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Abstract
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1. INTRODUCTION

In some areas of economics, most notably finance, data frequency is increasingly becoming an

element of the econometrician’s decision set. In addition to making choices concerning, inter

alia, functional form and the appropriate methods of estimation and inference to use, the

frequency of data with which to conduct the analysis must also be chosen. In macroeconomics

the choice is typically between annual and quarterly frequencies, although an increasing

number of macroeconomic variables are now available on a monthly basis. In finance the

choice is even greater, with near-continuous sampling being possible in some applications.

The use of different data frequencies presumably has some effect on the properties of the

estimation and inference procedures employed. A question of some interest is, therefore:

precisely what are those effects?

Whilst it may be difficult (if not impossible) to answer this question in the generality

in which it is posed, this paper attempts to address some more specific questions, the an-

swers to which have a bearing on econometric research in certain applications. The focus

is a particular class of time series models that are in widespread use, namely models of

cointegration. The class of estimators of the cointegrating parameters that is considered is

the class of spectral regression estimators. The large sample asymptotic properties of the

estimators can be examined in a number of ways, depending on the way in which sample size

tends to infinity. For a fixed sampling frequency, the number of observations tends to infinity

if the span covered by the data tends to infinity. Conversely, for a fixed span of data, the

number of observations grows if sampling becomes more frequent. Obviously, a combination

of an increasing span and an increase in frequency also leads to an increasing sample size.

All three modes of asymptotics are considered, and it is shown that the limiting properties

of the estimators differ in each case. Hence the following more precise question is addressed:

what are the effects of increasing data span and/or increasing sampling frequency on the

asymptotic properties of spectral regression estimators of cointegrating parameters?

In view of cointegration being a feature of the long-run relationship between integrated

time series, an answer to the previous question enables further issues to be explored. For

example: is it possible to consistently estimate cointegrating parameters when the data

span is fixed? Consistency in this case refers to the asymptotic analysis in which sampling

frequency increases. Related research on testing for unit roots, for example the simulation

results of Shiller and Perron (1985), suggests that increasing span is the important factor

for test consistency, a finding confirmed by the theoretical results of Perron (1991). It is

interesting to assess whether the same is true for the consistent estimation of cointegrating

parameters. The characterisation of the limiting distributions also enables the investigation,

in cases where span tends to infinity, of the question: is there an efficiency loss associated
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with sampling at a fixed frequency compared to the limiting case of continuous sampling? It

turns out that the efficiency loss can be quantified (at least in theory) and that there is only

a loss in efficiency where stock variables are concerned. Expressed in a slightly different way,

the implication is that the estimators obtained with flow data at a fixed sampling frequency

are as efficient as when based on a continuous sample. This remarkable result generalises

related work in Chambers (2000).

The effects of sampling frequency on estimators and test statistics have been analysed in

a variety of settings. Sargan (1974) derived the order of magnitude (in terms of the sampling

frequency) of the asymptotic bias of various estimators of the parameters of stationary

continuous time systems derived from approximate discrete models. Most recent research

has been univariate in nature but has relaxed the stationarity requirement. Phillips (1987a,b)

derived continuous record asymptotics for the ordinary least squares (OLS) estimator in a

first-order autoregression with a unit root. Perron (1991) considered the consistency of tests

of the random walk hypothesis and of randomness and, as mentioned above, shows that it

is the increasing span of the data, rather than the frequency, that is important.

The recent research described in the preceding paragraph has been based on a univariate

model with Brownian motion characterising the random disturbance process in continuous

time. Such a model has the advantage of generating a discrete time process that satisfies a

first-order autoregressive model with an independently and normally distributed disturbance

term. Whilst this greatly facilitates the analysis and allows the precise effects of sampling

frequency to be pinpointed, such an assumption, even extended to a multivariate Brownian

motion process, would not be appropriate in the setting of this paper. Because, for reasons

that will become apparent, the analysis here is based on the triangular error correction

model (ECM) of Phillips (1991a,b), it is important to allow the disturbance process to

characterise fully the dynamics of the cointegrated system. A process such as Brownian

motion with independent increments is thus inappropriate for this task, and so a much

more general forcing process is allowed that imposes much weaker conditions on the serial

correlation and heterogeneity properties of the random disturbance. Whilst allowing for

greater generality such an assumption requires a number of new results to be derived, in

particular the invariance principles that describe the limiting properties of suitably scaled

partial sum processes and on which many subsequent results depend. Hence the results in

this paper represent a significant advance in the sophistication of model that can be analysed

in this branch of the literature in three important dimensions. Simultaneously, the model

is multivariate; the random variables are nonstationary; and the random forcing process is

only required to satisfy much weaker conditions than the increment of Brownian motion.

The layout of the paper is as follows. Section 2 defines the underlying continuous time
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model and derives some results concerning its discrete time representation for any arbitrary

sampling frequency, while Section 3 provides some preliminary notation and discussion of the

spectral estimators under examination. The important asymptotic results appear in Section

4 which also contains the results related to asymptotic efficiency comparisons and discusses

large sample inference. The results of a simulation experiment are reported in Section 5,

along with an investigation of the performance of the spectral estimators in an empirical

setting when sampling frequency is allowed to vary. Section 6 concludes the paper. The

proofs of all lemmas and theorems, as well as additional details concerning the simulations,

are contained in four appendices. This is done so as to aid the flow of the development of

the results of interest in the main body of the paper.

Finally, the following notation shall be used throughout the paper. L denotes the lag

operator such that, for a variable xt, Ljxt = xt−j for some integer j. D denotes the mean

square differential operator such that, for a variable x(t) defined in continuous time, Dx(t)

is defined by limh↓0E{h−1[x(t+h)−x(t)]−Dx(t)}2 = 0. For a random m×1 vector process

x(t), ‖x(t)‖δ = [
∑m
j=1E|xj(t)|δ]1/δ, while ‖x(t)‖ shall denote the Euclidean norm ‖x(t)‖ =

[
∑m
j=1 xj(t)

2]1/2. For an m×m matrix A, this norm is defined by ‖A‖ = [
∑m
i=1

∑m
j=1 a

2
ij ]

1/2.

Finally,⇒ denotes weak convergence of the associated probability measures, and [x] denotes

the integer part of the real number x.

2. MODEL SPECIFICATION AND DISCRETE TIME REPRESENTATION

Consider the continuous time triangular ECM

dy(τ) = −JAy(τ)dτ + w(τ)dτ, τ > 0, (1)

where the cointegrated variables of interest are contained in the m×1 vector y(τ), τ denotes

the continuous time parameter, and w(τ) satisfies the following assumption.

Assumption 1. w(τ) is a wide-sense stationary separable continuous time random process

for which the function Ew(τ)w(s)′ is measurable. Furthermore, ‖wj(τ)‖2 < ∞ for j =

1, . . . ,m.

This assumption ensures that w(τ) is integrable; see Rozanov (1967, Theorem 2.3). It

is weaker than requiring w(τ) to be mean square continuous, and hence w(τ) could, in

principle, incorporate jumps, which can be important for the modelling of financial time
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series. Defining y = [y′1, y
′
2]′, where y1 is m1 × 1, y2 is m2 × 1, and m1 + m2 = m, the

ECM representation is consistent with an underlying cointegrating relationship between the

sub-vectors y1 and y2 such that y1−Cy2 is stationary, where C denotes the m1×m2 matrix

of cointegrating parameters. The matrix C enters (1) via the matrix A = [Im1 ,−C], while

J = [Im1 , 0]′. The first m1 equations of (1) then give dy1(τ) = −[y1(τ)−Cy2(τ)]dτ+w1(τ)dτ ,

while the last m2 equations in (1) depict the common stochastic trends dy2(τ) = w2(τ)dτ ,

where w has been partitioned conformably with y. The solution to (1) is given by

y(τ) =
∫ τ

0
e−(τ−r)JAw(r)dr + e−τJAy(0), τ > 0, (2)

where the matrix exponential eA is defined by the infinite series eA =
∑∞
j=0A

j/j! and y(0)

represents the initial state.

It will be assumed that the vectors y1 and y2 are each comprised of a mixture of stock

variables and flow variables. Without loss of generality the variables in each vector will be

arranged with the stocks first followed by the flows, and the cointegrating matrix C will be

partitioned accordingly, so that

y1(τ) =

 yS1 (τ)

yF1 (τ)

 , y2(τ) =

 yS2 (τ)

yF2 (τ)

 , C =

 CSS CSF

CFS CFF

 .
The vectors yS1 and yF1 are of dimensions mS

1×1 and mF
1 ×1 respectively, with mS

1 +mF
1 = m1,

while the subvectors of y2 are of similarly-defined dimensions with mS
2 + mF

2 = m2. The

sampling interval, i.e. the period between observations, will be denoted by h, so that the

sampling frequency is given by h−1. Observations on the stock variables are made at points

in time separated by a period of h while observations on flow variables are of the form of

integrals of the underlying rate of flow over each successive interval of length h. That the

necessary integrals exist is assured by Assumption 1. Introducing the variable t to index

observations, the observations are of the form

y1,th =

 yS1,th

yF1,th

 =

 yS1 (th)
1
h

∫ h

0
yF1 (th− s)ds

 ,

y2,th =

 yS2,th

yF2,th

 =

 yS2 (th)
1
h

∫ h

0
yF2 (th− s)ds

 ,
where t = 1, . . . , T and T denotes the sample size. Denoting the span of the data by N , it

follows that T = N/h. The observations are therefore made at the points th (t = 1, . . . , T ),

which divides (continuous) time (indexed by τ) into T intervals each of length h. Note that

the flow variables are normalised by the factor 1/h. The importance of this normalisation
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will become apparent below. The formulae defining the discrete time ECM are presented in

Lemma 1.

Lemma 1. Let y(τ) be generated by (1) and let yth =
[
y′1,th, y

′
2,th

]′
(t = 1, . . . , T )

denote the vector of observations on y1 and y2. Then, under Assumption 1, yth satisfies the

triangular ECM given by

∆hyth = −φhJAyth−h + ξth, t = 1, . . . , T, (3)

where ∆h = 1− Lh, φh = 1− e−h, and the subvectors of ξth are related to w(τ) as follows:

ξS1,th =
∫ h

0
[1− φ(r)]wS1 (th− r)dr + CSS

∫ h

0
φ(r)wS2 (th− r)dr

+CSF

[∫ h

0
φ(r)wF2 (th− r)dr +

φh
h

∫ h

0
ψ1(r)wF2 (th− h− r)dr

+
φh
h

∫ h

0
ψ2(r)wF2 (th− 2h− r)dr

]
,

ξF1,th =
1
h

∫ h

0
φ(r)wF1 (th− r)dr +

1
h

∫ h

0
[φh − φ(r)]wF1 (th− h− r)dr

+CFS

[
1
h

∫ h

0
ψ5(r)wS2 (th− r)dr +

1
h

∫ h

0
ψ6(r)wS2 (th− h− r)dr

−φh
h

∫ h

0
ψ1(r)wS2 (th− h− r)dr − φh

h

∫ h

0
ψ2(r)wS2 (th− 2h− r)dr

]

+CFF

[
1
h

∫ h

0
ψ5(r)wF2 (th− r)dr +

1
h

∫ h

0
ψ6(r)wF2 (th− h− r)dr

]
,

ξS2,th =
∫ h

0
wS2 (th− r)dr,

ξF2,th =
1
h

∫ h

0
ψ3(r)wF2 (th− r)dr +

1
h

∫ h

0
ψ4(r)wF2 (th− h− r)dr,

where φ(x) = 1− e−x, ξt = [ξ′1t, ξ
′
2t]
′ = [ξS′1t , ξ

F ′
1t , ξ

S′
2t , ξ

F ′
2t ]′, and

ψ1(x) = [h2 − (x− h)2]/2, ψ2(x) = (x− h)2/2, ψ3(x) = x,

ψ4(x) = h− x, ψ5(x) = x− φ(x), ψ6(x) = h− x− [φh − φ(x)].

The dynamics of the continuous time system, embodied in the stationary process w(τ)dτ

in (1), feed through into the discrete time ECM disturbance ξth via the sequence of formulae

given in Lemma 1. Even in the simplest case in which w(τ)dτ is an orthogonal increment
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process in continuous time, these formulae show that the dynamics of ξth will be rather more

sophisticated than white noise. In particular, the presence of the lagged integrals imposes a

higher-order moving average onto the discrete time dynamics. The discrete time triangular

ECM representation in (3) exists provided that w(τ) is wide-sense integrable, which follows

from Assumption 1.1

The normalisation of the flow variables by the factor 1/h puts them into the same units

of measurement, regardless of the value of h. For example, suppose that h = 1 corresponds

to one year and that y denotes the rate of flow of consumers’ expenditure in dollars. Then

yt1 =
∫ 1

0 y(t− r)dr denotes annual consumers’ expenditure measured in dollars per annum.

If, however, the sampling frequency is quarterly, so that h = 1/4, then yt 1
4

=
∫ 1/4

0 y(t1
4−r)dr

measures quarterly consumption in dollars per quarter, while [1/(1/4)]yt 1
4

measures quarterly

consumption in dollars per annum. Hence, in the latter case, the units of measurement

remain constant, regardless of the sampling frquency h.

There are, however, even more important statistical reasons for normalising the flow

variables by the factor 1/h. One of these concerns the very validity of the discrete time

ECM representation itself. Inspection of the derivation of the formulae defining ξ1,th in the

proof of Lemma 1 in Appendix B reveals that terms of the form y(th)− h−1
∫ h

0 y(th− s)ds

feature prominently. Lemma A1 in Appendix A provides a representation for this difference

in terms of an integral of w(τ) in the form

y(th)− 1
h

∫ h

0
y(th− s)ds =

1
h

∫ h

0
(h− s)w(th− s)ds,

which is clearly stationary if w(τ) is stationary. However, if the flow variables were not

normalised in this way, the resulting expression would be (using the proof of Lemma A1)

y(th)−
∫ h

0
y(th− s)ds = (1− h)y(th− h) +

∫ h

0
(1− s)w(th− s)ds.

The first term is clearly nonstationary, and hence its appearance as a component of ξ1,th

would also render the discrete time ECM disturbance nonstationary as well. Thus the

discrete time ECM would no longer be a valid representation of the cointegrated system.

The relationship between ξth and w(τ) can also be depicted in terms of a linear (matrix)

filter. The form of this filter is presented in Lemma 2 below, although the precise definitions

of its components are confined to Appendix B in order to avoid burdening the main text

with unnecessary definitions.

1For a definition of wide-sense integrability, see Bergstrom (1984) or Rozanov (1967).
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Lemma 2. Let y(τ) be generated by (1). Then, under Assumption 1, the disturbance

vector ξth in the discrete time ECM (3) is related to the disturbance vector w(τ) in the con-

tinuous time ECM (1) by the filtering equation ξth = Mh(D)w(th), where the filter function

Mh(z) is defined by

Mh(z) =


mS

1 (z)ImS1 0 mSS
12 (z)CSS mSF

12 (z)CSF

0 mF
1 (z)ImF1 mFS

12 (z)CFS mFF
12 (z)CFF

0 0 mS
2 (z)ImS2 0

0 0 0 mF
2 (z)ImF2


and its component filters are defined in Appendix B.

The filtering equation in Lemma 2 plays two important roles. First, it is particularly

convenient for deriving the spectral density matrix of ξth from that of w(τ). If f cww(λ)

(−∞ < λ < ∞) denotes the spectral density matrix of the continuous time process w(τ),

it follows, by noting that the frequency response function of the operator D is iλ, that the

spectral density matrix of ξth, regarded as a continuous time process, is given by

f ch,ξξ(λ) = Mh(iλ)f cww(λ)Mh(−iλ)′, −∞ < λ <∞. (4)

Note the dependence of this spectral density on h. The spectral density matrix of ξth,

regarded as a discrete time process, is then obtained by applying the folding formula to (4)

to yield2

fh,ξξ(λ) =
∞∑

k=−∞
f ch,ξξ

(
λ+

2kπ
h

)
, −π

h
< λ <

π

h
. (5)

The spectral density function (5) plays a role in the asymptotics in section 4. Note that the

range of λ in (5) is (−π/h, π/h]. In the limit, as h ↓ 0, sampling becomes continuous and

fh,ξξ(λ)→ f ch,ξξ(λ).

