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ABSTRACT

This paper analyses the effects of sampling frequency on the properties of spectral regres-
sion estimators of cointegrating parameters. Large sample asymptotic properties are derived
under three scenarios concerning the span of data and sampling frequency, each scenario de-
pending on whether span or frequency (or both) tends to infinity. The limiting distributions
are shown to be different in each case. Furthermore, the asymptotic efficiency of the es-
timators obtained with a fixed sampling frequency is compared with that obtained with a
continuous record of data, and it is shown that the only inefficiencies arise with respect to
stock variables. Some simulation results and an empirical illustration are also provided.
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1. INTRODUCTION

In some areas of economics, most notably finance, data frequency is increasingly becoming an
element of the econometrician’s decision set. In addition to making choices concerning, inter
alia, functional form and the appropriate methods of estimation and inference to use, the
frequency of data with which to conduct the analysis must also be chosen. In macroeconomics
the choice is typically between annual and quarterly frequencies, although an increasing
number of macroeconomic variables are now available on a monthly basis. In finance the
choice is even greater, with near-continuous sampling being possible in some applications.
The use of different data frequencies presumably has some effect on the properties of the
estimation and inference procedures employed. A question of some interest is, therefore:

precisely what are those effects?

Whilst it may be difficult (if not impossible) to answer this question in the generality
in which it is posed, this paper attempts to address some more specific questions, the an-
swers to which have a bearing on econometric research in certain applications. The focus
is a particular class of time series models that are in widespread use, namely models of
cointegration. The class of estimators of the cointegrating parameters that is considered is
the class of spectral regression estimators. The large sample asymptotic properties of the
estimators can be examined in a number of ways, depending on the way in which sample size
tends to infinity. For a fixed sampling frequency, the number of observations tends to infinity
if the span covered by the data tends to infinity. Conversely, for a fixed span of data, the
number of observations grows if sampling becomes more frequent. Obviously, a combination
of an increasing span and an increase in frequency also leads to an increasing sample size.
All three modes of asymptotics are considered, and it is shown that the limiting properties
of the estimators differ in each case. Hence the following more precise question is addressed:
what are the effects of increasing data span and/or increasing sampling frequency on the

asymptotic properties of spectral regression estimators of cointegrating parameters?

In view of cointegration being a feature of the long-run relationship between integrated
time series, an answer to the previous question enables further issues to be explored. For
example: is it possible to consistently estimate cointegrating parameters when the data
span is fixed? Consistency in this case refers to the asymptotic analysis in which sampling
frequency increases. Related research on testing for unit roots, for example the simulation
results of Shiller and Perron (1985), suggests that increasing span is the important factor
for test consistency, a finding confirmed by the theoretical results of Perron (1991). It is
interesting to assess whether the same is true for the consistent estimation of cointegrating
parameters. The characterisation of the limiting distributions also enables the investigation,

in cases where span tends to infinity, of the question: is there an efficiency loss associated



with sampling at a fixed frequency compared to the limiting case of continuous sampling? It
turns out that the efficiency loss can be quantified (at least in theory) and that there is only
a loss in efficiency where stock variables are concerned. Expressed in a slightly different way,
the implication is that the estimators obtained with flow data at a fixed sampling frequency
are as efficient as when based on a continuous sample. This remarkable result generalises

related work in Chambers (2000).

The effects of sampling frequency on estimators and test statistics have been analysed in
a variety of settings. Sargan (1974) derived the order of magnitude (in terms of the sampling
frequency) of the asymptotic bias of various estimators of the parameters of stationary
continuous time systems derived from approximate discrete models. Most recent research
has been univariate in nature but has relaxed the stationarity requirement. Phillips (1987a,b)
derived continuous record asymptotics for the ordinary least squares (OLS) estimator in a
first-order autoregression with a unit root. Perron (1991) considered the consistency of tests
of the random walk hypothesis and of randomness and, as mentioned above, shows that it

is the increasing span of the data, rather than the frequency, that is important.

The recent research described in the preceding paragraph has been based on a univariate
model with Brownian motion characterising the random disturbance process in continuous
time. Such a model has the advantage of generating a discrete time process that satisfies a
first-order autoregressive model with an independently and normally distributed disturbance
term. Whilst this greatly facilitates the analysis and allows the precise effects of sampling
frequency to be pinpointed, such an assumption, even extended to a multivariate Brownian
motion process, would not be appropriate in the setting of this paper. Because, for reasons
that will become apparent, the analysis here is based on the triangular error correction
model (ECM) of Phillips (1991a,b), it is important to allow the disturbance process to
characterise fully the dynamics of the cointegrated system. A process such as Brownian
motion with independent increments is thus inappropriate for this task, and so a much
more general forcing process is allowed that imposes much weaker conditions on the serial
correlation and heterogeneity properties of the random disturbance. Whilst allowing for
greater generality such an assumption requires a number of new results to be derived, in
particular the invariance principles that describe the limiting properties of suitably scaled
partial sum processes and on which many subsequent results depend. Hence the results in
this paper represent a significant advance in the sophistication of model that can be analysed
in this branch of the literature in three important dimensions. Simultaneously, the model
is multivariate; the random variables are nonstationary; and the random forcing process is

only required to satisfy much weaker conditions than the increment of Brownian motion.

The layout of the paper is as follows. Section 2 defines the underlying continuous time



model and derives some results concerning its discrete time representation for any arbitrary
sampling frequency, while Section 3 provides some preliminary notation and discussion of the
spectral estimators under examination. The important asymptotic results appear in Section
4 which also contains the results related to asymptotic efficiency comparisons and discusses
large sample inference. The results of a simulation experiment are reported in Section 5,
along with an investigation of the performance of the spectral estimators in an empirical
setting when sampling frequency is allowed to vary. Section 6 concludes the paper. The
proofs of all lemmas and theorems, as well as additional details concerning the simulations,
are contained in four appendices. This is done so as to aid the flow of the development of

the results of interest in the main body of the paper.

Finally, the following notation shall be used throughout the paper. L denotes the lag
operator such that, for a variable a;, Lix; = x¢—j for some integer j. D denotes the mean
square differential operator such that, for a variable x(¢) defined in continuous time, Dx(t)
is defined by limy o E{h "z (t+h) —z(t)] — Dz(t)}* = 0. For a random m x 1 vector process
z(t), z(®)lls = 7 El|z;(t)|°]'/%, while ||z(t)|| shall denote the Euclidean norm |z(t)| =
D7 2 (t)?]"/2. For an m x m matrix A, this norm is defined by ||A| = [, Py a?j]l/z.
Finally, = denotes weak convergence of the associated probability measures, and [z] denotes

the integer part of the real number x.

2. MODEL SPECIFICATION AND DISCRETE TIME REPRESENTATION

Consider the continuous time triangular ECM
dy(t) = =JAy(r)dr + w(r)dr, T >0, (1)

where the cointegrated variables of interest are contained in the m x 1 vector y(7), 7 denotes

the continuous time parameter, and w(7) satisfies the following assumption.

Assumption 1. w(7) is a wide-sense stationary separable continuous time random process
for which the function EFw(r)w(s)" is measurable. Furthermore, ||w;(7)|2 < oo for j =

1,...,m.

This assumption ensures that w(7) is integrable; see Rozanov (1967, Theorem 2.3). It
is weaker than requiring w(7) to be mean square continuous, and hence w(7) could, in

principle, incorporate jumps, which can be important for the modelling of financial time



series. Defining y = [y}, v5]’, where y;1 is my x 1, y2 is ma x 1, and m; + mg = m, the
ECM representation is consistent with an underlying cointegrating relationship between the
sub-vectors y1 and yo such that y; — C'ys is stationary, where C' denotes the mq X mo matrix
of cointegrating parameters. The matrix C enters (1) via the matrix A = [I,,,, —C], while
J = [In,,0]". The first m; equations of (1) then give dy;(7) = —[y1(7) —Cya(7)]dT+w1 (7)dT,
while the last mgy equations in (1) depict the common stochastic trends dys(7) = wa(7)dT,

where w has been partitioned conformably with y. The solution to (1) is given by
T
y(r) = / e~ T Ay (r)dr + e Ay(0), T >0, (2)
0

where the matrix exponential e/ is defined by the infinite series e = 32220 A7/4! and y(0)

represents the initial state.

It will be assumed that the vectors y; and yo are each comprised of a mixture of stock
variables and flow variables. Without loss of generality the variables in each vector will be
arranged with the stocks first followed by the flows, and the cointegrating matrix C will be

partitioned accordingly, so that

S(r S(r
1(;],y2<7>:[””

ys (1)

Css Csr

yl(T):[ , C=

Crs CFF

The vectors y7 and 41 are of dimensions m7 x 1 and m{”" x 1 respectively, with m{+m{ = my,
while the subvectors of y, are of similarly-defined dimensions with m3 + mf = my. The
sampling interval, i.e. the period between observations, will be denoted by h, so that the
sampling frequency is given by h™'. Observations on the stock variables are made at points
in time separated by a period of h while observations on flow variables are of the form of
integrals of the underlying rate of flow over each successive interval of length h. That the
necessary integrals exist is assured by Assumption 1. Introducing the variable t to index

observations, the observations are of the form

SR g
o Y | Y1 (th)
Yi,th = o — 1 h F 5
L Y1,tn | et yp (th — s)ds |
— S — r S T
o Y | Y5 (th)
Ya2,th = Ve - 1 h F )
| Youn | s Y5 (th — s)ds |

where t = 1,...,T and T denotes the sample size. Denoting the span of the data by N, it
follows that T'= N/h. The observations are therefore made at the points th (t =1,...,T),
which divides (continuous) time (indexed by 7) into T intervals each of length h. Note that

the flow variables are normalised by the factor 1/h. The importance of this normalisation



will become apparent below. The formulae defining the discrete time ECM are presented in

Lemma 1.

/
Lemma 1. Let y(r) be generated by (1) and let vy, = [yi’th, yéih} t=1,....,7)
denote the vector of observations on y1 and yo. Then, under Assumption 1, vy, satisfies the

triangular ECM given by
Ahyth = —¢hJAZ/th—h + gt/”n t= 17 v 7T7 (3)
where Ay, =1 —L", ¢, =1 — 7", and the subvectors of &y, are related to w(t) as follows:
h h
o = / (1 — ¢(r)]wf (th —r)dr + Css/ P(r)ws (th — r)dr
0
h
+CSF[/ (b() (th—?“d?’—l——/ 1#1 w2(th h—T)d
0
h
+ %/ Yo (r)wd (th — 2h — T)d?‘] ,
0
F I F 1 h F
n = 5 [ ol th=rar+ [Con— o] wf th—h—ryar
+CFrs E/ s (r)ws (th — r)dr + 5 / Ye(r)ws (th — h — r)dr
0 0
h h
—% / P (r)wg(th —h—r)dr — % / ¢2(r)w§q(th —2h — r)dr}
0 0

1 rh 1 rh
+CrF lh/o 1,!)5(r)w§(th —r)dr + E/o Q,Z)G(r)wg(th —h— r)dr] ,
S h S
& = /0 wy (th —r)dr,

1 rh 1 rh
&G = - /0 Y3 (r)wd (th — r)dr + - /0 Yu(r)wd (th — h — r)dr,
where ¢($) =1- eix7 gt = [gitv gét]/ = [ %7 ftlv %17 5:5/]/7 and

pi(x) = [h? = (z = h)?)/2, da(x) = (x = h)?/2, ¢s(z) =,
Ya(z) = h -, ¥s(z) =2 = ¢(x),  Yo(x) =h—x—[¢n - o(2)].

The dynamics of the continuous time system, embodied in the stationary process w(7)dr
in (1), feed through into the discrete time ECM disturbance &, via the sequence of formulae

given in Lemma 1. Even in the simplest case in which w(7)dr is an orthogonal increment



process in continuous time, these formulae show that the dynamics of &, will be rather more
sophisticated than white noise. In particular, the presence of the lagged integrals imposes a
higher-order moving average onto the discrete time dynamics. The discrete time triangular
ECM representation in (3) exists provided that w(7) is wide-sense integrable, which follows

from Assumption 1.1

The normalisation of the flow variables by the factor 1/h puts them into the same units
of measurement, regardless of the value of h. For example, suppose that h = 1 corresponds
to one year and that y denotes the rate of flow of consumers’ expenditure in dollars. Then
Y = fol y(t — r)dr denotes annual consumers’ expenditure measured in dollars per annum.
If, however, the sampling frequency is quarterly, so that h = 1/4, then y, 1= 01/ 4 y(tZ —r)dr
measures quarterly consumption in dollars per quarter, while [1/(1/4)]y, 1 measures quarterly

consumption in dollars per annum. Hence, in the latter case, the units of measurement

remain constant, regardless of the sampling frquency h.

There are, however, even more important statistical reasons for normalising the flow
variables by the factor 1/h. One of these concerns the very validity of the discrete time
ECM representation itself. Inspection of the derivation of the formulae deﬁning &1,th in the
proof of Lemma 1 in Appendix B reveals that terms of the form y(th) -1 fo (th — s)ds
feature prominently. Lemma Al in Appendix A provides a representation for this difference

in terms of an integral of w(7) in the form

h

y(th) — 7

h
y(th — s)ds = % /0 (h — s)w(th — s)ds,

which is clearly stationary if w(7) is stationary. However, if the flow variables were not

normalised in this way, the resulting expression would be (using the proof of Lemma A1)

y(th) — /Oh y(th — s)ds = (1— R)y(th — h) + /Ohu — Sw(th — s)ds.

