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Abstract

I show that risk sources such as unexpected demographic changes or shocks to the

agent�s subjective time preferences may have stronger implications and be of greater

importance for asset pricing than risk in the (aggregate) consumption growth process.

In the �rst chapter, I discuss stochastic changes to time preferences. Shocks to the

agent�s subjective time discounting of future utility cause stochastic changes in asset

prices and the agent�s value function. Independent of the consumption growth process,

shocks to time discounting imply a covariation between asset returns and the marginal

utility process, and the equity premium is non-zero. My model can generate both a

reasonably low level and volatility in the risk-free real interest rate and a high stock

price volatility and equity premium. If time discounting follows a process with mean-

reversion, then the interest rate process is mean-reverting and stock returns are (at

long horizons) negatively auto-correlated.

In the second chapter, I analyze the asset pricing implications of birth and death rate

shocks in an overlapping generations model. The interest rate and the equity premium

are time varying and under certain conditions the interest rate is lower and the equity

premium is higher during periods characterized by a high birth rate and low mortality

than in times of a low birth rate and high mortality. Demographic changes may explain

substantial parts of the time variation in the real interest rate and the equity premium.

Demographic uncertainty implies a large unconditional variation in asset returns and

leads to stochastic changes in the conditional volatility of stock returns.

In the last chapter, I illustrate how shocks to the death rate may a¤ect expected asset

returns in the cross-section. An agent demands more of an asset with higher (lower)

payo¤ in states of the world when he expects to live longer (shorter) and marginal utility

is high (low) than an asset with the opposite payo¤ schedule. In equilibrium, the �rst

asset pays a lower expected return than the latter. Empirical evidence supports the

model. Out-of-sample evidence suggests that a strategy, which loads on uncertainty

in the death rate, pays a positive unexplained return according to traditional market

models.
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Chapter 1

Is Consumption Growth merely a

Sideshow in Asset Pricing?

Abstract

Shocks to the agent�s subjective time discounting of future utility cause stochastic

changes in his consumption-to-wealth ratio. In general equilibrium, asset prices cru-

cially depend on the current consumption-to-wealth ratio. Time discounting also a¤ects

the agent�s value function and - given he has recursive preferences - his marginal utility.

Independent of the consumption growth process, shocks to time discounting imply a

covariation between asset returns and the marginal utility process, and the equity pre-

mium is non-zero. My model can generate both a reasonably low level and volatility in

the risk-free real interest rate and a high stock price volatility and equity premium, even

in absence of consumption growth shocks. If time discounting follows a process with

mean-reversion, then the real interest rate follows a mean-reverting stochastic process

and realized stock returns are negatively auto-correlated (at long horizons). The mar-

ket price of risk, equity premium, and the conditional volatilities in the stock price and

real interest rate follow stationary Markov di¤usion processes. The price-earnings ratio

has power to predict future stock market excess returns, and reveals contains about

various unobservable key quantities in asset pricing.
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1.1 Introduction

General equilibrium models in asset pricing literature build on the premise that uncer-

tainty in (aggregate) consumption growth is the fundamental driving force for pricing,

and other risk sources only matter if they covary with the consumption growth process.

However, standard consumption-based asset pricing models as originally de�ned in Lu-

cas (1978), Grossman and Shiller (1981), and Hansen and Singleton (1983) encounter

many problems when trying to �t the data (for an overview of empirical stylized facts

see Campbell (2003)).

Most prominent is Mehra and Prescott�s (1985) equity premium puzzle and the

closely related risk-free rate puzzle of Weil (1989).1 Another important (and related)

problem of standard consumption-based asset pricing models is that in equilibrium the

stock price volatility essentially equals the variation in aggregate consumption growth.

But in the data the aggregate consumption process is extremely smooth while the stock

price is volatile. In addition, there are several other puzzles including the low corre-

lation between stock returns and aggregate consumption growth, autocorrelation in

realized stock returns and predictability of expected returns, while aggregate consump-

tion growth is di¢ cult to forecast.

Many extensions of the standard consumption-based models are introduced in the

literature,2 and while some empirical facts might be partially explained, we still do not

have a fully satisfying answer to the asset pricing puzzles. I challenge the fundamental

1Moreover, Shiller (1982), Hansen and Jagannathan (1991), and Cochrane and Hansen (1992) show
that the challenge to explain the equity premium puzzle is to �nd a way to introduce su¢ cient variation
in the marginal utility process to match the large Sharpe ratio in the data.

2Extensions of standard consumption-based models include habit formation preferences (Abel
(1990), Constantinides (1990), Campbell and Cochrane (1999)), information asymmetry (Wang
(1993)), heterogeneous agents (Dumas (1989), Constantinides and Du¢ e (1996), Sandroni (1999);
Chan and Kogan (2002), Brav, Constantinides and Geczy (2002), Constantinides, Donaldson and
Mehra (2002), Storesletten, Telmer and Yaron (2007), Gomes and Michaelides (2008), Bhamra and
Uppal (2010), Garleanu and Panageas (2010), Cvitanic, Jouini, Malamud and Napp (2011)), rare disas-
ters (Rietz (1988), Barro (2006), Martin (2007), Wachter (2008), Gabaix (2011), Chen, Joslin and Tran
(2012)), parameter uncertainty (Weitzmann (2007)), adjustment costs (Gabaix and Laibson (2001)),
and taste shocks (Normandin and St-Amour (1998)), and �long run risk�models (Barsky and De Long
(1993), Bansal and Yaron (2004), Bansal, Khatchatrian and Yaron (2005), Bansal, Kiku and Yaron
(2007a, 2007b), Bansal, Dittmar and Kiku (2008), Hanson, Heaton and Li (2008), Kaltenbrunner and
Lochstoer (2010), Kung and Schmid (2011) - although �long run risk�models are promising they seem
inconsistent with many empirical facts documented by Le Roy and Porter (1981), Shiller (1981), Hall
(1988), Campbell and Mankiw (1989), Yogo (2004), Pakos (2007), Vissing-Jorgensen (2002), Hasanov
(2007), Bonaparte (2008), Campbell and Beeler (2009), Cochrane (2011)).
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assumption that uncertainty in consumption growth is the main driving force in asset

pricing. Pushing it even further, I question whether shocks to consumption growth

have �rst order e¤ects or are merely a sideshow in asset pricing.

I present a model with a risk source that is able to shed light on many of the asset

pricing puzzles (empirical stylized facts) and yet can be completely independent of the

consumption growth process. In general equilibrium the asset pricing implications of

shocks to consumption growth are negligible in comparison to the e¤ects of my new

risk source.

I employ a standard Lucas (1978) economy with a representative agent who has

recursive preferences, and introduce shocks to the representative agent�s time prefer-

ences (subjective time discount rate of future utility) as a new source of uncertainty.

Time preferences describe the agent�s preferences over the trade-o¤ between streams of

(expected) utility received at diverse points in time (Uzawa (1968a, 1968b, 1969)), or

simply the agent�s impatience.

I illustrate that shocks to time preferences have substantial implications for asset

pricing, and risk in the aggregate consumption growth is of secondary or essentially

no importance. Uncertainty in time preferences generates both a large equity pre-

mium and substantial stock price volatility, and a reasonably low risk-free real interest

rate which follows a �smooth�process. In my model the market price of risk, equity

premium, conditional stock price volatility, interest rate and its conditional volatil-

ity follow mean-reverting stochastic processes. The price-earnings ratio has power to

predict future stock market excess returns, and realized stock returns are negatively

auto-correlated at long horizons. The correlation between stock returns and the real

interest rate (or its conditional volatility) is relatively low, and so is the correlation

between stock returns and aggregate consumption growth. Because the consumption

growth process has negligible asset pricing implications, I can simply choose a process

to match aggregate consumption growth data.

In more detail, a shock to time discounting of future utility gives rise to an instant

adjustment in the agent�s consumption-to-wealth ratio and results in a stochastic change

in the real interest rate and the stock price. Intuitively, if prices do not change with

an increase in impatience, then the agent desires to liquidate assets and trade future
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consumption for current consumption. But because in equilibrium the representative

agent cannot change his consumption path and asset holdings due to the feasibility

constraint in the economy (or equivalently because market clearing has to be satis�ed

and the aggregate endowment and the supply in �nancial markets remain constant),

asset prices have to adjust until the agent�s desire to liquidate assets and increase current

consumption vanishes. In particular, an increase in impatience results in a drop in the

stock price and in �nancial wealth. Accordingly, because the absolute consumption

level is unchanged, the consumption-to-wealth ratio increases.

If the agent has recursive preferences, then marginal utility depends on the current

consumption level and the value function (time discounted future utility). The value

function crucially depends on the agent�s impatience. Equivalently, I show that the

quadratic variation in the value function is well described by the quadratic variation

in the consumption-to-wealth ratio. So, shocks to time preferences cause shocks to

the consumption-to-wealth ratio and result in stochastic changes in the value function

and marginal utility. It follows that the market price of risk is a¤ected by uncertainty

in the agent�s subjective time discount rate. Intuitively, an increase in impatience is

associated with a bad state of the world, and because the stock price is decreasing in

impatience, the agent requires a positive compensation to hold stocks - that is, the

equity premium is positive due to uncertainty in the agent�s time preferences.

It is important to understand that uncertainty in the agent�s time preferences is

priced completely independent of the consumption growth process - that is, even if

aggregate consumption is constant over time.

My model has several empirical implications. Most importantly, the price-earnings

ratio - an observable variable in the data - is highly correlated with the representative

agent�s current time discount rate - the (unobservable) key state variable in the model.

Therefore, the price-earnings ratio well captures the variation in the consumption-to-

wealth ratio, the real interest rate level and conditional volatility, the conditional stock

price volatility, the market price of risk and the equity premium - quantities which are

not (directly) observable in the data. Furthermore, shocks to time preferences imply a

low correlation between the real interest rate and the conditional expected consumption

growth rate and therefore, the estimates of the elasticity of intertemporal substitution
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in literature are biased towards zero (even if household data is used for the estimation).

Though my model uses shocks to time preferences, the same modeling tools and

asset pricing channel can be employed for various other risk sources. Crucial is that

the agent has recursive preferences and the chosen risk source has a direct or (through

market clearing) an indirect e¤ect on the agent�s consumption-to-wealth ratio. Indirect

channels might be shocks in the bond market which result in shocks to the interest rate

and make the agent instantly adjust his consumption-to-wealth ratio. In turn, shocks

to the bond market might for instance be triggered by monetary or �scal policy or

changes in laws that lead �rms to adjust their capital structure.

My paper relates to the literature on changes in time preferences and taste shocks.

Nason (1991) explores how taste shocks a¤ect an agents optimal consumption path,

and Atkeson and Lucas (1992) and Farhi and Werning (2007) discuss the e¢ cient con-

sumption goods allocation under taste shocks. In international �nance literature taste

shocks have been employed to explain puzzles like the equity home bias, a low inter-

national consumption correlation, the exchange rate risk premium, and comovements

between stock, bond and foreign exchange markets (Stockman and Tesar (1995), Bergin

(2006), Pavlova and Rigobon (2007), Feng (2009), Jimenez-Martin and Cinca (2009)).

Normandin and St-Amour (1998) attempt to explain the equity premium puzzle using

taste shocks. They do not consider shocks to time discounting (see section 2.2 for a

discussion on the di¤erence between shocks to time discounting and instantaneous taste

shocks) and work with a model in partial equilibrium. In contrast to uncertainty in

time preferences, instantaneous taste shocks do not have implications for the stock price

volatility and only a¤ect the equity premium if they are correlated with the aggregate

consumption growth process.

Time variation in the time discount rate is discussed in diverse contexts. Kreps

(1979) discusses an agent�s preference for �exibility in the context of time variations

in preferences (see also Dekel, Lipman and Rustichini (2001), Dekel et al. (2007),

Higashi, Hyogo and Takeoka (2009), Krishna and Sadowski (2010) and Higashi, Hyogo

and Takeoka (2011) for extensions). Uzawa (1968a, 1968b, 1969) introduces state

dependent time preferences (the discount rate is a function of the consumption path)

from where a large body of literature emerged. Using extensions of Uzawa�s preferences

12



an agent�s optimal consumption path is studied by Epstein (1983), Shi and Epstein

(1993) and Acharya and Balvers (2004), an extension of the CCAPM is introduced by

Bergman (1985), macroeconomic growth models are discussed by Epstein and Hynes

(1983), Devereux (1991) and Sarkar (2007), and a real business cycle model is set up

by Mendoza (1991). Becker and Mulligan (1997) introduce a model of endogenous

time preferences in the sense that the agent can invest in a technology to reduce time

discounting. Their approach is mainly applied in macroeconomic growth theory (Stern

(2006), Le Van, Saglam and Erol (2009), Chen, Hsu and Lu (2010), Dioikitopoulos and

Kalyvitis (2012)). Dutta and Michel (1998) and Karni and Zilcha (2000) study the

optimal consumption path and the wealth distribution in an economy with stochastic

changes in the time discount rate. Finally, there is empirical evidence that suggests

discount rates to depend on state variables and to vary over time (Lawrence (1991),

Samwick (1998), Bishai (2004), Meier and Sprenger (2010)).

Models of heterogeneous agents could produce a representative agent with a time

varying time discount rate. However, the dynamics of the model and the pricing impli-

cations would di¤er from my paper. The individual agent would still faces a constant

time discount rate in his individual optimization problem and the value function de-

pended only through market clearing on a time varying "time discount rate" of the

representative agent. Asset pricing literature has not considered a model with recur-

sive preferences and heterogeneity in agents�time preferences.

The modeling tools and the pricing channel in this paper are closely related to my

paper on demographic changes (Maurer (2012)), where shocks to birth and death rates

are used to introduce risk in the consumption distribution across cohorts. In a similar

spirit as uncertainty in time preferences, demographic shocks have pricing implications

independent of the aggregate consumption growth process.

The chapter is organized as follows. In section 1.2, I introduce the setup of the

model. In section 1.3, I derive the speci�cation of the consumption-to-wealth ratio and

discuss the qualitative implications for the stock price and the pricing kernel. In section

1.3.5, I illustrate the quantitative magnitude of the qualitative results. I conclude in

section 1.4, and the proofs are in the appendix.
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1.2 Model

I consider an endowment economy as in Lucas (1978) with a single consumption good

and an in�nitely lived representative agent. The consumption good is the numeraire in

my analysis and follows an exogenously speci�ed process. The novelty in my model is

the speci�cation of the agent�s preferences. I let the agent�s subjective time discount

rate follow a stochastic process - that is, I introduce shocks to the agent�s time preference

structure, which determines his patience and willingness to defer consumption. In

addition, the agent maximizes a recursive (non-time additive expected) utility function.

1.2.1 Aggregate Endowment, Financial Markets and Budget

Constraint

The supply side in the consumption goods market is constituted by a representative

�rm which produces (or is endowed with) Yt units of the consumption good at time

t. As in Lucas (1978), �production� is exogenous, in the sense that the �rm cannot

reinvested any of its output, and the evolution of Y is speci�ed by the dynamics

dYt
Yt

= �(Y )dt+ �(Y )dfWt (1.1)

with the constant drift term �(Y ) and di¤usion vector �(Y ), and fW denoting a d-

dimensional Wiener process. The �rm pays earnings Yt as dividends Dt to shareholders.

Financial markets are assumed to be dynamically complete.3 � denotes the (unique)

stochastic discount factor (SDF) in the economy and is determined in equilibrium. The

agent�s �nancial wealth at time t is denoted by Wt. He consumes ct and invests the

remaining part of his �nancial wealth in equities and bonds. Equities are claims on

the stream of dividends Dt paid out by the representative �rm. The price of equity

3This assumption is satis�ed given equity and bond contracts as long as there is only one source
of uncertainty, that is fW is a one-dimensional Wiender process. In the general case where output,
time discount factor and instantaneous taste shocks are not perfectly correlated, I implicitly suppose
the existence of further contracts that dynamically complete �nancial markets - that is the existence
of a complete set of Arrow-Debreu securities that allow to trade any of the d independend Brownian
motions. My focus lies on equity and bond markets only.
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denoted by Pt is equal to the present value of the stream of future dividends

Pt = Et

�Z 1

t

�s
�t
Dsds

�
(1.2)

The supply of equities is normalized to one. xt denotes the number of equities pur-

chased by the agent at time t. To do not permit arbitrage opportunities I restrict

trading activities according to the standard technical assumption xtPt
Wt

2 L2, with

L2 �
n
x 2 L j

R T
0
x2tdt <1 a:s:

o
and L is the set of processes adapted to the �l-

tration FP generated by asset prices, FP
t � � fPu : u � tg. Bonds are instantaneously

risk free and pay interest rt with

rtdt = Et

�
�d�t
�t

�
(1.3)

Bonds are in zero net supply. The part of the agent�s �nancial wealth that is not used

to buy stocks, (Wt � xtPt) is invested in bonds.

An agent�s �nancial wealth Wt evolves according to the dynamics

dWt = Wtrtdt| {z }
risk free return

+ xt (dPt +Dtdt� Ptrtdt)| {z }
stock market excess return

� ctdt|{z}
consumption

(1.4)

I de�ne the set of feasible cash �ows as (M +W )t � fx : x�Wt 2Mg, where M

denotes the set of all marketable cash �ows and a cash �ow is marketable if it is �nanced

by a trading strategy xtPt
Wt

2 L2. The set of admissible cash �ows is =t � (M +W )t\L+,

where L+ includes all non-negative processes adapted to FP . The agent�s consumption

ct has to be an element of the set of admissible cash �ows =t.

1.2.2 Agent�s Objective Function

The agent�s preferences are an adaptation of the stochastic di¤erential utility functions

of the Kreps and Porteus (1978) type introduced by Du¢ e and Epstein (1992a, 1992b).4

I extend their speci�cation with shocks to the agent�s taste and his subjective time

preferences, which describes his preferences over the trade-o¤between streams of utility

4Stochastic di¤erential utilities by Du¢ e and Epstein (1992a, 1992b) are the continuous time equiv-
alent of the discrete time recursive preferences discussed by Epstein and Zin (1989, 1991).
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received at di¤erent points in time. The recursive utility function Vt is characterized as

Vt = Et

�Z 1

t

f (cs; Vs; Zs; �s) ds

�
(1.5)

with the aggregator function f (:) given by

f (ct; Vt; Zt; �t) =
Ztc

�
t � �t [(1� )Vt]

�
1�

� [(1� )Vt]
�

1��1
(1.6)

where Zt captures instantaneous taste shocks, �t describes discounting of future utility

(time preferences), the term 1
1�� equals the elasticity of intertemporal substitution

(EIS), and  controls relative risk aversion. The speci�cation allows to disentangleEIS

and , and describes an agent�s preferences over the timing of uncertainty resolution,

as discussed in Kreps and Porteus (1978). The special case of time additive constant

relative risk aversion preferences is recovered if 1�  = �.

The subjective time discount rate � is de�ned on the space (�L; �H) and follows an

Orenstein-Uhlenbeck process,

d�t = �
(�)
t dt+ �

(�)
t dfWt (1.7)

= m(�)
�
� � �t

�
dt+

p
�t � �L

p
�H � �t�

(�)dfWt

wherem(�) determines the speed of mean-reversion of � towards the long run (expected)

level �, and �(�) is a constant di¤usion vector. The su¢ cient condition 2m(�)� >

(�H � �L)�
(�)
�
�(�)

�T
ensures that � is never absorbed at the boundaries �L and �H

or crosses them (Feller (1951)).

I model the impatience parameter � by an Orenstein-Uhlenbeck process with well

de�ned boundaries for several reasons. Most importantly, the speci�cation allows to

(roughly) match the dynamics of the model implied risk-free real interest rate with stan-

dard short rate models in the literature, which employ generalizations of the Orenstein-

Uhlenbeck process (for instance Vasicek (1977), Cox, Ingersoll and Ross (1985), Hull

and White (1990), Black and Karasinski (1991), Longsta¤ and Schwartz (1992), Chen

(1996)). As I show below, the mean-reversion property of � results in a stationary real

interest rate process which is expected to revert to its mean in the long run. It also
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implies that the (stock) price-earnings ratio is stationary and mean-reverting, and (at

long horizons) stock returns are negatively auto-correlated. Finally, it seems natural to

assume that the subjective time discount rate is bounded, and the assumption delivers

well speci�ed boundary conditions to solve the ordinary di¤erential equation (1.9).

In contrast to shocks to time preferences (�), shocks to Z are interpreted as instan-

taneous taste shocks. I suppose that Z follows a martingale process with the dynamics

dZt = �
(Z)
t dt+ �

(Z)
t dfWt (1.8)

= Zt�
(Z)dfWt

A non-zero drift term �
(Z)
t would a¤ect time discounting of future utility - the e¤ective

subjective time discount rate equals � + �(Z) - and stochastic changes in �(Z) would

be equivalent to shocks to �. Choosing �(Z)t = 0 allows to separate the instantaneous

taste shocks Z from the dynamics in the time discount rate �. The focus in literature

solely lies on instantaneous taste shocks and the interaction with risk in consumption

growth, while the pricing implications of stochastic changes in the agent�s time prefer-

ences are ignored (for instance Stockman and Tesar (1995), Normandin and St-Amour

(1998), Pavlova and Rigobon (2007), Feng (2009)). The main purpose of my analysis

is to study the asset pricing implications of shocks to time preferences and I introduce

instantaneous taste shocks merely to point out the fundamental di¤erences between

the two risk sources and thus, the di¤erences between my model and the literature on

taste shocks.

The agent�s objective is to maximize the value function subject to the dynamic or

equivalently the static budget constraint,

sup
fc;xg2(=�L2)

�
Vt (c) = Et

�Z 1

t

f (cs; Vs; Zs; �s) ds

��
; s:t: dYs; d�s; dZs (P1)

1.3 Equilibrium

1.3.1 De�nition of Equilibrium

An equilibrium is de�ned by a set of adapted processes fc; x; �g such that at any time
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(i) the agent�s utility is maximized subject to the budget constraint (Problem (P1)),

(ii) the consumption goods market clears, Yt = ct,

(iii) the equity market clears, 1 = xt,

(iv) the bond market clears, 0 = Wt � xtPt.

1.3.2 Consumption-to-Wealth Ratio

The key quantity in my analysis is the agent�s consumption-to-wealth ratio  t =
ct
Wt
.

Given the exogenous evolution of Y and the the consumption-to-wealth ratio  , it is

straightforward to derive equilibrium asset prices.

Proposition 1.1 There exists an equilibrium with the consumption-to-wealth ratio  t (�t)

described by the ordinary di¤erential equation

0 = � t + �t � ��(Y ) +
�
( )
t

 t
+
�

2
�(Y )

�
�(Y )

�T � (1� )�(Y )
�
�(Z)

�T
(1.9)

+(1� )�(Y )

 
�
( )
t

 t

!T

� 1�  + �

2�

�
( )
t

 t

 
�
( )
t

 t

!T

�1�  � �

2�
�(Z)

�
�(Z)

�T
+
1� 

�

�
( )
t

 t

�
�(Z)

�T
for �t 2 (�L; �H), and  t (�t) follows a Markov di¤usion process

d t = �
( )
t dt+ �

( )
t dfWt (1.10)

with

�
( )
t =

@ t
@�t

�
(�)
t +

1

2

@2 t
@�2t

�
(�)
t

�
�
(�)
t

�T
(1.11)

�
( )
t =

@ t
@�t

�
(�)
t (1.12)

Proof. See Appendix.

It is important to notice that Proposition 1.1 does not qualitatively change for the

special case where the agent has time additive preferences (1�  = �).
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The consumption-to-wealth ratio  t is a function of only the agent�s current sub-

jective time discount rate �t. It is independent of the state variables Y and Z. The

latter two state variables would matter in a setting where the aggregate endowment

and the agent�s taste followed more general di¤usion processes rather than a geomet-

ric Brownian motion with constant drift and di¤usion5. However,  t depends on �t

independent of the speci�cation of the stochastic process driving � - even in the case

where � is speci�ed by a geometric Brownian motion with constant drift and di¤usion�
d�t = �t�

(�) + �t�
(�)dfWt

�
. The impact on the consumption-to-wealth ratio and the

asset pricing implications of instantaneous taste shocks versus shocks to time prefer-

ences are very di¤erent.

The dependence of  t on �t arises from the direct relationship between the agent�s

(current) impatience and the desire to consume his wealth early in time. Intuitively,

this relationship ought to be positive as an increase in the time discount of future utility

suggests a desire to shift the optimal consumption plan from �late�consumption and to

consumption �early�in time, such that marginal utility equals at every point in time.

Mathematically, the sign of the dependence of  t on �t is not obvious because a change

in �t also a¤ects the quantities
@ t
@�t
, @2 t

@�2t
, �(�)t and �(�)t . For instance, if an increase

in �t at some point �t = b� leads to a large enough decrease in �1�+�
2�

�
( )
t

 t

�
�
( )
t

 t

�T
,

then  t might in fact be declining in �t (at �t = b�). Economic intuition tells that
a change in impatience may lead to a change in uncertainty in the agent�s subjective

time discount rate �(�)t , and a change in the variation in the consumption-to-wealth

ratio �( )t , which e¤ectively captures the uncertainty perceived by the agent. In turn,

a change in risk triggers a change in today�s precautionary savings motive and in the

current consumption-to-wealth ratio. An increase in impatience may increases the

precautionary savings motive and decrease the consumption-to-wealth ratio.

Lemma 1.1 If �(�) ! 0 and (�H � �L) <1, then  t (�t) is continuous and monoton-

ically increasing in �t (8�t 2 (�L; �H)).

Proof. See Appendix.
5See for instance the long run risk literature initiated by Bansal and Yaron (2004), who assume

more �exible dynamics in the aggregate endowment process.
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Intuitively, as �(�)t becomes very small, there is (almost) no uncertainty about

changes in the agent�s time preferences and his precautionary savings motive (almost)

disappears. It follows the �rst intuition that an increase in impatience leads to the

desire of more current consumption in expenses of future consumption. Given aggre-

gate endowment is una¤ected by the increase in impatience, the desire to liquidate

assets and to increase current consumption implies that in equilibrium there has to be

a downward adjustment in the stock price until the agent�s desire to sell his assets and

buy more consumption goods vanishes and all market clearing conditions are satis�ed.

A decrease in the stock price leads to a decrease in the agent�s (�nancial) wealth and

subsequently to an increase in the consumption-to-wealth ratio because the absolute

consumption level remains constant.

Numerical solutions of the ODE (1.9) presented in section 3.5 suggest the same

conclusion of a positive relation between the consumption-to-wealth ratio and the cur-

rent impatience. The numerical results also suggest that @ t
@�t

< 1 and mostly smaller

than 0:65; that is, the variation in the consumption-to-wealth ratio is substantially

lower than the variation in the subjective time discount rate. Intuitively, after a sud-

den increase in impatience the agent expects to revert to be more patient in the long

run (because �t follows a mean-reverting process) and thus, he does not increase his

current consumption-to-wealth ratio as much as if the shock to time discounting was

permanent. In equation (1.9) this mean-reversion (damper) e¤ect is captured by the

term 1
 
@ t
@�t
m(�)

�
� � �t

�
< (>) 0, for �t > (<) �. The mean-reversion property in the

time discount rate process further implies that the consumption-to-wealth ratio follows

a mean-reverting process.

1.3.3 Stock Price

Given the consumption-to-wealth ratio, it is straightforward to derive the stock price.

Financial markets clearing (solving the equilibrium conditions (iii) and (iv) for Pt) tells

us that in equilibrium the stock price has to equal the agent�s (�nancial) wealth, Pt =

Wt.6 Rewriting the expression in terms of the consumption-to-wealth ratio ( t =
ct
Wt
)

6The same result is obtained when combining the de�nition of the stock price being equal to
the present value of future dividends or equivalently the present value of aggregate endowment or
consumption (consumption goods market clearing) with the agent�s static budget constraint. That is,
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and using the market clearing condition in the consumption goods market (equilibrium

condition (ii), Yt = ct) yields

Pt =
1

 t
Yt (1.13)

The (stock) price-earnings ratio (or equivalently the price-dividend ratio) is Pt
Yt
= 1

 t
.

From the discussion on the consumption-to-wealth ratio it follows immediately that the

price-earnings ratio is continuous and monotonically decreasing in the agent�s current

impatience �t, and
Pt
Yt
follows a stochastic process with mean-reversion. Given the

mean-reversion property in the price-earnings ratio, I conjecture that the realized stock

return is negatively correlated at relatively long horizons. Intuitively, at short horizons

the mean-reversion in Pt
Yt
is weak and noise dominates, while at long horizons the reverse

is true. This is because the speed of mean-reversion is proportional to the time horizon

while volatility is proportional to the square root of the time horizon.

The ex-dividend stock price is not a constant multiple of aggregate consumption as

in Lucas (1978), but it is cointegrated with the aggregate endowment process because

 t is stationary. In other words, the ex-dividend stock price follows a �noisy�, mean-

reverting process with the (less noisy) stochastic and non-stationary mean (trend) equal

to the aggregate consumption process.

Applying Itô�s Lemma to equation (1.13) shows that the stock price follows a Brown-

ian di¤usion process with the dynamics

dPt = �
(P )
t dt+ �

(P )
t dfWt (1.14)

with

�
(P )
t

Pt
= �(Y ) � �

( )
t

 t
+
�
( )
t

 t

 
�
( )
t

 t

!T

� �(Y )

 
�
( )
t

 t

!T

(1.15)

�
(P )
t

Pt
= �(Y ) � �

( )
t

 t
(1.16)

The (conditional) stock price volatility depends on shocks to aggregate endowment

and to the agent�s subjective time discount rate, even in the special case of time additive

Pt = Et

hR1
t

�s
�t
Dsds

i
= Et

hR1
t

�s
�t
Ysds

i
= Et

hR1
t

�s
�t
csds

i
=Wt.
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preferences. Time preference shocks imply a quadratic variation in the consumption-

to-wealth ratio (equation (1.9)) which causes an instantaneous volatility in the stock

price (equation (1.13)). Instantaneous taste shocks do not matter, provided that Z

follows a geometric Brownian motion with constant drift and di¤usion terms.

For illustrative purposes I suppose for now that �(Y )
�
�(�)

�T
= 0. It is important to

understand that shocks to the agent�s time preferences a¤ect the stock price completely

independent of aggregate endowment shocks; the volatility terms �(Y ) and �
( )
t are

additive in equation (1.16). Shocks to time preferences matter for asset pricing even

in absence of consumption growth! The intuition is as mentioned earlier. Sudden

changes in the agent�s subjective time discount rate cause pure demand shocks while

the supply is �xed. An increase in impatience means that at current prices the agent

wants to liquidate assets and buy more consumption goods. Since the supply in all

markets remains unchanged and in equilibrium market clearing must be satis�ed, the

stock price has to adjust (fall) until the agent revokes his plan to liquidate assets for

more current consumption. The decline in the stock price causes the agent�s (�nancial)

wealth to drop and accordingly, the consumption-to-wealth ratio to increase, which

explains the contemporaneous relation between Pt and  t.

It follows that the stock price volatility is larger than the variation in aggregate con-

sumption growth. Indeed, as illustrated in the Monte Carlo simulations in section 3.5

stochastic changes in time preferences are responsible for (almost) the entire variation

in the stock price and the unconditional excess volatility in the stock market over the

variation in aggregate consumption growth is substantial (the di¤erence is more than

one order of magnitude). Finally, because �
( )
t

 t
is a function (or equivalently @ t

@�t
,  t and

�
(�)
t are functions) of the current level �t, the conditional stock price volatility follows

a stationary stochastic process and is expected to revert in the long run to a constant

mean.

The conditional expected stock return is �
(Y )
t +Dt
Pt

dt. It is trivial that �
(Y )
t +Dt
Pt

dt cru-

cially depends on the current level of the agent�s impatience and for �(�)t ! 0 it features

the same qualitative properties as  t. Most important, the conditional expected stock

return follows a stationary stochastic process that reverts in the long run to a constant

mean. Intuitively, if the agent is very impatient, then the price-earnings ratio lies far
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below its long run average and the stock is relatively cheap. Since the agent expects to

become more patient in future (�t reverts to �) and the price-earnings ratio is expected

to increase, the expected stock return is large. Moreover, the expected stock return is

declining as �t reverts to �, the price-earnings ratio increases to its long run average

and the stock becomes relatively more expensive. Given a persistence at short hori-

zons in the conditional expected stock return process, I conjecture that realized stock

returns are (slightly) positively correlated at short horizons.

The equity premium can be written as �
(P )
t +Dt�rtPt

Pt
dt. Alternatively, using the de�-

nition of the stock price being equal to the present value of future dividends (equation

(1.2)) and noticing that Et [Ps] for s < t is a local martingale yields

Et

�
dPt +Dtdt

Pt

�
� rtdt = �

dPt
Pt

�
d�t
�t

�T
=
�
(P )
t

Pt
(�t)

T dt (1.17)

where �tdfWt = �d�t�Et[d�t]
�t

is the market price of risk. The interpretation of equation

(1.17) is standard: if an asset pays o¤ low (high) during times when the agent faces a

high (low) marginal utility and desires much (does not need much) wealth (negative

correlation between SDF and stock price), then the agent demands a premium to hold

the asset (positive equity premium). Either expression of the equity premium requires

me to solve for the risk-free real interest rate or the market price of risk to be able to

give an interpretation.

1.3.4 Stochastic Discount Factor and Equity Premium

Proposition 1.2 In an equilibrium with  t as described in Proposition 1.1, the pricing

kernel � follows a Markov di¤usion process de�ned by

d�t
�t

= �rtdt� �tdfWt (1.18)
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with the risk-free real interest rate rt and the market price of risk �t characterized as

rt = �t + (1� �)�(Y ) �  (2� �)

2
�(Y )

�
�(Y )

�T
(1.19)

+
1�  � �

2�

�
( )
t

 t

 
�
( )
t

 t

!T

� 1�  � �

2�
�(Z)

�
�(Z)

�T
�1�  � �

�
�(Y )

 
�
( )
t

 t

!T

+
(1� ) (1� �)

�
�(Y )

�
�(Z)

�T
�t = �

(Y )
t + �

(Z)
t + �

(�)
t = �(Y ) � 1� 

�
�(Z) +

1�  � �

�

�
( )
t

 t
(1.20)

The risk-free real interest rate and and market price of risk are functions of the current

state �t and follow a stationary Markov di¤usion processes with the dynamics speci�ed

in equations (1.51), (1.52), (1.53) and (1.54). The equity premium can be written as

Et

�
dPt +Dtdt

Pt

�
� rtdt = �(Y )

�
�(Y )

�T � 1�  � �

�

�
( )
t

 t

 
�
( )
t

 t

!T

(1.21)

+
1�  � �� �

�
�(Y )

 
�
( )
t

 t

!T

�1� 

�

 
�(Y ) � �

( )
t

 t

!�
�(Z)

�T
The equity premium is a function of of the current state �t and follows a stationary

Markov di¤usion process.

Proof. See Appendix.

The risk-free real interest rate depends of the three standard quantities: the repre-

sentative agent�s current time discount rate of future utility, his expected consumption

growth over the next instant in time, and precautionary savings. Precautionary savings

depend on aggregate endowment risk and uncertainty in the agent�s taste and time pref-

erences. In the special case of time additive preferences (1�  = �), the precautionary

savings motive depends only on aggregate consumption risk and the interaction (co-

variation) between aggregate consumption risk and taste shocks - in particular, shocks

to time preferences are irrelevant.

In general, a change in the agent�s time preferences has two e¤ects on the interest
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rate. An increase in impatience has the direct consequence to generate a desire of

the agent to increase current consumption and therefore liquidate his �nancial assets,

which leads to a drop in the bond price and an increase in the interest rate. How-

ever, an increase in impatience may also lead to an increase in uncertainty about the

(future) consumption-to-wealth ratio
�
 t,

@ t
@�t

and �(�)t are functions of �t
�
. The ad-

ditional risk may increase the agent�s precautionary savings motive and cause a decline

in the interest rate. It is hard to tell which of the two opposing e¤ects dominates.

The numerical results in section 3.5 show that the latter (precautionary savings) chan-

nel dominates if the agent is patient enough ( @rt
@�t

< 0), and the �rst (direct) e¤ect

dominates if the agent becomes su¢ ciently impatient ( @rt
@�t

> 0).

Garleanu and Panageas (2010) show that in an economy where agents are hetero-

geneous with respect to the curvatures in their objective functions, empirical estimates

of the EIS are biased towards zero, if the econometrician uses aggregate consumption

data in his estimation. In their paper the expected consumption growth of an individual

agent (dEt
h
ln
�
Cit+1
Cit

�i
) and the interest rate (dEt [ln (1 + rt+1)]) are stochastic (due to

stochastic changes in the distribution of aggregate consumption among agents), while

expected aggregate consumption growth is constant (dEt
h
ln
�
Caggt+1

Caggt

�i
). Accordingly, if

the true economy is populated by heterogeneous agents but the econometrician uses

aggregate consumption data, then the estimation

EIS =
dEt

�
ln
�
Cagg
t+1

�
� ln (Cagg

t )
�

dEt [ln (1 + rt+1)]
(1.22)

which is derived (approximated) from the Euler equation in a representative agent econ-

omy (Vissing-Jorgensen (2002)), will be biases towards zero. However, this problem can

be circumvented and an unbiased estimate can be obtained if household consumption

data is used to estimate the EIS (=
dEt[ln(Cit+1)�ln(Cit)]

dEt[ln(1+rt+1)]
) for each individual investor.

Indeed empirical estimates of the EIS by Hall (1988), Campbell and Mankiw (1989),

Yogo (2004) and Pakos (2007) - who use aggregate consumption data - are indistin-

guishable from zero. In contrast, estimates by Hasanov (2007) and Bonaparte (2008)

- who use household speci�c data - yield a higher EIS of around 0:3. Garleanu and

Panageas (2010) deliver a nice explanation for the di¤erence in the estimates. However,

in most economics literature EIS = 0:3 is still considered to be low.
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The result of my analysis is even stronger than the conclusion in Garleanu and

Panageas (2010). Since rt is a function of �t, the interest rate follows a stationary

stochastic process which is expected to revert in the long to a constant mean.7 It is im-

portant that there is variation in the interest rate which originates from shocks to time

preferences and is unrelated to variation in either aggregate or the individual investor�s

(expected) consumption growth. Accordingly, due to shocks to time preferences there is

a bias towards zero in the estimation of the EIS no matter whether the econometrician

uses aggregate or household consumption data. This is in contrast to the case in Gar-

leanu and Panageas (2010) where the use of household consumption data resolves the

estimation problem. Therefore, shocks to time preferences explain why the estimates

by Hasanov (2007) and Bonaparte (2008) are still lower than expected (and lower than

the true EIS).

The market price of risk depends on risk in aggregate consumption growth, taste

shocks, and uncertainty about time discounting. Although taste shock a¤ect marginal

utility, they only matter for the equity premium if they are correlated with either one

of the two other risk sources. In contrast, aggregate consumption growth and time

preferences matter for the equity premium independent of the correlation structure

because they both a¤ect marginal utility and the stock price volatility. Accordingly,

the asset pricing implications of instantaneous taste shocks and stochastic changes in

time preferences are very di¤erent.

