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Abstract

Background: There are several differences associated with the behaviour of the four main
experimental Neisseria gonorrhoeae strains, FA1090, FA19, MS11, and F62. Although there is data
concerning the gene complements of these strains, the reasons for the behavioural differences are
currently unknown. Phase variation is a mechanism that occurs commonly within the Neisseria spp.
and leads to switching of genes ON and OFF. This mechanism may provide a means for strains to
express different combinations of genes, and differences in the strain-specific repertoire of phase
variable genes may underlie the strain differences.

Results: By genome comparison of the four publicly available neisserial genomes a revised list of
64 genes was created that have the potential to be phase variable in N. gonorrhoeae, excluding the
opa and pilC genes. Amplification and sequencing of the repeat-containing regions of these genes
allowed determination of the presence of the potentially unstable repeats and the ON/OFF
expression state of these genes. 35 of the 64 genes show differences in the composition or length
of the repeats, of which 28 are likely to be associated with phase variation. Two genes were
expressed differentially between strains causing disseminated infection and uncomplicated
gonorrhoea. Further study of one of these in a range of clinical isolates showed this association to
be due to sample size and is not maintained in a larger sample.

Conclusion: The results provide us with more evidence as to which genes identified through
comparative genomics are indeed phase variable. The study indicates that there are large
differences between these four N. gonorrhoeae strains in terms of gene expression during in vitro
growth. It does not, however, identify any clear patterns by which previously reported behavioural
differences can be correlated with the phase variable gene repertoire.

Background asymptomatic while gonococcal spread up the urinary
Neisseria gonorrhoeae is the causative agent of the sexually ~ tract or invasion across the epithelial layers can cause
transmitted disease gonorrhoea. In the male this is typi-  additional complications such as pelvic inflammatory dis-
cally associated with a purulent discharge from the ure-  ease (PID) and disseminated gonococcal infection (DGI).

thra. However, in women, infection of the cervix is often =~ Depending on geographical location, between 0.1%-3%
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of cases of uncomplicated gonorrhoeae (UG) disseminate
and cause DGI [1-3]. The mechanisms that allow some
strains to invade and cause DGI are not well understood.

Many attempts have been made to correlate disease phe-
notype with the genetic characteristics of isolates from
DGI and UG. Certain phenotypes have been associated
with DGI, including the arginine, hypoxanthine, and
uracil (AHU) auxotype in which AHU- strains tend to be
more invasive [4,5]. Serum resistance, and therefore the
ability to invade successfully, is associated with porin
serotype 1A, via its interaction with C4 binding protein
[6] as well as a role in the invasion of epithelial cells [7].
There is also a correlation between the presence of a com-
bination of atlA and the traG variant, sac-4, and the DGI
phenotype. These are thought to be a serum resistance
locus and a cytotoxin that are located within the Gonococ-
cal Genetic Island [8]. Addressing this issue clearly is diffi-
cult because it is possible that isolates capable of causing
disseminated infection will be isolated from uncompli-
cated infections, and the converse may occur in hosts that
are unable to produce a satisfactory immunological
defence.

There are four experimental strains of N. gonorrhoeae com-
monly used in the laboratory. Strain FA1090, the only
gonococcal strain for which a genome sequence is cur-
rently available http://www.genome.ou.edu/gono.html,
was isolated from the cervix of a patient with DGI. Strain
FA19 was isolated from a patient with both UG and DGI.
Strains F62 and MS11, both of which were isolated from
patients with UG, are also frequently used. Several differ-
ences have been reported between these strains.

These include the ability to acquire iron from lactoferrin
due to expression of lactoferrin binding protein (Lbp). A
competitive advantage associated with this receptor in
male urogenitary tract infection has been reported, how-
ever the absence of this gene from approximately half of
gonococcal strains suggests that there may also be an
advantage to its absence [9]. Other differences include an
elevated ICAM-1 response generated in epithelial cell
lines upon exposure to strain FA1090 as compared to
strain MS11 [10]. One of the largest differences is the pres-
ence of the Gonococcal Genetic Island in strain MS11 [8]
and strain FA19, but not the other two strains [11]. Micro-
array studies have revealed that there is little difference in
the gene complements of these four strains. Indeed, these
studies have shown that strain F62 contains all of the
genes encoded by the FA1090 genome [11]. What com-
parative gene hybridization studies cannot tell us is
whether there are small differences in the gene sequences,
including frame-shifts or base substitutions, and whether
there are differences in the phase variable gene repertoire.

http://www.biomedcentral.com/1471-2180/5/21

Phase variation is a process employed by many bacteria to
reversibly control gene expression. It is a switching mech-
anism that allows the gene to be reversibly turned ON or
OFF. One difference between this and other regulatory
mechanisms is that it does not occur in response to a stim-
ulus but instead is mediated by changes to the DNA,
which can occur during replication. There are many mech-
anisms for phase variation including inversions and trans-
poson movement (for reviews see [12,13]), however, the
most common mechanism within the Neisseria spp. is via
a slippage mechanism in which the length of a simple
sequence repeat changes during replication [14]. Within
the coding sequence, changes in this repeat can cause
frame-shifting and generation of truncated reading
frames. Upstream of the coding sequences changes in
repeat length can also alter the expression level of the
genes by changing the efficiency with which RNA
polymerase or other transcription factors bind to pro-
moter components.

Due to the potential phase variation has to alter the
expression profiles of a bacterium, this is one of the next
logical areas to investigate to identify differences between
the strains of N. gonorrhoeae that might account for differ-
ing behaviour. To achieve this a revised list of all of the
potential phase variable genes, excluding opa and pilC
genes, in N. gonorrhoeae was generated based upon the
four publicly available neisserial genomes, Neisseria men-
ingitidis serogroup A strain Z2491 [15], serogroup B strain
MC58 [16], serogroup C strain FAM18 (available at http:/
/www.sanger.ac.uk/Projects/N meningitidis/seroC/

seroC.shtml), and N. gonorrhoeae strain FA1090 (available
at http://www.genome.ou.edu/gono.html). The presence
of the potentially variable repeat and the expression status
of each of these genes was then determined and compared
between the four N. gonorrhoeae strains.

