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Triviality of the 2D stochastic Allen-Cahn equation∗
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Abstract

We consider the stochastic Allen-Cahn equation driven by mollified space-time white
noise. We show that, as the mollifier is removed, the solutions converge weakly to
0, independently of the initial condition. If the intensity of the noise simultaneously
converges to 0 at a sufficiently fast rate, then the solutions converge to those of the
deterministic equation. At the critical rate, the limiting solution is still deterministic,
but it exhibits an additional damping term.
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1 Introduction

We consider the following evolution equation on the two-dimensional torus T2:

du =
(
∆u+ u− u3

)
dt+ σdW , u(0) = u0 . (Φ)

Here u0 is a suitably regular initial condition, σ a positive constant, and W an L2(T2)-
valued cylindrical Wiener process defined on a probability space (Ω,F ,P). In other
words, at least at a formal level, dWdt is space-time white noise.

This equation and variants thereof have a long history. The deterministic part of the
equation is the L2 gradient flow of the Ginzburg-Landau free energy functional∫

T2

(1

2
|∇u(x)|2 + V (u(x))

)
dx ,

with the potential energy V given by the standard double-well function V (u) = 1
4 (u2−1)2,

see [14]. This provides a phenomenological model for the evolution of an order parameter
describing phase coexistence in a system without preservation of mass. At large scales,
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Stochastic Allen-Cahn

the dynamic of phase boundaries is known to converge to the mean curvature flow
[1, 9, 12].

The noise term σdW accounts for thermal fluctuations at positive temperature. On
a formal level the choice of space-time white noise is natural, because it satisfies the
right fluctuation-dissipation relation. At least for finite-dimensional gradient flows it is
natural to take the bilinear form that determines the mechanism of energy dissipation as
covariance of the noise, as this guarantees the invariance of the right Gibbs measure un-
der the dynamics. Naively extending this observation to the current infinite dimensional
context yields (Φ).

White noise driven equations such as (Φ) are known to be ill-posed in space-dimension
d ≥ 2 [17, 8]. Actually, the linearised version of (Φ) (simply remove the term u3) admits
only distribution-valued solutions for d ≥ 2. For any κ > 0 these solutions take values
in the Sobolev space H

2−d
2 −κ, but they do not take values in H

2−d
2 . In general, it is

impossible to apply nonlinear functions to elements of these spaces and the standard
approach to construct solutions of (Φ) [8, 11] fails.

In the present article, we introduce a cutoff at spatial lengths of order ε and we study
the limit as ε→ 0 for finite noise strength for (Φ). More precisely, we set

Wε(t) =
∑
|k|≤1/ε

ekβk(t), ε > 0 ,

where {ek}k∈Z2 is the Fourier basis on T2, and {βk}k∈Z2 are complex Brownian motions
that are i.i.d. except for the reality condition β̄k = β−k. We thus consider

duε =
(
∆uε + uε − u3

ε

)
dt+ σ(ε) dWε , uε(0) = u0 , (Φε)

and study the weak limit of uε as ε→ 0.
The main result of this article can loosely be formulated as follows (a precise state-

ment will be given in Theorems 2.1 and 2.2 below):

Theorem 1.1. Let σ be bounded and such that limε→0 σ
2(ε) log 1/ε = λ2 ∈ [0,+∞]. If

λ2 = +∞, then uε converges weakly to 0, in probability. Otherwise, it converges weakly
in probability to the solution wλ of

∂twλ = ∆wλ −
(

3
8πλ

2 − 1
)
wλ − w3

λ , wλ(0) = u0 . (Ψλ)

Remark 1.2. The result for constant σ was conjectured in [16], based on numerical
simulations.

Remark 1.3. The borderline case λ 6= 0 is particularly interesting as it provides an
example of stochastic damping: in the limit as ε→ 0, the stochastic forcing is converted
into an additional deterministic damping term, − 3

8πλ
2wλ, to the Allen-Cahn equation. In

particular, if λ2 > 8π
3 , the zero-solution becomes globally attracting.

Remark 1.4. Recently, there has been a lot of interest in (Φ) in the regime where the
noise is small [13, 3, 5]. There, the authors studied (Φ) in arbitrary space dimension on
the level of large deviation theory. As in (Φε) they consider a modified version of (Φ)
where the noise term dW is replaced by a noise term dWε with a finite spatial correlation
length ε. For this modified equation, solutions can be constructed in a standard way and
a large deviation principle à la Freidlin-Wentzell can be obtained. One can then show
that the rate functionals converge as ε → 0. The large deviation principle however is
not uniform in ε; this procedure corresponds to taking the amplitude of the noise much
smaller than ε. The results obtained in this article quantify how small the noise should
be as a function of ε in order for the solutions of (Φ) to be close to the deterministic
equation.
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Stochastic Allen-Cahn

Remark 1.5. We believe that the weak convergence to 0 as ε → 0 actually holds for
a much larger class of potentials. Actually, one would expect it to be true whenever
lim|u|→∞ V ′′(u) = +∞. The proof given in this article does however depend crucially on
the fact that V (u) ∼ u4 for large values of u.