The second important role of the filtering equation in Lemma 2 is in the investigation

of the order of magnitude of ξth in terms of h as h ↓ 0. This latter property is important for

the asymptotic analysis in section 4, and is presented in Lemma 3.

2See Priestley (1981, pp.504–507) for details.
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Lemma 3. Under Assumption 1, the discrete time disturbance vector ξth = Op(h) as

h ↓ 0, and satisfies the decomposition ξth = ζth + ρth, where

ζth = gh(D)w(th) =
∫ h

0
w(th− s)ds = Op(h) and ρth = Qh(D)w(th) = Op(h2)

as h ↓ 0, and where Qh(z) = [Mh(z) − gh(z)Im] and gh(z) = (1 − e−hz)/z. Furthermore,

ρS2,th = 0.

Lemma 3 suggests that some care may need to be taken with respect to estimating the

cointegrating parameters in view of ξth tending to zero in probability with h. This will

manifest itself more precisely in the next section in which issues of estimation are treated

more fully. The stated orders of magnitude are obtained by investigating the orders of

magnitude of the integrating filter gh(z) and of the various filters that constitute Mh(z)

and by noting that w(τ) = Op(1). The orders of magnitude of the filters are derived in a

sequence of lemmas in Appendix A. The decomposition of ξth into the integral of w(τ) plus a

remainder plays an important role in establishing the asymptotic properties of partial sums

of ξth and related quantities.

As a by-product of the type of analysis leading to the results in Lemma 3, it is interesting

to note that the normalisation of flow variables by the factor 1/h has the effect of normalising

the discrete time flow variable to be Op(1). To see this, consider the unnormalised scalar

flow variable Yth =
∫ h

0 y(th − s)ds = gh(D)y(th). Since y(th) = Op(1) and Lemma A4

in Appendix A establishes that gh(z) = O(h) as h ↓ 0, it follows that Yth = Op(h). The

normalised variable yth = h−1Yth is then Op(1).

3. SPECTRAL REGRESSION ESTIMATION: SOME PRELIMINARIES

The discrete time ECM (3) provides the basis for estimating the unknown elements of the

matrix C of cointegrating parameters. In principle, a variety of methods could be considered

for this task. If a parametric model was specified for the continuous time disturbance vector

w(τ) in (1) then it would be possible to derive the precise dynamic properties (autocovariance

structure) of ξth and to apply (quasi)-likelihood methods to jointly estimate C and the

parameters determining the evolution of w(τ). If this parametric model was a system of

stochastic differential equations then the problem would be one of estimating a system of

(higher-order) differential equations of reduced rank (reflecting the cointegration properties).

Discrete time models that enable this to be carried out have been derived by Chambers

(1999). In this paper, by contrast, weaker conditions are imposed on the continuous time
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disturbances with the aim being to treat the system dynamics in a nonparametric way. The

spectral regression estimators proposed by Phillips (1991a) for continuous time systems and

by Phillips (1991c) for discrete time systems are ideally suited to this task.

It is convenient to rewrite the ECM (3) in a form more amenable to application of the

spectral regression estimators. The first m1 equations of (3) may be written

∆hy1,th + φhy1,th−h = Cφhy2,th−h + ξ1,th, (6)

while the last m2 equations of (3) are simply ∆hy2,th = ξ2,th. Combining these equations

and normalising by h (in view of Lemma 3) gives

Yth = JCXth + wth, t = 1, . . . , T = N/h, (7)

where Yth = h−1[(∆hy1,th + φhy1,th−h)′,∆hy
′
2,th]′, Xth = h−1φhy2,th−h and wth = h−1ξth.

Note that Ewth = 0 and Ewthw
′
th = O(1) as h ↓ 0.

Three main scenarios will be considered with regard to the sampling scheme, reflecting

different joint behaviour of span N and frequency h−1. The first is where h is fixed but

N ↑ ∞. This represents the usual situation in which sample size T (= N/h) ↑ ∞ but

emphasizes the dependence on a given sampling frequency, not necessarily equal to unity.

The second is where h ↓ 0 and N ↑ ∞ jointly, so that the data are tending towards a

continuous record limit at the same time as span increases. The third case keeps N fixed

but allows h ↓ 0 so that a continuous record is the result in the limit but one which covers

a fixed span. Note that in all cases sample size T ↑ ∞.

The analysis of the estimators in the sampling schemes of interest is aided by considering

a triangular array of random variables {{ynt}Tnt=1}∞n=1 and by allowing the span and data

frequency to be indexed by n, giving Nn and hn. In this setup sample size Tn = Nn/hn

always tends to infinity with n, while Nn ↑ ∞ or Nn = N and hn ↓ 0 or hn = h. The system

(7) then becomes

Ynt = JCXnt + wnt, t = 1, . . . , Tn = Nn/hn, (8)

where Ynt = Ythn , Xnt = Xthn , and wnt = wthn . The linearity of (8) in the unknown matrix

C makes this an appealing equation as regards estimation.

The spectral regression estimators utilise estimates of certain spectral density matrices.

For generic random variables x and y, let Γn,xy(s) = Exnty
′
nt+s denote the autocovariance

function which is estimated by Γ̂n,xy(s) = T−1
n

∑Tn−s
t=1 xnty

′
nt+s. That this autocovariance

matrix depends on n arises from the dependence of sampling frequency on n, so in terms

of hn this function is in fact Exthny
′
thn+shn

. Although Γn,xy(s) is the covariance between
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random variables separated by shn time units it is notationally convenient to suppress hn

in the argument of this function. The cross spectral density function of x and y, sampled at

intervals of hn, is given by3

fn,xy(λ) =
hn
2π

∞∑
s=−∞

Γn,xy(s)e−ishnλ, −
π

hn
< λ ≤ π

hn

and can be estimated using

f̂n,xy(λ) =
hn
2π

Mn∑
s=−Mn

k

(
s

Mn

)
Γ̂n,xy(s)e−ishnλ, (9)

where Mn is a bandwidth parameter and k(z) is a kernel (or weighting) function. The precise

properties that Mn and k(z) are assumed to possess are defined in Assumption 3 later in

this paper.

Two spectral regression estimators will be considered. The first utilises information

contained in the full frequency range (−π/hn, π/hn] and is defined by4

vec
(
Ĉn
)

=

 1
2Mn

Mn∑
j=−Mn+1

(
f̂n,XX(ωj)′ ⊗ J ′f̂n,ŵŵ(ωj)−1J

)−1

×

 1
2Mn

Mn∑
j=−Mn+1

(
Im2 ⊗ J ′f̂n,ŵŵ(ωj)−1

)
vec

(
f̂n,Y X(ωj)

) , (10)

where ωj = πj/(hnMn) (j = −Mn + 1, . . . ,Mn) and ŵnt denotes a consistent estimator of

wnt obtained, for example, by taking the residuals from an OLS regression applied to (8).

Since, from (8),

vec
(
f̂n,Y X(ωj)

)
=
(
f̂n,XX(ωj)′ ⊗ J

)
vec (C0) + vec

(
f̂n,wX(ωj)

)
,

where C0 denotes the true value of the matrix C, it follows that

vec
(
Ĉn − C0

)
=

 1
2Mn

Mn∑
j=−Mn+1

Θnj

−1  1
2Mn

Mn∑
j=−Mn+1

θnj

 ,
where

Θnj = f̂n,XX(ωj)′ ⊗ J ′f̂n,ŵŵ(ωj)−1J, j = −Mn + 1, . . . ,Mn, (11)

θnj =
(
Im2 ⊗ J ′f̂n,ŵŵ(ωj)−1

)
vec

(
f̂n,wX(ωj)

)
, j = −Mn + 1, . . . ,Mn. (12)

3See equation (7.1.14) of Priestley (1981).
4The expression in (10) differs from the corresponding expression in Phillips (1991a) due to the use of

column vectorisation here as opposed to row vectorisation in that article.
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The second estimator uses information solely in the frequency band ω0 and is defined by

vec
(
Ĉn0

)
=
[
f̂n,XX(0)′ ⊗ J ′f̂n,ŵŵ(0)−1J

]−1 [
Im2 ⊗ J ′f̂n,ŵŵ(0)−1

]
vec

(
f̂n,Y X(0)

)
. (13)

Normalising in the same way as for the full-band estimator yields vec(Ĉn0 − C0) = Θ−1
n0 θn0.

The asymptotic behaviour of these two estimators is determined by the asymptotic properties

of the expressions (11) and (12), to which attention is now turned.

4. SPECTRAL REGRESSION ESTIMATION: ASYMPTOTIC RESULTS

4.1. Asymptotic distributions

For the purposes of investigating the asymptotic properties of the spectral regression estima-

tor in the different sampling scenarios, it is necessary to make further assumptions about the

stochastic environment in which y(τ), and hence yth, evolve. For this purpose, let (Ωw,F , P )

denote the probability space on which w(τ) is defined, and let Fba (a < b) denote a σ-subfield

of F . The strong mixing coefficients, αj , are then defined by αj = supt α(F t−∞,F∞t+j), where

α(F t−∞,F∞t+j) = sup
G∈Ft−∞,H∈F∞t+j

|P (G ∩H)− P (G)P (H)|.

The mixing coefficients are said to be of size −p if αj = O(j−p−ε) for some ε > 0 as j ↑ ∞,

which ensures that
∑∞
j=1 α

1/p
j < ∞. The following assumption is made with regard to the

continuous time disturbance process w(τ) in (1).

Assumption 2. For some δ > η > 2, w(τ) is a stationary strong mixing continuous

time process with zero mean, ‖w(τ)‖δ < ∞, and with strong mixing coefficients of size

−δη/(δ− η). Furthermore, the spectral density function, f cww(λ) (−∞ < λ <∞), of w(τ) is

Hermitian positive definite with elements satisfying 0 < f cww,jj(λ) < ∞ (j = 1, . . . ,m) and

|f cww,jk(λ)| <∞ (j 6= k, j, k = 1, . . . ,m) for all −∞ < λ <∞.

The assumption that w(τ) is a strong mixing process is particularly convenient in the present

circumstances in which the disturbances in the discrete time ECM involve integrals of w(τ)

over finite intervals and are, therefore, strong mixing themselves.5 Furthermore the mixing

coefficients of such integrals are of the same size as those of the underlying process.

5See, for example, Theorem 14.1 of Davidson (1994).
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The estimator asymptotics make use of the limiting properties of various sample mo-

ments concerning Xnt and wnt. These, in turn, can be derived from the properties of the

partial sum process

Sn[Tnr] =
[Tnr]∑
j=1

wnj , r ∈ [0, 1], (14)

and of the composite process

UnTn =
1
Tn

Tn∑
t=1

Sn,t−1w
′
nt. (15)

The limiting properties of these random quantities are presented in Lemma 4 for each of the

three sampling schemes of interest.

Lemma 4. (a) Under Assumptions 1 and 2, if hn = h and Nn ↑ ∞ as n ↑ ∞,

1

T
1/2
n

Sn[Tnr] ⇒ Bh(r), (16)

1
Tn
UnTn ⇒

∫ 1

0
BhdB

′
h + Λh(1), (17)

where Bh denotes a Brownian motion process with variance matrix Ωh = 2πh−3fh,ξξ(0) and

Λh(1) =
∑∞
k=1 Γh,k where Γh,k = Ew0w

′
kh = h−2Eξ0ξ

′
kh.

(b) Under Assumptions 1 and 2, if hn ↓ 0, Nn ↑ ∞ and hnNn ↓ 0 as n ↑ ∞,

h
1/2
n

T
1/2
n

Sn[Tnr] ⇒ B(r), (18)

hn
Tn
UnTn ⇒

∫ 1

0
BdB′ + Λ(1), (19)

where B denotes a Brownian motion process with variance matrix Ω = 2πf cww(0) and Λ(1) =

limn↑∞ hn
∑Tn−1
k=1 Ewn0w

′
nk.

(c) Under Assumption 1, if hn ↓ 0 and Nn = N as n ↑ ∞,

hnSn[Tnr] ⇒ Z(Nr), (20)

h2
nUnTn ⇒

∫ N

0
ZdZ ′, (21)

where Z(x) =
∫ x

0 w(s)ds.

Part (a) of Lemma 4 extends the usual analysis of partial sums of discrete time processes

to the case where the sampling interval h is not equal to one. The mixing decay rate in
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Assumption 2 is slightly stronger than is strictly needed for (16) to hold, which only requires∑∞
j=1 α

1−2/η
j < ∞. For η > 2, note that 0 < 1 − 2/η < 1 while 0 < (δ − η)/δη < 1/2. The

latter condition satisfies the former and is required for (17).

Part (b) of Lemma 4 extends the analysis further to allow hn ↓ 0. Here Ω is expressed in

terms of f cww(0), since wnj
p→ w(τ) as n ↑ ∞. The matrix Λ(1) is left in the form of a limit

because, in the analysis of the asymptotic properties of the spectral regression estimator in

this case, this limit will be taken in conjunction with another limit at the appropriate point.

Note, too, the requirement that hnNn ↓ 0 as n ↑ ∞. This ensures that the contribution of

the higher-order (in hn) terms contained in ρnt are negligible in the asymptotics and, as a

result, simplifies the analysis somewhat. The requirement for this to be valid in practice is

that the observation interval hn gets smaller at a faster rate than the span Nn gets larger,

and is perhaps not an unreasonable requirement.

Part (c) of Lemma 4 treats the case where an infinitely large sample size is obtained by

allowing hn ↓ 0 while holding the span fixed. Such continuous record asymptotics were also

considered by Phillips (1987a,b) and by Perron (1991) although much stronger assumptions

were made in those articles concerning the underlying continuous time random process than

are being made here.

Lemma 4 provides a basis for developing the asymptotic properties of the estimator Ĉn.

From (11) and (12) it can be seen that it is the covariance matrix estimators Γ̂n,XX(s) and

Γ̂n,wX(s) that will determine the relevant asymptotics via their use in the construction of

the spectral density estimators f̂n,XX(λ) and f̂n,wX(λ) respectively. In order to examine

the properties of these covariance matrix estimators, consider the m× 1 integrated process

defined by ynt = ynt−1 + ξnt (t = 1, . . . , Tn = Nn/hn), where yn0 = y0 = y(0) is an Op(1)

random variable and ξnt is defined in Lemma 1. Further, define xnt = (φhn/hn)ynt−1 and

wnt = h−1
n ξnt, so that with this notation the variable of interest is simply Xnt = x2,nt. Since

ynt = y0 +
∑t
j=1 ξnj , it follows that xnt = (φhn/hn)y0 + φhnSnt−1, where Snt =

∑t
j=1wnt.

Consider the random quantities µn(s) =
∑Tn−s
t=1 xntw

′
nt+s and Mn(s) =

∑Tn−s
t=1 xntx

′
nt+s. By

making the appropriate substitutions for xnt in terms of Snt−1, it can be shown that

µn(s) = φhn (UnTn − Uns) +
φhn
hn

y0
(
S′nTn − S

′
ns

)
− φhnTn

s∑
k=1

Γ̂n,ww(k), (22)

where Γ̂n,ww(k) = T−1
n

∑Tn−s
t=1 wnt+s−kw

′
nt+s, and that

Mn(s) = φ2
hnTn

∫ 1−s/Tn

0
Sn[Tnr]S

′
n[Tnr]

dr +
φ2
hn

hn
Tny0

∫ 1−s/Tn

0
S′n[Tnr]

dr

+
φ2
hn

hn
Tn

∫ 1−s/Tn

0
Sn[Tnr]dry

′
0 +

φ2
hn

h2
n

(Tn − s)y0y
′
0 + φ2

hn

s−1∑
j=0

µn(j). (23)
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Note that, if µn(s) = [µn,1(s), µn,2(s)] then Γ̂n,wX(s) = T−1
n µn,2(s) while Γ̂n,XX(s) =

T−1
n Mn,22(s) where Mn,22(s) is the lower right-hand block of Mn(s). These expressions,

combined with the results in Lemma 4, enable the results of interest to be derived.

