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Abstract

In this thesis we investigate the properties of a group of axioms known as ‘Guessing

Axioms,’ which can be used to extend the standard axiomatisation of set theory,

ZFC. In particular, we focus on the axioms called ‘diamond’ and ‘club,’ and ask

to what extent properties of the former hold of the latter.

A question of I. Juhasz, of whether club implies the existence of a Suslin tree,

remains unanswered at the time of writing and motivates a large part of our in-

vestigation into diamond and club. We give a positive partial answer to Juhasz’s

question by defining the principle Superclub and proving that it implies the exis-

tence of a Suslin tree, and that it is weaker than diamond and stronger than club

(though these implications are not necessarily strict). Conversely, we specify some

conditions that a forcing would have to meet if it were to be used to provide a

negative answer, or partial answer, to Juhasz’s question, and prove several results

related to this.

We also investigate the extent to which club shares the invariance property
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of diamond: the property of being formally equivalent to many of its natural

strengthenings and weakenings. We show that when certain cardinal arithmetic

statements hold, we can always find different variations on club that will be prov-

ably equivalent. Some of these hold in ZFC. But, in the absence of the required

cardinal arithmetic, we develop a general method, using forcing, for proving that

most variants of club are pairwise inequivalent in ZFC.
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Chapter 1

Introduction: Guessing Axioms

and Suslin Trees

In ordinary language the term ‘guessing’ means, roughly: ‘Anticipating properties

of something about which we do not have full knowledge.’ This definition is our

own, and its accuracy is perhaps debatable, but it seems to at least describe a

phenomenon recognisable as an instance of guessing.

Combinatorial principles in set theory can sometimes be used in a manner

that resembles this everyday notion of guessing. In this case, the epistemological

emphasis of the above definition is replaced with a focus on cardinality: we wish

to find a set of small cardinality that somehow captures non-trivial properties of

the members of a larger set. This characterisation is entirely informal, of course,
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but it captures the intuition behind the usage and naming of a group of axioms

known as ‘Guessing Axioms.’

Throughout this thesis, the axiomatisation of set theory that we will use is ZFC,

the Zermelo-Fraenkel axioms plus the Axiom of Choice. For a detailed account of

these axioms, see [19, I] or [15, Chapter One]. A formal statement in the language

of set theory, θ, is independent of ZFC if there is no formal derivation of θ or ¬θ

from these axioms; Cohen’s method of forcing (developed in [4] and [5]) can be

used to show that a large number of statements are independent of ZFC. In this

thesis we will mostly be interested in questions that ask whether ZFC + θ → ϕ,

where both θ and ϕ will be statements independent of ZFC; we give a mixture of

combinatorial results (positive answers to questions of this kind) and consistency

results (negative answers to questions of this kind). We will frequently abuse

notation by suppressing any reference to ZFC and simply asking whether θ → ϕ?

Formally, such θ and ϕ can be treated as axioms, without any issue, but because

‘axiom’ is something of a loaded term – often taken to imply that if θ is an axiom

then we ought to have some intuitive reason to believe it to be true – we will more

commonly refer to them as statements or principles.
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1.1 Guessing Principles

We are interested in a group of combinatorial principles known as Guessing Axioms

or Guessing Principles.

Throughout this thesis we will use these terms to describe several natural

relatives of the axiom ♦. We do not give a formal definition of the term ‘Guessing

Principle,’ but that need not concern us – there are many well-known statements

to which it readily applies, including ♣, club guessing and •| , and they are all

relatives of♦ – a recap of the definition of♦ will remind us why the name ‘Guessing

Principle’ is appropriate. In its simplest form, ♦ asserts the existence of a sequence,

〈Dδ : δ < ω1 and δ a is limit ordinal1〉, with Dδ ⊆ δ for all δ ∈ Lim(ω1), such that

for any X ⊆ ω1 the following set is stationary:

{δ ∈ Lim(ω1) : Dδ = X ∩ δ}.

Thus a sequence witnessing the truth of ♦, also called a ♦-sequence, manages to

capture non-trivial properties of any arbitrary subset X ⊆ ω1, in the sense that

the range of the ♦-sequence contains stationary many initial sections of X. There

are (at least) ℵ2-many such X, while the witness to ♦ is a sequence of length just

ω1. This fact makes ♦ particularly useful for inductive constructions of objects

of size ℵ1, and hence ♦ exemplifies the sense of ‘guessing’ that we attempted to

describe in the opening paragraphs.