The main tools used in our proofs are provided by the theory of stochastic quantisation.
Actually, in the context of Euclidean Quantum Field Theory the question of existence of
the formal invariant measure of (Φ) has been treated in the seventies (see e.g. [10]). Then,
it had been observed that this measure, the so called Φ4

2 field, can be defined, but only if
a logarithmically diverging lower order term is subtracted. The corresponding stochastic
dynamical system (i.e. the renormalised version of (Φ)) has also been constructed
[15, 2, 6]. Note that although this renormalised equation,

du =
(
∆u+ u− :u3:

)
dt+ σdW ,

formally resembles (Φ) it does not have a natural interpretation as a phase field model.
Our main argument is a modification of the construction provided in [6]. We present

here a brief heuristic argument for the case σ ≡ 1. First, let Cε > 1 and add and subtract
the term Cεuε to (Φε) to get

duε =
(
∆uε − (Cε − 1)uε − uε

(
u2
ε − Cε

))
dt+ σdWε . (1.1)

The key idea is to choose Cε in such a way that, for small values of ε, the term uε
(
u2
ε − Cε

)
is equal to the Wick product :u3

ε: with respect to the Gaussian structure given by the
invariant measure of the linearised system (which itself depends on Cε). Since, given
the results in [6], one would expect :u3

ε: to at least remain bounded as ε → 0, it is not
surprising that the additional strong damping term −Cεuε causes the solution to vanish
in the limit.

2 Notations and Main Result

In order to formulate our results, we first introduce the class of Besov spaces that we
will work with. As in [6] we choose to work in Besov spaces, because they satisfy the
right multiplicative inequalities (see Lemma A.2). Denote by (·, ·) the L2 inner product,
and by

{
ek(x) = 1

2π e
ikx
}
k∈Z2 the corresponding orthonormal Fourier basis. Throughout

the article, we work with periodic Besov spaces Bsp,r(T2), where p, r ≥ 1 and s ∈ R.
These spaces are defined as the closure of C∞(T2) under the norm

‖u‖Bsp,r(T2) :=
( ∞∑
q=0

2qrs ‖∆qu‖rLp(T2)

)1/r

, (2.1)

where the ∆q are the Littlewood-Paley projection operators given by ∆0u = (e0, u) e0 and

∆qu =
∑

2q−1≤|k|<2q

(ek, u) ek, q ≥ 1.

Regarding the exponents appearing in these Besov spaces, we will restrict ourselves
throughout this article to exponents p, r and s such that

p ≥ 4 , r ≥ 1 , − 2

7p
< s < 0 . (2.2)

We now reformulate Theorem 1.1 more precisely. The case λ2 = +∞ is given by the
following:

EJP 17 (2012), paper 39.
Page 3/14

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1731
http://ejp.ejpecp.org/


Stochastic Allen-Cahn

Theorem 2.1. Assume u0 ∈ Bsp,r such that (2.2) holds. Then for all ε > 0 and T > 0,
there exists a unique mild solution uε. If σ(ε) is bounded uniformly in ε and satisfies
limε→0 σ

2(ε) log(1/ε) = +∞ then, for all δ ∈ (0, T ), limε→0 ‖uε‖C([δ,T ];Bsp,r) = 0 in probabil-

ity.

On the other hand, when σ2(ε) log(1/ε) converges to a finite limit, we have

Theorem 2.2. Assume u0 ∈ Bsp,r such that (2.2) holds. If limε→0 σ
2(ε) log(1/ε) = λ2 ∈ R,

then limε→0 ‖uε − wλ‖C([0,T ];Bsp,r) = 0 in probability, where wλ is the unique solution to

(Ψλ).

Remark 2.3. If σ decays sufficiently fast, for example σ(ε) ∼ ετ for some τ > 0, then
the conclusion of Theorem 2.2 actually holds in the space of space-time continuous
functions.