Lemma 5. (a) Under Assumptions 1 and 2, if hn = h and Nn ↑ ∞ as n ↑ ∞,

Γ̂n,wX(s)⇒ φh

[∫ 1

0
dBhB

′
h2 + Λh2(s+ 1)′

]
, (24)

1
Tn

Γ̂n,XX(s)⇒ φ2
h

∫ 1

0
Bh2B

′
h2, (25)

where Λh(s+ 1) = [Λh1(s+ 1)′,Λh2(s+ 1)′]′ =
∑∞
k=s+1 Γh,k.

(b) Under Assumptions 1 and 2, if hn ↓ 0, Nn ↑ ∞ and hnNn ↓ 0 as n ↑ ∞,

hn
φhn

Γ̂n,wX(s)⇒
∫ 1

0
dBB′2 + Λ2(s+ 1)′, (26)

h2
n

φ2
hn
Nn

Γ̂n,XX(s)⇒
∫ 1

0
B2B

′
2, (27)

where Λ(s+ 1) = [Λ1(s+ 1)′,Λ2(s+ 1)′]′ = limn↑∞ hn
∑Tn−(s+1)
k=s+1 Ewn0w

′
nk.

(c) Under Assumption 1, if hn ↓ 0 and Nn = N as n ↑ ∞,

hnNn

φhn
Γ̂n,wX(s)⇒ F2(Z, y02) ≡

∫ N

0
dZZ ′2 + Z(N)y′02, (28)

h2
n

φ2
hn

Γ̂n,XX(s)⇒ F1(Z2, y02) ≡
∫ N

0
Z2Z

′
2 + y02

∫ N

0
Z ′2 +

∫ N

0
Z2y

′
02 + y02y

′
02. (29)

The convergence rates in Lemma 5 determine the rates of convergence of the terms Θnj

and θnj that are used in constructing the spectral regression estimators. Once more, the

results in part (a) generalise existing results in the literature to the case where the sampling

interval h is not equal to one. Part (b) provides the extension where the sampling interval hn

tends to zero, and in part (c) this is achieved but with span held fixed. Note the dependency

of the results in part (c) on the initial value y02 which enters the limiting expressions because

the data span is held fixed.

In order to consider the limiting distributions of the terms Θnj and θnj , it is necessary

to impose some conditions on the bandwidth parameter Mn and the kernel function k(z).
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Assumption 3. Mn = o(T 1/2
n ) as n ↑ ∞ and k(z) is an even, bounded function for

z ∈ [−1, 1] with k(0) = 1 and k(z) = 0 for z /∈ [−1, 1].

These conditions are quite standard in the spectral regression literature; see, for example,

Hannan (1963). It is also convenient to define the constant ν = (1/2π)
∫ 1
−1 k(s)ds which

appears in the results below.

Theorem 1. (a) Under Assumptions 1–3, if hn = h and Nn ↑ ∞ as n ↑ ∞,

1
Tn

 1
2Mn

Mn∑
j=−Mn+1

Θnj

⇒ φ2
hh

∫ 1

0
Bh2B

′
h2 ⊗ J ′Ω−1

h J, (30)

 1
2Mn

Mn∑
j=−Mn+1

θnj

⇒ φhh
(
Im2 ⊗ J ′Ω−1

h

)
vec

(∫ 1

0
dBhB

′
h2

)
, (31)

1
TnMn

Θn0 ⇒ νφ2
hh

∫ 1

0
Bh2B

′
h2 ⊗ J ′Ω−1

h J, (32)

1
Mn

θn0 ⇒ νφhh
(
Im2 ⊗ J ′Ω−1

h

)
vec

(∫ 1

0
dBhB

′
h2

)
. (33)

(b) Under Assumptions 1–3, if hn ↓ 0, Nn ↑ ∞ and hnNn ↓ 0 as n ↑ ∞,

h2
n

φ2
hn
Nn

 1
2Mn

Mn∑
j=−Mn+1

Θnj

⇒ ∫ 1

0
B2B

′
2 ⊗ J ′Ω−1J, (34)

hn
φhn

 1
2Mn

Mn∑
j=−Mn+1

θnj

⇒ (
Im2 ⊗ J ′Ω−1

)
vec

(∫ 1

0
dBB′2

)
, (35)

1
Tnφ2

hn
Mn

Θn0 ⇒ ν

∫ 1

0
B2B

′
2 ⊗ J ′Ω−1

h J, (36)

1
φhnMn

θn0 ⇒ ν
(
Im2 ⊗ J ′Ω−1

h

)
vec

(∫ 1

0
dBB′2

)
. (37)

(c) Under Assumptions 1 and 3, if hn ↓ 0 and Nn = N as n ↑ ∞,

h2
n

φ2
hn

 1
2Mn

Mn∑
j=−Mn+1

Θnj

⇒ F1(Z2, y02)⊗ J ′Ω−1J, (38)

hnNn

φhn

 1
2Mn

Mn∑
j=−Mn+1

θnj

⇒ (
Im2 ⊗ J ′Ω−1

)
vec (F2(Z, y02)) , (39)

hn
φ2
hn
Mn

Θn0 ⇒ νF1(Z2, y02)⊗ J ′Ω−1J, (40)

N

φhnMn
θn0 ⇒ ν

(
Im2 ⊗ J ′Ω−1

)
vec (F2(Z, y02)) . (41)
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Using Theorem 1 it is a straightforward task to derive the limiting distributions of the

appropriately normalised estimators, which are presented in Theorem 2.

Theorem 2. (a) Under Assumptions 1–3, if hn = h and Nn ↑ ∞ as n ↑ ∞,

Tnvec
(
Ĉn − C0

)
⇒ φ−1

h

[(∫ 1

0
Bh2B

′
h2

)−1

⊗ I
] [∫ 1

0
Bh2 ⊗ dBh,1.2

]
, (42)

where Bh,1.2 = Bh1 − Ωh,12Ω−1
h,22Bh2 is Brownian motion with variance matrix Ωh,11.2 =

Ωh,11 − Ωh,12Ω−1
h,22Ωh,21. The same result holds for Tnvec

(
Ĉn0 − C0

)
.

(b) Under Assumptions 1–3, if hn ↓ 0, Nn ↑ ∞ and hnNn ↓ 0 as n ↑ ∞,

Tnφhnvec
(
Ĉn − C0

)
⇒
[(∫ 1

0
B2B

′
2

)−1

⊗ I
] [∫ 1

0
B2 ⊗ dB1.2

]
, (43)

where B1.2 = B1 − Ω12Ω−1
22 B2 is Brownian motion with variance matrix Ω11.2 = Ω11 −

Ω12Ω−1
22 Ω21. The same result holds for Tnφhnvec

(
Ĉn0 − C0

)
.

(c) Under Assumptions 1 and 3, if hn ↓ 0 and Nn = N as n ↑ ∞,

Tnφhnvec
(
Ĉn − C0

)
⇒
[
F1(Z2, y02)−1 ⊗ I

]{[∫ N

0
Z2 ⊗ dZ1.2

]
+ [y02 ⊗ Z1.2(N)]

}
, (44)

where Z1.2 = Z1 − Ω12Ω−1
22 Z2. The same result holds for Tnφhnvec

(
Ĉn0 − C0

)
.

In part (a) of Theorem 2, since h is fixed and Tn = Nn/h, it is clearly the increasing span of

the data that is important in this case. The result can be written in terms of Nnvec(Ĉn−C0)

with the limiting distribution being that given in (42) multiplied by h. Note that the

distribution in (42) is the familiar mixed normal distribution from cointegration theory, as

would be expected. If Ph(Gh) denotes the probability measure associated with the random

matrix Gh = (
∫ 1

0 Bh2B
′
h2)−1, then the distribution has the representation

∫
Gh>0

N
(
0, φ−2

h Gh ⊗ Ωh,11.2

)
dPh(Gh), (45)

which, conditional on a given realisation of y2, is normal. Similar comments apply to part

(b) of Theorem 2. In this case, Tnφhn = Nnφhn/hn. Since φhn/hn → 1 as n ↑ ∞, it follows

that Nnvec(Ĉn −C0) has the same distribution in the limit as that given in (43), which has
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the mixed normal representation

∫
G>0

N (0, G⊗ Ω11.2) dP (G), (46)

where G = (
∫ 1

0 B2B
′
2)−1 and P (G) is its associated probability measure.

In part (c) of Theorem 2, it is span that is fixed, and since Tnφhn = Nφhn/hn → N

as n ↑ ∞, it follows that vec(Ĉn − C0) has the same limiting distribution as N−1 times the

distribution in (44). Furthermore, if y02 = 0, then the asymptotics are governed by

Tnφhnvec
(
Ĉn − C0

)
⇒

(∫ N

0
Z2Z

′
2

)−1

⊗ I

[∫ N

0
Z2 ⊗ dZ1.2

]
, (47)

since the final component in (44) is null. The distribution in (44) depends on the distribution

of the underlying continuous time disturbance process w(τ) via the variable Z. In cases

where w(τ)dτ has independent increments6 and variance Σdτ , the random variable Z(x) =∫ x
0 w(τ)dτ is Brownian motion with variance Σx. The limiting distribution in (47) is then

the familiar mixed normal distribution, but when y02 6= 0 the distribution in (44) contains

an additional term involving Z1.2(N) ∼ N(0,Σ11.2) with Σ11.2 defined in terms of the sub-

matrices of Σ in the same way that Ω11.2 is defined in terms of the sub-matrices of Ω.

4.2. Efficiency comparisons

Theorem 2 enables some interesting questions concerning the effects of observation fre-

quency on the estimation of cointegrating parameters to be addressed. Although a number

of comparisons could be explored, one in particular is addressed here. This concerns the po-

tential inefficiency that might be conjectured to arise as a result of having a fixed sampling

interval h as compared to a continuous sample (the limiting case when h ↓ 0). Investigations

of the asymptotic bias (as a function of sampling interval) of estimators of the parameters

of stationary continuous time systems, derived from approximate discrete time models, are

well established; see Bergstrom (1984) for a summary. Rather less attention has been paid

to the efficiency of estimators, as measured by the variance of the asymptotic distribution,

although Chambers (2000) provides some results for cointegration estimators that focus on

the effects of the way in which data are recorded (i.e. stocks versus flows).

The analysis will be based on the limiting distribution of Nnvec(Ĉn −C0) which (when

h is fixed) is given by (45) with the covariance matrix multiplied by h2. A more convenient

6In this case it would be common to write w(τ)dτ = ζ(dτ), where ζ(dτ) is a vector random measure.
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representation of this distribution, for the purposes of making comparisons, is given by7

∫
γ>0

N (0, γV (h)) dPγ(γ), (48)

where V (h) = h2φ−2
h Ω−1

h,22 ⊗ Ωh,11.2, γ = e′2(
∫ 1

0 W2W
′
2)−1e2, e2 is any unit m2 × 1 vector,

Pγ(γ) is the probability measure associated with γ, and W2 is an m2 × 1 vector of standard

Brownian motions or Wiener processes (i.e. W2 is Brownian motion with covariance matrix

Im2). When h is allowed to tend to the limit of zero, the relevant distribution is given by

(46), which may be written in the more covenient form

∫
γ>0

N (0, γV0) dPγ(γ), (49)

where V0 = Ω−1
22 ⊗ Ω11.2. Notice that the mixing variate, γ, is the same as in the fixed-h

case in (48), because it is purely the sampling frequency that is different, not the underlying

random process (w2(τ) in continuous time) that generates the data. The precise form of the

matrix difference V (h)− V0 is given in Theorem 3.

Theorem 3. Under Assumptions 1–3, the difference V (h) − V0 = f cww,22(0)−1 ⊗ Ṽh is

positive semi-definite for any fixed h > 0, where

Ṽh =

 Ṽh,11 0

0 0

 ,
Ṽh,11 = JC

∑
k 6=0

[
1 + (4π2k2/h2)

]−1
f cww(2πk/h)J ′C and JC = [ImS1 , 0, −CSS , −CSF ].

Theorem 3 shows that there is an inefficiency associated with discrete time sampling

relative to continuous sampling in view of V (h)−V0 being positive semi-definite. Inspection of

this matrix difference shows that, in fact, this inefficiency can be more accurately pinpointed.

The qualitative implication of Theorem 3 is presented in Proposition 1 below.

Proposition 1. The estimator inefficiencies caused by sampling at a discrete interval

h only affect the estimation of the matrices CSS and CSF . The estimation of the matrices

CFS and CFF is as efficient when based on data sampled at intervals of length h as when

based on a continuous record of data.

7Details of the equivalence of the representations (45) and (48) can be found in Phillips (1989).
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Proposition 1 establishes that it is in the estimation of the cointegrating relationships

in which the normalised (left-hand side) variables are stocks where the inefficiencies will

arise. It is quite remarkable that, as far as the estimation of the matrices CFS and CFF

is concerned i.e. the parameters of the cointegrating relationships in which the left-hand

side (normalised) variables are flows, that there is no efficiency gain to be made from a

continuous sample as compared to a fixed sampling interval of length h. This is presumably

a result of flows being observed as integrals over the interval (th− h, th] and hence contain

information about the evolution of the variable over that interval. With stocks, however,

such information is not contained in the observations which are made at points in time.

Such results are in accordance with the findings of Chambers (2000) who demonstrated, for

a fixed sampling interval h = 1, that the discrete time sampling of stock variables results in

a loss of estimator efficiency as compared to flow variables, which in turn are as efficient as

continuous sampling. Theorem 3 and Proposition 1 generalise these results in two directions.

First, they allow for an arbitrary sampling interval h, and secondly, they are based on a more

general system containing stocks and flows simultaneously.

4.3. Large sample inference

One of the principal advantages of the mixed normal limiting distribution of the es-

timators is that inference concerning the cointegrating parameters can be conducted using

traditional methods, as emphasised by Phillips (1991b). For example, the usual t-ratios have

limiting normal distributions, confidence intervals can be constructed using normal critical

values, and Wald tests of possibly non-linear restrictions on the cointegrating parameters

can be based on asymptotic chi-square criteria. Such comments obviously apply to situa-

tions in which the span of the data tends to infinity, regardless of whether the sampling

frequency is fixed or not. This is not the case, however, when span is fixed and the sampling

interval tends to zero, because the limiting distribution in this case is typically not mixed

normal; see Theorem 2(c). This suggests that small-h asymptotic inference may be difficult

in these circumstances and hence the focus here is on situations in which span tends to

infinity (covered by Theorem 2, parts (a) and (b)).

A question that arises concerns the estimation of the asymptotic variances to use in

t-tests or Wald tests. The case in which hn ↓ 0 and Nn ↑ ∞ will be considered here, al-

though the same arguments apply if hn = h is fixed, with minor modifications. Conditional

on the realisation {y2,th}, it follows from Theorem 2(b) and the representation (46) that

Tnφhnvec(Ĉn − C0) is asymptotically N(0, G ⊗ Ω11.2), where G = (
∫ 1

0 B2B
′
2)−1 denotes the

limit of the matrix [(hn/(φ2
hn
T 2
n))

∑Tn
t=1XntX

′
nt]
−1; see Lemma 5(b). Large sample (con-

ditional) inference for vec(Ĉn − C0) can therefore be based on the distribution N(0, V̂1),
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where

V̂1 =
1

T 2
nφ

2
hn

( hn
φ2
hn
T 2
n

Tn∑
t=1

XntX
′
nt

)−1

⊗ Ω̂11.2

 (50)

and the estimator Ω̂11.2 is derived from the sub-matrices of the matrix Ω̂ = (2π/hn)f̂n,ŵŵ(0).

