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Abstract

This paper provides a general formulation of the regression discontinuity (RD) design and
shows its general applicability to many epidemiological problems. It then applies the RD
method to estimate the effects of the 1995 pill scare in the UK, using individual birth
records and aggregate monthly statistics. The results show that, following the announce-
ment of the health warning on the “third generation” pill, conception rates increased by
about 7%, with a 9% increase in abortion rates and a 6-7% rise in birth rates. No effect
was found on still births, very low birth weight, sex ratios, or average birth weight. There
is evidence of a slight increase in the rates of low birth weight births and multiple births
and of a considerable reduction in the rate of births with congenital anomalies. Hetero-
geneity by mother’s age and social class is very pronounced, with most of the effects being
experienced by women aged less than 25 and of lower socioeconomic status.
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Introduction

Recent research in epidemiology has emphasized both the importance of, and the need

for, causal inference (Susser, 1991; Robins, Hernán, and Brumback, 2000; Maldonado and

Greenland, 2002; Rothman and Greenland, 2005). Many of the recent methodological

developments have provided support for the focus on isolating factors that can be seen as

causes of a specific disease state or health outcome (Galea, Riddle, and Kaplan, 2010).

This study proposes an alternative evaluation method, which has not yet been widely

applied to epidemiological research, and illustrates it with a new substantive application.

The method is the regression discontinuity (RD) design. Originally introduced half a

century ago by psychologists with applications to education (Thislethwaite and Campbell,

1960), the RD design initially received only scant attention by evaluation research method-

ologists (Cook and Campbell, 1979; Trochim, 1984). Recently, however, it has become

widely popular among econometricians and empirical economists (Angrist and Krueger,

1999; Hahn, Todd, and van der Klaauw, 2001; Imbens and Lemieux, 2008), and it has

been used in a variety of evaluation exercises, including educational interventions (Angrist

and Lavy, 1999; van der Klaauw, 2002; Jacobs and Lefgren, 2004), disability insurance re-

forms (Chen and van der Klaauw, 2008), legislation aimed at reducing air pollution (Chay

and Greenstone, 2005), the impact of unionization on establishment closure (DiNardo and

Lee, 2004), and incumbency advantage in elections (Lee, 2008). More generally, there is

an increasing understanding that observational studies should be carefully designed to ap-

proximate randomized experiments (Rubin, 2006a and 2008). This background provides

a strong methodological motivation as to why the RD design is likely to be an appealing

tool that should be considered more often in epidemiology.

Our application refers to the evaluation of the impact of medical information dissemi-

nation on women’s pregnancy decisions and child birth outcomes. The specific example in

this study is the contraceptive pill scare that originated from the health warning dissem-

inated by the UK Committee on Safety of Medicines on 19 October 1995. The warning,

which received massive media coverage (Thomas, 2010), was based on new scientific results

according to which combined oral contraceptives containing either gestodene or desogestrel

(the ‘third generation’ pill) were associated with twice the risk of venous thromboembolism

1



as compared to that associated with older products (Poulter, Chang, Farley, Meirek, and

Marmot, 1995; Jick, Jick, Gurewich, Myers, and Vasilakis, 1995; Spitzer, Lewis, Heine-

mann, Thorogood, and MacRae, 1995) These results were later disproved by new evidence

(Farmer, Williams, Simpson, and Nightingale, 2000). But, by that time, their consequences

on pregnancies and abortions had already unfolded (Wood, Botting, and Dunnell, 1997).

This pill scare event is likely to be a salient shock to women’s choice environment. Our

hypothesis is motivated by the evidence that the pill scare might have changed women’s

contraceptive behaviour, with consequent impact on birth rates and birth outcomes (Alli-

son and Reizon, 1996; Hope, 1996; Wood, Botting, and Dunnell, 1997; Furedi, 1999). Such

effects, which are crucial to public health policy, are suitable for analysis within the RD

paradigm. Assignment to treatment in the RD design — like that in all observational data

— is not random and individuals who receive treatment may systematically differ from

those who do not. But, in contrast to conventional observational studies, within the RD

design the analyst has specific knowledge of the assignment rule that influences how indi-

viduals are assigned to (or selected into) treatment. More specifically, the design requires

that there is a known cut-off point in treatment assignment or in the probability of treat-

ment receipt as a function of one or more assignment variables, generating a discontinuity

in the treatment recipiency rate at that point.

In the pill scare application, the treatment is the UK Committee on the Safety of

Medicines’ health warning and the cut-off point is the date on which the health warning

was made public (19 October 1995). The insight is that we take advantage of knowing

this cut-off date to learn about the impact of medical information on conception and birth

outcomes for women near the cut-off. Assuming that women who were at an advanced

stage of pregnancy before the cut-off date represent a valid no-treatment comparison group

for those who were not pregnant yet, the analyst could evaluate the impact of the health

warning by relating average outcomes for treated women just after the cut-off date with

those of untreated women just before it. That is, under certain comparability conditions,

the assignment near the cut-off can be seen as behaving almost as if it were random.
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Methods

Statistical analysis

Our outline of the RD design is brief and is meant to illustrate the pill scare application.

More general descriptions of the RD method are available elsewhere (van der Klaauw,

2008; Imbens and Lemieux, 2008; Lee and Lemieux, 2010).

