock case, and the predictions of Perron (1991) in the case of a stock

variable no longer hold. In particular, it is possible to obtain a consistent test of a unit root
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with a flow variable even when the span of data is fixed, and, furthermore, increasing the

span is not in itself sufficient for a consistent test to exist.

The paper is organised as follows. Section 2 defines the model and derives the behaviour

of the observed flow variable under both the null and alternative hypotheses. Sections 3 and

4 derive the limiting distributions of the ordinary least squares (OLS) and instrumental vari-

ables (IV) estimators under the null and alternative hypotheses, respectively, while section 5

analyses the consistency properties of the unit root tests. Section 6 reports some simulation

results and also discusses the simulation results of Choi (1992) and Ng (1995) in the context

of the theoretical results obtained here. Section 7 concludes, while the Appendix contains

the proofs of all lemmas, theorems and propositions contained in the paper.

2. The model

The variable of interest, y, is assumed to satisfy the Ornstein-Uhlenbeck process

dy(t) = γy(t)dt+ σdw(t), t > 0, (1)

where w(t) denotes a standard Wiener process, 0 < σ < ∞, and the initial value y(0) is

assumed to be fixed. Observations on y(t) are made at intervals of length h > 0 over the

interval 0 < t ≤ N , where N denotes the span of the data. The number of observations is

therefore given by T = N/h. Note that h denotes the sampling interval while 1/h denotes

the sampling frequency. Thus if the unit of time denotes a year and the data are observed

quarterly, then the sampling interval is h = 1/4 and the sampling frequency is 1/h = 4

(observations per year). When y is a flow variable the observations take the form of integrals

of y(t) over each observation interval of length h, denoted

yth =
∫ th

th−h
y(r)dr, t = 1, . . . , T. (2)

The observed sequence is therefore yh, y2h, . . . , yTh.

The null hypothesis of interest corresponds to γ = 0 in (1), in which case y(t) evolves as a

random walk in continuous time. The two-sided alternative is that γ 6= 0. When γ > 0, y(t)

is explosive, while if γ < 0, y(t) is stable. Tests of the null hypothesis are conducted using

the observed discrete time data, whose law of motion, under both the null and alternative

hypotheses, is given in Theorem 1.
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Theorem 1. (a) Under the alternative hypothesis γ 6= 0, the discrete time flow data generated

by (1) satisfy the difference equation

yth = αhyth−h + uth, t = 1, . . . , T, (3)

where αh = eγh and uth is defined by

uth =
σ

γ

[∫ h

0
(eγs − 1) dw(th− s) +

∫ h

0

(
eγh − eγs

)
dw(th− h− s)

]
. (4)

The autocovariance properties of uth are given by

E
(
u2
th

)
= γ0(h) =

σ2

γ2

[
h(e2γh + 1) +

1− e2γh

γ

]
=

2
3
σ2h3 +O(h4),

E (uthuth−h) = γ1(h) =
σ2

γ2

[
e2γh − 1

2γ
− heγh

]
=

1
6
σ2h3 +O(h4),

while E (uthuth−kh) = 0 for k ≥ 2.

(b) Under the null hypothesis γ = 0, the discrete time flow data generated by (1) satisfy the

difference equation

yth = yth−h + uth, t = 1, . . . , T, (5)

where uth is defined by

uth = σ

[∫ h

0
s dw(th− s) +

∫ h

0
(h− s) dw(th− h− s)

]
. (6)

The autocovariance properties of uth are given by E
(
u2
th

)
= 2

3σ
2h3, E (uthuth−h) = 1

6σ
2h3,

while E (uthuth−kh) = 0 for k ≥ 2.

The discrete time flow data therefore satisfy an ARMA(1,1) process when γ 6= 0 while the

first differences are MA(1) when γ = 0. Note that the autoregressive parameter αh > 1

when γ > 0 and 0 < αh < 1 when γ < 0. Note, too, that when h ↓ 0 it follows that

αh → 1 regardless of whether γ is positive or negative. Theorem 1 immediately highlights

a crucial difference between the models satisfied by flow data and stock data. With stock

data,1 observations are of the form yth = y(th), rather than in the form of an integral, and

although the autoregressive coefficient is eγh in both cases, the disturbance is white noise in

1For results in the case of a stock variable, see Perron (1991) and section 6 of Phillips (1987a).
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the case of a stock, whereas it is MA(1) for a flow. But there is also a more fundamental

difference. Theorem 1 shows that the variance and autocovariance of the disturbance are

O(h3) for a flow, but Perron (1991) has shown that for a stock the variance is O(h). This

difference in the order of magnitude of the variance of the process arises because of the

integrating filter that is applied to flow variables to yield the observations. Whether this has

an effect on estimation and testing is investigated below.

The asymptotic analysis that follows is concerned with the behaviour of certain estima-

tors and test statistics as h ↓ 0 and/or N ↑ ∞. It is convenient to index h, N (and T ) by

n, as in Phillips (1987a) and Perron (1991), so that Tn = Nn/hn, and to allow n ↑ ∞. It

will always be required that Tn ↑ ∞ as n ↑ ∞, which will be achieved if Nn ↑ ∞ and/or

hn ↓ 0. It is then natural to consider the triangular array of random variables
{
{ynt}Tnt=1

}∞
n=1

generated by

ynt = αnynt−1 + unt, t = 1, . . . , Tn, (7)

where αn = eγhn , yn0 = y(0) is fixed, and unt has variance γ0(hn) and autocovariance γ1(hn),

as defined in Theorem 1.

The estimators under consideration are the ordinary least squares (OLS) estimator of

αn in (7) and an instrumental variable (IV) estimator defined by

α̂n =

Tn∑
t=1

ynt−1ynt

Tn∑
t=1

y2
nt−1

and α̃n =

Tn∑
t=1

ynt−2ynt

Tn∑
t=1

ynt−2ynt−1

(8)

respectively. The OLS estimator has been shown by Phillips (1987a) to be a consistent

estimator of αn under the null hypothesis of γ = 0 but is perhaps not a natural estimator

under the alternative here in view of the MA disturbance. In fact, α̂n is inconsistent under

γ < 0 because of the correlation between ynt−1 and unt. The IV estimator, in contrast,

is a consistent estimator of αn even when γ < 0, and was suggested by Hall (1989) for

the purposes of testing for unit roots in ARMA models. The test statistics that will be

considered are the normalised estimators

φ̂n(α̂n − 1) and φ̃n(α̃n − 1), (9)

where φ̂n and φ̃n denote the appropriate normalisations. The consistency of these statistics

will be investigated by deriving the limiting distribution under the null hypothesis (γ = 0)
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and the alternative (γ 6= 0) and then examining whether the power tends to unity as n→∞.

Three main cases will be considered. The first is where Nn = N is fixed and hn ↓ 0; the

second is where Nn ↑ ∞ and hn ↓ 0; the third is where Nn ↑ ∞ and hn = h is fixed. In

all cases Tn ↑ ∞. In cases where the test statistics (9) may be inconsistent, the scope for

developing consistent alternatives will also be explored. In some cases, it is also necessary to

introduce further sub-cases to adequately capture the asymptotic properties. These depend

on the value of γ under the alternative hypothesis and also on the behaviour of h3
nNn when

considering the IV estimator under the alternative hypothesis. Details are given in section 4.

The principal set of cases and sub-cases used is defined in Table 1 so as to avoid repetition

later in the paper.

Table 1
Combinations of Nn, hn and y(0)

Case Description (as n ↑ ∞)

1(a) Nn = N , hn ↓ 0, y(0) = 0

1(b) Nn = N , hn ↓ 0, y(0) 6= 0

2(a) Nn ↑ ∞, hn ↓ 0, y(0) = 0

2(b) Nn ↑ ∞, hn ↓ 0, y(0) 6= 0

2(b)(i) Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0

2(b)(ii) Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0

2(b)(iii) Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0

3 Nn ↑ ∞, hn = h

3(a) Nn ↑ ∞, hn = h, y(0) = 0

3(b) Nn ↑ ∞, hn = h, y(0) 6= 0

Note: The constants N , k and h are all positive.

3. The distributions under the null hypothesis

Under γ = 0, ynt evolves according to the random walk

ynt = ynt−1 + unt, yn0 = y(0), t = 1, . . . , Tn = Nn/hn, (10)

where, from Theorem 1(b), unt is an MA(1) process with variance (2/3)σ2h3
n and autoco-

variance (1/6)σ2h3
n. When hn ↓ 0 as n ↑ ∞, the variance of unt tends to zero, and so

for the asymptotic analysis in such cases the normalised disturbances uhnt = unt/h
3/2
n are
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considered. Since unt is Gaussian it follows that uhnt is also a Gaussian MA(1) process with

variance (2/3)σ2 and autocovariance (1/6)σ2. As a consequence, the following weak laws of

large numbers apply as n ↑ ∞:

1
Tn

Tn∑
t=1

uhnt
p→ 0,

1
Tn

Tn∑
t=1

(
uhnt

)2 p→ 2
3
σ2, and

1
Tn

Tn∑
t=1

uhntu
h
nt−1

p→ 1
6
σ2, (11)

where
p→ denotes convergence in probability. Furthermore, an invariance principle applies

to the partial sum process Snt =
∑t
j=1 unj , so that the random function

Xn(r) = T−1/2
n h−3/2

n Sn[Tnr] = T−1/2
n h−3/2

n

[Tnr]∑
j=1

unj ⇒ σW (r)

as n ↑ ∞, where [x] denotes the integer part of x, ⇒ denotes weak convergence of the

associated probability measures, and W (r) is a standard Wiener process on r ∈ [0, 1].2 The

validity of this invariance principle is easily demonstrated by checking that the conditions

of, say, Lemma 2.2 of Phillips (1987a) are satisfied. Since, when γ = 0,

α̂n − 1 =

Tn∑
t=1

ynt−1unt

Tn∑
t=1

y2
nt−1

and α̃n − 1 =

Tn∑
t=1

ynt−2unt

Tn∑
t=1

ynt−2ynt−1

,

the above convergence results are used to derive the properties of the sample moments∑Tn
t=1 ynt−1unt,

∑Tn
t=1 y

2
nt−1,

∑Tn
t=1 ynt−2unt and

∑Tn
t=1 ynt−2ynt−1. The limiting properties of

the first two can be used to derive the properties of the latter two using the relationships

Tn∑
t=1

ynt−2unt =
Tn∑
t=1

ynt−1unt −
Tn∑
t=1

untunt−1, (12)

which is obtained by substituting ynt−2 = ynt−1 − unt−1, and

Tn∑
t=1

ynt−2ynt−1 =
Tn∑
t=1

y2
nt−2 +

Tn∑
t=1

ynt−2unt−1, (13)

obtained by the substitution ynt−1 = ynt−2 + unt−1. The results of interest are given in

Lemma 1 below. It is convenient, for presentation of the results, to define the random

variables

Φ(W,ω) =
σ2

2

[
W (1)2 − ω

]
, Ψ(W ) = σ

∫ 1

0
W (r)dr and Ψ(W 2) = σ2

∫ 1

0
W (r)2dr,

where ω is a constant. These random variables occur frequently in the limits in Lemma 1.

