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The most frequently employed measure for performance characterization of local 

feature detectors is repeatability, but it has been observed that this does not 

necessarily mirror actual performance. In this letter, improved repeatability 

formulations are presented which correlate much better with the true performance of 

feature detectors.  Comparative results for several state-of-the-art feature detectors 

are presented using these measures; it is found that Hessian-based detectors are 

generally superior at identifying features when images are subject to various 

geometric and photometric transformations.   

 
 
 
Introduction: The extraction of image features that are reasonably independent of 

scale, orientation and photometrical changes has long been an aim of the vision 

research community. The last decade has seen the development of a number of 

such operators, the best-known of which is SIFT [1-2] that incorporates both a 

detector and a descriptor. The evaluation of the performances of these detectors 

under various geometric and photometric transformations has become important, in 

order to identify their strengths and shortcomings for a range of vision applications 

[3]. Several approaches have been used for evaluating the performances of interest 

point detectors, including ground-truth verification, localization accuracy and 

theoretical analysis; however, the most widely employed measure is repeatability rate 

[1].  Proposed in [3], repeatability rate is defined as the ratio of the number of points 

repeated in the overlapping region of two images to the total number of detected 
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points.  An interest point is considered „repeated‟ if its 2-D projection in the other 

image using planar homography lies within a neighborhood of size ε of an interest 

point detected in the other image.  

Since these feature detectors identify interest points at different scales, measuring 

the 2-D distance between interest points detected at different scales, to decide 

whether they are repeatable or not, may lead to inaccurate results.  A more refined 

definition of repeatability is presented in [4], which also considers the overlap of 

scale-dependent regions centered in the interest points. In this letter, we highlight the 

limitations of this definition of repeatability and propose alternatives that provide 

results which indicate the effect of various transformations reliably and are more 

consistent with the actual performance of detectors. Here, actual performance means 

the true matches which are obtained using ground-truth homography after descriptor 

based matching of detected points. Finally, a comparative analysis of interest point 

detectors using the various formulations is presented.  

 

Limitations of Repeatability: Repeatability is conventionally defined as in [4]:  

       (1) 

Despite being popular, it has been remarked that “repeatability does not guarantee 

high performance” [1]. Some limitations of repeatability as defined in [4] are: 

I. The repeatability rate partially reflects the effect of various geometric and 

photometric transformations as it considers the minimum number of interest 

points detected in either of the two images.  

II. It is not always possible to predict the effect of a specific transformation on 

the number of corresponding points from the value of repeatability.  

III. The reference image is not fixed when evaluating the performance of a 

detector for a specific dataset. 



IV.  Repeatability does not always reflect the effect of transformation on the 

number of true matched points, i.e. the true performance. 

To overcome the above-mentioned shortcomings, we present two alternative 

definitions of repeatability that are more consistent with the actual performance of 

feature detectors. Both use the same scale-dependent regions as [4]. The first of 

these is appropriate for applications that involve image sequences, while the second 

is more suited to applications involving pairs of images (e.g., computational stereo). 

 

Criterion 1: Unlike the definition in [4], the sequence of images is not ignored when 

determining the effect of various photometric and geometric transformations; the first 

image in the sequence is considered as the „reference‟ in all cases.  We also take 

into account only those interest points that lie in the common part of the two images 

and define an interest point as „repeatable‟ if ε < 1.5 pixels and the overlap error 

between scale-dependent regions centered in the two interest points, defined as: 

      (2) 

is less than 40%, as in [4], where µa and µb are the regions defined by xTµx = 1 and A 

is the homography between the two images. The numerator of the fractional part in 

(2) represents the intersection whereas the denominator represents the union of 

these regions. However, as opposed to [4], which uses the minimum of the number 

of interest points detected in the two images, we define the repeatability rate as:  

     (3) 

where Nrep is the total number of repeated points and Nref is the total number of 

interest points in the common part of reference image.  

 

Criterion 2: This criterion follows the same framework as described above but 

employs a symmetric approach for the computation of repeatability rate: 



     (4) 

Where Nrep is the number of repeated interest points, Nref and Ntest are the number of 

interest points detected in the common part of scene in reference and test image 

respectively.  

 

Results: Repeatability values were computed for the widely-used Oxford datasets [5] 

using the original definition of repeatability and the two criteria defined above. 