Consider the problem of evaluating the causal effect of a binary treatment on an out-

come variable, using a random sample of individuals where for each woman i we observe

an outcome measure Yi (e.g., having a child or the child’s birth weight) and a binary

treatment indicator Ti, equal to one if treatment was received and zero otherwise (e.g.,

having received information about the pill scare or not). Let Yi(1) denote the potential

outcome given treatment, and Yi(0) the potential outcome in the absence of treatment

(Rubin, 2006b). The causal effect of treatment on woman i is defined as

βi = Yi(1)− Yi(0) (1)

The evaluation problem that arises in determining the effect of T on Y comes from the

fact that each woman is either exposed or not exposed to the treatment (i.e., she is either

exposed to the health warning or not, respectively) and is never simultaneously observed

in both states. Hence (1) cannot be observed directly, but rather, the actual observed

outcome is Yi = TiYi(1) + (1 − Ti)Yi(0). A common regression model representation for

this observed outcome can then be written as

Yi = α + βiTi + εi, (2)

where Yi(0) = α + εi, βi is as defined in (1) and εi is a random error term. In general,

comparing average observed outcomes of treated and untreated women using a model such

as (2) does not yield a good estimate of the average treatment effect E[βi], however. With

a little bit of algebra, it can be shown that

E[Yi(1)|Ti = 1]− E[Yi(0)|Ti = 0] = E[βi] +
(
E[εi|Ti = 1]− E[εi|Ti = 0]

)

+ Pr(Ti = 0)× (
E[βi|Ti = 1]− E[βi|Ti = 0]

)
. (3)

This equation reveals two potential sources of bias. The first is due to baseline differences

between treated and untreated women (reflected by the second term on the right hand side
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of (3)) and the second is due to treatment heterogeneity (reflected by the final term on

the right hand side of (3)). Both these sources of bias can be eliminated if the treatment

assignment is random.

In a sharp RD design, women are assigned to treatment only on the basis of a cut-off

value of an observed continuous variable x. In our application this variable (also known

as the assignment, selection, running, or ratings variable), is represented by time over

which women acquire medical information that may affect their pregnancy decisions and

outcomes. Women who are pregnant before a distinct cut-off date x are placed in the

control group (Ti = 0), while those who are pregnant after that date are placed in the

treatment group (Ti = 1), or vice versa. The health warning date (19 October 1995) is

our cut-off date x. Thus, assignment occurs through a known deterministic decision rule

according to which

Ti = T (xi) = I{xi ≥ x},

where I{·} is the indicator function. If, conditional on other observable factors, women close

to the cut-off date are comparable, then we may view the design as almost experimental

near x, suggesting that we could evaluate the causal impact of treatment by comparing

the average outcomes for women with ratings just above and below the cut-off. Formally,

consider the following local continuity assumption:

E[εi|x] and E[βi|x] are continuous in x at x,

then, assuming that the density of x is positive in a neighborhood of x and using E[Yi|x]

as shorthand notation for E[Yi|xi = x] and E[βi|x] for E[βi|xi = x], we have

lim
x↓x

E[Yi|x]−lim
x↑x

E[Yi|x] =
(
lim
x↓x

E[βiTi|x]−lim
x↑x

E[βiTi|x]
)

+
(
lim
x↓x

E[εi|x]− lim
x↑x

E[εi|x]
)

= E[βi|x], (4)

where “↓” and “↑” denote that the limit is taken as x approaches x from above (or just

after 19 October 1995) and from below (or just before the same date), respectively. The

RD approach of comparing average outcomes just right and left of the cut-off, therefore,

does identify the average treatment effect for individuals close to the discontinuity point.

The local continuity assumption formalizes the condition mentioned earlier that women
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just after and before the pill scare warning are ‘comparable’, requiring them to have similar

average potential outcomes when receiving treatment and when not. Another way to look

at this is to note that the local continuity assumption ensures that the second and third

terms in (3) are zero, hence eliminating the potential sources of bias discussed earlier.

Identification of the average causal treatment effect is thus achieved in the RD approach

assuming only smoothness in expected potential outcomes at the discontinuity without

any parametric functional form restrictions.

Clearly, treatment assignment may depend on x in a stochastic manner, rather than

deterministically as assumed in the sharp design. Nonetheless, the propensity score func-

tion Pr(Ti = 1|x) continues to have a discontinuity at x. Instead of a 0-1 step function, the

treatment probability as a function of x contains a jump at x that is less than unity. This

is the fuzzy RD design (Campbell, 1969; Imbens and Wooldridge, 2007; van der Klaauw

2008).

A fuzzy design allows for values of the running variable near the cut-off date x that

can belong to either the treatment or control group. This is similar to having ‘no-shows’

(treatment group members who do not receive treatment) and ‘cross-overs’ (control group

members who receive the treatment) in randomized experiments. For instance, it could

be that some women whose conception date was after 19 October 1995 did not follow the

ensuing media discussions and were not informed of the risks of oral contraceptives by

friends and family. By contrast, since the conception date is derived from the birth date

using a standard gestation length of 38 weeks, it could be that some of the women whose

hypothetical conception date falls before the cut-off were in fact exposed to the treatment

(if their true gestation length was less than 38 weeks, for example). All such circumstances

make no-shows and cross-overs likely in our application.