Results and Discussion

A revised list of potential phase variable genes in Neisseria
gonorrhoeae

Potential phase variable genes were predicted through
identification of simple sequence repeats within coding or
promoter regions, the alteration in the length of which
would alter the expression of the associated protein.
Genes that are common to N. gonorrhoeae and different
strains of N. meningitidis tend to be highly conserved, with
typical sequence identities of greater than 90%. There is
sufficient similarity between them for differences in the
length of repeats, with the potential to disrupt reading
frames, to increase the quality of phase variable gene pre-
dictions. In the Neisseria spp. the phase variable repertoire
has been previously defined through three-way genome
comparison to identify potential phase variation associ-
ated simple sequence repeats [17]. Based on the repeat
tract length, the presence of the gene, the presence of

Page 2 of 12

(page number not for citation purposes)


http://www.genome.ou.edu/gono.html
http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.genome.ou.edu/gono.html

BMC Microbiology 2005, 5:21

http://www.biomedcentral.com/1471-2180/5/21

Table I: List of genes identified as potentially being phase variable in N. gonorrhoeae — excluding the opa and pilC genes.

XNG# t TRACT CANDIDACY * FUNCTIONAL ROLE GENE ANNOTATED FUNCTION

XNG0023 GGGGCGG - L Other prolyl oligopeptidase family protein

XNG0060 C(G)6 - S Surface sugar biosynthesis ~ wbpC / pgll putative LPS biosynthesis or pilin
glycosylation protein

XNGO0075 (Q)7 - L Hypothetical protein hypothetical protein

XNG0080 Q)10 - S Hypothetical protein pgiH pilin glycosylation protein

XNGO008|1 A(Q)7 - S Surface sugar biosynthesis pglG pilin glycosylation protein

XNGOI12 (A)6 p S Hypothetical protein hypothetical protein

XNGOI 15 (C)4 - L Other cvaA putative colicin V secretion protein

XNGO158 (©)5 degenerate L Hypothetical protein hypothetical protein

XNGO0188 AA(C)5 - L Other potD-2 spermidine/putrescine ABC transporter,

XNGO0189 (CAAACAC)4 - K Surface sugar biosynthesis pglE pilin glycosylation protein

XNG0245 degenerate S Iron acquisition IbpA lactoferrin-binding protein A

XNGO0388 (G)7 + S R-M Systems hsdS|| type | restriction enzyme S protein

XNGO0412 (G)7 + S Hypothetical protein hypothetical protein

XNG0470 (G)7 + S Hypothetical protein hypothetical protein 11

XNG0473 (M9 + S Hypothetical protein hypothetical protein

XNGO0503a (C)6A(C)9 + S Hypothetical protein hypothetical protein

XNG0508 AACCGGCAAACA - L/M Hypothetical protein hypothetical protein

XNGO0520 (CCCAA)I2 - S R-M Systems type lll restriction system methylase

XNGO0552 (C)5 degenerate L Hypothetical protein hypothetical protein

XNGO0608 CCACACCC - M Other nifS aminotransferase

XNGO0610 (G)7 - L Other IldD L-lactate dehydrogenase

XNGO0612 (GCCA)37 - S R-M Systems putative restriction system methylase

XNGO0644 (A)9 - L R-M Systems modification methylase NlalV

XNG0663 CCCCTCC + L Hypothetical protein hypothetical protein

XNGO0703 Q)7 - L Other dnaX DNA polymerase I, subunits gamma and
tau

XNGO0714 GGAAGG - L Other mobA molybdopterin-guanine dinucleotide
biosynthesis

XNG0832 MIC(G)6 p K Surface associated proteins porA outer membrane protein

XNG0887 (AAGC)4 - S Hypothetical protein hypothetical protein

XNG0905 (AAGC)3 + S Surface associated proteins virG AIDA related protein

XNG0954 Q)7 - L Other PPX exopolyphosphatase

XNG0973 Q)6 - L Hypothetical protein hypothetical protein

XNG0986 (C)6 degenerate S Other aspA putative serotype- | -specific antigen

XNG1000 (G)7 + S Hypothetical protein hypothetical protein

XNG1041 piv-Nm|B inserted S Surface sugar biosynthesis putative glycosyl transferase

XNGI1207a (G)8 + S Hypothetical protein hypothetical protein **

XNGI216 GGCGGCCAA K Iron acquisition hmbR hemoglobin receptor

XNG1268 (AT)5 - L Other fixP cytochrome c oxidase, subunit Il

XNGI28I G(A)7 - S Hypothetical protein hypothetical protein

XNGI341 (CAAG)20 S Surface associated proteins adhesin

XNGI1356 CCCTGCACCp M Other pntA NAD(P) transhydrogenase alpha subunit

XNG1384 TCCGCCC - L Other amiC N-acetylmuramoyl-L-alanine amidase

XNG1423 TGTGGGGG - S Other dca competence-associated protein

XNG1460 Q)7 - L Hypothetical protein hypothetical protein

XNGI511 (G)8 + S Hypothetical protein hypothetical protein

XNGI1563 (AAGC)3 + S Surface associated proteins vapA virulence associated protein

XNGI1577 (G)8 + S Hypothetical protein hypothetical protein **

XNGI1589 (C)4TCC - L Other dinG probable ATP-dependent helicase

XNG1644 Q)1 - K Surface sugar biosynthesis pgtA pilin glycosylation protein

XNGI1733 (G)8 - M Hypothetical protein hypothetical protein

XNG1740 Q)7 - L Other rplK 50S ribosomal protein L11

XNG1788 (G)8 + M Hypothetical protein hypothetical protein **

XNG1834 (C)8 - M Hypothetical protein hypothetical protein

XNGI1856 (TA)S - L Hypothetical protein hypothetical protein

XNG1858 (G)5 - L Surface associated proteins mafA-3 putative adhesin

XNG1868 Q)7 + L Other map methionine aminopeptidase

XNG1934 (A9 p S Other putative lipoprotein
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Table I: List of genes identified as potentially being phase variable in N. gonorrhoeae — excluding the opa and pilC genes. (Continued)

XNG1942/ (©)6 + S Other putative hydrolase

41
XNG1968 )11 - K Surface sugar biosynthesis IgtG lipopolysaccharide glycosyl transferase
XNG1989 O)I13p K Iron acquisition frpB / fetA  iron-regulated outer membrane protein
XNG2004 (G)9 + K Iron acquisition hpuA hemoglobin-haptoglobin utilization protein
XNG2045 Q)1+ K Surface sugar biosynthesis IgtA acto-N-neotetraose biosynthesis glycosyl

transferase

XNG2047 (G)14 + K Surface sugar biosynthesis IgtC LPS biosynthesis protein
XNG2048 (G)14 - K Surface sugar biosynthesis IgtD LPS biosynthesis protein
XNG2061 (TTCC)3 - L Other plsX fatty acid-phospholipid synthesis protein

T CDS designation numbers come from our own annotation of the N. gonorrhoeae strain FA1090 genome sequence.