The first term is clearly nonstationary, and hence its appearance as a component of &; 4,
would also render the discrete time ECM disturbance nonstationary as well. Thus the

discrete time ECM would no longer be a valid representation of the cointegrated system.

The relationship between &, and w(7) can also be depicted in terms of a linear (matrix)
filter. The form of this filter is presented in Lemma 2 below, although the precise definitions
of its components are confined to Appendix B in order to avoid burdening the main text

with unnecessary definitions.

'For a definition of wide-sense integrability, see Bergstrom (1984) or Rozanov (1967).



Lemma 2. Let y(7) be generated by (1). Then, under Assumption 1, the disturbance
vector &y, in the discrete time ECM (3) is related to the disturbance vector w(T) in the con-
tinuous time ECM (1) by the filtering equation &, = My (D)w(th), where the filter function
My, (z) is defined by

my (2) 1,5 0 m?§ (2)Css  miy (2)Csp
M(z) = 0 mi (2)L,r mi3 (2)Crs miy (2)Crr
0 0 mg(z)fmg 0
0 0 0 m ()1 r

and its component filters are defined in Appendiz B.

The filtering equation in Lemma 2 plays two important roles. First, it is particularly
convenient for deriving the spectral density matrix of & from that of w(r). If fS, ()
(=00 < A < 00) denotes the spectral density matrix of the continuous time process w(7),
it follows, by noting that the frequency response function of the operator D is i\, that the

spectral density matrix of &, regarded as a continuous time process, is given by
Jiree(N) = My (iX) f (AN Mp(=i))', —o0 < A < oc. (4)

Note the dependence of this spectral density on h. The spectral density matrix of &,
regarded as a discrete time process, is then obtained by applying the folding formula to (4)
to yield?
> 2k s us
FngeO) = > Jiee <)‘+ T) Ty <A< (5)

k=—0o0
The spectral density function (5) plays a role in the asymptotics in section 4. Note that the
range of A in (5) is (—m/h,w/h|. In the limit, as h | 0, sampling becomes continuous and

fhee(A) — fﬁ,gg()\)-

The second important role of the filtering equation in Lemma 2 is in the investigation
of the order of magnitude of &y, in terms of h as h | 0. This latter property is important for

the asymptotic analysis in section 4, and is presented in Lemma 3.

2See Priestley (1981, pp.504-507) for details.



Lemma 3. Under Assumption 1, the discrete time disturbance vector &, = Oy(h) as

h | 0, and satisfies the decomposition & = Cin + pin, where

h

G = gn(DYw(th) = [ “w(th = s)ds = Oy(h) and pu, = Qu(D)u(th) = Oy(1?)

as h | 0, and where Qy(2) = [My(2) — gn(2)Im] and gn(z) = (1 — e "%)/z. Furthermore,

s _
P2th = 0.

Lemma 3 suggests that some care may need to be taken with respect to estimating the
cointegrating parameters in view of & tending to zero in probability with h. This will
manifest itself more precisely in the next section in which issues of estimation are treated
more fully. The stated orders of magnitude are obtained by investigating the orders of
magnitude of the integrating filter g5(z) and of the various filters that constitute Mp/(2)
and by noting that w(7) = Op(1). The orders of magnitude of the filters are derived in a
sequence of lemmas in Appendix A. The decomposition of &, into the integral of w(7) plus a
remainder plays an important role in establishing the asymptotic properties of partial sums

of &, and related quantities.

As a by-product of the type of analysis leading to the results in Lemma 3, it is interesting
to note that the normalisation of flow variables by the factor 1/h has the effect of normalising
the discrete time flow variable to be Op(1). To see this, consider the unnormalised scalar
flow variable Y3, = foh y(th — s)ds = gp(D)y(th). Since y(th) = O,(1) and Lemma A4
in Appendix A establishes that g,(z) = O(h) as h | 0, it follows that Y3, = Op(h). The

normalised variable y;, = ™'Y}y, is then Op(1).

3. SPECTRAL REGRESSION ESTIMATION: SOME PRELIMINARIES

The discrete time ECM (3) provides the basis for estimating the unknown elements of the
matrix C' of cointegrating parameters. In principle, a variety of methods could be considered
for this task. If a parametric model was specified for the continuous time disturbance vector
w(7) in (1) then it would be possible to derive the precise dynamic properties (autocovariance
structure) of &, and to apply (quasi)-likelihood methods to jointly estimate C' and the
parameters determining the evolution of w(7). If this parametric model was a system of
stochastic differential equations then the problem would be one of estimating a system of
(higher-order) differential equations of reduced rank (reflecting the cointegration properties).
Discrete time models that enable this to be carried out have been derived by Chambers

(1999). In this paper, by contrast, weaker conditions are imposed on the continuous time



disturbances with the aim being to treat the system dynamics in a nonparametric way. The
spectral regression estimators proposed by Phillips (1991a) for continuous time systems and

by Phillips (1991c¢) for discrete time systems are ideally suited to this task.

It is convenient to rewrite the ECM (3) in a form more amenable to application of the

spectral regression estimators. The first m; equations of (3) may be written

Apyrin + Ony1eh—n = COnY2,th—n + 1.tk (6)

while the last ma equations of (3) are simply Apyasn = &2 Combining these equations

and normalising by h (in view of Lemma 3) gives
Yin = JCXp +wip, t=1,...,T = N/h, (7)

where Yy, = h™ (Anymn + onyrin—n)'s Anvh s Xen = W™ ényon—n and wy, = h™ .
Note that Fwy, = 0 and Fwgwy, = O(1) as h | 0.

Three main scenarios will be considered with regard to the sampling scheme, reflecting
different joint behaviour of span N and frequency h~!. The first is where h is fixed but
N 1 oo. This represents the usual situation in which sample size T'(= N/h) T oo but
emphasizes the dependence on a given sampling frequency, not necessarily equal to unity.
The second is where h | 0 and N T oo jointly, so that the data are tending towards a
continuous record limit at the same time as span increases. The third case keeps N fixed
but allows A | 0 so that a continuous record is the result in the limit but one which covers

a fixed span. Note that in all cases sample size T T oc.

The analysis of the estimators in the sampling schemes of interest is aided by considering

a triangular array of random variables {{yn:}i";}52, and by allowing the span and data

frequency to be indexed by n, giving N,, and h,. In this setup sample size T,, = N, /h,

always tends to infinity with n, while NV,, T co or N,, = N and h,, | 0 or h,, = h. The system
(7) then becomes

Yiu = JCXpt + wpe, t=1,...,T, = Ny/hy, (8)

where Yy = Yin,, Xnt = X, and wyy = wyy,,, . The linearity of (8) in the unknown matrix

C makes this an appealing equation as regards estimation.

The spectral regression estimators utilise estimates of certain spectral density matrices.
For generic random variables = and y, let I, 3y(s) = Expniy),;,, denote the autocovariance
function which is estimated by fnvxy(s) =T;! ZtTgf * Zntpiys- That this autocovariance
matrix depends on n arises from the dependence of sampling frequency on n, so in terms

of h,, this function is in fact Emthnyghn Vsh, - Although Ty, ;,(s) is the covariance between



random variables separated by sh, time units it is notationally convenient to suppress h,
in the argument of this function. The cross spectral density function of x and y, sampled at

intervals of h,, is given by?3

hn > —ishp A ™ 2\ <
rn3) = 52 3 Tayfo)e™, <A<

T
hy,
and can be estimated using
fn zy == 2_77, Z k < ) n xy(S)e_iShnA’ (9)
s=— M,

where M), is a bandwidth parameter and k(z) is a kernel (or weighting) function. The precise
properties that M, and k(z) are assumed to possess are defined in Assumption 3 later in

this paper.

Two spectral regression estimators will be considered. The first utilises information

contained in the full frequency range (—/hy,,7/hy,] and is defined by*

-1
-~ 1 Ay i / -1
vec (Cn) = le Z (fn,XX(w]) ®J nww( j) J>:|
—Mp+1
1 M
) ~
2M Z (ImQ ® ‘] n ww(wj) ) vec (fn,YX(Wj)) ) (10)
—Mn+1
where w; = 7j/(h,M,) (j = =M, +1,...,M,) and Wy, denotes a consistent estimator of

wpe obtained, for example, by taking the residuals from an OLS regression applied to (8).

Since, from (8),

vee (Fayx(w))) = (Faxx(w;) @ J) vee (Co) + vee (fauwx () ,

where C denotes the true value of the matrix C, it follows that

o=l 35 e [ 3
vec (C,, — Cpy) = O Onj| »
2M, i M,+1 2My, —Mnp+1
where
Onj = faxx (W) @ JFf, aow wj) TN, j=—My+1,..., M, (11)
B 17 -1 n S
Hnj = (Im2 ®J fnﬂ]}a(wj) ) vec (fn,wX(wj)) s J=—Mp+1,..., M. (12)

3See equation (7.1.14) of Priestley (1981).
“The expression in (10) differs from the corresponding expression in Phillips (1991a) due to the use of
column vectorisation here as opposed to row vectorisation in that article.

10



The second estimator uses information solely in the frequency band wgy and is defined by
. ~ ~ -1 ~ ~
vee (Cuo) = [Faxx(0) @ J'F, ()| [Ty @ ', 5(0) | vee (Fuyx(0)) . (13)

Normalising in the same way as for the full-band estimator yields VeC(én() —Cy) = 6;019710.
The asymptotic behaviour of these two estimators is determined by the asymptotic properties

of the expressions (11) and (12), to which attention is now turned.

4. SPECTRAL REGRESSION ESTIMATION: ASYMPTOTIC RESULTS

4.1. Asymptotic distributions

For the purposes of investigating the asymptotic properties of the spectral regression estima-
tor in the different sampling scenarios, it is necessary to make further assumptions about the
stochastic environment in which y(7), and hence y,, evolve. For this purpose, let (2, F, P)
denote the probability space on which w(7) is defined, and let F? (a < b) denote a o-subfield

of F. The strong mixing coeflicients, o, are then defined by o = sup; a(F~ ., ]:t?ﬁj), where

a(Fr o, FY) = sup |P(GN H)— P(G)P(H)|.

GeF!  HEFY,

The mixing coefficients are said to be of size —p if o = O(j777¢) for some € > 0 as j T o0,
which ensures that Z?’;l a;/ P < 00. The following assumption is made with regard to the

continuous time disturbance process w(7) in (1).

Assumption 2. For some 6 > n > 2, w(r) is a stationary strong mixing continuous
time process with zero mean, ||w(7)||s < oo, and with strong mixing coefficients of size
—o0mn/(6 —n). Furthermore, the spectral density function, fg,,(A) (—oo < A < 00), of w(7) is

Hermitian positive definite with elements satisfying 0 < f¢

ww,ji(A) < oo (j=1,...,m) and

| fow kN <00 (j#k, j,k=1,...,m) for all —oo <\ < oo.

The assumption that w(7) is a strong mixing process is particularly convenient in the present
circumstances in which the disturbances in the discrete time ECM involve integrals of w(7)
over finite intervals and are, therefore, strong mixing themselves.® Furthermore the mixing

coefficients of such integrals are of the same size as those of the underlying process.

®See, for example, Theorem 14.1 of Davidson (1994).

11



The estimator asymptotics make use of the limiting properties of various sample mo-
ments concerning X,,; and wy;. These, in turn, can be derived from the properties of the

partial sum process

[Tnr]
Sn[an] = Z Wnj, T € [Oa 1]7 (14)
j=1
and of the composite process
1 &
UnTn = T_ Z Sn,t,lw;n. (15)
" i=1

The limiting properties of these random quantities are presented in Lemma 4 for each of the

three sampling schemes of interest.

Lemma 4. (a) Under Assumptions 1 and 2, if h, = h and N,, T 00 asn T oo,

1
T1/2 Sn[an] = Bh(T), (16)
1 1 ,
Ti nT, :>/0 Bthh+Ah(1)7 (17)

where By, denotes a Brownian motion process with variance matrix 2, = 27Th_3fh75£(0) and
Ah(l) = 220:1 Fh,k where Fh,k = Ewgw;h = h_2E€Q§;€h.
(b) Under Assumptions 1 and 2, if hy, | 0, N T oo and hp,N,, | 0 as n T oo,

1/2
Wsn[an] = B(T)) (18)
i to
TUr, = [ BB+ AQ), (19)

where B denotes a Brownian motion process with variance matriz Q = 2w f5,, (0) and A(1) =
limy, oo hin ngl Ewpow) ;..

(¢) Under Assumption 1, if hy, | 0 and N, = N asn T oo,

hnSn[an] = Z(NT), (20)

N
W2Unr, = / zd7, (21)
0

where Z(z) = [; w(s)ds.

