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Diffusion about the mean drift location in a biased random walk

EDWARD A. CODLING,1,3 RACHEL N. BEARON,2 AND GRAEME J. THORN
1

1Departments of Mathematical Sciences and Biological Sciences, University of Essex, Wivenhoe Park,
Colchester CO4 3SQ United Kingdom

2Department of Mathematical Sciences, Mathematics and Oceanography Building, University of Liverpool,
Peach Street, Liverpool L69 7ZL United Kingdom

Abstract. Random walks are used to model movement in a wide variety of contexts: from
the movement of cells undergoing chemotaxis to the migration of animals. In a two-
dimensional biased random walk, the diffusion about the mean drift position is entirely
dependent on the moments of the angular distribution used to determine the movement
direction at each step. Here we consider biased random walks using several different angular
distributions and derive expressions for the diffusion coefficients in each direction based on
either a fixed or variable movement speed, and we use these to generate a probability density
function for the long-time spatial distribution. We demonstrate how diffusion is typically
anisotropic around the mean drift position and illustrate these theoretical results using
computer simulations. We relate these results to earlier studies of swimming microorganisms
and explain how the results can be generalized to other types of animal movement.
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INTRODUCTION

Random walk models are frequently used to model

biological movement such as the dispersal of cells,

microorganisms, and animals (Codling et al. 2008). At

the simplest level, a random walk consists of a series of

steps (possibly of different size) in randomly chosen

directions. A global directional bias can be introduced

into the random walk by making the probability of

moving in a certain direction greater. Paths that contain

a consistent bias in a preferred direction or toward a

given target are termed biased random walks (BRW), or

biased and correlated random walks (BCRW) if forward

persistence is also observed (Patlak 1953, Benhamou

2006, Codling et al. 2008; forward persistence is a short-

term localized bias corresponding to the natural

tendency for most animals to continue moving in the

same direction). The global bias may be due to fixed

external environmental factors (e.g., bottom heavy

microorganisms moving upward under gyrotaxis; Hill

and Häder 1997), to spatially varying factors, such as

chemical gradients (Alt 1980, Berg 1983, Othmer et al.

1988), to mean-reversion mechanisms, such as move-

ment within a home range, or to choice of direction by

individuals at each step (Benhamou 2003). Furthermore,

the target direction and strength of bias are not

necessarily fixed over the whole path and may vary

with location and time (e.g., fish larvae aiming for a reef

in Codling et al. 2004). If every individual has the same

preferred direction over all space and time it is possible

to quantify the direction, functional form and magni-

tude of the introduced bias (Benhamou and Bovet 1992,

Hill and Häder 1997, Codling and Hill 2005a). However,

due to the localized directional bias (forward persis-

tence) in typical (unbiased) animal movement paths, it is

a non-trivial problem to distinguish between unbiased

persistent movement paths and biased movement paths

when individuals have different target directions and

observed paths are short (Benhamou 2006, Coscoy et al.

2007).

Typically, when considering a theoretical model of

directed animal movement, we are interested in the

spatial distribution across all time scales (Okubo and

Levin 2001), i.e., ideally we aim to model a BCRW

where both short-term forward persistence and long-

term global bias effects are present (Patlak 1953).

However, if the effects of short-term forward persistence

are not important and we are interested in the ‘‘long-

time’’ spatial distribution, then the movement process

can be modeled as a simple BRW, making analysis

easier. If the BRW has a fixed global bias such that every

individual has the same preferred direction over all space

and time then, at the long-time limit, the governing

equation for such a process is the drift–diffusion (or
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advection–diffusion) equation. This has a bivariate

Gaussian distribution as the solution (Cheung et al.

2008, Codling et al. 2008), which facilitates an analytic

description of the limiting spatial distribution.