} The known or potential phase variable repeat tract from N. gonorrhoeae strain FA1090. The equivalent sequence is identified for genes without a
repeat tract that are phase variable candidates from the meningococci. Following the sequence a - or + signifies if the CDS is in-frame or frame-
shifted, respectively. Repeats in promoter or predicted promoter locations are indicated with a p. Degenerate indicates a gene with multiple frame-

shifts or in-frame termination conditions.

* The predicted likelihood of phase variability. K indicates a known phase variable gene; S indicates a strong candidate for phase variation; M
indicates a moderate candidate; L indicates a low candidate. See text for details of these thresholds.
7T XNGO0470 is a homologue of XNG1014, and XNGI513 which have a (G)6 and are not frame-shifted.

*# XNG1207a, XNG 1577, and XNG 1788 are homologues of each other.

variations in the repeat tract length, and the location of
the repeat, each of the previously identified potential
phase variable genes was scored for the probability of
being phase variable. Using the additional genome
sequence of N. meningitidis strain FAM18, the predicted
phase variable gene repertoire was re-assessed through
four-way genome sequence comparison (data not pre-
sented), using the same method as previously described
[17]. In this way, those potential phase variable genes that
are common between the four genome sequences could
be evaluated in light of variation in the presence and
length of the repeat tract associated with the genes. This
analysis identified 64 repeats in N. gonorrhoeae that had
the potential to mediate phase variation (Table 1), exclud-
ing the opa and pilC genes. These were investigated in N.
gonorrhoeae strains FA1090, F62, FA19, and MS11. The opa
and pilC genes were not included in this study because
these genes are established as phase variable, to change
very rapidly during culture, and do not have sufficiently
distinct priming sites in the multiple alleles for amplifica-
tion. Therefore analysis of these genes would not be pos-
sible, and it would not be possible to interpret the
meaning of any observed changes.

Repeat length changes

Repeat length and composition were compared between
the four gonococcal strains and differences were observed
in 35 of the 64 (55%) repeats studied (Table 2), although
no sequence was obtained for the repeatin XNG1511. The
variation can be seen in two forms; either as variation of
the repeat length, or sequence composition, between the
four strains of N. gonorrhoeae as determined on the basis
of the predominant population following sequencing, for
example XNGO0412 in which strain FA1090 contains a
(G)7 repeat tract while strain FA19 contains a (G)6 repeat

tract. In addition, although PCR can generate variation in
repeat numbers leading to mixed populations in sequenc-
ing for templates of homopolymeric tracts of (C or G)11
or greater, when variation is seen in shorter homopoly-
meric tracts, or in repeats composed of longer repeated
motifs, this can be taken to indicate that variation has
occurred in vivo during culture. This has been established
in a previous study in H. pylori using a similar
amplification and sequencing strategy [18]. Observed
changes in these repeat tracts provide additional evidence
of phase variation, and is indicated by 'plate' in Table 2.
For example, XNGO0080 in strain FA19 is identified as hav-
ing a (C)10 tract in Table 2, but this is the predominant
population and in fact the population contains (C)8-
(C)10 tracts in this gene. 12 of the 36 variable repeats
show this form of instability during culture.