For illustrative purposes, I suppose for now that aggregate consumption growth is

constant (�(Y ) = 0; no risk in the aggregate consumption process) and taste shocks are

unrelated to risk in time discounting (�(Z)
�
�(�)

�T
= 0). The equity premium simpli�es

to

Et

�
dPt +Dtdt

Pt

�
� rtdt = �

1�  � �

�

�
( )
t

 t

 
�
( )
t

 t

!T

(1.23)

It depends only on shocks to time preferences and it is positive if and only if EIS =2�
min

�
1

; 1
�
;max

�
1; 1



�� �
or � 1���

�
= 1�EIS

1�EIS > 0
�
. In the special case of time ad-

ditive preferences the market price of risk and the equity premium are zero.8

7Remember that this result is one of the main reasons for me to model � as a mean-reverting
process in the �rst place.

8In the case of CRRA utility, shocks to the agent�s subjective discount factor only a¤ect the equity
premium if they are correlated with risk in the aggregate consumption growth process.
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In the special case of time additive preferences (1� = �), the stream of utility the

agent receives at some time t depends only on the current consumption level. Marginal

utility also depends only on current consumption and the marginal utility process is a

function of the agent�s current consumption growth. Accordingly, the subjective time

discount rate of future utility does not a¤ect the marginal utility process and has no

e¤ect on the market price of risk (and the equity premium). In contrast, shocks to

aggregate consumption and instantaneous taste shocks, which have a �scaling�e¤ect on

the current consumption level, a¤ect marginal utility and the market price of risk.

Under more general recursive preferences, the stream of utility the agent receives at

some time t depends on a weighted average of past, current and future expected con-

sumption. The agent�s time preferences determine the �weights�used in the �weighted

average�- that is the importance of consumption streams at di¤erent points in time.

Marginal utility is again a function of a weighted average of past, current and future

expected consumption and the marginal utility process depends on a weighted aver-

age of past, current and future expected consumption growth. Since the market price

of risk is de�ned by stochastic changes in the marginal utility process and past con-

sumption is realized (no uncertainty), the market price of risk is a function of only the

quadratic variation in current consumption growth and future expected consumption

growth. Equations (1.6) and (1.24) suggest that the variation in the value function is

a su¢ cient statistic of the variation in future expected consumption growth. By de�-

nition of the value function, time preferences matter in a crucial way. A shock to the

agent�s subjective time discount rate means an unexpected change in the �weighting�of

future expected consumption and an unpredictable shock to the value function. This

is equivalent to a stochastic change in marginal utility and the shock to time prefer-

ences a¤ects the market price of risk. From section 3.3.3 I know that the stock price

instantly reacts to sudden changes in the agent�s time preferences. Accordingly, shocks

to time preferences imply a covariation between the marginal utility process and the

stock price, and the equity premium is non-zero. Finally, shocks to aggregate consump-

tion and instantaneous taste shocks have the exact same e¤ect on marginal utility and

the market price of risk as in the case of time additive preferences.

In mathematical terms, from equations (1.6) and (1.24) it follows that marginal
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utility is a decreasing (increasing) function in (1� )Vt if
1���
1� < (>) 0. Equation

(1.34) states that (1� )Vt is decreasing (increasing) in  t if
1�
�
> (<) 0. Accordingly,

marginal utility is increasing in the consumption-to-wealth ratio if and only if 1���
�

< 0

(or EIS =2
�
min

�
1

; 1
�
;max

�
1; 1



��
). If a shock to time preferences yields an increase

(decrease) in the consumption-to-wealth ratio, then the agent is in a high (low) marginal

utility state (if 1���
�

< 0). In equilibrium, an increase (decline) in the consumption-to-

wealth ratio implies a drop (increase) in the stock price (equation (1.16)). Therefore, the

stock return is negatively correlated with the marginal utility process and by de�nition

(equation (1.17)) the equity premium is positive.

On a more intuitive level, an increase (decrease) in impatience means that the agent

discounts his future utility is more (less) heavily. This is plausibly associated with a

bad (good) state of the world and the agent desires much (does not need much) wealth.

An increase (decrease) in time discounting also corresponds to a decline (rise) in the

stock price (see section 3.3 for an intuition). Therefore, the stock pays o¤ low (high) in

a bad (good) state of the world, which is an undesirable payo¤ schedule, and the agent

requires a positive premium to hold the stock (positive equity premium).

Finally, because �
( )
t

 t
is a function of the current state �t, the market price of risk

and the equity premium both follow a stationary stochastic process which is expected

to revert in the long run to a constant mean.

1.3.5 Numerical Results and Monte Carlo Simulations

I solve the model numerically to quantify the magnitudes of my qualitative results.

Uncertainty in the agent�s subjective time discount rate has quantitatively important

implications for asset pricing (�rst order e¤ect). In contrast, the pricing implications

of aggregate consumption growth shocks are negligible (second order e¤ect).

I suppose that in the long run the subjective time discount rate is always expected

to revert to � = 0:045. The speed of mean-reversion is assumed to be moderate, m(�) =

0:175, and I chose the conditional volatility �(�)
p
�H � �t

p
�t � �L = 0:125

p
�t � �2t ,

that is �(�) = 0:125, �L = 0, and �H = 1. Although the support of �t is de�ned by

the interval (�L; �H) = (0; 1), the mean-reversion and the state dependent conditional

volatility of �t imply that �t does not travel too far from the long run mean �. Indeed
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Monte Carlo simulations suggest that the time discount rate does not leave the interval

(0; 0:2775) with a con�dence of 99:9% (see table 1.1 for an estimate of the e¤ective

unconditional distribution of the time discount rate). Simulations also show that the

unconditional mean of �t roughly equals �, and the unconditional volatility of �t is

4:26%, which matches the conditional volatility at �t = � (�(�)
q
� � �

2
= 2:59%; the

conditional volatility has to be adjusted for the speed of mean-reversion to compare it

to the unconditional volatility).

Unconditional Distribution of Simulated Time Discount Rate

Percentile 0:1% 0:5% 1% 5% 10% 25%
�t 0:0000 0:0002 0:0005 0:0025 0:0050 0:0136

Percentile 75% 90% 95% 99% 99:5% 99:9%
�t 0:0634 0:1029 0:1313 0:1945 0:2202 0:2775

Table 1.1: Unconditional distribution of �t from 100 simulations of 10�000 years of
weekly data.

I choose �(Y ) = 0:02 and �(Y ) = 0:01 to roughly match the �rst two unconditional

moments of aggregate consumption growth in US data. Setting �(Y ) = 0 hardly a¤ects

my results. It is hard to tell how large the correlation between shocks to time prefer-

ences and shocks to consumption growth is ought to be. Though, for instance theory

papers by Uzawa (1968a, 1968b, 1969) and Becker and Mulligan (1997) suggest that

�(Y )
�
�(�)

�T
< 0.9 For simplicity I set �(Y )

�
�(�)

�T
= 0. Since I merely introduce instan-

taneous taste shocks in my analysis to point out the fundamental di¤erences in pricing

compared to uncertainty in time preferences (see sections 3.2 to 3.4 for a su¢ cient

discussion), I suppose now that Zt = 1. For the curvature in the agent�s preferences I

assume the two conservative values  = 0:5 and EIS = 0:9.

Figure 1.1 and 1.2 plot the consumption-to-wealth ratio ( t,
�
( )
t

 t
), the interest rate

(rt, �
(r)
t ) and the stock price (�

(�)
t ,

�
(P )
t

Pt
, Et

h
dPt+Dtdt�rtPtdt

Pt

i
, Pt
Yt
) against the agent�s

9One could also estimate the correlation between �t and Yt from the expression

Corr

�
�
(P )
t

Pt
; �(Y )

�
=

�
(P )
t
Pt
(�(Y ))

Tvuut�
(P )
t
Pt

 
�
(P )
t
Pt

!T
�(Y )(�(Y ))

T

=

 
�(Y )��

( )
t
 t

!
(�(Y ))

T

vuut �(Y )��
( )
t
 t

! 
�(Y )��

( )
t
 t

!T
�(Y )(�(Y ))

T

, assuming

one knows the correlation between the stock price and aggregate consumption growth. If I assume

Corr

�
�
(P )
t

Pt
; �(Y )

�
= 0:25 (and the parameterization in section 3.5), then Corr (�t; Yt) = �0:175.
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Figure 1.1: Black line: Dependence of the consumption-to-wealth ratio  t (top-left

panel), the conditional volatility in the consumption-to-wealth ratio �
( )
t

 t
(top-right

panel), the riskfree real interest rate rt (bottom-left panel), and the conditional volatility
in the interest rate (exposure of interest rate to changes in impatience) �(r)t (with �(r)t as
de�ned in the appendix; a negative �(r)t means a that rt is decreasing in �t) (bottom-
right panel) on the agent�s impatience �t (subjective time discount factor of future
utility). The blue line indicates the unconditional expectation of the time discount
factor (�). The horizontal axis spans the interval between the bottom 0:1% and the
top 99:9% percentiles of the stationary distribution of �t.
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subjective time discount rate (�t). Although I solve the ODE (1.9) for the entire

support (�L; �H) of �t, the plots only display the results for �t 2 (0; 0:2775), the interval

between the bottom 0 and the top 99:9% percentiles of the unconditional distribution

of �t, and my discussion shall be limited to this smaller support.

In contrast to the numerical solutions (�gure 1.1 and 1.2), table 1.2 presents the

averages and standard deviations of estimated unconditional moments of the key vari-

ables from 100 Monte Carlo simulations of 10�000 years of weekly data; that is, for every

simulation (10�000 years of weekly data) I estimate the 20 unconditional moments in

table 1.2, and I report the average and standard deviation over the 100 estimates.

The consumption-to-wealth ratio is almost linear in the time discount rate and

increases monotonically from 6:36% to 21:23% (top-left panel in �gure 1.1). In the

long run it is expected to be  t
�
�t = �

�
= 8:53% which almost coincides with the

estimated unconditional expected value Ê ( t) = 8:55% (table 1.2). The numerical

results also show that Et [d t] < 0 if and only if �t 2
�
�; �H

�
, which con�rms the

mean-reversion property in process of  t. Moreover,
@ t
@�t

2 (0:479; 0:628), suggesting

that the conditional variation in  t is substantially lower than the conditional variation

in �t. Indeed the estimated unconditional volatility in the time discount rate (4:26%)

is twice as large as the volatility in the consumption-to-wealth ratio (2:14%) (table

1.2). The top-right panel in �gure 1.1 further presents the relation between the state

variable �t and the key quantity
�
( )
t

 t
(conditional volatility of percentage changes in

 t), which essentially describes the economic uncertainty introduced by shocks to time

preferences and determines the precautionary savings motive, the stock price volatility

and the equity premium. �
( )
t

 t
is a hump-shaped function in �t. The uncertainty is

steeply sloping in the vicinity of the boundary �L (and �H) where �
(�)
t approaches zero

as �t ! �L (and �t ! �H) to ensure that �t 2 (�L; �H) almost surely.

The risk-free real interest rate is a U-shaped function in the time discount rate

(bottom-left panel in �gure 1.1). It declines monotonically from 2:22% to 0:50% for

�t 2 (0; 0:028) (�
(r)
t < 0), and is thereafter strictly increasing in �t (�

(r)
t > 0) and

reaches its maximum of 22:40% at �t = 0:2775. On the interval (�L; �1) = (0; 0:028)

there is a strong increase in uncertainty in the consumption-to-wealth ratio (top-right

panel in �gure 1.1) which gives rise to a rapid increase in precautionary savings and
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Figure 1.2: Dependence of the stock price-earnings ratio Pt
Yt
(top-left panel), the condi-

tional stock price volatility �
(P )
t

Pt
(top-right panel), the market price of risk with respect

to uncertainty in time preferences �(�)t (bottom-left panel), and the equity premium

Et

h
dPt+Dtdt�rtPtdt

Pt

i
(bottom-right panel) on the agent�s impatience �t (subjective time

discount factor of future utility). The blue line indicates the unconditional expectation
of the time discount factor (�). The horizontal axis spans the interval between the
bottom 0:1% and the top 99:9% percentiles of the stationary distribution of �t.
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results in a drop in the interest rate. The negative impact on the interest rate is large

enough to dominate the positive e¤ect due to the growing impatience of the agent. In

turn, for �t > 0:028 uncertainty does not increase by much and even starts to decrease

for �t � 0:162, and the positive e¤ect on the interest rate (increasing impatience)

dominates. Since rt is not everywhere monotonically increasing in �t, there exist some

(few) circumstances where the interest rate process is temporarily expected to move

away from its mean. However, in the long run the interest rate is always expected

to revert to the level rt
�
�t = �

�
= 0:86%. Monte Carlo simulations show that risk-

free bonds pay on average a real interest of 2:03% (table 1.2), which is higher than

rt
�
�t = �

�
due to the convexity in the function rt (�t).

The conditional volatility of the interest rate is hump-shaped on the interval (�L; �1)

= (0; 0:028) and strictly increasing in the agent�s impatience (for �t 2 (0:028; 0:2775)).

In the long run it is expected to revert to �(r)t
�
�t = �

�
= 0:96% (bottom-right panel

in �gure 1.1). Simulations show that the unconditional volatility in the interest rate is

much larger (2:56%), which is due to the substantial (unconditional) variation (1:57%)

in the conditional interest rate volatility �(r)t (table 1.2).

The price-earnings ratio equals the inverse of the consumption-to-wealth ratio (equa-

tion (1.13)). It is monotonically decreasing in the agent�s impatience and almost linear

in 1
�t
(top-left panel in �gure 1.2). Moreover, it follows a mean-reverting stochastic

process with the long run level 11:72. The unconditional average is 12:27 (table 1.2).

The conditional stock price volatility (�
(P )
t

Pt
) strongly depends on the variation in

time discounting. �
(P )
t

Pt
is a linear function in �

( )
t

 t
, and the dependence on the state

variable �t is displayed in the top-right panel in �gure 1.2. It follows a stationary

stochastic process and is expected to revert to its the long run level of 14:63%. From

simulations I estimate an unconditional mean and volatility in the conditional stock

price volatility of 12:24% and 4:33%, while the estimated unconditional volatility in

realized stock returns is 13:85% (table 1.2). Shocks to aggregate consumption growth

merely generate a volatility of 1%, while risk in the time discount rate accounts for

the remaining stock price volatility. Accordingly, if �(Y )
�
�(�)

�T
is small (I assume it

is zero), the correlation between the stock market return and aggregate consumption

growth is small (close to zero).
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Unconditional Moments (Simulated Annual Data)

Mean across Std across
Simulations Simulations

Ê [�t] 4:48% 0:13%s
Ê

��
�t � Ê [�t]

�2�
4:26% 0:15%

Ê [ t] 8:55% 0:07%s
Ê

��
 t � Ê [ t]

�2�
2:14% 0:08%

Ê
h
�
( )
t

i
1:11% 0:02%s

Ê

��
�
( )
t � Ê

h
�
( )
t

i�2�
0:61% 0:01%

Ê [rt] 2:03% 0:07%s
Ê

��
rt � Ê [rt]

�2�
2:56% 0:16%

Ê
h
�
(r)
t

i
0:78% 0:05%s

Ê

��
�
(r)
t � Ê

h
�
(r)
t

i�2�
1:57% 0:03%

Ê
h
�
(�)
t

i
�66:56% 0:66%s

Ê

��
�
(�)
t � Ê

h
�
(�)
t

i�2�
24:88% 0:31%

Ê
h
�
(P )
t +Dt�rtPt

Pt

i
9:34% 0:14%s

Ê

��
�
(P )
t +Dt�rtPt

Pt
� Ê

h
�
(P )
t +Dt�rtPt

Pt

i�2�
4:82% 0:04%

Ê
h
�
(P )
t

Pt

i
12:24% 0:12%s

Ê

��
�
(P )
t

Pt
� Ê

h
�
(P )
t

Pt

i�2�
4:33% 0:05%

Ê
h
Pt+1�Pt+Dt+1

Pt

i
11:55% 0:08%s

Ê

��
Pt+1+Dt+1

Pt
� Ê

h
Pt+1+Dt+1

Pt

i�2�
13:85% 0:17%

Ê
h
Pt
Yt

i
12:27 0:07s

Ê

��
Pt
Yt
� Ê

h
Pt
Yt

i�2�
2:40 0:04

Table 1.2: Estimation of unconditional moments of annual key quantities: average and
standard deviation across 100 simulations of 10�000 years of weekly simulated data.
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The market price of risk in the agent�s time preferences (�(�)t ) is a linear function

in ��( )t

 t
and a U-shaped function in �t (bottom-left panel in �gure 1.2). It is sharply

decreasing for small values in �t as uncertainty in time discounting is rapidly increasing

for �t close to �L. �
(�)
t is de�ned on the negative space - that is, marginal utility

is increasing in the agent�s impatience as discussed in section 3.4 (provided EIS =2�
min

�
1

; 1
�
;max

�
1; 1



��
). In the long run it is expected to revert to �(�)t

�
�t = �

�
=

�80:28%. The unconditional mean and volatility in �
(�)
t are �66:56% and 24:88%

(table 1.2). The market price of risk for uncertainty in time discounting is on average

two orders of magnitude larger than the (constant) market price of risk for uncertainty

in aggregate consumption growth (�(Y )t = �(Y ) = 0:5%)!

The equity premium is a quadratic function in �
( )
t

 t
and a hump-shaped function in

�t (bottom-right panel in �gure 1.2). In the long run the equity premium is expected to

revert to the level of 11:72%. The estimated unconditional mean and standard deviation

in the equity premium are 9:34% and 4:82% (table 1.2). Risk in aggregate consumption

growth is almost not compensated in �nancial markets; the equity premium due to

aggregate consumption shocks is almost zero (0:005%). In contrast, uncertainty in the

agent�s time preferences generates essentially the entire equity premium. Moreover, all

variation in the equity premium comes solely from changes in the agent�s perceived

uncertainty �
( )
t

 t
due to changes in impatience.

In table 1.3 I report estimated unconditional correlations from 100 Monte Carlo

simulations. For every simulation I generate a 10�000 year sample path for � and

estimate the unconditional annual correlations between the quantities Pt
Yt
,  t, rt, �

(r)
t ,

�
(�)
t ,

�
(P )
t

Pt
, �

(P )
t +Dt�rtPt

Pt
, and Pt+1�Pt+Dt+1

Pt
. I report the average over the 100 estimated

correlation matrices in table 1.3.

I �nd a strong correlation between �t and all the reported quantities since all the

variables crucially depend on the agent�s current impatience. The correlation between

time discounting and the realized stock return over the subsequent year (t; t+ 1) is

weaker (than the other correlations) because Pt+1�Pt+Dt+1
Pt

depends only indirectly on

�t due to mean-reversion. Unfortunately, the representative agent�s current subjective

time discount rate is not observable in the data, and neither are the quantities  t, rt,

�
(r)
t , �

(�)
t ,

�
(P )
t

Pt
, and �

(P )
t +Dt�rtPt

Pt
.
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Unconditional Correlations (Simulated Annual Data)

�t
Pt
Yt

 t rt �
(r)
t �

(�)
t

�
(P )
t

Pt

�
(P )
t +Dt+1�rtPt

Pt
Pt
Yt

�0:96
 t 1:00 �0:96
rt 0:87 �0:71 0:88

�
(r)
t 0:97 �0:96 0:96 0:80

�
(�)
t �0:75 0:88 �0:73 �0:33 �0:72

�
(P )
t

Pt
0:76 �0:89 0:74 0:35 0:74 �1:00

�
(P )
t +Dt+1�rtPt

Pt
0:85 �0:96 0:83 0:47 0:86 �0:97 0:97

Pt+1�Pt+Dt+1
Pt

0:45 �0:45 0:44 0:35 0:44 �0:38 0:38 0:41

Table 1.3: Estimation of unconditional correlations between annual key quantities:
average across 100 simulations of 10�000 years of simulated data.

However, from the above discussion I know that there is a strong relation between

the price-earnings ratio and the agent�s subjective time discount rate (Pt
Yt
depends almost

linearly on 1
�t
). Indeed the state variable �t becomes (almost) observable through the

price-earnings ratio. Therefore, particularly striking from an empirical perspective is

the strong correlation between the price-earnings ratio - which is an observable variable

in the data - and literally all the key quantities in my model. The price-earnings

ratio reveals much information about the unobservable variables  t, rt, �
(r)
t , �

(�)
t ,

�
(P )
t

Pt
,

and �
(P )
t +Dt�rtPt

Pt
. Moreover, the current price-earnings ratio is able to predict future

(realized) stock returns.

Most of the (postulated) relations in table 1.3 are almost impossible to test em-

pirically because only noisy estimates are available of the true quantities. However,

consistent with the results in table 1.3 empirical work by Campbell and Ammer (1993)

suggests that there is a rather weak correlation between realized stock returns (and/or

equity premia) and the interest rate. Keim and Stambaugh (1986), Campbell and

Shiller (1988) and Fama and French (1988a) explore the power of the price-earnings

ratio to forecast future stock returns and �nd evidence which is consistent with table

1.3.

Finally, table 1.3 makes clear that ex-post realized stock returns are not a good

proxy for expected returns - the unconditional correlation is only 0:414. Empirical

estimates of correlations between expected stock returns - using ex-post realized returns
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as a proxy - and quantities such as the price-earnings ratio, the conditional stock price

volatility, the real interest rate or the conditional interest rate volatility will be severely

biased towards zero (even if the econometrician was able to perfectly measure the real

interest rate or the conditional volatilities in the stock price or interest rate).

Auto-Correlation in Realized Stock Returns Pt�Pt�1+Dt
Pt�1

Holding Period
10 years 5 years 1 year 1 month 1 week 1 day

Mean across Simulations �0:089 �0:152 �0:050 �0:005 �0:001 �0:000
Std across Simulations 0:036 0:022 0:011 0:004 0:002 0:001

Table 1.4: Estimation of auto-correlations in realized daily, weekly, monthly, annual,
and 5-year stock returns: average across 100 simulations of 10�000 years of simulated
data. Notice that the power of the test declines quickly if sample paths shorter than
10�000 years are simulated and used to estimate the auto-correlation.

In table 1.4 I present estimated auto-correlations in simulated stock returns for

various holding periods. I �nd a negative auto-correlation in stock returns at long

horizons; though for very long holding periods the auto-correlation starts to disappear

again. For short holding periods the auto-correlation is small and does not signi�cantly

di¤er from zero. The negative auto-correlation is induced by the mean-reversion in the

price-earnings ratio process as conjectured in the discussion on the price-earnings ratio

in section 3.3. The pattern in table 1.4 is consistent with empirical evidence provided

by Fama and French (1988b). My model illustrates that stock returns can be auto-

correlated if investors are perfectly rational and informed, there are no frictions, and

asset prices are e¢ cient in the sense that they incorporate all available information in

the economy (prices are forward looking).

1.4 Conclusion

Traditional consumption-based asset pricing models miss several empirical stylized

facts. In contrast to the literature, I argue that the aggregate consumption growth

process is merely of secondary importance while other (unrelated) risk sources are the

main driving forces in asset pricing.

I show that shocks to the representative agent�s subjective time discount rate of
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future utility have �rst order implications for asset pricing, while risk in the aggregate

consumption growth process does not essentially matter. For illustrative purposes I

suppose that shocks to time preferences are independent of the consumption growth

process. This assumption helps to gain a better understanding of the newly introduced

pricing channel and to demonstrate the fundamental di¤erences to the pricing channel

in related literature, which crucially depends on risk in the aggregate consumption

growth process. Although I restrict my analysis to uncertainty in time preferences, the

same modeling tools and asset pricing channel can be applied in the context of other

risk sources. Important is that the agent has recursive preferences and the chosen risk

source has implications for the representative agent�s consumption-to-wealth ratio.

My model is able to match the data well and provides answers to various challenges

in (empirical) asset pricing literature. Uncertainty in time discounting generates a

large equity premium and stock price volatility. The risk-free real interest rate is low

and has a moderate variation. The market price of risk, equity premium, conditional

stock price volatility, interest rate and its conditional volatility follow mean-reverting

stochastic processes. The price-earnings ratio has power to predict future stock market

excess returns, and realized stock returns are negatively auto-correlated at long hori-

zons. The correlation between stock returns and the real interest rate (or its conditional

volatility) is low, and so is the correlation between stock returns and aggregate con-

sumption growth. Because the consumption growth process has negligible asset pricing

implications, I can simply choose a process to match aggregate consumption growth

data.

The most important empirical implication of the model is that the price-earnings

ratio, which is an observable variable in the data, is highly correlated with the un-

observable current time discount rate of the representative agent. Accordingly, the

price-earnings ratio reveals much information about other unobservable key quantities

in �nance such as the consumption-to-wealth ratio, the real interest rate level and its

conditional volatility, the conditional stock price volatility, the market price of risk and

the equity premium.
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1.5 Appendix

Proof of Proposition 1.1 & 1.2. Following Du¢ e and Skiadas (1994, Theorem 2),

the Gateau derivative (directional derivative) of the utility function at time s at c in

the direction x is

rVs (c;x) � lim
�!0

Vs (c+ �x)� Vs (c)

�
(1.24)

= Es

�Z 1

s

e
R t
s

@
@Vu

f(cu;Vu;Zu;�u)du
@

@ct
f (ct; Vt; Zt; �t)xdt

�
= Es

�Z 1

s

Rtxdt

�

The Riesz representation process Rt is de�ned as

Rt = e
R t
s

@
@Vu

f(cu;Vu;Zu;�u)du
@

@ct
f (ct; Vt; Zt; �t) (1.25)

Optimality implies (assuming that the optimal consumption plan c� is in the interior)

rVs (c�; [c� c�]) = 0 (1.26)

for all admissible consumption plans c 2 =. Since
�
cs � cs

��
spans the set of all mar-

ketable cash �ows M ,

rVs (c�;x) = 0 (1.27)

holds for all marketable cash �ows x 2 M . This implies that the Riesz representation

process is a multiple of a SDF �,

Rt = ��t (1.28)

for some constant �. Since markets are dynamically complete, the found pricing kernel

is unique. I can solve for the optimal consumption plan by plugging in the expression

for the Riesz representation process (from now I drop the notation of indicating the
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optimum by a star)

��t = e
R t
s

@
@Vu

f(cu;Vu;Zu;�u)du
@

@ct
f (ct; Vt; Zt; �t) (1.29)

ct = ��
1

1��Z
1

1��
t e

1
1��

R t
�1

@
@Vu

f(cu;Vu;Zu;�u)du [(1� )Vt]
1���

(1�)(1��) �
� 1
1��

t (1.30)

ct
cs

=

�
Zt
Zs

� 1
1��

e
1

1��
R t
s

@
@Vu

f(cu;Vu;Zu;�u)du

�
Vt
Vs

� 1���
(1�)(1��)

�
�t
�s

�� 1
1��

(1.31)

Using dynamic programming to solve the utility maximization problem, I can state the

Hamilton-Jacobi-Bellman equation as follows

0 = sup
fct;Xtg

ff (ct; V (W;Z; �; t) ; ; Zt; �t) dt+ Et [dV (W;Z; �; t)]g (1.32)

with W indicating the �nancial wealth. The �rst order condition with respect to

optimal consumption is given by

@

@ct
f (ct; V (W;Z; �; t) ; Zt; �t) =

@

@W
V (W;Z; �; t) (1.33)

I make the following conjecture for the value function

V (W;Z; �; t) =
(Wt)

1�

1� 
Z

1�
�

t  t (Zt; �t)
� (1�)(1��)

� (1.34)

Plugging the conjectured value function into the FOC yields

ct = Wt t (1.35)

Plugging back into the conjectured value function and solving for ct, allows us to rewrite

the expression for optimal consumption as

ct = [(1� )Vt]
1

(1�)  
1
�

t Z
� 1
�

t (1.36)
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Combining this with the expression obtained from the martingale approach (equation

(1.30)) and solving for the value function leaves us with

Vt =
1

1� 
��

1�
 e

1�


R t
�1

@
@Vu

f(cu;Vu;Zu;�u)duZ
1�
�

t  
� (1�)(1��)

�

t �
� 1�



t (1.37)

@
@Vt
f (ct; Vt) is a function of only �, and it is a Markov process,

@

@Vt
f (ct; Vt; Zt; �t) =

1�  � �

�
Ztc

�
t [(1� )Vt]

��
1� � 1� 

�
�t (1.38)

=
1�  � �

�
 t �

1� 

�
�t

Solving for optimal consumption yields

ct = ��
1
 e

1


R t
�1

1���
�

 u�
1�
�
�uduZ

1�
�

t  
� 1���

�

t �
� 1


t (1.39)

ct
cs

= e
1


R t
s
1���
�

 u�
1�
�
�udu

�
Zt
Zs

� 1�
�
�
 t
 s

�� 1���
�

�
�t
�s

�� 1


(1.40)

The dynamics of the utility function are given by

dVt
Vt

=
1� 



@

@Vt
f (ct; Vt; Zt; �t) dt+

1� 

�

dZt
Zt

(1.41)

+
(1� ) (1�  � �)

22�2

�
dZt
Zt

�2
� (1� )2

2�

dZt
Zt

d�t
�t

�(1� )2 (1� �)

2�2
dZt
Zt

d t
 t

� (1� ) (1� �)

�

d t
 t

+
(1� )2 (1� �)

2�

d t
 t

d�t
�t
� 1� 



d�t
�t
+
1� 

22

�
d�t
�t

�2
+
(1�  � �+ 2�) (1� ) (1� �)

22�2

�
d t
 t

�2
By de�nition the drift term of the value function equals �f (ct; Vt; Zt; �t) dt, which

boils down to a ODE determining the function  t (�) and at the same time veri�es my
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conjecture about the value function (given a solution for the stated ODE exists)

0 =
1� �

�
 t �

�t
�
+
1

�

1

dt
Et

�
dZt
Zt

�
+
1�  � �

2�2
1

dt

�
dZt
Zt

�2
(1.42)

�(1� ) (1� �)

�2
1

dt

dZt
Zt

d t
 t

� 1� 

�

1

dt

dZt
Zt

d�t
�t

�1� �

�

1

dt
Et

�
d t
 t

�
� 1

dt
Et

�
d�t
�t

�
+
(1� ) (1� �)

�

1

dt

d t
 t

d�t
�t
+
1

2

1

dt

�
d�t
�t

�2
+
(1�  � �+ 2�) (1� �)

2�2
1

dt

�
d t
 t

�2
The last step is equivalent to solving the HJB equation. I can use expression (1.39) to

get the dynamics of the optimal consumption process

dct
ct

=
1�  � �

�
 tdt�

1� 

�
�tdt+

1� 

�

dZt
Zt

� 1�  � �

�

d t
 t

(1.43)

�1


d�t
�t
+
(1� ) (1�  � �)

22�2

�
dZt
Zt

�2
+
1 + 

22

�
d�t
�t

�2
+
(1�  � �) (1� ) (1� �)

22�2

�
d t
 t

�2
+
1�  � �

2�

d t
 t

d�t
�t

�(1�  � �) (1� )

2�2
dZt
Zt

d t
 t

� 1� 

2�

dZt
Zt

d�t
�t

Setting equation (1.43) and using the market clearing condition in the consumption

goods market dYt = dct and solving for the SDF

d�t
�t

= � dYt
Yt
+
1�  � �

�
 tdt�

1� 

�
�tdt+

1� 

�

dZt
Zt

(1.44)

�1�  � �

�

d t
 t

+
(1� ) (1�  � �)

2�2

�
dZt
Zt

�2
+
(1�  � �) (1� ) (1� �)

2�2

�
d t
 t

�2
+
1 + 

2

�
d�t
�t

�2
�1� 

�

dZt
Zt

d�t
�t
+
1�  � �

�

d t
 t

d�t
�t

�(1�  � �) (1� )

�2
dZt
Zt

d t
 t
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Plugging into equation (1.42) yields an ODE that determines  t (�)

0 =
1� �

�
 t �

�t
�
+ rt �

1� �

�

�
( )
t

 t
+
�
(Z)
t

�Zt
+


2
�(Y )

�
�(Y )

�T
(1.45)

�(1� ) (1� �)

�2
�
( )
t

 t

 
�
(Z)
t

Zt

!T

+
1�  � �

2�2
�
(Z)
t

Zt

 
�
(Z)
t

Zt

!T

��(Y )
 
�
( )
t

 t

!T

+
1�  � �+ 2�

2�2
�
( )
t

 t

 
�
( )
t

 t

!T

or

 t = �t � �
1

dt
Et

�
dYt
Yt

�
+
�
( )
t

 t
(1.46)

+
�

2
�(Y )

�
�(Y )

�T � 1�  + �

2�

�
( )
t

 t

 
�
( )
t

 t

!T

�1�  � �

2�
�(Z)

�
�(Z)

�T
+ (1� )�(Y )

 
�
( )
t

 t

!T

� (1� )�(Y )
�
�(Z)

�T
+
1� 

�

�
( )
t

 t

�
�(Z)

�T
with

�
( )
t =

@ t
@�t

�
(�)
t +

1

2

@2 t
@�2t

�
(�)
t �

(�)T

t (1.47)

�
( )
t =

@ t
@�t

�
(�)
t (1.48)

which proves Proposition 1.1. Plugging back into equation (1.44), Proposition 1.2

follows from the de�nition of the SDF
�
d�t
�t
= �rtdt� �tdfWt

�

rt = �t + (1� �)�(Y ) �  (2� �)

2
�(Y )�(Y )

T

(1.49)

+
1�  � �

2�

�
( )
t

 t

 
�
( )
t

 t

!T

� 1�  � �

2�
�(Z)

�
�(Z)

�T
�1�  � �

�
�(Y )

 
�
( )
t

 t

!T

+
(1� ) (1� �)

�
�(Y )

�
�(Z)

�T
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�t = �
(Y )
t + �

(Z)
t + �

(�)
t (1.50)

�
(Y )
t = �(Y )

�
(Z)
t = �1� 

�
�(Z)

�
(�)
t =

1�  � �

�

�
( )
t

 t

with the dynamics

drt = �
(r)
t dt+ �

(r)
t dfWt (1.51)

= d�t +
1�  � �

2�
�(�)

�
�(�)

�T d ('2t )
'2t

� 1�  � �

�
�(Y )

�
�(�)

�T d't
't

d�t = �
(�)
t dt+ �

(�)
t dfWt (1.52)

=
1�  � �

�
�(�)

d't
't

where

d't
't

=

 
 t

@2 
@�2

� @ 
@�

 t
@ 
@�

+
(�H � �t)� (�t � �L)

2 (�H � �t) (�t � �L)

!
d�t (1.53)

+

0BBB@
 2t

@3 

@�3
�2
�
 t

@2 

@�2
� @ 
@�

�
 2t

@ 
@�

� (�H��L)2

4(�t��L)2(�H��t)2

+

�
 t

@2 

@�2
� @ 
@�

�
((�H��t)�(�t��L))

 t
@ 
@�
(�t��L)(�H��t)

1CCCA d�t (d�t)
T

d ('2t )

'2t
= 2

d't
't

+
d't
't

�
d't
't

�T
(1.54)

Finally, using equation (1.17) together with equation (1.50) the equity premium is given

by

Et

�
dPt +Dtdt

Pt

�
� rtdt = �(Y )

�
�(Y )

�T � 1�  � �

�

�
( )
t

 t

 
�
( )
t

 t

!T

(1.55)

+
1�  � �� �

�
�(Y )

 
�
( )
t

 t

!

�1� 

�

 
�(Y ) � �

( )
t

 t

!�
�(Z)

�T

44



Proof of Lemma 1.1. Suppose
����(Y )+ �

2
�(Y )�(Y )

T� 1���
2�

�(Z)�(Z)
T�(1�)�(Y )�(Z)T

m(�) > 0.

For �(�) ! 0 and (�H � �L) <1 the ODE (1.9) becomes

0 = � t + �t +

@ t
@�t
m(�)

�
� � �t

�
 t

+ C1 (1.56)

with C1 = ���(Y ) + �
2
�(Y )�(Y )

T � 1���
2�

�(Z)�(Z)
T � (1� )�(Y )�(Z)

T

. The solution of

the ODE  t (�) is 8�t 2
�
�L; �

�
 t (�t) = e

�t

m(�)
�
� � �t

��+C1
m(�)

1

C2 +
R �
�t
e

h

m(�)
(��h)

�+C1

m(�)

m(�)(��h)
dh

(1.57)

and 8�t 2
�
�; �H

�
 t (�t) = e

�t

m(�)
�
�t � �

��+C1
m(�)

1

C2 +
R �t
�
e

h

m(�)
(h��)

�+C1

m(�)

m(�)(h��)
dh

(1.58)

with some constant C2. Note that for C2 = 0,  t
�
�t = �

�
= � +C1. I show this using

L�Hopital�s rule as follows

 t
�
�t = �

�
= lim

�t#�
 t (�t) = lim

�t"�
 t (�t) (1.59)

= lim
�t"�

@

0@e �t

m(�) (���t)
�+C1

m(�)

1A
@�t

@

0B@C2�R �t
�

e
h

m(�)
(��h)

�+C1

m(�)

m(�)(��h)
dh

1CA
@�t

= lim
�t"�

1
m(�) e

�t

m(�)
�
� � �t

��+C1
m(�) � �+C1

m(�) e
�t

m(�)
�
� � �t

��+C1
m(�)

�1

�e
�t

m(�)
(���t)

�+C1

m(�)

m(�)(���t)

= � + C1

And for C2 6= 0,  t
�
�t = �

�
= 0, which is not an economically meaningful quantity.