To conclude this section, we introduce some concepts borrowed from the theory of
stochastic quantization. Since we are not concerned with the dynamics of quantised
fields, we only introduce the notions necessary for the proof techniques used below,
and refer to [7] for a general introduction to the topic. Consider the linear version of
equation (1.1), namely

dzε = (∆zε − (Cε − 1) zε) dt+ σ(ε)dWε . (2.3)

For Cε > 1, this equation has a unique invariant measure on L2(T2), which we denote
by µε. It is µε that will play the role of the “free field” in the present article. Under
µε, the kth Fourier component of zε is a centred complex Gaussian random variable

with variance σ2(ε)
2

(
Cε − 1 + |k|2

)−1
. Furthermore, distinct Fourier components are

independent, except for the reality condition zε(−k) = zε(k).
As a consequence of translation invariance, one has the identity

D2
ε :=

∫
L2

|φε(x)|2µε(dφε) =

(
1

2π

)2 ∫
L2

‖φε‖2L2 µε(dφε) (2.4)

=
1

8π2

∑
|k|≤1/ε

σ2(ε)

Cε − 1 + |k|2
.

We then define the Wick powers of any field uε with respect to the Gaussian structure
given by µε by

:unε : = Dn
εHn(uε/Dε) ,

where Hn denotes the nth Hermite polynomial. In this article, we will only ever use the
Wick powers for n ≤ 3, for which one has the identities

:u1
ε: = uε , :u2

ε: = u2
ε −D2

ε , :u3
ε: = u3

ε − 3D2
ε uε . (2.5)

From now on, whenever we use the notation :unε :, (2.5) is what we refer to. For any two
expressions A and B depending on ε, we will throughout this article use the notation
A . B to mean that there exists a constant C independent of ε (and possibly of other
relevant parameters clear from the respective contexts) such that A ≤ C B.

3 Trivial limit for strong noise

In this section, we provide the proof of Theorem 2.1. First, in Subsection 3.1, we
explain the “correct” choice of the renormalization constant Cε in (1.1). In Subsection 3.2,
we then obtain bounds on the linearised equation, as well as its Wick powers. Finally, in
Subsection 3.3, we obtain a bound on the remainder and we combine these results in
order to conclude.
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3.1 Fixing the renormalization constant

For Cε > 1, we rewrite (Φε) as

duε =
(
Aεuε − uε(u2

ε − Cε)
)
dt+ σ(ε)dWε , (3.1)

where the linear operator Aε is given by Aε = ∆− (Cε − 1). Motivated by the heuristic
arguments provided in Section 1, the goal of this section is to determine Cε in such a
way that the nonlinear term uε(u

2
ε − Cε) is equal to the Wick product :u3

ε:. It then follows
from (2.4) and (2.5) that Cε is implicitly determined by the equation

Cε = 3D2
ε =

3

8π2

∑
|k|≤1/ε

σ2(ε)

Cε − 1 + |k|2
. (3.2)

To describe the behavior of the solution to (3.2), we shall use the notation Aε ∼ Bε to
mean limε→0Aε/Bε = 1.

Lemma 3.1. For any values of the parameters, equation (3.2) has a unique solution
Cε > 1. If σ is uniformly bounded and such that limε→0 σ

2(ε) log(1/ε) =∞, then one has

Cε ∼
3

4π
σ2(ε) log

1

ε
. (3.3)

In particular, limε→0 Cε = +∞.

Before we proceed to the proof of this result, we state the following very useful result:

Lemma 3.2. Let a,R ≥ 1. Then there exists a constant C such that the bound∣∣∣ ∑
|k|≤R

1

a+ |k|2
− π log

(
1 +

R2

a

)∣∣∣ ≤ C√
a

(
1 ∧ R√

a

)
, (3.4)

holds. Here, the sum goes over elements k ∈ Z2.

Proof. The second expression on the left is nothing but
∫
|k|≤R

dk
a+|k|2 , so we want to bound

the difference between the sum and the integral. Using the monotonicity and positivity
of the function x 7→ 1

a+x2 and restricting ourselves to one quadrant, we see that one has
the bounds ∑

|k|≤R
ki>0

1

a+ |k|2
≤ 1

4

∫
|k|≤R

dk

a+ |k|2
≤
∑
|k|≤R
ki≥0

1

a+ |k|2
.

As a consequence, the required error is bounded by

4

bRc∑
k=0

1

a+ k2
≤ 4

a
+ 4

∫ R

0

dx

a+ x2
.

The required bound follows at once, using the fact that a and R are bounded away from
0 by assumption.

Proof of Lemma 3.1. Since the right hand side in (3.2) decreases from∞ down to 0 as
the left hand side grows from 1 to ∞, it follows immediately that (3.2) always has a
unique solution Cε > 1.