In this paper, we consider a simple two-dimensional

BRW and demonstrate how, in the long-time limit, the

probability density function for the distribution in space,

p(x, y, t), and the associated diffusion coefficients, Dx

and Dy, are dependent on the moments of the angular

distribution used to determine the direction of move-

ment at each step of the random walk. We relate this

result to earlier studies on swimming microorganisms

and derive analytic expressions for the diffusion

coefficients (and hence the predicted spatial distribution)

for four standard angular distributions: von Mises,

truncated normal, wrapped normal, and wrapped

Cauchy. We demonstrate how including a variable

speed can significantly affect the diffusion and overall

spatial distribution. The theoretical results derived have

subsequently been compared to the results of simulated

BRWs and there is a good match between theory and

simulation. We discuss these results in the context of

modeling and analysis of animal movement paths.

THEORETICAL MODEL

A two-dimensional biased random walk

We assume that our walker is moving in an

unrestricted two-dimensional Euclidean space where

there is a global preferred direction of movement (a

‘‘point at infinity’’ such that the direction is the same for

every individual at all spatial positions; Benhamou

2006). The walker starts at the origin facing a random

direction. Subsequently, at each step of the random

walk, s , the walker moves a distance, s 3 s, where the

speed s is randomly drawn from a specified probability

distribution with mean d̄ and variance r2
d 3 (d̄)2. For the

purposes of the theoretical model, any probability

distribution can be used for the speed as long as the

variance is finite. Experimental studies on swimming

microorganisms have shown movement speeds are

typically either exponentially distributed (e.g., Hill and

Häder 1997, Codling and Hill 2005a) or normally

distributed (truncated Gaussian; e.g., Bearon and

Grunbaum 2008). A truncated power law (which has a

finite variance) could also be used, but note that a non-

truncated power law distribution with l , 3 as found in

some Lévy flight movement models would not fit into

this approach as the variance is infinite (Newman 2005).

At the end of each movement step, the random walker

reorients to move in a new global direction h, which is

randomly drawn from an angular distribution f(h),
where

R p
�p f(h) dh, and f(h) is time and space

independent. Without loss of generality, we assume that

the mean angle of f(h) is given by h0 ¼ 0, and that this

corresponds to the positive x-axis in our domain. Hence,

this is a position jump process (Othmer et al. 1988) and

forward persistence is not explicitly accounted for in the

model. This model is equivalent to the allothetic random

walk model described by Cheung et al. (2007, 2008), who

considered a problem relating to animal navigation,

although the general BRW model described is not

restricted to this context and can also be used to account

for external processes such as gyrotaxis (Hill and Häder

1997) that may influence the movement direction.

If we make the further simplifying assumption that

f(h) is symmetric about h0 then the mean displacements

in the x- (global bias, h0) and y- (non-bias, h0 þ p/2)
directions at each step are given respectively by the

following (Marsh and Jones 1988, Cheung et al. 2007,

2008, Codling et al. 2008):

EðXÞ ¼ lX ¼ d̄
Z p

�p
cos hf ðhÞ dh ¼ d̄q

and

EðYÞ ¼ lY ¼ d̄
Z p

�p
sin hf ðhÞ dh ¼ 0 ð1Þ

where 0 � q � 1 is the mean vector length of the angular

distribution f(h).
Similarly, using standard results for the moments of

angular distributions (Mardia and Jupp 1999), the

variances of the displacements are given by the following

(Cheung et al. 2007, 2008):

VarðXÞ ¼ ðd̄Þ2 ð1þ r2
dÞ
Z p

�p
cos2 hf ðhÞ dh

� �

� q2

� �

ð2Þ

VarðYÞ ¼ ðd̄Þ2 ð1þ r2
dÞ
Z p

�p
sin2 hf ðhÞ dh

� �� �

ð3Þ

which arise from the standard fact that Var(X )¼E(X2)

– (E(X ))2 and Var(Y ) ¼ E(Y2) – (E(Y ))2. The

expressions in Eqs. 2 and 3 are valid for all steps of

the random walk (Cheung et al. 2007, 2008), even

though at short times the spatial distribution around the

mean position is non-Gaussian. However, after a large

enough number of steps the central limit theorem will

apply and the population spread around the mean

position will be approximately diffusive (a Gaussian

spatial distribution). As we discuss later, the number of

steps required before this diffusion approximation

applies is inversely proportional to q; see Hillen (2002)

for further discussion about diffusive limits of random

walks.

