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Minimal energy control of a nanoelectromechanical memory element
N. A. Khovanova

a)
and J. Windelen

School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

The Pontryagin minimal energy control approach has been applied to minimise the switching energy in a
nanoelectromechanical memory system and to characterise global stability of the oscillatory states of the
bistable memory element. A comparison of two previously experimentally determined pulse-type control
signals with Pontryagin control function has been performed and the superiority of the Pontryagin approach
with regard to power consumption has been demonstrated. An analysis of global stability shows how values
of minimal energy can be utilized in order to specify equally stable states.

PACS numbers: 05.45.-a, 85.85.+j, 02.30.Yy
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The feasibility of the use of a nanoelectromechanical
system (NEMS) as a memory element has been demon-
strated in a number of experimental investigations1–8.
It has been suggested that in order to increase the fre-
quency of operation, oscillatory states (cycles) should be
used as the stationary states of memory elements, with
consequential switching between two cycles. An oscilla-
tory state is achieved by applying an external harmonic
driving force and by selecting the driving amplitude and
frequency in the range of hysteresis, observed for nonlin-
ear resonance1,4–8. Such oscillatory states are principally
different from the stationary states, i.e. fixed points - tra-
ditionally used in the majority of digital processing and
storage devices2,3,9, and the analysis of the oscillatory
states is much more challenging10,11.
Existing switching control strategies developed for the

fixed points are also not directly applicable. The switch-
ing between the states is induced by an external con-
trol signal. Various strategies to control the switching
have been discussed and experimentally validated1,4–8.
A complex dependence of switching on parameters of the
control signal was observed by Unterreithmeier et al4.
Noh et al6 discussed how to decrease the time of switch-
ing and concluded that a reduced quality factor signifi-
cantly shortens the time. Another important parameter,
the energy of the control force, has not been considered.
This is also true for characterization of the stability of os-
cillatory states beyond local stability, which however can
be explained by the absence of a corresponding generic
approach.
By applying Pontryagin’s theory of optimal

control12,13 we consider the minimal energy control
of switching between oscillatory states of a nonlinear
bistable NEMS followed by a discussion of the global
stability of the states. The Pontryagin approach does
not restrict the control force to a particular shape, and
allows an analysis of global stability of the oscillatory
states via estimation of the height of a quasi-potential,
which is an analogue to the Lyapunov functional13,14.
The link between global stability and optimal control is
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based on an analogy between the Hamiltonian theory
of fluctuations and Hamiltonian formulation of the
control problem12,13. This has been used previously
to achieve switching control in chaotic systems13,15

via analysis of fluctuational trajectories. Recently, the
reversibility between fluctuational activation paths and
relaxation paths in the potential systems was used in
a discussion of spin-torque switches in a ferromagnetic
layer16. Note that since the memory element considered
here is a non-potential system, the approach based
on the reversibility between activation and relaxation
paths is not applicable and therefore the more generic
Pontryagin approach has been applied12,13.
We further consider two specific types of control sig-

nals, previously demonstrated experimentally4,7. These
have limitations on their possible shapes and only three
parameters can be included in the energy optimization
task: amplitude, duration and phase related to the pe-
riodic driving signal. In the present study, we identified
the optimal values of the parameters corresponding to
minimal energies of the control signals, as this aspect
has not been considered before, and compared the mini-
mal energies with the solution of the Pontryagin minimal
energy control task. Finally, the global stability of the
cycles versus system parameters is analysed.
The dynamics of a memory element based on NEMS

can be described by the nonlinear oscillator model4,7,10

ẋ1 = K1(x(t)) = x2,

ẋ2 = K2(x(t)) = −αx2 − ω2
0x1 − ax3

1 (1)

+A cosΩt+ u(t)

In (1) x(t) = [x1(t), x2(t)] is the state space vector, x1

and x2 correspond to the displacement and velocity of
the NEMS cantilever, respectively; α is a damping coeffi-
cient, ω2

0 and a characterize non-damped eigenfrequency
and nonlinearity respectively, A and Ω correspond to the
amplitude and frequency of the harmonic driving signal
and u(t) is a control function representing the force in-
ducing switching.
We fixed the values of the parameters of the oscillator

as α = 0.01, ω0 = 1 and a = 1, and the amplitude of the
harmonic driving force A = 0.075. Note that equation (1)
is written in normalized dimensionless units; the value of
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FIG. 1. Dependence of amplitude X of the cycles on driving

frequency Ω; X = 1
2

∫ T

0
x2
1(t)dt, T = 2π/Ω. Solid (red and

blue) lines correspond to the stable cycles Cl and Cs, respec-
tively and dashed black line refers to saddle cycle C. Thin
dashed vertical lines denote the values Ω = 1.17 and Ω = 1.34.
Insets: the cycles in the state space for Ω = 1.17 (upper left)
and Ω = 1.34 (lower right).