Since, by Lemma 3.2, one has
∑
|k|≤ 1

ε

1
1+|k|2 ∼ 2π log 1

ε and since by assumption

σ2(ε) log 1
ε →∞, there exists ε0 such that

3

8π2

∑
|k|≤1/ε

σ2(ε)

1 + |k|2
≥ 2 , (3.5)
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for all ε < ε0. As a consequence, we have Cε ≥ 2 for such values of ε, and we will use
this bound from now on. On the other hand, if we know that Cε ≥ 2, then Cε is bounded
from above by the left hand side of (3.5), so that

Cε ≤ Kσ2(ε) log
1

ε
, (3.6)

for some constant K and for ε small enough.
It now follows from Lemma 3.2 that

Cε =
3σ2(ε)

8π
log

(
1 +

1

ε2 (Cε − 1)

)
+Rε , (3.7)

for some remainder Rε which is uniformly bounded as ε→ 0. Since, by (3.6), the first
term on the right hand side goes to∞, this shows that Rε is negligible in (3.7), so that

Cε ∼
3σ2(ε)

8π
log

(
1

ε2Cε

)
=

3σ2(ε)

8π

(
log

1

ε2
− logCε

)
.

Since Cε is negligible with respect to 1
ε2 by (3.6), the claim follows.

3.2 Bounds on the linearised equation

We split the solution to (3.1) into two parts by introducing the stochastic convolution

zε(t) := σ(ε)

∫ t

−∞
e(t−s)AεdWε(s) , (3.8)

and performing the change of variables vε(t) := uε(t) − zε(t). With these notations, vε
solves

∂tvε = Aεvε −
(
v3
ε + 3v2

εzε + 3vε:z
2
ε : + :z3

ε :
)

(Φauxε )

vε(0) = u0 − zε(0).

We thus split the original problem into two parts: first, we show that the stochastic
convolution converges to 0, then we show that the remainder vε also converges to 0.

By construction, the stochastic convolution (3.8) is a stationary process and its invari-
ant measure is given by µε. We first establish a general estimate for its renormalized
powers :znε :, which will be useful for bounding vε later on. Throughout this section, we
assume that limε→0 σ

2(ε) log(1/ε) =∞ and that Cε is given by (3.2). We then have:

Lemma 3.3. Let r, k, p ≥ 1, s < 0. Then, for all n ∈ N, we have

lim
ε→0

E ‖:znε :‖kBsp,r = 0 . (3.9)

Proof. Following the calculations of the proof of [6, Lemma 3.2], we see that

E ‖:znε :‖kBsp,r . ‖γε‖
kn
2

Hβn
, (3.10)

where βn = 1 + rks
2np and

γε(x) =
∑
|k|≤1/ε

σ2(ε)

Cε − 1 + |k|2
ek(x) .

Since

‖γε‖2Hβn =
∑
|k|≤1/ε

σ4(ε)(1 + |k|2)βn

(Cε − 1 + |k|2)2
,

and βn < 1, the claim follows from the boundedness of σ and the fact that Cε →∞.
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Corollary 3.4. Let n, p, r ≥ 1 and s < 0. Then :znε : ∈ Lp([0, T ];Bsp,r) P-a.s., for all ε > 0.
In particular,

lim
ε→0

E ‖:znε :‖Lp(0,T ;Bsp,r) = 0. (3.11)

Proof. This follows from the stationarity of zε, Fubini’s theorem and Lemma 3.3.

We establish now the main result of this subsection.

Proposition 3.5. Consider the stochastic convolution zε defined in (3.8) and let p, r ≥ 1,
s < 0 and T > 0. Then

lim
ε→0

E ‖zε‖C([0,T ];Bsp,r) = 0 . (3.12)

Proof. We begin by decomposing the stochastic convolution into two parts,

zε(t) = etAεzε(0) + σ(ε)

∫ t

0

e(t−s)AεdWε(s).

The bound on the first term follows from Lemma 3.3 and Lemma A.3, so it remains to
focus on the second term, which we denote hereafter as z̄ε(t). In order to bound it, we
use the factorization method, see [8, p. 128], as well as [11, p. 47] for a more detailed
presentation. Recalling that∫ t

σ

(t− s)α−1
(s− σ)

−α
ds =

π

sinπα
,

we fix α ∈ (0, 1
2 ) and rewrite z̄ε as

z̄ε(t) =
sinπα

π

∫ t

0

e(t−s)Aε Yε(s) (t− s)α−1ds, (3.13)

where

Yε(s) := σ(ε)

∫ s

0

(s− σ)−α e(s−σ)AεdWε(σ).