2Note that the long run variance here is (2/3)σ2 + 2(1/6)σ2 = σ2.
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Lemma 1. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random variables generated by

(10). Then, under the null hypothesis γ = 0, as n ↑ ∞:

Case 1(a): Nn = N, hn ↓ 0, y(0) = 0.

1
h2
n

Tn∑
t=1

ynt−1unt ⇒ NΦ(W, 2/3),
1
hn

Tn∑
t=1

y2
nt−1 ⇒ N2Ψ(W 2),

1
h2
n

Tn∑
t=1

ynt−2unt ⇒ NΦ(W, 1),
1
hn

Tn∑
t=1

ynt−2ynt−1 ⇒ N2Ψ(W 2).

Case 1(b): Nn = N, hn ↓ 0, y(0) 6= 0.

1
hn

Tn∑
t=1

ynt−1unt ⇒ N1/2σy(0)W (1), hn

Tn∑
t=1

y2
nt−1

p→ Ny(0)2,

1
hn

Tn∑
t=1

ynt−2unt ⇒ N1/2σy(0)W (1), hn

Tn∑
t=1

ynt−2ynt−1
p→ Ny(0)2.

Case 2(a): Nn ↑ ∞, hn ↓ 0, y(0) = 0.

1
h2
nNn

Tn∑
t=1

ynt−1unt ⇒ Φ(W, 2/3),
1

hnN2
n

Tn∑
t=1

y2
nt−1 ⇒ Ψ(W 2),

1
h2
nNn

Tn∑
t=1

ynt−2unt ⇒ Φ(W, 1),
1

hnN2
n

Tn∑
t=1

ynt−2ynt−1 ⇒ Ψ(W 2).

Case 2(b)(i): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0.

1

hnN
1/2
n

Tn∑
t=1

ynt−1unt ⇒ σy(0)W (1),
hn
Nn

Tn∑
t=1

y2
nt−1

p→ y(0)2,

1

hnN
1/2
n

Tn∑
t=1

ynt−2unt ⇒ σy(0)W (1),
hn
Nn

Tn∑
t=1

ynt−2ynt−1
p→ y(0)2.

Case 2(b)(ii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0.

Tn∑
t=1

ynt−1unt ⇒ k2Φ(W, 2/3) + kσy(0)W (1),

hn
Nn

Tn∑
t=1

y2
nt−1 ⇒ k2Ψ(W 2) + 2ky(0)Ψ(W ) + y(0)2,

Tn∑
t=1

ynt−2unt ⇒ k2Φ(W, 1) + kσy(0)W (1),

hn
Nn

Tn∑
t=1

ynt−2ynt−1 ⇒ k2Ψ(W 2) + 2ky(0)Ψ(W ) + y(0)2.
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Case 2(b)(iii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0.

1
h2
nNn

Tn∑
t=1

ynt−1unt ⇒ Φ(W, 2/3),
1

hnN2
n

Tn∑
t=1

y2
nt−1 ⇒ Ψ(W 2),

1
h2
nNn

Tn∑
t=1

ynt−2unt ⇒ Φ(W, 1),
1

hnN2
n

Tn∑
t=1

ynt−2ynt−1 ⇒ Ψ(W 2).

Case 3: Nn ↑ ∞, hn = h.

1
Tn

Tn∑
t=1

ynt−1unt ⇒ h3Φ(W, 2/3),
1
T 2
n

Tn∑
t=1

y2
nt−1 ⇒ h3Ψ(W 2),

1
Tn

Tn∑
t=1

ynt−2unt ⇒ h3Φ(W, 1),
1
T 2
n

Tn∑
t=1

ynt−2ynt−1 ⇒ h3Ψ(W 2).

A number of features of Lemma 1 are worth commenting upon. First, it is apparent that

different rates of convergence apply in the different cases and, with the exception of case

3, that the limiting behaviour depends on whether y(0) is zero or not. The results in case

3 correspond to the usual asymptotics obtained in unit root autoregression with a fixed

sampling frequency and an MA(1) disturbance, and are covered by Theorem 3.1 of Phillips

(1987a). In this case, the effect of the initial condition vanishes asymptotically. Lemma 1

also establishes that in case 2(b) the relative rates at which hn ↓ 0 and Nn ↑ ∞ are important

when y(0) 6= 0. Three possible types of behaviour for the product hnN
1/2
n are considered and

the limits of the sample moments, and the appropriate normalisations, are different in each

case. This feature does not occur with stock data, in which the relative rates of convergence

of hn and Nn to their limits is not important; see Lemma 1 of Perron (1991).

The limiting distributions of the appropriately normalised estimators α̂n and α̃n are

given in Theorem 2, in which the notation Z(W,ω) = Φ(W,ω)/Ψ(W 2) is used to depict a

commonly-occuring random variable. Note that the variable Z(W, 1) denotes the familiar

limiting distribution of Tn(α̂n−1) when h = 1 and unt is a white noise process; see equation

(10) of Phillips (1987a).

Theorem 2. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random variables generated by

(10). Then, under the null hypothesis γ = 0, as n ↑ ∞:

Case 1(a): Nn = N, hn ↓ 0, y(0) = 0.

Tn(α̂n − 1)⇒ Z(W, 2/3), Tn(α̃n − 1)⇒ Z(W, 1).
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Case 1(b): Nn = N, hn ↓ 0, y(0) 6= 0.

T 2
n(α̂n − 1)⇒ σN3/2W (1)

y(0)
, T 2

n(α̃n − 1)⇒ σN3/2W (1)
y(0)

.

Case 2(a): Nn ↑ ∞, hn ↓ 0, y(0) = 0.

Tn(α̂n − 1)⇒ Z(W, 2/3), Tn(α̃n − 1)⇒ Z(W, 1).

Case 2(b)(i): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0.

T 2
n

N
3/2
n

(α̂n − 1)⇒ σW (1)
y(0)

,
T 2
n

N
3/2
n

(α̃n − 1)⇒ σW (1)
y(0)

.

Case 2(b)(ii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0.

Tn(α̂n − 1)⇒ k2Φ(W, 2/3) + kσy(0)W (1)
k2Ψ(W 2) + 2ky(0)Ψ(W ) + y(0)2 ,

Tn(α̃n − 1)⇒ k2Φ(W, 1) + kσy(0)W (1)
k2Ψ(W 2) + 2ky(0)Ψ(W ) + y(0)2 .

Case 2(b)(iii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0.

Tn(α̂n − 1)⇒ Z(W, 2/3), Tn(α̃n − 1)⇒ Z(W, 1).

Case 3: Nn ↑ ∞, hn = h.

Tn(α̂n − 1)⇒ Z(W, 2/3), Tn(α̃n − 1)⇒ Z(W, 1).

It is worthwhile commenting on the results in Theorem 2 on a case-by-case basis. In case 1,

Tn(α̂n − 1) converges to the random variable Z(W, 2/3) when y(0) = 0, which written more

fully gives

Tn(α̂n − 1)⇒
1
2

[
W (1)2 − 2

3

]
∫ 1

0
W (r)2dr

as n ↑ ∞. The adjustment factor of 2/3 in the numerator arises due to the correlation

between the regressor ynt−1 and the disturbance unt, and is equal to the ratio of the variance

of unt/h
3/2
n , equal to 2σ2/3, to the long run variance of the normalised partial sum of

unt/h
3/2
n , Xn(r), which equals σ2. This is precisely the distribution that would be expected

from Theorem 3.1 of Phillips (1987a) when h = 1 and Tn ↑ ∞, and indeed occurs in case

3. The IV estimator adjusts for the correlation between the regressor and the disturbance,
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resulting in the familiar distribution Z(W, 1). When y(0) 6= 0, the initial value is important,

and it turns out that the appropriate normalisation for α̂n− 1 and α̃n− 1 is T 2
n , rather than

Tn, the limiting distibution being N
(
0, σ2N3/y(0)2

)
in this case since W (1) ∼ N(0, 1). In

fact, Tn(α̂n − 1) and Tn(α̃n − 1) both converge to zero in this case. In case 2, the limiting

distribution of the normalised OLS estimator α̂n is once more Z(W, 2/3) in parts (a) and

(b)(iii), in the latter case the condition hnN
1/2
n ↑ ∞ ensuring that the effects of the initial

condition disappear asymptotically. The same holds for the IV estimator α̃n, except that

the limiting distribution is Z(W, 1). In parts (b)(i) and (b)(ii) of case 2, different behaviour

of hnN
1/2
n as n ↑ ∞ results in different limiting distributions, in part (b)(i) the appropriate

normalisation being T 2
n/N

3/2
n for both estimators. In part (b)(i) the limiting distributions

are once again normal in view of W (1) being a standard normal random variable.

4. The distributions under the alternative hypothesis

When γ 6= 0, ynt evolves according to (7) i.e. ynt = αnynt−1 +unt, (t = 1, . . . , Tn), where

αn = eγhn . In this case, interest centres on

α̂n − αn =

Tn∑
t=1

ynt−1unt

Tn∑
t=1

y2
nt−1

and α̃n − αn =

Tn∑
t=1

ynt−2unt

Tn∑
t=1

ynt−2ynt−1

,

and Lemma 2 below provides the limiting properties of suitably normalised versions of the

numerators and denominators. As in section 3, the sample moments that define the IV

estimator can be derived from those defining the OLS estimator via the following formulae:

Tn∑
t=1

ynt−2unt = e−γhn
Tn∑
t=1

ynt−1unt − e−γhn
Tn∑
t=1

untunt−1, (14)

Tn∑
t=1

ynt−2ynt−1 = eγhn
Tn∑
t=1

y2
nt−2 +

Tn∑
t=1

ynt−2unt−1. (15)

Note that in case 3, when hn = h is fixed, the true value of αn = α = eγh, which is

independent of n. When hn ↓ 0 as n ↑ ∞, the laws of large numbers in (11) apply, but when

hn = h is fixed,

1
Tn

Tn∑
t=1

unt
p→ 0,

1
Tn

Tn∑
t=1

u2
nt

p→ γ0(h), and
1
Tn

Tn∑
t=1

untunt−1
p→ γ1(h),

10



where the functions γ0(h) and γ1(h) are defined in Theorem 1(a). The characterisation of

the limits in Lemma 2 is aided by defining the stochastic integral

J(r) =
∫ r

0
e(r−s)γNdW (s), 0 ≤ r ≤ 1.