Part (a) of Lemma 4 extends the usual analysis of partial sums of discrete time processes

to the case where the sampling interval h is not equal to one. The mixing decay rate in

12



Assumption 2 is slightly stronger than is strictly needed for (16) to hold, which only requires
] oz;_Q/n < 00. For n > 2, note that 0 <1 —2/n < 1 while 0 < (6 —n)/on < 1/2. The
latter condition satisfies the former and is required for (17).

Part (b) of Lemma 4 extends the analysis further to allow h,, | 0. Here 2 is expressed in
terms of £¢,,(0), since wy,; <> w(t) as n T co. The matrix A(1) is left in the form of a limit
because, in the analysis of the asymptotic properties of the spectral regression estimator in
this case, this limit will be taken in conjunction with another limit at the appropriate point.
Note, too, the requirement that h,N,, | 0 as n T co. This ensures that the contribution of
the higher-order (in h,) terms contained in p,; are negligible in the asymptotics and, as a
result, simplifies the analysis somewhat. The requirement for this to be valid in practice is
that the observation interval h, gets smaller at a faster rate than the span N, gets larger,

and is perhaps not an unreasonable requirement.

Part (c) of Lemma 4 treats the case where an infinitely large sample size is obtained by
allowing h,, | 0 while holding the span fixed. Such continuous record asymptotics were also
considered by Phillips (1987a,b) and by Perron (1991) although much stronger assumptions
were made in those articles concerning the underlying continuous time random process than

are being made here.

Lemma 4 provides a basis for developing the asymptotic properties of the estimator Ch.
From (11) and (12) it can be seen that it is the covariance matrix estimators fn xx(s) and
fn,w x(s) that will determine the relevant asymptotics via their use in the construction of
the spectral density estimators fn xx(A) and fmw x(A) respectively. In order to examine
the properties of these covariance matrix estimators, consider the m x 1 integrated process
defined by Ynt = yYnt—1 + &t (t = 1,..., T, = Np/hy), where y,0 = yo = y(0) is an Opy(1)
random variable and &,; is defined in Lemma 1. Further, define z,+ = (¢n, /hn)ynt—1 and
Wyt = h,, 1¢,t, so that with this notation the variable of interest is simply X,,; = T2 nt. Since
UYnt = Yo + 23':1 &nj, it follows that zn = (én,/hn)Yo + Oh,Sni—1, where Sy = Z;Zl Wt
Consider the random quantities i, (s) = Y777 wppwly s and My (s) = S0 ey, . By

making the appropriate substitutions for x,; in terms of S,;_1, it can be shown that

®h,,

:U’n(s) = ¢hn (UnTn - Uns) + A

Yo ( 7/1Tn - Svlms) — ¢n, I Z f‘n,ww(k)v (22)
k=1

where Ty, (k) = T, ZtTQl_S Wt ys—kWht s, and that

) 1—s/Th, . ¢%L 1—s5/Th, )
Mn(S) = ¢hnTn/0 Sn[an]Sn[TnT]d?” + h—nTnyo/O Sn[an]d’l"
¢2 1—s/Tn ¢2 s5—1 ‘
Ty /0 Sug 1ty + 5 (Tn = $)yovy + &1, D (). (23)
n n 7=0
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Note that, if pn(s) = [tn,1(S), n,2(s)] then f‘n,wX(S) = T, Y no(s) while anXX(s) =
T 1M, 92(s) where M, 22(s) is the lower right-hand block of M, (s). These expressions,

combined with the results in Lemma 4, enable the results of interest to be derived.

Lemma 5. (a) Under Assumptions 1 and 2, if h, = h and N, T 0o asn T oo,

R 1

Fn,wX(S) = o [/0 chB;ﬂ + Apa(s+ 1), , (24)
IS 2 ! /

?Fn,XX(S) = ¢h/ Bra By, (25)
n 0

where Ap(s +1) = [Api(s + 1), Apa(s + 1)1 = 302 o1 Thoke
(b) Under Assumptions 1 and 2, if hy, | 0, N, T oo and hp,N,, | 0 as n T oo,

By - !

S Tuux(s) = /0 dBB, + Ao(s + 1)/, (26)
o .

ﬁ—nNFn,XX(S) :>/0 By By, (27)

where A(s+1) = [A1(s + 1), Aa(s + 1)) = limp o0 hn, Zgl;_(flﬂ) Ewpow!,..
(¢) Under Assumption 1, if hy, | 0 and N, = N asn T oo,

hnNn’\ N /! /
£ () = FalZowe) = /0 dZ2} + Z(N )i, (28)

h2 .
—-T
o,

N N N
nxx(8) = F1(Z2,y02) = /0 ZyZy + yoz/o Zy +/0 Zayoe + Yo2lo2-  (29)

The convergence rates in Lemma 5 determine the rates of convergence of the terms ©,,;
and 0,; that are used in constructing the spectral regression estimators. Once more, the
results in part (a) generalise existing results in the literature to the case where the sampling
interval h is not equal to one. Part (b) provides the extension where the sampling interval h,,
tends to zero, and in part (c) this is achieved but with span held fixed. Note the dependency
of the results in part (c) on the initial value yp2 which enters the limiting expressions because

the data span is held fixed.

In order to consider the limiting distributions of the terms ©,; and 0,,;, it is necessary

to impose some conditions on the bandwidth parameter M, and the kernel function k(z).
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Assumption 3. M, = o(Tﬁ/2) as n T oo and k(z) is an even, bounded function for

z € [—1,1] with £(0) =1 and k(z) =0 for z ¢ [—1,1].

These conditions are quite standard in the spectral regression literature; see, for example,
Hannan (1963). It is also convenient to define the constant v = (1/2m) f_ll k(s)ds which

appears in the results below.

Theorem 1. (a) Under Assumptions 1-3, if h, = h and N,, T 0o as n | oo,

1] 1 1 ~
o X Ow| = dih [ BB, rel, (30)
n N Mp+1 0
i Z Onj| = onh (ImQ & J’Q}:l) vec </ chB;ﬂ) , (31)
1 1
T M. @nO = V¢%Lh/0 BhQB;ﬁ & J/Q;ng], (32)
LH 0 = voph (I ® J’Q_1> vec (/1 dBy,B, ) ) (33)
Mn n ma h 0 h2

(b) Under Assumptions 1-3, if hy, | 0, N, T oo and h,Ny, | 0 as n ] oo,

i ! Aﬁf Onj :>/IB By®J'Q 1 (34)
¢p Nu | 2M, P nj |, D2h )
he | 1 M 1
. {2 i > by = (Im ® J’Q*l) vec ( /0 dBBé) : (35)
n " j=—M,+1
1 1
W@no = V/O BgBé ® J/Q}:IJ, (36)
1 J~—1 ! /
TR (Euny © 7'9,) vee /0 dBB,). (37)

(c) Under Assumptions 1 and 3, if hy, | 0 and N, = N asn T oo,

21 & o
o7 |:2]\4n j_%:n“ Onj | = Fi(Z2,y02) @ J' Q™ J, (38)
ALY % 0 ] = (I ®J'Q_1> vec (Fa(Z, yoz2)) (39)
Ony |2Mn G700 ™2 ; ;
ﬁ@no = v (Z2,y02) ® J'Q1, (40)
N _
om0 = (Imy © J'Q7") vec (Fa(Z, y02)) - (41)
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Using Theorem 1 it is a straightforward task to derive the limiting distributions of the

appropriately normalised estimators, which are presented in Theorem 2.

Theorem 2. (a) Under Assumptions 1-3, if h, = h and N, T 0o asn T oo,

T, vec (C’ Co => ¢h [(/ Bh2Bh2) ®1I {/01 Bpa ® ch,1.2:| , (42)

where By 12 = Bpp — thlgﬂ,:’IQQBhg is Brownian motion with variance matriz p 112 =
Qp11 — ngQg;QQh,gl. The same result holds for T, vec (C'no - C’o).
(b) Under Assumptions 1-3, if hy, | 0, N, T oo and h,Ny, | 0 as n ] oo,

Ty vec (én - CO) - [(/01 BQB;> - ® I} Uol By ® dBl,g} , (43)

where B1y = Bi — (21292_2132 is Brownian motion with variance matriz Q112 = Q11 —
91292_21Q21. The same result holds for T, ¢y, vec (CA’no — C’o).
(¢) Under Assumptions 1 and 3, if h, | 0 and N, = N asn T oo,

~ N
Tadn,vee (Co — Co) = |Fi(Za,y00) " @ 1] { [/0 Zy © dZy»

+ [yoz ® Zm(N)]} L (44)

where Z19 = Z1 — 912952122. The same result holds for T;, ¢y, vec (6’”0 — C’o).

In part (a) of Theorem 2, since h is fixed and T}, = N, /h, it is clearly the increasing span of
the data that is important in this case. The result can be written in terms of Nnvec(CA'n —C))
with the limiting distribution being that given in (42) multiplied by h. Note that the
distribution in (42) is the familiar mixed normal distribution from cointegration theory, as
would be expected. If P,(G},) denotes the probability measure associated with the random

matrix G, = ( fol BnaBj,)~t, then the distribution has the representation

/ N (0, 6, 2Gp ® Qh,11.2> dPp(Gr), (45)
Gpr>0

which, conditional on a given realisation of s, is normal. Similar comments apply to part
(b) of Theorem 2. In this case, T,,¢pn, = Nn¢n, /hn. Since ¢y, /hy, — 1 as n T oo, it follows
that Ny vec(C,, — Cp) has the same distribution in the limit as that given in (43), which has

16



the mixed normal representation

N (0,G ® M1.2)dP(G), (46)
G>0

where G = ( fol ByB,)~! and P(G) is its associated probability measure.

In part (c) of Theorem 2, it is span that is fixed, and since T,,¢,, = Nop, /hn — N
as n | 00, it follows that vec(C,, — Cp) has the same limiting distribution as N~! times the

distribution in (44). Furthermore, if yo2 = 0, then the asymptotics are governed by

_ N !
Toén, vee (C = Co) = ( / Z2Z§> ® 1
0

N
/ Zy® dZ1.2] ; (47)
0

since the final component in (44) is null. The distribution in (44) depends on the distribution
of the underlying continuous time disturbance process w(7) via the variable Z. In cases
where w(7)d7 has independent increments® and variance Ydr, the random variable Z(z) =
Jo  w(T)dr is Brownian motion with variance Y. The limiting distribution in (47) is then
the familiar mixed normal distribution, but when yg2 # 0 the distribution in (44) contains
an additional term involving Z1 2(N) ~ N(0,X112) with 3119 defined in terms of the sub-

matrices of 3 in the same way that €412 is defined in terms of the sub-matrices of Q.
4.2. Efficiency comparisons

Theorem 2 enables some interesting questions concerning the effects of observation fre-
quency on the estimation of cointegrating parameters to be addressed. Although a number
of comparisons could be explored, one in particular is addressed here. This concerns the po-
tential inefficiency that might be conjectured to arise as a result of having a fixed sampling
interval h as compared to a continuous sample (the limiting case when h | 0). Investigations
of the asymptotic bias (as a function of sampling interval) of estimators of the parameters
of stationary continuous time systems, derived from approximate discrete time models, are
well established; see Bergstrom (1984) for a summary. Rather less attention has been paid
to the efficiency of estimators, as measured by the variance of the asymptotic distribution,
although Chambers (2000) provides some results for cointegration estimators that focus on

the effects of the way in which data are recorded (i.e. stocks versus flows).

The analysis will be based on the limiting distribution of N, vec(C,, — Cg) which (when

h is fixed) is given by (45) with the covariance matrix multiplied by h?. A more convenient

5Tn this case it would be common to write w(7)dr = ¢(dr), where ((dr) is a vector random measure.
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representation of this distribution, for the purposes of making comparisons, is given by’

[N OV ()P o), (48)
where V(h) = h2¢}:29};122 ® Qpa12, 7 = e’Q(fol WoWh)Les, eq is any unit ma x 1 vector,
P, () is the probability measure associated with ~, and W5 is an mg x 1 vector of standard
Brownian motions or Wiener processes (i.e. W5 is Brownian motion with covariance matrix
Ipn,). When h is allowed to tend to the limit of zero, the relevant distribution is given by

(46), which may be written in the more covenient form

N (0,vVp) dPy(7), (49)
>0

where V) = 92—21 ® 112 Notice that the mixing variate, v, is the same as in the fixed-h
case in (48), because it is purely the sampling frequency that is different, not the underlying
random process (w2 (7) in continuous time) that generates the data. The precise form of the

matrix difference V(h) — V} is given in Theorem 3.

Theorem 3. Under Assumptions 1-3, the difference V(h) — Vo = f§, 2(0)7' ® V, is

w

positive semi-definite for any fized h > 0, where

~ N‘/ 0
‘,h h,11
0 0

Viit = Jo Sjpo [1+ (4n262/02)] " 6, (2mk/R)JG and Jo = [I,,s, 0, —Css, —Csr].

Theorem 3 shows that there is an inefficiency associated with discrete time sampling
relative to continuous sampling in view of V' (h)—Vj being positive semi-definite. Inspection of
this matrix difference shows that, in fact, this inefficiency can be more accurately pinpointed.

The qualitative implication of Theorem 3 is presented in Proposition 1 below.

Proposition 1. The estimator inefficiencies caused by sampling at a discrete interval
h only affect the estimation of the matrices Css and Csp. The estimation of the matrices
Crs and Crp is as efficient when based on data sampled at intervals of length h as when

based on a continuous record of data.