To see how the discontinuity in the selection rule can identify an average treatment

effect of interest in the fuzzy RD case, it is worth noting that if βi = β in a neighborhood

of x (i.e., if the treatment effect is locally constant), and if the same local continuity

assumption as in the sharp design holds, then limx↓x E[βiTi|x]− limx↑x E[βiTi|x] in (4) will

be equal to β(limx↓x E[Ti|x]− limx↑x E[Ti|x]) and β is identified by

limx↓x E[Yi|x]− limx↑x E[Yi|x]

limx↓x E[Ti|x]− limx↑x E[Ti|x]
. (5)
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If instead the treatment effect is heterogeneous, then, besides the local continuity as-

sumption, we also need to invoke a local conditional independence assumption, according to

which Ti must be independent of βi conditional on x near x. Under these two assumptions,

the first term in parentheses on the right-hand side of (4) equals limx↓x E[βi|x] limx↓x E[Ti|x]−
limx↑x E[βi|x] limx↑x E[Ti|x]. This implies that the ratio in (5) identifies E[βi|x = x], the

average treatment effect (ATE) for women with values of x close to x.

Notice that if women self-select into treatment, the conditional independence assump-

tion is likely to be violated. Assume that Ti(x), woman i’s treatment assignment given

any x, is a deterministic function that varies across individuals. In this case, under a local

monotonicity assumption (Imbens and Angrist, 1994), it can be shown that the ratio in

(5) identifies a local average treatment effect (LATE) at the cut-off date, given by (Han,

Todd, and van der Klaauw, 2001):

lim
ζ↓0

E[βi|Ti(x + ζ)− Ti(x− ζ) = 1, x = x].

This causal effect represents the average treatment effect of the ‘compliers’, that is, the

subgroup of women whose treatment status would switch from nonrecipient to recipient if

their pregnancy date x crossed the cut-off date.

In our application, we do not know which women received information about the risks

of using the pill and which women were still unaware of these risks even after the media

campaign. While we can reasonably assume that before the cut-off date no woman had

received the treatment, it is likely that not all women were aware of the risks of the pill

the day after 19 October 1995. In principle, we are in a situation where a fuzzy design is

appropriate, but as we do not directly observe treatment status Ti we cannot use (5) to

derive β. We therefore make the following assumption:

(A.1) Pr (Ti = 1|x+∆2)− Pr (Ti = 1|x−∆1) = 1.

That is, by allowing for a discrete interval of time around the cut-off date — when the

medical information was presumably passed on to different groups of women — no woman

is assumed to be treated before x−∆1, while all women are assumed to be treated after

x+∆2.
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A second problem with our application, and one which is potentially relevant for any

type of RD design, is that because of delays in the onset of fecundity and unobserved

variation in gestation, we are not able to precisely distinguish births to women who were

exposed to the health shock from births to those who were not in the vicinity of the cut-

off date. Using a discrete time interval around the cut-off date helps us to mitigate this

problem, however there might still be some measurement error in the running variable x

and following (Battistini, Brugiavini, Rettore and Weber (2009) we assume that:

(A.2) Conditional on the true value of x, x∗, the process generating the measurement er-

ror is orthogonal to the process governing exposure to medical information;

Such assumptions lead us to the deterministic treatment assignment that characterizes

the sharp design, and to the case with no measurement error in x, so that we can use (4) to

recover β. This will have an ATE interpretation under the following piece-wise continuity

restriction:

(A.3) E[εi|x] and E[βi|x] are continuous in x at x−∆1 and x+∆2.

Empirically, we perform our main analysis by imposing a two-week window around x. We

then experiment with a number of alternative (symmetric and asymmetric) time intervals,

∆1 and ∆2, to check for the sensitivity of our results to different specifications of the data

generation process.

Data

Birth, still birth and congenital anomaly records were extracted from the national births

and stillbirths registers and the National Congenital Anomalies System (NCAS), respec-

tively, held at the UK Small Area Health Statistics Unit (SAHSU). Registration of all

births and stillbirths is a legal requirement in the UK, providing national registers with

high levels of ascertainment. Since the end of 1992, stillbirths are legally defined as fetal

deaths after 24 completed weeks of gestation. Congenital anomalies records were matched

to birth records using sex, date of birth, postcode, birth weight and maternal age. Small

area socioeconomic indicators derived from the 1991 and 2001 UK censuses were also linked
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to birth records using postcode-to-enumeration district link files. For a 10% random sub-

sample, we also have information on maternal social class. Each birth date was converted

into a conception date by assuming a 38 weeks gestation length. Multiple births were con-

sidered as a single conception for the purposes of calculating the number of conceptions

leading to births. All records were aggregated into monthly observations and stratified by

mother’s age at birth.

We also use a second data source from the Office for National Statistics (ONS). This

has only aggregate data, but, in addition to births, it also contains monthly information

on abortions, allowing us to analyse total conceptions and distinguish between conceptions

ending in a birth and conceptions ending in abortions. Both data sources have information

on mother’s age at birth, which is aggregated into five different groups (i.e., <20, 20–25,

26–29, 30–35, 36+).

The ONS aggregate data were obtained for the period between April 1993 and March

1998, while the register data were extracted from the SAHSU database for the months

between April 1994 and March 1998. For analytical purposes, we divided the sample

period into four “cohorts”, i.e., yearly intervals centered around the month of October,

since this was the month in which the pill scare occurred, allowing us to consider (evenly

or unevenly) spaced windows of data on both sides of the date of the announcement in

October 1995, as well as in years other than 1995.