Moreover, given the mean-reversion property of the process �, I know that limt!1 �t =

�, and �t is absorbed at � as soon as �t reaches � (since �
(�) ! 0). At the point
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�t = �, the model coincides with a standard Lucas (1978) economy with constant time

preferences �, for which the solution of the consumption-to-wealth ratio is well-known,

that is  = �+C1. Note that for C2 = 0, the function  t (�t) is continuous everywhere

(8�t 2 (�L; �H)). Next, I solve equation (1.56) for
@ t
@�t

@ t
@�t

= ( t � (�t + C1))
 t

m(�)
�
� � �t

� (1.60)

@ t
@�t

> 0 i¤  t (�t) > (<) �1 + C1 for �t < (>) �, and
@ t
@�t

< 0 i¤  t (�t) < (>) �t + C1

for �t < (>) �. Suppose now that  t
�b�t� � b�t+C1 for some b�t 2 ��L; ��. Then since

@ t
@�t
j�t=b�t � 0 and thus,

 t

�b�t + "
�
�  t

�b�t� (1.61)

� b�t + C1

< b�t + "+ C1

for " # 0, it must be (by iteration) that  t
�bb�t� <

bb�t + C1, 8bb�t 2 �b�t; ��, and
lim�t"�  t (�t) < � +C1, a contradiction to  t

�
�t = �

�
= � +C1 (in combination with

continuity of  t (�t)). Suppose next that  t
�b�t� � �+C1 for some b�t 2 ��L; ��. Then

since @ t
@�t
j�t=b�t > 0 and thus,

 t

�b�t + "
�

>  t

�b�t� (1.62)

� � + C1

for " # 0, it must be (by iteration) that  t
�bb�t� > � + C1, 8bb�t 2 �b�t; ��, and

lim�t"�  t (�t) > � +C1, a contradiction to  t
�
�t = �

�
= � +C1 (in combination with

continuity of  t (�t)). It follows that (in order to attain  t
�
�
�
= lim�t"�  t (�t) =

� + C1) it must be that  t (�t) 2
�
�t + C1; � + C1

�
, 8�t 2

�
�L; �

�
, and thus, @ t

@�t
> 0,

8�t 2
�
�L; �

�
. Accordingly,  t (�t) is increasing in �t, 8�t 2

�
�L; �

�
and will approach

� + C1 as �t ! � (lim�t"�  t (�t) = � + C1). Suppose further that  t
�b�t� � b�t + C1
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for some b�t 2 ��; �H�. Then since @ t
@�t
j�t=b�t � 0 and thus,

 t

�b�t + "
�
�  t

�b�t� (1.63)

� b�t + C1

> b�t + "+ C1

for " " 0, it must be (by iteration) that  t
�bb�t� >

bb�t + C1, 8bb�t 2 �
�; b�t�, and

lim�t#�  t (�t) > � +C1, a contradiction to  t
�
�t = �

�
= � +C1 (in combination with

continuity of  t (�t)). Finally, suppose that  t
�b�t� � � + C1 for some b�t 2 ��; �H�.

Then since @ t
@�t
j�t=b�t > 0 and thus,

 t

�b�t + "
�

<  t

�b�t� (1.64)

� � + C1

for " " 0, it must be (by iteration) that  t
�bb�t� <

bb�t + C1, 8bb�t 2 �
�; b�t�, and

lim�t#�  t (�t) < � +C1, a contradiction to  t
�
�t = �

�
= � +C1 (in combination with

continuity of  t (�t)). Accordingly, (in order to attain  t
�
�
�
= lim�t#�  t (�t) = �+C1)

it must be that  t (�t) 2
�
� + C1; �t + C1

�
, 8�t 2

�
�; �H

�
, and thus, @ t

@�t
> 0, 8�t 2�

�; �H
�
. Thus,  t (�t) is increasing in �t, 8�t 2

�
�; �H

�
and will approach � + C1 as

�t ! � (lim�t#�  t (�t) = � + C1). Hence, there exists a  t (�t) which is continuous

and monotonically increasing in �t;8�t 2 (�L; �H).
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Chapter 2

Asset Pricing Implications of

Demographic Change

Abstract

An overlapping generations (OLG) model featuring demographic uncertainty (stochas-

tic changes in birth and death rates) is solved in general equilibrium. Given a moderate

level of relative risk aversion (RRA) and a low enough elasticity of intertemporal sub-

stitution (EIS), the interest rate is decreasing in the birth rate and increasing in the

death rate. If agents have recursive preferences, demographic uncertainty is priced in

�nancial markets. The market price of risk and the equity premium are time varying

and under certain conditions they are higher during periods characterized by a high

birth rate (baby boom) and low mortality than in times of a low birth rate and a high

death rate. Demographic changes appear to explain substantial parts of the time vari-

ation in the real interest rate, the market price of risk and the equity premium. Due

to demographic uncertainty the conditional volatility of stock returns is stochastically

changing over time and the unconditional volatility of asset returns is substantially

larger than the unconditional variation in aggregate consumption growth.
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2.1 Introduction

In the developed world there is a substantial demographic transition in progress (large

increase in the retiree-to-worker ratio) caused by the post World War II baby boom in

conjunction with declining mortality rates. The demographic change is likely to have a

signi�cant impact on the global economy, including GDP growth prospects, government

policies, the solvency of social security systems, and �nancial markets.

I explore how optimal consumption decisions and asset prices are a¤ected by demo-

graphic transitions and by uncertainty about the timing of future demographic changes.

The focus lies on the time variation in the �rst two moments of �nancial asset returns.

I solve in general equilibrium an analytically tractable OLG model featuring sto-

chastically changing birth and mortality rates. In contrast to the literature, I model

births and deaths as Poisson events and in my model stochastic changes in birth and

death rates have no e¤ect on the instantaneous variation in the population size, labor

supply and aggregate production output. Instead, ignoring total factor productivity

(TFP) shocks for now, population and production output growth are locally deter-

ministic processes (zero quadratic variation). More important, a shock to the birth or

the death rate implies a redistribution of aggregate consumption within the population

(across cohorts). The consumption distribution in the population is essential because

pricing depends solely on consumption growth of existing agents in an OLG model.1

But, because changes in the population size are perfectly predictable over a small in-

stant in time, shifts in the consumption distribution are also perfectly forecast over a

short horizon. Demographic shocks do not add any instantaneous risk, but only long

run risk - shocks to the expected growth rate in consumption of existing agents - to the

economy.

A smooth growth in the population size, as found in the model, is close to what we

observe in the real world. In reality, birth and death rates are subject to unpredictable

changes, but in the short run the population grows gradually and growth is highly

predictable.

In my theoretical model the interest rate is decreasing in the birth rate and increas-

1Existing agents are agents which were already alive at time t and survive over the next dt time
period.
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ing in the death rate, given a moderate level of RRA and a small enough EIS. The key

driving forces for the result are the following. A high birth rate implies an expectation

for large new born cohorts to enter the economy in future. A large new born cohort

claims a big share of aggregate consumption and growth in consumption of existing

agents is expected to be moderate. A small growth in consumption of existing agents

corresponds to a low interest rate in equilibrium. It is important to understand that

the main driving force is not the change in expected aggregate consumption growth

but the shift in the distribution of aggregate consumption within the population (from

existing agents to the new born cohort), which results in a drop in the existing agents�

expected consumption growth rate and a decline in the interest rate.

In contrast, a high death rate implies a short life expectancy, a high discount of

future utility and few savings. Accordingly, the interest rate is high. In addition,

aggregate consumption has to be split among only few survivors, if the death rate is

high, and the consumption growth of existing agents is large. In equilibrium, this also

corresponds to a high interest rate.

Because birth and death rates a¤ect the interest rate through di¤erent channels,

they have to be modelled separately and not as one general state variable that deter-

mines total population growth or the average age of the population.

The stock price volatility exceeds the variation in aggregate consumption growth

because of demographic uncertainty. Stock prices respond to demographic changes

through di¤erent channels. First, expected growth in labor supply, production output

and dividends are sensitive to birth and death rate changes (Barsky and De Long

(1993)). Second and more important, demographic changes have a similar e¤ect on the

discount rate of stocks as on the real interest rate. Because stock prices incorporate

information about changes in future dividend growth and the discount rate, there is an

instantaneous volatility in stock prices due to demographic uncertainty. In my model,

uncertainty in the distribution of consumption within the population - which is the

responsible channel for changes in the discount rate - is the major source for volatility

in �nancial markets rather than stochastic changes in the expected production growth

rate.

If agents maximize utility functions of the power utility family, then an immediate
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implication of a locally deterministic consumption process (no instantaneous shocks

to consumption growth) is that the stochastic discount factor (SDF) has no quadratic

variation. As demographic uncertainty adds (only) long run risk to the economy, it has

an impact on the interest rate and the stock price volatility but the equity premium is

not a¤ected.

In the case of recursive utility, pricing depends on the covariation of asset returns

and instantaneous and future consumption growth (Bansal and Yaron (2004)). The

variation in the current consumption-to-wealth ratio is a su¢ cient statistic for the vari-

ation in future consumption growth. As the consumption-to-wealth ratio is a function

of the interest rate and time discounting of future utility, it instantaneously responds

to changes in birth and death rates. Accordingly, demographic uncertainty induces a

covariation between stock returns and the consumption-to-wealth ratio, and is priced

in �nancial markets. The equity premium is time varying and I provide conditions that

su¢ ce for it to be positive and increasing in the birth rate and decreasing in the death

rate.

In contrast to other long run risk models, in my analysis shocks to future consump-

tion growth of existing agents are not triggered by shocks to expected production (or

aggregate consumption) growth but by shocks to the allocation of aggregate consump-

tion to the new born generation versus existing agents. In other words, the redistribu-

tion risk of the aggregate endowment between the new born cohort and existing agents

is the main channel of pricing rather than long run risk in production output. This also

implies that pricing of demographic uncertainty works mostly through the channel of

shocks to the discount rate rather than stochastic changes in future expected dividend

growth.

My model suggest that demographic changes explain substantial parts of the time

variation in the interest rate, the market price of risk and the equity premium. A

large body of empirical literature explores stock return predictability. Returns are

found to be more predictable at low frequencies than over the short run, and most of

the predictable variation is due to variation in discount rates rather than changes in

expected dividend growth (e.g. Keim and Stambaugh (1986), Fama and French (1988a,

1988b), Ammer and Campbell (1993), Goetzman and Jorion (1993), and Cochrane
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(2011) as a summary). Moreover, Ferson and Harvey (1991) suggest that time variation

in the market price of risk rather than time variation in the exposure of a stock to

systemic risk is the driving force causing a time variation in discount rates. According

to my qualitative and quantitative results, these facts may be explained (partly) by

demographic changes.

My qualitative and quantitative results require preferences with a low EIS, which is

consistent with a large body of empirical literature.2 Hall (1988), Campbell andMankiw

(1989), Yogo (2004), and Pakos (2007) use aggregate consumption and �nancial data

to estimate the EIS from the Euler equation in a representative agent model. They get

estimates close to zero. Vissing-Jorgensen (2002) disentangles asset holders from non-

asset holders and estimates an EIS coe¢ cient of 0.3 for stockholders. Her estimates

are noisy and not signi�cantly di¤erent from zero. Hasanov (2007) and Bonaparte

(2008) use household-speci�c consumption and portfolio choice data to take account

for heterogeneity. They get an EIS of about 0.25, but the noise of the estimates is not

negligible and much lower levels of the EIS are possible.
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Figure 2.1: Left panel: Real interest rate in USA (red line), and implied interest rate
from regression results and observed birth and death rates (black line). Right panel: 10
year averages of US stock market excess returns (red line), and implied equity premium
from regression results and observed birth and death rates (black line).

According to the model changes in birth and death rates matter for asset pricing

behind the e¤ects on the interest rate. The interest rate is not a "su¢ cient statistic"
2Mostly I also require RRA > 1 but not too large, which is an unproblematic assumption.
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that summarizes asset pricing implications of demographic changes. I illustrate this

result empirically in �gure 2.1 (details are in the appendix). Consistent with my qual-

itative results, a linear regression analysis suggests that the real interest rate depends

negatively on the birth rate and positively on the death rate. Stock market excess

returns are positively related to the birth rate and negatively related to the mortality

rate. The picture suggests a strong relation between the demographic and �nancial

quantities. Before the mid 1970�s the relation appears stronger than in recent years.

A weaker link in recent times might be explained by the increasing globalization in

�nancial markets (Geanakoplos et al. (2004)).

Most related literature asks how retirement of the baby boomers a¤ects asset prices.

The focus lies on models with perfectly predictable baby boom and bust "cycles". In

the long run there is a time variation in asset returns as baby boomers proceed through

the life-cycle and the "average savings behavior" across the population slowly and

predictably changes.

Empirical studies suggest that in the long run asset prices, price/dividend ratios, the

interest rate and equity premia are linked to various demographic quantities (Mankiw

and Weil (1989), Bakshi and Chen (1994), Erb, Harvey and Viskanta (1997), Porterba

(2001), Geanakoplos et al. (2004), Goyal (2004), Ang and Maddaloni (2005), Huynh et

al. (2006), Tamoni et al. (2007), Acemoglu and Johnson (2007), Hanewald (2010) and

Takats (2010)). Calibrations by Brooks (2000, 2004) and Geanakoplos et al. (2004)

suggest that predictable baby booms and busts cause the interest rate and equity prices

to vary over time as the baby boomers live through the life-cycle. Most of the results

are driven by the assumption that consumption-to-wealth ratios di¤er across cohorts

because agents face a �xed lifetime horizon. Abel (2003) shows in an analytically

tractable model that the price of a unit of capital is increasing in the birth rate and

follows a mean reverting process. Unfortunately, the risk free rate and the equity

premium cannot be disentangled in his model. Auerbach and Kotliko¤(1987), Kotliko¤,

Smetters andWalliser (2001), Fehr et al. (2003), and Fehr, Jokisch and Kotliko¤(2004a,

2004b) use dynamic general equilibrium simulation models to explorer the possible

impact of deterministic trends in birth and death rates on long run economic and �scal

conditions.
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I take a di¤erent approach and ask how the uncertainty about future demographic

shocks a¤ect asset pricing. Recursive preferences are crucial for demographic uncer-

tainty to be priced in �nancial markets and present a novel channel that introduces a

time variation in the interest rate and the equity premium. Another key contribution

is the tractability of the model which allows me to derive qualitative results about

the implications of demographic changes on the level of and the time variation in the

interest rate and the equity premium.3 I am able to distinguish various (o¤setting)

channels through which asset returns are a¤ected by birth and death rates, and for

di¤erent preference parameter regions I can prove which channel is dominant. My

calibration exercise replicates part of the (in US data) observed time variation in the

interest rate and stock market excess returns, and the results are consistent with my

empirical �ndings displayed in �gure 2.1.

The paper is organized as follows. The next section describes the model. In the

following I present my results in three steps. First, I discuss the simplest version of the

model with constant birth and death rates and use comparative statics analysis to gain

a �rst intuition about the dynamics in my model. Second, I proof that the intuition

from the constant case carries over to a dynamic two state Markov switching model and

derive further qualitative results. Third, I generalize the model to include TFP shocks

and Brownian uncertainty and numerically illustrate the possible quantitative impact

of my analytical results. Finally, I discuss limitations and extensions of my model and

conclude.

2.2 The Economy

2.2.1 Demographics and Uncertainty

I consider an OLG model in continuous time that generalizes the Blanchard (1985)

model. I disentangle birth and death rates and let them change stochastically over

time.
3A key di¤erence in my model to the previous literature is the assumption of age-independent

mortality. This is essential to keep the model analytical tractable and has the advantage to isolate my
results from the �ndings in previous literature. The results in Brooks (2000, 2004) and Geanakoplos et
al. (2004) are mainly driven by the fact that an agent�s "life expectancy" is decreasing in age. Thus,
my results should be viewed as a complement to previous �ndings rather than as a substitute.
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The economy is populated with a continuum of agents of measure Nt. The birth

rate is denoted by nt and the new born cohort at time t is of the size ntNtdt.4 Each

agent faces an instantaneous probability of death �tdt. Conditional on being alive at

time t1, an agent�s survival probability until time t2 > t1 is e
�
R t2
t1
�vdv. To keep the

model tractable, I do not allow for heterogeneity in the arrival rate of death. Imposing

mortality rates to be age-independent is restrictive and counterfactual, but it is a

small price to pay when one is interested in the common time variation in death rates.

According to the much celebrated Lee and Carter (1992) approach, time variation in

(age speci�c) death rates is mostly due to one (across cohorts) common stochastic time

component.5 The main general equilibrium implication of age-independent mortality

is that the marginal propensity to consume is independent of age. Arguably the most

interesting life-cycle e¤ects on (age-dependent) consumption and savings behavior do

not come from the time variation in the marginal propensity to consume but from the

hump-shaped pattern of earnings over the life-cycle, and my model accounts for this

feature.

Timing of death is uncertain to the individual, but on the aggregate the size of a

cohort declines non-stochastically over the next instant of time because the economy

is populated by a continuum rather than a �nite number of agents. The size of cohort

s (agents born at time s) shrinks to nsNse
�
R t
s �vdvds until time t > s. The population

size is Nt =
R t
�1 nuNue

�
R t
u �vdvdu = Nse

R t
s nv��vdv.6 dNt

Nt
= (nt � �t) dt is a term in

only dt, and population size Nt follows a locally deterministic process (zero quadratic

variation).

In the USA the crude birth rate (denoted by nt in the model) declined from about

3% in 1910 to 1.5% in 2006. Annual changes are subject to a standard deviation of 3.8%

(unconditionally), and shocks appear to be persistent (the current birth rate level is a

good predictor of next year�s level). In addition to "short term" uncertainty (annual

volatility), there are major "long term" transitions. Statistics from other developed

4The instantaneous probability of an existing agent to give birth to a new agent at time t is ntdt.
5The Lee and Carter (1992) model is widely used in demographic research and has also gained

much attention in other �elds of research. In asset pricing and household �nance literature many
papers employ it (Cox et al., 2006; Chen and Cox, 2009; Cocco and Gomes, 2009; DeNardi et al.,
2009; Maurer, 2011; Hanewald and Post, 2010).

6I need the technical assumption that the economy already exists for an in�nite amount of time.
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Birth Rate and Stochastic Time Component in Death Rates (in %)
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Figure 2.2: Top-left panel: Crude birth rate (in %) in the USA from 1910 until 2006.
Source: Department of Health and Human Services, National Center for Health Sta-
tistics, USA; and The Human Mortality Database, University of California, Berkeley
and Max Planck Institute for Demographic Research. Top-right panel: Lee and Carter
(1992) model output (in %) for US mortality data from 1900 to 2006 provided by
National Center for Health Statistics. Estimation of common stochastic time compo-
nent across generations. Bottom-left panel: Percentage changes in crude birth rate.
Bottom-right panel: Percentage changes in common stochastic time component of Lee
and Carter (1992) model estimation.
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countries reveal similar patterns. Mankiw and Weil (1988) also illustrate the uncer-

tainty in the birth rate process and the di¢ culty the USA census bureau has to forecast

the future evolution of the birth rate (�gure 2 in their paper).

The US central death rate over all ages (denoted by �t in the model) is mostly

decreasing and changes are subject to a yearly unconditional standard deviation of

5.1%. Shocks to the death rate are persistent (cf. Lee and carter (1992)). US population

statistics are representative for the developed world with the exception that many

European countries su¤ered more from the two world wars than the USA.

2.2.2 Production

The supply side in the consumption goods market is constituted by a representative

�rm which is endowed with capital stock Kt and has access to a technology described

by a Cobb-Douglas production function Yt = At (Gt)
a (Kt)

1�a. At denotes TFP, Gt

the employed amount of labor, and Yt determines the quantity of consumption goods

produced by the �rm. Except for the last section, I assume At to grow at an exogenously

given (deterministic) rate dAt
At

= �(A)dt, and there are no stochastic TFP shocks for

illustrative purposes. The �rm is assumed to not face any economic decision, and

I presume for the capital stock Kt a deterministic growth path according to dKt
Kt

=

�(K)dt.7

I assume full employment in the economy. An agent born at time s supplies G (s; t)

labor e¢ ciency units at time t. To match the hump-shaped pro�le of life-cycle earn-

ings in Hubbard et al. (1993), I let G (s; t) =
P2

i=1Bie
��i

R t
s nudu with the techni-

cal assumption of �i > �1.8 G (s; t) generates the desired hump-shape pattern if

B1 > jB2j > B2 and �1 < �2. For some derivations I use a simpler speci�cation

with B2 = 0 (or �1 = �2). Aggregation yields the total amount of labor e¢ ciency

units employed by the �rm, Gt =
R t
�1G (s; t)nsNse

�
R t
s �ududs = Nt

P2
i=1

Bi
1+�i

. Gt is

7No economic decision in the sense that the �rm does not invest, employs all supplied labor at a
competitive wage equal to the marginal productivity of labor, and pays out all remaining earnings as
dividends. Capital growth is understood as a byproduct of production (for free) as is technological
progress. I may set �(K) = 0 without altering any of my results.

8�i > �1 must hold in order to ensure aggregate supply of labor to stay �nite, jGtj =���R t�1G (s; t)nsNse� R ts �ududs��� < 1. See also Garleanu and Panageas (2010) for a similar speci�-
cation.
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Labor E¢ ciency Units over the Life-cycle, G (s; t)
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Figure 2.3: Double exponential function G (s; t) =
P2

i=1Bie
��i

R t
s nudu with the parame-

terisation (B1; B2; �1; �2) = (31:25;�30; 2:65; 2:95) (left panel), and (B1; B2; �1; �2) =
(1:75; 0; 1:3; 0) (right panel).

locally deterministic, dGt
Gt

= (nt � �t) dt, but has long run risk inherent. The sup-

ply of consumption goods follows a locally deterministic process with the growth rate
dYt
Yt
= �

(Y )
t dt =

�
�(A) + (1� a)�(K) + a (nt � �t)

�
dt.

Labor is paid according to its marginal productivity, yt = a Yt
Gt
. An agent of cohort

s earns in exchange for his labor yst = aYt
G(s;t)
Gt
. The �rm does not invest and pays the

remaining fraction of output, (1� a)Yt as dividends Dt to the shareholders of the �rm.

2.2.3 Financial Markets: Equity, Bond, and Insurance

Financial markets are assumed to be dynamically complete.9 � denotes the (unique)

SDF in the economy and is determined in equilibrium. Agents are born without any

�nancial wealth but are endowed with labor. Financial wealth at time t of an agent

of cohort s is denoted by W s
t , and cW s

t describes total wealth (�nancial and human

wealth). An agent of cohort s consume cst and allocates the remaining part of his

�nancial wealth to equities and bonds. Equities are claims on the stream of dividends

Dt paid out by the representative �rm. The price of an equity is denoted by Pt. The

supply of equities is normalized to one. Xs
t denotes the number of equities purchased

9This assumption is satis�ed given equity, bond and annuity contracts as long as there is only one
source of uncertainty, i.e. either the birth rate or the death rate is stochastic. In the general case
where both rates are characterised as random processes I implicitly suppose the existence of further
contracts that dynamically complete �nancial markets. My focus lies on equity, bond and annuity
markets only.
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by an agent of cohort s.10 Bonds are instantaneously risk free and pay interest rt.

Bonds are in zero supply. The part of an agent�s �nancial wealth that is not used to

buy stocks, (W s
t �Xs

t Pt) is invested in bonds.

Agents have access to annuity contracts supplied by a large, competitive insurance

company as in Blanchard (1985). A claim (long position) on an insurance contract pays

o¤as follows: if the agent survives the next time period dt he receives the premium �tdt

from the insurer, and if he dies he pays 1. Agents have an incentive to fully annuitize

because their objective functions are strictly increasing in consumption and they do

not draw utility from bequest. The insurer breaks even almost surely (earnings and

liabilities coincide).

2.2.4 Agents�Objective Functions and Budget Constraints

An agent�s �nancial wealth W s
t evolves according to the dynamics

dW s
t = W s

t �tdt| {z }
insurance premium

+ W s
t rtdt| {z }

risk free return

+Xs
t (dPt +Dtdt� Ptrtdt)| {z }
stock market excess return

+ ystdt|{z}
labor income

� cstdt|{z}
consumption

(2.1)

with the initial condition W s
s = 0. As in Blanchard (1985) I impose the transversality

condition (given the agent is still alive at time u) limu!1 e
�
R u
s �vdv �u

�s
W s
u = 0. This

ensures that agents do not borrow without limit, accumulate an in�nite amount of

debt, and protect themselves by buying annuity contracts.

The set of feasible cash �ows is (M + ys +W s
s ) �

n
xs : F

(�)
s (xs � ys)�W s

s 2M
o
.

F
(�)
s is a discount function such that F (�)s (xt) = e�

R t
s �uduxt, andM denotes the set of all

marketable cash �ows.11 The set of admissible cash �ows is = � (M + ys +W s
s )\L+.

L+ includes all non-negative processes adapted to FP (�ltration generated by asset

prices). An agent�s consumption process cs has to be an element of the set of admissible

cash �ows =.

Agents are assumed to feature homogeneous preferences and the only heterogeneity

in the model is timing of death and wealth between agents across cohorts (but not within

10To do not permit arbitrage opportunities I restrict trading activities according to the standard

technical assumption Xst Pt
W s
t
2 L2, where L2 �

n
x 2 L j

R T
0
x2tdt <1 a:s:

o
and L is the set of

processes adapted to the �ltration FP generated by asset prices, FPt � � fPs : s � tg
11A cash �ow is marketable if it is �nanced by a trading strategy Xs 2 L2.
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the same cohort). Preferences are described by a stochastic di¤erential utility function

of the Kreps and Porteus (1978) type introduced by Du¢ e and Epstein (1992a, 1992b).

Following Du¢ e and Epstein (1992a) and adding the feature of lifetime uncertainty

(for the formal derivation see the appendix), the utility speci�cation is

V s
t = Et

�Z 1

t

f (csu; V
s
u ) du

�
(2.2)

with the aggregator function f (:) given by

f (csu; V
s
u ) =

� (csu)
� �

�
� + �

1��u

�
[(1� )V s

u ]
�

1�

� [(1� )V s
u ]

�
1��1

(2.3)

The term 1
1�� equals the IES,  controls risk aversion, and � speci�es time discounting.

The term �
1��u discounts future utility due to risk aversion towards uncertainty

about the timing of death. Intuitively, the probability of dying early creates an in-

centive to save less than an in�nitely-lived agent (or an agent with a �xed lifetime)

because there is no bequest motive. In contrast, the possibility of surviving longer than

life expectancy (state of high marginal utility) creates an incentive for precautionary

savings. The former intuition corresponds to a positive discount of utility from future

consumption, while the latter one implies that the agent cares relatively more about

future consumption. It depends on the preference parameters whether the �rst or the

second e¤ect dominates and the discount is positive or negative. Under time additive

utility only the �rst e¤ect matters while the second e¤ect is irrelevant because agents

are risk neutral towards uncertainty about the timing of death.12

An agent�s objective is to maximize the value function subject to the dynamic or

equivalently the static budget constraint,

sup
fcs;Xsg2(=�L2)

�
V s
s (c

s) = Es

�Z 1

s

f (csu; V
s
u ) du

��
; s:t: d�s; dns (P1)

12For a related discussion on risk aversion towards uncertainty about the timing of an agent�s death
I refer to Bommier (2003).
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2.3 The Equilibrium

2.3.1 De�nition of Equilibrium

An equilibrium is de�ned by a set of adapted processes fc;X; �g such that

(i) for every agent utility is maximized subject to the dynamic budget constraint,

problem (P1) is solved 8s,

(ii) consumption markets clear, Yt = Ct =
R t
�1 c

s
tnsNse

�
R t
s �ududs, and

(iii) �nancial markets clear,
R t
�1X

s
t nsNse

�
R t
s �ududs = 1 and .R t

�1 (W
s
t �Xs

t Pt)nsNse
�
R t
s �ududs = 0.

2.3.2 General Remarks about the Equilibrium Analysis

The optimal consumption-to-wealth ratio is given by the function  t (�; n) =
cstcW s
t

, which

is constant across cohorts. The functions F y;t;(i) (�; n; t), 8i 2 f1; 2g de�ne the present

value of labor income of a new born agent, cW t
t =

Yt
Nt

P2
i=1 F

y;t;(i) (�; n; t). These quanti-

ties are essential to determine the aggregate consumption share of the new born cohort,

nt
P2

i=1 F
y;t;(i) t =

cttntNt
Ct

. In equilibrium, the interest rate depends crucially on cttntNt
Ct

.

Moreover, the variation in  t (�; n) is a su¢ cient statistic for the variation in future

consumption growth, which is needed for pricing risky assets.

To understand what a¤ects the SDF �, I provide a short sketch of its derivation.

I employ the market clearing condition in the consumption goods market, which must

hold almost surely at all times and implies dYt = dCt. Growth in aggregate consumption

depends on three terms: aggregation of optimal consumption growth of individuals,

dying agents who abruptly stop their stream of consumption, and consumption of the

new born cohort,

dCt =

Z t

�1

dcst
cst
cstnsNse

�
R t
s �ududs� �tCtdt+ cttntNtdt (2.4)

Applying Itô�s lemma to the �rst order condition of the optimal consumption choice

problem (P1) implies that the dynamics of an individual�s optimal consumption are

independent of his cohort but dependent on birth and death rates and the dynamics
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of the SDF, dcst
cst
= �

�
d�t
�t
; nt; �t; dnt; d�t

�
.13 Plugging into (2.4), I can solve for the

dynamics of the SDF,

d�t
�t

= ��1

0@dYt
Yt
+ �tdt�

cttntNt

Yt
dt| {z }; nt; �t; dnt; d�t

1A
consumption growth of existing agents

(2.5)

According to (2.5) the dynamics of the SDF are a function of the consumption growth of

existing agents, and it is the Euler equation of existing agents that matters for pricing.

Therefore, because shocks to birth and death rates cause a redistribution of aggregate

consumption within the population and particularly the distribution between the new

born cohort and existing agents (which a¤ects the consumption growth rate of existing

agents), demographic shocks are crucial for pricing. It is important to understand that

uncertainty in the distribution of consumption is a pricing channel which is independent

of the pricing implications of (demographic) shocks to the expected production output

growth rate. In the following I show that the pricing implications of uncertainty in the

distribution of consumption within the population dominate the pricing implications

of shocks to expected production output growth.

Lemma 2.1 In equilibrium the stock price Pt is given by

Pt =
Yt

 t (�; n)| {z }
aggregated total wealth

� Yt

2X
i=1

F y;t;(i) (�; n; t)

1 + �i| {z }
aggregated present value of labor income

(2.6)

Proof. See appendix.

The stock price is determined in �nancial market clearing and is equal to aggregated

�nancial wealth (total wealth minus present value of labor income).

Lemma 2.2 The expected excess return of an asset paying the stream of dividends Dt

is

Et

�
dPt +Dtdt

Pt

�
� rtdt = �

dPt
Pt

d�t
�t

(2.7)

13Function �
�
d�t
�t
; nt; �t; dnt; d�t

�
represents the left hand side of equation (2.102) combined with

(2.86).
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Proof. See appendix.

An asset is compensated with a positive (negative) risk premium if its instantaneous

returns are negatively (positively) correlated with the marginal utility process.

2.3.3 Constant Birth and Mortality Rates

As a benchmark, I consider the case of no demographic changes. I explore the di¤erences

in the dependence of the interest rate on birth and death rates. Comparative statics

help to get an intuition of how demographic changes a¤ect the economy.

Proposition 2.1 Consider an economy as described. Suppose that the birth rate and

the mortality rate are constant over time and the two assumptions (i) �(Y )�(1 + �i)n <

r and (ii) �
1��+� > �r hold. There exists an equilibrium with a constant interest rate

r which is a root to the equation

r = �|{z}
time

discounting

+ (1� �)| {z }
= 1
EIS

�
�(Y ) + �� nNtc

t
t (r)

Ct

�
| {z }

consumption growth
of existing agents

� �|{z}
annuity
payo¤

+
�

1� 
�| {z }

time discounting due
to uncertain lifetime

(2.8)

with ctt (r) speci�ed in the appendix. The SDF is non-stochastic and the return on

equities is constant and equal to the risk free interest rate r.

Proof. See appendix.

Conditions (i) and (ii) are required to ensure total wealth to stay �nite and the

consumption-to-wealth ratio to be non-negative. The equity premium and the volatility

of asset prices are zero because there is no uncertainty on the aggregate. The focus lies

on the interest rate.

The interest rate in an equivalent economy populated by an in�nitely-lived repre-

sentative agent is r� = � + (1� �)�
(Y )
� with �(Y )� = �(A) + (1� a)�(K). It di¤ers from

the rate in the OLG economy by the term

r � r� = (1� �)

�
�� nNtc

t
t (r)

Ct

�
| {z }

(I)

+ (1� �) a (n� �)| {z }
(II)

� �|{z}
(III)

+
�

1� 
�| {z }

(IV )

(2.9)

The di¤erence arises for four reasons.
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(I) Following equation (2.5), r 6= r� holds because aggregate consumption growth

(consumption of the in�nitely-lived agent) di¤ers from consumption growth of existing

agents in the OLG economy. Deaths of existing agents have a positive e¤ect on con-

sumption growth of surviving agents because survivors have to share total production

output with less peers. Births of new agents mean a decline in the older cohorts�share of

aggregate consumption and their consumption growth because new agents claim a frac-

tion of aggregate consumption. The death rate increases and the birth rate decreases

the interest rate compared to the rate found in the in�nitely-lived agent economy.

(II) In an OLG economy the growth rate of total output depends on population

growth, (nt � �t) dt. A high birth rate causes total output to grow fast which positively

a¤ects the interest rate. A high death rate results the opposite.

(III) The insurance premium has the same impact on an agent�s wealth dynamics

(equation (2.1)) and optimal consumption path as the risk free interest rate. As the

insurance premium works as a substitute to the interest rate, in equilibrium the interest

rate is not required to be as high as in a world without insurance payments. Accordingly,

the interest rate in an OLG economy is lower than the rate in an in�nitely-lived agent

economy due to annuity contracts.

(IV ) In an OLG economy an agent faces risk aversion towards uncertainty about

the length of his life. There is a trade o¤ between how much savings an agent requires

for consumption until death and how much he is willing to risk when facing the proba-

bility of an early death. The �rst reason tells that an agent saves more under lifetime

uncertainty than if he knew the exact time of death because there is a chance that

he will live an unexpectedly long life and thus, his marginal utility is high in future

(precautionary savings). The latter reason says that an agent consumes bigger parts

of his wealth early in time under lifetime uncertainty because he faces a probability

that he will not be alive to consume his savings in future and draw utility from it.

In an OLG economy agents save more (less) and the interest rate is smaller (larger)

than in an in�nitely-lived agent economy, if the discount of future utility due to agents�

risk aversion towards uncertainty about the timing of death is negative (positive) and
�
1�� < (>) 0 holds (cf. discussion on time discounting due to lifetime uncertainty in

section 2.4).
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Lemma 2.3 Suppose (i)  > 1, (ii) B1+B2
B1
1+�1

+
B2
1+�2

> 1� 1+ 1�a
a


1�
�
n
, and the technical condi-

tions in the appendix hold. There exists a cut-o¤ value EIS
(r)
such that the condition

EIS < EIS
(r)
su¢ ces for the interest rate in an OLG economy to be smaller than

the rate in an equivalent economy populated by an in�nitely-lived representative agent

(r < r�).

Proof. See appendix.14

Condition (ii) requires life-cycle earnings to be su¢ ciently decreasing in age. For

B2 = 0, the condition is �1 > �
1+ 1�a

a


1�
�
n
. Agents have to save for retirement if life-cycle

earnings are decreasing in age, and a big supply in savings implies a low interest rate

(Blanchard, 1985).

Under a strong motive for consumption smoothing (small �, EIS), an agent seeks to

�atten his consumption path over the life-cycle, which corresponds to a large consump-

tion-to-wealth ratio and few savings (few �nancial wealth).15 Given a large consumption-

to-wealth ratio, the new born cohort claims a big fraction of aggregated consumption

and nNtctt
Ct

is large enough to ensure expression (2.9) to be negative and r < r� to hold.

To get an intuition how a change in the birth rate a¤ects the interest rate I take

the �rst derivative of r with respect to n,

@r

@n
= (1� �)

faster growth
in total outputz}|{

a �

increase in new
born generationz}|{

Ntc
t
t

Ct
+

decrease in consumption share
of individual new born agent

nNt

z }| {
@

@n

�
� ctt
Ct

�
1 + (1� �)nNt

@
@r

�
ctt(r)

Ct

� (2.10)

with @
@n

�
� ctt
Ct

�
= 1

Nt

P2
i=1

�a+1+�i
r��(Y )+(1+�i)n

F y;(i) (F y;(i) and  are speci�ed in the appen-

dix).

To ensure that the denominator in equation (2.10) is positive, I let f (r) (x) = � +

(1� �)
h
�(Y ) + �� nNtctt(x)

Ct

i
� 1���

1� ��x and suppose f (r) (x) to be decreasing at x = r.

14The conditions are su¢ cient but not necessary. The technical conditions in the appendix are easy
to satisfy and I do not worry about them. The same is true for all Lemmas that follow.
15I suppose that an agent�s consumption grows with age ( c

s
t

css
> 1, for 8 s < t). This is a natural

assumption and is true for a large enough growth in GDP. c
s
t

css
> 1 implies @

@(��)

�
cst
css

�
< 0, 8 s < t.
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The requirement on the slope of f (r) (:) is not a strong assumption. For instance, under

the conditions in Lemma 2.3 there exists r 2
�
�(Y ); r�

�
that satis�es the requirement.

There are three o¤setting e¤ects of the birth rate on the interest rate. First, the

workforce and production output grow faster as the birth rate increases, which has a

positive impact on the consumption growth of existing agents (r %).

Second, holding ctt constant, an increase in the size of the new born generation

causes the new born cohort�s claim on aggregate consumption to rise. The interest rate

is negatively a¤ected by an increase in the aggregate consumption share of the new

born cohort as it slows down consumption growth of existing agents (r &).

Third, labor income is declining in the birth rate.16 Intuitively, a boost in the

workforce causes the labor market to become more competitive and wages to drop. A

new born agent�s total wealth is equal to the present value of his life-cycle earnings,

which is sensitive to changes in labor income. In contrast, total wealth of an old agent

is less prone to labor income shocks because a large fraction of his endowment consists

of �nancial wealth. A negative shock to labor income implies a (relatively) stronger

decline in total wealth of a new born agent than in total wealth of an old agent. Since

the consumption-to-wealth ratio remains unchanged, the aggregate consumption share

of a new born agent declines, and the consumption growth of existing agents increases

as the birth rate rises (r %).

Lemma 2.4 Suppose  > 1 and the technical conditions in the appendix hold. There

exists a cut-o¤ value EIS
(n)
such that the condition EIS < EIS

(n)
su¢ ces for @r

@n
< 0.

Proof. See appendix.

If I decrease the EIS, agents save less �nancial wealth. An old agent�s total wealth

becomes more sensitive to labor income shocks, and the relative di¤erence in a drop

of total wealth of old versus young agents due to an increase in the birth rate (and a

decline in labor income) gets smaller. Accordingly the magnitude of @
@n

�
� ctt
Ct

�
shrinks.

A strong motive for consumption smoothing implies a large consumption-to-wealth

ratio and ctt (much consumption at birth). A large ctt ensures that (on the margin)

16I assume that 1 + �1 > a, so that the positive e¤ect of an increase in output and aggregate
labor income (due to an increase in n) is dominated by the negative e¤ect of a decrease in marginal
productivity of labor and productivity of agents. This is satis�ed for a decreasing life-cycle earnings
pro�le. For now I ignore feedback e¤ects through the interest rate.
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the additional new born agent consumes more than what he "produces" (a Yt
Nt
� ctt =h

a� Ntctt
Ct

i
Yt
Nt
< 0).

As a result, if the EIS is small enough, there is one key channel through which

a change in the birth rate a¤ects the interest rate. A rise in the birth rate causes

more new born agents to enter the economy and to claim a bigger fraction of aggregate

consumption. Accordingly, consumption growth of existing agents slows down and the

interest rate declines.