The variance matrix V̂1 is not, however, the usual covariance matrix estimator associated

with spectral regression. The estimator suggested by Phillips (1991a,c) for constructing the

Wald statistic to test hypotheses concerning the cointegrating parameters is based on the

theory of spectral regression for stationary time series8, suitably adapted for the faster rate

of convergence of the estimator in the case of cointegration. This estimator is given by

V̂2 =
1
Tn

 1
2Mn

Mn∑
j=−Mn+1

Θnj

−1

, (51)

where Θnj is defined in (11). It is this estimator that is usually computed in spectral

regression software packages.9

Analagous expressions for the covariance matrix estimators can be derived for the band-

limited spectral regression estimator, Ĉn0. Since Tnφhnvec(Ĉn0 −C0) is also asymptotically

N(0, G⊗Ω11.2) conditional on the realisation {y2,th}, large sample inference for vec(Ĉn0−C0)

can be based on the distribution N(0, V̂10), where V̂10 = V̂1. Although the same expression is

used for the covariance matrix estimator, the two will only coincide numerically if the same

kernel function and bandwidth value are used in the construction of the spectral density

estimates. The analogue of the second estimator is, however, different, and is given by10

V̂20 =
Mnν

Tn
Θ−1
n0 , (52)

with Θn0 defined in (11) and ν defined prior to Theorem 1. The relative effects of the two

types of covariance matrix estimator on conducting inference in finite samples is explored in

the simulation experiments that follow.

8See, for example, Hannan (1970, p.442).
9For example, the COINT module in GAUSS uses the expression (51).

10See Phillips (1991b, pp.423–424) for details.
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5. SOME SIMULATION RESULTS AND AN EMPIRICAL EXAMPLE

5.1. Simulation results

A small simulation experiment was conducted in order to assess the finite sample properties of

the spectral regression estimators of the cointegrating parameters when sampling frequency

and/or span varies. The simulation model consists of a bivariate system of stock variables

in which the continuous time disturbance process follows a first-order stochastic differential

equation system. The variables therefore evolve in continuous time according to

dy1(τ) = −[y1(τ)− Cy2(τ)]dτ + w1(τ)dτ, (53)

dy2(τ) = w2(τ)dτ. (54)

There is a single cointegrating parameter which is set to unity in the simulations i.e. C = 1

in (53), while the initial condition for the system is taken to be y1(0) = y2(0) = 0. The

disturbance vector w(τ) = [w1(τ), w2(τ)]′ satisfies

dw(τ) = Gw(τ)dτ + ζ(dτ), (55)

where ζ(dτ) is a Gaussian random measure satisfying Eζ(dτ) = 0, Eζ(dτ)ζ(dτ)′ = I2dτ ,

and Eζ(τ2 − τ1)ζ(τ4 − τ3)′ = 0 whenever the intervals τ2 − τ1 and τ4 − τ3 do not intersect.

The matrix G in (55) is assumed to take the form

G =

 γ1 0

γ2 −1.5

 ,
where the parameter γ1 is required to be negative for w(τ) to be stationary and the pa-

rameter γ2 represents the strength of feedback from w1 to w2. The assumed values are

γ1 ∈ {−0.5,−5} and γ2 ∈ {−1,+1}, so that both positive and negative feedback are consid-

ered. This yields four combinations of parameters, referred to as Experiments 1 to 4:

Experiment 1: γ1 = −0.5, γ2 = −1; Experiment 2: γ1 = −5, γ2 = −1;

Experiment 3: γ1 = −0.5, γ2 = 1; Experiment 4: γ1 = −5, γ2 = 1.

In view of the system being comprised solely of stock variables, a modification of Lemma 1

reveals that the discretely observed vector yth satisfies the discrete time triangular ECM of

(3) but with the disturbance vector defined as

ξth =
∫ h

0
e−sJAw(th− s)ds =

∫ h

0
[I2 − φ(s)JA]w(th− s)ds.

The discrete time data can therefore be generated using (3) once a set of discrete time
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disturbances {ξth}Tt=1 satisfying the appropriate properties have been generated. Details of

how this is achieved are provided in Appendix D but suffice it to note here that ξth is an

ARMA(1,1) process that satisfies quite complicated restrictions that arise as a result of the

temporal aggregation.

In order to assess the effects of sampling frequency and span on the estimators, three

frequencies and three spans were considered in the simulations. More precisely, the values for

the sampling interval are h ∈ {1/12, 1/4, 1}, corresponding to monthly, quarterly and annual

frequencies, while N ∈ {25, 50, 100}, corresponding to spans of 25, 50 and 100 years. It is

only necessary to generate 100 years of monthly data for each replication of the experiment,

because the shorter spans, as well as the less frequently observed series, are simply obtained

from this underlying series of 1200 observations. A total of 10,000 replications of each of the

four experiments (or parameter combinations) were conducted.

The spectral regression estimators require a choice of kernel function and bandwidth

value in order to become operational. The Parzen kernel was chosen in view of its relatively

superior performance against an averaged periodogram estimator of the spectral density

function in the study of Chambers (2001). The Parzen kernel is defined by

k(z) =


1− 6z2 + 6|z|3, |z| ≤ 1/2,

2(1− |z|)3, 1/2 < |z| ≤ 1,

0, |z| > 1.

Concerning bandwidth choice, a pilot simulation study for each experiment, consisting of

1000 replications, was conducted using bandwidths of the form M = [Tα], for values of

α ∈ {1/10, 1/5, 1/3, 2/5}. Such choices of M are clearly o(T 1/2) as required. As there is

typically a trade-off between bias and variance in choosing the bandwidth parameter, the

bandwidth that resulted in the smallest mean square error (MSE) of the estimator (as sample

size increases) was chosen. The resulting values were α = 1/10 for the spectral estimator

and α = 2/5 for the band-limited spectral estimator. These MSE-minimising values were

the same for each of the four experiments, and were employed to compute the values of the

estimators in the simulations.

The MSEs of the two spectral estimators are reported in Table 1, which also includes the

MSEs of the OLS estimator of the parameter C for purposes of comparison. The spectral

estimator Ĉn is denoted SPEC in Table 1, while the band limited estimator Ĉn0 is denoted

BAND. Note that the MSEs are of the same order of magnitude for each h although they

decrease, as is to be expected, with increasing N . They also have a tendency to be smaller

when the parameter γ1 = −5 (Experiments 2 and 4) than when γ1 = −0.5 (Experiments

1 and 3), for given γ2. Since γ1 represents a root of the system, this suggests that the
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estimation is more precise when such roots are larger in absolute value. There is also a

tendency for the band-limited spectral estimator to have smaller MSEs on the whole than

the spectral estimator that is constructed using all frequency bands. It is also interesting to

note that the MSEs of the spectral regression estimators in Experiment 1 are comparable to

those of the OLS estimator, so there would appear to be relatively little gained in this case

by using spectral regression, at least judged by this particular criterion. In Experiments 2,

3 and 4, however, the MSEs of both spectral estimators are uniformly smaller than those

of the OLS estimator, except for the estimator using all frequency bands when h = 1/12 in

Experiments 2 and 4.

[Table 1 about here.]

The inspection of MSEs, whilst providing useful information about the estimators, rep-

resents only a partial assessment of their performance. Estimated coefficients are typically

used to make inferences concerning the true (but unknown) value of the parameter. This

is commonly achieved by conducting a t-test, which requires an estimate of the variance of

the estimated coefficient. This variance estimate can also be employed in the construction

of confidence intervals, and it is confidence intervals that shall be considered here. Tables 2

and 3 contain the percentage coverage rates of 90% and 95% confidence intervals for the OLS

estimator and the two spectral estimators. These coverage rates represent the proportion of

the replications in which the true value of the coefficient (C0 = 1) fell within the calculated

confidence interval. For each of the spectral estimators two coverage rates are reported, each

one based on the different estimators of the variance considered in section 4.3. In the simu-

lations here, the Parzen kernel is used for both estimators but the bandwidths are different,

so that the computed values of V̂1 and V̂10 will be different. Also, for the Parzen kernel

employed here, it is straightforward to show that the constant ν = 0.75.

[Tables 2 and 3 about here.]

Inspection of Tables 2 and 3 reveals a number of interesting features. It is immediately

obvious that the coverage rates of the OLS confidence intervals are very poor and actually

have a tendency to decline as span increases. In contrast the coverage rates of confidence

intervals based on the spectral estimators are much better and are closer to the nominal

values although discrepancies do occur. There are also differences between the different

variance estimators used in constructing confidence intervals for the spectral estimators.

Those based on the asymptotic distribution (46) tend to increase with N and to decrease

with h, while those based on the usual expressions from spectral regression (V̂2 and V̂02)
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tend to increase with h. The former expressions appear to provide more accurate confidence

intervals than the latter.

5.2. An empirical example

Provided that a set of variables can be observed sufficiently frequently over a long enough

span, it is possible to assess the behaviour of spectral regression estimators in an empirical

setting when span and/or frequency are allowed to vary. This example focuses on the long

run purchasing power parity (PPP) relationship between the UK and the US, assuming

that the relevant variables cointegrate. Defining P (τ) to be the UK price level, Π(τ) the

US price level, and X(τ) the exchange rate (expressed as dollars per pound sterling), PPP

implies that Π(τ) = X(τ)P (τ). In circumstances in which the logarithms of the variables

are individually integrated processes, the PPP relationship can be recast as the cointegrated

system

d ln Π(τ) = −[ln Π(τ)− β1 lnX(τ)− β2 lnP (τ)]dτ + w1(τ)dτ, τ > 0, (56)

d lnX(τ) = w21(τ)dτ, d lnP (τ) = w22(τ)dτ, τ > 0, (57)

where β1 = β2 = 1 is required if PPP holds and the vector w(τ) ≡ [w1(τ), w21(τ), w22(τ)]′

is a stationary random disturbance vector. This model is in the form of the cointegrated

system (1) and hence the preceeding results apply to the estimation of the parameters β1

and β2.

The underlying data used in this example constitute daily exchange rates and monthly

producer prices for the UK and the US over the period January 1972 to December 1998. Each

of the variables in the model is, in principle, observed as a stock variable, although there

may be some averaging involved during the reporting of the price indices. The exchange rate

series is, quite clearly, observed as a stock variable, but there remains the question of how

to relate it to the monthly series. It is, for example, possible to use a monthly exhange rate

series based on the end-month value or on the average daily value throughout the month.

The results obtained by Chambers (2000) suggest that the latter, averaged, form of the stock

variable yields more efficient estimators (asymptotically) than the end-month value, so it is

of interest to compare estimators obtained using both series. In the regressions the span is

kept fixed at 27 years but the frequency is allowed to vary between monthly, quarterly and

annual, with corresponding sample sizes of 324, 108 and 27 respectively.11

The results of the estimations are contained in Tables 4 and 5. Table 4 contains the

results using the end-month exchange rate data, while Table 5 contains the results with the

11The quarterly and annual data are obtained from the monthly data by skip-sampling in view of the
variables being stocks.
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monthly-averaged exchange rate data. Nine estimates of β1 and β2 are reported based on

four types of estimator, as follows. The first estimates reported in each table are based

on OLS. The next three are spectral estimates using the estimator Ĉn constructed with

the Parzen kernel and bandwidths equal to the integer parts of T 1/10, T 1/3 and T 2/5. These

estimates are denoted SPEC(1/10), SPEC(1/3) and SPEC(2/5), respectively. The next three

estimates are the band-limited versions (Ĉn0) of the spectral estimators, and are denoted

BAND(1/10), BAND(1/3) and BAND(2/5). The final two estimators are the fully modified

OLS estimators of Phillips and Hansen (1990), the first constructed using the Parzen kernel,

the second using the Bartlett kernel. Both use the automatic bandwidth selection method

of Andrews (1991), and are denoted FM-OLS(P) and FM-OLS(B), respectively.

[Tables 4 and 5 about here.]

Inspection of the estimates reported in Table 4 reveals some striking differences between

the different estimators. Using the monthly data as an example, the estimates of β1 range

from 0.5346 using the SPEC(2/5) estimator, to 1.0332 using the FM-OLS(B) estimator. The

estimates of β2 show less dispersion, however, ranging from 0.8877 using the FM-OLS(B)

estimator, to 0.9458 using the SPEC(1/3) estimator. It is also interesting to note how the

spectral estimators vary from the OLS estimator, even though the spectral density estimates

that they employ are derived from the OLS residuals. These differences arise because the

spectral estimators employ nonparametric corrections to account for serial correlation in the

stationary disturbance process that drives the system. For a given estimator, Table 4 reveals

that the estimates are, on the whole, remarkably stable across sampling frequencies. Since

the same long run parameters are being estimated in each case, this is a reassuring feature.

The estimates reported in Table 5 are obtained with the monthly-averaged exchange rate

data. The main differences to emerge, as compared to Table 4, concern the SPEC estimators

of β1, all of which increase in Table 5. The main reason for using the averaged data is

to improve (asymptotic) efficiency, and it is interesting to note that the standard errors

have dropped in most cases. This provides some finite sample support for the theoretical

results concerning asymptotic efficiency obtained in Chambers (2000). As a final point, the

estimates in both Tables 4 and 5 suggest that β1 and β2 are not equal to unity, as judged

by simple t-tests applied to the coefficients separately.12 The rejections of the implications

of PPP are most clear for β2.

12Although not reported here, suffice it to note that Wald tests of the joint hypothesis β1 = β2 = 1
have marginal probability values of zero when compared with the chi-square distribution with two degrees of
freedom.
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6. CONCLUDING COMMENTS

This paper has investigated the effects of sampling frequency, and of data span, on the large-

sample asymptotic properties of spectral regression estimators of cointegrating parameters.

In cases where span goes to infinity, the limiting distributions are mixed normal, thus en-

abling conditional normal and chi-square inference to be carried out. When span is fixed but

sampling frequency becomes infinite i.e. a continuous record of data is available, the limiting

distribution depends on initial conditions and is not necessarily mixed normal. The limiting

distributions in the large-span cases reveal that inefficiencies associated with sampling at a

fixed interval only affect the parameters associated with stock variables. Put another way,

the estimators of parameters associated with flow variables are as efficient when based on a

fixed sampling frequency as when based on a continuous record. Simulations reveal that the

spectral estimators, in particular the band-limited version, are successful in eradicating the

second-order biases inherent in the distribution of the OLS estimator. A limited empirical

example is also provided which assesses the performance of the estimators when sampling fre-

quency varies. The estimators are found to be remarkably stable across frequencies although

there are significant differences in estimates between different estimators.

On a technical level, the theoretical results derived in this paper have extended those

available in the corresponding literature in a number of directions. First, a multivariate

system of cointegrated variables has been considered, rather than the typical univariate

processes. Secondly, the random forcing process has been allowed to be a fairly general

stationary mixing process, thus considerably relaxing the usual assumption of Brownian

motion. The resulting invariance principles established here therefore extend those that are

currently used in studies of sampling frequency and continuous time processes. Thirdly, to

capture the more complicated dynamics that arise because of the previous point, spectral

regression estimators have been considered, the analysis of which is more complicated than

the OLS estimators that have been considered in the literature so far.

There are a number of ways in which the results in this paper may be extended. It would

be possible to consider other estimators that fall within the class of optimal estimators as

defined by Phillips (1991b), although many of them require taking a stand on the precise

law of motion of the underlying continuous time process w(τ). The qualitative results to

be derived from such exercises are likely to be the same as those obtained here, however.