1In future we denote this by: δ ∈ Lim(ω1).
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1.1.1 Jensen’s ♦ and Ostaszewski’s ♣

The formulation of ♦ is due to the American logician R. B. Jensen (in [17]) and

grew out of his close analysis of the set theoretic universe under Gödel’s Axiom of

Constructibility, V = L. He first proved that Suslin trees exist assuming V = L

and then extracted the definition of ♦ from this proof as a weaker, but still suf-

ficient, assumption. Hence ♦ implies the existence of Suslin trees (we prove this

fact in Chapter 3) and has many further applications as well, in various branches

of mathematics. It has been used for example to establish the relative consistency

(with ZFC) of a counterexample to Naimark’s problem, a long-standing open ques-

tion in operator algebras [1] and has applications to topology, see [20].

The following two facts come from Jensen [17]:

Fact 1.1.1. V = L→ ♦.

Fact 1.1.2. ♦ → CH.

Proof For a proof of Fact 1.1.1, see [19, VI 5.2] or [15].

For 1.1.2, let 〈Dδ : δ ∈ Lim(ω1)〉 be a witness to ♦ and suppose x is an

arbitrary subset of ω. Then the set {δ ∈ Lim(ω1) : Dδ = x ∩ δ} is stationary,

so in particular it is cofinal in ω1. Let α be in this set and be greater than ω,

then x = x ∩ α = Dα. Hence the sequence witnessing ♦ contains a subsequence

enumerating the continuum. This subsequence has length ω1, so 2ω = ω1.

�
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The above two facts combine to establish the independence of ♦ from ZFC,

given that CH and V = L are themselves independent of ZFC. Jensen was able

to prove that CH is a strict weakening of ♦, using a complex forcing iteration to

obtain a model of CH without Suslin trees (see [7]). This is a celebrated early

result in the theory of forcing, which motivated many further developments in the

field; Shelah later gave a considerably shorter proof of the same result, see [28,

pp.228–236] for details. The extra power that ♦ has over CH is encapsulated in

the principle ♣, pronounced ‘club,’ which forms the focus of much of this thesis.

In its simplest form, ♣ asserts the following:

There is a sequence 〈Aδ : δ ∈ Lim(ω1)〉 such that Aδ ⊆ δ for all

δ ∈ Lim(ω1), and sup(Aδ) = δ, and if X ⊆ ω1 is uncountable then the

set {δ ∈ Lim(ω1) : Aδ ⊆ X} is stationary.

It is easy to see that ♣ is a weakening of ♦: we need only note the fact

that for any uncountable X ⊆ ω1, the set {δ < ω1 : sup(X ∩ δ) = δ} is always

a closed unbounded subset of ω1, so a witness to ♦ can easily be modified to

produce a witness to ♣. If 〈Dδ : δ ∈ Lim(ω1)〉 is a witness to ♦ then defining

〈Aδ : δ ∈ Lim(ω1)〉 by setting Aδ = Dδ if sup(Dδ) = δ and to be an arbitrary

cofinal subset of δ if sup(Dδ) < δ, for all δ ∈ Lim(ω1), will give us a witness to

♣. (We will frequently employ this trick to create witnesses to ♣ from sequences

that almost, but not quite, fulfil the definition of ♣. We will not always describe it
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explicitly, and will usually just say that a given sequence can be ‘easily modified’

to give a witness to ♣.)

In the presence of CH the two are in fact equivalent:

Theorem 1.1.3 (Devlin). (♣ + CH) ↔ ♦.

The principle ♣ was first formulated by Ostaszewski in [24], where it was used

to establish the relative consistency of the existence of a non-compact, hereditarily

separable, locally compact, perfectly normal, countably compact space. This came

several years after the formulation of ♦. Theorem 1.1.3 is cited in Ostaszewski’s

original paper (and is attributed there to Devlin) and the construction in that

paper uses CH as well as ♣, so in fact uses the full power of ♦; a number of years

passed before it was established that ♣ is indeed not equivalent to ♦.