Taking the �rst derivative of r with respect to � yields,

@r

@�
=

(1� �) [

slower growth
in outputz}|{
�a +

surviving agents share
aggregate consump-
tion with less peersz}|{

1 �

change in con-
sumption share of
new born cohortz }| {
nNt

@

@�

�
ctt
Ct

�
]�

higher pay-
ments from
annuitiesz}|{
1 +

time discounting
due to lifetime
uncertaintyz }| {

�

1� 

1 + (1� �)nNt
@
@r

�
ctt(r)

Ct

�
(2.11)

with @
@�

�
ctt
Ct

�
= � 1

Nt

P2
i=1

a
r��(Y )+(1+�i)n

F y;(i) + 1
Nt

�
1��


1�
P2

i=1 F
y;(i).

The expression (1� �) (�a+ 1) � 1 + �
1� summarizes the following four e¤ects.

An increase in mortality (i) decreases the workforce and production output (r &),

(ii) increases the consumption share and growth in consumption of survivors (r %),

(iii) implies a high insurance premium (r &), and (iv) increases the magnitude of

time discounting of future utility due to risk aversion towards lifetime uncertainty (if
�
1� > (<) 0, then r % (&)).

Keeping the interest rate constant, the consumption share of the new born cohort

changes with �uctuations in the death rate for two reasons. First, an increase in

the death rate causes production output and the present value of labor income to

decline. Following the argument in the discussion of a change in the birth rate, the

new born cohort�s aggregate consumption share decreases because of the negative labor

income shock (term �
P2

i=1
an

r��(Y )+(1+�i)n
F y;(i) , r %). Second, as mortality increases

agents discount future utility more positively (negatively) and increase (decrease) their

consumption-to-wealth ratio, if �
1� > (<) 0. Accordingly, the consumption level at

birth and the aggregate consumption share of the new born cohort increase (decline)

(term n �
1��


1�
P2

i=1 F
y;(i), r & (%)).
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Lemma 2.5 Suppose  > 1 and the technical conditions in the appendix hold. There

exists a cut-o¤ value EIS
(�)
such that the condition EIS < EIS

(�)
su¢ ces for @r

@�
> 0.

Proof. See appendix.

The term (1� �) (�a+ 1)� 1 is positive if the EIS is small enough.

As I shrink the EIS, the aggregate consumption share of the new born cohort

becomes less sensitive to changes in mortality. The intuition is similar to the discussion

on changes in the birth rate.

For  > 1 and EIS < 1, agents (positively) discount future utility because of risk

aversion towards lifetime uncertainty. The discount and the (positive) e¤ect on the

interest rate become large if the EIS is small.

As a result, for a small enough EIS, I end up with the following key driving forces

that causes the interest rate to be increasing in mortality. As the death rate increases,

agents face a higher probability of dying early and discount future utility stronger. As

a consequence they consume more of their wealth early in life and save less �nancial

wealth, which causes the interest rate to increase in equilibrium. In addition, aggre-

gate consumption has to be split among less survivors and the consumption growth of

existing agents and the interest rate increase.

For the remaining discussion I assume @r
@n
< 0 and @r

@�
> 0.

From Lemma 2.1 and 2.2 it is straightforward to derive the Gordon growth model

Pt =
Dt

r � �(Y )
(2.12)

The stock price is increasing in the birth rate. As more agents enter the work-

force, growth in total output and future stock dividends increase and the discount rate

declines.17

@P

@n
=

increase in growth
of future dividendsz}|{

a �

decrease in
discount ratez}|{

@r

@n
r � �(Y )

Pt (2.13)

17Equivalently, the stock price increases because the demand for stocks hikes driven (i) by an increase
in aggregate savings (boost in present value of aggregate labor income) and (ii) by a drop in interest
paid by the risk free asset, which makes stocks more attractive as an alternative investment to the
riskless bond market.
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The stock price is decreasing in the death rate. An increase in mortality causes

growth in output and future dividends to decline, and the discount rate to increase.

@P

@�
=

decrease in growth
of future dividendsz}|{

�a �

increase in
discount ratez}|{

@r

@�
r � �(Y )

Pt (2.14)

The consumption-to-wealth ratio,  depends crucially on agents�preferences. Time

discounting of future utility has a positive impact on  . Depending on the dominance

of either income or substitution e¤ect (EIS < 1 or EIS > 1), the rate of return on

wealth (from bonds and annuities)18 is positively or negatively related to  .

 =

=EISz }| {
1

1� �
[

time
discountingz}|{

� +

discounting due to
uncertain lifetimez }| {

�

1� 
� �

trade o¤ between income
and substitution e¤ectz }| {
�( r|{z}
interest
rate

+ �|{z}
annuity
payo¤

) ] (2.15)

The consumption-to-wealth ratio is decreasing in the birth rate if EIS < 1. As

the interest rate declines the agent experiences a negative income shock; savings grow

slower and the agent can a¤ord less consumption in future. If the agent cares enough

about consumption smoothing, he will save more and consume less today to compensate

for the negative shock to future endowment/ consumption (income e¤ect dominates

substitution e¤ect).
@ 

@n
= � �

1� �

@r

@n
(2.16)

The consumption-to-wealth ratio is increasing in the death rate if EIS < 1 and

 > 1. Agents discount utility from future consumption stronger due to an increase in

mortality ( �
1� > 0) and prefer to consume a larger part of their wealth early in life. In

addition, future consumption becomes cheaper as the interest rate and the insurance

premium increase and agents instantly consume part of the "newly gained income"

(income e¤ect).
@ 

@�
=

1

1� �

�
�

1� 
� �

�
@r

@�
+ 1

��
(2.17)

18Or equivalently the inverse of the price of future consumption.
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2.3.4 Regime Shifts in the Birth Rate: Two State Markov

Switching Model

I keep mortality constant and let the birth rate randomly jump between two levels.

Random switches capture the long run pro�le of baby boom and bust transitions found

in US birth rate data. Once the birth rate process is stochastic, long run risk is

introduced in the economy and I can explore the impact of demographic uncertainty

on pricing stocks.

I let the birth rate process be dnt = s(n)dS
(n)
t , with s(n) = nH � nL. S

(n)
t 2 f1; 0g

follows a two state, continuous time Markov switching process with transition probabil-

ity matrix between time t and t+� given by �(S;n) (�) =

0@ 1� �
(n)

H � �
(n)

H �

�
(n)

L � 1� �
(n)

L �

1A.
The birth rate switches between the two values nt 2 fnL; nHg. Because the model has

only two states, key variables, which depend on the birth rate, switch between two

distinct values.

There are minor changes to the utility speci�cation as described in the appendix.

Agents�objectives stay the same.

Proposition 2.2 Suppose an economy as described. In general, there exists an equilib-

rium with a SDF � that follows a stochastic process driven by the same two state Markov

switching process S(n) as the birth rate. The equilibrium interest rate rt switches between

two distinct levels, rt 2
n
r
(n)
L ; r

(n)
H

o
de�ned by

r
(n)
j = � + (1� �)

"
�
(Y;n)
j + �� nj

2X
i=1

F
y;(i);(n)
j  

(n)
j

#
� �+

�

1� 
� (2.18)

��(n)j

0@  (n)k
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!� 1���
�

� 1

1A+ 1�  � �

1� 
�
(n)

j

0@  (n)k

 
(n)
j

!� 1�
�

� 1

1A
8 (j; k) 2 f(L;H) ; (H;L)g, with rt j [nt = nL] = r

(n)
L and rt j [nt = nH ] = r

(n)
H . The

market price of risk jumps between two distinct values, �t 2
n
�
(n)
L ; �

(n)
H

o
given by

�
(n)
j = �

0@  (n)k

 
(n)
j

!� 1���
�

� 1

1A (2.19)
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8 (j; k) 2 f(L;H) ; (H;L)g, with �t j [nt = nL] = �
(n)
L and �t j [nt = nH ] = �

(n)
H .

Demographic uncertainty is priced in equilibrium and the equity premium is non-zero.

In the special case of power utility, the SDF follows a locally deterministic process and

the equity premium disappears. The functions F y;(1);(n)
L , F y;(2);(n)

L , F y;(1);(n)
H , F y;(2);(n)

H ,

 
(n)
L , and  

(n)
H are determined in a system of 6 non-linear equations provided in the

appendix.

Proof. See appendix.

To understand why the market price of risk is non-zero in the general case of recur-

sive utility and zero in the special case of CRRA preferences, it is best to look at the

optimal consumption path for an individual agent

cst
css|{z}

variation in current
consumption growth

= e
1

1��
R t
s

@
@V su

f(csu;V
s
u )+�udu

0@ V s
t ( t; �t)

V s
s ( s; �s)| {z }

1A
1���

(1�)(1��)

variation in future
consumption growth

0@ �t
�s|{z}
1A

� 1
1��

variation in marginal
utility process

(2.20)

Suppose that the SDF had zero quadratic variation. Because the value function V s

features a discontinuity at the time of a regime shift, optimal consumption must jump

as a regime shift occurs. As each agent is a¤ected the same (dynamics of the value

function are independent of the cohort), the aggregate consumption process features

jumps. But, the aggregate supply of consumption goods has no instantaneous variation

and markets could not possibly clear (dYt 6= dCt). To resolve the problem it must be

that the SDF is driven by a jump process such that all discontinuities in V s are exactly

o¤set and optimal consumption of the individual follows a locally deterministic process

(cf. equation (2.119)).

The SDF is de�ned as a (deterministic) multiple of the marginal utility process

(Gateau derivative of the utility function), which depends on current and future con-

sumption. As current consumption follows a locally deterministic process it does not

introduce any stochastics in the marginal utility process and its dynamics are irrelevant

for the derivation of the equity premium. The variation in the consumption-to-wealth

ratio is a su¢ cient statistic of the variation in future consumption growth. As a result

the market price of risk is a non-linear function of the ratio  H
 L
.
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In the case of CRRA preferences optimal consumption does not depend on the

agent�s value function (cst = csse
� 1

�(t�s)

�
�t
�s

�� 1

), and the consumption path of an

individual agent is (locally) deterministic. The SDF must not be stochastic to ensure

market clearing. The market price of risk is zero and pricing of risky assets is not

a¤ected by stochastic changes in the birth rate.19

Lemma 2.6 Suppose  2 (1; 1� �) (� < 0) and the technical conditions in the appen-

dix hold. There exists a cut-o¤ value EIS
(n)

1 such that the condition EIS < EIS
(n)

1

su¢ ces for the interest rate during a period characterized by a high birth rate (baby

boom) to be lower than the rate during times of a low birth rate (baby bust), r(n)L > r
(n)
H .

The consumption-to-wealth ratio is decreasing and the magnitude of the market price

of risk is increasing in the birth rate,  (n)L >  
(n)
H and j�(n)L j < j�

(n)
H j.

Proof. See appendix.

The intuition for r(n)L > r
(n)
H and  (n)L >  

(n)
H is equivalent to the argument provided

in the static case. j�(n)L j < j�
(n)
H j is a technical property of the model.

The stock price is a state dependent multiple of GDP (Lemma 2.1),

P
(nj)
t = Pt j [nt = nj] = Yt

"
1

 
(n)
j

�
2X
i=1

F
y;(i);(n)
j

1 + �i

#
(2.21)

8j 2 fL;Hg. The growth rate is stochastic and conditional on the state of the world

dPt
Pt

j [nt = nj] = �
(Y;n)
j dt+

Yt

P
(nj)
t

"
1

 
(n)
k

� 1

 
(n)
j

�
2X
i=1

F
y;(i);(n)
k � F

y;(i);(n)
j

1 + �i

#
jdS(n)t j

(2.22)

8 (j; k) 2 f(L;H) ; (H;L)g. GDP follows a locally deterministic process because de-

mographic uncertainty introduces only long run risk in the economy. In contrast, the

stock price has non-zero quadratic variation since stocks are forward looking and incor-

porate changes in growth prospects of the economy (information about future growth

in dividends and future changes in the discount rate). Demographic uncertainty intro-

duces in a natural way excess volatility of asset returns over the variation in aggregate

consumption growth (Barsky and De Long (1993)).

19Another way to understand that the SDF is locally deterministic is by noticing that in case of time
additive utilities, marginal utility depends solely on current consumption but not future consumption.
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Following Lemma 2.2, the equity premium is

1

dt
Et

�
dPt +Dtdt

Pt

�
� rt j [nt = nj] = �

(n)

j

Yt

P
(nj)
t

0@  (n)k

 
(n)
j

!� 1���
�

� 1

1A (2.23)
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j
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#

8 (j; k) 2 f(L;H) ; (H;L)g. Demographic uncertainty is priced in equilibrium and the

equity premium switches between two distinct values. In the special case of power

utility with 1�  � � = 0 the equity premium is zero.

Lemma 2.7 Suppose 1���
�

< 0 and the technical conditions in the appendix hold.

There exists a cut-o¤ value EIS
(n)

2 such that the condition EIS < EIS
(n)

2 su¢ ces for

the equity premium to be positive in both states of the world.

Proof. See appendix.

A key result is the inequality j 1

 
(n)
H

� 1

 
(n)
L

j � j
P2

i=1

F
y;(i);(n)
H �F y;(i);(n)L

1+�i
j > 0. The stock

price moves into the opposite (same) direction as a change in the consumption-to-

wealth ratio (total wealth). This is consistent with the developed intuition from the

comparative statics analyses in the previous section.

By equation (2.81) and (2.119), (1� )V s
t is decreasing (increasing) in the con-

sumption-to-wealth ratio if 1�
�

> (<) 0. Combining equations (2.3) and (2.68), mar-

ginal utility is decreasing (increasing) in (1� )V s
t if

1���
1� < (>) 0. Accordingly,

condition 1���
�

< 0 is necessary for changes in the stock price (or total wealth) and

the SDF to be negatively correlated. The payo¤ of stocks is low (high) in states of

the world when marginal utility is high (low) and more (less) wealth is desired, and

investors require a positive compensation for holding stocks.

Lemma 2.8 Suppose �
(n)

H > (<) �
(n)

L , and the conditions in Lemma 2.6 and 2.7 hold.

There exists a cut-o¤ value EIS
(n)

3 such that the condition EIS < EIS
(n)

3 ensures that

the equity premium is larger (lower) during a baby boom than the premium during times

of a low birth rate.

Proof. See appendix.
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The parameters �
(n)

L and �
(n)

H determine the probability of a regime switch condi-

tional on being in a low and high birth rate state. The ratio �
(n)
H

�
(n)
L

describes the ratio

between the instantaneous risk in stock returns during a high and a low birth rate state.

The equity premium is higher during a high birth rate state, if a baby boom lasts on

average shorter (the risk for a regime switch is higher) compared to a low birth rate

state. US population data over the last 100 years reveal that this seems true.

Consistent with the result in the previous section, Lemma 2.6 and 2.7 imply that

the stock price is increasing in the birth rate,

P
(nH)
t � P

(nL)
t = Yt

"
1

 
(n)
H

� 1

 
(n)
L

�
2X
i=1

F
y;(i);(n)
H � F

y;(i);(n)
L

1 + �i

#
> 0 (2.24)

A baby boom causes the stock market to boom and the growth rates of the stock price

and dividends are high. There is an immediate stock market bust (negative jump)

as soon as the baby boom stops (at the time of a regime shift from a high to a low

birth rate). The model implies a slow growth in asset prices and in dividends when the

birth rate is low, but it does not imply a major stock market bust as the baby boom

generation "retires".20 This follows because all key quantities are Markov processes

and immediately adjust at the time of a regime shift, when agents are surprised by a

change in the economic environment.

The result that the retirement of the baby boom generation does not have an impact

on asset prices can be challenged on di¤erent grounds. First, capital accumulation (with

convex adjustment costs) is likely to alter the result because a slow-down in population

growth causes disinvestment. Because of convex adjustment costs there is not one

immediate cut in the capital stock as the birth rate drops, but disinvestment continues

over a long horizon and the desired capital stock is approached slowly (cf. Abel, 2003).

Second, the speci�cation of the life-cycle earnings pro�le enforces by construction

the Markov property of aggregate supply of labor e¢ ciency units, which implies the

consumption-to-wealth ratio and total wealth to be Markov processes. A choice of a

more general path for life-cycle earnings (e.g. discontinuity at time of retirement) causes

20Retirement can be de�ned as the age when an agent is endowed with less labor e¢ ciency units
then some level x, for instance the data in Hubbard et al. (1993) suggest the people at age 65 earn
about 35-40% of the maximal labor income over the lif-cycle.
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the consumption-to-wealth ratio and total wealth to be history-dependent functions

(in particular I have to keep track which cohort retires at which point in time). The

introduction of age-dependent death rates also causes the variables to depend on the

past. If the consumption-to-wealth ratio and total wealth are not Markov processes,

then asset prices depend on past observations of the birth rate, and baby booms and

busts have implications on asset prices for a long time after a regime shift occurs. As a

result the model�s answer to the question whether the retirement of the baby boomers

causes a stock market bust has to be treated with caution. Brooks (2000, 2004) and

Geanakoplos et al. (2004) complement my model with respect to these issues and

deliver an answer to the question. My model is setup to explore how demographic

uncertainty a¤ects asset pricing in addition to the e¤ects documented by Brooks (2000,

2004) and Geanakoplos et al. (2004).

A numerical exercise helps to illustrate the quantitative magnitude of my qualitative

results. I set nL = 1:5%, nH = 2:5%, �
(n)

L = 1%, �
(n)

H = 6:7% and � = 1%, which roughly

captures the long run transitions in the birth rate and the average death rate in the

USA in the 20th century. I chose � = 0:005, a = 0:9 and �(A) + (1� a)�(K) = 1:55%,

so that �(Y;n)L = 2% and �(Y;n)H = 2:9%. I �x  = 2:5 and numerically solve the model

for EIS 2 [0:05; 0:25].
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Figure 2.4: Left panel: Interest rate in the two state Markov switching model for
nL = 1:5% (black line), nH = 2:5% (red line), and interest rate in a model with
constant birth rate for nL = 1:5% (green line), nH = 2:5% (purple line). Rigth panel:
Equity premium in the regime shifting model for nL = 1:5% (black line), nH = 2:5%
(red line).

The black and the red line in the left panel in �gure 2.4 report the equilibrium
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interest rates corresponding to nL and nH in the regime switching model. The green

and the purple line indicate the interest rates in a static model with a constant birth

rate equal to nL respectively nH (agents do not anticipate changes in the birth rate).

The interest rate during a baby boom is lower than the rate in a state of a low birth

rate. For a low enough EIS the interest rate during a baby boom is even negative.

Because I exclude TFP shocks the interest rate is relatively high during times of a low

birth rate. TFP shocks decrease the interest rate due to precautionary savings.

The right panel shows the risk premium paid by stocks due to random regime

shifts in the birth rate. The black line indicates the premium paid in a state of a low

birth rate and the red line describes the premium during a baby boom. Stocks pay a

substantially higher excess return during a baby boom than in a state of a low birth

rate. The introduction of levered equity would amplify the di¤erence.

The model helps to explain some of the long run time variation in the interest rate

and in stock market excess returns in the USA. Keeping the numerical results in mind

I look at US data from 1926 to 2009. I de�ne the period between the early 1940�s and

the early 1960�s as a baby boom and the periods before the 1940�s and after the early

1960�s as times of a low birth rate. During the two periods of a low birth rate the real

interest rate were on average between 1%� 2% and the stock market paid on average

5:5% in excess of the (nominal) interest rate. In contrast, during the baby boom the

real interest rate was on average �2:5% and the stock market paid on average an excess

return of 16%.

2.3.5 Regime Shifts in the Mortality Rate: Two State Markov

Switching Model

To analyze the impact of random changes in the death rate on �nancial markets, I �x

the birth rate while letting the mortality rate switch between a high and a low level.

The results and the discussion are similar to the previous section.

I let the death rate process be d�t = s(�)dS
(�)
t , with s(�) = �H � �L. S

(�)
t 2 f1; 0g

follows a two state, continuous time Markov switching process with transition probabil-

ity matrix between time t and t+� given by �(S;�) (�) =

0@ 1� �
(�)

H � �
(�)

H �

�
(�)

L � 1� �
(�)

L �

1A.
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The death rate switches between the two values �t 2 f�L; �Hg.

There are minor changes to the utility speci�cation as described in the appendix.

Agents�objectives stay the same.

Proposition 2.3 Suppose an economy as described. In general, there exists an equilib-

rium with a SDF � that follows a stochastic process driven by the same two state Markov

switching process S(�) as the death rate. The equilibrium interest rate rt switches be-

tween two distinct levels, rt 2
n
r
(�)
L ; r

(�)
H

o
de�ned by

r
(�)
j = � + (1� �)

"
�
(Y;�)
j + �j � n

2X
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F
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8 (j; k) 2 f(L;H) ; (H;L)g, with rt j [�t = �L] = r

(�)
L and rt j [�t = �H ] = r

(�)
H . The

market price of risk also jumps between two distinct values, �t 2
n
�
(�)
L ; �

(�)
H

o
given by
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8 (j; k) 2 f(L;H) ; (H;L)g, with �t j [�t = �L] = �
(�)
L and �t j [�t = �H ] = �

(�)
H . De-

mographic uncertainty is priced in equilibrium and the equity premium is non-zero,

except for the special case of power utility. The functions F y;(1);(�)
L , F y;(2);(�)

L , F y;(1);(�)
H ,

F
y;(2);(�)
H ,  (�)L , and  

(�)
H are determined in a system of 6 non-liner equations provided

in the appendix.

Proof. See appendix.

Lemma 2.9 Suppose  2 (1; 1� �) (� < 0) and the technical conditions in the appen-

dix hold. There exists a cut-o¤ value EIS
(�)

1 such that the condition EIS < EIS
(�)

1

su¢ ces for the interest rate during a period characterized by a high death rate to be

higher than the rate during times of low mortality, r(�)L < r
(�)
H . The consumption-to-

wealth ratio is increasing and the magnitude of the market price of risk is decreasing in

the death rate,  (�)L <  
(�)
H and j�(�)L j > j�

(�)
H j.
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Proof. See appendix.

The result is equivalent to the �nding in the static case.

The stock price is a multiple of GDP (Lemma 2.1),

P
(�j)
t = Pt j [�t = �j] = Yt

"
1

 
(�)
j

�
2X
i=1

F
y;(i);(�)
j

1 + �i

#
(2.27)

8j 2 fL;Hg and the growth rate is

dPt
Pt

j [�t = �j] = �
(Y;�)
j dt+

Yt

P
(�j)
t

"
1

 
(�)
k

� 1

 
(�)
j

�
2X
i=1

F
y;(i);(�)
k � F

y;(i);(�)
j

1 + �i

#
jdS(�)t j

(2.28)

8 (j; k) 2 f(L;H) ; (H;L)g. GDP is locally deterministic, while stock returns are sub-

ject to instantaneous volatility due to the forward looking property of the stock price.

According to Lemma 2.2, the equity premium is

1

dt
Et

�
dPt +Dtdt

Pt

�
� rt j [�t = �j] = �

(�)

j

Yt

P
(�j)
t

0@  (�)k
 
(�)
j

!� 1���
�

� 1

1A (2.29)

�
" 

1

 
(�)
j

� 1

 
(�)
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2X
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F
y;(i);(�)
k � F

y;(i);(�)
j

1 + �i

#

8 (j; k) 2 f(L;H) ; (H;L)g. In the special case of CRRA utility with 1 �  � � = 0,

there is no equity premium.

Lemma 2.10 Suppose 1���
�

< 0 and the technical conditions in the appendix hold.

There exists a cut-o¤ value EIS
(�)

2 such that the condition EIS < EIS
(�)

2 su¢ ces for

the equity premium to be positive in both states of the world.

Proof. See appendix.

Lemma 2.10 is equivalent to Lemma 2.7.

Consistent with the comparative statics analysis in section 3.3, the stock price is

decreasing in the death rate (under the conditions in Lemma 2.9 and 2.10),

P
(�L)
t � P

(�H)
t = Yt

"
1

 
(�)
L

� 1

 
(�)
H

�
2X
i=1

F
y;(i);(�)
L � F

y;(i);(�)
H

1 + �i

#
> 0 (2.30)
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Lemma 2.11 Suppose �
(�)

L > (<) �
(�)

H and the conditions in Lemma 2.9 and 2.10 hold.

There exists a cut-o¤ value EIS
(�)

3 such that the condition EIS < EIS
(�)

3 ensures that

the equity premium is larger (lower) during a period characterized by a low death rate

than the premium in times of high mortality.

Proof. See appendix.

2.3.6 General Model with Brownian Uncertainty: Numerical

Illustration

I illustrate the possible quantitative magnitude of my results in a numerical exercise. I

model the birth rate and the death rate as Brownian di¤usion processes,

dnt
nt

= �(n)dt+ �(n)dfWt (2.31)

d�t
�t

= �(�)dt+ �(�)dfWt (2.32)

�(i) and �(i) denote constant drift and di¤usion terms of process i, and fWt is a d

dimensional Brownian motion. I also introduce TFP shocks to the economy and let

dAt
At

= �(A)dt+ �(A)dfWt (2.33)

with �(A)
�
�(n)

�T
= �(A)

�
�(�)

�T
= 0(d�d).

Proposition 2.4 Suppose an economy as described. In general, there exists an equi-

librium with a SDF � with the dynamics

d�t
�t

= �rtdt� �tdfWt (2.34)
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The interest rate rt is

rt = � + (1� �)

"
�
(Y )
t + �t � nt

2X
i=1

F y;t;(i) t

#
� �t +

�

1� 
�t (2.35)

+
1�  � �
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�
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!2
�  (2� �)
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�
�(A)

�2
| {z }

precautionary savings

and the market price of risk �t takes the form

�t =
1�  � �

�

�
( )
t

 t| {z }
pricing of long run risk/
demographic uncertainty

+ �(A)| {z }
pricing of ins-
tantaneous risk

(2.36)

Demographic uncertainty is priced in equilibrium except in the special case of power

utility. The functions F y;t;(1) (�; n; t), F y;t;(2) (�; n; t), and  t (�; n) are determined in a

system of 3 di¤erential equations provided in the appendix.

Proof. See appendix.

Precautionary savings induced by TFP shocks and demographic uncertainty have a

negative impact on the interest rate (if 1���
�

< 0).

The argument of the previous discussion carries over to explain why demographic

uncertainty is priced under recursive preferences but not in case of power utility.

Following Lemma 2.1, the stock price is

Pt = Yt

"
1

 t (�; n)
�

2X
i=1

F y;t;(i) (�; n; t)

1 + �i

#
(2.37)

with the dynamics

dPt = �
(P )
P;t dt+ �

(P )
P;t d

fWt (2.38)
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The expected return and volatility are stochastically changing over time. There is

instantaneous excess volatility of �nancial assets over consumption growth.

The equity premium follows from Lemma 2.2,

Et

�
dPt +Dtdt

Pt

�
�rtdt = �(A)

�
�(A)

�T� 1�  � �

�

Yt
Pt

�
( )
t

 t

0B@
�
�
( )
t

�T
 2t

+
2X
i=1

�
(F y;(i))

T

t

1 + �i

1CA
(2.39)

Lemma 2.12 Suppose  2 (1; 1� �) (� < 0). There exists EIS (nt; �t) such that

EIS < EIS (nt; �t) su¢ ces for the interest rate to be decreasing in the birth rate and

increasing in the mortality rate and the equity premium to be positive.

Proof. See appendix.

The result is similar to the �ndings in the earlier discussion, but weaker. EIS (nt; �t)

depends on the current level of the birth rate and the death rate.

I illustrate numerically the quantitative importance of the model. To match the

�rst two moments of US population statistics I set �(n) = �0:0076, �(n) = 0:0381,

�(�) = �0:0071, �(�) = 0:051, and correl
�
dnt
nt
; d�t
�t

�
= �0:1. I choose � = 0:005,

�(A) + (1� a)�(K) = 2:1%, �(A) = 2:5%, a = 0:9,  = 5 , and EIS = 0:067.

Interest Rate and Equity Premium (in %): Calibration Output
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Figure 2.5: Left panel: Interest rate and equity premium for � = 0:8% (black, blue),
� = 1% (red, purple), � = 1:5% (green, mangenta). Right panel: Interest rate and
equity premium for n = 1:4% (black, blue), n = 2% (red, purple), n = 2:5% (green,
mangenta).

Figure 2.5 shows the equilibrium interest rate and equity premium dependent on

the birth rate and the death rate. The interest rate is increasing in the death rate. It
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is mostly decreasing in the birth rate, but changes to be increasing if the birth rate

is large. A high birth rate implies a low consumption-to-wealth ratio, and ctt is small.

An additional increase in the birth rate causes the aggregate consumption share of the

new born cohort to increase only little (as ctt is small), and puts moderate downward

pressure on the interest rate. But, an increase in the birth rate also a¤ects the interest

rate positively due to the acceleration in production output growth, and the positive

impact is independent of the current level in the birth rate. The latter (positive) e¤ect

is dominant if the birth rate is large, and the interest rate becomes increasing in the

birth rate. Technically, Lemma 2.12 is more di¢ cult to satisfy (a lower EIS is required)

if the birth rate is high, i.e. @EIS(nt;�t)
@n

< 0.

The equity premium is decreasing in the death rate and mostly increasing in the

birth rate. Given a large current level in the birth rate, the equity premium starts to

be decreasing in the birth rate because the consumption-to-wealth ratio (which is in

a positive relation to the interest rate) becomes less sensitive to changes in the birth

rate.

In the USA the birth rate was most of the time less than 2:5% in the 20th century,

and (given EIS = 0:067) for n < 2:5% the interest rate and equity premium are

decreasing respectively increasing in the birth rate.

The market price of risk compensating uncertainty in the birth rate follows a similar

pattern as the equity premium. Given the birth rate is less than 2:5%, it is always

increasing in the birth rate. The market price of risk compensating uncertainty in the

death rate is slightly decreasing in mortality.

Similar, the exposure of the risky asset to uncertainty in the birth rate is increasing

in the birth rate as long as the current level in the birth rate not too large, while the

exposure to risk in the death rate is almost independent of the level in the death rate.

Changes in the birth rate cause a variation of considerable magnitude in the market

price of (birth rate) risk, the exposure of the risky asset to uncertainty in the birth

rate, and the equity premium. In contrast, changes in the death rate hardly cause any

variation in neither the market price of (mortality) risk, the exposure of the stock to

uncertainty in the death rate, or the equity premium.
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Interest Rate and Equity Premium (in %): Calibration vs Data
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Figure 2.6: Left panel: Real interest rate in USA (black) and model implied interest
rate using US birth and mortality (red). Right panel: 10 year averages of US stock
market excess returns (black line) and model implied equity premium using US birth
and mortality data (red).

Figure 2.6 compares the real interest rate and 10 year averages of stock market

excess returns in the USA with the model implied interest rate and equity premium

constructed from the calibration results and observed birth and death rates. The model

is able to explain some of the time variation in the interest rate and the equity premium.

Most of the variation in the equity premium is due to changes in the birth rate, while

changes in the death rate have a small impact. The presented results do not consider

leverage in equities. Leverage ampli�es the time variation in the equity premium. In

addition, features like �nancial constraints and limited asset market participation as

discussed in Brooks (2004) and Geanakoplos et al. (2004) are likely to improve the

results.

I simulate birth and death rate data and analyze the unconditional moments of ag-

gregate consumption growth, the interest rate and stock returns. 100�000 simulations of

100 years of birth and death rate data show that on average the unconditional volatil-

ity of aggregate consumption growth is 3%, volatility of the interest rate is 8:5%, and

volatility of stock returns is 24:8%. Demographic uncertainty introduces a substan-

tial di¤erence between the unconditional variation in consumption growth and asset

returns.

Figure 2.7 illustrates the volatility clustering in stock returns due to demographic

uncertainty. I simulate 1�000 years of birth and death rate data and calculate model

implied stock returns. The left panel shows the stock returns and the right panel
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squared returns.

Simulated Stock Returns

Figure 2.7: Simulation output using 1000 years of simulated birth and death rate data:
stock return (left panel) and squared stock return (right panel).

2.4 Extension and Comments

I heuristically discuss three important extensions of the model.

1) Generalization of Birth and Death Rate Processes

For simplicity I have modelled birth and death rates as geometric Brownian motions

with constant drifts and di¤usions. Instead I may consider for instance autoregressive

processes. An AR(1) process with a positive �rst autocorrelation term describes changes

in the birth rate well. Changes in the death rate are not autocorrelated.

If changes in the birth rate (and the death rate) are described by an autoregressive

process rather than white noise, I expect the consumption-to-wealth ratio and the

interest rate to depend (in addition to the current level and volatility) on recent changes

in the birth rate (and the death rate).

The static model in section 3.1 provides a good intuition. Assume that changes in

the birth rate are positively autocorrelated (as found in the data). Consider a large past

increase (decrease) in the birth rate. Accordingly, a further large increase (decrease) in

the birth rate is expected in the near future. Because the consumption-to-wealth ratio is

negatively related to the birth rate (for a small enough EIS), a large expected increase

(decrease) in the birth rate creates an incentive for a forward-looking agent to choose a
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low (high) current consumption-to-wealth ratio. The property @ 
@n
< 0 and the positive

relation between  t and �
( )
t = 1

dt
Et (d t) in equation (2.86) formalizes the intuition.

In equilibrium a low (high) consumption-to-wealth ratio corresponds to a low (high)

interest rate (if EIS < 1). As a result the consumption-to-wealth ratio and the interest

rate are negatively related to recent changes in the birth rate. I show in the �rst section

in the appendix that there is empirical evidence for a negative relationship between the

level of the current interest rate and past changes in the birth rate. Geanakoplos et al.

(2004) document a similar relation between changes in demographic quantities and the

level in the interest rate.

2) Social Security and other Intergenerational Transfers

The simplest way to model a social security system is by letting agents pay a (possi-

bly age-dependent) labor income tax which is redistributed to the entire population.21

In the limit when all labor income is collected and agents receive/ consume per capita

GDP, the consumption goods allocation is identical to the �rst best allocation in an

Arrow economy with (intergenerational) market completeness.22

Other intergenerational transfers are modelled by assuming that agents care about

other agents�utilities. For instance, a parent may care about how much utility his

children obtain and vice versa. In the extreme case when agents care about other

agents�utilities the same as about their own utility, the economy achieves the �rst best

allocation.

I look at the extreme case when the intergenerational wealth redistribution leads

to the �rst best allocation. Noticing that under �rst best ctt =
Ct
Nt
, equation (2.10) and

equation (2.11) become @r
@n
= (1� �) (a� 1) and @r

@�
= (1� �) (1� a) + �

1� � 1. The

comparative statics analysis suggests that for min
n
� a(1�)
(1�a)(1�)�1 ; 0

o
> � the interest

rate and the consumption-to-wealth ratio are decreasing in the birth rate and increasing

in the death rate. The result is stronger than Lemma 2.4 and 2.5. The interpretation

21Alternatively, I may consider a set-up as in Gertler (1997) where agents randomly switch from
a working state to retirement and social security is a transfer between workers and retirees. In that
case, to keep my model tractable I must introduce a new set of contracts to let agents hedge the new
retirement risk and to keep markets dynamically complete. However, in Gertler (1997) the results are
driven by the market incompleteness due to retirment risk.
22See also Abel (2003) for a discussion on how a social security system can be employed to approach

the Golden Rule in the eocnomy
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and the key driving forces for the result remain the same. I expect the intuition to

continue to hold in a dynamic model with stochastic changes in birth and death rates.

Because the consumption-to-wealth ratio is sensitive to demographic changes, I expect

demographic uncertainty to be priced and the equity premium to be time varying.

Since my results are not a¤ected even if I impose the �rst best allocation, I do not

expect that the introduction of a (reasonable) social security system or other intergen-

erational transfers alter the fundamental qualitative results of my model. Though the

quantitative magnitude of the e¤ects might change. For instance, Brooks (2004) ar-

gues that the introduction of a social security system has important quantitative asset

pricing implications.

3) Capital Accumulation

For simplicity I have assumed that �rms cannot invest. But demographic changes

have a long term impact on the labor supply, and it is reasonable that a �rm optimally

adjusts its capital stock in response to highly predictable long run changes in the labor

market.

I consider capital accumulation with convex adjustment costs as in Abel (2003).

Suppose the birth rate increases (decreases) or the death rate decreases (increases). The

stock price increases (declines). The �rm starts to invest (disinvest) and less (more)

units of production output will be available to consumers. Under time additive utilities,

a drop (increase) in current aggregate consumption implies a high (low) marginal utility

state. As a result I expect a positive correlation between the marginal utility process

and stock returns which implies a negative equity premium.

In contrast, under recursive utilities it is not clear whether capital accumulation

has a negative or a positive impact on the equity premium. It is still true that cur-

rent aggregate consumption drops (increases) due to investment (disinvestment) by

the representative �rm, which has a positive (negative) e¤ect on marginal utility. But

future aggregate consumption will grow faster (slower) due to the initial investment

(disinvestment) and under certain restrictions on the parameterization of the recursive

preferences, this has a negative (positive) impact on marginal utility. The two e¤ects

are o¤setting and it is not clear whether there is a positive or negative correlation

between the marginal utility process and stock returns.
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I expect capital accumulation to reduce the sensitivity of the interest rate and the

consumption-to-wealth ratio towards changes in birth and death rates. Capital accu-

mulation causes growth in production output to react stronger in response to changes in

birth and death rates because an increase (decrease) in the birth rate or a decrease (in-

crease) in the death rate comes with additional investment (disinvestment). Equation

(2.10) and (2.11) suggest that j @r
@n
j < 0, j@ 

@n
j < 0, j @r

@�
j < 0 and j@ 

@�
j < 0. Accordingly, a

decrease in the sensitivity of the consumption-to-wealth ratio to changes in birth and

death rates causes the market price of risk and the volatility of asset prices to decline.

2.5 Conclusion

I answer the questions how demographic transitions a¤ect the value of �nancial assets

and whether demographic uncertainty is priced in �nancial markets. I solve an an-

alytically tractable general equilibrium model with stochastically changing birth and

death rates. The interest rate is time varying due to demographic changes. For a small

enough EIS and a moderate RRA the interest rate is decreasing in the birth rate and

increasing in the death rate. I limit my focus to a discussion on the short rate and leave

term structure implications for future research. The equity premium is stochastically

changing over time and I provide conditions that su¢ ce for the equity premium to be

increasing in the birth rate and decreasing in the death rate.

An important result for future empirical research is that the identi�ed asset pricing

implications of changes in death and birth rates work through di¤erent channels and

it is essential to model birth and death rates separately and not as one general state

variable that determines total population growth or the average age of the population.

Numerical calibrations suggest that stochastic changes in the birth rate have stronger

implications on asset pricing than changes in the death rate. Demographic uncertainty

explains part of the equity premium puzzle and the excess volatility of asset returns

over volatility in aggregate consumption growth. Moreover, the model is able to ex-

plain some of the time variation in the interest rate and stock market excess returns

in the USA in the 20th century. In particular, the model helps to explain why the

average interest rate was only �2:5% and the average stock market excess return was

97



16% during the baby boom period (early 1940�s to 1960�s), and the interest rate was

roughly 1%� 2% and the stock market excess return was only 5:5% in 1926-1940 and

after the early 1960�s.