For fixed r, J(r) ∼ N(0, (e2rγN − 1)/2γN). It is also convenient to define the random

variables

Ψ(J2) = σ2
∫ 1

0
J(r)2dr and Ω(J,W, ω) =

σ2

2

[∫ 1

0
J(r)dW (r) + ω

]
,

for some constant ω, as well as two independent standard normal random variables, denoted

ξ and η. Finally, the constant

θh =
α2γ0(h) + 2αγ1(h)

α2 − 1
=
e2γhγ0(h) + 2eγhγ1(h)

e2γh − 1

is used as a scaling factor, and d→ denotes convergence in distribution.

Lemma 2. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random variables generated by

(7). Then, under the alternative hypothesis γ 6= 0, as n ↑ ∞:

Case 1(a): Nn = N, hn ↓ 0, y(0) = 0.

1
h2
n

Tn∑
t=1

ynt−1unt ⇒ NΩ(J,W, 1/6),
1
hn

Tn∑
t=1

y2
nt−1 ⇒ N2Ψ(J2),

1
h2
n

Tn∑
t=1

ynt−2unt ⇒ NΩ(J,W, 0),
1
hn

Tn∑
t=1

ynt−2ynt−1 ⇒ N2Ψ(J2).

Case 1(b): Nn = N, hn ↓ 0, y(0) 6= 0.

Tn∑
t=1

ynt−1unt
p→ 0, hn

Tn∑
t=1

y2
nt−1 ⇒ y(0)2 (e2γN − 1)

2γ
,

Tn∑
t=1

ynt−2unt
p→ 0, hn

Tn∑
t=1

ynt−2ynt−1 ⇒ y(0)2 (e2γN − 1)
2γ

.

11



Case 2(a): Nn ↑ ∞, hn ↓ 0, y(0) = 0.

If γ > 0 :
2γNn

eγNnh2
nNn

Tn∑
t=1

ynt−1unt ⇒ σ2ξη,
(2γNn)2

e2γNnhnN2
n

Tn∑
t=1

y2
nt−1 ⇒ σ2η2,

2γNn

eγNnh2
nNn

Tn∑
t=1

ynt−2unt ⇒ σ2ξη,
(2γNn)2

e2γNnhnN2
n

Tn∑
t=1

ynt−2ynt−1 ⇒ σ2η2.

If γ < 0 :
(−2γNn)1/2

h2
nNn

Tn∑
t=1

ynt−1unt ⇒ σ2N(0, 1),
−2γNn

hnN2
n

Tn∑
t=1

y2
nt−1

p→ σ2,

1
h2
nNn

Tn∑
t=1

ynt−2unt
p→ −1

6
σ2,

−2γNn

hnN2
n

Tn∑
t=1

ynt−2ynt−1
p→ σ2.

Case 2(b): Nn ↑ ∞, hn ↓ 0, y(0) 6= 0.

If γ > 0 :
1

e2γNn

Tn∑
t=1

ynt−1unt
p→ 0,

hn
e2γNn

Tn∑
t=1

y2
nt−1

p→ y(0)2

2γ
,

1
e2γNn

Tn∑
t=1

ynt−2unt
p→ 0,

hn
e2γNn

Tn∑
t=1

ynt−2ynt−1
p→ y(0)2

2γ
.

Case 2(b)(i): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0.

If γ < 0 :
Tn∑
t=1

ynt−1unt
p→ 0, hn

Tn∑
t=1

y2
nt−1

p→ −y(0)2

2γ
,

Tn∑
t=1

ynt−2unt
p→ 0, hn

Tn∑
t=1

ynt−2ynt−1
p→ −y(0)2

2γ
.

Case 2(b)(ii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0.

If γ < 0 :
Tn∑
t=1

ynt−1unt
p→ −2k2σ2

3
, hn

Tn∑
t=1

y2
nt−1

p→ −y(0)2

2γ
,

Tn∑
t=1

ynt−2unt
p→ −5k2σ2

6
, hn

Tn∑
t=1

ynt−2ynt−1
p→ −y(0)2

2γ
.
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Case 2(b)(iii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0.

If γ < 0 :
1

h2
nNn

Tn∑
t=1

ynt−1unt
p→ −2σ2

3
, hn

Tn∑
t=1

y2
nt−1

p→ −y(0)2

2γ
,

1
h2
nNn

Tn∑
t=1

ynt−2unt
p→ −5σ2

6
,

hn

Tn∑
t=1

ynt−2ynt−1
p→ −y(0)2

2γ
if h3

nNn ↓ 0,

hn

Tn∑
t=1

ynt−2ynt−1
p→ −y(0)2

2γ
− 5k′σ2

6
if h3

nNn → k′,

1
h2
nNn

Tn∑
t=1

ynt−2ynt−1
p→ −2σ2

3
if h3

nNn ↑ ∞.

Case 3: Nn ↑ ∞, hn = h.

If γ < 0 :
1
Tn

Tn∑
t=1

ynt−1unt
p→ γ1(h),

1
Tn

Tn∑
t=1

y2
nt−1

p→ γ0(h) + 2eγhγ1(h)
(1− e2γh)

,

1
Tn

Tn∑
t=1

ynt−2unt
p→ 0,

1
Tn

Tn∑
t=1

ynt−2ynt−1
p→ eγhγ0(h) + (1 + e2γh)γ1(h)

(1− e2γh)
.

Case 3(a): Nn ↑ ∞, hn = h, y(0) = 0.

If γ > 0 :
1

α(Tn−2)

Tn∑
t=1

ynt−1unt
d→ θ2

hξη,
(α2 − 1)
α2(Tn−1)

Tn∑
t=1

y2
nt−1

d→ θ2
hη

2,

1
α(Tn−2)

Tn∑
t=1

ynt−2unt
d→ e−γhθ2

hξη,
(α2 − 1)
α2(Tn−1)

Tn∑
t=1

ynt−2ynt−1
d→ eγhθ2

hη
2.

Case 3(b): Nn ↑ ∞, hn = h, y(0) 6= 0.

If γ > 0 :
1

α(Tn−2)

Tn∑
t=1

ynt−1unt
d→ θhξ

(
eγhy(0) + θhη

)
,

(α2 − 1)
α2(Tn−1)

Tn∑
t=1

y2
nt−1

d→
(
eγhy(0) + θhη

)2
,

1
α(Tn−2)

Tn∑
t=1

ynt−2unt
d→ e−γhθhξ

(
eγhy(0) + θhη

)
,

(α2 − 1)
α2(Tn−1)

Tn∑
t=1

ynt−2ynt−1
d→ eγh

(
eγhy(0) + θhη

)2
.

A number of features of the convergence of the sample moments in Lemma 2 are worth

commenting upon. In case 1, with N fixed and hn ↓ 0, the convergence does not depend on

whether γ is in the explosive or stable region, but more on the value of y(0). This is not

13



so in cases 2 and 3, where rather different limiting behaviour is obtained in the stable and

explosive cases. In cases 2 and 3, the effects of y(0) are also important. In case 2(b)(iii), when

γ < 0, the behaviour of h3
nNn as n ↑ ∞ is important and leads to different normalisations

(and different limits) for
∑Tn
t=1 ynt−2ynt−1, depending on whether h3

nNn ↓ 0, → k′ or ↑ ∞.

The results in cases 3(a) and 3(b), in which γ > 0 and hence ynt is explosive, are derived by

extending the methods of Anderson (1959) to the case of an ARMA(1,1) process.

The results in Lemma 2 enable the limiting distributions of the appropriately normalised

differences (α̂n − αn) and (α̃n − αn) to be obtained. These are presented in Theorem 3,

along with the limiting distributions of the appropriately normalised deviations (α̂n−1) and

(α̃n − 1).

Theorem 3. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random variables generated by

(7). Then, under the alternative hypothesis γ 6= 0, as n ↑ ∞:

Case 1(a): Nn = N, hn ↓ 0, y(0) = 0.

Tn(α̂n − αn)⇒ Ω(J,W, 1/6)
Ψ(J2)

, Tn(α̂n − 1)⇒ Ω(J,W, 1/6)
Ψ(J2)

+ γN,

Tn(α̃n − αn)⇒ Ω(J,W, 0)
Ψ(J2)

, Tn(α̃n − 1)⇒ Ω(J,W, 0)
Ψ(J2)

+ γN.

Case 1(b): Nn = N, hn ↓ 0, y(0) 6= 0.

Tn(α̂n − αn)
p→ 0, Tn(α̂n − 1)

p→ γN,

Tn(α̃n − αn)
p→ 0, Tn(α̃n − 1)

p→ γN.

Case 2(a): Nn ↑ ∞, hn ↓ 0, y(0) = 0.

If γ > 0 :
eγNnTn
2γNn

(α̂n − αn)⇒ ξ

η
,

Tn
Nn

(α̂n − 1)
p→ γ,

eγNnTn
2γNn

(α̃n − αn)⇒ ξ

η
,

Tn
Nn

(α̃n − 1)
p→ γ.

If γ < 0 :
Tn√

(−2γNn)
(α̂n − αn)⇒ N(0, 1),

Tn
Nn

(α̂n − 1)
p→ γ,

Tn
(−2γNn)

(α̃n − αn)⇒ −1
6
,

Tn
Nn

(α̃n − 1)
p→ 4γ

3
.
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Case 2(b): Nn ↑ ∞, hn ↓ 0, y(0) 6= 0.

If γ > 0 :
Tn
Nn

(α̂n − αn)
p→ 0,

Tn
Nn

(α̂n − 1)
p→ γ,

Tn
Nn

(α̃n − αn)
p→ 0,

Tn
Nn

(α̃n − 1)
p→ γ.

Case 2(b)(i): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0.

If γ < 0 :
Tn
Nn

(α̂n − αn)
p→ 0,

Tn
Nn

(α̂n − 1)
p→ γ,

Tn
Nn

(α̃n − αn)
p→ 0,

Tn
Nn

(α̃n − 1)
p→ γ.

Case 2(b)(ii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0.

If γ < 0 :
Tn
Nn

(α̂n − αn)
p→ 4k2γσ2

3y(0)2
,

Tn
Nn

(α̂n − 1)
p→ γ[4k2σ2 + 3y(0)2]

3y(0)2
,

Tn
Nn

(α̃n − αn)
p→ 5k2γσ2

3y(0)2
,

Tn
Nn

(α̃n − 1)
p→ γ[5k2σ2 + 3y(0)2]

3y(0)2
.

Case 2(b)(iii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0.

If γ < 0 :
T 3
n

N4
n

(α̂n − αn)
p→ 4γσ2

3y(0)2
,

T 3
n

N4
n

(α̂n − 1)
p→ 4γσ2

3y(0)2
,

T 3
n

N4
n

(α̃n − αn)
p→ 5γσ2

3y(0)2
,

T 3
n

N4
n

(α̃n − 1)
p→ 5γσ2

3y(0)2
if h3

nNn ↓ 0,

T 3
n

N4
n

(α̃n − αn)
p→ 1 +

5k′γσ2

3y(0)2
,
T 3
n

N4
n

(α̃n − 1)
p→ 1 +

5k′γσ2

3y(0)2
if h3

nNn → k′,

(α̃n − αn)
p→ 5

4
, (α̃n − 1)

p→ 5
4

if h3
nNn ↑ ∞.