In this long-time limit, the probability density

function for the spatial distribution at time t is as

follows (Cheung et al. 2008, Codling et al. 2008):

pðx; y; tÞ ¼ 1

4p
ffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
t

exp �ðx � UtÞ2

4Dxt
� y2

4Dyt

 !

ð4Þ
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where the drift, U, and diffusion, Dx and Dy, are defined

as

U ¼ d̄
s
q ð5Þ

Dx ¼
ðd̄Þ2

4s
ð1þ r2

dÞ
Z p

�p
ð1þ cos 2hÞ f ðhÞ dh

� �

� 2q2

� �

ð6Þ

Dy ¼
ðd̄Þ2

4s
ð1þ r2

dÞ
Z p

�p
ð1� cos 2hÞ f ðhÞ dh

� �

: ð7Þ

In the case of a fixed speed of movement (such that r2
d¼

0), these results can also be derived using a difference
equation and a transformation of coordinates relative to

the mean drift location but we omit the details here; the

approach is similar to the examples given in Codling et
al. (2008). In our derivation, we assume our random

walker is moving with a fixed or variable speed and turns

once per time unit and our solutions are given in terms
of the total time, t. The same expressions can be derived

for a random walk where the walker moves with a
constant speed for a variable distance before turning if

one considers the number of steps moved, n, rather than

the total time taken.

Biased random walks for different angular distributions

Given the results of the previous section, it is of
interest to determine the long-time steady-state spatial

distribution and relative spatial diffusivity for biased
random walks that use different angular distributions,

f(h). Table 1 gives the probability density functions

(pdf ) for several relevant angular distributions and these

are illustrated for both low (Fig. 1a) and high (Fig. 1b)

values of the mean vector length, q. We are particularly

interested in the von Mises (VM) and truncated normal

(TN) distributions because they arise as the long-time

steady-state movement direction distributions for exper-

imentally observed reorientation models in the random

walk on a circle for swimming microorganisms (Hill and

Häder 1997, Codling and Hill 2005a). Meanwhile, the

wrapped normal (WN) is a commonly occurring angular

distribution in movement models, mainly because it is

easy to simulate and is analogous to the standard linear

normal distribution (Mardia and Jupp 1999). The

wrapped Cauchy (WC) takes a slightly different form

from the other distributions for large values of q, being
more highly peaked with fatter tails (Mardia and Jupp

1999; and Fig. 1b). Nevertheless, the WC is often used in

models of animal movement, mainly because it is easily

parameterized using the mean vector length q. The

uniform distribution (which can be considered a special

case of any of the other angular distributions where q¼
0) corresponds to random unbiased movement equiva-

lent to Brownian motion (Codling et al. 2008) and is

included as a null model.

From the expressions for q in Table 1 it is easy to find

the predicted drift, U, for each distribution using Eq. 5.

Table 2 gives the full mathematical expressions for the

diffusion parameters, Dx and Dy, (Eqs. 6–7) with either

a fixed (d̄¼d and r2
d¼0) or variable speed, assuming the

spatial distribution is Gaussian about the mean position

(the system is in the long-time diffusive steady-state). In

the variable speed case, we consider in detail the cases

with VM and WC angular distributions and when r2
d¼1

which corresponds directly to an exponential speed

distribution (Hill and Häder 1997, Codling and Hill

2005a), but can also be considered as a particular special

TABLE 1. Standard angular distributions considered in this study, their parameters, and mean vector lengths.

Distribution Density function, f(h) Parameter Mean vector length, q

Uniform
1

2p
na 0

von Mises (VM)
1

2pI0ðjÞ
expðj cos hÞ 0 , j , ‘

I1ðjÞ
I0ðjÞ

Truncated normal (TN)