Next, we introduce the mapping Γε : y 7→ Γεy defined by

Γεy(t) :=
sinπα

π

∫ t

0

e(t−s)Aε y(s) (t− s)α−1ds,

and show that Γε : Lq([0, T ];Bsp,r) → C([0, T ];Bsp,r) is a bounded mapping for q > 1/α.
First, it is a consequence of the strong continuity of etAε that Γε y ∈ C([0, T ];Bsp,r) for all
y ∈ C([0, T ];Bsp,r) such that y(0) = 0 [11, p. 48]. Next, observe that s 7→ (t − s)α−1 is in
Lq̄([0, t]) for all q̄ ∈ [1, (1 − α)−1), and hence we can use Hölder’s inequality to deduce
that for all q > 1

α ,

sup
t∈[0,T ]

‖Γεy (t)‖Bsp,r . ‖y‖Lq([0,T ];Bsp,r) . (3.14)

A standard density argument allows us to conclude that Γε : Lq([0, T ];Bsp,r)→ C([0, T ];Bsp,r)
is indeed a bounded mapping for q > 1/α.

To conclude the proof, we assume for the moment that there exist Kε > 0 such that

sup
t∈[0,T ]

E ‖Yε(t)‖Bsp,r ≤ Kε , lim
ε→0

Kε = 0 . (3.15)
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From (3.15), it then follows that

E ‖Yε‖Lq([0,T ];Bsp,r) ≤
(
T sup
t∈[0,T ]

E ‖Yε‖qBsp,r
)1/q

. T 1/qKε , (3.16)

where the first inequality is due to Jensen’s inequality and Fubini’s theorem, and the
second inequality follows from (3.15) in conjunction with Fernique’s theorem. By (3.16),
Yε ∈ Lq([0, T ] ;Bsp,r) P-a.s. and hence z̄ε = ΓεYε ∈ C([0, T ];Bsp,r) P-a.s. Furthermore, it
follows from (3.14)–(3.16) that

E sup
t∈[0,T ]

‖z̄ε(t)‖Bsp,r . E ‖Yε‖Lq([0,T ];Bsp,r) . Kε ,

so that ‖z̄ε‖C([0,T ];Bsp,r) → 0 in probability, as required.

It remains to establish (3.15). By definition of the Besov norm (2.1) and Jensen’s
inequality,

E ‖Yε(t)‖Bsp,r ≤
( ∞∑
q=0

2qrsE ‖∆qYε(t)‖rLp
)1/r

. (3.17)

As a consequence, (3.15) follows if we can show that

E ‖∆qYε(t)‖pLp ≤ Kε2
qpτ , (3.18)

for some τ < |s| and some Kε → 0.
Fix now q ∈ N. Thanks to Fubini’s theorem, the Gaussianity of ∆qYε(t), and the

independence of its different Fourier components,

E ‖∆qYε(t)‖pLp =

∫
T2

E

∣∣∣ ∑
2q−1≤|k|<2q

(Yε(t), ek) ek(ξ)
∣∣∣p dξ

.
∫
T2

(
E

∣∣∣ ∑
2q−1≤|k|<2q

(Yε(t), ek) ek(ξ)
∣∣∣2)p/2 dξ (3.19)

.
∫
T2

( ∑
2q−1≤|k|<2q

E |(Yε(t), ek)|2
)p/2

dξ.

Itô’s isometry and the definition of Aε yield

E |(Yε(t), ek)|2 ≤ σ2(ε)
[
2
(
Cε − 1 + |k|2

)]2α−1
∫ ∞

0

e−ττ−2αdτ

. σ2(ε)
(
Cε − 1 + |k|2

)2α−1

, (3.20)

where the last inequality is due to 2α < 1. Inserting (3.20) back into (3.19) we obtain the
bound

E ‖∆qYε(t)‖pLp . σp(ε)

 ∑
2q−1≤|k|<2q

(
1

Cε − 1 + |k|2

)1−2α
p/2

. σp(ε)

 22qτ

(Cε − 1)δ

∑
2q−1≤|k|<2q

1

|k|2+2τ−4α−2δ

p/2

,

which is valid for all τ > 0 and all δ ∈ (0, 1 − 2α). Since we can make both α and δ

arbitrarily small, we can in particular choose them in such a way that 2α+ δ < τ < |s|, so
that the exponent is strictly greater than 2. This implies that the corresponding inverse
power of |k| is summable over all k, so that (3.18) is satisfied.
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3.3 Bounds on the remainder