The threshold at which variation is observed in repeat
length for N. gonorrhoeae appears to be in close agreement
with that used to identify genes that had the potential to
be phase variable in Neisseria spp. Variation is seen in re
peats of poly-G/C tracts = 7 nucleotides (nt), and poly-A/
T tracts of = 9 nt, while tetramers, pentamers, and heptam-
ers show variation between strains even at low copy num-
bers of the repeat (differences between strains are
observed in most of these repeats with only 2-4 copies of
the repeat present e.g. the (CCCAA) repeat in XNG0520).
There were no differences observed in either of the dinu-
cleotide repeat tracts. G/C repeats = 9 nt, tetramers, and
pentamers (of all observed sizes) are referred to as variable
copy number repeats subsequently because they tend to
be unstable during in vitro culture. Therefore, when a var-
iable copy number repeat shows no variation in the
sequence data the associated ON or OFF phenotype is
likely to be adaptive for the in vitro culture conditions. For
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Table 2: Repeat lengths for each of the genes.
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Functional Gene Annotated Function FA1090* FAI19* F62% MSI I* Differences
Role in repeatf
Surface XNG0832 Outer membrane protein (MIC(G)6 p (T)8C(G)8 p (MIC(G)6 p (T)9C(G)6 p Plate
Associated
Proteins
XNG0905 AIDA related protein (AAGC)3 (AAGC)2 (AAGC)3 (AAGC)3 Strains
XNGI1341 Adhesin (CAAG)20 (CAAG)I3 (CAAG)9 (CAAG)6 Plate
XNG1563 Virulence associated protein  (AAGC)3 (AAGC) 14 (AAGC)26 (AAGC)3 Plate
XNG1858 Putative adhesin (G)5 (G)5 (G)5 (G)5
Surface XNGO0060 LPS synthesis/pilin C(G)6 C(G)6 C(G)6 C(G)6
Sugar glycosylation
Biosynthesis
XNGO0080 Pilin glycosylation protein ©)10 ©)10 ©)10 Gene not Plate
present}
XNGO008! Pilin glycosylation protein AC)7 AC) 9 AQ)7 - Gene not Plate
present}
XNGO0189 Pilin glycosylation protein (CAAACAC)4 (CAAACAC)6 (CAAACAC)4 (CAAACACQ)I5 Plate
(CAAATAC)3 (CAAATAC)2
XNG1041 Putative glycosyl transferase  piv-NmIB piv-Nm|B piv-NmIB piv-NmIB
inserted}t inserted}t inserted}t inserted}t
XNG1644 Pilin glycosylation protein Q)11 (G)17 GGGAGCGG GGGAGCGG Strains
XNG1968 LPS glycosyl transferase (o] ©1o (©1o ©)12 Strains
XNG2045 Glycosyl transferase (G)I1 (G)I12A (G)lé (G)I12 Plate
XNG2047 LPS biosynthesis protein (G)14 (G)I13 (G)I0 (G)8 Strains
XNG2048 LPS biosynthesis protein (G)13 (G)13 Q)11 (G)13 Strains
Iron XNGO0245 Lactoferrin-binding protein A Gene dead}t (G)5CGG Gene dead}t TGAAACGG Strains
Acquisition
XNGI216 Hemoglobin receptor GGCGGCCAA GGCGGCCAA GGCGGCCAA GGCGGCCAA
XNGI1989 Iron-regulated OMP ©)13p ©)l12p T(C)l0p ©)I5p Plate
XNG2004 Hb-haptoglobin utilization (G)9 (G)9 (G)11 (G)9 Plate
Restriction XNGO0388 Type | restriction enzyme S (G)7 (G)8 (G)8 (G)7 Strains
Modification
Systems
XNGO0520 Type lll restriction methylase (CCCAA)3 (CCCAA)2 (CCCAA) I (CCCAA)8 Plate
XNGO0612 Putative methylase (GCCA) 11 No sequence®™  No sequence®™  (GCCA)22 Plate
XNGO0644 Modification methylase NlalV (A)9 (A)9 (A)9 (A)9
Other XNGO0023 Prolyl oligopeptidase family ~ GGGGCGG GGGGCGG GGGGCGG GGGGCGG
XNGOI 15 Putative colicin V secretion  (C)4 (©)4 (©)4 (©)4
protein
XNGO0I188 ABC transporter component AA(C)5 AA(C)5 AA(C)5 AA(C)5
XNG0608 Aminotransferase CCACACCC CCACACCC CCACACCC CCACACCC
XNGO0610 L-lactate dehydrogenase (G)7 (G)7 (G)7 Q)7
XNGO0703 DNA polymerase lll subunits (C)7 (©)7 (©)7 Q)7
XNGO0714 Biosynthesis protein GGAAGG GGAAGG GGAAGG GGAAGG
XNG0954 Exopolyphosphatase (©)7 ©)7 (©)7 ©)7
XNGO0986 Putative serotype-|-specific  (C)6 (©)6 (©)6 Q)7 Strains
antigen
XNGI1268 Cytochrome c oxidase, (AT)5 (AT)5 (AT)5 (AT)5
subunit 111
XNGI356 Nﬁ\D(P) transhydrogenase CCCTGCACCp CCCTGCACCp CCCTGCACCp CCCTGCACCp
subunit
XNGI1384 N-asetylmuramoyI-L-aIanine TCCGCCC TCCGCCC TCCGCCC TCCGCCC
amidase
XNG1423 Competence-associated TGTGGGGG TGTGGGGG TGTGGGGG TGTGGGGG
protein
XNG1589 Er?bable ATP-dependent (C)4TCC (C)4TCC (C)4TCC (C)4TCC
elicase
XNGI1740 50S ribosomal protein LI | Q)7 Q)7 (©)7 Q)7
XNGI1868 Methionine aminopeptidase  (C)6 (©)6 (©)6 (©)6 Genome
XNG1934 Putative lipoprotein (A)9 (A)8p (A)8p (A)8p Strains
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Table 2: Repeat lengths for each of the genes. (Continued)
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XNi I|942/ Putative hydrolase (©)6 CAAACCCC (©)6 )11 Strains
XNG2061 Fatty acid-phospholipid (TTCC)3 (TTCC)3 (TTCC)3 (TTCC)3
synthesis

Hypothetical XNGO0075 Hypothetical protein ©)7 ©)7 (©)7 Q)7

Proteins
XNGOI12 Hypothetical protein (A)6 p (A)6 p (A)6 p (A)6 p
XNGOI58 Hypothetical protein (©)5 (©)5 (©)5 (©)5
XNGO0412 Hypothetical protein (G)7 (G)6 (G)6 not the same Strains

gene™k
XNG0470 Hypothetical protein (GQ)7T (G)6 (G)6CC (GQ)7T Strains
XNGO0473 Hypothetical protein (M9 (M8 (M9 Strains
XNGO0503a Hypothetical protein (C)6A(C)9 (C)7A(C)4T(C)3 (C)6A(C)7 (C)6A(C)13 Plate
XNGO0508 Hypothetical protein AACCGGCAAA AACCGGCAAA AACCGGCAAA AACCGGCAAA
CA CA CA CA
XNGO0552 Hypothetical protein (©)5 (C)5 (C)5 (©)4 Strains
XNGO0663 Hypothetical protein CCCCTCC & CCCCTCC & CCCCTCC & CCCCTCC & Strains
T() T(@) T(6) T(6)

XNG0887 Hypothetical protein (AAGC)4 (AAGC)I5 (AAGC)20 (AAGC)7 Strains
XNGO0973 Hypothetical protein (©)6 (©)6 (©)6 (©)6
XNG1000 Hypothetical protein (G)7(T)4 (G)7(T)6 (G)8(T)4 GAGG(T)6 Strains
XNG1207a Hypothetical protein (G)8TTGTT (G)8T (G)6TTGTT (G)I0TT Strains
XNGI281 Hypothetical protein G(A)7 (A)8 G(A)7 G(A)7 Strains
XNG1460 Hypothetical protein (©)7 (©)7 ©)7 (©)7
XNGI511 Hypothetical protein No sequence™  No sequence®™  No sequence®™  No sequence®*
XNGI1577 Hypothetical protein GGA(G)8TTGTT GGA(G)7T (G)6TTGTT GGA(G)ATTGTT Strains
XNG1733 Hypothetical protein (G)8 (G)7 (G)10 (G)7 Plate
XNG1788 Hypothetical protein (G)STTGTT (G)6TTGTT (G)6TTGTT G)I12TT Plate
XNGI1834 Hypothetical protein (©)8 (©)8 (©)9 (©)8 Plate
XNG1856 Hypothetical protein (TA)S (TA)S (TA)S (TA)S

* A clear box indicates that the gene is expressed. A shaded box indicates that the gene is not expressed.

T Indicating variation in the repeat. 'Strains' indicates differences in the repeat between strains. 'Plate’ indicates variation of the repeat during in vitro
culture. 'Genome' indicates that there is variation from the genome sequence but no observed differences between strains.

T This gene is not present in this strain as seen by microarray comparative genome hybridisation [ 1].