ffiffiffi
k
p

ffiffiffi
p
p

erfðp
ffiffiffi
k
p
Þ

expð�kh2Þ 0 , k , ‘

erf
2pkþ i

2
ffiffiffi
k
p

� �

� erf
�2pkþ i

2
ffiffiffi
k
p

� �� �

e�1=4k

2 erfðp
ffiffiffi
k
p
Þ

Wrapped normal (WN)
1

r
ffiffiffiffiffiffi
2p
p

Xk¼‘

k¼�‘

exp �ðhþ 2pkÞ2

2r2

" #

0 , r , ‘ e�r2=2

Wrapped Cauchy (WC)
1

2p
1� q2

1þ q2 � 2q cos h
0 � q � 1 q

Notes: The random variable giving the choice of direction at each step of the biased random walk (BRW) is h. In the VM
distribution, In(j) is the modified Bessel function of first kind and order n, where j is the concentration parameter. In the TN
distribution, erf is the standard error function which can be calculated numerically (where i ¼

ffiffiffiffiffiffiffi
�1
p

); k is the parameter that
controls the spread of the distribution. In the WN distribution, r is the angular variance. The WC is defined in terms of the mean
vector length, q. The abbreviation na stands for ‘‘not applicable.’’
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case of a Gaussian (Bearon and Grunbaum 2008) or any

other finite variance speed distribution.

SIMULATION RESULTS

To validate our theoretical predictions, simulations of

BRW were run and compared to Eqs. 5–7 as described

in the Appendix. The behavior of the biased random

walk with fixed speed and VM distribution (Fig. 1c) is

qualitatively similar to the TN (Fig. 1d) and WN

distributions (Fig. 1e), as might be expected given the

similarity of the distributions (Fig. 1a, b). In particular,

it is clear that Dx , Dy (Fig. 1c–e), i.e., diffusion about

FIG. 1. (a–b) Example angular distributions f(h) with (a) mean vector length q ¼ 0.25 and (b) q ¼ 0.95. (c–f ) Comparing
simulated biased random walks (BRWs) to long-time theoretical predictions for (c) von Mises (VM), (d) truncated normal (TN),
(e) wrapped normal (WN), and (f ) wrapped Cauchy (WC) angular distributions. Diffusion coefficients in the drift, Dx, and non-
drift, Dy, directions are rescaled by a factor of 4s/d2 so that 0 � Dx , Dy � 1. Theoretical results are marked as black (Dx) or gray
(Dy) solid lines; simulation results are marked as points. In these scenarios, the speed of movement is constant.
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the mean drift location is anisotropic. Fig. 2a, e shows a

good fit between simulated BRWs and the theoretical

probability density function, p(x, y, t) given in Eq. 4,

where the simulations have been run for sufficient time

such that the spatial distribution is Gaussian. Note that

the time required to reach a Gaussian distribution is

itself dependent on the level of bias in the random walk,

and for large values of q a longer time is required for the

theoretical solution to be valid (Fig. 2c). At shorter

times, there is a clear skew in the distribution of

simulated random walkers in the direction of the mean

drift and the spatial distribution is not Gaussian. Similar

matches between p(x, y, t) and simulation results are

obtained for the TN and WN distributions and are

omitted. Interestingly, with the TN distribution (Fig.

1c), Dy actually starts to increase as q increases. Using

the rescaling used in Fig. 1 (4s/d2), simple numerical

calculations show that the maximum value is given by

Dy ’ 1.026 (three decimal places) for q ’ 0.200 (three

decimal places). For q . 0.2, Dy starts to decrease and

approaches zero quite steeply as q ! 1. These

theoretical predictions are matched by the simulation

results. Note, however, that for all values of q we have

Dx þ Dy , 2, so that the total diffusion is always less

than the equivalent diffusion in an unbiased random

walk (where we would expect Dx¼Dy¼ 1). For the WC

reorientation model, diffusion about the mean location

is the same in both the drift and non-drift directions, Dx

¼Dy (Fig. 1f ). This is qualitatively different behavior to

that found with the other three angular distributions

considered and is likely to arise as a consequence of the

different shape of the WC distribution (Fig. 1b). As with

the VM distribution, a good match is obtained between

p(x, y, t) and simulation results (Fig. 2b, f ), assuming

the simulations are run for sufficient time such that the

spatial distribution is Gaussian.