We analyse two sets of outcomes. The first captures a notion of quantity and is given by

(i) daily average number of conceptions; (ii) daily average number of abortions; (iii) daily

average number of live births. The first two outcomes can be examined only with the ONS

aggregate data, the third can be derived from the individual register data as well. The

second set of outcomes, which is derived only from the register data, approximates a notion

of quality and consists of (i) number of still-born babies per 1,000 births (the denominator

here and in the other measures always includes live and still births); (ii) number of babies

with congenital anomalies per 1,000 births; (iii) average birth weight; (iv) number of babies

with very low birth weight (<1,500 grams) per 1,000 births; (v) number of babies with

low birth weight (<2,500 grams) per 1,000 births; (vi) number of babies with high birth

weight (>4,500 grams) per 1,000 births; (vii) number of multiple births per 1,000 births;

and (viii) sex ratio (number of male babies per 1,000 births).
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Estimation

The identification results presented earlier indicate that estimation of treatment effects in

the case of an RD design requires estimating boundary points of conditional expectation

functions. With a sufficiently large number of conceptions, one could focus on units within

a very small time interval around the cut-off date and compare average outcomes for

women just left and right of the discontinuity point. As mentioned, however, there are

problems in pursuing this strategy in our application. Dating conception accurately is

difficult, ovulation may be delayed, conception waits can be non-negligible after stopping

pill usage, and the health warning itself might have been perceived differently by different

women or not received at all. Consequently, we have to increase the interval around the

cut-off date in order to pin down a meaningful effect of the pill scare, although increasing

this interval could complicate the interpretation of the effect estimate, especially if the

assignment variable becomes correlated to birth outcomes conditional on treatment status

(e.g., if there are strong seasonal conception/birth regularities).

Additional assumptions, therefore, are introduced about the relationship between the

cut-off date and birth outcomes, allowing us to use more observations and extrapolate

trends from above and below the cut-off point more easily. We adopt a parametric spec-

ification for the conditional expectations functions, which account for heterogeneity in

mother’s age at birth and seasonal effects. Specifically, we estimate:

g {E(Yacm)} = β0 + β1T + β(T×C) + γ1A + γ2C + γ3(A×C) + δ0f(m) + δ1(A×f(m)), (6)

with Y ∼ F , where g(·) is a generic link function and F is a distributional family. If

g(·) is the natural log function and Y is distributed as Poisson, then (6) is estimated as

a Poisson regression; when instead g(·) is the logit function and Y is distributed as a

Bernoulli distribution function, we estimate logistic regressions, and if the link function is

the identity function with Y being distributed as Gaussian, then (6) is a linear probability

model.

As before, Y represents the outcome of interest, which now however is allowed to vary

according to the age group of the mother, a, conception cohort, c, and month within cohort,

m, and T assumes value 0 for all months between April and September and value 1 for

all months between November and March for every year in the sample, thus splitting each

9



cohort into two roughly equal intervals. The term A denotes a set of dummy variables

for mother’s age group; C represents a set of indicators for conception cohort; f(m) is a

polynomial function of month within cohort. This specification explicitly allows Y to vary

across calendar time in a way that differs according to mother’s age (through γ3). It also

allows for common as well as age-specific seasonal effects (through δ0 and δ1, respectively).

The parameter of interest, which identifies the effect of the pill scare, is in the vector β.

Taking the period between April 1994 and March 1995 (cohort 1994/95) as the reference

conception cohort, the parameter we are interested in measures the size of the change in

Y before and after October 1995 (cohort 1995/96) relative to the what observed in the

previous year. Looking at the change before and after October 1996 (cohort 1996/97),

equation (6) also allows us to test also for the presence of placebo effects, as in standard

randomized experiments.

As mentioned, we vary the time interval around the cut-off date. In particular, we

estimate (6) using a two-month window around October, the month of the health warning,

i.e., using August-September and November-December only and omitting October from

the analysis. The same model is then re-estimated over a three-month window (i.e., July

through the following January, again omitting October). This fanning out process contin-

ues stepwise up to a five-month window. The wider the window, the more likely we are

to capture effects on birth outcomes (because of conception waits, fecundity delays and

informational issues), but the more likely we are also to introduce ‘spurious’ variation, such

as seasonal patterns in birth rates. We present results for all such different windows.

Finally, the quantitative outcomes, which are count variables, are estimated using

weighted Poisson regressions, where the weights are given by the total number of births

observed by mother’s age group, a, cohort, c, and month, m. The qualitative outcomes,

except for birth weight, are instead proportions that are derived from the aggregation of

dichotomous measures. To analyse such outcomes, model (6) is estimated using grouped

logistic regressions, where the dependent variable is, say, the number of still births or the

number of low birth weight babies, over the number of all births (live and still births)

in a given a×c×m cell. The effects on birth weight (expressed in grams) are obtained

from weighted linear least squares regressions, where the weights are defined as before.

Standard errors are clustered according to the values of the running variable, i.e., month
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within cohort (Lee and Card, 2008). All estimations were performed using STATA 11.0

SE.