}f The site-specific recombinase piv-Nm|B has been inserted into this gene in all four strains

11 A large deletion is present in the N-terminus of this gene.
** Amplification and sequencing did not work.

*#k Sequence analysis showed that the ORF present here had no homology to XNGO0412 from strain FA1090.

example a (C)11 repeat in the gene XNG1942/XNG1941
in strain MS11 is relatively stable in vitro. This gene con-
tains a (C)6 repeat in strain FA1090, which shows the
value of investigating the shorter repeats and identifying
variation based upon this in other strains.

Of the repeats previously experimentally determined to be
phase variable (candidacy of 'K' in Table 1), nine of the
ten genes show variation in the repeat including fetA
(XNG1989) and IgtA (XNG2045). Variation in the hmbR
repeat is not seen as the tract is interrupted by base substi-
tutions and indeed the gene is degenerate (i.e. contains
multiple frameshifts and/or in frame termination codons)
in all four strains. hmbR was previously reported to be
degenerate in N. gonorrhoeae strain MS11 [19]. In some
genes predicted from sequence analysis (including many
encoding hypothetical proteins), but not previously dem-
onstrated to be phase variable, differences in repeat length

provide new evidence for the phase variability of these
genes. Furthermore, in some repeats mixed populations
are observed in the sequence data indicating that these
genes are indeed being phase varied during in vitro culture
e.g. pglH (XNGO0080). In Table 2 these are marked as
‘plate’ in the column marked 'Differences in Repeat'.

Repeat length stability in N. gonorrhoeae strain FA1090

The FA1090 strain used in this study has a separate pas-
sage history than that used for the genome sequence, yet
the copy numbers of the repeats are highly consistent
between those observed in this study and the genome
sequence. The predominant populations of the variable
copy number repeats are mostly the same as the genome
sequence. Some variation in the copy number of tetramers
and pentamers is observed, but these tend to be more var-
iable in repeat length amongst all strains. There is only
one low copy number repeat that differs in length com-
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pared to the genome sequence. This is in the coding
sequence for methionine aminopeptidase (XNG1868)
and the repeat is indicated as being (G)7 in the genome
sequence but for all strains in this study it was observed as
(G)6, which is unlikely to be phase variable. Variation in
expression of this gene is probably not favourable for cell
survival, as it codes for an important protein involved in
removing the N-terminal methionine from nascent pep-
tides. It is thought therefore that this variation is probably
due to an error in the genome sequence rather than phase
variation, and is consistent with independent sequencing
that observed a (C)6 repeat in strain FA1090 (L Snyder,
unpublished).

Repeat length differences between the unrelated strains
Amongst the four strains, there are differences in copy
number or composition of the repeat in 55% of the genes
studied. Not all of these differences are necessarily associ-
ated with changes in expression. Table 2 shows the repeat
length and expression status of the gene and it can be seen
that some repeats are variable but still maintain an OFF
phenotype e.g. the type I restriction enzyme S
(XNGO0388). Other repeats are associated with genes that
are in fact degenerate, e.g. hmbR (XNG1216), aspA
(XNG0986), and porA (XNGO0832), an association that
had been previously described [14]. Not all of the
observed strain differences are due to repeat variation as
in genes that are irreversibly switched ON or OFF. For lbpA
(XNGO0245), a gene that is highly variable in N. meningi-
tidis, there is no evidence of phase variation in the gono-
coccus and what is seen instead is expression or absence
due to a deletion in the N-terminus of the gene in both
strains FA1090 and F62. In approximately 45% of isolates
this deletion prevents expression of the Lbp receptor. It is
proposed that there may be a selective advantage for non-
expression of this gene over strains with the ability to
extract iron from lactoferrin [9].

The potential expression state of each gene was then
examined with respect to variation in the repeat length
and frameshifts in the gene. These core experimental
strains have been passaged repeatedly under in vitro labo-
ratory conditions. Therefore, the expression state of the
phase variable repertoire in vitro may not reflect the phe-
notypes expressed during infection. The expression state
of strain FA1090 has, however, shown considerable stabil-
ity through different passage histories, and the
phenotypes in the other strains may also be similarly sta-
ble and different. Indeed, theoretical models indicate that
in the absence of selection that favours more fit pheno-
types, phase varied phenotypes and their associated
repeats will tend to be stable [20]. There will still be ran-
dom changes between equally fit alternatives, but the net
rate of change within the population will be substantially
slower than the changes that occur in the presence of

http://www.biomedcentral.com/1471-2180/5/21

selective conditions. Observed differences may well
account for at least some of the reported differences in
strain behaviour, even if the phase variable repertoires are
similar.

The genes that contain repeats associated with differences
between the strains are not evenly distributed among the
different functional groups of genes investigated, with the
genes for surface sugar biosynthesis (lipopolysaccharide
(LPS) and pilin glycosylation) and restriction modifica-
tion systems being the most variable in expression and
repeat copy number.

It is known that there are four phase variable genes
involved in LPS biosynthesis in N. gonorrhoeae, IgtA, IgtC,
IgtD, and IgtG, and repeat length variation is observed in
all these genes in this study. When these genes switch they
can produce a diverse range of surface structures even
within a single strain. In vivo certain LPS structures have
been shown to provide a mechanism for serum resistance
because they can bind CMP-NANA and this allows resist-
ance to the antibody-mediated arm of the complement
cascade [21].

The pilin glycosylation enzymes attach sugars to the pilus
of the Neisseria spp. and the four studied here all show evi-
dence of phase variation, with in vitro instability. Phase
variation has previously been seen in pgtA/pglA
(XNG1644), pglE (XNG0189), pgIG (XNG0081) and pglH
(XNG0080) [22-24]. The role of glycosylation is unclear,
but as the pilus is a surface-exposed structure glycosyla-
tion may have a role in masking immunogenic parts of the
pilus. Indeed it has been reported that glycosylation may
inhibit complement-mediated lysis due to its ability to
bind anti-gal antibodies [25]. It has been seen that galac-
tosidase treatment of pili markedly reduces attachment of
the pilus to host cells suggesting an importance of the
galactose residues for attachment [26]. The role of phase
variation in the genes that produce the saccharide is
unclear, although it is possible that different sugar forms
may be associated with different properties with respect to
attachment and colonisation.