2.6 Appendix

2.6.1 Empirical Motivation

I use data from 1926 to 2006 provided by CRSP. I approximate the annual real interest

rate by the di¤erence between the annualized nominal interest rate (multiplication of

gross returns on 30 days Treasury Bills) and the realized in�ation (CPI). I assume

that in expectations realized in�ation equals expected in�ation. Stock market excess

returns are the returns on the value weighted stock index provided by CRSP minus the

nominal interest rate. I use a Hodrick-Prescott �lter, a Baxter-King band pass �lter

and an average over 10 years rolling windows of the stock market excess returns to get

estimates of the equity premium; all methods yield similar results.

Birth rate statistics are provided by the Department of Health and Human Services,

National Center for Health Statistics, USA, and The Human Mortality Database, Uni-

versity of California, Berkeley and Max Planck Institute. The immigration rate is found

in the Annual Statistical Yearbook by the U.S. Bureau of Citizenship and Immigra-

tion Services. Data on the central death rate are provided by the National Center for

Health Statistics, USA, and The Human Mortality Database, University of California,

Berkeley and Max Planck Institute.

It is questionable whether only birth rate data or a combination of birth and immi-

gration rates should be used to analyze my model. In the USA immigrants are rather

young and hence, in the model immigration could be considered as an equivalent to

births of agents. Over the past two centuries in the USA roughly 15%-20% of all im-

migrants were children (younger than 14 years old), about 65%-70% were young adults

(between 14 and 44 years old) and only 10%-15% were older than 44 years old (Source:

Economic History Association, EH.net).

I run the regression rt = �(r)+�(r)n nt+�
(r)
i it+�

(r)
� �t+�

(r)
�n�nt+�

(r)
�i�it+�

(r)
����t+
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Interest Rate and Equity Premium (in %)
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Figure 2.8: Left panel: Real interest rate in USA (red line), and implied interest rate
from regression results and demographic statistics (black line). Right panel: 10 year
averages of US stock market excess returns (red line), and implied equity premium from
regression results and observed birth, immigration and death rates (black line).

�
(r)
t .

23 rt represents the real interest rate, �(r) is a constant term, �
(r)
n , �

(r)
i , �

(r)
� ,

�
(r)
�n, �

(r)
�i , and �

(r)
�� are regression coe¢ cients, nt, it and �t are the birth rate, the

immigration rate and the death rate, � is a lag operator, and �(r)t is an error term.

The regression estimates are �(r) = �0:007, �(r)n = �1:66, �(r)i = 9:19, �(r)� = 2:54,

�
(r)
�n = �22:88, �(r)�i = �5, and �

(r)
�� = �3:78. I construct an implied real interest

rate using the regression estimates and the observed birth, immigration and death

rates. The result is displayed in the left panel in �gure 2.8. I also run the regression

r
(x)
t = �(r

(x)) + �
(r(x))
n nt + �

(r(x))
i it + �

(r(x))
� �t + �

(r(x))
t . r

(x)
t represents the expected

excess return on the value weighted stock market index provided by CRSP, �(r
(x)) is

a constant term, �
(r(x))
n , �

(r(x))
i , and �

(r(x))
� are regression coe¢ cients, nt is the birth

rate, it is the immigration rate, �t is the death rate, and �
(r(x))
t is an error term. The

regression output is �(r
(x)) = �0:068, �(r

(x))
n = 9:8, �

(r(x))
i = 1:17, and �

(r(x))
� = �4:56.

I construct an implied equity premium using the regression estimates and the observed

birth and death rates. The result is presented in the right panel in �gure 2.8.

Next, I run the two regression but exclude the immigration rate as an explanatory

variable. For the interest rate I have the regression rt = �(r) + �(r)n nt + �
(r)
� �t +

23It is not obvious whether the interest rate, the equity premium and the birth and death rates are
stationary or non-stationary processes. In the case of non-stationarity I interpret the estimation as a
Engle-Granger regression.
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Figure 2.9: Left panel: Real interest rate in USA (red line), and implied interest rate
from regression results and demographic statistics (black line). Right panel: 10 year
averages of US stock market excess returns (red line), and implied equity premium from
regression results and observed birth and death rates (black line).
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Figure 2.10: Left panel: Real interest rate in USA (red line), and implied interest rate
from regression results and demographic statistics (black line). Right panel: 10 year
averages of US stock market excess returns (red line), and implied equity premium from
regression results and observed birth plus immigration rate and death rate (black line).
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�
(r)
�n�nt + �

(r)
����t + �

(r)
t , and I get the output �

(r) = 0:037, �(r)n = �2:47, �(r)� = 1:4,

�
(r)
�n = �24:05, and �

(r)
�� = �1:71. For the equity premium the regression takes the form

r
(x)
t = �(r

(x)) + �
(r(x))
n nt + �

(r(x))
� �t + �

(r(x))
t , and the estimation gives �(r

(x)) = �0:063,

�
(r(x))
n = 9:7, and �

(r(x))
� = �4:72. I reconstruct again the model implied interest rate

and equity premium and present the results in �gure 2.9.

Finally, I run the two regressions but add up birth and immigration rates and use

them as one explanatory variable (bnt = nt + it). For the interest rate I have the

speci�cation rt = �(r) + �
(r)bn bnt + �

(r)
� �t + �

(r)
�bn�bnt + �

(r)
����t + �

(r)
t , and the estimation

results �(r) = 0:03, �(r)bn = �1:47, �(r)� = 0:53, �(r)�bn = �15:71, and �(r)�� = 2:41. In the
case of the equity premium I run the regression r(x)t = �(r

(x)) + �
(r(x))bn bnt + �

(r(x))
� �t +

�
(r(x))
t , and estimate �(r

(x)) = �0:098, �(r
(x))bn = 9:72, and �

(r(x))
� = �2:96. I compare

the observed and the model implied �nancial quantities of the last speci�cation in �gure

2.10.

2.6.2 Additional Calibrations of the Model

First, I present some further results obtained for the calibration exercise in the paper.

The left panel in �gure 2.11 illustrates the model implied time variation in the market

price of risk for uncertainty in the birth respectively the death rate. Note that a negative

market price of risk for uncertainty in the death rate implies a positive equity premium

because the stock price reacts negatively to shocks in the death rate. The right panel in

�gure 2.11 displays the (conditional) model implied stock price volatility due to birth

respectively death rate uncertainty. Clearly, uncertainty in the birth rate have a much

stronger impact on pricing of �nancial assets than mortality risk. Moreover, most of the

time variation in the stock price volatility and the equity premium are due to changes

in the birth rate while changes in the death rate have a rather moderate impact.

I present two more calibration outputs of the general model with Brownian uncer-

tainty. First, I numerically solve the model with the inputs �(n) = �0:0049, �(n) =

0:0472, �(�) = �0:0071, �(�) = 0:051, correl
�
dnt
nt
; d�t
�t

�
= �0:1, � = 0:005, �(A) +

(1� a)�(K) = 2:1%, �(A) = 2:5%, a = 0:9,  = 5 , and EIS = 0:067. The di¤erence

to the calibration in the text is that I use the moments of the sum of US birth and

immigration rates instead of only the birth rate. I plot the model implied interest rate
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Model Implied Market Price of Risk and Stock Price Volatility (in %)
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Figure 2.11: Left panel: Model implied market price of birth rate risk (black) and
model implied market price of mortality risk (red). Right panel: Model implied stock
market volatility due to birth rate uncertainty (black) and model implied stock price
volatility due to death rate uncertainty (red).

Interest Rate and Equity Premium (in %): Calibration vs Data
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Figure 2.12: Left panel: Real interest rate in USA (black) and model implied interest
rate using US birth and mortality (red). Right panel: US stock market excess returns
using Hodrick-Prescott �lter (black) and model implied equity premium using US birth
and mortality data (red).
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Interest Rate and Equity Premium (in %): Calibration vs Data
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Figure 2.13: Left panel: Real interest rate in USA (black) and model implied interest
rate using US birth and mortality (red). Right panel: US stock market excess returns
using Hodrick-Prescott �lter (black) and model implied equity premium using US birth
and mortality data (red).

and equity premium using the observed birth plus immigration rates and the death

rate.

The major di¤erence to the calibration output in the text (without immigration) is

that the short-lived immigration wave in the USA at around 1990 generates a substan-

tial but short-lived hike in the interest rate and the equity premium. In �gure 2.12 I

plot observed/ estimated and model implied (real) interest rate and equity premium.

Second, I repeat the calibration exercise (case of birth plus immigration) but change

the EIS from 0:067 to 0:05. As expected the interest rate increases and the variation

in the equity premium becomes stronger and closer to what I observe in �nancial data.

The results are provided in �gure 2.13.

2.6.3 Derivation of Kreps and Porteus (1978) Type Stochastic

Di¤erential Utilities given Uncertain Lifetimes

Stochastic di¤erential utilities are a continuous time counterpart to the recursive utili-

ties discussed by Epstein and Zin (1989, 1991). Du¢ e and Epstein (1992a) restrict their

derivation to the case of Brownian information. In a model with uncertain lifetimes the

dynamics of the value function include a Poisson jump term that sets the value func-

tion to zero when the agent passes away. If information is generated by a Brownian

motion and a Poisson jump process (due to lifetime uncertainty), then I have to make
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some adaptations to the utility speci�cation introduced in Du¢ e and Epstein (1992a).

Following the notation in Du¢ e and Epstein (1992a), the dynamics of the utility (given

the agent is still alive at time t and will die at time �) have to be rewritten as (given

t � �)

dVt = �tdt+ �tdBt � VtdQt (2.40)

B is a Brownian motion, Q is a compensated Poisson jump process with hazard rate

�t. The agent dies if Q jumps the �rst time since the agent is born and I denote the

time of the �rst jump by � . The arrival rate of death is time varying and stochastic,

i.e. Q is a doubly stochastic process (Cox process). Following the lines in Du¢ e and

Epstein (1992a) this implies

�t = �f (ct; Vt)�
1

2
A (Vt)�

2
t � �t [M (Vt; Vt�)�M (Vt�; Vt�)] (2.41)

= �f (ct; Vt)�
1

2
A (Vt)�

2
t � �t [M (Vt� � Vt�; Vt�)�M (Vt�; Vt�)]

= �f (ct; Vt)�
1

2
A (Vt)�

2
t + �tM (Vt�; Vt�)

M (y; x) = h(y)
h0(x) is the local gradient representation of the certainty equivalent m, i.e.

rm (�x; p) =
R
M (y; x) dp (y), and h (:) is de�ned as h (m (V )) = E (h (V )).

Since

Vt = Et [VT j � > T ] + Et

�Z T

t

��sds
�

(2.42)

it follows that as T goes to in�nity

Vt = Et

�Z T

t

f (cs; Vs) +
1

2
A (Vs)�

2
s � �sM (Vs; Vs) ds

�
(2.43)

I can show as in Du¢ e and Epstein (1992a) that the following transformation leads

to an equivalent utility function V t = � (Vt) with

f (ct; z) =
f (ct; � (z))

�0 (z)
(2.44)

m(z) = ��1 (m [� (z)]) (2.45)

�0 (z)M (y; z) = M (� (y) ; � (z)) (2.46)

A(x) = �0 (x)A (� (x)) +
�00 (x)

�0 (x)
(2.47)
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This follows from

dV t =

�
�0 (Vt)

�
�f (ct; Vt)�

1

2
A (Vt)�

2
t + �tM (Vt; Vt)

�
+
1

2
�00 (Vt)�

2
t

�
dt

+�0 (Vt)�tdBt � � (Vt) dQt (2.48)

=

�
�f
�
ct; Vt

�
� 1
2
A
�
V t

�
�2t + �tM

�
V t; V t

��
dt+ �tdBt � V tdQt

with

�t = �0 (Vt)�t (2.49)

and

� f (ct; Vt)�
1

2
A (Vt)�

2
t + �tM (Vt; Vt) (2.50)

= �
f
�
ct; Vt

�
�0 (Vt)

� 1
2

A
�
V t

�
�0 (Vt)

�2t �
1

2

�00 (Vt)

�0 (Vt)
�2t + �t

M
�
V t; V t

�
�0 (Vt)

= �
f
�
ct; Vt

�
�0 (Vt)

� 1
2

�
A
�
V t

�
�0 (Vt) +

�00 (Vt)

�0 (Vt)

�
�2t + �t

M
�
V t; V t

�
�0 (Vt)

Choosing �00 (x) = �0 (x)A (x) implies A (x) = 0, and thus, m [x] = E [x].

For the speci�cation introduced in Du¢ e and Epstein (1992a), featuring the Kreps

and Porteus (1978) property of preferences over the timing of risk resolution,

f (cs; Vs) =
�

�

c�s � V �
s

V ��1
s

(2.51)

m (x) =
�
E
�
x1�

�� 1
1� (2.52)

Vt = Et

�Z 1

t

f (cs; Vs) +
1

2
A (Vs)�

2
s � �sM (Vs; Vs) ds

�
(2.53)

= Et

�Z 1

t

�

�

c�s � V �
s

V ��1
s

� 1
2



Vs
�2s � �s

Vs
1� 

ds

�

Letting � (x) = 1
1�x

1� to get an equivalent utility function V t = � (Vt), I end up with

f
�
cs; V s

�
= �0

�
��1

�
V s

��
f
�
cs; �

�1 �V s

��
(2.54)

=
�

�

c�s �
�
(1� )V s

� �
1��

(1� )V s

� �
1��1

m (x) = E [x] (2.55)
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I get the utility speci�cation

V t = Et

�Z 1

t

f
�
cs; V s

�
+
1

2
A
�
V s

�
�2s � �sM

�
V s; V s

�
ds

�
(2.56)

= Et

"Z 1

t

�

�

c�s �
�
(1� )V s

� �
1��

(1� )V s

� �
1��1

� �sV sds

#

= Et

24Z 1

t

�c�s �
�
� + �

(1�)�s

� �
(1� )V s

� �
1�

�
�
(1� )V s

� �
1��1

ds

35
= Et

�Z 1

t

bf �cs; V s

�
ds

�

As shown in the online appendix of Garleanu and Panageas (2010) the same speci-

�cation can be obtained as a continuous time limit of the discrete time recursive utility

function

Vt =
n
c�t + (1� �)Et

�
(1sVt+1)

1�� �
1�
o 1
�

(2.57)

=
n
c�t + (1� �)Et

�
(1� �t)V

1�
t+1

� �
1�
o 1
�

=
n
c�t + (1� �) (1� �t)

�
1� Et

�
V 1�
t+1

� �
1�
o 1
�

1s is an indicator function determining whether the agent survives (1s = 1) or passes

away (1s = 0). The non-linear "discounting" term (1� �t)
�

1� captures risk aversion

towards the timing of death. This relates to the discussion by Bommier (2003). De-

pending on the preference parameters, �
1� > (<) 0, an agent is less (more) concerned

about future consumption (utility) and wants to save less (more) than under a cer-

tain length of life. The utility speci�cation in the paper of Garleanu and Panageas

(2010) di¤ers from my speci�cation because (opposed to my approach) they exclude

risk aversion towards the timing of death.

Because the utility function is a continuous time version of the recursive utility

function introduced by Epstein and Zin (1989, 1991), in order for the agent to have a

preference for early (late) resolution of risk (in the sense of Kreps and Porteus (1978)),

I need

1�  < (>) � (2.58)
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This insight becomes clear when considering the discrete time recursive utility function

Vt =
h
c�t + (1� �)Et

�
1sV

1�
t+1

� �
1�
i 1
�

(2.59)

I de�ne Vt = V
1
�

t and rewrite the discrete time utility speci�cation as

V t =

"
c�t + (1� �)Et

�
1sV

1�
�

t+1

� �
1�
#

(2.60)

For � > 0, arg supfcs;Xsg2(=�L2) fVtg = arg supfcs;Xsg2(=�L2)
�
V t

	
and by Jensen�s in-

equality early (late) resolution of risk is preferred if 1�
�
< (>) 1 or 1�  < (>) �. For

� < 0, arg supfcs;Xsg2(=�L2) fVtg = arg supfcs;Xsg2(=�L2)max
�
�V t

	
and by Jensen�s

inequality early (late) resolution is preferred if 1�
�
> (<) 1 or 1�  < (>) �:

The speci�cation nests the special case of a time additive expected utility function

featuring a CRRA pro�le with  = 1
IES
. Indeed setting  = 1�� reduces to the familiar

speci�cation for power utilities

V t = Et

�Z 1

t

�c1�s

1� 
� (� + �s)V sds

�
(2.61)

= Et

�Z 1

t

�c1�s

1� 
e�

R s
t �+�ududs

�

The condition  = 1 � � implies indi¤erence with respect to timing of risk resolution;

neither early nor late resolution of risk is preferred. In the case of time additive utility

agents also become risk neutral towards uncertainty about the timing of death (cf. also

Bommier (2003)).

There are a few comments on the speci�cation. As the utility function may be

de�ned on the negative space, it might seem that being dead is desirable. I can rule

out this problem by not giving the agent the option to commit suicide. One may also

circumvent the problem of suicidal agents by adding a large enough constant term to

the aggregator function f(:), so that the agent draws utility from simply being alive.

Such a constant term does not matter in the utility maximization problem. Further,

the speci�cation here excludes bequest motives. This is restrictive, but in turn a too

large bequest motive may give rise to suicidal behavior of an agent and counter-intuitive
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results (for more details see Maurer, 2010).

The derivation of the utility speci�cation in the economy with regime shifts (Markov

switching model) follows the same steps. Let the state of the world be indicated by the

state variable St 2 f0; 1g, which jumps when a regime shift occurs. Adjustments have

to be done with respect to the dynamics in the value function,

dVt = �tdt+ 1fSt=1gs
(V )
1 jdbStj+ 1fSt=0gs(V )0 jdbStj � VtdQt (2.62)

bSt is a compensated Poisson jump process corresponding to the Markov switching
process St, and s

(V )
i denotes the change in the value function due to a jump from

state i 2 f1; 0g to the other state. The drift term is given by

�t = �f (ct; Vt) + 1fSt=1g�H
h
M
�
Vt� + s

(V )
1 Vt�

�
�M (Vt�; Vt�)

i
(2.63)

+1fSt=0g�L

h
M
�
Vt� + s

(V )
0 ; Vt�

�
�M (Vt�; Vt�)

i
+ �tM (Vt�; Vt�)

The remaining of the derivation follows by applying the same lines of argument as

above. The speci�cation of the SDU in case of regime shifts in the birth rate becomes

V s
s = Es

�Z 1

s

f (csu; V
s
u ) du

�
(2.64)

with

f (csu; V
s
u ) =

� (csu)
� �

�
� + �

1��
�
[(1� )V s

u ]
�

1�

� [(1� )V s
u ]

�
1��1

�

264 1n
S
(n)
u =1

o�(n)H s
(V s;n)
1

+1n
S
(n)
u =0

o�(n)L s
(V s;n)
0

375 (2.65)

The speci�cation in case of regime shifts in the death rate is written as

V s
s = Es

�Z 1

s

f (csu; V
s
u ) du

�
(2.66)

with

f (csu; V
s
u ) =

� (csu)
� �

�
� + �

1��u

�
[(1� )V s

u ]
�

1�

� [(1� )V s
u ]

�
1��1

�

264 1n
S
(�)
u =1

o�(�)H s
(V s;�)
1

+1n
S
(�)
u =0

o�(�)L s
(V s;�)
0

375 (2.67)
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2.6.4 Proofs of Propositions

Proposition 2.1 is a special cases of Proposition 2.4. Proposition 2.2 and 2.3 are closely

related to Proposition 2.4. I provide a proof for the general case and show afterwards

how to get from there the other Propositions.

Proof of Proposition 2.4. Following Du¢ e and Skiadas (1994, Theorem 2), the

Gateau derivative (directional derivative) of the utility function in equation (2.2) at cs

in the direction x is

rV s
s (c

s;x) � lim
�!0

V s
s (c

s + �x)� V s
s (c

s)

�
(2.68)

= Es

�Z 1

s

e
R t
s

@
@V su

f(csu;V
s
u )du @

@ct
f (cst ; V

s
t )xdt

�
= Es

�Z 1

s

Rtxdt

�

The Riesz representation process Rt is de�ned as

Rt = e
R t
s

@
@V su

f(csu;V
s
u )du @

@ct
f (cst ; V

s
t ) (2.69)

Optimality implies for any agent born at time s (assuming that the optimal consump-

tion plan cs
�
is in the interior)

rV s
s

�
cs
�
;
�
cs � cs

���
= 0 (2.70)

for all admissible consumption plans cs 2 =. Since F (�)s

�
cs � cs

��
spans the set of all

marketable cash �ows M ,

rV s
s

�
cs
�
;F (�)

�1

s (x)
�
= 0 (2.71)

holds for all marketable cash �ows x 2 M . This implies that the Riesz representation

process is a multiple of a SDF �,

Rte
R t
s �udu = �s�t (2.72)

for some constant �s. Since markets are dynamically complete, the found pricing kernel

is unique. I can solve for the optimal consumption plan for any agent born at time s
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by plugging in the expression for the Riesz representation process (from now I drop the

notation indicating the optimum by a star)

�s�t = e
R t
s

@
@V su

f(csu;V
s
u )+�udu @

@ct
f (cst ; V

s
t ) (2.73)

cst = (�s)�
1

1�� �
1

1�� e
1

1��
R t
s

@
@V su

f(csu;V
s
u )+�udu [(1� )V s

t ]
1���

(1�)(1��) (�t)
� 1
1�� (2.74)

cst = csse
1

1��
R t
s

@
@V su

f(csu;V
s
u )+�udu

�
V s
t

V s
s

� 1���
(1�)(1��)

�
�t
�s

�� 1
1��

(2.75)

Using dynamic programming to solve the utility maximization problem of an agent

born at time s, I can state the Hamilton-Jacobi-Bellman equation as follows

0 = sup
fcst ;Xs

t g

n
f
�
cst ; V

s
�cW s; �; n; t

��
dt+ Et

h
dV s

�cW s; �; n; t
�io

(2.76)

with cW s
t = W s

t + Et

hR1
t
e�

R u
t �vdv �u

�t
ysudu

i
representing the agent�s total wealth while

W s indicates his �nancial wealth. The �rst order condition with respect to optimal

consumption is given by

@

@cst
f
�
cst ; V

s
�cW s; �; n; t

��
=

@

@cW s
V s
�cW s; �; n; t

�
(2.77)

This holds conditional on survival. In the following I also condition on survival and

although it is not written explicitly, I keep in mind that the variables cs, W s, and V s

jump to zero when the agent dies. I make the following conjecture for the value function

V s
�cW s; �; n; t

�
=

�cW s
t

�1�
1� 

�
1�
�  t (�; n)

� (1�)(1��)
� (2.78)

Plugging the conjectured value function into the FOC yields

cst = cW s
t  t (2.79)

Plugging back into the conjectured value function and solving for cst , allows us to rewrite

the expression for optimal consumption as

cst = [(1� )V s
t ]

1
1�  

1
�

t �
� 1
� (2.80)
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Combining this with the expression obtained from the martingale approach (equation

(2.74)) and solving for the value function leaves us with

V s
t =

1

1� 
(�s)�

1�
 e

1�


R t
s

@
@V su

f(csu;V
s
u )+�udu�

1�
�  

� (1�)(1��)
�

t �
� 1�



t (2.81)

@
@V st

f (cst ; V
s
t ) is independent of the agent�s time of birth, but is a function of only � and

n, and it is a Markov process,

@

@V s
t

f (cst ; V
s
t ) =

1�  � �

�
 t �

1� 

�
� � �t (2.82)

Solving for optimal consumption yields

cst = (�s)�
1
 �

1�
� e

1


R t
s
1���
�

 u�
1�
�
�du 

� 1���
�

t �
� 1


t (2.83)

cst = csse
1


R t
s
1���
�

 u�
1�
�
�du

�
 t
 s

�� 1���
�

�
�t
�s

�� 1


(2.84)

The dynamics of the utility function are given by (assuming the agent survives over

the next instant of time)

dV s
t

V s
t

=
1� 



�
@

@V s
t

f (cst ; V
s
t ) + �t

�
dt� 1� 



d�t
�t

(2.85)

+
(1� )2 (1� �)

2�

d t
 t

d�t
�t
� (1� ) (1� �)

�

d t
 t

+
1

2

 
(1� )2

2
+
1� 



!�
d�t
�t

�2
+
1

2

 
(1� )2 (1� �)2

2�2
+
(1� ) (1� �)

�

!�
d t
 t

�2

According to the de�nition of the value function, the drift term equals �f (cst ; V s
t ) dt,

which boils down to a PDE determining the function  t (�; n) and at the same time

veri�es my conjecture about the value function (given a solution for the stated PDE
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exists)

0 =
1� �

�
 t (�; n)�

�

�
� 

1� 
�t �

1� �

�

1

dt
Et

�
d t
 t

�
(2.86)

+
1

2

1

dt

�
d�t
�t

�2
+
(1� ) (1� �)

�

1

dt

d t
 t

d�t
�t

+
1

dt
Et

�
�d�t
�t

�
+
1

2

 
(1� ) (1� �)2

�2
+
1� �

�

!
1

dt

�
d t
 t

�2

The last step is equivalent to solving the HJB equation.

Next, I make use of the static budget constraint,

0 = W s
s = Es

�Z 1

s

e�
R t
s �vdv

�t
�s
(cst � yst ) dt

�
(2.87)

to solve for the optimal consumption level of new born agents, css. Plugging in expression

(2.83) for optimal consumption yields

css =
Es

hR1
s
e�

R t
s �vdv �t

�s
ystdt

i
Es

�R1
s
e�

R t
s �vdve

1


R t
s
1���
�

 u�
1�
�
�du
�
 t
 s

�� 1���
�

�
�t
�s

�� 1�

dt

� (2.88)

I de�ne the following functions

F c;s (�; n; s) = Es

"Z 1

s

e�
R t
s �vdve

1


R t
s
1���
�

 u�
1�
�
�du

�
 t
 s

�� 1���
�

�
�t
�s

�� 1�


dt

#
(2.89)

and

F y;s;(i) (�; n; s) = Es

"Z 1

s

�t
�s
a
Yt
Ys

Bie
�(1+�i)

R t
s nvdv

B1
1+�1

+ B2
1+�2

dt

#
(2.90)

with
Ys
Ns

2X
i=1

F y;s;(i) (�; n; s) = Es

�Z 1

s

e�
R t
s �vdv

�t
�s
ystdt

�
(2.91)

Thus, I have

css =
Ys
Ns

P2
i�1 F

y;s;(i) (�; n; s)

F c;s (�; n; s)
(2.92)
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I de�ne the variables

Zc
s = Es

"Z 1

�1
e�

R t
�1 �vdve

1


R t
�1

1���
�

 u��
1�
�
du

�
 t
 �1

�� 1���
�

�
�t
��1

�� 1�


dt

#

= e�
R s
�1 �vdve

1


R s
�1

1���
�

 u��
1�
�
du

�
 s
 �1

�� 1���
�

�
�s
��1

�� 1�


F c;s
s (2.93)

+

Z s

�1
e�

R t
�1 �vdve

1


R t
�1

1���
�

 u��
1�
�
du

�
 t
 �1

�� 1���
�

�
�t
��1

�� 1�


dt

and

Zy;(i)
s = Es

"Z 1

�1

�t
��1

a
Yt
Y�1

Bi

B1
1+�1

+ B2
1+�2

e�(1+�i)
R t
�1 nvdvdt

#
(2.94)

=
�s
��1

Ys
Y�1

e�(1+�i)
R s
�1 nvdvF y;s

s

+

Z s

�1

�t
��1

a
Yt
Y�1

Bi

B1
1+�1

+ B2
1+�2

e�(1+�i)
R t
�1 nvdvdt

Noticing that the newly de�ned quantities, Zc
s , Z

y;(1)
s and Zy;(2)

s are (local) martingales

and (by the tower property of conditional expectations) their drift terms equal zero, I

get PDE�s that determine the functions F c;s (�; n; s), F y;s;(1) (�; n; s) and F y;s;(2) (�; n; s)

0 =

�
��s +

1�  � �

�
 s �

1


�
1� 

�

�
dsF c;s

s + ds� 1� 



d�s
�s

dF c;s
s (2.95)

+Es [dF
c;s
s ]�

1� 


Es

�
d�s
�s

�
F c;s
s � 1�  � �

�
Es

�
d s
 s

�
F c;s
s

+
1

2

(1�  � �) (1� ) (1� �)

2�2

�
d s
 s

�2
F c;s
s +

1

2

1� 

2

�
d�s
�s

�2
F c;s
s

+
(1�  � �) (1� )

2�

d s
 s

d�s
�s

F c;s
s � 1�  � �

�

d s
 s

dF c;s
s

and 8i 2 f1; 2g

0 =

�
1

ds
Es

�
d�s
�s

�
+ �(Y )s +

1

ds

d�s
�s

dYs
Ys

� (1 + �i)ns
�
dsF y;s;(i)

s (2.96)

+Es
�
dF y;s;(i)

s

�
+ dF y;s(i)

s

d�s
�s

+ dF y;s(i)
s

dYs
Ys

+ a
Bi

B1
1+�1

+ B2
1+�2

ds
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Alternatively, using equation (2.79) I can derive F c;s (�; n; s) as follows

css = cW s
s s =

�
W s
s + Es

�Z 1

s

e�
R t
s �vdv

�t
�s
ysdt

��
 s (2.97)

= Es

�Z 1

s

e�
R t
s �vdv

�t
�s
cstdt

�
 s = cssF

c;s
s  s

F c;s
s =

1

 s
(2.98)

Combining with the PDE determining F c;s (�; n; s) (equation (2.95)) I end up with

0 =
1� �

�
 sds�

�

�
ds� 

1� 
�sds�

1� �

�
Es

�
d s
 s

�
(2.99)

+Es

�
�d�s
�s

�
+
1

2

 
(1� ) (1� �)2

�2
+
1� �

�

!�
d s
 s

�2
+
1

2

�
d�s
�s

�2
+
(1� ) (1� �)

�

d s
 s

d�s
�s

which is the same as the PDE (2.86) that determines  t (�; n). This veri�es the con-

jecture about the value function (2.78). Equation (2.79) also tells us that  t (�; n)

describes the consumption to wealth ratio.

Market clearing in the consumption market implies

dYt = dCt (2.100)

Growth in aggregate output is exogenously given and for aggregate consumption I have

dCt = d

�Z t

�1
cstnsNse

�
R t
s �ududs

�
(2.101)

= cttntNtdt+

Z t

�1

dcst
cst
cstnsNse

�
R t
s �ududs� �tCtdt
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I can use expression (2.83) to get the dynamics of the optimal consumption process

dcst
cst

=
1�  � �

�
 tdt� �

1� 

�
dt� 1�  � �

�

d t
 t

(2.102)

�1


d�t
�t
+
1 + 

22

�
d�t
�t

�2
+
1�  � �

2�

d t
 t

d�t
�t

+
(1�  � �) (1� ) (1� �)

22�2

�
d t
 t

�2
Plugging back into the market clearing condition and solving for growth in the SDF

gives

d�t
�t

= � dYt
Yt
� �tdt+ nt

2X
i�1

F y;t;(i) tdt+
1�  � �

�
 tdt (2.103)

�� 1� 

�
dt� 1�  � �

�

d t
 t

+
1�  � �

�

d t
 t

d�t
�t

+
1 + 

2

�
d�t
�t

�2
+
(1�  � �) (1� ) (1� �)

2�2

�
d t
 t

�2
Using (2.86) and (2.96), and plugging in the expression for the SDF, I can derive a

system of 3 di¤erential equations that determines the quantities  t and F
y;t;(i), 8i 2

f1; 2g

0 = �
"
rt � �

(Y )
t + 

�
�(A)

�2
+
1�  � �

�

�
( )
t

 t
�(A) + (1 + �i)nt

#
F
y;t;(i)
t (2.104)

+�
(F y;(i))
t � 1�  � �

�
�
(F y;(i))
t

�
( )
t

 t
+ (1� )�(A)�

(F y;(i))
t +

aBi

B1
1+�1

+ B2
1+�2

0 = � t +
1

1� �
� +

�

1� �



1� 
�t �

�

1� �
rt +

�
( )
t

 t
(2.105)

�1
2

�
1� 

�
+



1� �

� 
�
( )
t

 t

!2
� 1
2

�

1� �

�
�(A)

�2
+

�

1� �
�(A)

�
( )
t

 t
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with the dynamics of F y;t;(i) and  t de�ned as

�
(F y;(i))
t = F

y;(i)
� �t�

(�) + F y;(i)
n nt�

(n) +
1

2
F
y;(i)
��

�
�t�

(�)
�2

(2.106)

+
1

2
F y;(i)
nn

�
nt�

(n)
�2
+ F

y;(i)
�n �tnt�

(�)
�
�(n)

�T
�
(F y;(i))
t = F

y;(i)
� �t�

(�) + F y;(i)
n nt�

(n) (2.107)

�
( )
t =  ��t�

(�) +  nnt�
(n) +

1

2
 ��

�
�t�

(�)
�2

(2.108)

+
1

2
 nn

�
nt�

(n)
�2
+  �n�tnt�

(�)
�
�(n)

�T
�
( )
t =  ��t�

(�) +  nnt�
(n) (2.109)

By de�nition of rt = Et

h
�d�t

�t

i
and �t = �d�t

�t
�Et

h
�d�t

�t

i
, Proposition 2.4 follows,

rt = � + (1� �)

"
�
(Y )
t + �t � nt

2X
i�1

F y;t;(i) t

#
� 1�  � �

1� 
�t (2.110)

+
1�  � �

2�

 
�
( )
t

 t

!2
�  (2� �)

2

�
�(A)

�2 � 1�  � �

�
�(A)

�
( )
t

 t

�t =
1�  � �

�

�
( )
t

 t
+ �(A) (2.111)

Proof of Proposition 2.1. Proposition 2.1 is a special case of Proposition 2.4 and

follows immediately when using �(A) = 0, d�t = 0 and dnt = 0. Moreover, I rewrite

ctt (r) =
Ct
Nt

2X
i=1

F y;t;(i) t (2.112)

=
Ct
Nt

a

R1
0
e(�

(Y )�n�r)tG (0; t) dtR1
0
G (0; s)ne�nsds

�
�

1� �



1� 
�+

1

1� �
� � �

1� �
r

�

Proof of Proposition 2.2 and 2.3. The proof of Proposition 2.2 and 2.3 are

basically the same. The main di¤erence to Proposition 2.4 is that the function  t (�; n)

does not follow a continuous di¤usion process, but jumps between two distinct values.

The argument follows basically the same lines. The derivation from equation (2.68)

to equation (2.83) is carried over without any change. The further derivation di¤ers
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slightly and is described now. To derive optimal consumption of new born agents I make

use of the static budget constraint and de�ne the functions F c;s (�; n; s), F y;s;(i) (�; n; s),

Zc
s and Z

y;(i)
s as before. Using the martingale property of the Z functions and setting

the drift zero yields

0 =

�
��s� +

1�  � �

�
 s� �

1� 

�
�

�
dsF c;s� + ds (2.113)
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" �
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�
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#

and
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"
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"
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s�

�s�

#
+ �

(Y )
s� ds� (1 + �i)ns�ds

#
F y;s�;(i) (2.114)

+Es

��
�s
�s�

F y;s;(i)

F y;s�;(i) � 1
�
F y;s�;(i)jdSsj

�
+

aBi

B1
1+�1

+ B2
1+�2

ds

where the superscript (cp) denotes the continuous (smooth) part of the process (for

notational details see Shreve, 2004). Using the relation F c;s = 1
 s
gives the equation

determining  t

0 =
1� �

�
 s� (�; n)�

�

�
� 

1� 
�s� �

1

ds
Es

"
d�

(cp)
s�

�s�

#
(2.115)

+


1� 
Es

" �
 s
 s�

�� (1�)(1��)
�

�
�s
�s�

�� 1�


� 1
!
jdSsj

#

Given these functions, it holds

css =
Ys
Ns

2X
i=1

F y;s;(i) s (2.116)

The dynamics of the optimal consumption process for the individual agent are (using
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equation (2.83))

dcst
cst�

=

�
1�  � �

�
 t� (�; n)�

1� 

�
�

�
dt (2.117)

�1


d�
(cp)
t�

�t�
+
1 + 

2

 
d�

(cp)
t�

�t�

!2
+
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cst � cst�
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=

�
 t
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�

�
�t
�t�

�� 1


� 1 (2.118)

From equation (2.118) and the fact that on the aggregate consumption and output are

smooth, Ct = Ct� and Yt = Yt� (no discontinuities), it follows that the pricing kernel

process must have a jump component inherent, and in particular, it must hold

�t
�t�

=

�
 t
 t�

�� 1���
�

(2.119)

d�t�
�t�

� d�
(cp)
t�

�t�
=
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 t
 t�

�� 1���
�

� 1
!
jdStj (2.120)

Finally, imposing market clearing in the consumption good market as before (dYt =

dCt) and solving for the SDF yields

d�
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t

�t
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"
��(Y )t � 1� 

�
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F y;t;(i) t +
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(cp)
t

�t
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(2.121)

Adding the jump component leaves us with the quantities

rt� = � + (1� �)

"
�
(Y )
t� + �t� � nt�

2X
i�1

F y;t�;(i) t�

#
� 1�  � �

1� 
�t� (2.122)
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and

�t� = �
 �

 t
 t�

�� 1���
�

� 1
!