Results

“Quantity” outcomes

Before focusing on the regression estimates, we perform a graphical analysis to check

whether there is any visible discontinuity in conceptions and other outcomes at the cut-off

date. We compute the residuals from age-specific weighted Poisson regressions on con-

ceptions, births and abortions controlling for seasonal time effects, using monthly dummy

variables. Figure 1 plots such residuals in the case of all conceptions, along with a vertical

line corresponding to October 1995 and two linear fits, one at the left and the other at the

right of the cut-off date. The figure documents the existence of an overall decreasing trend

in the number of conceptions over the observed period. Negative age-specific trends are

particularly strong for women aged 20-25 and women aged 26-29, while those for women

30-35 and >36 are clearly positive. What is important, however, is that we see a clear

increase in the raw number of conceptions among all women below age 35 after October

1995. Results on conceptions leading to births and conceptions leading to abortions are

similar and, because of space limits, are not reported.

Figure 2 plots the residuals from age-specific weighted Poisson regressions in which we

include also cohort dummies. The aim of this exercise is to compare the period before to

that after the cut-off month of October in the treatment cohort (1995/96), as well as in the

previous (1994/95) and following (1996/97) cohorts. The figure shows that for all women,

except those in the oldest group, the increase in the number of daily conceptions after the

month of October occurs only in the treatment cohort. It also shows that the effect was

delayed by about 2-3 months, as the figures show an increase in the outcome variable from

January 1996 onwards. Again, comparable results on live births and abortions are not

displayed.

We now quantify the magnitude of such effects for all outcomes. Table 1 reports the

quantity estimates on all conceptions, as well as conceptions leading to births and concep-

tions terminated by abortion. The figures in the table represent the percentage increase in
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conceptions, abortions or conceptions leading to a birth which could be attributed to the

pill scare.

The pill scare led conceptions to increase significantly between 5.7 and 7.4%, depending

on whether we impose a two-month or a five-month window around the cut-off date (panel

A, first row). Between 20 and 25% of this increase was due to conceptions terminated by

abortion. This implies a substantial rise of between 6.4 to 9.5% in the number of abortions

(second row). The remaining increase in conceptions led to an increase in births (third

row), which in the five-month window after October rose by 6.9% (95% CI: 3.9%–10.0%).

Similar results emerge from the register data (panel B), although in this case the increase

in the number of births was slightly smaller and estimated to be 6.0% (95% CI: 4.0%–8.1%)

in the five-month window case.

“Quality” outcomes

Table 2 shows the results on birth quality, which can be estimated only with the individual

register data. All estimates are expressed as odds ratios, except for the case of birth weight

where they are in grams.

There is no evidence of a significant effect of the pill scare on the rates of still births,

very low birth weight, high birth weight and sex ratio at birth as well as on the average

birth weight. The estimates, however, indicate that babies born to women exposed to the

pill scare were significantly less likely to be affected by congenital anomalies. This effect

becomes lower in magnitude as the time window around the cut-off month increases, but

the odds are still significantly below one in the ±5 month case.

The pill scare also led to babies which were more likely to be low birth weight and

born from multiple pregnancies. It is possible that these two processes are correlated,

with the increase in multiple pregnancies resulting in the increase in low birth weight

babies. It should be stressed, however, that the effect estimates are relatively small and

that they emerge only with short time windows around October. Interestingly, performing

the analysis by women’s age group, we found evidence of this double effect for women in

all age groups except for those aged less than 20. The latter were more likely to have a

low birth weight child but less likely to experience multiple pregnancies.
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Placebo test

We checked whether our results are driven by the health warning of October 1995 and not

by a discontinuity in the process underlying conceptions at that time of any year.

To do so, we looked at whether there is a significant change in outcomes after October

in each of the years 1993, 1996 and 1997 compared to after October 1994 (the reference

cohort). There were no health warnings or policy changes that might have affected fertility

outcomes after such periods. Thus, we expect to observe no change in those years if the

1995 pill scare was responsible for the responses estimated so far. Indeed, the results for

1996 and 1997 (not presented for the sake of brevity) confirm this expectation, showing

no significant change in either birth quantity and birth quality outcomes. We did find

small increases in conception and birth rates (of up to 2%) after October 1993, although

such estimates were highly sensitive to the window around October and often statistically

insignificant, and we found no effect on abortion rates.

Response heterogeneity

As revealed by Figures 1 and 2, fertility effects may be heterogenous across women’s age

groups. There may be also heterogeneity across other important determinants of birth

outcomes, such as social class and area of residence.

To assess the extent to which this was indeed the case, we first split women into five

age groups and repeated the analysis on each of them separately. Figure 3 displays the

results on the quantity outcomes with the May-March (±5 month) window. Most of the

conception effects are concentrated amongst younger women. For example, the pill scare

led to an increase in all conceptions ranging between 8.0% (95% CI: 4.6%–11.5%) and

10.6% (95% CI: 5.9%–15.6%) for the groups below 30. For older women, the corresponding

increases were smaller: 4.8% (95% CI: 1.7%–8.1%) for those aged 30–35 and 2.8% (95%

CI: -2.0%–7.9%) for those aged 36 or above. Abortion rates also increased considerably

among younger women, on average between 10.9 and 12.7% for those aged 25 or below

and less than 20, respectively. The change in conceptions leading to a birth was thus

more evenly spread across all age groups. In terms of the quality outcomes (not shown),

we typically found smaller and statistically insignificant differences across age groups. An
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interesting exception is on multiple births, which declined among mothers aged less than

20 and increased among older mothers, especially those aged 30–35. This last response

was also accompanied by a small increase in the number of low birth weight babies.

ONS releases information on maternal social class for about 10% of birth records each

year. We recoded that information into four occupational groups: (i) professional, manage-

rial, and technical (22.4% of the subsample); (ii) skilled non-manual (22.4%); (iii) skilled

manual, partly skilled, and unskilled (14.5%); and (iv) out-of-the labour force (40.7%).