"Details of the equivalence of the representations (45) and (48) can be found in Phillips (1989).
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Proposition 1 establishes that it is in the estimation of the cointegrating relationships
in which the normalised (left-hand side) variables are stocks where the inefficiencies will
arise. It is quite remarkable that, as far as the estimation of the matrices Cpg and Cpp
is concerned i.e. the parameters of the cointegrating relationships in which the left-hand
side (normalised) variables are flows, that there is no efficiency gain to be made from a
continuous sample as compared to a fixed sampling interval of length h. This is presumably
a result of flows being observed as integrals over the interval (th — h,th] and hence contain
information about the evolution of the variable over that interval. With stocks, however,
such information is not contained in the observations which are made at points in time.
Such results are in accordance with the findings of Chambers (2000) who demonstrated, for
a fixed sampling interval h = 1, that the discrete time sampling of stock variables results in
a loss of estimator efficiency as compared to flow variables, which in turn are as efficient as
continuous sampling. Theorem 3 and Proposition 1 generalise these results in two directions.
First, they allow for an arbitrary sampling interval h, and secondly, they are based on a more

general system containing stocks and flows simultaneously.
4.8. Large sample inference

One of the principal advantages of the mixed normal limiting distribution of the es-
timators is that inference concerning the cointegrating parameters can be conducted using
traditional methods, as emphasised by Phillips (1991b). For example, the usual t-ratios have
limiting normal distributions, confidence intervals can be constructed using normal critical
values, and Wald tests of possibly non-linear restrictions on the cointegrating parameters
can be based on asymptotic chi-square criteria. Such comments obviously apply to situa-
tions in which the span of the data tends to infinity, regardless of whether the sampling
frequency is fixed or not. This is not the case, however, when span is fixed and the sampling
interval tends to zero, because the limiting distribution in this case is typically not mixed
normal; see Theorem 2(c). This suggests that small-h asymptotic inference may be difficult
in these circumstances and hence the focus here is on situations in which span tends to

infinity (covered by Theorem 2, parts (a) and (b)).

A question that arises concerns the estimation of the asymptotic variances to use in
t-tests or Wald tests. The case in which h,, | 0 and N,, T oo will be considered here, al-
though the same arguments apply if h,, = h is fixed, with minor modifications. Conditional
on the realisation {y2p}, it follows from Theorem 2(b) and the representation (46) that
Tnén, vec(Cy, — Cp) is asymptotically N(0, G ® Qi1.9), where G = (fol ByB4)~! denotes the
limit of the matrix [(hyn/(¢7, T7)) In X X!, see Lemma 5(b). Large sample (con-
ditional) inference for vec(C, — Cp) can therefore be based on the distribution N(0,V}),
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where .

N 1 h, & N
Vi = Xnt X, ® 12 (50)
T3¢, (ﬁznTﬁ t; e

and the estimator €7 is derived from the sub-matrices of the matrix Q = (2r/ hn)fn@a(O)
The variance matrix ‘71 is not, however, the usual covariance matrix estimator associated
with spectral regression. The estimator suggested by Phillips (1991a,c¢) for constructing the
Wald statistic to test hypotheses concerning the cointegrating parameters is based on the
theory of spectral regression for stationary time series®, suitably adapted for the faster rate

of convergence of the estimator in the case of cointegration. This estimator is given by

-1

- 1|1 My,
To |2M, 47,

where ©,; is defined in (11). It is this estimator that is usually computed in spectral

regression software packages.’

Analagous expressions for the covariance matrix estimators can be derived for the band-
limited spectral regression estimator, CAZ'nO. Since T, nd)hnvec(é'no — () is also asymptotically
N(0, G®41.2) conditional on the realisation {y2 4, }, large sample inference for vee(Cro—Co)
can be based on the distribution N (0, ‘710), where 1710 = 1. Although the same expression is
used for the covariance matrix estimator, the two will only coincide numerically if the same
kernel function and bandwidth value are used in the construction of the spectral density

estimates. The analogue of the second estimator is, however, different, and is given by!®

~ M,v
Voo = —T” 0,0, (52)
n

with O, defined in (11) and v defined prior to Theorem 1. The relative effects of the two
types of covariance matrix estimator on conducting inference in finite samples is explored in

the simulation experiments that follow.

8See, for example, Hannan (1970, p.442).
“For example, the COINT module in GAUSS uses the expression (51).
198ee Phillips (1991b, pp.423-424) for details.
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5. SOME SIMULATION RESULTS AND AN EMPIRICAL EXAMPLE

5.1. Simulation results

A small simulation experiment was conducted in order to assess the finite sample properties of
the spectral regression estimators of the cointegrating parameters when sampling frequency
and/or span varies. The simulation model consists of a bivariate system of stock variables
in which the continuous time disturbance process follows a first-order stochastic differential

equation system. The variables therefore evolve in continuous time according to

dyi (1) = —[y1(7) = Cya(7)]ldr + wi(7)dr, (53)
dyo(17) = we(1)dr. (54)

There is a single cointegrating parameter which is set to unity in the simulations i.e. C =1
in (53), while the initial condition for the system is taken to be y;1(0) = y2(0) = 0. The

disturbance vector w(7) = [wy(7), wa(7)]’ satisfies
dw(t) = Gw(T)dr + ((dT), (55)

where ((dr) is a Gaussian random measure satisfying E((dr) = 0, E¢(d7)((dr)" = I2dr,
and E((m — 71)((14 — 73)" = 0 whenever the intervals 7 — 71 and 74 — 73 do not intersect.

The matrix G in (55) is assumed to take the form

7m0
yo —1.5 7

where the parameter 7, is required to be negative for w(7) to be stationary and the pa-

G =

rameter o represents the strength of feedback from w; to wy. The assumed values are
v1 € {—0.5,=5} and v € {—1,+1}, so that both positive and negative feedback are consid-

ered. This yields four combinations of parameters, referred to as Experiments 1 to 4:
Experiment 1: ~v; = —0.5, 9 = —1; Experiment 2: v = -5, v = —1;

Experiment 3: v, = —0.5, g =1; Experiment 4: v, = =5, v =1.

In view of the system being comprised solely of stock variables, a modification of Lemma 1
reveals that the discretely observed vector yy;, satisfies the discrete time triangular ECM of

(3) but with the disturbance vector defined as

€ = /Oh e~ Ay (th — s)ds = /Oh[IQ — ¢(s)JAJw(th — s)ds.

The discrete time data can therefore be generated using (3) once a set of discrete time
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disturbances {§th}tT:1 satisfying the appropriate properties have been generated. Details of
how this is achieved are provided in Appendix D but suffice it to note here that &, is an
ARMA(1,1) process that satisfies quite complicated restrictions that arise as a result of the

temporal aggregation.

In order to assess the effects of sampling frequency and span on the estimators, three
frequencies and three spans were considered in the simulations. More precisely, the values for
the sampling interval are h € {1/12,1/4, 1}, corresponding to monthly, quarterly and annual
frequencies, while N € {25,50, 100}, corresponding to spans of 25, 50 and 100 years. It is
only necessary to generate 100 years of monthly data for each replication of the experiment,
because the shorter spans, as well as the less frequently observed series, are simply obtained
from this underlying series of 1200 observations. A total of 10,000 replications of each of the

four experiments (or parameter combinations) were conducted.

The spectral regression estimators require a choice of kernel function and bandwidth
value in order to become operational. The Parzen kernel was chosen in view of its relatively
superior performance against an averaged periodogram estimator of the spectral density

function in the study of Chambers (2001). The Parzen kernel is defined by

1—622 4623, |2] <1/2,
k(z) =4 2(1—|2])% 1/2 < |z <1,
0, |z| > 1.

Concerning bandwidth choice, a pilot simulation study for each experiment, consisting of
1000 replications, was conducted using bandwidths of the form M = [T¢], for values of
o € {1/10,1/5,1/3,2/5}. Such choices of M are clearly o(T"/?) as required. As there is
typically a trade-off between bias and variance in choosing the bandwidth parameter, the
bandwidth that resulted in the smallest mean square error (MSE) of the estimator (as sample
size increases) was chosen. The resulting values were o = 1/10 for the spectral estimator
and a = 2/5 for the band-limited spectral estimator. These MSE-minimising values were
the same for each of the four experiments, and were employed to compute the values of the

estimators in the simulations.

The MSEs of the two spectral estimators are reported in Table 1, which also includes the
MSEs of the OLS estimator of the parameter C for purposes of comparison. The spectral
estimator CA’n is denoted SPEC in Table 1, while the band limited estimator énO is denoted
BAND. Note that the MSEs are of the same order of magnitude for each h although they
decrease, as is to be expected, with increasing N. They also have a tendency to be smaller
when the parameter y; = —5 (Experiments 2 and 4) than when v; = —0.5 (Experiments

1 and 3), for given 79. Since 7; represents a root of the system, this suggests that the
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estimation is more precise when such roots are larger in absolute value. There is also a
tendency for the band-limited spectral estimator to have smaller MSEs on the whole than
the spectral estimator that is constructed using all frequency bands. It is also interesting to
note that the MSEs of the spectral regression estimators in Experiment 1 are comparable to
those of the OLS estimator, so there would appear to be relatively little gained in this case
by using spectral regression, at least judged by this particular criterion. In Experiments 2,
3 and 4, however, the MSEs of both spectral estimators are uniformly smaller than those
of the OLS estimator, except for the estimator using all frequency bands when A = 1/12 in

Experiments 2 and 4.
[Table 1 about here.]

The inspection of MSEs, whilst providing useful information about the estimators, rep-
resents only a partial assessment of their performance. Estimated coefficients are typically
used to make inferences concerning the true (but unknown) value of the parameter. This
is commonly achieved by conducting a t-test, which requires an estimate of the variance of
the estimated coefficient. This variance estimate can also be employed in the construction
of confidence intervals, and it is confidence intervals that shall be considered here. Tables 2
and 3 contain the percentage coverage rates of 90% and 95% confidence intervals for the OLS
estimator and the two spectral estimators. These coverage rates represent the proportion of
the replications in which the true value of the coefficient (Cy = 1) fell within the calculated
confidence interval. For each of the spectral estimators two coverage rates are reported, each
one based on the different estimators of the variance considered in section 4.3. In the simu-
lations here, the Parzen kernel is used for both estimators but the bandwidths are different,
so that the computed values of 171 and ‘710 will be different. Also, for the Parzen kernel

employed here, it is straightforward to show that the constant v = 0.75.
[Tables 2 and 3 about here.]

Inspection of Tables 2 and 3 reveals a number of interesting features. It is immediately
obvious that the coverage rates of the OLS confidence intervals are very poor and actually
have a tendency to decline as span increases. In contrast the coverage rates of confidence
intervals based on the spectral estimators are much better and are closer to the nominal
values although discrepancies do occur. There are also differences between the different
variance estimators used in constructing confidence intervals for the spectral estimators.
Those based on the asymptotic distribution (46) tend to increase with N and to decrease

with h, while those based on the usual expressions from spectral regression (‘72 and 1702)

23



tend to increase with h. The former expressions appear to provide more accurate confidence

intervals than the latter.
5.2. An empirical example

Provided that a set of variables can be observed sufficiently frequently over a long enough
span, it is possible to assess the behaviour of spectral regression estimators in an empirical
setting when span and/or frequency are allowed to vary. This example focuses on the long
run purchasing power parity (PPP) relationship between the UK and the US, assuming
that the relevant variables cointegrate. Defining P(7) to be the UK price level, II(7) the
US price level, and X (7) the exchange rate (expressed as dollars per pound sterling), PPP
implies that II(7) = X(7)P(7). In circumstances in which the logarithms of the variables
are individually integrated processes, the PPP relationship can be recast as the cointegrated

system
dInTI(7) = —[InIl(7) — /1 In X (7) — B2 In P(7)]dT + w1 (7)dT, T >0, (56)

dln X(7) = wo1(7)dr, dlnP(1) = waa(7)dr, T >0, (57)

where 81 = 2 = 1 is required if PPP holds and the vector w(7) = [w1(T), wa1(T), waa(T)]
is a stationary random disturbance vector. This model is in the form of the cointegrated
system (1) and hence the preceeding results apply to the estimation of the parameters [;

and 5.

The underlying data used in this example constitute daily exchange rates and monthly
producer prices for the UK and the US over the period January 1972 to December 1998. Each
of the variables in the model is, in principle, observed as a stock variable, although there
may be some averaging involved during the reporting of the price indices. The exchange rate
series is, quite clearly, observed as a stock variable, but there remains the question of how
to relate it to the monthly series. It is, for example, possible to use a monthly exhange rate
series based on the end-month value or on the average daily value throughout the month.
The results obtained by Chambers (2000) suggest that the latter, averaged, form of the stock
variable yields more efficient estimators (asymptotically) than the end-month value, so it is
of interest to compare estimators obtained using both series. In the regressions the span is
kept fixed at 27 years but the frequency is allowed to vary between monthly, quarterly and

annual, with corresponding sample sizes of 324, 108 and 27 respectively.!!