Case 3: Nn ↑ ∞, hn = h.

If γ < 0 : (α̂n − α)
p→ (1− e2γh)γ1(h)
γ0(h) + 2eγhγ1(h)

, (α̂n − 1)
p→ (1− e2γh)γ1(h)
γ0(h) + 2eγhγ1(h)

+ eγh − 1,

(α̃n − α)
p→ 0, (α̃n − 1)

p→ eγh − 1.

Case 3(a): Nn ↑ ∞, hn = h, y(0) = 0.

If γ > 0 :
αTn

α2 − 1
(α̂n − α) d→ ξ

η
, (α̂n − 1)

p→ eγh − 1,

αTn

α2 − 1
(α̃n − α) d→ e−2γhξ

η
, (α̃n − 1)

p→ eγh − 1.

15



Case 3(b): Nn ↑ ∞, hn = h, y(0) 6= 0.

If γ > 0 :
αTn

α2 − 1
(α̂n − α) d→ θhξ

αy(0) + θhη
=

N(0, θ2
h)

N(αy(0), θ2
h)
, (α̂n − 1)

p→ eγh − 1,

αTn

α2 − 1
(α̃n − α) d→ e−2γhθhξ

αy(0) + θhη
=
N(0, e−4γhθ2

h)
N(αy(0), θ2

h)
, (α̃n − 1)

p→ eγh − 1.

The limiting distributions in Theorem 3 are derived from the convergence results in Lemma 2.

In case 1(a) the limiting distributions are represented as a functional of the random process

J(r), while the results for case 2, in which Nn ↑ ∞, are based on the behaviour of the

appropriate functional when γNn → ±∞. It is interesting to note that, in case 2(a), when

γ < 0 the appropriate normalisation factor is different for the OLS and IV estimators. The

source of this can be traced to Lemma 2 in which the normalisations for
∑Tn
t=1 ynt−1unt and∑Tn

t=1 ynt−2unt differ by a factor of (−2γNn)1/2. The distributions in case 2(a) when γ > 0

are Cauchy in view of ξ and η being independent standard normal random variables. The

same is true in case 3(a) when γ > 0. In case 3, when γ < 0 the limiting distributions have

not strictly been derived, but for the purposes of establishing the consistency (or otherwise)

of the test statistics, the reported probability limits turn out to be sufficient. It is in the

analysis of test consistency that the results of Theorems 2 and 3 will now be employed.

5. The consistency of the test statistics

A test is consistent if its power tends to unity asymptotically for fixed alternatives,

where the power is the probability of correctly rejecting a false null hypothesis. Thus, if

Tn(α̂n−1) is the statistic of interest, and κ denotes the critical value of the test, consistency

requires that, under the alternative hypothesis,

lim
n↑∞

Pr (Tn(α̂n − 1) > κ) = 1.

The consistency properties of the test statistics of interest are summarised in Theorem 4.

Theorem 4. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random variables generated by

(7), and consider testing the null hypothesis γ = 0 against a fixed alternative γ 6= 0. Then:
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Case 1(a): Nn = N , hn ↓ 0, y(0) = 0.

Tn(α̂n − 1) and Tn(α̃n − 1) are not consistent.

Case 1(b): Nn = N , hn ↓ 0, y(0) 6= 0.

T 2
n(α̂n − 1) and T 2

n(α̃n − 1) are consistent.

Case 2(a): Nn ↑ ∞, hn ↓ 0, y(0) = 0.

Tn(α̂n − 1) and Tn(α̃n − 1) are consistent.

Case 2(b)(i): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↓ 0, y(0) 6= 0.

(T 2
n/N

3/2
n )(α̂n − 1) and (T 2

n/N
3/2
n )(α̃n − 1) are consistent.

Case 2(b)(ii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n → k, y(0) 6= 0.

Tn(α̂n − 1) and Tn(α̃n − 1) are consistent.

Case 2(b)(iii): Nn ↑ ∞, hn ↓ 0, hnN
1/2
n ↑ ∞, y(0) 6= 0.

Tn(α̂n − 1) and Tn(α̃n − 1) are consistent except when

γ < 0 and h3
nNn ↑ ∞.

Case 3: Nn ↑ ∞, hn = h.

Tn(α̂n − 1) and Tn(α̃n − 1) are consistent.

Theorem 4 shows a mixed pattern of consistency for the statistics across the different cases.

The statistics are not consistent at all when N is fixed and y(0) = 0 (case 1(a)), although

when y(0) 6= 0 it is possible to construct consistent tests based on T 2
n(α̂n−1) and T 2

n(α̃n−1).

When Nn ↑ ∞ as n ↑ ∞ consistent test statistics do exist except in case 2(b)(iii), when γ < 0,

hnN
1/2
n ↑ ∞ and h3

nNn ↑ ∞.

The results in Theorem 4 contrast with those of Perron (1991) who showed3 (with a stock

variable) that the statistic Tn(α̂n−1) is consistent if and only if the span (Nn) increases with

n. Theorem 4, case 2(b)(iii), identifies an exception to this rule when the variable of interest

is a flow. Furthermore, in case 1(b), Theorem 4 indicates that it is possible to conduct a

consistent test of the null hypothesis γ = 0 even when the span of the data is fixed. These

findings are summarised in the following proposition.

Proposition 1. Let
{
{ynt}Tnt=1

}∞
n=1

denote a triangular array of random flow variables gener-

ated by (7), and consider testing the null hypothesis γ = 0 against a fixed alternative γ 6= 0.

Then:

(a) the condition that Nn ↑ ∞ as n ↑ ∞ is not sufficient to ensure that the test is consistent;

3See Theorem 1 of Perron (1991).
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(b) it is possible, in some circumstances, to construct consistent tests even when Nn = N

is fixed as n ↑ ∞.

The theoretical results contained in Theorem 4 and summarised in Proposition 1 are in-

vestigated using Monte Carlo simulations in section 6, and are used to help explain other

recently published simulation results.

6. Some simulation results

The finite sample content of the theoretical results can be explored with the aid of

simulations. In particular, the power of the unit root test statistics in cases 1(a), 1(b)

and 2(b)(i) was simulated for the null hypothesis of a unit root (γ = 0) against the fixed

stationary alternative γ = −0.2. The series were generated, for each fixed span N and

frequency h, according to

yt = eγhyt−1 + ut, t = 1, . . . , T = N/h,

where y0 = y(0) takes on a fixed value and ut is a normally distributed MA(1) process

with variance γ0(h) and first-order autocovariance γ1(h) (the underlying variance parameter

σ2 = 1). A total of 10,000 replications were conducted for each combination of N and h

considered, which for cases 1(a) and 1(b) corresponds to the 24 combinations of N = 16,

32, 64, and 128 and h = 2, 1, 1/2, 1/4, 1/12 and 1/52. The values of h can be interpreted

as corresponding to observations at the biennial, annual, biannual, quarterly, monthly and

weekly frequencies, respectively, while the data spans are then interpreted to range between

16 and 128 years. For case 2(b)(i) it is required that hN1/2 ↓ 0 as h ↓ 0 and N ↑ ∞, so

the following (N,h) pairs were considered: (10,2), (12,1), (16,1/2), (18,1/4), (36,1/12) and

(240,1/52). With these combinations hN1/2 falls from approximately 6.32 to approximately

0.30, which is easily verified. The appropriate critical values for the tests were also simulated

with 10,000 replications but with γ = 0 under the null. The size of the tests was set at 5% and

one-tailed tests against the stationary alternative were considered. Tables 2 and 3 contain

the simulation results.
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Table 2
Power of one-tailed test of unit root (γ = 0) against stationary
alternative γ = −0.2, cases 1(a) and 1(b)

h

Statistic N 2 1 1
2

1
4

1
12

1
52

Case 1(a): y(0) = 0

T (α̂− 1) 16 0.164 0.175 0.184 0.177 0.188 0.194

32 0.373 0.419 0.420 0.458 0.427 0.450

64 0.843 0.871 0.910 0.897 0.914 0.901

128 0.999 1.000 1.000 1.000 1.000 1.000

T (α̃− 1) 16 0.128 0.159 0.178 0.170 0.183 0.194

32 0.308 0.380 0.387 0.438 0.417 0.438

64 0.733 0.809 0.886 0.883 0.908 0.902

128 0.991 0.999 1.000 1.000 1.000 1.000

Case 1(b): y(0) = 0.1

T 2(α̂− 1) 16 0.158 0.175 0.184 0.188 0.346 0.952

32 0.375 0.419 0.447 0.464 0.642 1.000

64 0.841 0.883 0.902 0.930 0.989 1.000

128 0.999 1.000 1.000 1.000 1.000 1.000

T 2(α̃− 1) 16 0.129 0.145 0.156 0.134 0.235 0.707

32 0.282 0.373 0.402 0.409 0.480 0.999

64 0.718 0.818 0.869 0.904 0.955 1.000

128 0.990 0.999 1.000 1.000 1.000 1.000

Case 1(b): y(0) = 1

T 2(α̂− 1) 16 0.183 0.207 0.235 0.290 1.000 1.000

32 0.414 0.556 0.773 0.998 1.000 1.000

64 0.884 0.971 0.999 1.000 1.000 1.000

128 1.000 1.000 1.000 1.000 1.000 1.000

T 2(α̃− 1) 16 0.156 0.183 0.217 0.279 1.000 1.000

32 0.264 0.314 0.315 0.860 1.000 1.000

64 0.729 0.865 0.969 1.000 1.000 1.000

128 0.993 1.000 1.000 1.000 1.000 1.000
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Table 3
Power of one-tailed test of unit root (γ = 0) against stationary
alternative γ = −0.2, case 2(b)(i)

N,h

Statistic 10,2 12,1 16,1
2 18,1

4 36, 1
12 240, 1

52

y(0) = 0.1

T 2

N3/2
(α̂− 1) 0.102 0.125 0.181 0.213 0.723 1.000

T 2

N3/2
(α̃− 1) 0.082 0.113 0.154 0.167 0.464 1.000

y(0) = 1

T 2

N3/2
(α̂− 1) 0.128 0.134 0.260 0.603 1.000 1.000

T 2

N3/2
(α̃− 1) 0.127 0.130 0.174 0.308 1.000 1.000

y(0) = 10

T 2

N3/2
(α̂− 1) 0.617 1.000 1.000 1.000 1.000 1.000

T 2

N3/2
(α̃− 1) 0.019 1.000 1.000 1.000 1.000 1.000

The first panel of Table 2 contains the results pertinent to case 1(a), in which span N

is fixed and frequency h tends to zero. The entries should therefore be read along each row.