α is chosen to represent a typical value of the quality
factor observed in the experiments1,4–8. For the selected
value of A, a hysteresis is observed in the frequency range
Ω ∈ (1.142 : 2.657) (Fig. 1). In this system, three cycles,
two stable and one saddle, coexist in the hysteresis re-
gion, the boundary of which is defined by saddle-node
bifurcations.
Our initial choice of the operational point of the mem-

ory element is located at frequency Ω = 1.17. For this
value of Ω, the amplitude S of the saddle cycle lies ap-
proximately in the middle (left insert in Fig. 1) between
the amplitudes of the two stable cycles Cs and Cl (indices
s and l define small and large cycles). The rationale for
such a choice of the operational point is an assumption
that the stability of the cycles is reflected in the central
location of the saddle cycle in the phase space, and hence
in its amplitude. It is noteworthy that the multipliers of
both stable cycles are equal within the whole hystere-
sis region (except in the extremely small region in the
vicinity of the saddle-node bifurcation), thus indicating
that the stable cycles have the same local stability. This
is however not the case for global stability as discussed
below.
Several different approaches to control switching were

experimentally determined4–8. We consider two4,7 which
are compatible with the additive form of the control term
in (1). Initially, the system resides in the oscillatory state
Cl (or Cs) and then switches to another state Cs (or Cl).

The first type of function u1(t) corresponds to a sin-
gle pulse of amplitude u0 and duration τ acting at time
moment t0

u1(t) =

{

±u0 if t0 ≤ t ≤ t0 + τ
0 otherwise

(2)

This form of control assumes an instantaneous push of
the system. The sign of u0 is positive if there is a tran-
sition from the cycle with a small amplitude to the cycle

with a large amplitude (Cs → Cl), and the sign is nega-
tive for the opposite transition (Cl → Cs).
The second type of the control function u2(t) has the

following form

u2(t) =

{

±u0 cosΩt if t0 ≤ t ≤ t0 + τ
0 otherwise

(3)

In this way the control function u2(t) increases ampli-
tude of the harmonic driving force for a certain period
of time τ . Both functions u1(t) and u2(t) depend on
three parameters: amplitude u0, duration τ and initial
time t0. The time t0 is related to the phase of the har-
monic driving force as φ0 = Ωt0, and therefore we use
phase φ0 instead of t0; the phase lies in the finite interval
φ0 ∈ (0 : 2π].
The energy minimal control task consists in finding the

control function u(t) with minimal energy J

J =

∫ tf

t0

u2(t)dt (4)

where t0 and tf define time interval with nonzero con-
trol function. For the functions specified by (2) and (3),
the solution of this control problem leads to particular
values of the amplitude u0, duration τ and phase φ0 cor-
responding to minimal energies Jm.

If we allow an arbitrary shape of u(t) then the solu-
tion of the control task corresponds to the solution of
a boundary value problem for the following Pontryagin
Hamiltonian system12,13:

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi

, i = {1, 2} (5)

H = H(x(t),p(t)) = 1/2p22 + p1K1 + p2K2 (6)

with the boundary conditions on the cycles Cl (or Cs)
and the saddle cycle S (see for further details17,18). Note
that all cycles of (1) are present in (5) for p = 0, but they
become saddle13,18. So the solution of the boundary value
problem specifies a heteroclinic trajectory (xh(t),ph(t))
of (5)17,18. Variable ph2 (t) yields the Pontryagin control
function u(t) and consequently the minimal energy Jp

m.