(2.123)

with
d�t
�t

= �rtdt� �t

���dbSt��� (2.124)

and
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� +

�

1� �
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1� F y;s;(i)

F y;s�;(i)

� aBi

B1
1+�1

+ B2
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(2.126)

2.6.5 Proofs of Lemmas

Proof of Lemma 2.1. From market clearing in �nancial markets it follows immedi-

ately that

Pt =

Z t

�1
W s
t nsNse

�
R t
s �vdvds (2.127)

From the static budget constraint it follows the expression for �nancial wealth

W s
t = Et

�Z 1

t

e�
R u
t �vdv

�u
�t
(csu � ysu) du

�
(2.128)

The constraint is binding at optimum because of local non-satiation (utility is increasing

in consumption). Plugging in yields

Pt =

Z t

�1
Et

�Z 1

t

e�
R u
t �vdv

�u
�t
csudu

�
nsNse

�
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For the �rst term I have

Z t

�1
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For the second term it holds
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Combining and imposing market clearing in the consumption goods market (Yt = Ct)

gives

Pt = Yt

"
1

 t (�; n)
�

2X
i=1

F y;t;(i) (�; n; t)

1 + �i

#
(2.132)

Proof of Lemma 2.2. Following the de�nition of the price of an asset that pays

dividends Dt, I can write

Pt = Et

�Z T

t

�s
�t
Dsds+

�T
�t
PT

�
(2.133)

Et [P0] = Et

�Z T

0

�s
�0
Dsds+

�T
�0
PT

�
= Pt

�t
�0
+

Z t

0

�s
�0
Dsds (2.134)

Noticing that the Et [P0] is a martingale (according to the tower property of conditional
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expectations), it follows immediately

0 = Et [d (Et [P0])] = Et

�
dPt

�t
�0
+ Pt

d�t
�0

+ dPt
d�t
�0

+
�t
�0
Dtdt

�
(2.135)
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�
dPt +Dt
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�
� rt = �

dPt
Pt

d�t
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(2.136)

Proof of Lemma 2.3. First note that I often use the notation �t (r) =
Ntctt(x)

Ct
=P2

i=1 F
y;(i)
t  t to describe the ratio between consumption of a new born agent and per

capita GDP. Let �(r) = min�2f�(r)[0g f�g with �
(r) =

�
� : �(r) (�) = 0; � < 0

	
and

�(r) (�) = a (n� �)� 
1��� n� (r (�)). I show that the condition � < �(r) (or EIS <

EIS
(r)
= 1

1��(r) ) su¢ ces for the interest rate in an OLG economy to be smaller than

the rate in an equivalent economy populated by a representative in�nitely-lived agent

(r < r�). Moreover, I show that for B2 = 0 of �1 = �2, the function �(r) (�) is

monotonically decreasing in �� (for � < 0), and if lim �%0
�
�(r) (�)

�
< 0, then the

set �(r) is single valued, and otherwise empty. It follows that for B2 = 0 or �1 = �2

there exists no � > �(r) that satis�es �(r) (�) < 0. In the general case (B2 6= 0 and

�1 6= �2) there might exist � > �(r) that satis�es �(r) (�) < 0. I need the technical

conditions r� 
1����, r��

(Y ) > 0, and �(Y )� 
1���na
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6= 0. Given  > 1,
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�� n� (r)
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(2.137)

The expression in equation (2.9) is negative and it holds r < r�, if the su¢ cient condition

n� (r) > a (n� �)� 

1� 
� (2.138)

is satis�ed. Because  is constant across cohorts, it holds
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=
cW t
tcW s
t
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cW s
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= e
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and

� (r) =
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=
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n

with  + �(Y ) � r > 0 since  + �(Y ) � r = n� (r). I look at how condition (2.138)

behaves in the limit when the EIS approaches zero. Taking the limit of � approaching

�1, I get for the key variables

lim
�!�1

r

1� �
= �(Y ) � 

1� 
�� n lim

�!�1
� (r) (2.141)

and

lim
�!�1

 

1� �
= lim

�!�1

r

1� �
(2.142)

and 8i 2 f1; 2g

lim
�!�1

(1� �)F y;(i) =
1

lim�!�1
r
1��

aBi

B1
1+�1

+ B2
1+�2

(2.143)

Suppose j lim�!�1
r
1�� j <1 and lim�!�1

r
1�� 6= 0, I get

lim
�!�1

� (r) = a
B1 +B2
B1
1+�1

+ B2
1+�2

(2.144)

Indeed j lim�!�1
r
1�� j = �(Y )� 

1���na
B1+B2
B1
1+�1

+
B2
1+�2

<1 and in general lim�!�1
r
1�� =

�(Y ) � 
1�� � na B1+B2

B1
1+�1

+
B2
1+�2

6= 0. In the case of B2 = 0 or �1 = �2, lim�!�1� (r)

simpli�es to

lim
�!�1

� (r) = a (1 + �1) (2.145)

In the limit as the EIS approaches zero condition (2.138) is satis�ed if B1+B2
B1
1+�1

+
B2
1+�2

>

1� 1+ 1�a
a


1�
�
n
. For B2 = 0 or �1 = �2, the condition boils down to �1 > �

1+ 1�a
a


1�
�
n
. Using

 > 1, r � 
1�� � � and the conditions of Lemma 2.3 (r � �(Y ) > 0), and taking the
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derivative of r with respect to �� gives

@r

@ (��) =
�(Y ) + �� n� (r)� n 1

1��

�
r � � � 

1��
�P2

i=1 F
y;(i) � 1

1��

1 + (1� �)n�0 (r)
(2.146)

=
�(Y ) � 

1��� n� (r)�
�

1
1��r �

1
1��� �

1
1��


1��

�
1
 
n� (r)

1 + (1� �)n�0 (r)

=

1
 
( � n� (r))

�
�(Y ) � 

1��� n� (r)
�

1 + (1� �)n�0 (r)

=

1
 

�
r � �(Y )

� �
r � 

1���  
�

1 + (1� �)n�0 (r)
=

1
 

�
r � �(Y )

�
1
1��

�
r � 

1��� �
�

1 + (1� �)n�0 (r)
> 0

Assuming � < 0 and taking the derivative of  with respect to �� yields

@ 

@ (��) =
1

(1� �)2

�
r � 

1� 
�� �

�
� �

1� �

�
�@r
@�

�
(2.147)

=
1

(1� �)2

�
r � 

1� 
�� �

��
1� �

1

 

r � �(Y )

1 + (1� �)n�0 (r)

�
> 0

Analyzing the function � (r), I get

@� (r)

@r
= �

2X
i=1

�
1

r � �(Y ) + (1 + �i)n
F y;(i) + F y;(i) �

1� �

�
(2.148)
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and

@ (� (r))

@ (��) =
1

n

@
�
 + �(Y ) � r

�
@ (��) =

1

n

�
@ 

@ (��) �
@r

@ (��)

�
(2.149)

=
1

n

1

(1� �)2

�
r � 

1� 
�� �

� 
1�

1
 

�
r � �(Y )

�
1 + (1� �)n�0 (r)

!

=
1

(1� �)2
1

 

r � 
1��� �

1 + (1� �)n�0 (r)

�
 + �(Y ) � r

n
+ (1� �) �0 (r) 

�
=

1

(1� �)2
1

 

r � 
1��� �

1 + (1� �)n�0 (r)

�
 
� (r)� (1� �) 

2X
i=1

�
1

r � �(Y ) + (1 + �i)n
F y;(i) + F y;(i) �

1� �

�!

=
1

1� �

1

 

r � 
1��� �

1 + (1� �)n�0 (r)

 
� (r)�  

2X
i=1

1

r � �(Y ) + (1 + �i)n
F y;(i) 

!

=
1

1� �

1

 

r � 
1��� �

1 + (1� �)n�0 (r)

2X
i=1

F y;(i) 

�
1�  

1

r � �(Y ) + (1 + �i)n

�

=
1

1� �

1

 

r � 
1��� �

1 + (1� �)n�0 (r)
n

2X
i=1

F y;(i) 

r � �(Y ) + (1 + �i)n
(1 + �i � � (r))

@(�(r))
@(��) > 0 holds and� (r) is strictly increasing in�� if

P2
i=1

F y;(i) 
r��(Y )+(1+�i)n

(1 + �i � � (r))

> 0. In general it is hard to tell whether this condition is satis�ed. However, if B2 = 0

or �1 = �2, then

@ (� (r))

@ (��) =
1

1� �

1

 

r � 
1��� �

1 + (1� �)n�0 (r)
n

� (r)

r � �(Y ) + (1 + �1)n
(1 + �1 � � (r)) (2.150)

and a (1 + �1) > � (r) and @(�(r))
@(��) > 0 must hold for � < 0. I proof this statement as

follows. Suppose � (r) = �� > 1 + �1 was true for some b� < 0. Then, since � (r) is

a continuous function and 1 + �1 > (<) � (r) implies @(�(r))
@(��) > (<) 0, 1 + �1 > � (r)

can never occur for � < b� and � (r) will converge (from above) to b� 2 [1 + �1;�
�)

as � approaches �1. But this contradicts lim�!�1� (r) = a (1 + �1). Similar, sup-

pose � (r) = �� 2 (a (1 + �1) ; 1 + �1) for some b� < 0. Then, since � (r) is a con-

tinuous function and 1 + �1 > (<) � (r) implies @(�(r))
@(��) > (<) 0, � (r) is approach-

ing the limit b� 2 (��; 1 + �1] (from below) as � approaches �1, which contradicts

lim�!�1� (r) = a (1 + �1). The only possibility is that � (r) is strictly increasing and
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approaches the limit a (1 + �1) (from below) as � approaches �1. Finally, since � (r)

is a continuous function in � (for � < 0), � < �(r) for �(r) = min�2(�(r)[f0g) f�g with

�(r) �
�
� : �(r) = 0; � � 0

	
and �(r) = a (n� �)� 

1��� n� (r (�)) satis�es condition

(2.138), if B1+B2
B1
1+�1

+
B2
1+�2

> 1 � 1+ 1�a
a


1�
�
n
. Moreover, in the case of B2 = 0 or �1 = �2 and

�1 > �
1+ 1�a

a


1�
�
n
, if condition (2.138) is not satis�ed for �% 0, then �(r) is single valued

(as �(r) is monotonic), and if condition (2.138) is satis�ed for �% 0, then �(r) is empty.

A similar result can be achieved following the argument in Garleanu and Panageas

(2010). Provided the (su¢ cient) conditions

n� (r�) > a (n� �) +
�

1� �



1� 
� (2.151)

and
�

1� 
�+ � � ��(Y ) > 0 (2.152)

and

� � a (n� �)� ��(Y )� > 0 (2.153)

the equilibrium interest rate in the OLG economy is lower than the respective interest

rate in an economy populated by an in�nitely-lived representative agent (r < r�). I de-

�ne r� = (1� �)�
(Y )
� +� (interest rate in in�nitely-lived representative agent economy).

Let the function f (r) (x) = (1� �)�(Y )+ �
1��+��(1� �)n� (x)�x. First, I note that

condition (2.153) implies that r� > �(Y ). Next, condition (2.151) implies 0 > f (r) (r�),

and condition (2.152) implies 0 < f (r)
�
�(Y )

�
. Since the function f (r) (:) is continuous,

then by the intermediate value theorem, there exists
�
r : r 2

�
�(Y ); r�

�
; f (r) (r) = 0

	
.

This means that there exists an equilibrium interest rate in the OLG economy that is

larger than the growth rate in GDP but smaller than the rate in an equivalent econ-

omy populated by an in�nitely-lived agent. As pointed out by Garleanu and Panageas

(2010), condition (2.151) can be interpreted as a requirement on life-cycle earnings

to be su¢ ciently strong declining in age. Assuming the special parameterization of

G (0; t) = B1e
��1nt (B2 = 0), it becomes

�1 >

�
a (n� �) + �

1��

1��

��
� � ��

(Y )
� � a (n� �)

�
n
�
a� � a��

(Y )
� � a (n� �)� (1� a) �

1��

1��

� � 1 (2.154)
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It requires �1 to be large enough and life-cycle earnings to decrease fast enough as an

agent age. Condition (2.152) is implied by  > 1. This is because condition (2.152)

it is implied by condition (ii) of Proposition 2.1 if � > 0 and r > �(Y ) (which is an

implication of the just discussed intermediate value theorem), or it is satis�ed for � < 0

and  =2
�

�(Y )

�(Y )+�
; 1
�
. The condition (2.153) requires the IES to be small enough,

� < ��a(n��)
�(Y )�a(n��) (given �

(Y )
� > 0).

The argument of both discussed proofs are interdependent and complement each

other. I need a su¢ ciently decreasing life-cycle earnings pro�le and a strong enough

consumption smoothing motive. The di¤erence is that once I explore the magnitude of

the EIS and once I focus on the labor income path.

Proof of Lemma 2.4. Let �(n) = min�2(�(n)[f0g) f�g with �
(n) = f� : �(n) (�) = 0;

� < 0g and �(n) (�) = � (r (�))�a r(�)��
(Y )+(1+�1)n

r(�)��(Y )+an . I show that the condition � < �(n) (or

EIS < EIS
(n) � 1

1��(n) ) su¢ ces for
@r
@n
< 0 to hold. Moreover, I show that for B2 = 0

or �1 = �2, the function �(n) (�) is monotonically increasing in �� (for � < 0), and if

lim �%0
�
�(n) (�)

�
< 0, then the set �(n) is single valued, and otherwise �(n) is empty.

It follows that for B2 = 0 or �1 = �2 there exists no � > �(n) that satis�es �(n) (�) > 0.

In the general case (B2 6= 0 and �1 6= �2) there might exist � > �(n) that satis�es

�(n) (�) > 0. I need the technical conditions B1 >
1+ 1

�1

1+ 1
�2

jB2j, �1 > 0, r � 
1��� � > 0,

�(Y ) � 
1�� � na B1+B2

B1
1+�1

+
B2
1+�2

6= 0 and the conditions of Proposition 2.1 and Lemma 2.3

to hold. For @r
@n
< 0 to hold, I need a� � (r) + n

P2
i=1

�a+1+�i
r��(Y )+(1+�i)n

F y;(i) < 0. Using

the assumptions �1 > 0 and Lemma 2.3 (r � �(Y ) > 0), I get

a� � (r) + n

2X
i=1

�a+ 1 + �i
r � �(Y ) + (1 + �i)n

F y;(i) (2.155)

= a� � (r) +
2X
i=1

�
1� r � �(Y ) + an

r � �(Y ) + (1 + �i)n

�
F y;(i) 

= a�
2X
i=1

r � �(Y ) + an

r � �(Y ) + (1 + �i)n
F y;(i) < a� r � �(Y ) + an

r � �(Y ) + (1 + �1)n
� (r)

which implies that

� (r) > a
r � �(Y ) + (1 + �1)n

r � �(Y ) + an
(2.156)

su¢ ces for @r
@n
< 0 to hold. First, I look at how condition (2.156) behaves in the limit
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when the EIS approaches zero. Following the result in Lemma 2.3, I get

lim
�!�1

� (r) = a
B1 +B2
B1
1+�1

+ B2
1+�2

(2.157)

and for B2 = 0 or �1 = �2, lim�!�1� (r) simpli�es to

lim
�!�1

� (r) = a (1 + �1) (2.158)

Moreover,

lim
�!�1

a
r � �(Y ) + (1 + �1)n

r � �(Y ) + an
= lim

�!�1
a

r
1�� +

��(Y )+(1+�1)n
1��

r
1�� +

��(Y )+an
1��

= a (2.159)

In the limit as the EIS approaches zero condition (2.156) is satis�ed (lim�!�1� (r) >

lim�!�1 a
r��(Y )+(1+�1)n
r��(Y )+an ) if B1+B2

B1
1+�1

+
B2
1+�2

> 1 or equivalently B1 >
1+ 1

�1

1+ 1
�2

jB2j. In the case

of B2 = 0 or �1 = �2 condition B1+B2
B1
1+�1

+
B2
1+�2

> 1 boils down to �1 > 0. Next, I note that

a r��
(Y )+(1+�1)n

r��(Y )+an 2 (a; 1 + �1). Using  > 1, r � 
1��� �, 1 + �1 > a and the conditions

of Lemma 2.3 (r � �(Y ) > 0), I see that the term a r��
(Y )+(1+�1)n

r��(Y )+an is strictly decreasing

in �� until it approaches a in the limit where � approaches �1, because

@
�
a r��

(Y )+(1+�1)n

r��(Y )+an

�
@ (��) = a

@
�
1 + (1+�1)n�an

r��(Y )+an

�
@r

@r

@ (��) (2.160)

= �an 1 + �1 � a

(r � �(Y ) + an)
2

@r

@ (��) < 0

Following Lemma 2.3, I also know that @(�(r))
@(��) > 0 holds and � (r) is strictly increasing

in �� if
2X
i=1

F y;(i) 

r � �(Y ) + (1 + �i)n
(1 + �i � � (r)) > 0 (2.161)

It is hard to tell whether this condition is satis�ed in general. However, if B2 = 0 or

�1 = �2, then

@ (� (r))

@ (��) =
1

1� �

1

 

r � 
1��� �

1 + (1� �)n�0 (r)
n

� (r)

r � �(Y ) + (1 + �1)n
(1 + �1 � � (r)) (2.162)
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and a (1 + �1) > � (r) and @(�(r))
@(��) > 0 must hold for � < 0 (as shown in Lemma 2.3).

In conclusion, since � (r) and a r��
(Y )+(1+�1)n

r��(Y )+an are continuous functions in � (for � < 0),

� < �(n) satis�es condition (2.156) and @r
@n

< 0 (if B1 >
1+ 1

�1

1+ 1
�2

jB2j). Moreover, in the

case of B2 = 0 or �1 = �2, if condition (2.156) is not satis�ed for � % 0, then �(n) is

single valued (as �(n) is monotonic), and if condition (2.156) is satis�ed for �% 0, then

�(n) is empty.

Proof of Lemma 2.5. Let �(�) = min�2(�(�)[f0g) f�g with �
(�) = f� : �(�) (�) = 0;

� < 0g and �(�) (�) = 1 � a �
�
� 
1�

1
 (�)

� a
r(�)��(Y )+(1+�1)n

�
na (1 + �1) � 1���

(1�)(1��) .

I show that the condition � < �(�) (or EIS < EIS
(�) � 1

1��(�) ) su¢ ces for
@r
@�

>

0 to hold. Moreover, I show that for B2 = 0 or �1 = �2, the function �(�) (�) is

monotonically increasing in �� (for � < 0), and if lim �%0
�
�(�) (�)

�
< 0, then the

set �(�) is single valued, and otherwise �(�) is empty. It follows that for B2 = 0

or �1 = �2 there exists no � > �(�) that satis�es �(�) (�) > 0. In the general case

(B2 6= 0 and �1 6= �2) there might exist � > �(�) that satis�es �(�) (�) > 0. The

technical conditions needed are the same as in Lemma 2.4. For @r
@�

> 0 to hold, I

need (1� �)
�
1� a+

P2
i=1

an
r��(Y )+(1+�i)n

F y;(i) � n �
1��


1�
P2

i=1 F
y;(i)
�
� 1���

1� > 0.

Suppose that � < 0. Using  > 1, and � (r) < a (1 + �1) (result of Lemma 2.3), I note

that

(1� �)

0@ 1� a+
P2

i=1
an

r��(Y )+(1+�i)n
F y;(i) 

�n �
1��


1�
P2

i=1 F
y;(i)

1A� 1�  � �

1� 
(2.163)

> (1� �)

�
1� a�

�
�

1� �



1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
n� (r)

�
� 1�  � �

1� 

> (1� �)

�
1� a�

�
� 

1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
n� (r)

�
� 1�  � �

1� 

> (1� �)

�
1� a�

�
� 

1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
� 1�  � �

1� 

Condition

(1� �)

�
1� a�

�
� 

1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
� 1�  � �

1� 
> 0

(2.164)

su¢ ces for @r
@�

> 0. For the case when the EIS approaches zero condition (2.164) is
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satis�ed since

lim
�!�1

�
� 

1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
= 0 (2.165)

and

lim
�!�1

(1� �)

�
1� a�

�
� 

1� 

1

 
� a

r � �(Y ) + (1 + �1)n

�
na (1 + �1)

�
�1�  � �

1� 
> 0

(2.166)

The term�1���
1� is increasing in�� (since  > 1). The expression� 

1�
1
 
� a
r��(Y )+(1+�1)n

is decreasing in �� if
P F y;(i) 

r��(Y )+(1+�i)n
(1 + �i � � (r)) > 0, because

@
�
� 
1�

1
 
� a

r��(Y )+(1+�1)n

�
@ (��) (2.167)

=


1� 

1

 2
@ 

@ (��) +
a

(r � �(Y ) + (1 + �1)n)
2

@r

@ (��)

=


1� 

1

 2
1

(1� �)2

�
r � 

1� 
�� �

��
1� �

1

 

r � �(Y )

1 + (1� �)n�0 (r)

�

+
a

(r � �(Y ) + (1 + �1)n)
2

1
 

�
r � �(Y )

�
1
1��

�
r � 

1��� �
�

1 + (1� �)n�0 (r)

=

�
r � 

1� 
�� �

�
1

(1� �)2

264 
1�

1
 2

�
1� � 1

 
r��(Y )

1+(1��)n�0(r)

�
+ a

(r��(Y )+(1+�1)n)
2 (1� �) 1

 
r��(Y )

1+(1��)n�0(r)

375
<

�
r � 

1� 
�� �

�
1

(1� �)2
1

 2

24 
1�

�
1� � 1

 
r��(Y )

1+(1��)n�0(r)

�
+a (1� �) 1

 
r��(Y )

1+(1��)n�0(r)

35
<



1� 

�
r � 

1� 
�� �

�
1

(1� �)2
1

 2

24 �
1� � 1

 
r��(Y )

1+(1��)n�0(r)

�
� (1� �) 1

 
r��(Y )

1+(1��)n�0(r)

35
=



1� 

�
r � 

1� 
�� �

�
1

(1� �)2
1

 2

�
1� 1

 

r � �(Y )

1 + (1� �)n�0 (r)

�
=



1� 

1

1� �

1

 3
r � 

1��� �

1 + (1� �)n�0 (r)
n2

2X
i=1

F y;(i) 

r � �(Y ) + (1 + �i)n
(1 + �i � � (r))

where the �rst inequality follows from  < r � �(Y ) + (1 + �1)n and the second

one from �
1� > a. As in the discussion in Lemma 2.4, it is hard to tell whetherP F y;(i) 

r��(Y )+(1+�i)n
(1 + �i � � (r)) > 0 is satis�ed in general. However, if B2 = 0 or

�1 = �2, then a (1 + �1) > � (r) and @(�(r))
@(��) > 0 must hold for � < 0. Since � 

1�
1
 
�
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a
r��(Y )+(1+�1)n

and �1���
1� are continuous function in � (for � < 0), it follows that

� < � satis�es condition (2.164) and @r
@�
> 0 (if B1 >

1+ 1
�1

1+ 1
�2

jB2j). Moreover, in the case

of B2 = 0 or �1 = �2, if condition (2.164) is not satis�ed for �% 0, then �(�) is single

valued (as �(�) is monotonic), and if condition (2.164) is satis�ed for �% 0, then �(�)

is empty.

Proof of Lemma 2.6. Let �(n)1 = min
�2
n
�
(n)
1 ;0

o f�g with �(n)1 = f� : �(n)1 (�) = 0;

� < 0g and �(n)1 (�) = r
(n)
L (�) � r

(n)
H (�). I show that for � < �

(n)
1 (or EIS < EIS

(n)

1 =

1

1��(n)1

), the interest rate during a period characterized by a high birth rate (baby boom)

is lower than the rate during times of a low birth rate (baby bust), r(n)H < r
(n)
L . This is

a su¢ cient condition and there might exist some � > �
(n)
1 that satis�es r(n)H < r

(n)
L . I

need the technical conditions B1 >
1+ 1

�1

1+ 1
�2

jB2j, �1 > 0, �(Y;n)L � 
1��� nLa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0

and �(Y;n)H � 
1��� nHa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0. The conditions � < 0 and  2 (1; 1� �) imply

1���
�

< 0, and  (n)H < (>) 
(n)
L is true if r(n)H < (>) r

(n)
L holds. I can show this using a

proof by contradiction. Suppose  (n)H >  
(n)
L and r(n)H < r

(n)
L . I have

 
(n)
H �  

(n)
L = � �

1� �

�
r
(n)
H � r

(n)
L

�
| {z }

<0

� �

1� �
�
(n)

H
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(n)
H

!� 1���
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� 1

1A
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<0

(2.168)
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(n)
L

!� 1���
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�
(n)

L

0@  (n)H

 
(n)
L

!� 1�
�

� 1

1A
| {z }

<0

which contradicts the assumption  (n)H >  
(n)
L . Hence, if there exists a solution, then

 
(n)
H <  

(n)
L and r(n)H < r

(n)
L must hold. The same line of argument holds for r(n)H > r

(n)
L

and  (n)H >  
(n)
L .

Next, I look at the di¤erence between the interest rate during a baby bust and the
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rate during a baby boom. To proof the Lemma I have to �nd conditions such that

the r(n)L � r
(n)
H > 0 holds. I explore the behavior of r(n)L � r

(n)
H under the limit when

� approaches �1. I �rst suppose that 8j 2 fL;Hg, i 2 f1; 2g, j lim�!�1
r
(n)
j

1�� j < 1,

lim�!�1
r
(n)
j

1�� 6= 0, j lim�!�1
 
(n)
j

1�� j <1, lim�!�1
 
(n)
j

1�� 6= 0, j lim�!�1 (1� �)F
y;(i);(n)
j j <

1, and lim�!�1 (1� �)F
y;(i);(n)
j 6= 0 hold, and verify these assumptions in the end.

For the interest rate I have 8 (j; h) 2 f(L;H) ; (H;L)g

lim
�!�1

r
(n)
j

1� �
= �

(Y;n)
j � 

1� 
�� nj lim

�!�1

 
2X
i=1

F
y;(i);(n)
j  

(n)
j

!
(2.169)

For the consumption to wealth ratio I get 8 (j; h) 2 f(L;H) ; (H;L)g

lim
�!�1

 
(n)
j

1� �
= lim

�!�1

r
(n)
j

1� �
(2.170)

For the function F y;i;(n)
j , 8i 2 f1; 2g, (j; h) 2 f(L;H) ; (H;L)g it holds

lim
�!�1

(1� �)F
y;(i);(n)
j =

1

lim�!�1
r
(n)
j

1��

aBi

B1
1+�1

+ B2
1+�2

(2.171)

The consumption share of the new born cohort is 8j 2 fL;Hg

nj lim
�!�1

 
2X
i=1

F
y;(i);(n)
j  

(n)
j

!
= nja

B1 +B2
B1
1+�1

+ B2
1+�2

(2.172)

Plugging the last expression into the equation of lim�!�1
r
(n)
j

1�� , it follows that my as-

sumptions are indeed true. I can now compare how r
(n)
H and r(n)L behave in the limit,

lim
�!�1

 
r
(n)
L

1� �
� r

(n)
H

1� �

!
= a (nH � nL)

 P2
i=1Bi

B1
1+�1

+ B2
1+�2

� 1
!

(2.173)

As a result, in the limit as � approaches �1, lim�!�1

�
r
(n)
L � r

(n)
H

�
> 0 is satis�ed,

if B1+B2
B1
1+�1

+
B2
1+�2

> 1 or equivalently B1 >
1+ 1

�1

1+ 1
�2

jB2j holds. This is the same condition as

in the static case (Lemma 2.4), and requires that B1
jB2j is large enough and (�2 � �1) is

small enough. In the case of B2 = 0 or �1 = �2, the condition becomes �1 > 0. In

conclusion, since the functions r(n)L (�) and r(n)H (�) are continuous in �, the condition
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� < �
(n)
1 ensures that r(n)L > r

(n)
H holds.

It is straightforward that j�(n)L j < j�
(n)
H j must hold given r

(n)
H < r

(n)
L ,  

(n)
H <  

(n)
L and

1���
�

< 0. It is true that

0 <

��
 
(n)
H

��2 1���
� �

�
 
(n)
L

�� 1���
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�2
(2.174)

and rearranging yields
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(2.175)
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and dividing both sides by
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(2.176)

Proof of Lemma 2.7. Let �(n)2 = min
�2
n
�
(n)
2 ;0

o f�g with �(n)2 = f� : �(n)2 (�) = 0;

� < 0g and �(n)2 (�) = 1

 
(n)
H (�)

� 1

 
(n)
L (�)

�
P2

i=1

F
y;(i);(n)
H (�)�F y;(i);(n)L (�)

1+�i
. I show that for � < �

(n)
2

(or EIS < EIS
(n)

2 = 1

1��(n)2

), the equity premium is positive in both states of the world.

This is a su¢ cient condition and there might exist some � > �
(n)
2 which is consistent with

a positive equity premium in both states of the world. I need the technical conditions

�
(Y;n)
L � 

1�� � nLa
B1+B2
B1
1+�1

+
B2
1+�2

6= 0 and �(Y;n)H � 
1�� � nHa

B1+B2
B1
1+�1

+
B2
1+�2

6= 0. Condition

1���
�

< 0 implies (independent of  (n)L >  
(n)
H or  (n)L <  

(n)
H ) 8 (i; j) 2 f(L;H) ; (H;L)g
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!�1
� 1

1A > 0 (2.177)

To ensure that Et
h
dPt+Dtdt

Pt

i
� rtdt > 0, 8 nt 2 fnL; nHg, it is su¢ cient to show that
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the two inequalities
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F
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8 (i; j) 2 f(L;H) ; ); (H;L)g, hold. Note that (1� �)P
(nL)
t and (1� �)P

(nH)
t are posi-

tive and �nite for � < 0. Rewriting both inequalities yields the single condition

(1� �) j 1
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j � (1� �) j
2X
i=1

F
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From Lemma 2.6 it follows that
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(1� �) j 1
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H
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L
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(1� �) j
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F
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= (1� a) j 1

lim�!�1
r
(n)
H

1��

� 1

lim�!�1
r
(n)
L

1��

j > 0

In the limit as � approaches �1, condition (2.179) is satis�ed. Since the function

�
(n)
2 (�) is continuous, the condition � < �

(n)
2 ensures that condition (2.179) is satis�ed

and Et
h
dPt+Dtdt

Pt

i
� rtdt > 0, 8 nt 2 fnL; nHg.

Proof of Lemma 2.8. Let �(n)3 = min
�2
n
�
(n)
1 ;�

(n)
2 ;�

(n)
3 ;0

o f�g with�(n)3 = f� : �(n)3 (�) =
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(n)
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�

and �(n)1 and �(n)2 as

de�ned in Lemma 2.6 and 2.7. I show that the condition � < �
(n)
3 (or EIS < EIS

(n)

3 �
1

1��(n)3

) ensures that the equity premium is larger (lower) during a period characterized

by a high birth rate (baby boom) than the premium during times of a low birth rate

(baby bust). This is a su¢ cient condition and there might exist some � > �
(n)
2 which

is consistent with the result of the Lemma. To give proof I have to show that for

�
(n)

H > (<) �
(n)

L , it holds

Et

�
dPt +Dtdt

Pt

�
�rtdt j [nt = nH ]�Et

�
dPt +Dtdt

Pt

�
�rtdt j [nt = nL] > (<) 0 (2.181)
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or plugging in the expression for the equity premium
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j (by Lemma

2.7), and � < 0,  2 (1; 1� �) (by Lemma 2.6 and 2.7), it su¢ ces to show that the last
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In the limit as the EIS approaches zero condition (2.183) is satis�ed if

�
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Since the function �(n)3 (�) is continuous in � < 0, the condition � < �
(n)
3 ensures that

condition (2.183) is satis�ed and Et
h
dPt+Dtdt

Pt

i
� rtdt j [nt = nH ] > (<)Et

h
dPt+Dtdt

Pt

i
�

rtdt j [nt = nL].

Proof of Lemma 2.9. Let �(�)1 = min
�2
n
�
(�)
1 ;0

o f�g with �(�)1 = f� : �(�)1 (�) = 0; � <

0g and �(�)1 (�) = r
(�)
H (�)�r(�)L (�). I show that for � < �

(�)
1 (or EIS < EIS

(�)

1 � 1

1��(�)1

),

the interest rate during a period characterized by a high death rate is higher than the

rate during times of a low mortality, r(�)H > r
(�)
L . This is a su¢ cient condition and there

might exist some � > �
(�)
1 which is consistent with the result of the Lemma. The proof

follows the same line of argument as the proof of Lemma 2.6. I need the technical

conditions �(Y;�)L � 
1��L � na B1+B2

B1
1+�1

+
B2
1+�2

6= 0 and �(Y;�)H � 
1��H � na B1+B2

B1
1+�1

+
B2
1+�2

6= 0.

The conditions � < 0 and  2 (1; 1� �) imply 1���
�

< 0, and  (�)H >  
(�)
L is implied by

r
(�)
H > r

(�)
L holds. I can show this using a proof by contradiction. Suppose  (�)H <  

(�)
L
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and r(�)H > r
(�)
L . I have
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which contradicts the assumption  (�)H <  
(�)
L . Hence, if there exists a solution, then

 
(�)
H >  

(�)
L and r(�)H > r

(�)
L holds.

Next, I look at the di¤erence between the interest rate in a high death rate state

and the rate in a low death rate state. To proof the Lemma I have to �nd conditions

such that the r(�)H � r
(�)
L > 0 holds. In the limit as EIS goes to zero my key quantities

are essentially the same as derived in Lemma 2.6, for j 2 fL;Hg, k 2 f1; 2g
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and
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> 0 is satis�ed. In conclusion, since the func-
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and rearranging yields
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Proof of Lemma 2.10. Let �(�)2 = min
�2
n
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), the equity premium is positive in both states of the world.

This is a su¢ cient condition and there might exist � > �
(�)
2 which is consistent with a

positive equity premium in both states of the world. The proof is the same as the proof

of Lemma 2.7. I need the technical conditions �(Y;�)L � 
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only have to show that �(�)2 (�) > 0. Using the results of Lemma 2.9, I have
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It follows that in the limit as � approaches �1, the equity premium is positive in both

states of the world. Since the function �(�)2 (�) is continuous in � < 0, the condition

� < �
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2 ensures Et

h
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and �(�)1 and �(�)2 as

de�ned in Lemma 2.9 and 2.10. I show that the condition � < �
(�)
3 (or EIS < EIS

(�)

3 �
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1��(�)3

) ensures that the equity premium is larger (lower) during a period characterized

by a low death rate than the premium in times of high mortality. This is a su¢ cient
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In the limit as the EIS approaches zero condition (2.197) is satis�ed,
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Obviously, all assumptions are satis�ed. The equity premium is positive in the limit
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Chapter 3

Uncertain Life Expectancy, Optimal

Portfolio Choice and the

Cross-Section of Asset Returns

Abstract

A model with stochastic changes in an agent�s death rate and a dependence between

asset prices and his life expectancy is solved. An agent demands more of an asset that

pays o¤ high (low) in states of the world when he expects to live longer (shorter) than

an asset with the opposite payo¤ schedule. In equilibrium, an asset with a positive

correlation between its returns and (unexpected) changes in the death rate pays a

higher expected return than an (equivalent) asset with a negative correlation between

its returns and changes in the death rate. Empirical evidence supports the model. A

trading strategy is constructed which exploits the (theoretical) relationship between

assets�expected returns and their correlations to changes in the death rate. Out-of-

sample evidence suggests that the strategy pays a positive unexplained return according

to traditional market models.
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3.1 Introduction

The �nancial economics literature usually assumes that investors face a constant or

deterministically changing probability of death. But empirical work by Lee and Carter

(1992) and a growing body of demographic literature suggest that mortality rates are

stochastically changing over time.

I explore the implications of stochastic changes in the life expectancy (or equiv-

alently the death rate) on an investor�s optimal portfolio choice and intertemporal

consumption decision. In equilibrium, I analyze how the cross-sectional relationship

between expected asset returns (yields) is a¤ected by the behavior of investors facing

stochastic changes in their life expectancies.

The literature consistently suggests that there is essentially no impact of lifetime un-

certainty on an agent�s optimal portfolio composition (Yaari (1965), Hakansson (1969),

Merton (1971, 1973), Richard (1975)). However, all models do assume a constant

probability distribution of death.

Given the agent�s utility function is of the time additive form, stochastic changes

in the life expectancy are not su¢ cient on its own to have any interesting impact on

the optimal portfolio composition. Once the assumption is added that changes in the

mortality rate are correlated with asset returns, it turns out that lifetime uncertainty

a¤ects an agent�s optimal investment strategy and equilibrium asset pricing.

I introduce a continuous time �nance model featuring a dependency between asset

prices and agents�arrival rates of death. Agents maximize expected lifetime utility over

intermediate consumption. Ceteris paribus, an agent invests more respectively less in

an asset that pays o¤ high (low) respectively low (high) in states of the world when he

expects to live longer (shorter).

Under certain homogeneity conditions, I am able to state a "Three Fund Separation

Theorem" in a similar spirit as introduced by Merton (1973). I derive an equilibrium

asset pricing equation which states that the expected excess return of any asset depends

in a linear fashion on the expected excess return of the market portfolio and the expected

excess return of a fund, which features a positive correlation between its returns and

changes in mortality rates. The derived asset pricing equation predicts that assets with

a relatively strong positive correlation between their returns and changes in death rates
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earn a relatively high equity premium.

The theoretical results hold for any possible speci�cations of time additive utilities,

given the restriction that utility at any time t is strictly increasing and concave in

consumption at time t.

The intuition for my result is simple. Consider an asset that is likely to pay o¤

high (low) in a state of the world where an agent expects to live longer (shorter). If an

agent suddenly expects to live longer (state of high marginal utility of consumption),

he would like to have more wealth to support his living standard. He is expected to buy

more of the asset (than predicted in a standard CAPM) since its payo¤ is high (low)

in states when the agent requires more (less) wealth and has a relatively high (low)

marginal utility. In equilibrium it is expected that the asset will have a lower equity

premium (than predicted in a standard CAPM) because of its hedging property.

The presence of a market for annuities (in the sense of Blanchard (1985)) does not

alter my results.

Empirically, I test the asset pricing implications of my theoretical model. Consistent

with my theory, empirical evidence suggests that assets with a relatively strong positive

correlation between their returns and changes in the (aggregate) death rate outperform

other assets on average. I construct a dynamic trading strategy which buys (sells)

assets with a strong (weak) positive correlation to changes in the (aggregate) death

rate. Out-of-sample evidence suggests that the constructed trading strategy earns a

positive unexplained return according to traditional market models. I also �nd that

a factor based on the mentioned trading strategy helps to explain the cross-sectional

relationship in expected asset returns in addition to traditional factors.

The �nancial economics literature has (implicitly) assumed that there is no depen-

dency between asset prices and an economic agent�s time of death. I claim that this

assumption is wrong.

A relation between asset returns and death rates is supported by empirical stud-

ies in the literature and my own empirical �ndings. Empirical research suggests that

mortality depends on the level of development and availability of human capital, med-

ical technology, technological conditions, and the economic environment (Mokyr, 1993;

Schultz, 1993; Easterlin, 1999; Smith, 1999; Lichtenberg, 1998, 2002, 2003; Cutler et
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al., 2006; Soares, 2005, 2007), key quantities which are also linked to asset prices.

Life expectancy is naturally related to GDP growth (and asset prices) because

growth in the population size and the workforce (which is an input factor in production

and aggregate output) are a¤ected by changes in death rates. Empirical studies by

Acemoglu and Johnson (2007) and Hanwald (2010) con�rm a link between changes in

death rates and GDP.

Intuitively, it is reasonable to believe that an individual�s life expectancy changes

as technology advances, and it is natural to assume that asset prices depend on tech-

nological progress. Consider a �rm in the health industry. If the company develops

new pharmaceuticals, say a cure for cancer, an agent�s life expectancy increases and

the company is expecting high future earnings and its stock price increases. In con-

trast, if the new medicine turns out to be faulty, the �rm�s stock price and the life

expectancy drop. This example induces a positive correlation between changes in the

life expectancy and the company�s asset returns. The impact for an individual who

knows that he has cancer is much bigger than for someone who is healthy at the time

but might possibly get cancer in future. The correlation between asset returns and

changes in the life expectancy may di¤er considerably across agents.

There are many more examples for other industries. For instance, I also suspect

�rms in the insurance industry to be exposed to changes in the life expectancy as

insurers o¤er many types of contracts related to the death of either an individual or

events related to the aggregate death rate.