According to Theorem 4, the statistics T (α̂ − 1) and T (α̃ − 1) are inconsistent, and this

manifests itself in Table 2 by the simulated power not approaching unity as h gets smaller.

The high power when N = 128 is a reflection of the span being sufficiently large for the

test to have good power. The reason for this can be seen from Theorem 3, case 1(a), which

shows that, under the alternative γ 6= 0,

Tn(α̂n − 1)⇒
Ω(J,W, 1

6)
Ψ(J2)

+ γN, Tn(α̃n − 1)⇒ Ω(J,W, 0)
Ψ(J2)

+ γN.

When N is large, the term γN dominates this distribution, and with γ < 0 the simulated

values of Tn(α̂n−1) and Tn(α̃n−1) take on large negative values which are significant. Note

that, when γ = −0.2 and N = 128, the product γN = −25.6, while the largest simulated

critical values (under the null) are −5.1 (OLS) and −11.2 (IV).

The second panel of Table 2 relates to case 1(b) which again holds N fixed while h
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tends to zero but in which y(0) 6= 0. In this case the statistics T 2(α̂− 1) and T 2(α̃− 1) are

consistent, according to Theorem 4, and indeed, even with a small value of y(0) = 0.1, it is

seen that the power tends to unity as the entries are read along each row. For larger values

of y(0) than those contained in Table 2, for example y(0) = 10 or 100, the power is unity

for all reported entries except for that corresponding to N = 16, h = 2. Virtually identical

results are obtained with negative values of y(0), any differences arising due to sampling

variability. That this is so is an implication of Theorem 2 which shows that the limiting

distributions of these statistics are normal under the null, with the variance proportional to

y(0)−2.

In Table 3 the results relate to case 2(b)(i) in which span N tends to infinity, frequency

h tends to zero while the product hN1/2 also tends to zero. Under the null hypothesis the

limiting distribution of the statistics is once again normal with variance proportional to

y(0)−2, and the results with the corresponding negative values of y(0) are virtually identical

to those reported for positive values of y(0). The consistency of the statistics is evident from

the entries in the Table. It is interesting to note, though, that the finite sample power is

uniformly higher for the OLS-based test statistics than it is for the IV-based statistics, in

both Tables 2 and 3.

It is worthwhile, at this point, to reflect briefly on the results of other simulation studies

of the power of unit root tests with flow data and varying sampling frequency, in light of

the theoretical results obtained in this paper. Choi (1992) provides simulation results based

on a fixed span of 100 periods and two frequencies, 1 and 1/4, corresponding to annual and

quarterly data respectively. With the initial value set equal to zero, his experimental design

therefore corresponds to case 1(a) here. His main findings are that power is higher with

the quarterly data than with the annual data, and that the Phillips-Perron tests are more

powerful than the augmented Dickey-Fuller tests. The fact that power is found to be higher

with the quarterly data is also seen in Table 2, but the fact that we have shown such tests to

be inconsistent is an important additional insight into these simulation findings. Ng (1995)

conducts a more comprehensive investigation which also considers the IV-based statistic

T (α̃ − 1). Her simulations allow span and number of observations to vary between 25 and

1000, hence yielding values of frequency between 40 and 1/40. The value of y(0) is taken to

be zero and hence Ng’s findings cover cases 1(a), 2(a) and 3(a). The fixed alternative is taken

to be γ = −0.2, as here. Among Ng’s findings are that increasing sample size while keeping

span fixed increases power but at a diminishing rate. This is presumably a manifestation of

test inconsistency shown in Theorem 4 for case 1(a). It is also possible to pick out from Ng’s
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Table 1 of results the consistency of the tests in cases 2(a) and 3(a). In the former case this

is achieved by reading down diagonally but jumping columns, so that span increases and

frequency falls simultaneously, and in the latter case simply by reading down diagonally, so

that frequency is fixed while span increases. All these simulation results are predicted by

the theory derived in this paper.

7. Concluding comments

This paper has analysed the consistency properties of two tests for a unit root in flow

data when the sampling frequency is allowed to vary. The limiting distributions of both the

OLS-based statistic and the IV-based statistic are derived under both the null and alternative

hypotheses, which enables the consistency properties of the tests to be established. Contrary

to the situation with a stock variable, it is found that it is possible to consistently test for

a unit root in a flow variable even when the span of the data is fixed, and, furthermore,

that increasing the span is not in itself sufficient for consistent testing. The appropriate

test statistic when span is fixed involves normalisation by the square of the sample size,

implying a very fast convergence of the autoregressive coefficient estimator to unity under

the null hypothesis. Now that time series data are becoming available at higher frequencies,

the results contained in this paper provide some theoretical guidance to practitioners who

wish to test for unit roots in flow variables.
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Appendix

Proof of Theorem 1. (a) The solution to (1) is given by

y(th) = eγthy(0) + σ

∫ th

0
eγ(th−s)dw(s), (A1)

which yields the difference equation

y(th) = eγhy(th− h) + σ

∫ th

th−h
eγ(th−s)dw(s). (A2)

Integrating (A2) once more over the interval [th− h, th] yields an equation for flows with a

disturbance term in the form of a double integral. This double integral representation can be

avoided by following the approach of Bergstrom (1984) whose Theorem 8 derives the same

equation for the case h = 1. Integrating (1) over [th− h, th] yields

y(th)− y(th− h) = γ

∫ th

th−h
y(s)ds+ σ

∫ th

th−h
dw(s) = γyth + σ

∫ h

0
dw(th− s),

which can be solved for yth to give

yth = γ−1 [y(th)− y(th− h)]− σγ−1
∫ h

0
dw(th− s). (A3)

From (A2),

y(th)− y(th− h) = eγh [y(th− h)− y(th− 2h)]

+σ

[∫ h

0
eγrdw(th− s)−

∫ h

0
eγrdw(th− h− r)

]

= eγh
[
γ

∫ h

0
y(th− h− s)ds+ σ

∫ h

0
dw(th− h− s)

]

+σ

[∫ h

0
eγsdw(th− s)−

∫ h

0
eγsdw(th− h− s)

]
. (A4)

Substituting (A4) into (A3) yields

yth =
eγh

γ

[
γyth−h + σ

∫ h

0
dw(th− h− s)

]

+
σ

γ

[∫ h

0
eγsdw(th− s)−

∫ h

0
eγsdw(th− h− s)

]
− σ

γ

∫ h

0
dw(th− s),

which yields (3) upon rearranging the terms. The autocovariance properties of uth then

follow from its definition, with the orders of magnitude derived from expanding eγh as the

infinite series
∑∞
j=0(γh)j/j! and rearranging terms.

(b) Setting γ = 0 and integrating (1) twice over [th − h, th] yields (5) with uth defined in

23



terms of a double integral. Alternatively, uth can be obtained by taking the limit of (4) as

γ ↓ 0, which yields (6) since

lim
γ↓0

eγs − 1
γ

= s and lim
γ↓0

eγh − eγs

γ
= h− s.

The autocovariances then follow from (6). 2

Proof of Lemma 1. The objective is to express the sample moments in terms of the random

function Xn(r). This is achieved by noting that

Snt−1 = Snt−1Tn

∫ t/Tn

(t−1)/Tn
dr = Tn

∫ t/Tn

(t−1)/Tn
Sn[Tnr]dr = T 3/2

n h3/2
n

∫ t/Tn

(t−1)/Tn
Xn(r)dr,

S2
nt−1 = S2

nt−1Tn

∫ t/Tn

(t−1)/Tn
dr = Tn

∫ t/Tn

(t−1)/Tn
S2
n[Tnr]

dr = T 2
nh

3
n

∫ t/Tn

(t−1)/Tn
Xn(r)2dr.

This enables the sample moments to be written

Tn∑
t=1

ynt−1unt =
Tn∑
t=1

(Snt−1 + yn0)unt

=
1
2

Tn∑
t=1

(
S2
nt − S2

nt−1 − u2
nt

)
+ y(0)

Tn∑
t=1

unt

=
1
2

(
S2
nTn −

Tn∑
t=1

u2
nt

)
+ y(0)SnTn

=
Tnh

3
n

2
Xn(1)2 − 1

2

Tn∑
t=1

u2
nt + T 1/2

n h3/2
n y(0)Xn(1)

=
Nnh

2
n

2
Xn(1)2 − h2

nNn

2
1
Tn

Tn∑
t=1

(
uhnt

)2
+N1/2

n hny(0)Xn(1), (A5)

and in a similar fashion

Tn∑
t=1

y2
nt−1 =

Tn∑
t=1

(Snt−1 + yn0)2

=
Tn∑
t=1

S2
nt−1 + 2y(0)

Tn∑
t=1

Snt−1 + Tny(0)2

= T 2
nh

3
n

∫ 1

0
Xn(r)2dr + 2y(0)T 3/2

n h3/2
n

∫ 1

0
Xn(r)dr + Tny(0)2. (A6)

The sample moments for the IV estimator can be obtained using (A5) and (A6) above allied

with the representations (12) and (13) in the text, which only requires, in addition to the

above, the limit of the appropriately normalised moment
∑Tn
t=1 untunt−1. Taking each case
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in turn (all limits are taken as n ↑ ∞):

Case 1(a): From (A5) and (A6) with y(0) = 0,

1
h2
n

Tn∑
t=1

ynt−1unt =
N

2
Xn(1)2 − N

2
1
Tn

Tn∑
t=1

(
uhnt

)2
⇒ σ2N

2
W (1)2 − N

2
2
3
σ2,

1
hn

Tn∑
t=1

y2
nt−1 = N2

∫ 1

0
Xn(r)2dr ⇒ σ2N2

∫ 1

0
W (r)2dr,

1
h2
n

Tn∑
t=1

untunt−1 =
N

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ Nσ2

6
.

Case 1(b): From (A5) and (A6),

1
hn

Tn∑
t=1

ynt−1unt =
Nhn

2
Xn(1)2 − N2

2T 2
n

Tn∑
t=1

(
uhnt

)2
+N1/2y(0)Xn(1)⇒ σN1/2y(0)W (1),

hn

Tn∑
t=1

y2
nt−1 = h2

nN
2
∫ 1

0
Xn(r)2dr + 2hnN3/2y(0)

∫ 1

0
Xn(r)dr +Ny(0)2 p→ Ny(0)2,

1
hn

Tn∑
t=1

untunt−1 =
hnN

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ 0.

Case 2(a): From (A5) and (A6),

1
h2
nNn

Tn∑
t=1

ynt−1unt =
1
2
Xn(1)2 − 1

2
1
Tn

Tn∑
t=1

(
uhnt

)2
⇒ σ2

2

[
W (1)2 − 2

3

]
= Φ(W, 2/3),

1
hnN2

n

Tn∑
t=1

y2
nt−1 =

∫ 1

0
Xn(r)2dr ⇒ σ2

∫ 1

0
W (r)2dr = Ψ(W 2),

1
h2
nNn

Tn∑
t=1

untunt−1 =
1
Tn

Tn∑
t=1

uhntu
h
nt−1

p→ σ2

6
.