N. meningitidis contains four uptake systems for iron that
are phase variable. These are the lactoferrin uptake system
LbpAB, the haemoglobin uptake systems HmbR and
HpuAB, and the siderophore receptor FetA. In the N. gon-
orrhoeae strain FA1090 genome sequence hmbR is degen-
erate due to a premature frameshift, and this study shows
that the hmbR gene is not intact in any of the four gono-
coccal strains. The IbpA gene contains a deletion in strains
FA1090 and F62, but is present and intact in strains FA19
and MS11 but is not phase variable. fetA and hpuA are
both present and contain phase variable tracts that exhibit
variation during in vitro culture.
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Table 3: Clinical strains of N. gonorrhoeae and their expression of XNG0663.

Gonococcal Strain Site of Isolation

Composition of poly-C tract

Composition of poly-T tract Gene expression*

25527 Blood CCCCTCC
25563 Blood CCCCTCC
26034 Blood CCCCTCC
26241 Blood CCCCTCC
26593 Blood CCCCTCC
25534 Joint fluid CCCCTCC
25562 Joint fluid CCCCTCC
26399 Joint fluid CCCCTCC
26775 Joint fluid CCCCTCC
27706 GC CCCCTCC
27833 GC CCCCTCC
27886 GC CCCCTCC
27921 GC CCCCTCC
28197 GC CCCCTCC
28252 GC CCCCTCC
28386 GC CCCCTCC

(Mé ON
(Mé ON
Meé OFF
(Mé OFF
M ON
Mé ON
Meé ON
M7 ON
Mé ON
Meé ON
(Mé ON
Mé OFF
Mé ON
Mmeé ON
(Mé ON
m7 ON

* Gene expression also depends on the presence or absence of an adenine residue between the two tracts. Therefore strains with the same poly-T

repeat can be in the open reading frame or be frame-shifted.

Genes with unassigned functions

13 of the 23 hypothetical genes show differences in their
repeat lengths or composition. XNGO0663 is a hypothetical
protein that has limited homology to Curli-like repeat
regions. These Curli-like repeats are found in Escherichia
coli and are associated with adhesion to many different
host cell proteins including MHC class I [27], and
fibronectin [28]. They are also seen in Salmonella enterica
[29] and Porphyromonas gingivalis. XNGO0663 does not con-
tain the same variable repeat as the homologous gene in
the meningococcus as the poly-C repeat is interrupted by
a T residue. It does, however, have a poly-T tract in which
T(7) is associated with expression; but it is unlikely that
this would be phase variable due to its length. The gene
therefore appears to be fixed ON in strains F62 and MS11
and OFF in strains FA1090 and FA19.

Due to its apparent association with strains that cause DGI
rather than UG the expression status of XNG0663 was
determined in several clinical isolates of N. gonorrhoeae. In
a study of 20 strains isolated from different types of infec-
tion it is apparent that the gene is present and turned ON
in the majority of strains and that the suggested associa-
tion with DGI is probably due to the initial small sample
size. These results are shown in table 3.

Conclusion

This study extends the number of N. gonorrhoeae phase
variable genes for which there is direct or indirect evidence
of repeat length changes from ten to 28, in addition to the
pilC and opa genes. Based upon the four most commonly
used experimental strains no clear association between

the presence of phase variable versions of genes or their
phenotypes and invasive potential could be identified,
other than the previously described association with pgtA
[30]. An apparent association with XNG0663 was dis-
counted following analysis of a larger collection of strains.

Phase varied phenotypes appear to be relatively stable in
in vitro culture. The differences in the expressed genes
(rather than their ability to phase vary), and combina-
tions of phase varied genes may still play a role in deter-
mining the outcome of infection. A recent study shows
that during infection the colonisation fitness of H. pylori
correlates strongly with a need to phase vary fewer genes
[31]. It may be that the early behaviour and subsequent
outcome of neisserial infection is also influenced by the
phenotypes of inoculating populations.

Methods

Whole genome analysis

The complete genome sequences of N. meningitidis sero-
group A strain Z2491 [15], serogroup B strain MC58 [16],
and serogroup C strain FAM18 (Sanger Institute; http://
www.sanger.ac.uk/Projects/N_meningitidis/seroC/
seroC.shtml) and N. gonorrhoeae strain FA1090 (available
at http://www.genome.ou.edu/gono.html) were analysed
using previously described whole-genome analysis meth-
odology [14,17,32], using an ACEDB graphical interface
[33]. Briefly, repeats composed of perfect repeats with
motifs of 1-10 bases were identified using ARRAYFINDER
[34]. All repeats were displayed in their sequence contexts
with respect to ORFs and termination codons using the
tools within ACEDB, and their neisserial protein and

Page 8 of 12

(page number not for citation purposes)


http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.sanger.ac.uk/Projects/N_meningitidis/seroC/seroC.shtml
http://www.genome.ou.edu/gono.html

BMC Microbiology 2005, 5:21

nucleotide homologies. These complete genome
sequence databases were then analyzed for simple DNA
repeats within their sequence contexts to determine the
repertoire of putative phase variable genes. Homopoly-
meric tracts of greater than 6 Gs or Cs, and greater than 8
As or Ts, were each investigated and repeats below these
thresholds when associated with a frameshift. Other
repeats composed of = 4 copies of dinucleotides and = 3
copies of tetramer and longer motifs were also investi-
gated. All repeats were analyzed to interpret the signifi-
cance of the repeat on the basis of sequence context and
the potential effect of length variation on the expression
of the associated reading frames.

The selected genes addressed in this study are listed in
Table 1 with an indication of their likelihood of phase var-
iation based upon sequence analysis and previous publi-
cations. In this Table K indicates a gene known and
reported to be phase variable from previous studies.
Strong candidates (S) include those in which the tract
length differs in different strains, but has not yet been
shown to vary within a single strain. Strong candidates
also include genes with tract lengths similar in composi-
tion to those that have been seen to vary in other genes,
particularly if this is the source of a frame-shift. For exam-
ple, the adhesin XNG1371 is not found in the meningo-
coccal genome sequences, but contains a (CAAG)20 tract;
similar tracts being seen in virG, vapA, and NMB1507, the
lengths of which differ between strains. Further, the
homopolymeric tracts in the gonococcal genome specific
hypothetical genes XNGO0470, XNG0473, XNGO0503a,
XNG1000, XNG1207a, XNG1511, and XNG1577 are each
the sole source of a frame-shift mutation within the
coding region and are of lengths that have been seen to
mediate phase variation in other genes.