With the inclusion of a variable speed (specifically,

where the speed at each step is drawn from an

exponential distribution with r2
d ¼ 1), the VM model

gives spatial diffusion that is as much as twice as large as

the fixed speed case (Fig. 3a; even though the mean

speed is the same for both models). This is unsurprising

as a variable speed increases the spatial variance. From

Fig. 3a, it is interesting to note that Dx initially decreases

as q increases, but then increases and (given the rescaling

4s/(d̄)2 used in the figures) Dx! 2 as q! 1. In contrast

to the fixed speed case, Dx . Dy, although Dy does

decrease as q increases (Fig. 3a). In the extreme case of q

TABLE 2. Theoretical expressions for the diffusion coefficients, Dx and Dy, calculated for the given angular distributions from Eqs.
6 and 7.

Distribution Dx Dy

Fixed speed

Uniform
d2

4s
d2

4s

von Mises (VM)
d2

4s
1þ I2ðjÞ

I0ðjÞ
� 2

I1ðjÞ
I0ðjÞ

� �2
 !

d2

4s
1� I2ðjÞ

I0ðjÞ

� �

Truncated normal (TN)
d2

4sð1þ erf
pkþ i
ffiffiffi
k
p

� �

þ erf
pk� i
ffiffiffi
k
p

� �� �

e�1=k

2 erfðp
ffiffiffi
k
p
Þ

� ð erf
2pkþ i

2
ffiffiffi
k
p

� �

� erf
�2pkþ i

2
ffiffiffi
k
p

� �� �2

e�1=2k

2ðerfðp
ffiffiffi
k
p
ÞÞ2 Þ

d2

4s
1þ

�erf
pkþ i
ffiffiffi
k
p

� �

� erf
pk� i
ffiffiffi
k
p

� �� �

e�1=k

2 erfðp
ffiffiffi
k
p
Þ

0

B
B
@

1

C
C
A

Wrapped normal (WN)
d2

4s
ð1þ e�2r2 � 2e�r2 Þ d2

4s
ð1� e�2r2 Þ

Wrapped Cauchy (WC)
d2

4s
ð1� q2Þ d2

4s
ð1� q2Þ

Variable speed

von Mises (VM)
ðd̄Þ2

2s
1þ I2ðjÞ

I0ðjÞ
� I1ðjÞ

I0ðjÞ

� �2
 !

ðd̄Þ2

2s
1� I2ðjÞ

I0ðjÞ

� �

Wrapped Cauchy (WC)
ðd̄Þ2

2s
ðd̄Þ2

2s
ð1� q2Þ

Notes: The distance moved in each time step s is d. In the VM distribution, In(j) is the modified Bessel function of first kind and
order n. In the TN distribution, erf is the standard error function which can be calculated numerically. In the variable speed case,
we assume that the speed at each step is drawn from an exponential distribution with mean speed d̄ and variance r2

d ¼ 1.
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! 1 such that movement is in the drift (x) direction only,

it is unsurprising that Dy ! 0. However, in this

situation, as the speed is variable the position of each

individual along the drift direction is itself variable,

leading to higher diffusion. Results with the TN and

WN angular distributions are qualitatively similar and

are omitted. In contrast, it is interesting to note that

(given the rescaling 4s/(d̄)2), the WC distribution with

variable speed has Dx ¼ 2 for all q. Dy is now twice as

large as with a fixed speed for all values of q, but this

FIG. 2. Theoretical probability density plots calculated from Eq. 4 for (a, c, e) von Mises and (b, d, f ) wrapped Cauchy angular
distributions for (a, b) t¼ 100 and q¼ 0.25, (c, d) t¼ 10 and q¼ 0.95, and (e, f ) t¼ 1000 and q¼ 0.95, where t is the number of time
steps and q is the mean vector length. The end points of 1000 simulated BRWs are marked as points. In these scenarios, the speed of
movement is constant.
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diffusion decreases as q increases, until Dy! 0 as q! 1

(Fig. 3c). Simulations where the speed is simulated from

either an exponential distribution or Gaussian distribu-

tion (with r2
d ¼ 1) give the same results.