Case 2(b)(i): From (A5) and (A6),

1

hnN
1/2
n

Tn∑
t=1

ynt−1unt =
hnN

1/2
n

2
Xn(1)2 − hnN

1/2
n

2Tn

Tn∑
t=1

(
uhnt

)2
+ y(0)Xn(1)⇒ σy(0)W (1),

hn
Nn

Tn∑
t=1

y2
nt−1 = h2

nNn

∫ 1

0
Xn(r)2dr + 2hnN1/2

n

∫ 1

0
Xn(r)dr + y(0)2 p→ y(0)2,

1

hnN
1/2
n

Tn∑
t=1

untunt−1 =
hnN

1/2
n

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ 0.
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Case 2(b)(ii): From (A5) and (A6),

Tn∑
t=1

ynt−1unt ⇒
k2σ2

2

[
W (1)2 − 2

3

]
+ kσy(0)W (1) = k2Φ(W, 2/3) + kσy(0)W (1),

hn
Nn

Tn∑
t=1

y2
nt−1 ⇒ k2σ2

∫ 1

0
W (r)2dr + 2ky(0)σ

∫ 1

0
W (r)dr + y(0)2,

Tn∑
t=1

untunt−1 =
h2
nNn

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ k2σ2

6
.

Case 2(b)(iii): From (A5) and (A6),

1
h2
nNn

Tn∑
t=1

ynt−1unt =
1
2
Xn(1)2 − 1

2Tn

Tn∑
t=1

(
uhnt

)2
+

1

hnN
1/2
n

y(0)Xn(1)⇒ σ2

2

[
W (1)2 − 2

3

]
,

1
hnN2

n

Tn∑
t=1

y2
nt−1 =

∫ 1

0
Xn(r)2dr +

2

hnN
1/2
n

y(0)
∫ 1

0
Xn(r)dr +

1
h2
nNn

y(0)2 ⇒ σ2
∫ 1

0
W (r)2dr,

1
h2
nNn

Tn∑
t=1

untunt−1 =
1
Tn

Tn∑
t=1

uhntu
h
nt−1

p→ σ2

6
.

Case 3: From (A5) and (A6),

1
Tn

Tn∑
t=1

ynt−1unt =
h3

2
Xn(1)2 − 1

2Tn

Tn∑
t=1

(
uhnt

)2
+
h3/2

T
1/2
n

y(0)Xn(1)⇒ h3σ2

2

[
W (1)2 − 2

3

]
,

1
T 2
n

Tn∑
t=1

y2
nt−1 = h3

∫ 1

0
Xn(r)2dr + 2y(0)

h3/2

T
1/2
n

∫ 1

0
Xn(r)dr +

1
Tn
y(0)2 ⇒ h3σ2

∫ 1

0
W (r)2dr,

1
Tn

Tn∑
t=1

untunt−1 =
h3

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ h3σ2

6
.

This completes the proof. 2

Proof of Theorem 2. The limiting distributions are obtained from the convergence results

for the sample moments in Lemma 1. In the case of the OLS estimator, if the convergence of

τ1(n)
∑Tn
t=1 ynt−1unt and τ2(n)

∑Tn
t=1 y

2
nt−1 have been established, then [τ1(n)/τ2(n)] (α̂n − 1)

has the limiting distribution stated in the Theorem. A similar argument holds for the IV
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estimator. Taking each case in turn:

Case 1(a): From Lemma 1,

1
hn

(α̂n − 1)⇒
1
2

[
W (1)2 − 2

3

]
N

∫ 1

0
W (r)2dr

,
1
hn

(α̃n − 1)⇒
1
2

[
W (1)2 − 1

]
N

∫ 1

0
W (r)2dr

.

Multiplying by N gives Tn(α̂n − 1)⇒ Z(W, 2/3) and Tn(α̃n − 1)⇒ Z(W, 1) as required.

Case 1(b): From Lemma 1,

1
h2
n

(α̂n − 1)⇒ σW (1)
N1/2y(0)

,
1
h2
n

(α̃n − 1)⇒ σW (1)
N1/2y(0)

.

Multiplying by N2 gives

T 2
n(α̂n − 1)⇒ N3/2σW (1)

y(0)
and T 2

n(α̃n − 1)⇒ N3/2σW (1)
y(0)

,

as required.

Case 2(a): Noting that (h−2
n N−1

n )/(h−1
n N−2

n ) = Nn/hn = Tn yields the results in a straight-

forward fashion.

Case 2(b)(i): Noting that (h−1
n N

−1/2
n )/(hnN−1

n ) = T 2
n/N

3/2
n yields

T 2
n

N
3/2
n

(α̂n − 1)⇒ σW (1)
y(0)

,
T 2
n

N
3/2
n

(α̃n − 1)⇒ σW (1)
y(0)

,

as required.

Case 2(b)(ii): Since 1/(hnN−1
n ) = Tn the distributions for Tn(α̂n− 1) and Tn(α̃n− 1) follow

immediately from Lemma 1.

Case 2(b)(iii): This follows in the same way as case 2(a).

Case 3: The normalisation here is familiar and the h3 factors cancel out in the numerator

and denominator of both estimators, giving the stated distributions. 2

Proof of Lemma 2. Once again the objective is to express the sample moments in terms of

the function Xn(r). From (7) it follows that

ynt =
t∑

j=1

e(t−j)γhnunj + etγhnyn0, (A7)

which yields

ynTn = h3/2
n

t∑
j=1

e(Tn−j)γNn/Tnuhnj + eTnγhny(0)
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= h3/2
n

t∑
j=1

e(Tn−j)γNn/Tn
∫ j/Tn

(j−1)/Tn
T 1/2
n dXn(s) + eγNny(0)

= hnN
1/2
n

∫ 1

0
e(1−s)γNndXn(s) + eγNny(0).

Furthermore

Tn∑
t=1

y2
nt =

Tn∑
t=1

 t∑
j=1

e(t−j)γhnunj + etγhnyn0

2

=
Tn∑
t=1

 t∑
j=1

e(t−j)γNn/Tnunj

2

+ 2y(0)
Tn∑
t=1

etγNn/Tn
t∑

j=1

e(t−j)γNn/Tnunj

+y(0)2
Tn∑
t=1

e2tγNn/Tn = A1n +A2n +A3n.

Considering each term in turn:

A1n = h3
n

Tn∑
t=1

 t∑
j=1

e(t−j)γNn/Tnuhnj

2

= h3
n

Tn∑
t=1

 t∑
j=1

e(t−j)γNn/Tn
∫ j/Tn

(j−1)/Tn
T 1/2
n dXn(s)

2

= Tnh
3
n

Tn∑
t=1

Tn

∫ t/Tn

(t−1)/Tn

 t∑
j=1

e(t−j)γNn/Tn
∫ j/Tn

(j−1)/Tn
dXn(s)

2

dr

= hnN
2
n

∫ 1

0

(∫ r

0
e(r−s)γNndXn(s)

)2

dr;

A2n = 2y(0)h3/2
n

Tn∑
t=1

etγNn/Tn
t∑

j=1

e(t−j)γNn/Tnuhnj

= 2y(0)h3/2
n

Tn∑
t=1

etγNn/Tn
t∑

j=1

e(t−j)γNn/Tn
∫ j/Tn

(j−1)/Tn
T 1/2
n dXn(s)

= 2y(0)T 1/2
n h3/2

n

Tn∑
t=1

etγNn/TnTn

∫ t/Tn

(t−1)/Tn

 t∑
j=1

e(t−j)γNn/Tn
∫ j/Tn

(j−1)/Tn
dXn(s)

 dr
= 2y(0)N3/2

n

∫ 1

0
erγNn

(∫ r

0
e(r−s)γNndXn(s)

)
dr.

Combining the expressions for A1n, A2n and A3n yields

Tn∑
t=1

y2
nt = hnN

2
n

∫ 1

0

(∫ r

0
e(r−s)γNndXn(s)

)2

dr

+2y(0)N3/2
n

∫ 1

0
erγNn

(∫ r

0
e(r−s)γNndXn(s)

)
dr + y(0)2

Tn∑
t=1

e2tγNn/Tn . (A8)
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An expression for
∑Tn
t=1 ynt−1unt can be obtained by squaring both sides of (A7) to give

y2
nt = e2γhny2

nt−1 + 2eγhnynt−1unt + u2
nt.

Subtracting y2
nt−1 from both sides and summing from t = 1 to t = Tn gives

y2
nTn − y

2
n0 =

(
e2γhn − 1

) Tn∑
t=1

y2
nt−1 + 2eγhn

Tn∑
t=1

ynt−1unt +
Tn∑
t=1

u2
nt,

which can be solved to give

Tn∑
t=1

ynt−1unt =
e−γhn

2

(
y2
nTn − y

2
n0 −

(
e2γhn − 1

) Tn∑
t=1

y2
nt−1 − h3

n

Tn∑
t=1

(
uhnt

)2
)
. (A9)

These expressions are required for the OLS estimator, and combined with (14) and (15)

in the text, also provide the results for the IV estimator once the limiting properties of∑Tn
t=1 untunt−1 are established. Taking each case in turn:

Case (1a): From (A8), with y(0) = 0 and Nn = N , h−1
n ynTn ⇒ N1/2σJ(1). Furthermore,

1
hn

Tn∑
t=1

y2
nt ⇒ N2σ2

∫ 1

0
J(r)2dr,

while

1
h2
n

Tn∑
t=1

ynt−1unt =
e−γhn

2

[(
1
hn
ynTn

)2

− 1
hn

(
e2γhn − 1

) 1
hn

Tn∑
t=1

y2
nt−1 −

N

Tn

Tn∑
t=1

(
uhnt

)2
]

⇒ Nσ2

2

(
J(1)2 − 2γN

∫ 1

0
J(r)2dr − 2

3

)
,

which holds because, as n ↑ ∞ and hn ↓ 0, e−γhn → 1 and (e2γhn − 1)/hn = h−1
n (2γhn +

O(h2
n))→ 2γ. Now, from equation (8) of Phillips (1987b),

J(1)2 = 1 + 2γN
∫ 1

0
J(r)2dr + 2

∫ 1

0
J(r)dW (r),

from which it can be established that

1
2

(
J(1)2 − 2γN

∫ 1

0
J(r)2dr − 2

3

)
=
∫ 1

0
J(r)dW (r) +

1
6
.

Finally,

1
h2
n

Tn∑
t=1

untunt−1 =
N

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ Nσ2

6
.
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Case 1(b): From (7), ynTn
p→ eγNy(0). When y(0) 6= 0, it is necessary to consider all three

components that constitute
∑Tn
t=1 y

2
nt. It was shown, in case 1(a), that h−1

n A1n converges to

a well defined limit, and it is also holds that

A2n ⇒ 2y(0)N3/2
∫ 1

0
eγNrJ(r)dr.