The results of the estimations are contained in Tables 4 and 5. Table 4 contains the

results using the end-month exchange rate data, while Table 5 contains the results with the

1The quarterly and annual data are obtained from the monthly data by skip-sampling in view of the
variables being stocks.
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monthly-averaged exchange rate data. Nine estimates of §; and [y are reported based on
four types of estimator, as follows. The first estimates reported in each table are based
on OLS. The next three are spectral estimates using the estimator C,, constructed with
the Parzen kernel and bandwidths equal to the integer parts of T%/10, T1/3 and T2/°. These
estimates are denoted SPEC(1/10), SPEC(1/3) and SPEC(2/5), respectively. The next three
estimates are the band-limited versions (CA’nO) of the spectral estimators, and are denoted
BAND(1/10), BAND(1/3) and BAND(2/5). The final two estimators are the fully modified
OLS estimators of Phillips and Hansen (1990), the first constructed using the Parzen kernel,

the second using the Bartlett kernel. Both use the automatic bandwidth selection method

of Andrews (1991), and are denoted FM-OLS(P) and FM-OLS(B), respectively.
[Tables 4 and 5 about here.]

Inspection of the estimates reported in Table 4 reveals some striking differences between
the different estimators. Using the monthly data as an example, the estimates of §; range
from 0.5346 using the SPEC(2/5) estimator, to 1.0332 using the FM-OLS(B) estimator. The
estimates of 3y show less dispersion, however, ranging from 0.8877 using the FM-OLS(B)
estimator, to 0.9458 using the SPEC(1/3) estimator. It is also interesting to note how the
spectral estimators vary from the OLS estimator, even though the spectral density estimates
that they employ are derived from the OLS residuals. These differences arise because the
spectral estimators employ nonparametric corrections to account for serial correlation in the
stationary disturbance process that drives the system. For a given estimator, Table 4 reveals
that the estimates are, on the whole, remarkably stable across sampling frequencies. Since

the same long run parameters are being estimated in each case, this is a reassuring feature.

The estimates reported in Table 5 are obtained with the monthly-averaged exchange rate
data. The main differences to emerge, as compared to Table 4, concern the SPEC estimators
of By, all of which increase in Table 5. The main reason for using the averaged data is
to improve (asymptotic) efficiency, and it is interesting to note that the standard errors
have dropped in most cases. This provides some finite sample support for the theoretical
results concerning asymptotic efficiency obtained in Chambers (2000). As a final point, the
estimates in both Tables 4 and 5 suggest that 3; and 2 are not equal to unity, as judged
by simple t-tests applied to the coefficients separately.'? The rejections of the implications

of PPP are most clear for (3.

12 Although not reported here, suffice it to note that Wald tests of the joint hypothesis 81 = B2 = 1
have marginal probability values of zero when compared with the chi-square distribution with two degrees of
freedom.
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6. CONCLUDING COMMENTS

This paper has investigated the effects of sampling frequency, and of data span, on the large-
sample asymptotic properties of spectral regression estimators of cointegrating parameters.
In cases where span goes to infinity, the limiting distributions are mixed normal, thus en-
abling conditional normal and chi-square inference to be carried out. When span is fixed but
sampling frequency becomes infinite i.e. a continuous record of data is available, the limiting
distribution depends on initial conditions and is not necessarily mixed normal. The limiting
distributions in the large-span cases reveal that inefficiencies associated with sampling at a
fixed interval only affect the parameters associated with stock variables. Put another way,
the estimators of parameters associated with flow variables are as efficient when based on a
fixed sampling frequency as when based on a continuous record. Simulations reveal that the
spectral estimators, in particular the band-limited version, are successful in eradicating the
second-order biases inherent in the distribution of the OLS estimator. A limited empirical
example is also provided which assesses the performance of the estimators when sampling fre-
quency varies. The estimators are found to be remarkably stable across frequencies although

there are significant differences in estimates between different estimators.

On a technical level, the theoretical results derived in this paper have extended those
available in the corresponding literature in a number of directions. First, a multivariate
system of cointegrated variables has been considered, rather than the typical univariate
processes. Secondly, the random forcing process has been allowed to be a fairly general
stationary mixing process, thus considerably relaxing the usual assumption of Brownian
motion. The resulting invariance principles established here therefore extend those that are
currently used in studies of sampling frequency and continuous time processes. Thirdly, to
capture the more complicated dynamics that arise because of the previous point, spectral
regression estimators have been considered, the analysis of which is more complicated than

the OLS estimators that have been considered in the literature so far.

There are a number of ways in which the results in this paper may be extended. It would
be possible to consider other estimators that fall within the class of optimal estimators as
defined by Phillips (1991b), although many of them require taking a stand on the precise
law of motion of the underlying continuous time process w(7). The qualitative results to
be derived from such exercises are likely to be the same as those obtained here, however.
An interesting area of investigation would be to derive the theoretical properties of tests for
cointegration when sampling frequency varies. Such research will be helpful in explaining
the simulation findings of Hooker (1993), Lahiri and Mamingi (1995) and Otero and Smith
(2000). Also of interest would be more extensive empirical applications to assess the effects

of sampling frequency more generally. These, and other topics, are ripe for further research.
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APPENDIX A

This appendix states (without proof) a number of lemmas that are utilised in the proofs
of the results in the main text. A document containing full proofs is available from the

author by request or from his website at http://privatewww.essex.ac.uk/ mchamb.

Lemma A1l. Let y(r) satisfy dy(t) = w(r)dr (1 > 0) where w(T) is a stationary

continuous time random process. Then

h

h
y(th) — % ; y(th — s)ds = %/0 (h — s)w(th — s)ds.

Lemma A2. Let w(r) denote a stationary continuous time random process, and let

a(th) = foh w(th — s)ds and b(th) = foh o(th — s)w(s)ds, where ¢(x) =1 — e *. Then

h
/O(h—r) (th—rdr—/ P1(r th—rdr—i—/ o (r)w(th — h — r)dr,

/ (th—rdr—/ s (r th—rdr—l—/ Ya(r)w(th — h —r)dr,

/bthfrdr—/ s (r thfrerr/ e (r)w(th — h — r)dr,

where

Yi(@) = [ = (z = )?)/2, da(2) = (x = 1)*/2, ¥s(z) =2,
Ya(w) = h -z, Ys(@) = —¢(x), (@) =h—x—[¢n — ¢(a)].

Lemma A3. Let w(T) be a stationary continuous time random process. Then

/Ohw(th — s)ds = gn(D)w(th),

/¢ w(th — s)ds = ky(2)w(th),

h

; pi(s)w(th — s)ds = vj(D)w(th), j=1,...,6,

where gn(z) = (1 — e "%) /2, kn(2) = gn(z) — gn(1 + 2), and

2 2 _ e—hz
1@ = o) - mla), ) =g [h—%ﬂ“g) ,
15(2) =~ [n(2) — he ], (z) = han(z) — s(2),
(2 =95) ~ k() 6(2) = (=) — Gagn(2) + Ra(2).
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Lemma A4. Let the functions gi(2), kn(z) and v;(2) be defined as in Lemma A3. Then
for each fixed z and as h | 0,

h2 h32
gn(z) = h—"" 4+ ==+ 00,
hZ  n3
kn(z) = ?_E(1+2z)+0(h4)’
h3 4
ne = o)
h3 4
v(z) = E—i—O(h ),
h?z  5h32? 4
13(z) = ST + O(h%),
2
S 3[2* % 4
v4(z) = h (1 4>+h <12 2>+O(h ),
YR AT B N 4
v5(2) = h <4 2>+h <6+3 1 + O(h%),
_ e 1_z> 5 (52 2,1 4
) = (5= 2) (5 - 2 g) +omh

Lemma A5. The component filters of the matriz filter function My(z) defined in Lemma
2 satisfy, as h | 0 for fixed z,

mf(z) = h+ O(h?), mi'(z) = h+ O(h?),
SS h2 3 SF h2 3
miy (2) = 5 +0(h?), mpy(2) = o5 +O(h?),
h?z h2z
miy(z) = -t Oh®), mif'(z) = -t o(h®),
mg(z) =h+ O(hQ), mg(z) =h+ O(hQ).

Lemma A6. The component filters of the matriz filter function My(z) defined in Lemma

2 have the following values at z = 0 and z = i\, for \y = 27k/h and k an integer:

m? (0) = ¢, m? (iAk) = [, mi (0) = ¢n, mi (iAr) = 0,
m7s (0) = h — ¢y, miy (iIAg) = — ks

mPf (0) = h — ¢p +vn, ML (iIML) = —ign,

miy (0) = h— ¢ —vn, mis (iA) =0, miy (0) = h — ¢, miy (iA) =0,

where py.p, = hop/(h + 2wik) and vy, = h2¢p, /2.
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APPENDIX B

Proof of Lemma 1.

Upon replacing 7 by th in (2) it can be shown that y(th) satisfies the difference equation
y(th) = e " Ay(th — h) + €(th), where €(th) = Oh e s/Aw(th — s)ds. Noting that e /4 =
I, —JA+e PJA =1, — ¢pJA, where ¢p, =1 — e~ ", this equation may be written

Apy(th) = —¢pJ Ay(th — h) + €(th). (B1)

The decomposition of e=/4 allows €(th) to be written e(th) = foh [I — ¢(r)JAjw(th — r)dr,

where ¢(r) = 1 — e ", the subvectors of which are

h h
S(thy = /0 [l — 6(r)|w(th — r)dr + Css /0 d(r)ws (th — r)dr (B2)
+Csr /h o(r)ywd (th — r)dr,
0
h h
Fih) = /O [ — é(r)]wF (th — r)dr + Cps /0 S(r)ws (th — r)dr (B3)
h
—I-C'FF/O o(r)wk (th — r)dr,
h
€5 (th) = /0 wy (th — r)dr, (B4)
h
F(th) = /0 wE (th — r)dr. (B5)

It is convenient to pick out the equations determining the stocks and flows separately from

(B1) to give

Apy?(th) = —én [y7 (th— h) = Cssys (th — h) = Cspyh (th — h)| + € (th),  (B6)
Apyi (th) = —¢n {yf(th — h) = Cpsys (th — h) — Crrys (th — h)} + €1 (th), (B7)
Apys (th) = € (th), (BS)
Apyl (th) = e (th). (BY)

In (B6), note that the variable 34" (th — h) on the right-hand side is unobservable, and so
adding and subtracting <th'gpy§ th—p, yields

s s s P s
Apyien = —bn [yl,th—h — Cs8Y3 th—n — CSFthh—h} + &L ths

where the disturbance fﬁ .1, absorbs the transformation involving y4 and is given by

& = €(th) +onCsr [uf (th—h) — yh 4]
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= € (th) + CSF(ZL /O (h —7)el (th — b — r)dr,

the second line utilising Lemma A1l. The expression for ff ., in Lemma 1 is then obtained
by substituting for €7 (th) using (B2) and for the second term using Lemma A2. In order to
transform (B7) into observable variables, it is necessary to first integrate over the interval

[0, h] and to divide by h to yield

1 h
Awyt, = —on [yfthh - CFSE /0 Y5 (th — h — s)ds — Crrys p

1 rh
+E/ ' (th — s)ds
0

The term involving the integral of y5 on the right-hand side is unobservable and so adding

and subtracting d)hC’ng;thfh yields

Ahyfth = —on [yf:thfh - CFSyzs,thw - CFFygthfh + ff,tm
where
1
§fth = 7)o th—sds—i-(th'Fsl / y2 (th — h—s)ds—yQ(th h)]
on

1
= - Fth—sds—CFS

o A (h — 5)e5 (th — h — s)ds,

h

the second line following from Lemma A1l. Substituting for e/ using (B3) and then using
Lemma A2 on the resulting terms yields the required expression for 55 .- The expressions
determining the evolution of y5 and y) are easily obtained from (B8) and (B9) giving
Apysy = &, and Apyly, = &b, with &, = €5 (th) and &, = h™! [ e}’ (th — s)ds.
These are expressible in terms of w by using (B4) and (B5) while the equation for 55 ¢p 1D
Lemma 1 also requires the results in Lemma A2. Finally, combining the equations for all

the variables yields the discrete time ECM as required. I

Proof of Lemma 2.

The filtering relationship is obtained from the expressions for the components of & in

Lemma 1 using Lemma A3 in Appendix A. The component filters are defined by

mf(Z) = gh(1+2),
mis (z) = kn(2),
mif (2) = ka(z) +h 7 one ™ [31(2) + e M a(2)]
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(2) = h7'gn(2) — gn(1 + 2)] + R e ™ [pngn(z) — (gn(z) — gn(1 + 2))],
(2) = h ' ys(2) + e 6(2) — gne ™ (11(2) + €70 (2))];
miy (2) = b ys(2) + e M6(2)],
(2) = an(2),
() = h'[ys(2) + e (2],

in which gp,(2) = (1 —e™"%) /2, kn(2) = gn(2) — gn(1 + 2), and

2 2 _eh2
m(2) = %gh(Z) —m2(2),  n(zx)= % h; - Z*Z 2(123) :
15(2) =~ [n(2) — he ], (z) = han(z) — s(2),

() =)~ k(=) () = (=) — dngn(2) + k().

Proof of Lemma 3.