Results were obtained for six state-of-the-art feature detectors, namely SIFT, SURF, 

Harris-Laplace, Hessian-Laplace, Harris-Affine and Hessian-Affine, using their 

original implementations with default parameters [2, 4, 6-7].  For all detectors, the 

number of true matches was also calculated for every image pair using ground-truth 

homography after descriptor based matching of detected points.  As an example, the 

repeatability values and the numbers of true matches obtained for the Bark dataset 

(which shows variation in camera zoom and rotation) [5] with the Hessian-Laplace 

detector are shown in Fig. 1.  (Note that repeatability values should be read from the 

left ordinate axis and the number of true matches from the right ordinate axis).  It is 

evident that, in contrast to the original definition of repeatability [4], both proposed 

repeatability formulations vary in close agreement with the trend of number of true 

matches (i.e., the actual performance). 

To measure how well the three repeatability curves agree with the number of true 

matches, Pearson‟s correlation coefficient, r, is used. Correlation coefficient values 

with corresponding p-values for the SURF detector (Fast-Hessian) are given as an 

example in Table 1; note that a p-value gives the probability that the corresponding 

correlation value is incorrect. These results demonstrate the high reliability of 

repeatability values obtained using the proposed definitions.  For all combinations of 

the six state-of-the-art feature detectors and eight datasets [5], the mean value of the 



correlation coefficient is: 0.844 with standard deviation 0.287 for the original criterion, 

0.970 ± 0.046 for criterion 1, and 0.968 ± 0.033 for criterion 2. 

Finally, a comparative analysis of six state-of-the-art detectors was carried out using 

the repeatability criteria defined above.  Fig. 2 shows the results for the Bikes dataset 

(showing variation in the amount of blurring) [5] using criterion 2.  A summary of the 

results for all Oxford datasets [5] is given in Table 2, which demonstrates the 

dominance of Hessian-based detectors, contradicting the results presented in Table 

7.1 of [1].     

 

Conclusion: It is demonstrated that the proposed repeatability criteria allow more 

reliable performance evaluation of feature detectors.  With these criteria, it is found 

that Hessian-based detectors out-perform other state-of-the-art detectors on widely-

used test datasets. 
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Figure captions: 
 
 
Fig. 1  Repeatability scores and number of true matches for Hessian-Laplace 

detector with Bark dataset [5] 

 

Fig. 2  Comparative analysis of state-of-the-art feature detectors for Bikes dataset [5] 

using Criterion 2 
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Table captions: 
 
 
Table 1 Pearson‟s Correlation coefficients and corresponding p-values for 

repeatability curves with SURF detector for Oxford datasets [5]  

 

Table 2  Summary of comparative analysis of six state-of-the-art feature detectors 

using Criterion 2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1 
 
 

Image 
Datasets 

Original 
Criterion 

Criterion 1 Criterion 2 

r p-value r p-value r p-value 

Bark 0.884  0.0466 0.997  0.0002 0.989  0.0014 

Bikes 0.7688  0.1287 0.996  0.0003 0.985  0.0022 

Boat 0.697  0.1909 0.996  0.0003 0.993  0.0007 

Graffiti 0.939  0.0179 0.971  0.0059 0.960  0.0095 

Leuven 0.778  0.1213 0.998  0.0001 0.991  0.001 

Trees -0.591  0.2940 0.991  0.001 0.968  0.0068 

UBC 0.990  0.0012 0.998  0.0001 0.999  0.000 

Wall 0.889  0.0436 0.950  0.0133 0.929  0.0225 

 
 
 
Table 2 
 
 

Image 
Datasets 

SIFT 
(DoG) 

SURF 
(FH) 

Harris-
Laplace 

Hessian-
Laplace 

Harris-
Affine 

Hessian-
Affine 

Bark +++ ++ + + + + 

Bikes + +++ ++ +++ ++ +++ 

Boat ++ ++ ++ +++ + ++ 

Graffiti + + + + +++ +++ 

Leuven +++ +++ + ++ + ++ 

Trees + +++ ++ +++ ++ ++ 

UBC ++ +++ +++ +++ +++ +++ 

Wall +++ +++ ++ ++ ++ ++ 

 
 
 
 
 
 
 

 
 