The pill scare quantity effects emerged primarily amongst women in this last category,

who experienced an increase in the birth rate of 10.0% (95% CI: 5.5%–14.8%) in the five

months following the warning. For women in skilled non-manual positions, the effect was

lower (7.2%, 95% CI: 0.8%–13.9%), while for the other social class groups the effect was

not statistically significant. On the other hand, no class gradient was found along birth

quality outcomes.

The out-of-the labour force category may identify a highly diverse group of women.

To better ascertain the presence of heterogenous responses, we thus stratified our sample

on an area-level index of deprivation constructed from the 1991 and 2001 censuses that

was linked to birth records using postcode-to-enumeration district link files. The sample

was divided into four groups based on quartiles of the deprivation index (Carstairs score),

with babies in the first quartile being born to mothers who were living in the most affluent

areas and babies in the fourth quartile being born to mothers who were living in the most

deprived areas. For conceptions leading to birth, the strongest response was found among

women in the latter group, with an increase of 8.3% (95% CI: 6.3%–10.3%). The effects

were smaller (between 5.1 and 6.1%), but still statistically significant, among women from

the other quartiles. We found no evidence of an impact on birth quality outcomes.

Sensitivity analysis

To validate our results we performed a series of robustness checks. We focussed on quantity

outcomes, since most of the treatment effect responses were found for such outcomes. The

results are summarised in Table 3.

First, because identification of β rests on piece-wise continuity in the running variable
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of both the conditional treatment effect and the unobservable processes underlying our

outcomes, we allowed for different time intervals around x. To check whether the assump-

tion of a delayed response of two weeks (∆2 =14 days) was restrictive, we re-estimated

(6) after omitting the month of November and not just October, i.e., imposing ∆2 =44

days, while ∆1 remained at 17 days. The quantity effects shown in panel A of Table 3

are slightly greater than (but never statistically significantly different from) those reported

in Table 1. This suggests that the two-week interval around x was somewhat limiting,

but the piece-wise continuity assumption does not seem to be violated. Omitting also the

month of September from estimation (and, thus, imposing ∆1 =47 days and ∆2 =44) did

not lead to different results.

So far, we imposed symmetric time windows, from ±1 to ±5 months. We therefore

checked the sensitivity of our estimates to asymmetric windows, which allow for a longer

time to treatment. We thus imposed windows of −3/+5 and −3/+8 months. The results

are in panel B of Table 3. To ease the comparison with our earlier estimates, the table

also reports the estimates found with the ±3 month window reported in Table 1. For all

quantity outcomes, the point estimates increase with the 5-month window after the health

warning but tend to revert to the symmetric 3-month window estimates when the time

window to the right was widens to eight months. For the quality outcomes (not shown),

using an asymmetric time window of 5 or 8 months to the right of the cut-off month

confirmed virtually all our earlier findings.

Third, several alternative specifications of seasonal effects (f(m) in (6)) were analysed.

Specifically, we allowed for a quadratic trend to differ before and after the month of October

of each cohort. The estimates in panel C of Table 3 are virtually identical to those we

presented in Table 1. We also replaced the quartic function of month within the cohort-year

used in the main analysis with different order polynomials. The estimates were invariably

very close to those shown in Table 1.

Finally, it is important to quantify the extent to which our RD effect estimates differ

from estimates which could be obtained using standard time-series strategies sometimes

adopted in the medical literature (Wagner, Soumerai, Zhang, and Ross-Degnan, 2002). To

this end, we estimate a before-after model as given in (2) using the following variant of
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specification (6):

g {E(Yacm)} = α0 + πT ′ + ψ1A + ψ2C + ψ3(A×C) + λ0f(m) + λ1(A×f(m)), (7)

where π is now expected to capture the effect of the pill scare, with the new treatment

variable, T ′, being now equal to 1 for all months after October 1995 and zero for all

months before. Estimates of π for the quantity outcomes are reported in panel D of Table

3. Two remarks are in order. First, all ‘standard’ treatment estimates are almost always

smaller than their corresponding RD counterparts. Second, the difference is quantitatively

important, with ‘standard’ estimates being 23, 14 and 25% lower than the corresponding

RD estimates for conceptions, abortions and births (±5 window), respectively.

We repeated the same exercise for the birth quality outcomes. The estimates are not

reported for the sake of brevity. Two results are worth stressing. First, as in the RD

design case, there is evidence of a significant reduction in the rate of births affected by

congenital anomalies. But the reduction is estimated to be around 6.7%, approximately

40% less than what we estimated using the RD method. Second, we find no significant

effects on low birth weight or on multiple births.

Conclusions

This paper offers two main contributions. The first is methodological. This is one of the

first applications of the regression discontinuity evaluation method to an epidemiological

issue. It thus offers an overview of the rapidly growing econometric literature in this area

and discusses the key assumptions needed to make causal inference in a context where

assignment to treatment is a discontinuous function of a known variable.

The second contribution is substantive. For the first time, we apply the RD design to

estimate of the effects of the 1995 pill scare in the UK, using individual birth records and

aggregate monthly statistics. The results show that, following the announcement of the

health warning on the “third generation” pill, conception rates increased by about 7%,

with a 9% increase in abortion rates accounting for one quarter of that growth and the

remaining three-quarters being accounted for by a 6-7% rise in birth rates.