Since gp(z) = O(h) by Lemma A4 it follows that (; = Op(h) because w(th) is an O,(1)
random variable. Lemma A5 establishes that the upper right m; x mg block of Mp(z)
(corresponding to the response of &4, to wa(th)) and hence of Qn(z) is O(h?), and so it
remains to show that the diagonal elements of Q,(2) are also O(h?). The first m; elements
on the diagonal are m? (2) — gn(2) = gn(1+2) —gn(2) = —kn(2) = O(h?) by Lemma A4. The
next mi" elements are m{ () — gn(2) = h+ O(h?) — [h + O(h?)] = O(h?), using Lemmas A4
and A5. The next mj elements are given by the filter m3 (2) —gx(2) = 0 since m5 (2) = gn(2),

and hence pith = 0 as also stated in the Lemma. The final m£ elements on the diagonal

equal m& (2) — gn(2) = h+ O(h?) — [h+O(h?)] = O(h?), again using Lemmas A4 and A5. ||

Proof of Lemma 4.

(a) The proof follows from Hansen (1992) if the process wp; = h,, &, or wy, = h~1&y, (since
hn = h), satisfies his Assumption 1, which requires: (i) Ewy, = 0, (i) wy, is strong mixing
with mixing coefficients of size —dn/(d —n), (iii) ||we|ls < co. Part (i) is trivially satisfied,
while (ii) follows from Assumption 2 and Theorem 14.1 of Davidson (1994) because &, is a

measurable function of w(7) over a finite time interval. It remains to verify (iii). Note that

lanlls = [~ < 7 {8+ efinl) + ]+ efin]

Taking each term in turn, using the definitions for the components of & in Lemma 1, and
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noting that || foh f(rw(th —r)dr|ls < \foh f(r)dr|]Jw(T)]||s for a scalar function f(-),

h h
/ [ — o(r)] w?(th — r)dr + Css / S(r)ws (th — r)dr
0 0

s _
&%l =

h h
+Csr [/0 o(rywl (th — r)dr + QZL/O Y1 (r)wh (th — h — r)dr

+ % /Oh Vo (r)wd (th — 2h — r)dr]
[ = otar| [t )], + sl s )],

ety {| [ oo + 121" o [H o),

and hence ||£7,; [|s < oo in view of the moment condition in Assumption 2 and the finiteness

é

IN

/Oh o(r)dr
h

r)dr| +

of the integrals of the functions. By a similar procedure,
leful, <n {‘ [ oterin|+ ‘ [0~ otrar

X {‘/Oh%(r)dr + /Ohwﬁ(r)dr + |onl H/hwl(r)dr + /hwg(r)dr

X ng(T)Hé—i—h*1|]CFFH(S {‘/{)hw(r)dr / e (r } )U}Q >H5

which is also finite under Assumption 2 and the finiteness of the integrals. In the same way,

h
= / w5 (th — s)ds
0 5

€], < { [ st + ) } )], < o

Hence condition (iii) is satisfied and part (a) of the Lemma follows.

} |l )|, +hICksls

}

< hws(r)], < oo,

o
Hfzth 5

(b) Note that, from Lemma 3,

1/2 [Tnr] [Tnr] [Tnr]

T1/2Sn[an = 1/2 Z &nj = 1/2 Z Cnj =+ 1/2 Z Pnj- (B10)

The proof proceeds by first showing that N, 1/2 Z[T"T] pn;j converges to zero in probability

uniformly in 7 i.e. that sup,¢p HN_1/2 Z[T"r Pnjll 2,0 as n 1 co. Now

[T r]
N-1/2
N, Zﬂw < max

k
anl/z Z Pnj

sup
rel0,1]

2 max Z||Pnj”<N 2T, maX ”Pm” (B11)

< N
1<k<T,

n
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It follows that, for some € > 0,

(L]
Pr| sup
rel0,1]

Nn—l/Q Z p'n,j
j=1

> e) < Pr <N;1/2Tnlg]1,g§ lpnjll > 6)

= Pr (||pn1H > eN}LﬁTgl) by stationarity

E||pn1H2

i B12
= &N, T;? (B12)

the last line using the Markov inequality. Now E||p,1|> = i) Ep?ﬂ’j = O(h?) by Lemma
3. Furthermore, N, T,,2 = h2N, ! and so the right-hand-side of (B12) is O(h2N,,) = o(1)

TLTL

as n | oo since hy, N, | 0. Hence it is the term involving the partial sum of the (,; in (B11)

that determines the asymptotic distribution of interest.

Let zj = [} w(s)ds. Clearly Ex; =0 and |25 < [[w(1)[|s < co under Assumption 2.

In fact, x; also has the same mixing properties as w(7), and so, from Hansen (1992),
[Nnr]
Nn_l/2 Z xj = B(r)

Jj=1

as n | oo, where B(r) is Brownian motion with variance matrix

0= 1m N, 1EZ£IJJ Z T, = lim (1 — ‘—|> Ew(0)w(k) dk
j=1 1 nloo J—-N, Nn
= / Ew(0 Ydk = 27 £5,,(0).

If it can be shown that N, 1/2 ZT”T Cnj converges in probability uniformly in r to the partial

sum Ny, 1/2 ZENT} 7, then the claim in part (b) concerning Sz, is established. Now,

[Nnr]
sup 1/224.]_]\7 1/2296]
rel0,1]
_1/92 [ nr]hn n”"
= sup [N,V / w(s)ds—
ref0,1] 0
[Tnrlhn
= sup Nn—1/2/ w(s)ds|| since [T,r|h, > [Nyr]
r€[0,1] [Nnr]
[Tnrlhn
< sup N2 [T ) as
r€[0,1] [Nnr]
Nnpr
< N7Y2 sup / lw(s)llds since [Tyrlhn < Nyr
7€[0,1] /[Nnr]
< N2 ma [ futs)as. (B13)
- IgisNa i
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Thus
[Ny 7]

Pr(sup 1/22Cm—]\7 1/2233 >6)
rel0,1]

J
< Pr <Nn1/2 max / |w(s)|lds > e)
j—1

1<j<Nn

1
= Pr (/ lw(s)||ds > ENé/2> by stationarity
0
< Pr( sup [w(s)|| > eNy/?
s€[0,1]
= Pr (Hw(l)H > eN,}b/2) by stationarity

Elw(1)|?

N 10 as n1oo (B14)

since w(1) is Op(1) and N,, T oo, thus establishing the result.

Turning to U,7,, consider (noting that h1/2 -1z _ hnNﬁl/Q)

h2 B T t—1 B T —
o Unm =N (anj Ge = Nt S (o + )| G+ o)

" t=1 \j=1 =1 |j=1

= Uncc + Ungp + Unypc + Un pps (B15)
where, for example, U, s Z ni)Phs- Note, first, that
<P = ] 1 J)Pnt:
Tn t—1 hn, thn
U, = —1 / s)ds / w(r) dr
n.¢¢ Z ]Z: — w(s) A (r)

= 12( / e )ds> /:nhnw(r)'dr
= N, /Nn </ w( ds) r) dr. (B16)

Now consider
Nn t—1 n t
Upaw = N Z anj z, = N Z (/ w(s)ds) / w(r) dr
= t—1

t=1
— N /N"</w ) rYdr. (B17)

Since ¢ satisfies the assumptions of Hansen (1992), it follows that U,, o = fol BdB' + A;.
That U, ¢¢ also has the same asymptotic distribution follows from (B16). For the remaining

terms in (B15), consider, first,

Tn

1Un.coll = < N [[onel
t=1

t—1
Z an

J=1

Tn t—1
s (z <nj> "
t=1 \j=1
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IA

T, T,
N, Z izl Z G|

12
N T max Hpmlllglfg; [[Gnsll -

IN

Hence, for some € > 0,

Pr ([|Un.c,

12
) < Pr(NUT2 s ol max Gl > )

< Pr (||pn1H||Cn1|| > eNy T, ) by stationarity
E 2
< (11l HC_n41H) by Markov’s inequality
e2N2T,
Elpnl*Ell¢u|? . .
by the Cauchy-Schwarz inequality. (B18
N2, | y y quality. (B18)

From Lemma 3, E||p,1|> = O(h}) and E||¢a1||? = O(h2), while N2T;4 = N2(N,,/h,)~*
hi N2 so that the right-hand side of (B18) is O(h2N?2) = o(1) as n T oo, since h,N,, | 0.

n-'n

Hence ||U, ¢,|| = 0p(1) as n T co. Similar arguments can be used to show that

Elpm|*Ell¢n1 [

(HU ,pCH > ) 2N2T_4 O(hQNQ)
Ellpn*)’
P (Ul > 0 < E0 o),

and hence ||Up ¢|| = 0p(1) and ||Uy, || = 0p(1) as n T co. Thus part (b) is proved.
(c) In this case, hnSp7,r) = Zt Tnr] Ent = [T"T Cnt + Z[Tn pnt- From (B11) and (B12), and
noting that N,, = N, it follows that sup, ¢ 1) || thl pnt|| = 0p(1). Now

Nr [TnT]hn
/ w(s)ds —/ w(s)ds
0 0

Nr
/ w(s)ds
(Tnrlhn

Nr
sup / |w(s)||ds LNy
rel0,1] [Tnr]hn

[Tnr]

/ONr $)ds — Z .,

sup
rel0,1]

= sup
rel0,1]

= sup
rel0,1]

IN

since
Nr — [Tr]hy = hn, (% — [T r]> = hy, (J}\Z []}\ZD <h, 10

asn | oo. Hence sup,¢o 1] [[AnSniz,r) —fONT w(s)ds|| £ 0asn T oo and so hnSpi,r) = Z(Nr)

as required. Finally, consider

heUnt, = N(Un,cc + Unco + Unpc + Un,pp)-
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From the analysis in part (b), each of the last three terms is o,(1), and so

t=1

T, [t—1
h’lz’LUnTn = Z (Z Cm) C}/zt + op(1)

thn—hn thy
ds / w(rYdr + op(1)
thn—hn

Z(thy — hy) [Z(thy) —

Z(s)dZ(s)’

S ZHMﬂnMﬂ

as n | oo, as required.

Proof of Lemma 5.

The proof for each part is based on the expressions for pu,(s) and M,(s) i

Z(thy, — hn)]/ + op(1)

n (22) and (2

3)

respectively, combined with the appropriate convergence rates for Sy, and Uy, given in

Lemma 4.
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APPENDIX C

Proof of Theorem 1.

(a) This is a straightforward extension of the results of Phillips (1991a,c) to the case where
the sampling frequency h # 1, and so the details are omitted. The proof can also be based
on the results presented in (b) below provided the appropriate modifications are made.

(b) For convenience of notation let a,, = h? qb;QN_l and b, = hy,/¢p,, so that anl), xx(s)and
buly wx (s) converge to the limits given in Lemma 5. Define Qn = (1/2M, )Z ", 11 Ong
and ¢, = (1/2M,, )Z " a1, 41 Ong S0 that vec(Cn —Cp) = Q; Gn- Taking the component Qn
first, let Qn = @Qn + R, where

M-,
=g > (Fxx@7fabd), (1)
N = Mn,+1
Rom g S (s ke 122 ) c2)
2M Sy n n,ww ww ’

and where the dependence of the spectral density matrices on frequency w; has been sup-

pressed for ease of notation. The first step is to show that ||(an/hn)Rny|| = 0p(1). Consider

My
Z—: n 2]\1/[ §+1<annXX® f_M[fww ﬁl7@a}fﬁj>|
T2 Mn
< fnxxuumwfww Frasl 2]
< e Ikl e e el e DS 8[| e
= e, "nwwll e, [179% ”ww AeHh ww A hn XX

where II, = {\: —7/hy, < X < 7/hyp}. Now, as n | oo,

—1 c —1
max — max <K
)\eth wawH Aelly H(fww) H - ’

by the assumed properties of fg,, (A). Meanwhile, outside a set II,, whose probability measure

H2a>0andso

n,Www

max
)\Eth

7—1 c \—1
sl &%%%H(fww) | <&

as n T oo. Furthermore,

max
Aeth

s = Foal| + e | f = fuul| (C4)

’fn oo~ fww’ < féﬁ%f{
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Taking the first component,

wpfs

o0

S —ishar _ I —ishn\
= max % Z k(ﬁn) L, oa(s)e™ —ﬁ Fon(s)e™™

S=—00

hy, My s = —ishpA
= max|>® > k(ﬁn) T 5(8) = Dgls)] 77

hn o S —ishnA
+ % ; |:k (ﬁ) - 1:| Fww(s)e

n

S§=—00
h |
< Gomaxle > ’ ( )’H wii(9) ~Taals)|
h
+gp max e S_Zoo‘ ()—1'||Fm(8)!|- (C5)

—ishpA| —

Now max; x ’e

nww( s) — F@@(S)H 2,0, and |k(s/M,) — 1| — 0 for each fixed
s as M, 1 oo, and hence (C5)2 0 as n | oo. For the second component of (C4),

hn = —18
m/\ax”fa@—fwwﬂ = m).‘ftx %SZM[ E@(S)_Fww( )] fin
< s SEX
- 2778:_OO

as n 1 oo, since hy, | 0 and @, 2 w,. Hence (C4)£> 0. Now consider

1 % anXH 1 % @ % k <S> ajanX(S)e—ishnwj
2M, j=—Mp+1 hn, 2M a2 S M,) h, ™
: 2]\14 21 Z Z ’k’< > Hanfn,XX(S)H‘e_iS”j/Mn
n AT Mytls
= o % ‘k <S> HananX(S)H since 1 % ‘6—i87rj/Mn _ 1 s
2m s=—M, Mn ’ 2Mn Py