An interesting area of investigation would be to derive the theoretical properties of tests for

cointegration when sampling frequency varies. Such research will be helpful in explaining

the simulation findings of Hooker (1993), Lahiri and Mamingi (1995) and Otero and Smith

(2000). Also of interest would be more extensive empirical applications to assess the effects

of sampling frequency more generally. These, and other topics, are ripe for further research.
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APPENDIX A

This appendix states (without proof) a number of lemmas that are utilised in the proofs

of the results in the main text. A document containing full proofs is available from the

author by request or from his website at http://privatewww.essex.ac.uk/~mchamb.

Lemma A1. Let y(τ) satisfy dy(τ) = w(τ)dτ (τ > 0) where w(τ) is a stationary

continuous time random process. Then

y(th)− 1
h

∫ h

0
y(th− s)ds =

1
h

∫ h

0
(h− s)w(th− s)ds.

Lemma A2. Let w(τ) denote a stationary continuous time random process, and let

a(th) =
∫ h

0 w(th− s)ds and b(th) =
∫ h

0 φ(th− s)w(s)ds, where φ(x) = 1− e−x. Then

∫ h

0
(h− r)a(th− r)dr =

∫ h

0
ψ1(r)w(th− r)dr +

∫ h

0
ψ2(r)w(th− h− r)dr,

∫ h

0
a(th− r)dr =

∫ h

0
ψ3(r)w(th− r)dr +

∫ h

0
ψ4(r)w(th− h− r)dr,

∫ h

0
b(th− r)dr =

∫ h

0
ψ5(r)w(th− r)dr +

∫ h

0
ψ6(r)w(th− h− r)dr,

where

ψ1(x) = [h2 − (x− h)2]/2, ψ2(x) = (x− h)2/2, ψ3(x) = x,

ψ4(x) = h− x, ψ5(x) = x− φ(x), ψ6(x) = h− x− [φh − φ(x)].

Lemma A3. Let w(τ) be a stationary continuous time random process. Then

∫ h

0
w(th− s)ds = gh(D)w(th),

∫ h

0
φ(s)w(th− s)ds = kh(z)w(th),

∫ h

0
ψj(s)w(th− s)ds = γj(D)w(th), j = 1, . . . , 6,

where gh(z) = (1− e−hz)/z, kh(z) = gh(z)− gh(1 + z), and

γ1(z) =
h2

2
gh(z)− γ2(z), γ2(z) =

1
2

[
h2

z
− 2h
z2

+
2(1− e−hz)

z3

]
,

γ3(z) =
1
z

[
gh(z)− he−hz

]
, γ4(z) = hgh(z)− γ3(z),

γ5(z) = γ3(z)− kh(z), γ6(z) = γ4(z)− φhgh(z) + kh(z).
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Lemma A4. Let the functions gh(z), kh(z) and γj(z) be defined as in Lemma A3. Then

for each fixed z and as h ↓ 0,

gh(z) = h− h2z

2
+
h3z2

6
+O(h4),

kh(z) =
h2

2
− h3

6
(1 + 2z) +O(h4),

γ1(z) =
h3

3
+O(h4),

γ2(z) =
h3

6
+O(h4),

γ3(z) =
h2z

4
− 5h3z2

12
+O(h4),

γ4(z) = h2
(

1− z

4

)
+ h3

(
5z2

12
− z

2

)
+O(h4),

γ5(z) = h2
(
z

4
− 1

2

)
+ h3

(
1
6

+
z

3
− 5z2

12

)
+O(h4),

γ6(z) = h2
(

1
2
− z

4

)
+ h3

(
5z2

12
− z

3
+

1
3

)
+O(h4).

Lemma A5. The component filters of the matrix filter function Mh(z) defined in Lemma

2 satisfy, as h ↓ 0 for fixed z,

mS
1 (z) = h+O(h2), mF

1 (z) = h+O(h2),

mSS
12 (z) =

h2

2
+O(h3), mSF

12 (z) =
h2

2
+O(h3),

mFS
12 (z) =

h2z

4
+O(h3), mFF

12 (z) =
h2z

4
+O(h3),

mS
2 (z) = h+O(h2), mF

2 (z) = h+O(h2).

Lemma A6. The component filters of the matrix filter function Mh(z) defined in Lemma

2 have the following values at z = 0 and z = iλk for λk ≡ 2πk/h and k an integer:

mS
1 (0) = φh, mS

1 (iλk) = µk,h, mF
1 (0) = φh, mF

1 (iλk) = 0,

mSS
12 (0) = h− φh, mSS

12 (iλk) = −µk,h,

mSF
12 (0) = h− φh + νh, mSF

12 (iλk) = −µk,h,

mFS
12 (0) = h− φh − νh, mFS

12 (iλk) = 0, mFF
12 (0) = h− φh, mFF

12 (iλk) = 0,

mS
2 (0) = h, mS

1 (iλk) = 0, mF
2 (0) = h, mF

2 (iλk) = 0,

where µk,h = hφh/(h+ 2πik) and νh = h2φh/2.
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APPENDIX B

Proof of Lemma 1.

Upon replacing τ by th in (2) it can be shown that y(th) satisfies the difference equation

y(th) = e−hJAy(th − h) + ε(th), where ε(th) =
∫ h

0 e
−sJAw(th − s)ds. Noting that e−hJA =

Im − JA+ e−hJA = Im − φhJA, where φh = 1− e−h, this equation may be written

∆hy(th) = −φhJAy(th− h) + ε(th). (B1)

The decomposition of e−hJA allows ε(th) to be written ε(th) =
∫ h

0 [I − φ(r)JA]w(th− r)dr,

where φ(r) = 1− e−r, the subvectors of which are

εS1 (th) =
∫ h

0
[1− φ(r)]wS1 (th− r)dr + CSS

∫ h

0
φ(r)wS2 (th− r)dr (B2)

+CSF
∫ h

0
φ(r)wF2 (th− r)dr,

εF1 (th) =
∫ h

0
[1− φ(r)]wF1 (th− r)dr + CFS

∫ h

0
φ(r)wS2 (th− r)dr (B3)

+CFF
∫ h

0
φ(r)wF2 (th− r)dr,

εS2 (th) =
∫ h

0
wS2 (th− r)dr, (B4)

εF2 (th) =
∫ h

0
wF2 (th− r)dr. (B5)

It is convenient to pick out the equations determining the stocks and flows separately from

(B1) to give

∆hy
S
1 (th) = −φh

[
yS1 (th− h)− CSSyS2 (th− h)− CSF yF2 (th− h)

]
+ εS1 (th), (B6)

∆hy
F
1 (th) = −φh

[
yF1 (th− h)− CFSyS2 (th− h)− CFF yF2 (th− h)

]
+ εF1 (th), (B7)

∆hy
S
2 (th) = εS2 (th), (B8)

∆hy
F
2 (th) = εF2 (th). (B9)

In (B6), note that the variable yF2 (th − h) on the right-hand side is unobservable, and so

adding and subtracting φhCSF yF2,th−h yields

∆hy
S
1,th = −φh

[
yS1,th−h − CSSyS2,th−h − CSF yF2,th−h

]
+ ξS1,th,

where the disturbance ξS1,th absorbs the transformation involving yF2 and is given by

ξS1,th = εS1 (th) + φhCSF
[
yF2 (th− h)− yF2,th−h

]
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= εS1 (th) + CSF
φh
h

∫ h

0
(h− r)εF2 (th− h− r)dr,

the second line utilising Lemma A1. The expression for ξS1,th in Lemma 1 is then obtained

by substituting for εS1 (th) using (B2) and for the second term using Lemma A2. In order to

transform (B7) into observable variables, it is necessary to first integrate over the interval

[0, h] and to divide by h to yield

∆hy
F
1,th = −φh

[
yF1,th−h − CFS

1
h

∫ h

0
yS2 (th− h− s)ds− CFF yF2,th−h

]

+
1
h

∫ h

0
εF1 (th− s)ds.

The term involving the integral of yS2 on the right-hand side is unobservable and so adding

and subtracting φhCFSyS2,th−h yields

∆hy
F
1,th = −φh

[
yF1,th−h − CFSyS2,th−h − CFF yF2,th−h

]
+ ξF1,th,

where

ξF1,th =
1
h

∫ h

0
εF1 (th− s)ds+ φhCFS

[
1
h

∫ h

0
yS2 (th− h− s)ds− yS2 (th− h)

]

=
1
h

∫ h

0
εF1 (th− s)ds− CFS

φh
h

∫ h

0
(h− s)εS2 (th− h− s)ds,

the second line following from Lemma A1. Substituting for εF1 using (B3) and then using

Lemma A2 on the resulting terms yields the required expression for ξF1,th. The expressions

determining the evolution of yS2 and yF2 are easily obtained from (B8) and (B9) giving

∆hy
S
2,th = ξS2,th and ∆hy

F
2,th = ξF2,th with ξS2,th = εS2 (th) and ξF2,th = h−1

∫ h
0 ε

F
2 (th − s)ds.

These are expressible in terms of w by using (B4) and (B5) while the equation for ξF2,th in

Lemma 1 also requires the results in Lemma A2. Finally, combining the equations for all

the variables yields the discrete time ECM as required. ‖

Proof of Lemma 2.

The filtering relationship is obtained from the expressions for the components of ξth in

Lemma 1 using Lemma A3 in Appendix A. The component filters are defined by

mS
1 (z) = gh(1 + z),

mSS
12 (z) = kh(z),

mSF
12 (z) = kh(z) + h−1φhe

−hz
[
γ1(z) + e−hzγ2(z)

]
,
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mF
1 (z) = h−1[gh(z)− gh(1 + z)] + h−1e−hz[φhgh(z)− (gh(z)− gh(1 + z))],

mFS
12 (z) = h−1[γ5(z) + e−hzγ6(z)− φhe−hz(γ1(z) + e−hzγ2(z))],

mFF
12 (z) = h−1[γ5(z) + e−hzγ6(z)],

mS
2 (z) = gh(z),

mF
2 (z) = h−1[γ3(z) + e−hzγ4(z)],

in which gh(z) = (1− e−hz)/z, kh(z) = gh(z)− gh(1 + z), and

γ1(z) =
h2

2
gh(z)− γ2(z), γ2(z) =

1
2

[
h2

z
− 2h
z2

+
2(1− e−hz)

z3

]
,

γ3(z) =
1
z

[
gh(z)− he−hz

]
, γ4(z) = hgh(z)− γ3(z),

γ5(z) = γ3(z)− kh(z), γ6(z) = γ4(z)− φhgh(z) + kh(z).

‖

Proof of Lemma 3.

Since gh(z) = O(h) by Lemma A4 it follows that ζth = Op(h) because w(th) is an Op(1)

random variable. Lemma A5 establishes that the upper right m1 × m2 block of Mh(z)

(corresponding to the response of ξ1,th to w2(th)) and hence of Qh(z) is O(h2), and so it

remains to show that the diagonal elements of Qh(z) are also O(h2). The first mS
1 elements

on the diagonal are mS
1 (z)−gh(z) = gh(1+z)−gh(z) = −kh(z) = O(h2) by Lemma A4. The

next mF
1 elements are mF

1 (z)− gh(z) = h+O(h2)− [h+O(h2)] = O(h2), using Lemmas A4

and A5. The next mS
2 elements are given by the filter mS

2 (z)−gh(z) = 0 since mS
2 (z) = gh(z),

and hence ρS2,th = 0 as also stated in the Lemma. The final mF
2 elements on the diagonal

equal mF
2 (z)− gh(z) = h+O(h2)− [h+O(h2)] = O(h2), again using Lemmas A4 and A5. ‖

Proof of Lemma 4.

(a) The proof follows from Hansen (1992) if the process wnt = h−1
n ξnt, or wth = h−1ξth (since

hn = h), satisfies his Assumption 1, which requires: (i) Ewth = 0, (ii) wth is strong mixing

with mixing coefficients of size −δη/(δ − η), (iii) ‖wth‖δ <∞. Part (i) is trivially satisfied,

while (ii) follows from Assumption 2 and Theorem 14.1 of Davidson (1994) because ξth is a

measurable function of w(τ) over a finite time interval. It remains to verify (iii). Note that

‖wth‖δ =
∥∥∥h−1ξth

∥∥∥
δ
≤ h−1

{∥∥∥ξS1,th∥∥∥
δ

+
∥∥∥ξF1,th∥∥∥

δ
+
∥∥∥ξS2,th∥∥∥

δ
+
∥∥∥ξF2,th∥∥∥

δ

}
.

Taking each term in turn, using the definitions for the components of ξth in Lemma 1, and
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noting that ‖
∫ h

0 f(r)w(th− r)dr‖δ ≤ |
∫ h

0 f(r)dr|‖w(τ)‖δ for a scalar function f(·),

∥∥∥ξS1,th∥∥∥
δ

=

∥∥∥∥∥
∫ h

0
[1− φ(r)]wS1 (th− r)dr + CSS

∫ h

0
φ(r)wS2 (th− r)dr

+CSF

[∫ h

0
φ(r)wF2 (th− r)dr +

φh
h

∫ h

0
ψ1(r)wF2 (th− h− r)dr

+
φh
h

∫ h

0
ψ2(r)wF2 (th− 2h− r)dr

]∥∥∥∥∥
δ

≤
∣∣∣∣∣
∫ h

0
[1− φ(r)]dr

∣∣∣∣∣ ∥∥∥wS1 (τ)
∥∥∥
δ

+ ‖CSS‖δ

∣∣∣∣∣
∫ h

0
φ(r)dr

∣∣∣∣∣ ∥∥∥wS2 (τ)
∥∥∥
δ

+ ‖CSF ‖δ

{∣∣∣∣∣
∫ h

0
φ(r)dr

∣∣∣∣∣+ |φh|h
[∣∣∣∣∣
∫ h

0
ψ1(r)dr

∣∣∣∣∣+
∣∣∣∣∣
∫ h

0
ψ2(r)dr

∣∣∣∣∣
]} ∥∥∥wF2 (τ)

∥∥∥
δ

and hence ‖ξS1,th‖δ <∞ in view of the moment condition in Assumption 2 and the finiteness

of the integrals of the functions. By a similar procedure,

∥∥∥ξF1,th∥∥∥
δ
≤ h−1

{∣∣∣∣∣
∫ h

0
φ(r)dr

∣∣∣∣∣+
∣∣∣∣∣
∫ h

0
[φh − φ(r)] dr

∣∣∣∣∣
} ∥∥∥wF1 (τ)

∥∥∥
δ

+ h−1‖CFS‖δ

×
{∣∣∣∣∣
∫ h

0
ψ5(r)dr

∣∣∣∣∣+
∣∣∣∣∣
∫ h

0
ψ6(r)dr

∣∣∣∣∣+ |φh|
[∣∣∣∣∣
∫ h

0
ψ1(r)dr

∣∣∣∣∣+
∣∣∣∣∣
∫ h

0
ψ2(r)dr

∣∣∣∣∣
]}

×
∥∥∥wS2 (τ)

∥∥∥
δ

+ h−1‖CFF ‖δ

{∣∣∣∣∣
∫ h

0
ψ5(r)dr

∥∥∥∥∥+

∣∣∣∣∣
∫ h

0
ψ6(r)dr

∣∣∣∣∣
} ∥∥∥wF2 (τ)

∥∥∥
δ

which is also finite under Assumption 2 and the finiteness of the integrals. In the same way,

∥∥∥ξS2,th∥∥∥
δ

=

∥∥∥∥∥
∫ h

0
wS2 (th− s)ds

∥∥∥∥∥
δ

≤ h
∥∥∥wS2 (τ)

∥∥∥
δ
<∞,

∥∥∥ξF2,th∥∥∥
δ
≤ h−1

{∣∣∣∣∣
∫ h

0
ψ3(r)dr

∣∣∣∣∣+
∣∣∣∣∣
∫ h

0
ψ4(r)dr

∣∣∣∣∣
} ∥∥∥wF2 (τ)

∥∥∥
δ
<∞.

Hence condition (iii) is satisfied and part (a) of the Lemma follows.