First, we need a technical lemma for the mappingMε, defined as

(Mεy) (t) := et Aε
(
u0 − zε(0)

)
+

∫ t

0

e(t−τ)Aε

3∑
l=0

al y
l(τ) :z3−l

ε (τ): dτ , (3.21)

where the al are some real-valued constants. In order to formulate the results of this
section, we introduce the Banach space

ET := C([0, T ];Bsp,r) ∩ Lp([0, T ];Bs̄p,r),

equipped with the usual maximum norm

‖x‖ET := max
(
‖x‖C([0,T ];Bsp,r)

, ‖x‖Lp([0,T ];Bs̄p,r)

)
. (3.22)

Regarding the parameters appearing in ET , we shall usually assume that (p, r, s, s̄) satisfy
the bounds

p ≥ 4 , r ≥ 1 , s̄ = 2s+
2

p
, − 2

7p
< s < 0 . (3.23)

Lemma 3.6. Fix ε > 0, T > 0, and assume (3.23). Then there exist positive constants δ
and Kε with limε→0Kε = 0 such that

‖Mεy‖ET ≤
(
1 +Kε T

δ
) ∥∥u0 − zε(0)

∥∥
Bsp,r

+Kε T
δ

3∑
l=0

∥∥:z3−l
ε :

∥∥
Lp([0,T ];Bsp,r)

‖y‖lET . (3.24)

Proof. The bound of the first term on the right-hand side of (3.21) is given in Proposi-
tion A.4. Next, we split the second term into two parts, Ω1

ε + Ω2
ε, where

Ω1
ε(t, y) =

∫ t

0

e(t−τ)Aε

2∑
l=0

al :z
3−l
ε (τ): yl(τ) dτ,

Ω2
ε(t, y) =

∫ t

0

e(t−τ)Aε y3(τ) dτ .

We bound Ω1
ε first. Since ((l + 1) − 1)s + 1 − 2/p > 0 for l = 0, 1, 2, we can employ

Lemma A.1 to find that there exist δ > 0 and Kε as in the statement such that∥∥∥∥∫ t

0

e(t−τ)Aε :z3−l
ε (τ): yl(τ)dτ

∥∥∥∥
ET
≤ Kε T

δ
∥∥:z3−l

ε : yl
∥∥
Lp/(l+1)([0,T ];B(2l+1)s

p,r )
.

Using Lemma A.2 and adding up the respective contributions yields the terms with
l = 0, 1, 2 on the right-hand side of (3.24).

We now bound Ω2
ε. Since y ∈ ET and s < s̄, the embedding Bs̄p,r ↪→ Bsp,r implies that

y ∈ Lp([0, T ];Bsp,r). From Lemma A.1 with n = 3 and Lemma A.2 with l = 2, it follows
again that there exist δ and Kε such that∥∥∥∥∫ t

0

e(t−τ)Aεy3(τ)dτ

∥∥∥∥
ET
≤ Kε T

δ
∥∥y y2

∥∥
Lp/3([0,T ];B5s

p,r)
(3.25)

≤ KεT
δ ‖y‖3Lp([0,T ];Bs̄p,r) ,

which is the term with l = 3 on the right-hand side of (3.24).
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Lemma 3.7. Let ε > 0, assume (3.23) and consider (Φauxε ) with u0 ∈ Bsp,r. Then for all
T > 0, there exists P-a.s. a unique mild solution vε ∈ ET .

Proof. The existence of unique local solutions to (Φauxε ) follows from (3.24) and is shown
in detail in [6, Prop. 4.4]. Furthermore, a fixed point argument in a weighted supremum
norm shows that vε(T ∗) ∈ C(T2). Since, for C(T2)-valued initial datum, (Φauxε ) admits a
unique global solution in C([0, T ]; C(T2))∩C((0,∞), C∞(T2)), see e.g. [11, Thm. 6.4; Prop.
6.23], the claim follows from the fact that this space is a subspace of ET .

Before we state the main result of this section, we introduce the Banach space

EδT := C([δ, T ];Bsp,r) ∩ Lp([0, T ];Bs̄p,r), δ ∈ [0, T ),

equipped with the norm ‖x‖EδT := ‖x‖C([δ,T ];Bsp,r) + ‖x‖Lp([0,T ];Bs̄p,r). With this notation, we

have:

Proposition 3.8. Assume (3.23) and consider the sequence of regularized problems
(Φauxε ) with fixed initial condition u0 ∈ Bsp,r. For all T > 0, the unique global solution vε ∈
ET from Lemma 3.7 converges to zero in sense that, for every δ ∈ (0, T ) , limε→0 ‖vε‖EδT =

0 in probability.