= %/_11 k()| dr x 0p(1)

using Lemma 5(b), where the O,(1) limit is independent of s. Combining these results in

(C3) establishes that ||(an/hn)Ry|| = 0p(1) as required, and hence (an/hn)Qn = (an/hn)Qn+
op(1). Now, from (C1),

a 1 h s\ ap- ) h )
0, " — )L, e @ J' ENT Dy el
th 2M Z [2ﬂzk<Mn> hn 7XX(S)€ ’ ®J27ng: 9 € JJ

M,
- 2 Z Z k( ) anlnxx(s) @ J' Dypd —— 1 Z eilg=)hnw;
g=—00 s=— 2M M1
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which utilises the Fourier series fuw(A) ™! = (hy,/27) oo Dy netdhn A, But
M, —
1 ei(g_s)hnwj — 1 Zei(g—s)ﬂ'j/Mn —_ 1’ (g - S) - QZMTU
2M Jj=—Mn+1 2My, j 0, otherwise,

where [ denotes a (positive or negative) integer. Substituting s = g + 2IM,, (I =0,+1,...)

in the above yields

a + 2IM, ~
0= G 2 (g M, > anl'nxx(g +21Mn)' @ J'Dgnd = Qon + Qun,
g 1
the first term corresponding to [ = 0, the second to the sum over [ # 0. Now, since

k(g/M,) — 1 for all g as M,, T oo,
Qon = 27‘(‘ 22 ( >6Ln nXX( ) ®J’DgnJ:>/ BQBQ(X)J/Q 1J (CG)

where

0=

i S Pun = 37 (37 [ PO = 55 0)”

nloo (27 p

The second term to consider is

g + 20My 21 M, ~
g z;éo n

For each g, k((g + 2IM,)/M,) — k(2l) as M, T oo, but k(21) = 0 for [ # 0. Hence
Q1n = 0p(1), and the limit in (C6) is the limit of (an/hn)@n.

A similar procedure can be applied to the component ¢, yielding the decomposition

(bn/hn)q\n = (bn/hn)Qn + (bn/hn)rn = (bn/hn)Qn + Op(l)’ while (bn/hn)Qn = qon t+ qin =

gon + 0p(1), where the important term is

Gon = (2’17")2 > (I ®J'Dyy) vec {k; (Mi> bnfn,wx(g)} . (C7)

n

From the convergence of bnf’n,w x(g) given in Lemma 5(b), it follows that

1 ~
qon = (I ® J’Q*l) vec (/0 dBBé) +0,

where

T,
0 = lim ¢ Z (I®J'Dyy) vec (h Z Ewppw) no)
g k=g+1
12 o0
= (2—) / (I @ J'D(v)) vec (/ Ew(s+ v)wQ(O)'ds> dv, (C8)
Y[ —00 0
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the second expression transforming gh, into the continuous variable v and kh, into the

continuous variable s. Let Ap(v) = [5° Ewa(0)w(s + v)’ds, and note that

/oo (I ® J'D(v)) vec (A(v)") dv = vec (J’ /_o:o D(v)Ag(v)’dv> . (C9)

—0o0

Defining z(s) = [°%, D(v)w(s + v)dv it is possible to write

/_O:O D(v)As(v) dv = /Oo D(v) [/OOO Ew(s + v)wg(O)’ds} dv = /OOO Ez(s)wy(0)ds. (C10)

— 00

Let f5,. (A) (—o0 < A < o0) denote the spectral density function between z and ws. Then

ZW3

Ez(s)wa(0) = [°_elAfe (A\)dA so that

—00 Zw2

J' /Oo D()Ay(v)'dv = J' /OOO Ez(s)wy(0) ds = /OOO [/m e §w2(/\)d)\} ds. (C11)

— 0 —o0
Combining these results,

1 [ .
) = o /_ =N Bz (s) w2 (0) ds

_ 1 /_O:O e IR [/oo D(v)w(s+ v)dv] wo(0)'ds

2 oo

_ ! /OO D(v)e™Aduv /O:O Ew(m)wy(0) e ™ dm (m = s+ v)

21 oo _

= o) 21 f 0, (V)

= 2 fe, () () [ X ] o [ i ] , (C12)

which implies that

J'fe, () = [T 0)27 [ 0] —0.
I

Substituting into (C11) shows that (C11) is null which implies that @ is also null by (C9).
Hence qq,, converges to the first term in the displayed expression following (C7), and hence

(bn/hn)qn has the same limit by the arguments provided earlier.

Turning to ©,¢ and 6,0, it is legitimate, for the reasons advanced earlier (i.e. that

maxy Hﬁl oo = fwwll 2£,0), to replace f, ~~(0)"! with fuu,(0)~! in their definitions. Using

n,Www

Lemma 5, it then follows that

M,
an 4 1 X s - 1 ,
_n" 0) = k|l — r = ByB
hnMnfn,XX( ) EST S:_gM (Mn) anl'n xx(5) 1//0 253,

where v = limyo0 M, Zi\i"_Mn k(s/M,) = (2m)~ ! f_ll k(s)ds. The expression (36) then
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follows from the definition of ©,9. Proceeding in a similar fashion,

by,
hn My,

1
2 bl ABB,
27rM Z ( > x( ;W/ 2t o,

fan

where Ag = limy oo An D e oo Bwa now!,,. The result for 0,0 stated in Theorem 1 follows
because it can be shown that (I ® J' fu,(0)1)vec((1/27)A)}) = 0, which follows along the
lines of the proof on p.433 of Phillips (1991c).

(c) Part (c) follows by the same arguments used to establish part (b), with the appropriate

limits from Lemma 5(c) used where appropriate. I

Proof of Theorem 2.

First, note that

-1 -1 -1
Q11.2 _Q11.2912922

JQ =1, 0] =0y [1, —0195]

where 911.2 = QH — 91292_21921. It follows that

JO1 T = O }{I
112 125499 0

Taking each part in turn:

(a) Using the above results applied to €y,

(1o 7/a,") vee (/01 chB,gQ) = (Tere,") (/01 Bhe ®ch>

1
— / Bh2®JQIch)
0

(
_ /1 (B2 ® Q341 208 12)

o

Combining (30) and (31) gives

R 1 -1 1
Tyvee (Co = Co) = ¢, [( /O Bth;ﬂ> ®Qh,u_2] /0 (Buo ® 051 dB12)

— 4! [( / lthBzz)l(z@I] / (B ® dByys)

as required.

(b) The same arguments apply as in part (a), simply replacing €, by © and By, by B.
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(c) Again, the proof follows that in part (a), noting that

N
vec (F2(Z,y02)) = </o Zy ® dZ) + (Yo2 ® Z(N)) .

The stated results then follow straightforwardly. I

Proof of Theorem 3.

Recall that ), = (27/h?) free(0) and that fpee(0) = S0 fh ¢ (2km /) where

. 2km 2kam\ L. [(2km —2kim\’
sree () = mn (57 e (50 ) 2 (57

It is convenient to partition fg,, (\) and My (i\) as

fow) = [ ) () ] . My(id) = [MM(M) Mi3(i) ] |

f21(A)  faa(N) 0 Maa(iN)

Defining A\, = 27k /h, the sub-matrices of €, can be written

o0

Qp1 = i—g Z [Mi1 (i) f11 (V) Ma1 (—iXg)" + Mag(idg) for (Ag) Mi1 (—idg)’
k=—0o0
+ Mi1(iMg) fra(Ne) Maa(—idg)" + Mg (i) fao(Ag) Mia(—iXg)'] (C13)
Qpiz = % > [Mun(ide) frz(Ae) + Mia(idg) faa(Ar)] Maa(—iAg)', (C14)
k=—0oc0
Qpo0 = ?L—Z > Mao(idg) fao (M) Maa(—ie)', (C15)
k=—oc0

and where Q01 = Q/h,12' Lemma A6 in Appendix A establishes that M;1(0) = éplp,,
M52(0) = hlp,, and Maa (i) = 0 for all k£ # 0, so that (C13), (C14) and (C15) simplify as

Q1 = i—z {ﬁfﬂ(o) + én (M12(0) f21(0) + f12(0)M12(0)") + M12(0)f22(0)M12(0)'}

+§h,117 (C16)
Q12 = i—g [6n.f12(0) + Mi2(0) f22(0)], (C17)
Qpo2 = 2%]32(0)7 (C18)

where

Qpi1 = Z—Z > (M (idg) fr () Max (—ide) + Maa(ide) for (Ae) Mar (—ide)
k20

+ M11(i)\k)flg()\k)Mlg(—i/\k)/ + M12(i)\k)fzg()\k)Mlg(—i/\k)/] . (019)
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From (C17) and (C18),

thzgﬁégﬁh,m = 2—7; [¢if12(0)f22(0)_1f21(0) + én (M12(0) f21(0)" + f12(0)Mi2(0)")
+ Mi2(0) f22(0) M12(0)'] , (C20)

so that, combining (C16) and (C20),

2T ~
Q12 = ﬁ¢i21f11.2(0) + Q115 (C21)

where f11.2(0) = f11(0) — f12(0) f22(0) ! f21(0). The variance matrix of interest in the condi-

tional distribution therefore has the representation

V(h) = h%¢;” {%fﬂ(o)l ® (2—7;¢%f11.2(0) + ﬁh,ll)]

_ R ~
= f22(0)' @ [ f112(0) + =—5 Q11 | - (C22)

2m oy
The most complicated term to investigate here is thn. Bearing (C19) in mind, the defini-

tions of the M;;(\) in terms of the underlying scalar filter functions yields

m> (i 2 ¢SS
M1 (id) fi1 (M) M (—idg) = [ [my (iAe)|“ fi (M) 0 ] |

0 0

Cssmis (iAk)m? (—id) f51 (M)
Mo (idg) far (M) Min (=idg)" = | +Cspm?s (idg)m? (—ixg) 475 (\x) ;
0 0

Cssmis (ixe)* f55 (M) Clg
+Cspmig (iAy)miy i)\k)ffzs()\k)cés

Moo (iAg) fao(Ak) Moz (—idr) = | +Cssmy (iA)mPs (—idg) fox (M) Chp
+Csr|mfs (iAe) f25" (\k) Cls e
0 0

Hence S~2h’11 is of the form

~ QSS 0
Qa1 = h,11 ‘
0 0

Now, from Lemma A6, note that for k # 0,

. . . h2p3

m? (iM)[* = [mis (AP = [mis (i) = miy ((d)mPs (—idk) = 5——L5—5
h* 4+ 4k*m

h2¢7

m12 (Mlc)ml( iAg) = m12 (Mk)ml( iAg) = Th2 1 Ak2n2
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Hence O35, = (2m/h3) 340 B33 (h? + 4k*w?) "1 P35 (h), where

PP3(h) = 55 () — Cssfsf ) — Csrfa® (M) — £33 (M) Cs — £ (M) Clap

+Cssf3 (\e)Css + Csrfas” (Ak)Cs + Css [ (M) Csp + Csr f33 (M) Cp-
Let Jg = [Imfv 0], Cg = [Cgs, CSF] and Jo = [Js, —Cs]. Then
P5(h) = Jsfi1(Me)Js — Cs far (M) T — Js f12(0)Cs + Cs fao (M) C = Jo £S 0 (M) T

so that

5 277 1 2wk 27 ~
DL S S (_) I = 2"y, 23

h,11 h3 JC];) 1+ (47T2k2/h2) ww L C h3 h,11, ( )
where th is implicitly defined and is positive semi-definite under the assumed properties

of f$,(A) in Assumption 1. Hence the matrix V(h) has the representation
V(h) = f2r(0) " @ (f112(0) + Vi),

where

Vi =
0 O

Vh,ll 0 ]
Turning to the matrix V) = 9521 ® 1.2, recall that Q = 27 fS,,(0). It is easy to show
that Q119 = 27 f11.2(0) and that Q9o = 27 f22(0), thus yielding

Vo = f22(0) 7' @ f11.2(0).

It immediately follows that the matrix difference V' (h) — Vj is given by
V(h) = Vo = f22(0)"" @ Vi,

which is clearly positive semi-definite under Assumption 2. I

Proof of Proposition 1.

Follows straightforwardly from the form of the matrix f§,, 55(0)™' ® Vi. I
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APPENDIX D

This Appendix provides further details concerning the generation of the discrete time data
for the simulation experiments. From the expression for & it is clear that this disturbance

vector can be expressed as the sum of two components, so that &, = e — J Auyy, where

h
eth:/ w(th — s)ds, uth—/ o(s)w(th — s)ds
0

Deriving the autocovariance properties of these two components enables each one to be

generated from a single set of N(0,1) random variables.