(b) Note that, from Lemma 3,

h
1/2
n

T
1/2
n

Sn[Tnr] =
1

N
1/2
n

[Tnr]∑
j=1

ξnj =
1

N
1/2
n

[Tnr]∑
j=1

ζnj +
1

N
1/2
n

[Tnr]∑
j=1

ρnj . (B10)

The proof proceeds by first showing that N−1/2
n

∑[Tnr]
j=1 ρnj converges to zero in probability

uniformly in r i.e. that supr∈[0,1] ‖N
−1/2
n

∑[Tnr]
j=1 ρnj‖

p→ 0 as n ↑ ∞. Now

sup
r∈[0,1]

∥∥∥∥∥∥N−1/2
n

[Tnr]∑
j=1

ρnj

∥∥∥∥∥∥ ≤ max
1≤k≤Tn

∥∥∥∥∥∥N−1/2
n

k∑
j=1

ρnj

∥∥∥∥∥∥
≤ N−1/2

n max
1≤k≤Tn

k∑
j=1

‖ρnj‖ ≤ N−1/2
n Tn max

1≤j≤Tn
‖ρnj‖. (B11)
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It follows that, for some ε > 0,

Pr

 sup
r∈[0,1]

∥∥∥∥∥∥N−1/2
n

[Tnr]∑
j=1

ρnj

∥∥∥∥∥∥ > ε

 ≤ Pr
(
N−1/2
n Tn max

1≤j≤Tn
‖ρnj‖ > ε

)
= Pr

(
‖ρn1‖ > εN1/2

n T−1
n

)
by stationarity

≤ E‖ρn1‖2

ε2NnT
−2
n
, (B12)

the last line using the Markov inequality. Now E‖ρn1‖2 =
∑m
j=1Eρ

2
n1,j = O(h4

n) by Lemma

3. Furthermore, NnT
−2
n = h2

nN
−1
n and so the right-hand-side of (B12) is O(h2

nNn) = o(1)

as n ↑ ∞ since hnNn ↓ 0. Hence it is the term involving the partial sum of the ζnj in (B11)

that determines the asymptotic distribution of interest.

Let xj =
∫ j
j−1w(s)ds. Clearly Exj = 0 and ‖xj‖δ ≤ ‖w(1)‖δ <∞ under Assumption 2.

In fact, xj also has the same mixing properties as w(τ), and so, from Hansen (1992),

N−1/2
n

[Nnr]∑
j=1

xj ⇒ B(r)

as n ↑ ∞, where B(r) is Brownian motion with variance matrix

Ω = lim
n↑∞

N−1
n E

Nn∑
j=1

xj

Nn∑
k=1

x′k = lim
n↑∞

∫ Nn

−Nn

(
1− |k|

Nn

)
Ew(0)w(k)′dk

=
∫ ∞
−∞

Ew(0)w(k)′dk = 2πf cww(0).

If it can be shown that N−1/2
n

∑Tnr
j=1 ζnj converges in probability uniformly in r to the partial

sum N
−1/2
n

∑[Nnr]
j=1 xj , then the claim in part (b) concerning Sn[Tnr] is established. Now,

sup
r∈[0,1]

∥∥∥∥∥∥N−1/2
n

Tnr∑
j=1

ζnj −N−1/2
n

[Nnr]∑
j=1

xj

∥∥∥∥∥∥
= sup

r∈[0,1]

∥∥∥∥∥N−1/2
n

(∫ [Tnr]hn

0
w(s)ds−

∫ [Nnr]

0
w(s)ds

)∥∥∥∥∥
= sup

r∈[0,1]

∥∥∥∥∥N−1/2
n

∫ [Tnr]hn

[Nnr]
w(s)ds

∥∥∥∥∥ since [Tnr]hn ≥ [Nnr]

≤ sup
r∈[0,1]

N−1/2
n

∫ [Tnr]hn

[Nnr]
‖w(s)‖ds

≤ N−1/2
n sup

r∈[0,1]

∫ Nnr

[Nnr]
‖w(s)‖ds since [Tnr]hn ≤ Nnr

≤ N−1/2
n max

1≤j≤Nn

∫ j

j−1
‖w(s)‖ds. (B13)
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Thus

Pr

 sup
r∈[0,1]

∥∥∥∥∥∥N−1/2
n

Tnr∑
j=1

ζnj −N−1/2
n

[Nnr]∑
j=1

xj

∥∥∥∥∥∥ > ε


≤ Pr

(
N−1/2
n max

1≤j≤Nn

∫ j

j−1
‖w(s)‖ds > ε

)
= Pr

(∫ 1

0
‖w(s)‖ds > εN1/2

n

)
by stationarity

≤ Pr

(
sup
s∈[0,1]

‖w(s)‖ > εN1/2
n

)
= Pr

(
‖w(1)‖ > εN1/2

n

)
by stationarity

≤ E‖w(1)‖2

ε2Nn
↓ 0 as n ↑ ∞ (B14)

since w(1) is Op(1) and Nn ↑ ∞, thus establishing the result.

Turning to UnTn , consider (noting that h1/2
n T

−1/2
n = hnN

−1/2
n )

h2
n

Nn
UnTn = N−1

n

Tn∑
t=1

t−1∑
j=1

ξnj

 ξ′nt = N−1
n

Tn∑
t=1

t−1∑
j=1

(ζnj + ρnj)

 (ζnt + ρnt)
′

= Un,ζζ + Un,ζρ + Un,ρζ + Un,ρρ, (B15)

where, for example, Un,ζρ = N−1
n

∑Tn
t=1(

∑t−1
j=1 ζnj)ρ

′
nt. Note, first, that

Un,ζζ = N−1
n

Tn∑
t=1

t−1∑
j=1

∫ jhn

jhn−hn
w(s)ds

∫ thn

thn−hn
w(r)′dr

= N−1
n

Tn∑
t=1

(∫ thn−hn

0
w(s)ds

)∫ thn

thn−hn
w(r)′dr

= N−1
n

∫ Nn

0

(∫ r

0
w(s)ds

)
w(r)′dr. (B16)

Now consider

Un,xx = N−1
n

Nn∑
t=1

t−1∑
j=1

xnj

x′nt = N−1
n

Nn∑
t=1

(∫ t−1

0
w(s)ds

)∫ t

t−1
w(r)′dr

= N−1
n

∫ Nn

0

(∫ r

0
w(s)ds

)
w(r)′dr. (B17)

Since xnt satisfies the assumptions of Hansen (1992), it follows that Un,xx ⇒
∫ 1

0 BdB
′ + Λ1.

That Un,ζζ also has the same asymptotic distribution follows from (B16). For the remaining

terms in (B15), consider, first,

‖Un,ζρ‖ =

∥∥∥∥∥∥N−1
n

Tn∑
t=1

t−1∑
j=1

ζnj

 ρ′nt
∥∥∥∥∥∥ ≤ N−1

n

Tn∑
t=1

∥∥∥∥∥∥
t−1∑
j=1

ζnj

∥∥∥∥∥∥ ‖ρnt‖
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≤ N−1
n

Tn∑
t=1

‖ρnt‖
Tn∑
j=1

‖ζnj‖

≤ N−1
n T 2

n max
1≤t≤Tn

‖ρnt‖ max
1≤j≤Tn

‖ζnj‖ .

Hence, for some ε > 0,

Pr (‖Un,ζ,ρ‖ > ε) ≤ Pr
(
N−1
n T 2

n max
1≤t≤Tn

‖ρnt‖ max
1≤j≤Tn

‖ζnj‖ > ε

)
≤ Pr

(
‖ρn1‖‖ζn1‖ > εNnT

−2
n

)
by stationarity

≤ E (‖ρn1‖‖ζn1‖)2

ε2N2
nT
−4
n

by Markov’s inequality

≤ E‖ρn1‖2E‖ζn1‖2

ε2N2
nT
−4
n

by the Cauchy-Schwarz inequality. (B18)

From Lemma 3, E‖ρn1‖2 = O(h4
n) and E‖ζn1‖2 = O(h2

n), while N2
nT
−4
n = N2

n(Nn/hn)−4 =

h4
nN
−2
n , so that the right-hand side of (B18) is O(h2

nN
2
n) = o(1) as n ↑ ∞, since hnNn ↓ 0.

Hence ‖Un,ζρ‖ = op(1) as n ↑ ∞. Similar arguments can be used to show that

Pr (‖Un,ρζ‖ > ε) ≤ E‖ρn1‖2E‖ζn1‖2

ε2N2
nT
−4
n

= O(h2
nN

2
n),

Pr (‖Un,ρρ‖ > ε) ≤
(
E‖ρn1‖2

)2
ε2N2

nT
−4
n

= O(h4
nN

2
n),

and hence ‖Un,ρζ‖ = op(1) and ‖Un,ρρ‖ = op(1) as n ↑ ∞. Thus part (b) is proved.

(c) In this case, hnSn[Tnr] =
∑[Tnr]
t=1 ξnt =

∑[Tnr]
t=1 ζnt +

∑[Tnr]
t=1 ρnt. From (B11) and (B12), and

noting that Nn = N , it follows that supr∈[0,1] ‖
∑[Tnr]
t=1 ρnt‖ = op(1). Now

sup
r∈[0,1]

∥∥∥∥∥∥
∫ Nr

0
w(s)ds−

[Tnr]∑
t=1

ζnt

∥∥∥∥∥∥ = sup
r∈[0,1]

∥∥∥∥∥
∫ Nr

0
w(s)ds−

∫ [Tnr]hn

0
w(s)ds

∥∥∥∥∥
= sup

r∈[0,1]

∥∥∥∥∥
∫ Nr

[Tnr]hn
w(s)ds

∥∥∥∥∥
≤ sup

r∈[0,1]

∫ Nr

[Tnr]hn
‖w(s)‖ds p→ 0

since

Nr − [Tnr]hn = hn

(
Nr

hn
− [Tnr]

)
= hn

(
Nr

hn
−
[
Nr

hn

])
≤ hn ↓ 0

as n ↑ ∞. Hence supr∈[0,1] ‖hnSn[Tnr]−
∫Nr

0 w(s)ds‖ p→ 0 as n ↑ ∞ and so hnSn[Tnr] ⇒ Z(Nr)

as required. Finally, consider

h2
nUnTn = N(Un,ζζ + Un,ζρ + Un,ρζ + Un,ρρ).
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From the analysis in part (b), each of the last three terms is op(1), and so

h2
nUnTn =

Tn∑
t=1

t−1∑
j=1

ζnj

 ζ ′nt + op(1)

=
Tn∑
t=1

(∫ thn−hn

0
w(s)ds

)∫ thn

thn−hn
w(r)′dr + op(1)

=
Tn∑
t=1

Z(thn − hn) [Z(thn)− Z(thn − hn)]′ + op(1)

⇒
∫ N

0
Z(s)dZ(s)′

as n ↑ ∞, as required. ‖

Proof of Lemma 5.

The proof for each part is based on the expressions for µn(s) and Mn(s) in (22) and (23)

respectively, combined with the appropriate convergence rates for Sn[Tnr] and UnTn given in

Lemma 4. ‖
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APPENDIX C

Proof of Theorem 1.

(a) This is a straightforward extension of the results of Phillips (1991a,c) to the case where

the sampling frequency h 6= 1, and so the details are omitted. The proof can also be based

on the results presented in (b) below provided the appropriate modifications are made.

(b) For convenience of notation let an = h2
nφ
−2
hn
N−1
n and bn = hn/φhn so that anΓ̂n,XX(s) and

bnΓ̂n,wX(s) converge to the limits given in Lemma 5. Define Q̂n = (1/2Mn)
∑Mn
j=−Mn+1 Θnj

and q̂n = (1/2Mn)
∑Mn
j=−Mn+1 θnj so that vec(Ĉn−C0) = Q̂−1

n q̂n. Taking the component Q̂n

first, let Q̂n = Qn +Rn, where

Qn =
1

2Mn

Mn∑
j=−Mn+1

(
f̂ ′n,XX ⊗ J ′f−1

wwJ
)
, (C1)

Rn =
1

2Mn

Mn∑
j=−Mn+1

(
f̂ ′n,XX ⊗ J ′

[
f̂−1
n,ŵŵ

− f−1
ww

]
J
)
, (C2)

and where the dependence of the spectral density matrices on frequency ωj has been sup-

pressed for ease of notation. The first step is to show that ‖(an/hn)Rn‖ = op(1). Consider

∥∥∥∥anhnRn
∥∥∥∥ =

∥∥∥∥∥∥ 1
2Mn

Mn∑
j=−Mn+1

(
an
hn
f̂ ′n,XX ⊗ J ′f̂−1

n,ŵŵ

[
fww − f̂n,ŵŵ

]
f−1
wwJ

)∥∥∥∥∥∥
≤ ‖J‖2

2Mn

Mn∑
j=−Mn+1

∥∥∥∥anhn f̂n,XX
∥∥∥∥ ∥∥∥f̂−1

n,ŵŵ

∥∥∥ ∥∥∥fww − f̂n,ŵŵ∥∥∥ ∥∥∥f−1
ww

∥∥∥
≤ max

λ∈Πhn

∥∥∥f̂−1
n,ŵŵ

∥∥∥ max
λ∈Πhn

∥∥∥fww − f̂n,ŵŵ∥∥∥ max
λ∈Πhn

∥∥∥f−1
ww

∥∥∥ ‖J‖2
2Mn

Mn∑
j=−Mn+1

∥∥∥∥anhn f̂n,XX
∥∥∥∥ (C3)

where Πhn = {λ : −π/hn < λ ≤ π/hn}. Now, as n ↑ ∞,

max
λ∈Πhn

∥∥∥f−1
ww

∥∥∥→ max
λ∈Π0

∥∥∥(f cww)−1
∥∥∥ ≤ K,

by the assumed properties of f cww(λ). Meanwhile, outside a set Π̃n whose probability measure

tends to zero as n ↑ ∞,
∥∥∥f̂n,ŵŵ∥∥∥ ≥ a > 0 and so

max
λ∈Πhn

∥∥∥f̂−1
n,ŵŵ

∥∥∥→ max
λ∈Π0

∥∥∥(f cww)−1
∥∥∥ ≤ K

as n ↑ ∞. Furthermore,

max
λ∈Πhn

∥∥∥f̂n,ŵŵ − fww∥∥∥ ≤ max
λ∈Πhn

∥∥∥f̂n,ŵŵ − fŵŵ∥∥∥+ max
λ∈Πhn

∥∥fŵŵ − fww∥∥ . (C4)
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Taking the first component,

max
λ

∥∥∥f̂n,ŵŵ − fŵŵ∥∥∥
= max

λ

∥∥∥∥∥∥hn2π

Mn∑
s=−Mn

k

(
s

Mn

)
Γ̂n,ŵŵ(s)e−ishnλ − hn

2π

∞∑
s=−∞

Γŵŵ(s)e−ishnλ
∥∥∥∥∥∥

= max
λ

∥∥∥∥∥∥hn2π

Mn∑
s=−Mn

k

(
s

Mn

) [
Γ̂n,ŵŵ(s)− Γŵŵ(s)

]
e−ishnλ

+
hn
2π

∞∑
s=−∞

[
k

(
s

Mn

)
− 1

]
Γŵŵ(s)e−ishnλ

∥∥∥∥∥
≤ hn

2π
max
s,λ

∣∣∣e−ishnλ∣∣∣ Mn∑
s=−Mn

∣∣∣∣k( s

Mn

)∣∣∣∣ ∥∥∥Γ̂n,ŵŵ(s)− Γŵŵ(s)
∥∥∥

+
hn
2π

max
s,λ

∣∣∣e−ishnλ∣∣∣ ∞∑
s=−∞

∣∣∣∣k( s

Mn

)
− 1

∣∣∣∣ ∥∥Γŵŵ(s)
∥∥ . (C5)