Proof. We introduce the stopping time τε,δ as

τε,δ := T ∧ inf
{
t ≥ δ : ‖vε‖Eδt ≥ 1

}
, (3.26)

with the convention that τε,δ = T if the set is empty. Next, we establish the limit

lim
ε→0

E ‖vε‖Eδτε,δ = 0 . (3.27)

Recalling that vε solves the fixed point equation Mε vε = vε, we can use Lemma 3.6,
combined with

sup
t∈[δ,T ]

∥∥etAε (u0 − zε(0)
)∥∥
Bsp,r
≤ e−δ Cε

∥∥(u0 − zε(0)
)∥∥
Bsp,r

, (3.28)

to show that there exists γ > 0 and Kε with limε→0Kε = 0 such that

‖vε‖Eδτε,δ ≤ Kε (1 + T γ)
∥∥u0 − zε(0)

∥∥
Bsp,r

+KεT
γ

3∑
l=0

‖vε‖lEδτε,δ
∥∥:z3−l

ε :
∥∥
Lp([0,τδε ];Bsp,r)

.

Since ‖vε‖Eδτε,δ ≤ 1 by construction, the claim (3.27) then follows from Lemma 3.3 and

Corollary 3.4. Since, by the definition of τε,δ, this implies that limε→0P(τε,δ < T ) = 0, the
claim follows.

Proof of Theorem 2.1. Since uε = zε + vε, the claim follows from Propositions 3.5 and
3.8, in conjunction with the embedding Bs̄p̄,r ↪→ Bsp,r, which holds if s̄ ≥ s and p̄ ≥ p.

4 Deterministic limit for weak noise

In this section, we give the proof of Theorem 2.2. The technique of proof is almost
identical to the previous section, but we define objects in a slightly different way. This
time, we define an operator A = ∆− 1, and we set

zε(t) := σ(ε)

∫ t

−∞
e(t−s)AdWε(s) . (4.1)
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We furthermore define all of our Wick products with respect to the law µε of zε, so that
all throughout this section (2.5) holds, but with Dε given by

D2
ε =

1

8π2

∑
|k|≤1/ε

σ2(ε)

1 + |k|2
.

Note that, by Lemma 3.2, one has

lim
ε→0

D2
ε =

λ2

8π
.

As before, we rewrite the solution to (Φε) as uε = vε + zε, where vε is solution to

∂tvε = Avε + (2− 3D2
ε)
(
vε + zε

)
+

3∑
l=0

alv
l
ε :z3−l

ε : , (4.2)

with initial condition vε(0) = u0 − zε(0) and suitable constants al.
Note first that one has the following result:

Proposition 4.1. Let zε be defined as in (4.1). Then, for every T > 0 and every n > 0,
the limits

lim
ε→0
‖zε‖C([0,T ];Bsp,r) = 0 , lim

ε→0
‖:znε :‖Lp([0,T ];Bsp,r) = 0 ,

hold in probability.

Proof. It follows from [6, Lem. 3.2] that

E ‖:znε :‖Bsp,r . σn(ε)→ 0 ,

as ε → 0. The proof that zε also converges to 0 in C([0, T ];Bsp,r) is virtually identical to
the proof of Proposition 3.5, so we omit it.

It remains to establish that limε→0 ‖vε − wλ‖C([0,T ];Bsp,r) = 0 in probability, which is the

content of the following result:

Proposition 4.2. Assume (3.23) and let u0 ∈ Bsp,r. Let vε ∈ ET be the unique mild
solution to (4.2), and wλ ∈ ET the unique solution to (Ψλ). Then

lim
ε→0
‖vε − wλ‖ET = 0

in probability.

Proof. Setting δε = 3D2
ε − 3λ2

8π and aλ = 1− 3λ2

8π , we can rewrite the equations for vε and
wλ as

∂tvε = ∆vε + aλvε − v3
ε − δεvε + (2− 3D2

ε)zε +

2∑
l=0

alv
l
ε :z3−l

ε : ,

∂twλ = ∆wλ + aλwλ − w3
λ .

Setting ρε = vε − wλ, we see that ρε solves the following evolution equation:

∂tρε =
(
∆ + aλ

)
ρε − ρε

(
v2
ε + vεwλ + w2

λ

)
+ (2− 3D2

ε)zε − δεvε +

2∑
l=0

alv
l
ε :z3−l

ε : .
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Setting Â = ∆ + aλ, we have the mild formulation

ρε(t) = eÂtρε(0)−
∫ t

0

eÂ(t−s)ρε(s)
(
v2
ε + vεwλ + w2

λ

)
(s) ds

+ (2− 3D2
ε)

∫ t

0

eÂ(t−s)zε(s) ds− δε
∫ t

0

eÂ(t−s)vε(s) ds

+

2∑
l=0

al

∫ t

0

eÂ(t−s)vlε(s) :z3−l
ε :(s) ds .