Integral J(t) =
∫ t

t0
[p2(t)]

2dt is nondecreasing along any

trajectory of (5) and it can be used as a generalized Lya-
punov function for a deterministic system (1)13,14. It
implies that the value of Jp

m corresponds to a potential
barrier between oscillatory states and therefore specifies
the global stability of the cycles in (1).
The energy J is dependent on the duration τ and phase

φ0 of the control signals (2) and (3), as shown in Fig. 2.
The value J was obtained by finding a minimal value
of amplitude u0 inducing the transition between cycles
for fixed values of τ and φ0. The patterns of the graphs
(Fig. 2) for two control signals u1(t) and u2(t) are dis-
tinct. The single pulse control u1(t) is characterized by
a strong dependence on the initial phase φ0 (Fig. 2 (a))
and the energy varies by several orders of magnitude for
different φ0. Thus, the initial phase φ0 is an important
parameter for function u1(t). Energy J is larger for the
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pulse control u1(t) than for u2(t). In both cases for u1(t)
and u2(t), the energy J is significantly larger for the tran-
sition Cl → Cs than for the reverse transition, inferring
that the larger cycle Cl is more stable to perturbations
than the smaller one Cs.
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FIG. 2. Dependence of energy J on duration τ for different
phases φ0: (a) for control force u1(t), (b) for control force
u2(t). Markers + (red, upper set of markers) and × (blue,
lower set of markers) correspond to transitions Cl → Cs and
Cs → Cl, respectively.

The minimal energy Jm is observed for a particular set
of parameters as shown in Table 1. The set depends on
the type of the control function u1(t) or u2(t) as well as
the direction of switching Cl → Cs or Cs → Cl. For
example, the duration τ of the control pulse u1(t) cor-
responding to minimal energy is less than one period of
harmonic driving signal, whereas τ of u2(t) is of the order
of several periods. These durations define the so-called
activation part of control which corresponds to the tran-
sition from the initial stable cycle to the saddle cycle
(separatrix), forming the boundary between the basins of
attraction of the stable cycles. After reaching the separa-
trix following the activation path, the system relaxes to
another stable cycle along the relaxation path. This path
is significantly longer and depends on the value of damp-
ing coefficient α. The relaxation part mainly contributes
to the duration of switches as previously discussed4.
We compared, in the next step, the minimal energies

of u1(t) and u2(t) with the result of Pontryagin control
corresponding to arbitrary u(t). Since the solution of the
Pontryagin control specifies a heteroclinic trajectory17,18,
the duration of the control function should be infinite.
However, the infinite duration results from an exponen-
tial decay of ph2 (t) to the zero value in the vicinity of sta-
ble cycles. Applying a cut off point where the function
has a small but non-zero value, ph2 (t) can be made finite.
This is achieved by shifting the initial and final times
of ph2 (t), i.e. by truncating the low amplitude parts of
ph2 (t). The resulting truncated control functions ut(t) are
shown in Fig. 3 (b) along with trajectories xn ≡ x1(nT )
in stroboscopic section (Fig. 3 (a)). The trajectories xn

have been obtained by applying ut(t) in (1). Thus, we
have verified that the truncated functions ut(t) induced
the necessary transitions without changing the optimal
energy Jp

m (Table 1).
The duration of the control functions (Fig. 3 (b)) is

comparable with relaxation time during switching. Am-

u1, Cs u2, Cs ut, Cs u1, Cl u2, Cl ut, Cl

Jm 0.032 0.0075 0.00116 0.318 0.192 0.016
Jm/Jp

m 22 6.5 1 20 12 1
u0 0.115 0.025 0.443 0.011
τ 0.450 4.500 141 0.300 5.500 142
φ0 0.685 0.260 0.100 0.010

Pm 0.06 9.4× 10−4 8.3× 10−6 0.600 0.010 1.1× 10−4

Pm/P p
m 7237 113 1 5217 87 1

u0 0.105 0.019 0.332 0.065
τ 1.700 24.10 141 6.000 60.90 142
φ0 0.560 0.235 0.010 0.010