Now maxs,λ
∣∣∣e−ishnλ∣∣∣ = 1,

∥∥∥Γ̂n,ŵŵ(s)− Γŵŵ(s)
∥∥∥ p→ 0, and |k(s/Mn) − 1| → 0 for each fixed

s as Mn ↑ ∞, and hence (C5)
p→ 0 as n ↑ ∞. For the second component of (C4),

max
λ

∥∥fŵŵ − fww∥∥ = max
λ

∥∥∥∥∥hn2π

∞∑
s=−∞

[
Γŵŵ(s)− Γww(s)

]
e−ishnλ

∥∥∥∥∥
≤ hn

2π

∞∑
s=−∞

∥∥Γŵŵ(s)− Γww(s)
∥∥ p→ 0

as n ↑ ∞, since hn ↓ 0 and ŵn
p→ wn. Hence (C4)

p→ 0. Now consider

1
2Mn

Mn∑
j=−Mn+1

∥∥∥∥anhn f̂n,XX
∥∥∥∥ =

1
2Mn

Mn∑
j=−Mn+1

∥∥∥∥∥∥hn2π

Mn∑
s=−Mn

k

(
s

Mn

)
an
hn

Γ̂n,XX(s)e−ishnωj

∥∥∥∥∥∥
≤ 1

2Mn

1
2π

Mn∑
j=−Mn+1

Mn∑
s=−Mn

∣∣∣∣k( s

Mn

)∣∣∣∣ ∥∥∥anΓ̂n,XX(s)
∥∥∥ ∣∣∣e−isπj/Mn

∣∣∣
=

1
2π

Mn∑
s=−Mn

∣∣∣∣k( s

Mn

)∣∣∣∣ ∥∥∥anΓ̂n,XX(s)
∥∥∥ since

1
2Mn

Mn∑
j=−Mn+1

∣∣∣e−isπj/Mn

∣∣∣ = 1 ∀s

⇒ 1
2π

∫ 1

−1
|k(r)| dr ×Op(1)

using Lemma 5(b), where the Op(1) limit is independent of s. Combining these results in

(C3) establishes that ‖(an/hn)Rn‖ = op(1) as required, and hence (an/hn)Q̂n = (an/hn)Qn+

op(1). Now, from (C1),

an
hn
Qn =

1
2Mn

∑
j

[
hn
2π

∑
s

k

(
s

Mn

)
an
hn

Γ̂n,XX(s)′e−ishnωj ⊗ J ′hn
2π

∑
g

Dg,ne
ighnωjJ

]

=
hn

(2π)2

∞∑
g=−∞

Mn∑
s=−Mn

k

(
s

Mn

)
anΓ̂n,XX(s)′ ⊗ J ′Dg,nJ

1
2Mn

Mn∑
j=−Mn+1

ei(g−s)hnωj ,
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which utilises the Fourier series fww(λ)−1 = (hn/2π)
∑∞
g=−∞Dg,ne

ighnλ. But

1
2Mn

Mn∑
j=−Mn+1

ei(g−s)hnωj =
1

2Mn

∑
j

ei(g−s)πj/Mn =

 1, (g − s) = 2lMn,

0, otherwise,

where l denotes a (positive or negative) integer. Substituting s = g + 2lMn (l = 0,±1, . . .)

in the above yields

an
hn
Qn =

hn
(2π)2

∑
g

∑
l

k

(
g + 2lMn

Mn

)
anΓ̂n,XX(g + 2lMn)′ ⊗ J ′Dg,nJ = Q0n +Q1n,

the first term corresponding to l = 0, the second to the sum over l 6= 0. Now, since

k(g/Mn)→ 1 for all g as Mn ↑ ∞,

Q0n =
hn

(2π)2

∑
g

k

(
g

Mn

)
anΓ̂n,XX(g)′ ⊗ J ′Dg,nJ ⇒

∫ 1

0
B2B

′
2 ⊗ J ′Ω−1J, (C6)

where

Ω−1 = lim
n↑∞

hn
(2π)2

∑
g

Dg,n =
1

2π

[
1

2π

∫ ∞
−∞

D(v)dv
]

=
1

2π
f cww(0)−1.

The second term to consider is

Q1n =
hn

(2π)2

∑
g

∑
l 6=0

k

(
g + 2lMn

Mn

)
anΓ̂n,XX(g + 2lMn)′ ⊗ J ′Dg,nJ.

For each g, k((g + 2lMn)/Mn) → k(2l) as Mn ↑ ∞, but k(2l) = 0 for l 6= 0. Hence

Q1n = op(1), and the limit in (C6) is the limit of (an/hn)Q̂n.

A similar procedure can be applied to the component q̂n, yielding the decomposition

(bn/hn)q̂n = (bn/hn)qn + (bn/hn)rn = (bn/hn)qn + op(1), while (bn/hn)qn = q0n + q1n =

q0n + op(1), where the important term is

q0n =
hn

(2π)2

∑
g

(
I ⊗ J ′Dg,n

)
vec

[
k

(
g

Mn

)
bnΓ̂n,wX(g)

]
. (C7)

From the convergence of bnΓ̂n,wX(g) given in Lemma 5(b), it follows that

q0n ⇒
(
I ⊗ J ′Ω−1

)
vec

(∫ 1

0
dBB′2

)
+ θ̄,

where

θ̄ = lim
n↑∞

hn
(2π)2

∑
g

(
I ⊗ J ′Dg,n

)
vec

hn Tn∑
k=g+1

Ewnkw
′
2,n0


=

(
1

2π

)2 ∫ ∞
−∞

(
I ⊗ J ′D(v)

)
vec

(∫ ∞
0

Ew(s+ v)w2(0)′ds
)
dv, (C8)
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the second expression transforming ghn into the continuous variable v and khn into the

continuous variable s. Let Λ2(v) =
∫∞

0 Ew2(0)w(s+ v)′ds, and note that

∫ ∞
−∞

(
I ⊗ J ′D(v)

)
vec

(
Λ(v)′

)
dv = vec

(
J ′
∫ ∞
−∞

D(v)Λ2(v)′dv
)
. (C9)

Defining z(s) =
∫∞
−∞D(v)w(s+ v)dv it is possible to write

∫ ∞
−∞

D(v)Λ2(v)′dv =
∫ ∞
−∞

D(v)
[∫ ∞

0
Ew(s+ v)w2(0)′ds

]
dv =

∫ ∞
0

Ez(s)w2(0)′ds. (C10)

Let f czw2
(λ) (−∞ < λ < ∞) denote the spectral density function between z and w2. Then

Ez(s)w2(0)′ =
∫∞
−∞ e

isλf czw2
(λ)dλ so that

J ′
∫ ∞
−∞

D(v)Λ2(v)′dv = J ′
∫ ∞

0
Ez(s)w2(0)′ds =

∫ ∞
0

[∫ ∞
−∞

eisλJ ′f czw2
(λ)dλ

]
ds. (C11)

Combining these results,

f czw2
(λ) =

1
2π

∫ ∞
−∞

e−isλEz(s)w2(0)′ds

=
1

2π

∫ ∞
−∞

e−isλE

[∫ ∞
−∞

D(v)w(s+ v)dv
]
w2(0)′ds

=
1

2π

∫ ∞
−∞

D(v)eivλdv
∫ ∞
−∞

Ew(m)w2(0)′e−imλdm (m = s+ v)

= f cww(λ)−12πf cww2
(λ)

= 2πf cww(λ)−1f cww(λ)

 0

I

 = 2π

 0

I

 , (C12)

which implies that

J ′f czw2
(λ) = [I 0]2π

 0

I

 = 0.

Substituting into (C11) shows that (C11) is null which implies that θ̄ is also null by (C9).

Hence q0n converges to the first term in the displayed expression following (C7), and hence

(bn/hn)q̂n has the same limit by the arguments provided earlier.

Turning to Θn0 and θn0, it is legitimate, for the reasons advanced earlier (i.e. that

maxλ ‖f̂n,ŵŵ − fww‖
p→ 0), to replace f̂n,ŵŵ(0)−1 with fww(0)−1 in their definitions. Using

Lemma 5, it then follows that

an
hnMn

f̂n,XX(0) =
1

2πMn

Mn∑
s=−Mn

k

(
s

Mn

)
anΓ̂n,XX(s)⇒ ν

∫ 1

0
B2B

′
2,

where ν = limn↑∞M
−1
n

∑Mn
s=−Mn

k(s/Mn) = (2π)−1
∫ 1
−1 k(s)ds. The expression (36) then
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follows from the definition of Θn0. Proceeding in a similar fashion,

bn
hnMn

f̂n,wX(0) =
1

2πMn

Mn∑
s=−Mn

k

(
s

Mn

)
bnΓ̂n,wX(s)⇒ ν

∫ 1

0
dBB′2 +

1
2π

∆′2,

where ∆2 = limn↑∞ hn
∑∞
k=−∞Ew2,n0w

′
nk. The result for θn0 stated in Theorem 1 follows

because it can be shown that (I ⊗ J ′fww(0)−1)vec((1/2π)∆′2) = 0, which follows along the

lines of the proof on p.433 of Phillips (1991c).

(c) Part (c) follows by the same arguments used to establish part (b), with the appropriate

limits from Lemma 5(c) used where appropriate. ‖

Proof of Theorem 2.

First, note that

J ′Ω−1 = [I, 0]

 Ω−1
11.2 −Ω−1

11.2Ω12Ω−1
22

· ·

 = Ω−1
11.2

[
I, −Ω12Ω−1

22

]
,

where Ω11.2 = Ω11 − Ω12Ω−1
22 Ω21. It follows that

J ′Ω−1J = Ω−1
11.2

[
I, −Ω12Ω−1

22

]  I

0

 = Ω−1
11.2.

Taking each part in turn:

(a) Using the above results applied to Ωh,

(
I ⊗ J ′Ω−1

h

)
vec

(∫ 1

0
dBhB

′
h2

)
=

(
I ⊗ J ′Ω−1

h

)(∫ 1

0
Bh2 ⊗ dBh

)
=

∫ 1

0

(
Bh2 ⊗ J ′Ω−1

h dBh
)

=
∫ 1

0

(
Bh2 ⊗ Ω−1

h,11.2dBh,1.2
)
.

Combining (30) and (31) gives

Tnvec
(
Ĉn − C0

)
⇒ φ−1

h

[(∫ 1

0
Bh2B

′
h2

)−1

⊗ Ωh,11.2

] ∫ 1

0

(
Bh2 ⊗ Ω−1

h,11.2dBh,1.2
)

= φ−1
h

[(∫ 1

0
Bh2B

′
h2

)−1

⊗ I
] ∫ 1

0
(Bh2 ⊗ dBh,1.2)

as required.

(b) The same arguments apply as in part (a), simply replacing Ωh by Ω and Bh by B.
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(c) Again, the proof follows that in part (a), noting that

vec (F2(Z, y02)) =

(∫ N

0
Z2 ⊗ dZ

)
+ (y02 ⊗ Z(N)) .

The stated results then follow straightforwardly. ‖

Proof of Theorem 3.

Recall that Ωh = (2π/h3)fh,ξξ(0) and that fh,ξξ(0) =
∑∞
k=−∞ f

c
h,ξξ(2kπ/h) where

f ch,ξξ

(
2kπ
h

)
= Mh

(
2kiπ
h

)
f cww

(
2kπ
h

)
Mh

(−2kiπ
h

)′
.

It is convenient to partition f cww(λ) and Mh(iλ) as

f cww(λ) =

 f11(λ) f12(λ)

f21(λ) f22(λ)

 , Mh(iλ) =

 M11(iλ) M12(iλ)

0 M22(iλ)

 .
Defining λk = 2πk/h, the sub-matrices of Ωh can be written

Ωh,11 =
2π
h3

∞∑
k=−∞

[
M11(iλk)f11(λk)M11(−iλk)′ +M12(iλk)f21(λk)M11(−iλk)′

+ M11(iλk)f12(λk)M12(−iλk)′ +M12(iλk)f22(λk)M12(−iλk)′
]
, (C13)

Ωh,12 =
2π
h3

∞∑
k=−∞

[M11(iλk)f12(λk) +M12(iλk)f22(λk)]M22(−iλk)′, (C14)

Ωh,22 =
2π
h3

∞∑
k=−∞

M22(iλk)f22(λk)M22(−iλk)′, (C15)

and where Ωh,21 = Ω′h,12. Lemma A6 in Appendix A establishes that M11(0) = φhIm1 ,

M22(0) = hIm2 and M22(iλk) = 0 for all k 6= 0, so that (C13), (C14) and (C15) simplify as

Ωh,11 =
2π
h3

[
φ2
hf11(0) + φh

(
M12(0)f21(0) + f12(0)M12(0)′

)
+M12(0)f22(0)M12(0)′

]
+Ω̃h,11, (C16)

Ωh,12 =
2π
h2

[φhf12(0) +M12(0)f22(0)] , (C17)

Ωh,22 =
2π
h
f22(0), (C18)

where

Ω̃h,11 =
2π
h3

∑
k 6=0

[
M11(iλk)f11(λk)M11(−iλk)′ +M12(iλk)f21(λk)M11(−iλk)′

+ M11(iλk)f12(λk)M12(−iλk)′ +M12(iλk)f22(λk)M12(−iλk)′
]
. (C19)

42



From (C17) and (C18),

Ωh,12Ω−1
h,22Ωh,21 =

2π
h3

[
φ2
hf12(0)f22(0)−1f21(0) + φh

(
M12(0)f21(0)′ + f12(0)M12(0)′

)
+ M12(0)f22(0)M12(0)′

]
, (C20)

so that, combining (C16) and (C20),

Ωh,11.2 =
2π
h3
φ2
hf11.2(0) + Ω̃h,11, (C21)

where f11.2(0) = f11(0)− f12(0)f22(0)−1f21(0). The variance matrix of interest in the condi-

tional distribution therefore has the representation

V (h) = h2φ−2
h

[
h

2π
f22(0)−1 ⊗

(
2π
h3
φ2
hf11.2(0) + Ω̃h,11

)]
= f22(0)−1 ⊗

(
f11.2(0) +

h3

2πφ2
h

Ω̃h,11

)
. (C22)

The most complicated term to investigate here is Ω̃h,11. Bearing (C19) in mind, the defini-

tions of the Mij(λ) in terms of the underlying scalar filter functions yields

M11(iλk)f11(λk)M11(−iλk)′ =

 |mS
1 (iλk)|2fSS11 (λk) 0

0 0

 ,

M12(iλk)f21(λk)M11(−iλk)′ =


CSSm

SS
12 (iλk)mS

1 (−iλk)fSS21 (λk)

+CSFmSF
12 (iλk)mS

1 (−iλk)fFS21 (λk)
0

0 0

 ,

M22(iλk)f22(λk)M22(−iλk)′ =



CSS |mSS
12 (iλk)|2fSS22 (λk)C ′SS

+CSFmSF
12 (iλk)mSS

12 (−iλk)fFS22 (λk)C ′SS
+CSSmSS

12 (iλk)mSF
12 (−iλk)fSF22 (λk)C ′SF

+CSF |mSF
12 (iλk)|2fFF22 (λk)C ′SF

0

0 0


.

Hence Ω̃h,11 is of the form

Ω̃h,11 =

 Ω̃SS
h,11 0

0 0

 .
Now, from Lemma A6, note that for k 6= 0,

|mS
1 (iλk)|2 = |mSS

12 (iλk)|2 = |mSF
12 (iλk)|2 = mSS

12 (iλk)mSF
12 (−iλk) =

h2φ2
h

h2 + 4k2π2
,

mSS
12 (iλk)mS

1 (−iλk) = mSF
12 (iλk)mS

1 (−iλk) = − h2φ2
h

h2 + 4k2π2
.
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Hence Ω̃SS
h,11 = (2π/h3)

∑
k 6=0 h

2φ2
h(h2 + 4k2π2)−1PSSk (h), where

PSSk (h) = fSS11 (λk)− CSSfSS21 (λk)− CSF fFS21 (λk)− fSS12 (λk)C ′SS − fSF12 (λk)C ′SF

+CSSfSS22 (λk)C ′SS + CSF f
FS
22 (λk)C ′SS + CSSf

SF
22 (λk)C ′SF + CSF f

FF
22 (λk)C ′SF .