Moderate candidates (M) are those in which the tract
length is typical of a phase variable gene in one or more
sequences, but for which there is no evidence of tract
length differences with other strains, largely due to the
absence of the gene or the absence of the repeat tract in
other strains. When present, the repeat is either not asso-
ciated with a frame-shift, as are those strain-specific genes
that have been identified as strong candidates for phase
variation, or the frame-shift is present in all strains
assessed and/or the frame-shift associated repeat length is
< 7 bp in a homopolymeric tract.

Low candidates (L) are those in which the repeat tract has
not been seen to change. Also included in this category are
those genes in which a short homopolymeric repeat tract
(< 7 bp) is different between strains and results in a frame-
shift mutation that may not be readily reversible. For
example, the reduction in the homopolymeric repeat
from an in-frame (C)7 to a frame-shifted (C)5 may have

http://www.biomedcentral.com/1471-2180/5/21

Table 4: Gonococcal strains used in this study

STRAIN SITE OF ISOLATION ISOLATED FROM
25527 Blood DGl
25534 Joint fluid DGl
25562 Joint fluid DGl
25563 Blood DGl
26034 Blood DGl
26241 Blood DGl
26399 Joint fluid DGl
26593 Blood DGl
26775 Joint fluid DGl
27706 GC UG
27728 GC UG
27806 GC UG
27833 GC UG
27886 GC UG
27921 GC UG
28197 GC UG
28252 GC UG
28386 GC UG
28480 GC UG
28539 Joint fluid DGl
FA1090 Blood DGl
FAI9 Blood DGl

F62 GC UG
MSI1 GC UG

then lead to subsequent additional mutations in the gene,
rendering it degenerate (e.g. XNG0158).

Bacterial strains and growth conditions

The strains used are shown below in Table 4. Strains were
grown on GC agar (Difco Laboratories) with the Kellogg
supplement and ferric nitrate [35] at 37°C under 5% (v/
v) CO2. Cultures were grown from frozen stocks, pas-
saged once the following day to obtain an inoculum for
semi-confluent growth, and DNA was prepared from
young healthy colonies early the following morning.