TABLE I. Optimal values of the amplitude u0, duration τ
and phase φ0 corresponding to the minimal energy Jm and
minimal power Pm for different control functions. The first
row specifies the type of control function and the initial state
(ut refers to arbitrary form as in (1)). Jm/Jp

m define the ra-
tio of Jm to the minimal energy of Pontrygian control Jp

m,
calculated for each initial state separately. Values of Pm cor-
respond to the minimal power Jm/τ and P p

m to Pontryagin
control. Ratio Pm/P p

m was calculated separately for each ini-
tial oscillatory state.
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FIG. 3. (a) Trajectories during Pontryagin control and (b) re-
spective control functions ut(t). (a) Points shown correspond
to coordinates x1(nT ) ≡ xn in the stroboscopic section taken
after each period T = 2π/Ω of the harmonic driving force.
Markers + (red) and × (blue) reflect the transitions Cl → Cs

and Cs → Cl, respectively. (b) Lower red line represents the
truncated control function ut(t) for transition Cl → Cs and
upper blue line refers to Cs → Cl. The upper function is
shifted by +0.03 for an illustrative purpose.

plitude of ut(t) is less than the amplitude A of the har-
monic driving force and the energy Jp

m is smaller by an
order of magnitude than energy Jm for control functions
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FIG. 4. Barrier Jp
m as a function of driving frequency Ω. Solid

(red) and dashed (blue) lines correspond to the stable cycles
Cl and Cs, respectively. Thin dashed vertical lines denote
values Ω = 1.17 and Ω = 1.34. The inset shows a magnified
part of the figure.

u1(t) and u2(t) (Table 1). The difference between the
pulse-type control functions (u1(t), u2(t)) and the Pon-
tryagin control function ut becomes more pronounced, if
instead of energy the power Pm of control is considered,
i.e. ratio J/τ (Table 1): for ut, 4 orders of magnitude
less power than for u1(t) (or 2 orders of magnitude than
for u2(t)) is required to perform a switch between two
stable states.

The value of Jp
m, found for arbitrary u(t) via solving (4)

and (5), provides a minimal value of control energy and
can be used as a reference point for the design of a con-
trol function. Specific features of the shape of ut(t) can
be used for designing a sub-optimal force, as discussed
previously17,19. It can be seen from Fig. 3 (b) that the
shape of the control functions ut(t) depends on the direc-
tion of switching. The Pontryagin approach along with
two other control functions (2) and (3) shows that the
cycle Cl is significantly more stable to finite-amplitude
perturbations than the cycle Cs. This difference in sta-
bility cannot be predicted by local analysis by means of
multipliers and contradicts an initial expectation that the
middle location of the saddle cycle between two stable cy-
cles should correspond to a similar stability of the cycles.
Thus, the Pontryagin approach provides an important
means for characterization and comparison of the global
stability of the cycles by calculating Jp

m. This analysis
together with optimal energy minimization are the most
significant results of the study.

The global stability, as shown in Fig. 4, depends on
the working frequency Ω in the hysteresis region. For
cycle Cl, the barrier is relatively small and decreases to
the point of saddle-node bifurcation (insert in Fig. 4). In
contrast, the barrier Jp

m for Cs increases rapidly with Ω.
The behaviour of Jp

m is defined by the type of nonlinearity
in (1). The barriers are equal for the cycles Cl and Cs in
the vicinity of Ω = 1.34. For this value of frequency the
location of the saddle cycle is close to the stable cycle Cl

(see the lower inset in Fig. 1). Similar barriers represent
the same stability as well as similar energy of the control
functions, whilst the shapes of the control functions are
different.
In summary, we have discussed the minimal energy

control for different control functions acting in a bistable
nonlinear memory element. For pulse-type control func-
tions u1(t) and u2(t), we have identified a particular set
of parameters culminating in a minimal control energy
Jm and further analyzed the dependence of energy J on
parameters of these functions. A drawback of the single
pulse control u1(t) consists in its strong dependence on
the phase φ0, and is energetically less efficient than the
function u2(t). Significantly, the Pontryagin approach in
this study has led to the control function being charac-
terized by a longer duration than u1(t) and u2(t), but
with a marked reduction of energy. With regard to the
power consumption, the superiority of the Pontryagin
control approach is clearly demonstrated. Furthermore,
the value of minimal control energy Jp

m determined by
Pontryagin approach is applied for the characterization
of global stability of the oscillatory states and clearly
demonstrates how these values Jp

m can be utilised in order
to specify equally stable oscillatory states. The approach
presented in this paper can be applied for other systems,
for example the ferromagnetic layer16 mentioned above.
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