Let JS = [ImS1 , 0], CS = [CSS , CSF ] and JC = [JS , −CS ]. Then

PSSk (h) = JSf11(λk)J ′S − CSf21(λk)J ′S − JSf12(λk)C ′S + CSf22(λk)C ′S = JCf
c
ww(λk)J ′C ,

so that

Ω̃SS
h,11 =

2πφ2
h

h3
JC
∑
k 6=0

1
1 + (4π2k2/h2)

f cww

(
2πk
h

)
J ′C ≡

2πφ2
h

h3
Ṽh,11, (C23)

where Ṽh,11 is implicitly defined and is positive semi-definite under the assumed properties

of f cww(λ) in Assumption 1. Hence the matrix V (h) has the representation

V (h) = f22(0)−1 ⊗
(
f11.2(0) + Ṽh

)
,

where

Ṽh =

 Ṽh,11 0

0 0

 .
Turning to the matrix V0 = Ω−1

22 ⊗ Ω11.2, recall that Ω = 2πf cww(0). It is easy to show

that Ω11.2 = 2πf11.2(0) and that Ω22 = 2πf22(0), thus yielding

V0 = f22(0)−1 ⊗ f11.2(0).

It immediately follows that the matrix difference V (h)− V0 is given by

V (h)− V0 = f22(0)−1 ⊗ Ṽh,

which is clearly positive semi-definite under Assumption 2. ‖

Proof of Proposition 1.

Follows straightforwardly from the form of the matrix f cww,22(0)−1 ⊗ Ṽh. ‖
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APPENDIX D

This Appendix provides further details concerning the generation of the discrete time data

for the simulation experiments. From the expression for ξth it is clear that this disturbance

vector can be expressed as the sum of two components, so that ξth = eth − JAuth, where

eth =
∫ h

0
w(th− s)ds, uth =

∫ h

0
φ(s)w(th− s)ds.

Deriving the autocovariance properties of these two components enables each one to be

generated from a single set of N(0,1) random variables.

First, note that w(th) satisfies the difference equation

w(th) = ehGw(th− h) +
∫ th

th−h
e(th−s)Gζ(ds).

Integrating over the interval [0, h] yields a difference equation for eth, given by eth =

ehGeth−h + vth, where

vth =
∫ h

0

∫ th

th−h
e(th−s−r)Gζ(ds)dr.

It is convenient to express vth as a pair of single stochastic integrals with respect to the

random measure ζ(dτ). The justification of the change in the order of integration has been

rigorously demonstrated by McCrorie (2000), and the method yields

vth =
∫ th

th−h
Φ1(th− s)ζ(ds) +

∫ th−h

th−2h
Φ2(th− h− s)ζ(ds),

where Φ1(z) = G−1[ezG − I2] and Φ2(z) = G−1[ehG − ezG]. The autocovariance properties

of vth then follow straightforwardly, yielding (given the autocovariance properties of ζ(dτ))

Evthv
′
th =

∫ h

0
Φ1(r)Φ1(r)′dr +

∫ h

0
Φ2(r)Φ2(r)′dr,

Evthv
′
th−h =

∫ h

0
Φ2(r)Φ1(r)′dr,

while Evthv′th−jh = 0 for |j| ≥ 2. These integrals are straightforwardly expressed in terms

of integrals of the matrices erG and ehG, although the derivations are somewhat tedious and

are omitted for brevity.

Applying a similar procedure to uth yields the difference equation uth = ehGuth−h + zth,

where

zth =
∫ h

0
φ(s)

∫ th−r

th−h−r
e(th−s−r)Gζ(ds)dr.

This double integral can also be reduced to a pair of single stochastic integrals with respect
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to ζ(dτ), yielding

zth =
∫ th

th−h
Φ3(th− s)ζ(ds) +

∫ th−h

th−2h
Φ4(th− h− s)ζ(ds),

where Φ3(z) = K(0)ezG −K(z), Φ4(z) = K(z)ehG −K(−h)ezG, and K(z) = G−1 − ez(I +

G)−1. It follows that zth is also an MA(1) process, with

Ezthz
′
th =

∫ h

0
Φ3(r)Φ3(r)′dr +

∫ h

0
Φ4(r)Φ4(r)′dr,

Ezthz
′
th−h =

∫ h

0
Φ4(r)Φ3(r)′dr,

while Ezthz′th−jh = 0 for |j| ≥ 2. Once more some tedious algebra enables these integrals to

be expressed in terms of integrals with respect to ezG and ez(I+G), for example, which can

be evaluated for the given values of parameters that define the matrix G.13

The processes vth and zth are both MA(1). It remains to describe the method by which

they were generated from a sequence of independent N(0,1) variates. Consider, first, vth.

The procedure for zth is identical. Denote the variance matrix by V0 and the first-order

autocovariance by V1. Then, if vth = εth + Λεth−h, where εth is an uncorrelated sequence

with variance matrix P , it follows that P , Λ, V0 and V1 are related by the formulae

V0 = P + ΛPΛ′, V1 = ΛP.

The matrices P and Λ were derived (numerically) to satisfy these equations for each experi-

ment. Then, given a sequence of independent N(0,1) variates µth, and denoting the Cholesky

factorisation of P by P = PcP
′
c, the εth are determined by εth = Pcµth. The process vth

can then be generated according to the MA(1) representation, from which eth can be gener-

ated using the AR(1) representation. The same procedure, using the same set of µth, then

determines zth (using the appropriate variance matrix and MA(1) coefficient matrix), and

hence uth. The same set of underlying random variates must be used, because eth and uth

are functions of the same underlying (continuous time) process w(τ).

13The expressions used assume that the matrices G and (I + G) are nonsingular, conditions which are
certainly satisfied in the experiments conducted here.
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TABLE 1

Mean square errors

Values of N

Estimator h 25 50 100 25 50 100

Experiment 1 Experiment 2

OLS 1 158.14 31.20 6.89 61.85 15.17 3.68
1/4 168.63 33.78 7.37 35.19 8.50 1.98
1/12 175.67 35.21 7.66 37.37 8.96 2.07

SPEC 1 167.10 33.00 7.15 18.79 4.02 0.91
1/4 175.37 34.84 7.46 32.18 7.71 1.79
1/12 197.79 38.79 8.22 46.40 10.92 2.58

BAND 1 175.32 34.10 7.28 17.54 3.58 0.80
1/4 166.15 32.85 7.04 21.84 4.64 1.00
1/12 170.94 33.55 7.11 29.14 6.34 1.29

Experiment 3 Experiment 4

OLS 1 160.90 32.91 7.89 56.72 13.51 3.51
1/4 107.87 21.76 5.22 27.06 6.18 1.54
1/12 101.84 20.51 4.92 26.49 6.01 1.49

SPEC 1 87.03 15.45 3.48 12.33 2.46 0.57
1/4 81.72 15.27 3.50 23.27 5.37 1.34
1/12 84.73 15.76 3.62 31.37 7.16 1.81

BAND 1 91.53 15.75 3.48 10.86 2.07 0.46
1/4 81.55 15.05 3.41 15.36 3.12 0.69
1/12 80.50 15.02 3.43 21.25 4.46 0.96

Note: All entries have been multiplied by 104.
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TABLE 2

Percentage coverage rates of 90% confidence intervals

Values of N

Estimator h 25 50 100 25 50 100

Experiment 1 Experiment 2

OLS 1 28.69 20.06 13.31 33.70 24.66 17.42
1/4 26.44 18.94 12.75 46.34 34.11 23.93
1/12 35.45 25.19 17.48 66.79 50.53 36.77

SPEC (V̂1) 1 69.74 69.66 69.04 87.11 88.25 88.55
1/4 84.97 84.84 84.65 99.52 99.51 99.52
1/12 95.38 95.23 96.02 100.00 100.00 100.00

SPEC (V̂2) 1 69.74 69.66 69.04 87.11 88.25 88.55
1/4 52.50 53.35 52.20 82.11 81.86 81.99
1/12 44.12 44.69 44.58 69.39 68.79 68.26

BAND (V̂10) 1 75.98 80.10 83.12 86.77 88.38 88.55
1/4 94.44 96.50 97.92 99.60 99.74 99.82
1/12 99.32 99.58 99.86 100.00 100.00 100.00

BAND (V̂20) 1 76.97 80.86 83.72 87.84 89.16 89.30
1/4 69.55 73.95 76.79 87.00 87.89 88.84
1/12 60.67 65.44 68.97 84.48 85.58 87.14

Experiment 3 Experiment 4

OLS 1 24.95 18.55 13.71 34.55 25.08 17.40
1/4 20.15 14.84 10.87 42.01 30.04 21.34
1/12 23.55 16.74 12.39 56.78 41.98 30.20

SPEC (V̂1) 1 66.27 69.13 70.54 86.87 88.43 87.65
1/4 78.04 80.01 81.10 98.44 98.64 98.52
1/12 88.14 89.80 92.34 99.98 99.93 99.98

SPEC (V̂2) 1 66.27 69.13 70.54 86.87 88.43 87.65
1/4 46.63 48.29 49.72 75.36 75.26 74.17
1/12 36.31 37.14 39.10 57.52 56.49 56.65

BAND (V̂10) 1 72.28 79.40 83.48 87.80 89.90 89.73
1/4 92.92 97.10 98.05 99.54 99.63 99.77
1/12 98.53 99.62 99.92 100.00 100.00 100.00

BAND (V̂20) 1 73.42 80.36 84.07 88.68 90.64 90.39
1/4 67.18 73.68 78.10 86.16 87.58 88.21
1/12 57.36 64.23 70.91 81.48 83.44 85.40
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TABLE 3

Percentage coverage rates of 95% confidence intervals

Values of N

Estimator h 25 50 100 25 50 100

Experiment 1 Experiment 2

OLS 1 33.67 23.42 15.69 40.01 29.41 21.09
1/4 31.43 22.33 15.25 54.18 39.98 28.29
1/12 41.75 29.85 20.79 75.65 58.50 43.30

SPEC (V̂1) 1 77.83 77.95 77.45 92.63 93.59 94.05
1/4 90.82 91.07 90.89 99.93 99.93 99.96
1/12 98.16 97.94 98.59 100.00 100.00 100.00

SPEC (V̂2) 1 77.83 77.95 77.45 92.63 93.59 94.05
1/4 61.06 61.49 60.54 89.31 89.03 89.57
1/12 50.91 51.82 51.69 79.65 79.32 78.71

BAND (V̂10) 1 83.40 86.81 89.25 92.19 93.23 93.94
1/4 97.49 98.61 99.29 99.93 99.60 99.97
1/12 99.81 99.91 100.00 100.00 100.00 100.00

BAND (V̂20) 1 84.32 87.43 89.72 93.00 93.87 94.46
1/4 77.84 81.53 84.07 92.69 93.48 93.91
1/12 69.07 73.15 77.70 91.04 91.86 93.04

Experiment 3 Experiment 4

OLS 1 29.22 22.25 16.14 40.69 29.62 20.71
1/4 24.14 17.54 12.97 49.23 35.69 25.52
1/12 27.80 20.00 14.75 64.93 49.33 35.51

SPEC (V̂1) 1 74.37 77.12 78.51 92.46 93.47 93.32
1/4 84.91 87.18 87.94 99.72 99.67 99.66
1/12 92.92 94.65 96.07 100.00 100.00 100.00

SPEC (V̂2) 1 74.37 77.12 78.51 92.46 93.47 93.32
1/4 54.35 55.99 57.29 83.68 83.43 83.08
1/12 42.21 43.88 45.46 68.10 67.49 66.47

BAND (V̂10) 1 79.82 86.51 89.74 92.53 94.47 94.54
1/4 96.29 98.88 99.41 99.91 99.94 99.98
1/12 99.44 99.86 100.00 100.00 100.00 100.00

BAND (V̂20) 1 80.63 87.18 90.18 93.37 95.04 95.07
1/4 75.00 81.46 85.40 91.99 93.39 93.78
1/12 65.87 72.40 79.16 88.78 90.70 91.49
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TABLE 4

Estimates of the long-run PPP relationship

using month-end exchange rate data

Monthly Quarterly Annual

Estimator β1 β2 β1 β2 β1 β2

OLS 0.9438 0.9061 0.9528 0.9048 0.9187 0.9071
(0.0315) (0.0045) (0.0559) (0.0079) (0.1267) (0.0178)

SPEC(1/10) 0.6877 0.9366 0.6383 0.9437 0.6231 0.9442
(0.0234) (0.0036) (0.0448) (0.0068) (0.0949) (0.0141)

SPEC(1/3) 0.5452 0.9458 0.5903 0.9404 0.5774 0.9502
(0.0237) (0.0045) (0.0443) (0.0080) (0.0876) (0.0136)

SPEC(2/5) 0.5346 0.9447 0.6141 0.9397 0.5774 0.9502
(0.0235) (0.0046) (0.0402) (0.0071) (0.0876) (0.0136)

BAND(1/10) 0.8415 0.9203 0.8129 0.9243 0.7998 0.9240
(0.0325) (0.0046) (0.0630) (0.0088) (0.1292) (0.0180)

BAND(1/3) 0.8006 0.9262 0.8114 0.9247 0.9312 0.9078
(0.0766) (0.0108) (0.1233) (0.0172) (0.0340) (0.0045)

BAND(2/5) 0.8063 0.9257 0.7993 0.9264 0.9312 0.9078
(0.1007) (0.0141) (0.1559) (0.0216) (0.0340) (0.0045)

FM-OLS(P) 0.9062 0.8878 0.9192 0.8880 0.9317 0.8873
(0.0953) (0.0135) (0.0997) (0.0139) (0.0989) (0.0135)

FM-OLS(B) 1.0332 0.8877 1.0343 0.8877 1.0445 0.8841
(0.1521) (0.0215) (0.1565) (0.0218) (0.1833) (0.0250)

Note: Figures in parentheses are standard errors.
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TABLE 5

Estimates of the long-run PPP relationship

using monthly-averaged exchange rate data

Monthly Quarterly Annual

Estimator β1 β2 β1 β2 β1 β2

OLS 0.9436 0.9063 0.9443 0.9064 0.9440 0.9053
(0.0313) (0.0044) (0.0550) (0.0077) (0.1278) (0.0177)

SPEC(1/10) 0.7811 0.9227 0.6708 0.9395 0.6499 0.9412
(0.0229) (0.0035) (0.0455) (0.0069) (0.0958) (0.0141)

SPEC(1/3) 0.6968 0.9204 0.6277 0.9339 0.6011 0.9475
(0.0226) (0.0042) (0.0433) (0.0079) (0.0881) (0.0136)

SPEC(2/5) 0.6946 0.9185 0.6533 0.9333 0.6011 0.9475
(0.0226) (0.0043) (0.0391) (0.0069) (0.0881) (0.0136)

BAND(1/10) 0.8412 0.9205 0.8050 0.9257 0.8215 0.9225
(0.0324) (0.0046) (0.0623) (0.0087) (0.1313) (0.0181)

BAND(1/3) 0.7999 0.9264 0.8064 0.9258 0.9567 0.9059
(0.0765) (0.0108) (0.1218) (0.0170) (0.0339) (0.0044)

BAND(2/5) 0.8061 0.9258 0.7938 0.9275 0.9567 0.9059
(0.1008) (0.0141) (0.1537) (0.0213) (0.0339) (0.0044)

FM-OLS(P) 0.8978 0.8860 0.9070 0.8895 0.9529 0.8872
(0.0586) (0.0083) (0.0859) (0.0120) (0.1012) (0.0136)

FM-OLS(B) 1.0093 0.8916 1.0150 0.8910 1.0625 0.8835
(0.1477) (0.0208) (0.1539) (0.0214) (0.1858) (0.0249)

Note: Figures in parentheses are standard errors.
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