Entirely new is also the analysis of the qualitative outcomes. For these, we found no

effect on the rates of still births, very low birth weight births and unequal sex ratios at birth
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and on average birth weight births. We found, however, evidence of a slight increase in the

rates of low birth weight births and multiple births and a substantial reduction in the rate

of births with congenital anomalies. There is also a considerable effect of heterogeneity

by mother’s age and social class, with most of the quantity effects being experienced by

women aged less than 25 and by women with lower socioeconomic status.

The paper’s substantive findings stress the relevance of medical information in general

and how this is disseminated among (and perceived by) the public at large in particular

(Stross and Harlan, 1979; Davey-Smith 2008). These issues are key to public health

policy (Pearce, 2004 and 2011; Loewenson, 2008), and therefore measuring their impacts

accurately is of paramount importance. The results found using standard analyses of the

same problem would lead to up to 30% to 40% downward biased estimates of some of

the outcomes. For other outcomes, standard methods would have not been able to detect

significant effects at all. The assessment about the effects of the pill scare, therefore, would

differ substantially depending on the identification strategy.

The methodological contribution illustrates how the RD approach can be a powerful

method to provide causal inference in all such circumstances in which assignment to treat-

ment depends on an observable variable and there exists a known point within its support

where the probability of being treated changes discontinuously. Many other epidemiologi-

cal applications could then be usefully analysed using the RD design. These include: the

health effects of smoking bans, congestion charges or natural disasters (where the running

variable distinguishes the areas affected by the ban, the charge, or the disaster from other

control areas), the effects of parental leave policy reforms (where the selection variable is

the time in which parents become eligible to receive the new leave conditions) on maternal

well-being, breastfeeding and child health, and the effects of being admitted to a selec-

tive school or gain a scholarship to participate in higher education on subsequent health

outcomes (where the assignment variable distinguishes pupils who enrol in selected school

from control pupils who do not).
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Figure 1: Age-specific daily conceptions before and after October 1995, over calendar time
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Source: ONS monthly data on conceptions (special extraction).
Notes: The data plotted are residuals from age-specific weighted Poisson regressions of daily number of conceptions, calculated
by dividing monthly aggregates on number of days per month, on a full set of calendar month dummies. The weights are given
by the total number of births observed for each month and mother’s age group. The graph for all age groups is obtained using
a weighted average of the age-specific residuals, where the weights are given by the age-specific number of births divided by the
total number of births for each month.
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Figure 2: Age-specific daily conceptions before and after October (month 0), by cohort
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Source: ONS monthly data on conceptions (special extraction).
Notes: The data plotted are residuals from age-specific weighted Poisson regressions of daily number of conceptions, calculated
by dividing monthly aggregates on number of days per month, on a full set of calendar month dummies and cohort dummies.
The weights are given by the total number of births observed for each cohort, month, and mother’s age group. The graph for
all age groups is obtained using a weighted average of the age-specific residuals, where the weights are given by the age-specific
number of births divided by the total number of births for each month and cohort.
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Figure 3: Percentage change during 5 month period after October 1995 in conceptions, abortions
and births by age group
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Source: ONS monthly data on all conceptions, abortions and births (special extraction).
Notes: The figures show the estimates of the percentage change in all conceptions, abortions and births due to the
pill scare over the May-Mar (± 5 months) time window. Point estimates are represented by the bars, while the 95%
CIs are shown by the vertical lines.
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Table 1: The Effect of the Pill Scare on Birth Quantity

Aug-Dec Jul-Jan Jun-Feb May-Mar
Source/Outcome (±2 months) (±3 months) (±4 months) (±5 months)

Panel A: ONS Aggregate Data†

All conceptions 5.7∗∗ 6.2∗∗ 7.7∗ 7.4∗∗
[5.0–6.4] [4.4–7.9] [4.1–11.4] [4.2–10.7]

Abortions 6.4 8.2∗∗ 10.8∗∗ 9.5∗∗
[-0.0–13.3] [2.6–14.0] [4.8–17.1] [4.2–15.1]

Births 5.5∗∗ 5.7∗∗ 7.0∗∗ 6.9∗∗
[3.4–7.7] [3.8–7.6] [3.6–10.6] [3.9–10.0]

Panel B: Individual Birth Records‡

Births 5.6∗ 5.7∗∗ 6.0∗∗ 6.0∗∗
[3.8–7.4] [4.0–7.4] [4.1–8.0] [4.0–8.1]

Sources: †ONS monthly data on conceptions and percentage of conceptions terminated by abortion
(special extraction). ‡Individual Birth Register data aggregated at the monthly level by age group of
the mother.
Notes: Estimates are obtained from weighted Poisson regressions, where the weights are given by the
total number of births observed by mother’s age group, a, cohort, c, and month, m. 95% CI in square
brackets. Standard errors clustered by month within cohort. Figures are percentage changes in the
dependent variable. All regressions include age, cohort, age and cohort interactions, an age-specific
function of month within cohort (specified as a linear function for the 2-month window, a quadratic
function for the 3-month window, a cubic function for the 4-month window and a quartic function for
the 5-month window), a full set of interactions between cohort dummies and an indicator variable for
the period following October within each cohort. The effect of the pill scare (shown) is given by the
interaction of the post-October dummy and the 1995/96 cohort dummy.
∗∗, ∗ denote estimate is significant at 1% and 5% level, respectively.
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Table 2: The Effect of the Pill Scare on Birth Quality