Turning to A3n, it can be shown that

2γN
Tn

Tn∑
t=1

e2tγN/Tn → e2γN − 1 as n ↑ ∞,

and so T−1
n A3n → y(0)2(e2γN − 1)/(2γN). This can be written alternatively as hnA3n →

y(0)2(e2γN − 1)/(2γ), which establishes the result in Lemma 2 because hnA1n and hnA2n

both converge to zero. Finally,

Tn∑
t=1

ynt−1unt =
e−γhn

2

[
(ynTn)2 − y(0)2 − 1

hn

(
e2γhn − 1

)
hn

Tn∑
t=1

y2
nt−1 −

h2
nN

Tn

Tn∑
t=1

(
uhnt

)2
]

p→ 1
2

e2γNy(0)2 − y(0)2 − 2γy(0)2

(
e2γN − 1

)
2γ

 = 0,

while

Tn∑
t=1

untunt−1 =
h2
nN

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ 0.

Case 2(a): From case 1(a) it is known that, as hn ↓ 0 with N fixed,

1
h2
n

Tn∑
t=1

ynt−1unt ⇒
Nσ2

2

(∫ 1

0
J(r)dW (r) +

1
6

)
,

1
hn

Tn∑
t=1

y2
nt ⇒ N2σ2

∫ 1

0
J(r)2dr.

When γ > 0 and defining c = γNn, Lemma 2 of Phillips (1987b) shows that, with J(r) =∫ r
0 e

(r−s)cdW (s),

2c
ec

∫ 1

0
J(r)dW (r)⇒ ξη,

(2c)2

e2c

∫ 1

0
J(r)2dr ⇒ η2 as c ↑ ∞,

where ξ and η are independent standard normal random variables, Furthermore,

2γNn

eγNnh2
nNn

Tn∑
t=1

untunt−1 =
2γNn

eγNnTn

Tn∑
t=1

uhntu
h
nt−1

p→ 0,

and the results follow for the γ > 0 case. When γ < 0, the results once more utilise Lemma

2 of Phillips (1987b) which shows that

(−2c)1/2
∫ 1

0
J(r)dW (r)⇒ N(0, 1), −2c

∫ 1

0
J(r)2dr

p→ 1 as c ↓ −∞.
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Finally, although

(−2γNn)1/2

h2
nNn

Tn∑
t=1

untunt−1 =
(−2γNn)1/2

Tn

Tn∑
t=1

uhntu
h
nt−1

p→∞,

an alternative normalisation does yield a finite limit, namely

1
h2
nNn

Tn∑
t=1

untunt−1 =
1
Tn

Tn∑
t=1

uhntu
h
nt−1

p→ σ2

6
,

which determines the normalisation for
∑Tn
t=1 ynt−2unt using (14).

Case 2(b): When γ > 0 it follows from case 1(b) that

1
e2γNn

y2
nTn

p→ y(0)2,
hn

e2γNn

Tn∑
t=1

y2
nt−1

p→ y(0)2

2γ
.

Hence from (A9),

1
e2γNn

Tn∑
t=1

ynt−1unt

=
e−γhn

2

(
y2
nTn
− y2

n0

e2γNn
− (e2γhn − 1)

hn

hn
e2γNn

Tn∑
t=1

y2
nt−1 −

h2
nNn

e2γNnTn

Tn∑
t=1

(
uhnt

)2
)

p→ y(0)2 − 2γ
y(0)2

2γ
= 0.

The results applicable to the IV estimator then follow because

1
e2γNn

Tn∑
t=1

untunt−1 =
h3
n

e2γNn

Tn∑
t=1

uhntu
h
nt−1

p→ 0.

Case 2(b)(i): When γ < 0 the normalisation of the components in (A9) changes. It is now

the case that eγNn ↓ 0 as n ↑ ∞ so that

ynTn
p→ 0,

1
eγNn

ynTn
p→ y(0), hn

Tn∑
t=1

y2
nt−1

p→ −y(0)2

2γ
,

the latter limit being positive as required since γ < 0. Since, from (A9),

Tn∑
t=1

ynt−1unt =
e−γhn

2

(
y2
nTn − y

2
n0 −

(
e2γhn − 1

) Tn∑
t=1

y2
nt−1 −

h2
nNn

Tn

Tn∑
t=1

(
uhnt

)2
)
,

it follows that

Tn∑
t=1

ynt−1unt
p→ −y(0)2 − 2γ

(
−y(0)2

2γ

)
= 0.
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The IV results follow because, when hnN
1/2
n ↓ 0,

Tn∑
t=1

untunt−1 =
h2
nNn

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ 0.

Case 2(b)(ii): When γ < 0 and hnN
1/2
n → k as n ↑ ∞, the arguments in 2(b)(i) yield

Tn∑
t=1

ynt−1unt
p→ −y(0)2 − 2γ

(
−y(0)2

2γ

)
− 2k2σ2

3
= −2k2σ2

3
,

Tn∑
t=1

untunt−1 =
h2
nNn

Tn

Tn∑
t=1

uhntu
h
nt−1

p→ k2σ2

6
.

Case 2(b)(iii): When γ < 0 and hnN
1/2
n ↑ ∞ as n ↑ ∞,

1
h2
nNn

Tn∑
t=1

ynt−1unt

=
e−γhn

2

(
y2
nTn
− y2

n0

h2
nNn

− (e2γhn − 1)
hn

hn
h2
nNn

Tn∑
t=1

y2
nt−1 −

1
Tn

Tn∑
t=1

(
uhnt

)2
)

p→ −2σ2

3
,

1
h2
nNn

Tn∑
t=1

untunt−1 =
1
Tn

Tn∑
t=1

uhntu
h
nt−1

p→ σ2

6
.

Recall that
∑Tn
t=1 ynt−2ynt−1 = eγhn

∑Tn
t=1 y

2
nt−2 +

∑Tn
t=1 ynt−2unt−1, and it is known that

hn

Tn∑
t=1

y2
nt−2

p→ −y(0)2

2γ
,

1
h2
nNn

Tn∑
t=1

ynt−2unt−1
p→ −2σ2

3
.

Note further that

1
h2
nNn

Tn∑
t=1

y2
nt−2 =

1
h3
nNn

(
hn

Tn∑
t=1

y2
nt−2

)
,

hn

Tn∑
t=1

ynt−2unt−1 = h3
nNn

(
1

h2
nNn

Tn∑
t=1

ynt−2unt−1

)
.

If h3
nNn ↓ 0 or h3

nNn → k′ (a constant), the appropriate normalisation is hn, while if

h3
nNn ↑ ∞, the normalisation is 1/h2

nNn, giving the results in the lemma.

Case 3: From (A7) it follows that

Tn∑
t=1

y2
nt =

Tn∑
t=1

 t∑
j=1

e(t−j)γhunj + etγhyn0

2

=
Tn∑
t=1

 t∑
j=1

e(t−j)γhunj

2

+ 2y(0)
Tn∑
t=1

etγh
t∑

j=1

e(t−j)γhunj + y(0)2
Tn∑
t=1

e2tγh.
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Considering the first term,

1
Tn

Tn∑
t=1

 t∑
j=1

e(t−j)γhunj

2

=
1
Tn

Tn∑
t=1

t∑
j=1

e2(t−j)γhu2
nj +

2eγh

Tn

Tn∑
t=1

t∑
j=2

e2(t−j)γhunjunj−1 + op(1),

the op(1) term corresponding to sums of terms of the form unjunj−i for i > 1, which are

uncorrelated. Now, as n ↑ ∞,

1
Tn

Tn∑
t=1

t∑
j=1

e2(t−j)γhu2
nj =

1
Tn

Tn∑
t=1

u2
nt

Tn−t∑
j=0

e2jγh p→ γ0(h)
1− e2γh

,

1
Tn

Tn∑
t=1

t∑
j=2

e2(t−j)γhunjunj−1 =
1
Tn

Tn∑
t=2

untunt−1

Tn−t∑
j=0

e2jγh p→ γ1(h)
1− e2γh

,

and hence

1
Tn

Tn∑
t=1

 t∑
j=1

e(t−j)γhunj

2

p→ γ0(h) + 2eγhγ1(h)
1− e2γh

.

Turning to the second term,

1
Tn
y(0)

Tn∑
t=1

etγh
t∑

j=1

e(t−j)γhunj =
1
Tn
y(0)

Tn∑
t=1

e2tγh
t∑

j=1

e−jγhunj

=
1
Tn
y(0)

Tn∑
t=1

e−tγhunt

Tn∑
j=t

e2jγh

=
1
Tn
y(0)

Tn∑
t=1

e−tγhunt

[
e2γh

1− e2γh

(
e2(t−1)γh − e2Tnγh

)]

=
1
Tn
y(0)

e2Tnγh

1− e2γh

Tn∑
t=1

unt
p→ 0.

The third and final term is clearly o(Tn). Combining these results yields the expression in

the lemma. Next,

1
Tn

Tn∑
t=1

ynt−1unt =
1
Tn

Tn∑
t=1

t−1∑
j=1

e(t−1−j)γhunj + e(t−1)γhyn0

unt
=

1
Tn

Tn∑
t=2

t−1∑
j=1

e(t−1−j)γhunjunt +
1
Tn
y(0)

Tn∑
t=1

e(t−1)γhunt

=
1
Tn

Tn∑
t=2

untunt−1 + op(1)
p→ γ1(h),

since the only terms in the first summation that are uncorrelated are those for which j = t−1

(note that j ≤ t− 1). Finally, the limits for the terms determining the IV estimator follow
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from (14) and (15), noting that

1
Tn

Tn∑
t=1

untunt−1
p→ γ1(h)

and that eγhn = eγh = α.

Cases 3(a), 3(b): When γ > 0 the result for y(0) = 0 (case 3(a)) can be obtained as a special

case of y(0) 6= 0 (case 3(b)) and hence the proof of the latter is given. The proof follows

Anderson (1959), suitably adapted to allow for the moving average disturbance (Anderson

deals with the purely autoregressive model). Let β = α−1 = e−γh, so that 0 < β < 1, and

consider the random process

znt = βt−2ynt−1 =
t−1∑
j=1

βj−1unj + αyn0.