First, note that w(th) satisfies the difference equation

th
w(th) = "“w(th — h) + eth=9)G¢(ds).
th—h

Integrating over the interval [0,h] yields a difference equation for e, given by ey, =

hG
Uth—/ / th=5=1G ¢ (ds)dr.

e"“ei_n + vy, where
It is convenient to express vy, as a pair of single stochastic integrals with respect to the
random measure ((d7). The justification of the change in the order of integration has been

rigorously demonstrated by McCrorie (2000), and the method yields

th th—h
vy, = O (th — s)C(ds) + Oy (th — h — s)((ds),
th—h th—2h

where ®1(z) = G~ e*? — L] and ®5(2) = G'[e"? — €*“]. The autocovariance properties

of vy, then follow straightforwardly, yielding (given the autocovariance properties of {(d7))

h h
Evthv,ﬁh:/o <I>1(T)CI>1(7")'dr+/0 o (r) Do (r) dr,

h
Evthvéh_h:/o o (r)®1(r) dr,

while Evthvghfjh = 0 for [j| > 2. These integrals are straightforwardly expressed in terms
of integrals of the matrices e’® and e"“, although the derivations are somewhat tedious and

are omitted for brevity.

Applying a similar procedure to uy, yields the difference equation uy, = e

Zth—/ ¢8/thr =G (ds)dr.

This double integral can also be reduced to a pair of single stochastic integrals with respect

Uth—h + Zth,

where
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to ¢(dr), yielding

th th—h
2t = D3(th — s)¢(ds) + O4(th — h — s)((ds),
th—h th—2h
where ®3(z) = K(0)e*® — K (2), ®4(2) = K(2)e"® — K(—h)e*, and K(z) = G~ — e*(I +

G)~L. Tt follows that zy is also an MA(1) process, with

h h
Ezthzgh:/o <I>3(1")<I>3(r)/dr+/0 Oy (r)Dy(r) dr,

h
Ezthzgh_h:/o Oy (r)®3(r) dr,

while Ezy, 2y, =0 for |j| > 2. Once more some tedious algebra enables these integrals to
be expressed in terms of integrals with respect to e*¢ and e*!+%) | for example, which can

be evaluated for the given values of parameters that define the matrix G.'3

The processes vy, and zy, are both MA(1). It remains to describe the method by which
they were generated from a sequence of independent N(0,1) variates. Consider, first, vy,.
The procedure for z;, is identical. Denote the variance matrix by Vj and the first-order
autocovariance by Vi. Then, if vy, = €5 + Aegn_p, where € is an uncorrelated sequence

with variance matrix P, it follows that P, A, Vj and Vi are related by the formulae
Vo=P+APAN, Vi =AP.

The matrices P and A were derived (numerically) to satisfy these equations for each experi-
ment. Then, given a sequence of independent N(0,1) variates pp,, and denoting the Cholesky
factorisation of P by P = P.P., the ¢ are determined by €y, = Peuy,. The process vy,
can then be generated according to the MA(1) representation, from which ey, can be gener-
ated using the AR(1) representation. The same procedure, using the same set of p,, then
determines zy, (using the appropriate variance matrix and MA(1) coefficient matrix), and
hence ug,. The same set of underlying random variates must be used, because ey, and wugp,

are functions of the same underlying (continuous time) process w(r).

13The expressions used assume that the matrices G and (I + G) are nonsingular, conditions which are
certainly satisfied in the experiments conducted here.
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TABLE 1

Mean square errors

Estimator h

Values of N

25 50 100 25 50 100

OLS 1
1/4
1/12

SPEC 1
1/4
1/12

BAND 1
1/4
1/12

OLS 1
1/4
1/12

SPEC 1
1/4
1/12

BAND 1
1/4
1/12

Experiment 1 Experiment 2

158.14 31.20 6.89 61.85 15.17 3.68
168.63 33.78 7.37 35.19  8.50 1.98
175.67 35.21 7.66 37.37  8.96 2.07

167.10 33.00 7.15 18.79  4.02 091
175.37 34.84 7.46 32,18  7.71 1.79
197.79 38.79 8.22 46.40 10.92 2.58

175.32 34.10 7.28 1754  3.58 0.80
166.15 32.85 7.04 21.84 4.64 1.00
170.94 33.55 T7.11 29.14  6.34 1.29

Experiment 3 Experiment 4

160.90 3291 7.89 56.72 13.51 3.51
107.87 21.76 5.22 27.06 6.18 1.54
101.84 20.51 4.92 2649  6.01 1.49

87.03 1545 3.48 12.33 246 0.57
81.72 15.27 3.50 23.27 537 1.34
84.73 15.76 3.62 31.37  7.16 1.81

91.53 15.75 3.48 10.86  2.07 0.46
81.55 15.06 3.41 15.36  3.12 0.69
80.50 15.02 3.43 21.25  4.46 0.96

Note: All entries have been multiplied by 10%.
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TABLE 2

Percentage coverage rates of 90% confidence intervals

Values of N
Estimator h 25 50 100 25 50 100
Experiment 1 Experiment 2
OLS 1 28.69 20.06 13.31 33.70  24.66 17.42
1/4 26.44 18.94 12.75 46.34  34.11  23.93
1/12 35.45 25.19 17.48 66.79  50.53  36.77
SPEC (171) 1 69.74 69.66 69.04 87.11  88.25  88.55
1/4 84.97 84.84 84.65 99.52  99.51  99.52
1/12 95.38 95.23 96.02 100.00 100.00 100.00
SPEC (172) 1 69.74 69.66 69.04 87.11  88.25  88.55
1/4 52.50 53.35 52.20 82.11 81.86 81.99
1/12 4412 44.69 44.58 69.39  68.79  68.26
BAND (‘710) 1 75.98 80.10 83.12 86.77  88.38  88.55
1/4 94.44 96.50 97.92 99.60 99.74  99.82
1/12 99.32 99.58 99.86 100.00 100.00 100.00
BAND (1720) 1 76.97 80.86 83.72 87.84 89.16  89.30
1/4 69.55 73.95 76.79 8§7.00 87.89 88.84
1/12 60.67 65.44 68.97 84.48 85.58 87.14
Experiment 3 Experiment 4
OLS 1 2495 18.55 13.71 34.55  25.08 17.40
1/4 20.15 14.84 10.87 42.01  30.04 21.34
1/12 23.55 16.74 12.39 56.78  41.98  30.20
SPEC (171) 1 66.27 69.13 70.54 86.87 88.43  87.65
1/4 78.04 80.01 81.10 98.44  98.64  98.52
1/12 88.14 89.80 92.34 99.98  99.93  99.98
SPEC (172) 1 66.27 69.13 70.54 86.87 88.43  87.65
1/4 46.63 48.29 49.72 75.36  75.26  74.17
1/12 36.31 37.14 39.10 57.52  56.49  56.65
BAND (1710) 1 72.28 79.40 83.48 87.80 89.90 89.73
1/4 92.92 97.10 98.05 99.54  99.63  99.77
1/12 98.53 99.62 99.92 100.00 100.00 100.00
BAND (‘720) 1 73.42 80.36 84.07 88.68  90.64  90.39
1/4 67.18 73.68 78.10 86.16  87.58  88.21
1/12 57.36 64.23 70.91 81.48 83.44  85.40
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TABLE 3

Percentage coverage rates of 95% confidence intervals

Values of N
Estimator h 25 50 100 25 50 100
Experiment 1 Experiment 2
OLS 1 33.67 23.42  15.69 40.01  29.41  21.09
1/4 3143 2233 15.25 54.18  39.98  28.29
1/12 41.75 29.85  20.79 75.65  58.50  43.30
SPEC (‘71) 1 77.83 T7.95  77.45 92.63  93.59  94.05
1/4 90.82 91.07  90.89 99.93  99.93  99.96
1/12 98.16 97.94  98.59 100.00 100.00 100.00
SPEC (172) 1 77.83 T77.95 < T77.45 92.63  93.59  94.05
1/4 61.06 61.49 60.54 89.31 89.03  89.57
1/12 50.91 51.82  51.69 79.65  79.32 78.71
BAND (\710) 1 83.40 86.81  89.25 92.19 93.23  93.94
1/4 97.49 98.61  99.29 99.93  99.60 99.97
1/12 99.81 99.91 100.00 100.00 100.00 100.00
BAND (Vgo) 1 84.32 87.43  89.72 93.00 93.87  94.46
1/4 77.84 81.53  84.07 92.69 93.48 9391
1/12 69.07 73.15  77.70 91.04 91.86 93.04
Experiment 3 Experiment 4
OLS 1 29.22 22.25 16.14 40.69  29.62  20.71
1/4 24.14 17.54 1297 49.23  35.69  25.52
1/12 27.80 20.00 14.75 64.93 49.33  35.51
SPEC (171) 1 74.37 7712  78.51 92.46 9347  93.32
1/4 84.91 87.18 87.94 99.72  99.67  99.66
1/12 92.92 94.65 96.07 100.00 100.00 100.00
SPEC (X72) 1 74.37 7712 78.51 92.46  93.47  93.32
1/4 54.35 55.99  57.29 83.68 83.43  83.08
1/12 42.21 43.88  45.46 68.10 67.49  66.47
BAND (‘710) 1 79.82 86.51  89.74 92.53 9447  94.54
1/4 96.29 98.88 99.41 99.91 99.94  99.98
1/12 99.44 99.86 100.00 100.00 100.00 100.00
BAND (‘720) 1 80.63 87.18  90.18 93.37  95.04  95.07
1/4 75.00 81.46  85.40 91.99 93.39 93.78
1/12 65.87 72.40 79.16 88.78  90.70  91.49
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TABLE 4

Estimates of the long-run PPP relationship

using month-end exchange rate data

Monthly Quarterly Annual
Estimator B B2 B B2 B B2
OLS 0.9438 0.9061 0.9528 0.9048  0.9187 0.9071
(0.0315) (0.0045) (0.0559) (0.0079) (0.1267) (0.0178)
SPEC(1/10) 0.6877 0.9366  0.6383 0.9437  0.6231 0.9442
(0.0234) (0.0036) (0.0448) (0.0068) (0.0949) (0.0141)
SPEC(1/3) 0.5452 0.9458  0.5903 0.9404  0.5774 0.9502
(0.0237)  (0.0045) (0.0443) (0.0080) (0.0876) (0.0136)
SPEC(2/5) 0.5346 0.9447  0.6141 0.9397  0.5774 0.9502
(0.0235) (0.0046) (0.0402) (0.0071) (0.0876) (0.0136)
BAND(1/10) 0.8415 0.9203  0.8129 0.9243  0.7998 0.9240
(0.0325) (0.0046) (0.0630) (0.0088) (0.1292) (0.0180)
BAND(1/3) 0.8006 0.9262  0.8114 0.9247  0.9312 0.9078
(0.0766) (0.0108) (0.1233) (0.0172) (0.0340) (0.0045)
BAND(2/5) 0.8063 0.9257  0.7993 0.9264  0.9312 0.9078
(0.1007) (0.0141) (0.1559) (0.0216) (0.0340) (0.0045)
FM-OLS(P) 0.9062 0.8878  0.9192 0.8880  0.9317 0.8873
(0.0953) (0.0135) (0.0997) (0.0139) (0.0989) (0.0135)
FM-OLS(B) 1.0332 0.8877  1.0343 0.8877 1.0445 0.8841
(0.1521) (0.0215) (0.1565) (0.0218) (0.1833) (0.0250)

Note: Figures in parentheses are standard errors.
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TABLE 5

Estimates of the long-run PPP relationship

using monthly-averaged exchange rate data

Monthly Quarterly Annual
Estimator B B2 51 B2 b1 B2
OLS 0.9436 0.9063  0.9443 0.9064  0.9440 0.9053
(0.0313) (0.0044) (0.0550) (0.0077) (0.1278) (0.0177)
SPEC(1/10) 0.7811 0.9227  0.6708 0.9395  0.6499 0.9412
(0.0229) (0.0035) (0.0455) (0.0069) (0.0958) (0.0141)
SPEC(1/3) 0.6968 0.9204  0.6277 0.9339  0.6011 0.9475
(0.0226) (0.0042) (0.0433) (0.0079) (0.0881) (0.0136)
SPEC(2/5) 0.6946 0.9185  0.6533 0.9333  0.6011 0.9475
(0.0226) (0.0043) (0.0391) (0.0069) (0.0881) (0.0136)
BAND(1/10) 0.8412 0.9205  0.8050 0.9257  0.8215 0.9225
(0.0324) (0.0046) (0.0623) (0.0087) (0.1313) (0.0181)
BAND(1/3) 0.7999 0.9264  0.8064 0.9258  0.9567 0.9059
(0.0765) (0.0108) (0.1218) (0.0170) (0.0339) (0.0044)
BAND(2/5) 0.8061 0.9258  0.7938 0.9275  0.9567 0.9059
(0.1008) (0.0141) (0.1537) (0.0213) (0.0339) (0.0044)
FM-OLS(P) 0.8978 0.8860  0.9070 0.8895  0.9529 0.8872
(0.0586) (0.0083) (0.0859) (0.0120) (0.1012) (0.0136)
FM-OLS(B) 1.0093 0.8916 1.0150 0.8910 1.0625 0.8835
(0.1477)  (0.0208) (0.1539) (0.0214) (0.1858) (0.0249)

Note: Figures in parentheses are standard errors.
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