It then follows from Lemmas A.1 and A.2 that

‖ρε‖ET . ‖ρε(0)‖Bsp,r + T δ‖ρε‖ET
(
‖vε‖2Lp([0,T ];Bs̄p,r) + ‖wλ‖2Lp([0,T ];Bs̄p,r)

)
+ δε‖vε‖ET + T δ

2∑
l=0

(1 + ‖vε‖lET ) ‖:z3−l
ε :‖Lp([0,T ];Bsp,r) . (4.3)

We now use the fact that there exists K such that the deterministic solution wλ satisfies
‖wλ‖ET ≤ K. Setting τε = T̄ ∧ inf{t : ‖ρε‖Et ≥ 1} for some T̄ ≤ T such that T̄ δ((K + 1)2 +

K2) ≤ 1
2 , it follows from (4.3) that

‖ρε‖Eτε,δ . ‖ρε(0)‖Bsp,r + T̄ δ
2∑
l=0

(1 +K)l
(
δε + ‖:z3−l

ε :‖Lp([0,T ];Bsp,r)

)
.

This bound can easily be iterated, and the claim then follows similarly to the proof of
Proposition 3.8.

A Technical results

In this appendix, we collect a few technical results.

Lemma A.1. Let A = ∆ − Λ for Λ ≥ 1 and let f ∈ Lp/n([0, T ];B(2n−1)s
p,r ) with p > n ≥ 1,

s < 0 and s̄ = 2/p+ 2s such that

(n− 1)s+ 1− n

p
> 0. (A.1)

Then there exists δ > 0 such that∥∥∥∥∫ t

0

e(t−τ)Af(τ)dτ

∥∥∥∥
ET
≤ K(Λ)T δ ‖f‖

Lp/n([0,T ];B(2n−1)s
p,r )

,

with a constant K(Λ) such that limΛ→∞ K(Λ) = 0.

Proof. Modulo straightforward modifications yielding K(Λ)→ 0, the proof is identical to
the proof of [6, Lem. 3.6].

Lemma A.2. Let n, p, r ≥ 1, s < 0, s̄ = 2/p + 2s such that |s| < 2
p(2n+1) and l < n.

Assume that gi ∈ Lp([0, T ];Bs̄p,r) for i = 1, . . . , l and h ∈ Lp([0, T ];Bsp,r). Then, there exists
a constant C > 0 such that

‖h g1 · · · gl‖Lp/(l+1)([0,T ];B(2l+1)s
p,r )

≤ C ‖h‖Lp([0,T ];Bsp,r)

l∏
j=1

‖gj‖Lp([0,T ];Bs̄p,r) . (A.2)

Proof. This is a straightforward modification of [6, Cor. 3.5].
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Lemma A.3. Let p, r ≥ 1 and s̄ < s. Then, there exists a constant C > 0 such that∥∥et∆x∥∥Bsp,r ≤ Ct s̄−s2 ‖x‖Bs̄p,r ∀x ∈ Bs̄p,r.

Proof. The estimate follows from [4, Lem. 2.4] and the definition of the Besov norm
(2.1).

Corollary A.4. Let s < 0, r, p ≥ 1, and s̄ = 2s+ 2
p . Define the operator A = ∆− Λ and

recall the ET -norm as defined in (3.22). Then there exists δ > 0 such that for all Λ > 1,∥∥etAx∥∥ET ≤ (1 + C(Λ)T δ
)
‖x‖Bsp,r , ∀x ∈ Bsp,r,

where limΛ→∞ C(Λ) = 0.

Proof. The bound on the C
(
[0, T ] ;Bsp,r

)
norm is trivial. Using Proposition A.3, we obtain

for arbitrary γ > 0

∥∥etAx∥∥
Lp([0,T ];Bsp,r)

≤ K

Λγ/p

(∫ T

0

1

tγ
∥∥et∆x∥∥Bsp,r dt

)1/p

≤ K

Λγ/p
‖x‖Bsp,r

(∫ T

0

tp(s−s̄)/2−γdt

)1/p

≤ K

Λγ/p
‖x‖Bsp,r T

|s|/2−γ/p.

Choosing γ < p
2 |s|, the claim follows.
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