From equation (2.6) of Anderson (1959),

β2(Tn−2)
Tn∑
t=1

y2
nt−1 − (1− β2)−1z2

Tn =

(
β2(Tn−2)

Tn∑
t=1

y2
nt−1 −

1− β2Tn

1− β2
z2
Tn

)

+

(
1− β2Tn

1− β2
z2
Tn −

1
1− β2

z2
Tn

)
,

and the objective is to show that this term converges to zero in probability. Since znt =

znt−s +
∑s
j=1 β

t−j−1unt−j it follows that znTn−s− znTn = −
∑s
j=1 β

Tn−j−1unTn−j , and it can

be shown that

E (znTn−s − znTn)2 = E

 s∑
j=1

βTn−j−1unTn−j

2

=
[
γ0(h) + 2β−1γ1(h)

]
β2(Tn−s−1)

s−1∑
j=0

β2j

≤
[
γ0(h) + 2β−1γ1(h)

] β2(Tn−s−1)

1− β2
,

E (znTn−s + znTn)2 ≤ 2E (znTn−s)
2 + 2E (znTn)2

≤ 4E (znTn)2

= 4

γ0(h)
Tn−2∑
j=0

β2j + 2βγ1(h)
Tn−3∑
j=0

β2j + α2y(0)2


≤ 4

(
γ0(h) + 2βγ1(h)

1− β2
+ α2y(0)2

)
.

Now
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E

∣∣∣∣∣β2(Tn−2)
Tn∑
t=1

y2
nt−1 −

1− β2Tn

1− β2
z2
nTn

∣∣∣∣∣ ≤
Tn−1∑
s=1

β2sE
∣∣∣z2
nTn−s − z

2
nTn

∣∣∣
=

Tn−1∑
s=1

β2sE |(znTn−s − znTn) (znTn−s + znTn)|

≤
Tn−1∑
s=1

β2s
[
E (znTn−s − znTn)2E (znTn−s + znTn)2

]1/2
≤ 2

(
γ0(h) + 2βγ1(h)

1− β2
+ α2y(0)2

)1/2
(
γ0(h) + 2β−1γ1(h)

1− β2

)1/2 Tn−1∑
s=1

βTn+s−1

≤ 2
(
γ0(h) + 2βγ1(h)

1− β2
+ α2y(0)2

)1/2
(
γ0(h) + 2β−1γ1(h)

1− β2

)1/2
βTn

1− β
,

so that, by Chebyshev’s inequality,

Pr

(∣∣∣∣∣β2(Tn−2)
Tn∑
t=1

y2
nt−1 −

1− β2Tn

1− β2
z2
nTn

∣∣∣∣∣ > ε

)
≤ K

ε
βTn → 0

as n ↑ ∞, while

E

(
β2Tn

1− β2
z2
nTn

)
≤ Cβ2Tn → 0

as n ↑ ∞, thus establishing that

β2(Tn−2)
Tn∑
t=1

y2
nt−1 − (1− β2)−1z2

nTn

p→ 0.

Now znTn ∼ N(αy(0), σ2
zn) where

σ2
zn = γ0(h)

Tn−2∑
j=0

β2j + 2βγ1(h)
Tn−3∑
j=0

β2j

is derived from the earlier definition of znt. As n ↑ ∞, σ2
zn → θ2

h and the limiting distribution

of znTn has the representation αy(0) + θhη.

Turning to the numerator of α̂n − α, it is convenient to introduce the random process

xnt =
∑t−1
j=0 β

junt−j and to consider the difference

βTn−2
Tn∑
t=1

ynt−1unt − xnTnznTn =
Tn−1∑
s=1

βsunTn−s (znTn−s − znTn) .

Then, using earlier results,
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E

∣∣∣∣∣βTn−2
Tn∑
t=1

ynt−1unt − xnTnznTn

∣∣∣∣∣ ≤
Tn−1∑
s=1

βsE |unTn−s (znTn−s − znTn)|

≤
Tn−1∑
s=1

βs
(
Eu2

nTn−sE (znTn−s − znTn)2
)1/2

≤
Tn−1∑
s=1

βs
(
γ0(h)

[
γ0(h) + 2β−1γ1(h)

] β2(Tn−s−1)

1− β2

)1/2

≤
(
γ0(h)

[
γ0(h) + 2β−1γ1(h)

]
1− β2

)1/2 Tn−1∑
s=1

βTn−1

=

(
γ0(h)

[
γ0(h) + 2β−1γ1(h)

]
1− β2

)1/2

(Tn − 1)βTn−1,

so that by Chebyshev’s inequality,

Pr

(∣∣∣∣∣βTn−2
Tn∑
t=1

ynt−1unt − xnTnznTn

∣∣∣∣∣ > ε

)
≤ K

ε
(Tn − 1)βTn−1 → 0

as n ↑ ∞, and so βTn−2∑Tn
t=1 ynt−1unt − xnTnznTn

p→ 0. Now, from the definition of xnt it

follows that xnTn ∼ N(0, σ2
xn), where

σ2
xn = γ0(h)

Tn−1∑
j=0

β2j + 2βγ1(h)
Tn−2∑
j=0

β2j .

As n ↑ ∞, σ2
xn → θ2

h and the limiting distribution of xnTn has the representation θhξ.

Furthermore, the two variables xnTn and znTn are uncorrelated in the limit since

E (xnTnznTn) = βTn−1(Tn − 1)γ0(h) + βTn−2(Tn − 1)γ1(h) + βTn(Tn − 2)γ0(h)→ 0

as n ↑ ∞. Finally, for the IV estimator, the stated limit for
∑Tn
t=1 ynt−2ynt−1 follows from

(15) since

(α2 − 1)
α2(Tn−1)

Tn∑
t=1

ynt−2unt−1
p→ 0,

while the limit for
∑Tn
t=1 ynt−2unt follows because

1
α(Tn−2)

Tn∑
t=1

untunt−1
p→ 0.

This completes the proof. 2
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Proof of Theorem 3. The same approach as in the proof of Theorem 2 is followed, based

here on the limiting behaviour of the sample moments established in Lemma 2.

Case 1(a): From Lemma 2,

1
hn

(α̂n − αn)⇒ Ω(J,W, 1/6)
NΨ(J2)

,
1
hn

(α̃n − αn)⇒ Ω(J,W, 0)
NΨ(J2)

.

Multiplying by N yields the distributions of Tn(α̂n−αn) and Tn(α̃n−αn). Now Tn(α̂n−1) =

Tn(α̂n − αn) + Tn(αn − 1) and Tn(α̃n − 1) = Tn(α̃n − αn) + Tn(αn − 1), so it is necessary to

examine the behaviour of Tn(αn − 1) as n ↑ ∞. Since αn = eγhn = eγN/Tn ,

Tn(αn − 1) = Tn
(
eγN/Tn − 1

)
= Tn

(
γN

Tn
+

1
2

(
γN

Tn

)2

+O(T−3
n )

)
→ γN (A10)

as n ↑ ∞. This yields the stated results.

Case 1(b): By a similar argument as in case 1(a), h−1
n (α̂n−αn)

p→ 0 and h−1
n (α̃n−αn)

p→ 0,

from which the results follow using (A10).

Case 2(a): When γ > 0, Lemma 2 yields the normalisation factor for α̂n − αn and α̃n −

αn as (2γNn/e
γNnh2

nNn)/((2γNn)2/e2γNnhnN
2
n) = eγNnTn/2γNn, while that for α̂n − 1

and α̃n − 1 is Tn(αn − 1) = γNn using (A10). When γ < 0, the normalisation fac-

tor is ((−2γNn)1/2/h2
nNn)/(−2γNn/hnN

2
n) = Tn/(−2γNn)1/2 for the OLS estimator, and

(1/h2
nNn)/(−2γNn/hnN

2
n) = Tn/(−2γNn) for the IV estimator. The results follow straight-

forwardly.

Cases 2(b), 2(b)(i), 2(b)(ii): The normalisation derived from Lemma 2 is Tn/Nn in all these

cases, and use is also made of the fact that (Tn/Nn)(αn − 1) = γ using (A10).

Case 2(b)(iii): In all cases except where h3
nNn ↑ ∞, the normalisation derived from Lemma

2 is T 3
n/N

4
n. Also, note that

T 3
n

N4
n

(αn − 1) =
1

h2
nNn

(
Tn
Nn

)
(αn − 1) ↓ 0

as n ↑ ∞ using (A10) and because hnN
1/2
n ↑ ∞. In the final case, the normalisation is unity

and note that αn − 1 = eγhn − 1 ↓ 0 as n ↑ ∞ because hn ↓ 0.

Case 3: The stated probability limits follow straightforwardly from Lemma 2 and from

noting that α− 1 = eγh − 1 is a constant.

Cases 3(a), 3(b): The scaling in these cases is αTn−2/(1 − α−2) = αTn/(α2 − 1), and the

distributions are obtained as the limit of xnTn/znTn , where xnTn and znTn are defined in the

proof of Lemma 2. Noting that α− 1 = eγh − 1 is a constant yields the expressions for the

deviations around unity. 2
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Proof of Theorem 4. In cases where Tn(α̂n − 1) and Tn(α̃n − 1) (or some other suitably

normalised statistics) are Op(1) under the null γ = 0 but converge in probability to ±∞

(depending on the sign of γ) under the alternative, the tests are clearly consistent. This

occurs in cases 1(b), 2(a), 2(b)(i), 2(b)(ii), most of 2(b)(iii) and 3, and is easily verfied by

the stated distributions under the alternative given in Theorem 3. In case 3, when γ < 0,

some extra work is needed to show that Tn(α̂n− 1)
p→ −∞, which follows if it can be shown

that the probability limit of (α̂n − α) plus the term α − 1 is negative. This will now be

demonstrated. From Theorem 1,

γ0(h) + 2eγhγ0(h) =
σ2

γ2

(
h(e2γh + 1) +

(1− e2γh)
h

)
+

2eγhσ2

γ2

(
e2γh − 1

2γ
− heγh

)

=
σ2

γ2

(
1− e2γh

)(
h+

1
h
− eγh

γ

)
,

while

(1− e2γh)γ1(h) = −σ
2

γ2

(1− e2γh)
2γ

[
(1− e2γh) + 2γheγh

]
.

Defining x = γh < 0 and ch = 1 + h−2 > 0, the term of interest may be written

(1− e2γh)γ1(h)
γ0(h) + 2eγhγ1(h)

+ eγh − 1 =
−[(1− e2x) + 2xex]− (1− ex)(2chx− 2ex)

2chx− 2ex

=
f(x)

2(chx− ex)
.

Clearly, the denominator is negative, while the numerator f(x) may be simplified as f(x) =

2xch(ex − 1)− 2xex − (1− ex)2. Then f(x) ≥ 0 if

ch = 1 + h−2 ≥ ex − 1
2x

+
ex

ex − 1
.

In fact, since ch ≥ 1, it is sufficient to show that the term on the right hand side is ≤ 1, which

in turn requires g(x) = (ex−1)2+2x ≤ 0. Note that g(0) = 0 while g′(x) = 2+2(ex−1)ex > 0

for x < 0, implying that g(x) ≤ 0 for x ≤ 0 and f(x) ≥ 0, as required. The only cases where

there does not exist a consistent test are case 1(a), where the statistics are Op(1) under

both the null and the alternative, and in case 2(b)(iii) when h3
nNn ↑ ∞. In the latter case,

Tn(α̃n−1)→∞ when γ < 0, and hence the test is not consistent against such an alternative.
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