Another way how a dependency is induced is by (rare) events like a pandemic or a

war. If suddenly a pandemic �u of a comparable size to the "Spanish Flu" in 1918 was

circling the globe, the life expectancy would drop drastically as would most asset prices

(since business activity would be severely constrained in such times). Within the last

decade, three major in�uenzas were spreading: the severe acute respiratory syndrome

(SARS), the avian �u, and the swine �u. Fortunately, none of them turned out to be

as severe as the Spanish �u, and yet they a¤ected the life expectancy and asset prices

in local areas of outbreak (in particular Hong Kong and Mexico). For wars a similar

argument applies as for the event of a pandemic.

Another channel is given through the institution of de�ned bene�t pension plans. In
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the USA, on retirement employees oftentimes receive a pension from their former em-

ployer. A de�ned bene�t plan promises an employee on retirement for the rest of his life

a speci�c monthly payment depending on factors such as his time of employment, salary

history, etc, but not on investment returns. The employee receives a deterministic reg-

ular payment on retirement while the employer bears all investment risk.1 Accordingly,

it is bad (good) news for the employer if there is an increases (decreases) in the life

expectancy of retired employees because the employer is obliged to pay more (less) to

fund de�ned bene�t plans. Through this channel a negative correlation evolves.

According to the U.S. Bureau of Labor Statistics (2009) about 20% of private-

industry workers in the USA have a de�ned bene�t plan, and Coronado et al. (2008)

�nd that about two-thirds of large companies in the USA o¤er de�ned bene�t pension

plans to employees. A substantial share of US stocks are a¤ected through this channel

and are expected to show a negative correlation between their asset returns and changes

in the aggregate life expectancy of US citizens.

There is few and limited research on stochastically changing mortality rates in the

theoretical �nancial economics literature (for instance Cox et al. (2006), Yogo (2009),

Chen and Cox (2009), Cocco and Gomes (2009), DeNardi et al. (2009), Maurer (2011)),

and none of the papers has explored the cross-sectional yield relationship between assets

with a focus on stochastic shocks in death rates. Karatzas and Wang (2001) solve in

a complete market environment a utility maximization problem subject to a random

stopping time which is adapted to the �ltration generated by asset prices.

To my research most closely related papers are by Martellini and Urosevic (2005)

and Blanchet-Scalliet et al. (2008). Both papers consider a portfolio choice problem

with the feature that the agent�s exit time is uncertain and not independent of asset

returns. In the special case of only one risky and one riskless asset and power utility it

is shown that if the probability of exiting the market is positively correlated with the

return on the risky asset, then the investment in the risky asset is higher than in a case

of no uncertainty about exiting the market.

My contribution in addition to latter two papers is that my results hold for any

1For an extensive treatment on de�ned bene�t plans I refer to Barnow and Ehrenberg (1979),
Bodie, Marcus and Merton (1988), Harrison and Sharpe (1983), Bulow and Scholes (1983), Haberman
(1997), Exley, Mehta and Smith (1997) and theirs references.
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speci�cation of time additive utilities and for an arbitrarily large universe of assets.

Moreover, under fairly general conditions I can state a yield relationship between as-

sets and show that assets which are positively correlated with changes in death rates

are paying a higher expected return than assets which are negatively correlated with

changes in death rates. I also provide empirical evidence emphasizing the quantitative

relevance of my model.

The paper is organized as follows. Section 3.2 introduces the theoretical model,

and it is solved in section 3.3. Section 3.4 states a Tree Fund Separation Theorem

and discusses a yield relationship among assets in partial equilibrium. In section 3.5,

I show that the introduction of annuity markets does not change the results. Section

3.6 illustrates the empirical importance of the model. Section 3.7 concludes.

3.2 The Model

Financial markets are modelled in partial equilibrium as introduced by Merton (1971,

1973). I choose the simplest case of a constant investment opportunity set. I omit

a discussion of the speci�c assumptions needed and refer to Merton (1971, 1973) for

details.

Let (
;F1;P) be a (complete) probability space endowed with a �ltration z =

(Ft) ; t 2 [0;1) - a right continuous, non-decreasing collection of (augmented) �-

algebras, Fs � Ft � F1; 0 � s � t � 1. Let there be a d-dimensional Wiener process

W = (Wt;Ft) ; t 2 [0;1) on (
;F1; P )2.

My model assumes the existence of one risk free asset with a deterministic price

process P [0] =
�
P
[0]
t ;Ft

�
; t 2 [0;1) which increases with a constant rate of return r:3

The dynamics of P [0]t are

dP
[0]
t = rP

[0]
t dt (3.1)

There are N risky assets characterized by an N -dimensional (random) price process

P [1N ] =
�
P
[1N ]
t ;Ft

�
; t 2 [0;1) which follows an N -dimensional geometric Brownian

2I employ the notation W = (Wt;Ft) ; t 2 [0;1) as found in Liptser and Shiryaev (2001) to denote
a random process W = (Wt) ; t 2 [0;1) to be adapted to the �ltration z.

3If I write constant, it is in the meaning of non-stochastic, i.e. in the sense that a constant variable
might vary over time but is deterministic, as in Merton (1973).
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motion,

dP
[1N ]
t = IPt�

[1N ]
P dt+ IPt�

[1N ]
P dWt (3.2)

where IPt is a (N �N) diagonal matrix with diagonal element i equal to the price of

risky asset i
�
P
[i]
t

�
, �[1N ]P is a (N � 1) vector denoting the constant expected rate of

returns, and �[1N ]P is a (N � d) dimensional constant di¤usion matrix. Let us write the

(N + 1) price vector of all asset prices as P =
�
P [0] P [1N ]

T
�T
.

Next, I specify population growth. Let there be a one-dimensional, right continuous,

doubly stochastic Poisson process K = (Kt;Ft) ; t 2 [0;1) with intensity �t and initial

value K0 on (
;F1; P ). K j � is a non-homogeneous Poisson process with (time

varying) intensity �. K j � is independent of W . For a general treatment about

doubly stochastic or Cox processes I refer to Cox (1955, 2001) and his references. I let

the number of agents born up to time t be equal to Kt, and denote agent k�s date of

birth by b(k), where b(k) is equal to the time of the (k �K0)th jump of K if k > K0,

and 0 otherwise. For the dynamics of the stochastic intensity parameter process � =

(�t;Ft) ; t 2 [0;1) I assume

d�t = ��;tdt+ �t��;tdWt (3.3)

where ��;t is a drift term which might depend on � and t (and must be such that � > 0

a:s:), ��;t is a (1� d) dimensional di¤usion vector depending on t, and �0 is the process�

initial value at time 0. Notice that the speci�cation of arrivals of new agents is general

and �exible. It is easy to match real birth and population growth data by adjusting

��;t and ��;t.

To de�ne uncertainty of death, I let J = (Jt;Ft) ; t 2 [0;1) be a K1-dimensional,

right continuous, doubly stochastic Poisson process with intensity �t and J0 = 0 on

(
;F1; P ). J j � is a non-homogeneous Poisson process and independent of both W

and K. I de�ne the time of agent k�s death as the point in time when the �rst jump of

J (k) (the kth element of J) since time b(k) occurs and denote it by � (k)
b(k)
. For each k, the

intensity parameter of process J (k), �(k) =
�
�
(k)
t ;Ft

�
; t 2 [0;1) itself is an adapted
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random process and follows a geometric Brownian motion,

d�
(k)
t =

8<: �
(k)
t �

(k)

�;b(k);t
dt+ �

(k)
t �

(k)
� dWt, if t > b(k)

�
(k)
t �

(k)
�;tdt+ �

(k)
t �

(k)
� dWt, otherwise

9=; (3.4)

where �(k)�;t is a drift term which depends on only t, �
(k)

�;b(k);t
is a drift term which depends

on b(k) and t (i.e. on time of birth and age), and �(k)� is a (1� d) dimensional constant

di¤usion vector.

This speci�cation ensures positivity of �(k), the arrival rate of death of agent k.

There is great �exibility in this general speci�cation of the drift term. Oftentimes in

�nancial economics literature, the arrival time of death is modelled by a Poisson process

with a constant intensity parameter. Such a speci�cation �ts real mortality data badly.

For instance, it implies that many people pass away in a young age and fewer old

people. But, in the data we observe that young people have a low probability of dying

while most of the people die at an age of about 80 years (see for example Edwards,

2003). This is no problem in my speci�cation because the drift term is a function of an

agent�s age, and I can start o¤ with a small � (arrival rate of death) and let it grow as

the agent gets older, which matches real mortality data well. Moreover, the process of

� at any time t < b(k) represents the evolution of the aggregate death rate for newborn

agents. My speci�cation also matches the well-known model by Lee and Carter (1992).

The Lee and Carter (1992) approach is arguably the most popular two factor sto-

chastic mortality modeling method in (demographic) literature (Hanewald, 2010). Al-

though there are more sophisticated models from the epidemiology literature (Booth

et al., 2006), it is the simplicity and yet its power to forecast and model much of the

variation in (age-dependent) death rates that makes the Lee and Carter (1992) model

attractive to a variety of disciplines. In the asset pricing and household �nance litera-

ture there are many papers which employ it (Cox et al. (2006), Chen and Cox (2009),

Cocco and Gomes (2009), DeNardi et al. (2009), Maurer (2011), Hanewald and Post

(2010)). Moreover, it has become a benchmark for the forecasts of the US Census bu-

reau, and the US Social Security Technical Advisory Panel recently suggested Trustees

to employ the method (Chen and Cox, 2009).

From the dynamics of the asset prices and the death rates it becomes evident that
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depending on how I choose the di¤usion terms I can construct either a case with a

(non-zero) correlation between changes in the death rates and asset returns or a case

with death rates which are independent of asset prices. The birth rate may also be

chosen to be dependent or independent of the other variables.

From the fact that J (k) given the realizations of �(k) is a non-homogeneous Poisson

process, it is trivial to derive the probability of dying before time t given the realizations

of �(k)

H(k) (t) � cdf
�
(k)

b(k)
j�(k)t

(t) = Pr
n
�
(k)

b(k)
2 [b(k); t] j �(k)t

o
(3.5)

= Pr
n
J
(k)

t � 1 j �(k)t
o
= 1� exp

�
�
Z t

b(k)
�(k)s ds

�
j �(k)t

and the probability of agent k surviving until time t

H
(k)
(t) � 1�H(k) (t) (3.6)

for 0 � b(k) � t < s < 1, where �(k)t =
n
�(k)s

o
s2[0;t]

; J
(k)

t = J
(k)
t � J

(k)

b(k)
. The pdf of

�
(k)

b(k)
given the realizations of �(k) is

h(k) (t) � pdf
�
(k)

b(k)
j�(k)t

(t) =
@H(k)(t)

@t
= �

(k)
t exp

�
�
Z t

b(k)
�(k)s ds

�
j �(k)t : (3.7)

The conditional probability of surviving until time s given the agent has survived up

to time t is

H
(k)
(t; s) � H

(k)
(s)

H
(k)
(t)

(3.8)

and the conditional pdf of � (k)
b(k)

is

h(k) (t; s) � h(k)(s)

H
(k)
(t)

(3.9)

Lemma 3.1 Agent k�s life expectancy LE(k)t at time t is a function of his present

arrival rate of death �(k)t (and further deterministic parameters), and is inversely related

to it, i.e. @LE
(k)
t

@�
(k)
t

< 0.

Proof. See Appendix.

153



Intuitively, if the arrival rate of death increases, then (for any s > t) the probability

of still being alive at some future point in time s decreases, and life expectancy de-

creases. Therefore, there is a negative relationship between an agent k�s life expectancy

LE(k) and his arrival rate of death �(k).

At every point in time t there are Kt�
PKt

k=1 1
n
�
(k)

b(k)
<t
o agents in the market, where

1n
�
(k)

b(k)
<t
o is an indicator function. Agent k is born at time b(k) and dies at time � (k)

b(k)
. His

preferences are described by a time additive expected utility function over consumption

c(k). Following the speci�cation �rst introduced by Yaari (1965), expected lifetime

utility of agent k at time t 2 [b(k); � (k)
b(k)
) is given by

Et

h
U (k)(c(k)) j � (k)

b(k)
> t
i
= Et

�Z 1

t

H
(k)
(t; s)u(k)s

�
c(k)s
�
+ h(k)(t; s)B(k)

�
W

(k)
; s
�
ds

�
(3.10)

where the functions u(k)s (x) and B(k) (x; s) are strictly increasing and concave in x, and

there is some time discounting. u(k)s (x) is the stream of utility obtained from current

consumption at time s, and B(k) (x; s) is the utility from bequest given the agent dies

at time s.

I restrict my analysis to the class of time additive utility functions and do not dis-

cuss stochastic di¤erential utilities as introduced in Du¢ e and Epstein (1992a, 1992b).

Latter speci�cations, which include utilities of the Kreps and Porteus (1978) type or

functions incorporating habit formation, may be able to generate additional interesting

asset pricing implications of lifetime uncertainty and stochastically changing mortal-

ity rates (Maurer (2011)). In addition, Bommier (2003) and Maurer (2011) point out

that the formulation of time additive utility functions implies agents to be risk neu-

tral towards lifetime uncertainty. Nevertheless, I do not want to worry about this in

my analysis. Focusing on time additive utilities ensures that the model is analytically

tractable and I can easily relate my innovations to the previous literature.

At time of birth, agent k�s initial wealth is given by W
(k)

b(k) . Agent k allocates his

wealth at every point in time t to consumption c(k)t , a risky asset portfolio X
[1N ](k)
t

(measured in numbers of shares) or alternatively �[1N ](k)t = 1

W
(k)
t

IPtX
[1N ](k)
t (relative

portfolio holdings), and the risk free asset. His wealth is a random process and evolves
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according to the dynamics

dW
(k)

t = W
(k)

t rdt+W
(k)

t �
[1N ](k)T

t

�
�
[1N ]
P dt+ �

[1N ]
P dWt � r1(1�N)dt

�
� c

(k)
t dt (3.11)

To prohibit arbitrage opportunities I make the technical assumption of �[1N ](k)t 2

(L2)N , where L2 =
n
x 2 L j

R T
0
x2tdt <1 a:s:

o
and L is the set of processes

adapted to the �ltration FP generated by asset prices, FP
t = � fPs : s � tg. I set

the further restriction that W
(k)

t at t = �
(k)

b(k)
has to be non-negative almost surely.

Problem 3.1 Agent k tackles the following expected lifetime utility maximization prob-

lem (given � (k)
b(k)

> t):

(P1)

V (k)
�
W

(k)
; �(k); J

(k)
; t
�
= sup
fc(k);�[1N ](k)g2<1+�(L2)N

n
Et

h
U (k)(c(k)) j � (k)

b(k)
> t
io

s:t:

dW
(k)

t = W
(k)

t rdt+W
(k)

t �
[1N ](k)T

t

�
�
[1N ]
P � r1(1�N)

�
dt

+W
(k)

t �
[1N ](k)T

t �
[1N ]
P dWt � c

(k)
t dt

d�
(k)
t = �

(k)
t �

(k)

�;b(k);t
dt+ �

(k)
t �

(k)
� dWt

W
(k)

�
(k)

b(k)

� 0

where V (k)
�
W

(k)
; �(k); J

(k)
; t
�
is the value function.

V (k)
�
W

(k)
; �(k); J

(k)
; t
�
depends on the agent�s wealth, his arrival rate of death,

time, and on whether he is still alive J
(k)
= 0 or dead J

(k) 6= 0. The dynamics of � and

�(l), for l 6= k, do not matter.

3.3 Solution to the Model

I employ dynamic programming to solve the agent�s maximization problem.
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Lemma 3.2 The optimal investment strategy ��[1N ](k)t of agent k is given by

�
�[1N ](k)
t =

1

�V (k)

WW
W

(k)

t

�
�
[1N ]
P �

[1N ]T

P

��1 h
V
(k)

W

�
�
[1N ]
P � r1(1�N)

�
+ V

(k)

W�
�
[1N ]
P �

(k)T

� �
(k)
t

i
(3.12)

The optimal investment strategy is a¤ected by stochastic changes in the agent k�s in-

stantaneous probability of death, but independent of changes in the birth rate or changes

in other agents�death rates.

Proof. See Appendix.

Notice that the optimal investment strategy is not a¤ected if labor income is intro-

duced, as long as it is independent of asset prices.

It becomes evident that a correlation between asset returns and changes in the

agent�s arrival rate of death a¤ects the optimal investment strategy ��[1N ](k)t . To ex-

amine the e¤ect in more detail, it is crucial to explorer the properties of the value

function.

Lemma 3.3 Assume agent k does not derive any utility from bequest, B(k)
�
W

(k)
; s
�
=

0. For any speci�cation of the utility function satisfying the general conditions described

in the model, the value function V (k)
�
W

(k)
; �(k); J

(k)
; t
�
de�ned on t 2 [b(k); � (k)

b(k)
), has

the following properties:

1) the value function is strictly increasing in wealth, V (k)

W
> 0,

2) the value function is strictly concave, V (k)

WW
< 0, and

3) the value function satis�es V (k)

W�
< 0.

Proof. See Appendix.

The �rst two properties - the value function is strictly increasing and concave in

wealth - are standard.

The intuition for the third property is straightforward. Consider a decrease (in-

crease) in the instantaneous probability of death. The agent faces a longer (shorter)

expected lifetime horizon, and he expects that his wealth has to be allocated to more

(less) periods of time than before the drop (increase) in the death rate. The stream

of consumption in each period decreases (increases) and marginal utility increases (de-
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creases) because the utility function is concave in consumption. Accordingly, an addi-

tional dollar is more (less) valuable, and V (k)

W�
< 0 follows.

Alternatively, when the value function is de�ned only on the positive space, the

result can be understood as follows. Ceteris paribus, an increase in the mortality rate

leads to a lower expected utility for any feasible consumption plan. It follows that

the optimal consumption plan c�(�l) given a low death rate �l yields a higher ex-

pected utility then the optimal consumption c�(�h) given the probability of death is

high (�h), Et
�
U (k)(c�(�l)) j �l

�
> Et

�
U (k)(c�(�h)) j �h

�
. If this was not the case, then

given �l plan c�(�l) would be dominated by c�(�h) because c�(�h) yields a higher ex-

pected utility under �l than under �h, Et
�
U (k)(c�(�h)) j �l

�
> Et

�
U (k)(c�(�h)) j �h

�
>

Et
�
U (k)(c�(�l)) j �l

�
. This is a contradiction to c�(�l) being optimal given �l. Given

V
(k)
� < 0, one expects that one dollar is used �more e¢ ciently�if � is low, and V (k)

W�
< 0

holds.

In the formal proof the result follows from the concavity of the utility function and

the fact that optimal consumption is increasing in the mortality rate. There is a simple

intuition for the claim that optimal consumption is increasing in the mortality rate. If

the probability of dying goes up at any time in future, the agent rather eats up more

of his wealth today than having the chance to die with a lot of wealth from which he

cannot derive any utility (no utility from bequest).

From the last argument it becomes evident why the assumption of no bequest utility

is important. If the agent derived utility from bequest, equation (3.45) (see Appendix)

had to be adjusted by the term
R1
t
h(k) (t; s)

@B(k)
�
W

(k)
;s
�

@W
(k)
s

@W
(k)
s

@W
(k)
t

ds. By equation (3.38)

(see Appendix) h(k) (t; s) is not always decreasing in �(k)t , and for s small enough it is

increasing. This causes an ambiguity about the sign of @c
�(k)
t

@�
(k)
t

. If (for s small enough)

marginal utility from bequest is large (small) enough, then @c
�(k)
t

@�
(k)
t

< (>)0 holds. Intu-

itively, an agent prefers to take the chance to die with a lot of wealth and does not

want to consume too much today if the utility from bequest is large enough. The sign

of V (k)

W�
depends crucially on the size of bequest utility relative to consumption utility.

The question arises whether it is reasonable to assume a bequest utility that domi-

nates consumption utility enough such that @c
�(k)
t

@�
(k)
t

< 0 holds. Indeed, such a constella-

tion may imply a suicidal agent, in the sense that he desires to face a high probability
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of dying, if his bequest utility dominates his consumption utility by too much.

Having established the properties of the value function I can explorer the impact of

a dependency between asset prices and the arrival rate of death on optimal portfolio

choice.

Proposition 3.1 The optimal investment strategy of agent k is given by

�
�[1N ](k)
t =

�
�
[1N ]
P �

[1N ]T

P

��1 h
A
(k)
t

�
�
[1N ]
P � r1(1�N)

�
�B

(k)
t �

[1N ]
P �

(k)T

�

i
(3.13)

for some positive parameters A(k)t and B(k)
t . The optimal portfolio composition consists

of a standard myopic and a hedging demand. Ceteris paribus, agent k�s demand is

higher (lower) for assets with returns that are stronger negatively (positively) corre-

lated with changes in his arrival rate of death and positively (negatively) correlated with

changes in his life expectancy. In general, �[1N ]P �
(k)T

� 6= �
[1N ]
P �

(l)T

� ; 8k 6= l is true, which

implies that every agent chooses a uniquely tailored optimal asset allocation depending

on his personal health condition and lifestyle.

Proof. See Appendix.

In the general case of many risky assets, I cannot unambiguously tell whether the

hedging demand is positive or negative (which crucially depends on the structure of the

covariance matrix). In the case of only one risky asset, the hedging demand is positive

(negative) if the asset�s returns are negatively (positively) correlated with changes in

agent k�s arrival rate of death. One might speculate that this should lead to a lower

(higher) equity premium then in a model without lifetime uncertainty if the market was

negatively (positively) correlated with changes in the aggregate death rate. Indeed,

empirical evidence show both a �too high�equity premium in stock markets and an

overall positive relation between changes in the aggregate death rate and stock returns

(see below). I elaborate more on asset pricing implications of lifetime uncertainty later.

The last statement of the proposition says that agents�exposures to diverse risks

of death di¤er depending on many personal characteristics. I illustrate this by two

examples. Consider agent A who is HIV (human immunode�ciency virus) positive and

the healthy agent B. A discovery of a cure for AIDS means a huge decrease (increase) in

agent A�s arrival rate of death (life expectancy) while the decrease (increase) in agent
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B�s arrival rate of death (life expectancy) is going to be moderate. The dependency

between asset returns of a company that is likely to ever produce pharmaceuticals

related to HIV and changes in the arrival rate of death for agent A is stronger than for

agent B, implying di¤erences in their optimal portfolio choice decisions.

In the same spirit, consider agent A who lives in a global city and agent B who

lives in the countryside. A global pandemic outbreak threatens agent A much more

than agent B, and changes in agent A�s life expectancy are more likely to be stronger

positively correlated with a large set of asset returns than changes in agent B�s life

expectancy, which implies a di¤erence in their optimal investment strategies.

My result implies that the e¤ect on optimal portfolio choice is exactly the opposite

as found in the special case of CRRA utility by Blanchet-Scalliet et al. (2008). The

di¤erence arises because in Blanchet-Scalliet et al. (2008) agents maximize utility

over terminal wealth (or in some sense there is only utility form bequest), rather than

time additive expected utility over a stream of intermediate consumption. My analysis

con�rms the �nding of Blanchet-Scalliet et al. (2008) and even generalizes it to a

more general class of time additive utility functions (not only for CRRA utility u(x) =

x1�=(1 � ), with  > 1)4. If agent k is maximizing expected utility over terminal

wealth (bequest), rather than expected lifetime utility, then from the (adjusted) HJB

equation I get the same FOC with respect to �[1N ](k)t . V (k)

W
> 0 and V (k)

WW
< 0 still

holds, which can be seen when taking the �rst and second derivatives with respect to

W
(k)

t from the value function and noticing that B(k) (x; s) is a strictly increasing and

concave function in x,

V
(k)

W
= Et

24Z 1

t

h(k)(t; s)
@B(k)

�
W

(k)
; s
�

@W
(k)

s

@W
(k)

s

@W
(k)

t

ds

35 > 0 (3.14)

V
(k)

WW
= Et

24Z 1

t

h(k)(t; s)
@2B(k)

�
W

(k)
; s
�

@W
(k)

s @W
(k)

s

 
@W

(k)

s

@W
(k)

t

!2
ds

35 < 0. (3.15)

4Notice, however, that I do not get a closed form solution, while Blanchet-Scalliet et al. (2008)
were able to get in their special case a solution in closed form.
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In contrast to Lemma 3.3, now V
(k)

W�
> 0 holds, which follows directly from equation

(3.38) (see Appendix) in combination with

V
(k)

W�
= Et

24Z 1

t

@h(k)(t; s)

@�
(k)
t

@B(k)
�
W

(k)
; s
�

@W
(k)

s

@W
(k)

s

@W
(k)

t

ds

35 > 0 (3.16)

and the assumption of a large enough risk aversion coe¢ cient such that

Et

24@B(k)
�
W

(k)
; r
�

@W
(k)

r

@W
(k)

r

@W
(k)

t

35 > Et

24@B(k)
�
W

(k)
; s
�

@W
(k)

s

@W
(k)

s

@W
(k)

t

35 ;8r < s (3.17)

which is similar to the condition of  > 1 in the paper by Blanchet-Scalliet et al.

(2008). In the case of only one risky asset, the hedging demand is positive (negative)

if the asset�s returns are positively (negatively) correlated with changes in agent k�s

arrival rate of death and negatively (positively) correlated with changes in agent k�s

life expectancy, which is analogous to the results from Blanchet-Scalliet et al. (2008).

3.4 Special Case of some Homogeneity

In general agents choose individualized investment strategies depending on their spe-

ci�c health conditions and lifestyles. Now, I make the simplifying assumption of some

homogeneity among agents in form of �[1N ]P �
(k)T

� = �
[1N ]
P �

T

� ; 8k. This does not imply

that every agent�s arrival rate of death is the same. It only says that all unexpected

(percentage) changes in arrival rates of death which are adapted to the �ltration gen-

erated by asset prices are equal among agents. �(k) and �(l) (for k 6= l) may still load

di¤erently on some Brownian motions which are not driving asset prices, i.e. �(k)� 6= �
(l)
�

and yet �[1N ]P �
(k)T

� = �
[1N ]
P �

(l)T

� ; 8k 6= l holds.

Agent k�s absolute demand for risky assets is

d
(k)
t � W

(k)

t �
�[1N ](k)
t (3.18)

=
�
�
[1N ]
P �

[1N ]T

P

��1 h eA(k)t �
�
[1N ]
P � r1(1�N)

�
� eB(k)

t �
[1N ]
P �

T

�

i
where eA(k)t = A

(k)
t W

(k)

t and eB(k)
t = B

(k)
t W

(k)

t . The demand di¤ers among agents only
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in terms of eA(k)t and eB(k)
t . It is possible to derive a Three Fund Separation Theorem in

the same spirit as introduced by Merton (1973).

Theorem 3.1 ("Three Fund Separation") Given the structure of the model de-

scribed above and further assuming �[1N ]P �
(k)T

� = �
[1N ]
P �

T

� ; 8k, then there exist three

funds, such that (i) all Kt economic agents described above will be indi¤erent between

allocating their wealth to the original (N+1) assets or to the three funds; (ii) the con-

struction of the funds is based on an asset allocation depending solely on "technological"

criteria, but not on any characteristics of an individual agent (only dependent on vari-

ables in the investment opportunity set and the covariances of asset returns to common

changes in arrival rates of death); and (iii) an agent does neither require knowledge of

the investment opportunity set for individual assets nor of the composition of the three

funds.

Proof. See Appendix.

For the following (partial) equilibrium analysis, I assume that at death of agent k,

at � (k)
b(k)
, his entire portfolio is liquidated. The remaining wealth (which by assumption

is non-negative almost surely) must either be stored (invested in the risk free asset)

and distributed to newborn agents, or buried with the dead agent. It does not matter

for the analysis how I handle the remaining wealth as long as I do not distribute it

to agents who were born before � (k)
b(k)

because otherwise these agents�maximization

problems must depend on the probability of other agents passing away and the chance

of receiving part of their legacies5.

Having discussed the demand functions for every agent k, I derive aggregate demand

which, not surprisingly, is a linear combination of the three funds derived in the Three

Fund Separation Theorem,

D
[1N ]
t =

KtX
k=1

�
d
(k)
t 1

n
�
(k)

b(k)
<t
o� (3.19)

=
�
�
[1N ]
P �

[1N ]T

P

��1 h
At

�
�
[1N ]
P � r1(1�N)

�
�Bt�

[1N ]
P �

T

�

i
5To illustrate this point, think of the following example. Intuitively, an agent would have much

incentive to invest in a company which is doing a lot of research to �nd a cure for cancer, if the agent�s
wealthy father is su¤ering from cancer. This is because the payo¤ of receiving the father�s legacy and
asset returns of the �rm are negatively related.

161



where At =
PKt

k=1

� eA(k)t 1n� (k)
b(k)

<t
o� and Bt =

PKt
k=1

� eB(k)
t 1

n
�
(k)

b(k)
<t
o�.

I consider an exogenous supply of assets as in Merton (1973) and refer to his discus-

sion about modelling details. Aggregate supply in numbers of risky assets is denoted

by X(M)
t , and the total value of risky assets supplied is Mt = X

(M)T

t P
[1N ]
t . The market

portfolio denoted by �[1N ](M)
t is

�
[1N ](M)
t =

1

Mt

IPtX
(M)
t (3.20)

I can now state the implications of uncertain life expectancy on the yield relationship

among assets in partial equilibrium.

Theorem 3.2 Given the structure of the model described above and assuming �[1N ]P �
(k)T

�

= �
[1N ]
P �

T

� ; 8k, then in a �nancial markets equilibrium every asset i satis�es an expected

(excess) return relationship given by

�i � r = (�M � r) �
(M)
i + (�� � r) �

(�)
i (3.21)

with

�
(M)
i =

�i
�M

�i;M � �M;��i;�

1�
�
�M;�

�2
�
(�)
i =

�i
��

�i;� � �M;��i;M

1�
�
�M;�

�2
where �j is the expected return of asset j, �j is the standard deviation of asset j, �j;p

is the correlation between returns of asset j and p, 8 (j; p) 2 [i;M; �] � [i;M; �], and

� is the portfolio strategy �[1N ] =
�
�
[1N ]
P �

[1N ]T

P

��1
�
[1N ]
P �

T

� , �
[0] = 1 �

�
1(1�N)

�T
�[1N ].

Assuming �� > r, an asset with a positive (negative) correlation between its returns

and common unexpected changes in arrival rates of death, pays a higher (lower) equity

premium, than what is expected in a model without uncertain life expectancy.

Proof. See Appendix.

The introduced equilibrium yield relationship is an extension of the ICAPM. The

second statement in the proposition con�rms the intuition given at the beginning of

the paper.
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The asset pricing equation o¤ers a suitable groundwork for performing empirical

tests. �(M)
i and �(�)i are regression coe¢ cients of running a linear regression of asset i�s

excess returns on excess returns of the market portfolio and an uncertain life expectancy

hedging portfolio which is positively related to changes in mortality rates. (�M � r)

and (�� � r) are risk premia for the two factors represented by the market portfolio

�
(M)
t and the uncertain life expectancy hedging portfolio �, on which asset i loads with

�
(M)
i and �(�)i , respectively.

3.5 Market for Annuities

Within the above stated model I was able to show that uncertainty in the life expectancy

has an impact on an agent�s intertemporal consumption choice, optimal portfolio com-

position and on capital asset pricing. Although, I have considered a rather general

universe of assets, I did exclude the possibility to trade annuities. The payo¤ of an

annuity depends on the speci�c buyer�s mortality rate and date of death, but is not

an available asset for other agents. This characteristic is not incorporated in the asset

universe considered. In a discussion about lifetime uncertainty the question naturally

arises in how far the analysis alters in presence of a market for annuities and whether

the results continue to hold.

I consider annuities of a similar type as in Blanchard (1985). Let there be a large

competitive insurance company that o¤ers at any time t individualized contracts to

each agent k with claims depending on the instantaneous survival respectively death of

the agent. A contract bought by agent k at time t has a payo¤as follows: conditional on

survival over the next time period dt agent k receives an amount of money equal to his

instantaneous probability of death �(k)t dt, and in case of death the insurance company

collects 1 from the agent. Because agents do not derive any utility from bequest in my

model and utility is strictly increasing in consumption, agents desire to buy as many

annuities as possible subject to the non-negativity constraint of wealth at time of death.

At any time t it is optimal for agent k to buy exactly W
(k)

t contracts such that the

insurer collects the agent�s entire wealth in case of death and the agent maximizes the

stream of payments received from the insurer as long as he stays alive.
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In expectation the insurance company breaks even because she gets W
(k)

t from

every agent k with probability �(k)t dt and has to pay W
(k)

t �
(k)
t dt to every agent k with

probability
�
1� �

(k)
t dt

�
; expected earnings and liabilities equal. In Blanchard (1985)

the insurance company breaks even almost surely because there is an in�nite number

of agents who face identical mortality rates and wealth is equally distributed within

a cohort. In my model there is a �nite number of agents who have individualized

mortality rates, and the break even condition holds only in expectation. However, by

the law of large numbers in the limit as the number of agents in the market approaches

in�nity (and assuming total wealth in the economy is not concentrated to only few

agents) the pro�t of the insurance company converges (in probability) to zero.

Given a market for annuities, the wealth process of agent k has to be adjusted by

the additional income stream from the annuity (W
(k)

t �
(k)
t dt), and becomes

dW
(k)

t = W
(k)

t rdt+W
(k)

t �
(k)
t dt+W

(k)

t �
[1N ](k)T

t

�
�
[1N ]
P dt+ �

[1N ]
P dWt � r1(1�N)dt

�
�c(k)t dt.

(3.22)

The maximization problem does not essentially change except for the new wealth

dynamics. The value function V (k)
�
W

(k)
; �(k); J

(k)
; t
�
is again a function of the agent�s

wealth, his mortality rate, a state variable determining whether he is still alive, and

time. The impact of the death rate on the value function di¤ers compared to the

earlier discussion without annuities. The death rate is not only an important state

variable because it determines the life expectancy and the expected lifetime horizon of

the agent, but also because it matters for the dynamics of the wealth process. This

becomes evident when writing down the HJB equation. The HJB equation looks similar

to the one in the case without annuities expect that the Itô-Doeblin formula has to be

adjusted by the new drift term of the wealth process, i.e. the term V
(k)

W
W

(k)

t �
(k)
t has

to be added. The adjustment of the HJB equation does e¤ectively change the value

function and particularly the dependency of the value function on �(k)t .

The �rst order conditions with respect to the two controls c(k)t and �[1N ](k)t are up

to the change in the value function identical to the �rst order conditions derived in

absence of an annuity market. The proofs of Lemma 3.2 and 3.3 continue to hold.

Even though there is a new value function, the earlier derived qualitative properties
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still hold. V (k) is strictly increasing and concave in W
(k)
and V (k)

W�
< 0. Given the FOC

is essentially unchanged and Lemma 3.2 and 3.3 continue to hold, all further derived

results about the impact of uncertain life expectancy on optimal portfolio choice and

capital asset pricing remain valid.

Accordingly, a market for annuities does not essentially matter for the analysis and

the achieved results. Even though the qualitative results are the same, the quantitative

impact may change. The quantitative impact depends crucially on (the magnitude

of) the value function and its dependency on �(k), which is essential to determine the

magnitude of the hedging demand term in the speci�cation of the optimal investment

strategy.

To get an intuition why annuity markets do not change my (qualitative) results,

I �rst observe that the expected lifetime income paid by an annuity is equal to 1

independent of time and the level of the death rate

Et

�Z 1

t

�(k)s e�
R s
t �

(k)
u duds

�
= Et

hh
�e�

R s
t �

(k)
u du

i1
t

i
= 1. (3.23)

It follows that the present value of an annuity is negatively (positively) related to the

death rate (life expectancy). An annuity bought by agent k pays a low (high) stream

of income if k�s mortality rate is low (high) and his life expectancy and marginal utility

both are high (low). Accordingly, annuities exacerbate the uncertain life expectancy

problem. Assets with a negative correlation between returns and changes in the death

rate are expected to be even more desirable for their hedging property than in a world

without an annuity market. In equilibrium the hedging property should be priced with

an even higher premium than in a world without annuities.

3.6 Empirical Evidence

3.6.1 Data

I try to quantify and test the implications of the proposed model using data from the

USA ranging from 1927 to 2005.6 Mortality data is provided by the National Center

6Data on mortality is available since 1900.
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for Health Statistics (NCHS). I consider the 25 Fama-French portfolios (formed on

size and book-to-market characteristics) as my universe of assets (Fama and French,

1993). As a robustness check, I repeat all empirical tests using the 100 Fama-French

portfolios (formed on size and book-to-market); the results are weaker in the sense that

the magnitude of the e¤ects is smaller, but the same conclusions follow.

Unfortunately, the estimation of the model is di¢ cult. An agent�s instantaneous

probability of death is not observable. The best I can do is to use a noisy estimate based

on death counts and population size data. Second, the NCHS only provides death rate

data on an annual frequency. Accordingly, my sample size in terms of the number of

data points is small and it is hard to accurately estimate correlations between asset

returns and changes in death rates. I also expect the true correlation to be moderate

which makes it di¢ cult to recognize it at all (because the estimates are noisy). Finally,

I do not expect that the correlation between an asset�s returns and changes in death

rates is constant over time, but the only way to get an estimation is by assuming a

constant relation.

Following Theorem 3.2, I am interested in the correlation between asset returns

(in excess of the risk free rate) and common changes in death rates across all agents.

Indeed, Lee and Carter (1992) suggest that the stochastic time variation in age speci�c

death rates is mostly driven by one across cohorts common stochastic time component

which is well described by a Brownian di¤usion process. This result is similar to my

theoretical homogeneity condition �
[1N ]
P �

(k)T

� = �
[1N ]
P �

T

� ; 8k, which is needed in the

model, and is vital for my analysis. Following Lee and Carter (1992), I estimate the

�aggregate death rate�(the common stochastic time component in age-dependent death

rates) �t as follows. Let mx;t denote the mortality rate of cohort x at time t,7 ax and bx

two time-invariant constants which di¤er across age x, �t a stochastic time component

(which is common to all cohorts), and ux;t a white noise term for cohort x and time t.

The Lee and Carter (1992) model states the relationship

ln (mx;t) = ax + bx ln (�t) + ux;t (3.24)

7I estimate mx;t from the data as the ratio between the number of agents aged x passing away in
year [t; t+ 1) and the number of agents aged x in year t.
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with
P

x ax = 0 and
P

x bx =
P

x 1 (so that
P

t ln (�t) =
P

t
1P
x 1

P
x ln (mx;t)). For

estimation details I refer to Lee and Carter (1992).

Estimation: Age Factors ax and bx
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Figure 3.1: Left panel: Estimation of age factor ax. Right panel: Estimation of age
factor bx.

Estimation: Stochastic Time Component � (t) and ln
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Figure 3.2: Left panel: Estimation of stochastic time component �t. Right panel:
Percentage changes in �t.