Aug-Dec Jul-Jan Jun-Feb May-Mar
Outcome (±2 months) (±3 months) (±4 months) (±5 months)

Still births 0.892 0.961 0.978 0.974
[0.755–1.053] [0.835–1.105] [0.879–1.089] [0.880–1.077]

Congenital anomalies 0.857∗∗ 0.836∗∗ 0.889∗ 0.893∗
[0.771–0.954] [0.769–0.909] [0.804–0.983] [0.814–0.980]

Birth weight (grams) 6.057∗ 0.731 0.103 4.214
[01.885–10.229] [-10.041–11.503] [-7.296–7.502] [-4.774–13.203]

Very low birth weight 1.093 1.055 1.069 1.026
[0.954–1.253] [0.956–1.164] [0.978–1.168] [0.935–1.127]

Low birth weight 1.027∗∗ 1.026∗∗ 1.021∗ 0.996
[1.022–1.033] [1.013–1.040] [1.003–1.039] [0.957–1.035]

High birth weight 1.040 1.035∗ 1.018 1.019
[0.990–1.093] [1.003–1.068] [0.970–1.068] [0.974–1.065]

Multiple births 1.119∗∗ 1.090∗ 1.056 1.012
[1.046–1.198] [1.018–1.168] [0.989–1.127] [0.935–1.095]

Male child 0.997 1.001 0.994 0.993
[0.989–1.005] [0.993–1.009] [0.983–1.006] [0.983–1.004]

Source: See Table 1.
Notes: Estimates are obtained from logit regressions for grouped data (and groups are given by the number
of live and still births in each cohort month) for all outcomes, except birth weight, for which a weighted
linear regression is performed. 95% CI in square brackets. Standard errors clustered by month within
cohort. Odds ratios are reported for all outcomes, except for birth weight, for which coefficients are shown.
For further information, see the note to Table 1.
∗∗, ∗ denote estimate is significant at 1% and 5% level, respectively.
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Table 3: Robustness checks

Panel A: Months of October and November omitted, symmetric time window

Aug-Jan Jul-Feb Jun-Mar
(±2 months) (±3 months) (±4 months)

All conceptions 7.0∗∗ 8.9∗∗ 8.8∗∗
[4.9–9.2] [4.6–13.5] [5.5–12.3]

Abortions 8.4 11.3∗∗ 11.5∗∗
[-0.1–17.5] [3.4–19.8] [5.6–17.7]

Births 6.6∗∗ 8.3∗∗ 8.2∗∗
[4.4–8.6] [4.2–12.6] [5.0–11.5]

Panel B: Month of October omitted, asymmetric time window

Jul-Jan Jul-Mar Jul-Jun
(±3) (−3/+ 5) (−3/+ 8)

All conceptions 6.2∗∗ 8.3∗∗ 7.8∗∗
[4.4–7.9] [5.3–11.5] [5.5–10.1]

Abortions 8.2∗∗ 10.7∗∗ 9.9∗∗
[2.6–14.0] [5.0–16.7] [4.5–15.7]

Births 5.7∗∗ 7.7∗∗ 7.2∗∗
[3.8–7.6] [4.6–10.9] [4.9–9.6]

Panel C: Differential quadratic trend before and after October, symmetric time window

Aug-Dec Jul-Jan Jun-Feb May-Mar
(±2 months) (±3 months) (±4 months) (±5 months)

All conceptions 5.7∗∗ 6.2∗∗ 7.7∗∗ 7.4∗∗
[5.0–6.4] [4.4–7.9] [4.1–11.4] [4.2–10.7]

Abortions 6.3 8.2∗∗ 10.8∗∗ 9.5∗∗
[-0.1–13.2] [2.6–14.0] [4.8–17.1] [4.2–15.1]

Births 5.5∗∗ 5.7∗∗ 7.0∗∗ 6.9∗∗
[3.4–7.7] [3.8–7.6] [3.6–10.6] [3.9–10.0]

Panel D: Effect of dummy before/after October 1995, symmetric time window

Aug-Dec Jul-Jan Jun-Feb May-Mar
(±2 months) (±3 months) (±4 months) (±5 months)

All conceptions 3.6∗∗ 4.9∗∗ 5.6∗∗ 5.7∗∗
[1.7–5.6] [2.7–7.0] [2.9–8.3] [3.4–8.1]

Abortions 6.4∗∗ 8.5∗∗ 8.2∗∗ 8.1∗∗
[4.7–8.2] [5.9–11.2] [4.2–12.4] [5.0–11.4]

Births 3.0∗ 4.1∗∗ 5.0∗∗ 5.2∗∗
[0.7–5.4] [1.9–6.4] [2.4–7.7] [2.8–7.5]

Source: See Table 1.
Notes: Estimates are obtained from weighted Poisson regressions. 95% CI in square brackets. Standard
errors clustered by month within cohort. Figures are percentage changes in the dependent variable. For
further information on panels A and B, see note to Table 1. Panel C includes an age-specific function
of month within cohort which varies before and after October of each cohort-year. Panel D ignores the
subdivision in cohort-years and instead includes a dummy variable that takes value one for the period
after October 1995 and zero otherwise. It also include an age-specific trend which varies before and
after October 1995.
∗∗, ∗ denote estimate is significant at 1% and 5% level, respectively.
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