DISCUSSION AND CONCLUSIONS

We have demonstrated how the analytic expressions

for the long-time probability density function in two-

dimensional space and time, p(x, y, t), and the related

diffusion coefficients, Dx and Dy, in a BRW are

dependent on both the angular distribution used for

the choice of direction at each step and whether the

random walk process has a fixed or variable speed

(where the speed at each step is drawn from an

exponential distribution with r2
d ¼ 1). In particular, we

have shown that diffusion about the mean drift position

in a BRW is typically anisotropic with Dx , Dy if the

speed is fixed and Dy . Dx if the speed is variable. The

theoretical predictions have been illustrated using

individual based simulations.

These results have important consequences for those

interested in the movement and dispersal of animal

populations. In the simplest derivation of a biased

random walk (Codling et al. 2008), the drift (bias) term

is assumed to be ‘‘weak’’ in comparison to the diffusive

terms and a difference equation is used to derive the

drift–diffusion equation. In this case, the interesting

anisotropic behavior we have demonstrated is not

observed (see discussion in Codling et al. 2008). In

many scenarios of animal movement, the drift is not

weak relative to the diffusive terms (Benhamou 2006)

and hence in such cases our results are likely to be

relevant. One of the main assumptions that allows us to

make analytic progress with our model is that the system

FIG. 3. (a, c) Comparing simulated BRWs to long-time theoretical predictions for (a) the VM distribution and (c) the WC
distribution, with variable speed (where the speed is drawn at each step from an exponential distribution with r2

d ¼ 1 such that the
mean speed is given by d̄/s). Theoretical values for the diffusion coefficients in the drift, Dx, and non-drift, Dy, directions (rescaled
by a factor of 4s/(d̄)2) are marked as black (Dx) or gray (Dy) solid lines; simulation results are marked as points. (b, d) Probability
density plot calculated from Eq. 4 with t¼ 1000 for (b) VM distribution with q¼ 0.95 and (d) WC distribution with q¼ 0.95. The
end points of 1000 simulated BRWs of 1000 time steps are marked as points. The distance moved in each time step s is d. In the WN
distribution, r is the angular variance. In the variable speed case, we assume that the speed at each step is drawn from an
exponential distribution with mean speed d̄ and variance r2

d ¼ 1.
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is assumed to be at the ‘‘long-time limit’’ such that the
spatial distribution is Gaussian. If in our model q! 1, it

will take a very long time for this to be true (Hillen
2002). Hence, in scenarios of animal movement where
bias is very strong or where the time scale of observation

is very short, our results may be less useful (Fig. 2c, d).
Similarly, we have not considered short-term correla-
tions in movement due to localized forward persistence

in our model (a trait common to many animals). If
forward persistence needs to be considered then a biased
and correlated random walk (BCRW) can be consid-

ered, but this type of model framework is usually far
more difficult to deal with analytically than the model
presented here (Othmer et al. 1988, Codling and Hill
2005b, Bearon and Grunbaum 2008). However, in most

cases, a BCRW considered over a ‘long-time limit’ is
qualitatively similar to a BRW as the correlations in
movement direction decay over time (Hillen 2002,

Benhamou 2006). Hence our results are also relevant
in this context.
The other key assumption in our model is that the

random walk is a stationary process in the sense that
there is only one mode of behavior throughout the time
period we consider. For example, if the random walkers

are allowed to change behavior during the walk or if the
bias direction changes over time or space (e.g., in
directed movement toward a point source such as in
Codling et al. 2004 or Benhamou 2006), our results will

no longer hold. We have demonstrated how the addition
of a variable speed to the model can significantly
affected the diffusive behavior, although we only

considered a special case of an exponential distribution
with r2

d ¼ 1. It would be an interesting extension of this
study to see how r2

d and q interact in the model for

different speed and angular distributions, and for what
parameter values we have Dx ¼ Dy. Similarly, we have
only demonstrated how analytic expressions can be
generated for angular distributions corresponding to

movement in a two-dimensional plane. However, in
many scenarios (particularly with swimming or flying
organisms), it is of interest to model movement in three

dimensions and our approach could be developed
further to include spherical distributions for the
movement direction. This is beyond the scope of our

current study but remains an important challenge for
future work.
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