PCR amplification and sequencing

Chromosomal DNA extractions were performed using the
Aquapure genomic DNA kit (BioRad). PCR from chromo-
somal DNA was performed using Hotstar Tag DNA
Polymerase (Qiagen) according to the manufacturers'
instructions. Primer pairs used are shown in Table 5. If
amplification was not successful with primer pair 1 it was
repeated with primer pair 2. Automated sequencing was
done using ABI Prism® BigDye™ Terminator Cycle
Sequencing version 3.0 (Applied Biosystems), and was
resolved on an ABI Prism® 3100 DNA Sequencer (Applied
Biosystems).
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Table 5: Primers used for amplification in this study
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Gene Forward Primer Reverse Primer
XNGO0023-1 GTATTCGTCCGTCCAACTTGAACCG GTGGATTTGGAAGCAGGGGAATTGG
XNGO0060-1 TGGAAGGCAAGGAATACGTC GCGGATTTCCACAAAAGAAA
XNGO0075-1 CGATGGATACGACCCTGAAGC CGTCCTGCTCGTCGAAATCC
XNGO0080-1 GACTGCATGGCGTAAGAGTGG GCCATCACCGCTTCGTCAAAC
XNGO008I-1 CAAAAACGGCACGACAGAG GCGATTTGACCGGCTACTT
XNGOI 12-1 CAAACCCAAACCGTATGC CGTTCTTTGCCGAGAAAGTC
XNGO| 15-1 ATCCCGACAATTCCTGTCTG CTATTTGCGCTTTCGACCTC
XNGOI58-1 AGTACGGCAGTGGTTTGTCC AACCTCACCCTCCACTTTCC
XNGO0188-1 GCTTCAGACGGCATTTTCAC AAATAGGGGACGGCGTATTC
XNGO89-1 TTGTGAATGACGGGTCAAAA TCGACCCCGAATAATGTGAT
XNGO0245-1 GTAACGGGCGGCTTTTACG TATTCGATTTCGTTGATTGCG
XNGO0388-1 TTCGCATAAAAATGAAATGTGG CCCGGATAACCAAAACATCA
XNGO0412-1 TATCTGTGGCACGAAGAACG CTATCCCCTTCCATGCAATC
XNGO0470-1 AATGTACGCCGGTCTGAAAG ATATCCGCCACTTTTTGCAG
XNG0470-2 AAACCGCGCCTTCGAGTGCG TTCAGGGCGTTGTCCAAATCG
XNGO0473-1 GAAATCGGCTTGAGATACGG AATCCCTGTTCCGGATTTTC
XNGO0503a-1| CGCGTGTTGCCTAAAAACA TCAAAACGTACTCCCCCTTG
XNGO0508-1 TGTTGTTGAAGGCTTCGTTG CTTCCGCATCCTGCAAAT
XNGO0520-1 ATACGGCTACACCGTTTTCG TCTTCACGCTGTTTGCGTAG
XNGO0552-1 ATTCGAGTTGGCAAAACACC GCGGGAATGTATCCTTGTTG
XNGO0608-1 ATCAACATCGCCCAAATCAT ATCAAACCGTTTTCCTGCAC
XNGO0610-1 CAAGCGCAAAATGCCGCGTATG TTGACCCAAAACCTGCAAATCGG
XNGO0612-1 GTGGAAAAAACCGACCCGTCC CATTGAACAAAGATTAGCCCATCATC
XNGO0612-2 CAAACCGAATTAGCCCAGCC TCGGTTTCTGTATTATACGG
XNGO0644-1 CCCTGACCGTTATTTTGGAA AGGTGCTCCATATCCATTGC
XNGO0663-1 CCCCCACAGCAACATAGAAT TTGGACTGGAGGCCATTTAC
XNGO0703-1 TCTTGGAAAACGCCCAATAC GGATTTGTTCGCCGCTTAT
XNGO0714-1 CGCCAAACCGACCCACAAG CGTCAAACTCGAATCTGACCG
XNGO0832-1 GGCAAGGAAGAAGGGGATAC CGTATAGGCGGACTTGCTGT
XNG0832-2 CGAAAACGCCGAATACGAAGC GGCATCGCCAAACGGATTCGCA
XNGO0887-1 ACCTGCAATACGCCTACACC TGTCGTCCTGTGTGTTGAAA
XNGO0905-1 GGCCATAGTTTCCGAAGGAT TTAATCGGAAAAACCGAACG
XNG0905-2 CGATTTTTTCATTGAAGACCG GGAGTGGTTTTTCTTCTTCCC
XNG0954-1 CCGCCGGTCTGGACGAAC ACGCAGGATGAAGCCGCAGC
XNGO0973-1 GCTTTCACACTCGTCAGCAC TTTCGTTTCGTTCTGGGTTT
XNG0973-2 GTTTTTCAGCTTGTCCGAACC ACGCTTCCGGCTTGACATGG
XNGO0986-1 CGGCGTTTTAACAACAGTGA TGGTTCCATCATGCGTATTC
XNG1000-1 GGAAACCCTGTTCCAAGACA CGGGCGATGAGATGAAGTAT
XNGI041-1 GAAAAATACCTTCGCTGCTG TGATTCCGGACTGAGATACG
XNGI1207a-1 GCTTCAAAGAAACCGACAGG CGCTCAAAGCCTGAAAAGTC
XNGI216-1 GACACGGTAGCCGGAAGTAA AGCAGGGGCATAATTACACG
XNG268-1 TGTCGTGCCTGAGTCCAATA AACCAATCGCTATCGGTCAG
XNG1268-2 CATCCGTTCCAATGGGGTTCC TCTTCGCCCAAAGCAGGACC
XNGI28I-1 CAAAACCGCTCAAAGCCTAC CTTTTGCTTCCCATGCTTGT
XNGI1281-2 GACGCGGTCGTTAAAACTCCC GAAGTCAAACAAGTCAACGACC
XNGI34]-1 TCACGTCCTGCATACTCTCG ATGCCAGATAGCCTTCTGCT
XNGI341-2 GCTCACCTCGGCATACTGCC TTTTCGATGCTTCAGAACTTCC
XNGI356-1 TCGAATCCATATCGCTGACA AAGCTGACGATGGTTTGACC
XNGI356-2 ATCCAACTCTCCGCGCATGG GGTAGCCGCTGATGTTTGCC
XNG384-1 ACACCTACACCCGCCTGAC GCGTGGATGGAGACGAATAC
XNG423-1 GCAATGGGAAACCGTAAACA GCTTTGGCTTCGGTTGTATT
XNG1423-2 ACGACATCATCAACGACATCC AACATTCCTTGATTAGACAGCC
XNG460-1 TGCTGTGCAGTCAAAACCTC TGTACATTTGACGGGCATCT
XNG460-2 GGACGGCGGCAAATGGCTGG TCAGTTCGGCGGTGCTGTGC
XNGI5!1 -1 GGAGTACGCCATCGCCAGC GCGATGCCGCAGGCAAGG
XNGI511-2 TGCGACTGCGCCAACGACG GACGGCGTAGTTTTCAATCC
XNGI563-1 CCGCAAACTGTATTCCGAAC CCGCTGGAGAAATAATGGAA
XNGI577-1 AAAGTATCCCTTCCGCCTGT ATTGTCCGTTTTGAGCTTGC
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Table 5: Primers used for amplification in this study (Continued)
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XNGI1589-1 GCCCGTATCGAACAAATCAG GGAGTTTGGCGATGATGACT
XNG1644-1 GGCATTTTGATTGCCCTGTA TAACTTGCATTCGCCATCAG
XNG1644-2 GTTTGGGATTCGCATTTACCC GGAAGCCGTTGACCTTGTCG
XNG1733-1 TCCTTCAATTGAGCCAGAGC GCAAATGTTGATGCGAAAGA
XNG1740-1 GTCAGCAGCAGTCAAATCAGGC TAACGGGGTGGTTGAGGAGG
XNG1788-1 CGCGAATTGCTGGTAAAAAT AAAGTATCCCTTCCGCCTGT
XNGI1834-1 GATGCAGCCCTGATGAGTCGG CCATCTCCACCAAAATCGCACC
XNG1856-1 TCGTCAAATTCCCAGTCAAA CGGTAAAAGACGGCATCAAT
XNG1856-2 TGGGATTGGGTTAAAAATACC GATTATAATCGTCAAATTCCC
XNGI1858-1 ATATCGTCGTCTTCGGCATC GCATTGGTTTTGGGTTTGAT
XNG1858-2 GGTCGAACAAGAACTTGTGG TCCTTTGCTTACTTTATACGG
XNG1868-1 CCAAGACTTCGTGTTCCCATTG CCGCAATCCAAGGAAGCATTATG
XNG 868RF-2 ACGGCATCATCATCAAAACC AGACTTCGTGTTCCCATTGG
XNG1934-1 GCCGTCTGAATACACAGCAA ACGCTGCTGATACGTTTGGT
XNG1934-2 GTCTGAAGGCTTGGGCTTGC TTTCCAATTCGTCAAACTCG
XNGI1942/XNG1941-1 ACACCCTATGCCGTCTGAAC TTTGGTTTTTGCCAGTGTTG
XNG1968-1 GTGCAGAAGCCCAGTCCGAC CCCATCTTGTCGATCAACGC
XNG1989-1 GGAATTGGGACGTGCCGTTG CGATGACTTCGCCCATATCGG
XNG2004- | ACGGTTATGGGGTCGGCGTAG ACAGCAGGAAATCCCCGTCG
XNG2045- | GTGCAAAACCTGCTGAAAAA CCCAATTTGCTGACATCGTA
XNG2047-1 ACACATTCAAACACCGCCTG TGGTACGGTCGAGGTAAAGC
XNG2048- | CGACAAAGCGTATGCTTCAA GACCAAGGCTTCGGGATAAT
XNG2061-1 ATGTCCGCCTGATTATGACC CCTTCGATGGTTTTGAGCAT

Bioinformatics

ACEDB[33] was used to analyze the complete genome
sequences of the Neisseria spp., as described previ-
ously[17]. Sequences were read, edited and aligned using
Seqlab (Wisconsin Package, Version 10.2, Genetics Com-
puter Group, Madison, Wisc., USA) through the Sir Wil-
liam Dunn School of Pathology/WIMM Computational
Biology Research Group (CBRG). Homology searches
were performed using BLAST[36] against the EMBL data-
bases, accessed through the CBRG.
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