Figure 3.1 and 3.2 display the estimation output for the age speci�c factors ax and

bx and the stochastic time component �t. Not surprisingly, ax is an increasing function

in age. More interestingly, bx is found to be declining in age; old people are relatively

less exposed to the stochastic time component than young people.8 For illustrative

8This might lead to interesting portfolio choice di¤erences between young and old investors; I do
not discuss this issue here.

167



purposes, I exclude the Spanish �u in the late 1910�s from the plot of ln
�

�(t)
�(t�1)

�
.

Excluding the event of the Spanish �u from the sample, the time series ln
�

�(t)
�(t�1)

�
has

a mean of �1:7% and a standard deviation of 3%.

3.6.2 In-sample Evidence

For the sample from 1927 to 2005, I estimate (using annual data) for each asset i

(25 Fama-French portfolios) the unconditional correlation between the asset�s excess

returns r(i)t � rt and the percentage changes in �t.9 I denote the estimated correlation

coe¢ cient for asset i by b�i;� = Corr
�
r
(i)
t � rt; ln

�
�(t)
�(t�1)

��
. For the same sample period,

I estimate for each asset i the average excess return bE �r(i)t � rt

�
, and the unexplained

expected excess return and the factor loadings of asset i according to the CAPM, the 3

factor Fama-French model and a 4 factor model (which includes a momentum factor).

Under the assumption of the CAPM, in order to estimate the unexplained expected

excess return of asset i, �(CAPM)
i and the factor loading �(CAPM)

i , I run for each asset

i the time series regression

r
(i)
t � rt = �

(CAPM)
i + �

(CAPM)
m;i

�
r
(m)
t � rt

�
+ �

(CAPM;i)
t (3.25)

where r(m)t denotes the return on the market portfolio, and �(CAPM;i)
t is white noise.

In case of the 3 factor Fama-French model I estimate the equation

r
(i)
t � rt = �

(3F )
i + �

(3F )
m;i

�
r
(m)
t � rt

�
+ �

(3F )
SMB;iSMBt + �

(3F )
HML;iHMLt + �

(3F;i)
t (3.26)

where SMBt and HMLt describe the size and book-to-market factors,10 and �
(3F;i)
t is

white noise.

Accordingly, for the 4 factor model I estimate

r
(i)
t �rt = �

(4F )
i +�

(4F )
m;i

�
r
(m)
t � rt

�
+�

(4F )
SMB;iSMBt+�

(4F )
HML;iHMLt+�

(4F )
MOM;iMOMt+�

(4F;i)
t

(3.27)

9r
(i)
t and rt denote the annual return of asset i and the risk free return in year t.

10Data for SMBt and HMLt are provided in K. French�s data library.
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where MOMt denotes the momentum factor,11 and �(4F;i)t is white noise.

I explorer the cross-sectional relation between the estimates b�i;� and the diverse �-
nancial quantities. I �nd a highly signi�cant positive relation between b�i;� and bE �r(i)t � rt

�
(with a con�dence higher then 99%). The correlation is Corr

�b�i;�; bE �r(i)t � rt

��
=

0:52.

In table 3.1 I show the various cross-sectional correlations between b�i;� and the
unexplained expected excess returns and the factor loadings according to the three

considered market models.

Correlations between b�i;� and �nancial quantities
Market Correlations

Model (j)
�b�i;�; �(j)i � �b�i;�; �(j)m;i� �b�i;�; �(j)SMB;i

� �b�i;�; �(j)HML;i

� �b�i;�; �(j)MOM;i

�
CAPM 0:55���� 0:01
3 Factor 0:47���� �0:36�� 0:28� 0:04
4 Factor 0:43��� �0:33�� 0:28� 0:06 0:41���

Table 3.1: Cross-sectional estimation of correlations between b�i;� and the unexplained
expected excess return �i and the factor loadings �f;i according to the CAPM, the
Fama-French 3 factor and 4 factor models. Signi�cance of estimation: 4 �stars�denote
an estimation of a coe¢ cient which is statistically di¤erent from 0 on a 1% signi�cance
level, 3 �stars�denote a signi�cance on a 5% level, 2 �stars�denote a signi�cance on a
10% level, and 1 �star�denotes a signi�cance on a 15% level.

I �nd a strong relation between an asset�s correlation to changes in the death rate

and its unexplained expected excess return according to the three tested market models.

There is also some evidence for a link between b�i;� and �rm size and the momentum

factor. b�i;� appears to be independent of a �rm�s book-to-market ratio.
The scatter plots in �gure 3.3 visualize the correlation between b�i;� and �(j)i , j 2

fCAPM; 4Fg. The positive relationship is evident for both displayed market models,

the CAPM and the 4 factor model.

Next, I sort the assets according to their correlations with changes in the death

rate (b�i;�), and divide them into Z = f2; 3; 4; 5; 10g percentiles. I compare the average

(annualized) bE �r(i)t � rt

�
and (annualized) �(j)i , j 2 fCAPM; 3F; 4Fg of the assets in

the top percentile (assets with large b�i;�) to the assets in the bottom percentile (assets

11Data for SMBt and HMLt are provided in K. French�s data library.

169



Scatter Plots

0.3 0.4

0.005

0.000

0.005

.

.

C
A

PM
 a

lp
ha

 (m
on

th
ly

)

Corr(r,lambda)

0.3 0.4

0.005

0.000

.

.

4F
 a

lp
ha

 (m
on

th
ly

)

Corr(r,lambda)

Figure 3.3: Left panel: Scatter plot and �tted linear line showing positive relation
between b�i;� and �(CAPM)

i (monthly data). Right panel: Scatter plot and �tted line

showing positive relation between b�i;� and �(4F )i (monthly data).

with low b�i;�). Table 3.2 presents the results. Consistent with the results in table 3.1
and the scatter plot, the assets with a large b�i;� outperform the assets with a low b�i;�.

Top vs Bottom Percentiles of Assets sorted according to b�i;�
Z bE �r(top)t � r

(bottom)
t

�
�
(CAPM)
top � �

(CAPM)
bottom �

(3F )
top � �

(3F )
bottom �

(4F )
top � �

(4F )
bottom

2 4:1% 3:1% 2:0% 1:5%
3 4:4% 3:9% 3:4% 2:8%
4 4:1% 3:7% 3:3% 2:8%
5 5:4% 4:7% 3:9% 3:4%
10 5:2% 3:3% 2:2% 1:6%

Table 3.2: Assets are sorted according to b�i;� and grouped into Z percentiles. I estimate
the average performance of the assets in each percentile and compare the top versus the
bottom percentile according to the measures bE �r(top)t � r

(bottom)
t

�
, �(CAPM)

top ��(CAPM)
bottom ,

�
(3F )
top ��

(3F )
bottom, and �

(4F )
top ��

(4F )
bottom. The comparison is done 5 times for di¤erent numbers

of percentiles, and each row of the table shows into how many percentiles I have divided
the sample (Z = f2; 3; 4; 5; 10g).

The empirical results are robust in the sense that they do not essentially change if I

perform the same tests within a subsample of data (e.g. data from 1927-1980 or 1947-

2005) or if I use the 100 Fama-French portfolios (formed on size and book-to-market)

as the asset universe.

The empirical (in-sample) tests con�rm the implications of my theoretical model
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that assets whose returns are relatively strong positively correlated to changes in the

(aggregate) death rate (large b�i;�) outperform other assets according to traditional

market models.

3.6.3 Out-of-sample Evidence

In the previous section, I have presented evidence for a general relation between an

asset�s performance and its correlation to changes in the death rate. In this section,

I test the out-of-sample performance of a dynamic (zero-cost) trading strategy that

buys (sells) assets which are relatively strong (weak) positively correlated to changes

in the death rate. I argue that this trading strategy is related to the Fama and French

(1992, 1993, 1996) factors, and my model on uncertainty in life expectancy provides a

theoretical rational for these factors.

At the end of each year t� 1, I estimate for every asset i (25 Fama-French portfo-

lios) the correlation between its excess returns and the changes in the death rate over

the past 15 years (including the realization in year t � 1) and denote the estimated

correlation coe¢ cient by b�(i;�)t .12 b�(i;�)t is an estimate of the (unobservable) conditional

correlation coe¢ cient Corrt
�
r
(i)
t � rt; ln

�
�(t)
�(t�1)

��
in year t. I sort the assets according

to the estimates b�(i;�)t and divide them into 5 percentiles. I form an equally weighted

portfolio based on the assets in the top (bottom) quintile (20% assets associated with

the highest (lowest) b�(i;�)t ) and denote the (monthly) returns of the �high correlation�

(�low correlation�) portfolio in year t by r(Top)t;m

�
r
(Bottom)
t;m

�
.13 My trading strategy takes

a long position in the �high correlation�portfolio and a short position in the �low cor-

relation�portfolio. I denote the (monthly) returns of the trading strategy in year t by

r
(TMB)
t;m = r

(Top)
t;m � r

(Bottom)
t;m .

The trading strategy�s turn over is by construction moderate. Over the sample

period from 1927 to 2005, the �high�and the �low�correlation portfolios pay (on average)

an annual excess return of 14:1% respectively 9:7%, while facing almost the same risk.

The unconditional volatilities of the �high�and �low�correlation portfolios are 24:1%

12The results hardly change and the conclusions are the same, if I drop the last observation, i.e. if
I estimate b�(i;�)t based on the data over the past 15 years excluding the realization in year t� 1. This
might be preferred to ensure that (without any doubt) all data is available to get an estimate of b�(i;�)t

at the beginning of year t.
13Subscribt (t;m) = f(t; 1) ; (t; 2) ; :::; (t; 12)g denotes a vector of monthly data in year t.
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Performance of Trading Strategy and �High�and
�Low�Correlation Portfolios (Monthly Returns)

CAPM:

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �

(i)
t;m

�i �m;i
High Corr. Portfolio 0:25%��� 1:11���

Low Corr. Portfolio �0:02% 1:06���

Trading Strategy 0:27%��� 0:05��

3 Factor Model:

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �SMB;iSMBt;m + �HML;iHMLt;m + �

(i)
t;m

�i �m;i �SMB;i �HML;i

High Corr. Portfolio �0:01% 1:06��� 0:55��� 0:38���

Low Corr. Portfolio �0:22%��� 1:04��� 0:34��� 0:29���

Trading Strategy 0:21%�� 0:02 0:21��� 0:09��

4 Factor Model:

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �SMB;iSMBt;m + �HML;iHMLt;m

+�MOM;iMOMt;m + �
(i)
t;m

�i �m;i �SMB;i �HML;i �MOM;i

High Corr. Portfolio 0:00% 1:06��� 0:55��� 0:37��� �0:01
Low Corr. Portfolio �0:17%��� 1:04��� 0:34��� 0:28��� �0:05���
Trading Strategy 0:17%� 0:02 0:21��� 0:09��� 0:04

Table 3.3: At the end of each year t � 1, I sort assets according to their correlations
with changes in the death rate over the past 15 years

�b�(i;�)t

�
. I split the asset universe

into 5 percentiles (based on the b�(i;�)t sort), and form an equally weighted portfolio
consisting of the assets in the highest (lowest) quintile and call it the �high� (�low�)

correlation portfolio with monthly returns in year t denoted by r
(TOP )
t;m

�
r
(Bottom)
t;m

�
.

The trading strategy takes a long position in the �high� correlation portfolio and a
short position in the �low�correlation portfolio, and pays in year t the monthly returns
r
(TMB)
t;m = r

(Top)
t;m � r(Bottom)t;m . I estimate for the two correlation portfolios and the trading

strategy the unexplained expected excess return and the factor loadings according to
the CAPM, the Fama-French 3 factor and 4 factor models. The regression coe¢ cients
are reported in the table. Signi�cance of estimation: 3 �stars�denote a signi�cance on a
1% level that the estimated coe¢ cient is di¤erent from 0, 2 �stars�denote a signi�cance
on a 5% level, and 1 �stars�denotes a signi�cance on a 10% level.
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and 22:5%, and the CAPM-��s are 1:11 respectively 1:06.

Table 3.3 compares the performance between the trading strategy and the �high�

and �low�correlation portfolios. According to the CAPM the trading strategy pays

an annual unexplained expected excess return of 3:29% and has almost no exposure

to systemic risk. Within the 3 factor and 4 factor models the trading strategy pays

an annual unexplained expected excess return of 2:55% respectively 2:06%. While the

trading strategy is (mostly) market neutral (no exposure to changes in market portfolio

excess returns), it loads on the Fama-French factors.

In table 3.4, 3.5 and 3.6 I illustrate that the constructed trading strategy is a suitable

risk factor (I call it TMBt;m) which helps to explain the cross-sectional relation between

expected asset returns. The factor TMBt;m = r
(TMB)
t;m is simply equal to the (excess)

returns of the constructed trading strategy. Within the considered asset universe (25

Fama-French portfolios), the market portfolio on its own (CAPM) fails to explain a

substantial part of the cross-sectional yield relationship. It is well-known that adding

the Fama-French size and book-to-market factors reduces the unexplained expected

returns a lot (within the sample). However, a new 3 factor market model (I call it

the �Uncertain Life Expectancy 3 Factor Model�) which replaces the Fama-French size

factor (SMBt;m) by the new factor TMBt;m explains the cross-sectional variation in

expected asset returns even better. I conclude that the factor TMBt;m is able to explain

substantial parts of the size (and some parts of the value) premium documented by

Fama-French (1992).

Finally, I test whether assets load on the factor TMBt;m if I add it to the CAPM,

the 3 factor or 4 factor models. I run the following time series regression for each asset

r
(i)
t;m � rt;m = �i + �TMB;iTMBt;m + �m;i

�
r
(m)
t;m � rt;m

�
+ �

(i)
t;m (3.28)

I �nd that 17 out of the 25 estimated �TMB;i coe¢ cients are statistically di¤erent from

zero on a 1% signi�cance level. I further run the regression

r
(i)
t;m � rt;m = �i + �TMB;iTMBt;m + �m;i

�
r
(m)
t;m � rt;m

�
(3.29)

+�SMB;iSMBt;m + �HML;iHMLt;m + �
(i)
t;m
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Estimation of Unexplained Expected Excess Returns of 25 Fama
French Portfolios according to CAPM (Monthly Returns)

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �

(i)
t;m

Book-to-Market
Size Low 2 3 4 High
Small �0:45%�� 0:13% 0:28%�� 0:53%��� 0:67%���

(t-stat) (�2:22) (0:82) (2:19) (4:29) (4:60)
2 �0:30%�� 0:09% 0:36%��� 0:42%��� 0:55%���

(t-stat) (�2:27) (0:91) (3:80) (4:28) (4:47)
3 �0:23%�� 0:16%�� 0:24%��� 0:41%��� 0:47%���

(t-stat) (�2:16) (1:99) (3:09) (4:67) (4:06)
4 �0:13%� 0:03% 0:29%��� 0:33%��� 0:41%���

(t-stat) (�1:75) (0:55) (4:11) (3:97) (3:58)
Big �0:07% 0:00% 0:19%��� 0:22%��� 0:26%��

(t-stat) (�1:32) (0:06) (2:69) (2:61) (2:23)

# coe¤ signi�cant on 1%, 5%, 10% level: 13,19, 20

Table 3.4: The table reports for each Fama-French portfolio the estimated �i coe¢ cient
according to the CAPM. The t-statistics of the estimates are provided in brackets.
3 �stars� indicate a coe¢ cient di¤erent from 0 on the 1% signi�cance level, 2 �stars�
indicate a signi�cance on the 5% level, and 1�star�indicates a signi�cance on the 10%
level.
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Estimation of Unexplained Expected Excess Returns of 25 FF Port-
folios according to Fama-French 3 Factor Model (Monthly Returns)

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �SMB;iSMBt;m + �HML;iHMLt;m + �

(i)
t;m

Book-to-Market
Size Low 2 3 4 High
Small �0:55%��� �0:05% �0:01% 0:16%��� 0:12%��

(t-stat) (�4:12) �0:57 �0:17 3:01 2:01
2 �0:22%��� �0:04% 0:10%�� 0:05% 0:01%

(t-stat) (�3:17) �0:65 1:99 1:00 0:29
3 �0:05% 0:04% �0:02% 0:03% �0:08%

(t-stat) (�0:92) 0:63 �0:31 0:49 �1:21
4 0:06% �0:08% 0:05% �0:02% �0:11%

(t-stat) (1:16) �1:35 0:85 �0:35 �1:43
Big 0:14%��� �0:02% 0:06% �0:11%�� �0:24%���

(t-stat) (3:28) �0:39 0:94 �2:04 �3:04

# coe¤ signi�cant on 1%, 5%, 10% level: 5, 8, 8

Table 3.5: The table reports for each Fama-French portfolio the estimated �i coe¢ cient
according to the Fama-French 3 factor model. The t-statistics of the estimates are pro-
vided in brackets. 3 �stars�indicate a coe¢ cient di¤erent from 0 on the 1% signi�cance
level, 2 �stars�indicate a signi�cance on the 5% level, and 1�star�indicates a signi�cance
on the 10% level.
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Estimation of Unexplained Expected Excess Returns of 25 FF Portfolios
according to Uncertain Life Expectancy 3 Factor Model (Monthly Returns)

r
(i)
t;m � rt;m = �i + �m;i

�
r
(m)
t;m � rt;m

�
+ �HML;iHMLt;m + �m;iTMBt;m + �

(i)
t;m

Book-to-Market
Size Low 2 3 4 High
Small �0:34% 0:08% 0:09% 0:25%�� 0:23%�

(t-stat) (�1:63) (0:52) (0:73) (2:12) (1:73)
2 �0:11% 0:03% 0:15%� 0:11% 0:09%

(t-stat) (�0:85) (0:29) (1:67) (1:23) (0:93)
3 0:03% 0:07% 0:07% 0:05% �0:03%

(t-stat) (0:30) (0:87) (0:10) (0:78) (�0:40)
4 0:10% �0:08% 0:06% �0:01% �0:07%

(t-stat) (1:51) (�1:26) (1:01) (�0:11) (�0:87)
Big 0:11%�� �0:06% 0:03% �0:13%�� �0:23%���

(t-stat) (2:33) (�1:03) (0:50) (�2:14) (�2:93)

# coe¤ signi�cant on 1%, 5%, 10% level: 1, 4, 6

Table 3.6: The table reports for each Fama-French portfolio the estimated �i coe¢ cient
according to the Uncertain Life Expectancy 3 factor model. The t-statistics of the
estimates are provided in brackets. 3 �stars�indicate a coe¢ cient di¤erent from 0 on
the 1% signi�cance level, 2 �stars�indicate a signi�cance on the 5% level, and 1�star�
indicates a signi�cance on the 10% level.
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and �nd that 8 out of 25 estimated �TMB;i coe¢ cients are statistically di¤erent from

zero on a 1% signi�cance level. For the regression

r
(i)
t;m � rt;m = �i + �TMB;iTMBt;m + �m;i

�
r
(m)
t;m � rt;m

�
(3.30)

+�SMB;iSMBt;m + �HML;iHMLt;m + �MOM;iMOMt;m + �
(i)
t;m

I also �nd that 8 out of 25 estimated �TMB;i coe¢ cients are statistically di¤erent from

zero on a 1% signi�cance level. Moreover, for all three regressions I test whether the

loadings on TMBt;m are jointly di¤erent from zero. A �2 test rejects the null hypothesis

of �TMB;i = 0;8i on a 1% signi�cance level.

My tests suggest that the factor TMBt;m adds important information to the CAPM,

the 3 factor model and the 4 factor model and is not absorbed by the other explanatory

variables.

As a robustness check I repeat the tests for the data set of 100 Fama-French port-

folios and/or the subsample periods 1927-1985 and 1947-2005. The conclusions are the

same.

3.7 Conclusion

I explore implications of a time variation in the life expectancy on an agent�s optimal

portfolio choice. Imposing a �nancial markets equilibrium, I analyze (in a partial

equilibrium model) how the relation between assets�expected returns are a¤ected by

the behavior of uncertain lived agents.

I introduced a continuous time �nance model featuring a dependency between asset

prices and agents� arrival rates of death. Agents maximize expected lifetime utility

over intermediate consumption. The model is solved for any possible speci�cation

of time additive utilities subject to the (weak) restriction that the utility is strictly

increasing and concave in consumption. The optimal asset allocation of an agent is

a¤ected by a time variation in the arrival rate of death. Ceteris paribus, an agent

invests relatively more respectively less in an asset that pays o¤ high (low) respectively

low (high) in states of the world when he expects to live longer (shorter), than in an

asset which behaves independently of changes in his death rate. In general the portfolio
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composition of an agent depends on some individual characteristics such as his health

condition and lifestyle, and every agent will choose a tailored investment strategy which

di¤ers from the portfolio choice of other agents.

If certain homogeneity is assumed, I state a "Three Fund Separation Theorem"

which works in a similar spirit as introduced by Merton (1973). I derive an equilibrium

asset pricing equation which states that the expected excess return of any asset depends

in a linear fashion on the expected excess returns of the market portfolio and the

expected excess return of a fund which is positively related to changes in the (aggregate)

death rate. An asset with a positive (negative) correlation between its returns and

unexpected changes in the (aggregate) arrival rate of death, has a higher (lower) equity

premium, than what was expected in a model without lifetime uncertainty. I show that

my results continue to hold if a market for annuities is introduced.

My theoretical asset pricing model is supported by empirical evidence. Indeed, as-

sets with a relatively strong positive correlation between their returns and changes in

the (aggregate) death rate outperform other assets on average. I construct a dynamic

trading strategy which buys (sells) assets with a strong (weak) positive correlation to

changes in the (aggregate) death rate. Out-of-sample evidence suggests that the con-

structed trading strategy earns a positive unexplained return according to traditional

market models. Finally, I construct a factor based on the mentioned trading strategy

and provide evidence that it helps to explain the cross-sectional relationship in expected

asset returns in addition to traditional factors.
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3.8 Appendix

3.8.1 Speci�cation of Expected Lifetime Utility and Wealth

dynamics

The expected lifetime utility of agent k at time t 2 [b(k); � (k)
b(k)
) is given by

Et

h
U (k)(c(k)) j � (k)

b(k)
> t
i

(3.31)

= Et

"Z �
(k)

b(k)

t

u(k)s
�
c(k)s
�
ds+B(k)

�
W

(k)
; �
(k)

b(k)

�
j � (k)

b(k)
> t

#

= Et

�Z 1

t

1n
J
(k)
s =0

ou(k)s �
c(k)s
�
+ 1n

J
(k)
s =1\J(k)s�=0

oB(k)
�
W

(k)
; s
�
ds j J (k)t = 0

�
= Et

�Z 1

t

h(k)(t;m)

�Z m

t

u(k)s
�
c(k)s
�
ds+B(k)

�
W

(k)
;m
��

dm

�
= Et

�Z 1

t

H
(k)
(t; s)u(k)s

�
c(k)s
�
+ h(k)(t; s)B(k)

�
W

(k)
; s
�
ds

�
.

Agent k�s wealth is a random process and evolves according to the dynamics

dW
(k)

t = r
�
W

(k)

t �X
[1N ](k)T
t P

[1N ]
t

�
dt+X

[1N ](k)T

t dP
[1N ]
t � c

(k)
t dt (3.32)

= W
(k)

t rdt+W
(k)

t �
[1N ](k)T

t

�
(IPt)

�1 dP
[1N ]
t � r1(1�N)dt

�
� c

(k)
t dt

= W
(k)

t rdt+W
(k)

t �
[1N ](k)T

t

�
�
[1N ]
P dt+ �

[1N ]
P dWt � r1(1�N)dt

�
� c

(k)
t dt,

3.8.2 Proofs of Lemmas

Proof of Lemma 3.1. It is straightforward to show that

LE
(k)
t = Et

h
�
(k)

b(k)
j � (k)

b(k)
> t
i

(3.33)

=
1

H
(k)
(t)
Et

�Z 1

t

sh(k) (u) ds

�
;
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and after plugging in the formulas for H
(k)
(t) and h(k) (t), and further rewriting for

s > t; �(k)s in terms of �(k)t , I end up with a function in �
(k)
t ,

LE
(k)
t =

Z 1

�1

Z 1

t

s�
(k)
t exp

�Z s

t

�
(k)

�;b(k);r
dr � 1

2
�
(k)
� �

(k)T

� (s� t) + �
(k)
�

p
s� tz

�
(3.34)

exp

�
�
Z s

t

�
(k)
t exp

�Z u

t

�
(k)

�;b(k);r
dr � 1

2
�
(k)
� �

(k)T

� (u� t) + �
(k)
�

p
u� tz

�
du

�
ds:

From this expression I can now determine whether LE(k)t is increasing or decreasing in

�
(k)
t . Note that

H
(k)
(t; s) = exp

�
�
Z s

t

�(k)u du

�
(3.35)

= exp

8<:�
Z s

t

�
(k)
t exp

8<:
R u
t
�
(k)

�;b(k);r
dr � 1

2
�
(k)
� �

(k)T

� (u� t)

+�
(k)
� (Wu �Wt)

9=; du

9=; ;

and thus,

@H
(k)
(t; s)

@�
(k)
t

=
ln
�
H
(k)
(t; s)

�
�
(k)
t

H
(k)
(t; s) < 0 a:s:; (3.36)

since H
(k)
(t; s) 2 (0; 1) a:s: Then, since

h(k) (t; s) � h(k)(s)

H
(k)
(t)

(3.37)

= �(k)s H
(k)
(t; s)

= �
(k)
t exp

�Z s

t

�
(k)

�;b(k);r
dr � 1

2
�
(k)
� �

(k)T

� (s� t) + �
(k)
� (Ws �Wt)

�
H
(k)
(t; s) ;

I get

@h(k) (t; s)

@�
(k)
t

=
�(k)s

�
(k)
t

H
(k)
(t; s)

h
1 + ln

�
H
(k)
(t; s)

�i > 0; for s small

< 0; for s large
a:s:; (3.38)

and hence, for �(k)0t < �
(k)00
t

LE
(k)0
t = Et

�Z 1

t

sh(k)0 (t; s) ds

�
(3.39)

> Et

�Z 1

t

sh(k)00 (t; s) ds

�
= LE

(k)00
t :
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I also can think of it in another way. For �(k)0t < �
(k)00
t by (3.36)

H
(k)0
(t; s) > H

(k)00
(t; s) a:s:; fors 2 (t;1) (3.40)

holds, and hence,

LE
(k)0
t > LE

(k)00
t (3.41)

must be true.

Proof of Lemma 3.2. Following Merton (1971), the Hamilton-Jacobi-Bellman

optimality principle implies that the maximization problem (P1) has the same solution

as

(HJB)

0 = supn
c
(k)
t ;�
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t
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with the Transversality condition lim
t!1
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h
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�
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; t
�i
= 0. Applying the

Itô-Doeblin theorem for jump processes to the term dV (k)
�
W

(k)
; �(k); J

(k)
; t
�
, I can
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rewrite the HJB equation as
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The �rst order conditions with respect to the controls c(k)t and �[1N ](k)t imply
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The result follows immediately.

Proof of Lemma 3.3. Statement 1) follows immediately from the �rst FOC and

the de�nition of u(k)t (:) being strictly increasing, hence, V (k)

W
= @

@c

h
u
(k)
t

�
c
�(k)
t

�i
> 0. In

order to show proof for the latter two claims, I �rst note that at optimum

@u
(k)
t

�
c
�(k)
t

�
@ct

= H
(k)
(t; s))

@u
(k)
s

�
c
�(k)
s

�
@cs

@W
(k)

s

@W
(k)

t

;8s 2 [t;1) a:s: (3.45)

must hold. Intuitively, this equation says that the utility agent k gets from consuming

one additional dollar at time t must in expectation equal the utility that agent k derives

from investing one dollar at time t and consuming the proceeds at time s 2 [t;1) in

addition to c�(k)s . This becomes evident by taking the �rst derivative with respect to
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W
(k)

t from the formal de�nition of the value function V (k)
�
W

(k)
; �(k); J

(k)
; t
�

V
(k)

W
= Et

24Z 1

t

H
(k)
(t; s)

@u
(k)
s

�
c
�(k)
s

�
@cs

@c
�(k)
s

@W
(k)

s

@W
(k)

s

@W
(k)

t

ds

35 , (3.46)

noting that
R1
t

@c
�(k)
s

@W
(k)
s

ds must equal 1 almost surely,14 and combining it with the FOC,

@u
(k)
t

�
c
�(k)
t

�
@ct

= Et

24Z 1

t

H
(k)
(t; s)

@u
(k)
s

�
c
�(k)
s

�
@cs

@W
(k)

s

@W
(k)

t

@c
�(k)
s

@W
(k)

s

ds

35 , (3.47)

what has (3.45) as a solution. An increase in W
(k)

t leads agent k to adjust his optimal

consumption plan and thus, to increase expected c�(k)s , for some (at least one) s 2 [t;1).

But then, by (3.45) at optimum expected consumption at every point in time s 2 [t;1)

must increase, and hence, @c
�(k)
t

@W
(k)
t

> 0. Then, remembering that u(k)t (:) is strictly concave

by de�nition and taking the derivative of the �rst FOC with respect to W
(k)

t gives

V
(k)

WW
=

@2

@c2t

h
u
(k)
t

�
c
�(k)
t

�i
| {z }

<0

@c
�(k)
t

@W
(k)

t| {z }
>0

< 0 (3.48)

what proves claim 2). To show statement 3), note that an increase in �
(k)
t means

by (3.36) a decrease in survival probabilities H
(k)
(t; s), 8s > t, and ceteris paribus,

a decrease in H
(k)
(t; s))

@u
(k)
s

�
c
�(k)
s

�
@cs

@W
(k)
s

@W
(k)
t

, 8s > t. But then, besides some other (here

uninteresting) adjustments to the optimal consumption plan,
@u

(k)
t

�
c
�(k)
t

�
@ct

necessarily

has to decrease as well such that (3.45) will be satis�ed again, what means that c�(k)t

increases. Hence, I have shown that @c
�(k)
t

@�
(k)
t

> 0, and thus, using again the de�nition

that u(k)t (:) is strictly concave and taking the �rst derivative with respect to �(k)t of the

14This is true since
R1
t

@c�(k)s

@W
(k)
s

ds =
R1
t

@c�(k)s

@W
(k)
s

@W
(k)
s

@W
(k)
t

�
@W

(k)
s

@W
(k)
t

��1
ds =

R1
t

@c�(k)s

@W
(k)
t

�
@W

(k)
s

@W
(k)
t

��1
ds = 1

a:s:, where the last equation holds because of a simple accounting rule that a change in wealth at time
t by one dollar must equal a change of sumed up recent and future consumption by exactly one dollar
plus invested proceeds.
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FOC, I get

V
(k)

W�
=

@2

@c2t

h
u
(k)
t

�
c
�(k)
t

�i
| {z }

<0

@c
�(k)
t

@�
(k)
t| {z }

>0

< 0, (3.49)

what completes the proof.

Yet another way to proof statement 2) and 3), is by employing the martingale approach

introduced by Cox and Huang (1989) to tackle agent k�s optimization problem. First,

I see that the dynamic budget constraint implies the static constraint

W
(k)

t � Et

�Z 1

t

H
(k)
(t; s)

�s
�t
c(k)s ds

�
(3.50)

where � is a stochastic discount factor. It is important to notice that the dynamic

and the static constraint are equivalent in the case of complete markets where there

is a unique SDF. However, in the case of incomplete markets with multiple SDFs

the dynamic constraint implies the static one but it does not hold the other way.

Moreover, assuming that the optimal consumption plan c�(k) is in the interior, the

Gateaux derivative of expected utility at point of optimal consumption c�(k) in direction�
c(k) � c�(k)

�
equals zero

rEt
�
U (k)(c�(k))

� �
c(k) � c�(k)

�
= 0 (3.51)

for all admissible consumption plans c(k). De�ning Q(k)t (:) as a function such that

Q
(k)
t (xs) = H

(k)
(t; s)xs and noticing that Q

(k)
t

�
c(k) � c�(k)

�
spans the set of all mar-

ketable cash �ows I get

rEt
�
U (k)(c�(k))

� h
Q
(k)�1

t (x)
i
= 0 (3.52)

for all marketable cash �ows x. But this implies that the Riesz representation process

Rs times 1

H
(k)
(t;s)

is equal to a SDF times a constant �(k). Since for time additive utilities

as de�ned here the Riesz representation process R is given by

Rs = H
(k)
(t; s)

@u
(k)
s

�
c
�(k)
s

�
@cs

, (3.53)
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I can derive for optimal consumption c�(k)t the condition

@u
(k)
s

�
c
�(k)
s

�
@cs

= �(k)�s. (3.54)

If markets are complete, the SDF is unique and there is no problem to determine (3.54).

In incomplete markets there are multiple SDFs and I have to choose the one SDF that

minimizes expected utility

�(k) = arg inf
�2�

�
Et
�
U (k)(I

�
�(k)�

�
)
�	

(3.55)

where the function I (:) is the inverse function of the marginal utility process

I

 
@u

(k)
s (xs)

@xs

!
= xs. (3.56)

Note that since u(k)s (:) is by assumption strictly increasing and concave, I (:) is positive

and strictly decreasing. The constant �(k) is determined through the static budget

constraint using the SDF �(k)

W
(k)

t = Et

"Z 1

t

H
(k)
(t; s)

�
(k)
s

�
(k)
t

I
�
�(k)�(k)s

�
ds

#
. (3.57)

Finally, combining condition (3.54) with the �rst FOC from dynamic programming, I

have

V
(k)

W
= �(k)�

(k)
t (3.58)

Now, I can take the �rst derivative from both sides in equation (3.57) with respect to

W
(k)

t

1 = Et

2666664
Z 1

t

H
(k)
(t; s)

�
(k)
s

�
(k)
t
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�
�(k)�
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�
@
�
�(k)�

(k)
s

�
| {z }

<0

@�(k)

@W
(k)

t

�(k)s ds

3777775 (3.59)

what implies @�(k)

@W
(k)
t

< 0. In turn when taking the �rst derivative from (3.58) with
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respect to W
(k)

t , I get

V
(k)

WW
=

@�(k)

@W
(k)

t

�
(k)
t < 0 (3.60)

what proves statement 2). Moreover, taking the �rst derivative from (3.57) with respect

to �(k)t ,
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t
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�(k)s ds
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(3.61)

implies @�(k)

@�
(k)
t

< 0. Finally, taking the �rst derivative with respect to �(k)t from (3.58)

yields

V
(k)

W�
=
@�(k)

@�
(k)
t

�
(k)
t < 0 (3.62)

what completes the proof of Lemma 3.2.

3.8.3 Proofs of Propositions and Theorems

Proof of Proposition 3.1. From the FOC of the HJB, the expressions of ��[1N ](k)t ,

A
(k)
t and B(k)

t follow immediately. Moreover, using Lemma 3.2 it is trivial to see that

A
(k)
t =

V
(k)

W

�V (k)
WW

W
(k)
t

> 0 and B(k)
t =

�V (k)
W�

�V (k)
WW

W
(k)
t

�
(k)
t > 0. The remainder of the proposition

follows straightforward.

Proof of Theorem 3.1 ("Three Fund Separation"). Denote the three funds

by �1, �2 and �3, and use the superscript [1N ] and [0] to indicate investments in risky

assets and the riskless asset, respectively. Let there be one fund consisting of the risk

free asset only

�
[1N ]
1 = 0; �

[0]
1 = 1, (3.63)

another fund being equal to the well known tangency portfolio in a standard CAPM

�
[1N ]
2 =

�
�
[1N ]
P �

[1N ]T

P

��1 �
�
[1N ]
P � r1(1�N)

�
�
1(1�N)

�T �
�
[1N ]
P �

[1N ]T

P

��1 �
�
[1N ]
P � r1(1�N)

� ; �[0]2 = 0, (3.64)
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and �nally a third fund which invests in a combination of the risk free and risky assets

�
[1N ]
3 = �

�
�
[1N ]
P �

[1N ]T

P

��1
�
[1N ]
P �

T

� ; �
[0]
3 = 1�

�
1(1�N)

�T
�
[1N ]
3 . (3.65)

Let agent k�s investments in the three funds, denoted by
�
�
(k)
1;t ; �

(k)
2;t ; �

(k)
3;t

�
, be

�
(k)
1;t = W

(k)

t � �
(k)
2;t � �

(k)
3;t ; (3.66)
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; (3.67)

�
(k)
3;t = eB(k)

t . (3.68)

Noting that the strategy
�
�
(k)
1;t ; �

(k)
2;t ; �

(k)
3;t

�
replicates exactly the demand d(k)t , proves (i).

Moreover, the three funds clearly satisfy (ii). Finally, noting that

�
1(1�N)
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�
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��1 �
�
[1N ]
P � r1(1�N)

�
=
��2 � r

�2�2
; (3.69)

where ��2 � r and �2�2 are the risk premium respectively the variance of fund �2, proves

(iii).

Proof of Theorem 3.2. Imposing equilibrium in �nancial markets, i.e. equating

aggregate demand and supply of risky assets

Mt�
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t (3.70)

= At

�
�
[1N ]
P �

[1N ]T

P

��1 �
�
[1N ]
P � r1(1�N)

�
�Bt

�
�
[1N ]
P �

[1N ]T

P

��1
�
[1N ]
P �

T

� ,

and solving for the vector of expected excess returns
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[1N ]T

P

�
�
[1N ](M)
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At
�
[1N ]
P �

T

� , (3.71)

allows us to get the following expression for any asset i�s (portfolio �(i)t �s) expected
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excess return by pre-multiplying (3.71) by �[1N ](i)t

�i � r = �
[1N ](i)T

t

�
�
[1N ]
P � r1(1�N)

�
(3.72)

=
Mt

At
�
[1N ](i)T

t

�
�
[1N ]
P �

[1N ]T

P

�
�
[1N ](M)
t +

Bt

At
�
[1N ](i)T

t �
[1N ]
P �

T

�

=
Mt

At
�
[1N ](i)T

t

�
�
[1N ]
P �

[1N ]T

P

�
�
[1N ](M)
t +

Bt

At
�
[1N ](i)T

t

�
�
[1N ]
P �

[1N ]T

P

�
�[1N ]

=
Mt

At
�i;M�i�M +

Bt

At
�i;��i��.

Moreover, (3.72) holds for i =M
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and i = �
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�2�. (3.74)

Thus, I can solve the system of equations (3.73) and (3.74) for Mt

At
and Bt

At
, and plug the

solutions back into (3.72) to get
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�i
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Finally, to prove the second claim in the proposition, I �rst note that

�i;��i�� = �
[1N ](i)T

t

�
�
[1N ]
P �

[1N ]T

P

�
�[1N ] (3.76)
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t �
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T

� = �i;��i��,

and hence, the sign of the correlation between asset i and � is the same as the one of

the correlation between asset i and �, i.e.

sign
�
�i;�
�
= sign

�
�i;�
�
. (3.77)

Further, in absence of lifetime uncertainty the second term in the equilibrium yield

relationship vanishes. Thus, if for asset i �i;� > (<)0, then (�� � r) �
(�)
i > (<)0, which

completes the proof.
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