For completeness, we will give the full proof of Theorem 1.1.3:

Proof of Theorem 1.1.3 In light of the discussion preceding the statement of

Theorem 1.1.3, it remains to prove that (♣ + CH) → ♦. So choose an arbitrary

witness to ♣, 〈Aδ : δ ∈ Lim(ω1)〉. Let 〈cα : α < ω1〉 be an enumeration of the

countable subsets of ω1, such that each of these subsets appears uncountably often

in the enumeration. We can do this because CH implies that [ω1]≤ω = {Z ⊆ ω1 :

|Z| ≤ ω} has cardinality ω1. We define the sequence 〈Dδ : δ ∈ Lim(ω1)〉 as follows:

for all δ ∈ Lim(ω1) let Dδ = δ∩
⋃
α∈Aδ cα. We claim that 〈Dδ : δ ∈ Lim(ω1)〉 gives
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us a witness to ♦.

To see this, first let X ⊆ ω1 be a bounded subset. Then the set

Y = {α < ω1 : X = cα}

will be unbounded in ω1, and thus will contain stationary many Aδ as subsets.

For any such δ, greater than sup(X), Dδ is equal to the set
⋃
α∈Aδ cα =

⋃
α∈Aδ X,

which is equal to X, and hence is also equal to X ∩ δ. There are stationary many

δ such that Aδ ⊆ Y and δ > sup(X), so we obtain the stationary set required in

the definition of ♦.

If X ⊆ ω1 is unbounded, then let Y ⊆ ω1 be such that for all α ∈ Y , cα is an

initial section of X, and if α, β ∈ Y satisfy α < β then cα is an initial section of cβ.

(In other words, Y indexes an increasing chain in the ordering of {cα : α < ω1} by

initial-sectionhood.) It is straightforward to define such a Y by induction, and to

see that Y will be unbounded in ω1. It is also clear that for a closed unbounded

set, C, it will be the case that δ ∈ C implies
⋃
α∈ δ ∩Y cα = X ∩ δ, by a standard

argument. So there will be a stationary set, S, such that S ⊆ C and for δ ∈ S

we get Aδ ⊆ Y and sup(Aδ) = δ. For any δ in S we then have that Dδ = X ∩ δ,

which again gives us the stationary set required by the definition of ♦.

�

From Theorem 1.1.3 and Fact 1.1.2 above, we conclude that to establish that

♣ is a strict weakening of ♦ it is both necessary and sufficient to prove the relative
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consistency of ♣ + ¬CH. This was first done by Shelah in [27], via a proof that

involved adding ℵ3 many subsets of ℵ1 to a model of GCH, through a countably

closed forcing, and then collapsing ℵ1 to ℵ0. Shortly afterwards, Baumgartner

proved the same result using a forcing that does not collapse cardinals, by adding

ℵ2-many Sacks reals by side-by-side product and showing that ♣ is preserved if ♦

holds in the ground model (this proof was not published by Baumgartner himself,

but see [14] for details). The simplest proof that Con(ZFC) → Con(ZFC + ♣ +

¬CH) known to the author is that of Fuchino, Shelah and Soukup in [11]; we give

a version of this proof in Chapter 5.

Thus it has been established that ♣ is a strictly weaker axiom than ♦. The

following informal question suggests itself as the natural thing to ask next: how

much weaker is ♣ than ♦?

1.1.2 How much weaker is ♣ than ♦?

The relative consistency of ZFC + ♣ + ¬CH, taken together with the fact that

(♣ + CH) ↔ ♦, means that we can sensibly think of ♣ as being ‘♦ without

the cardinal arithmetic assumptions.’2 Due to the manifold applications of ♦, in

many different areas of mathematics, we therefore consider the question ‘which

properties of ♦ are shared by ♣?’ to be important as a restricted version of the

2Several other axioms would also satisfy this description, by the same reasoning. This de-
scription of ♣ is therefore arbitrary and is to be taken purely as an aid to intuition.
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broader question: how crucial are cardinal arithmetic assumptions in determining

the structure of the set-theoretic universe? The importance of this latter question

is self-evident.

However, as it stands this is not a formal question. The simplest way to

paraphrase it formally is to find statements φ such that ♦ → φ and to ask whether

φ follows from ♣ alone. We have seen already that when φ is the Continuum

Hypothesis then the answer to this question is negative. This fact suggests a

wealth of natural questions concerning weakenings of CH and their relation to

♣; for instance, those concerned with cardinal invariants of the continuum (see

[2]). When CH holds, all cardinal invariants are bounded by ℵ1, trivially, so it is

natural to ask: which cardinal invariants must necessarily have size ℵ1 in models

of ♣? The answer to this question provides us with many non-trivial facts about

♣. This thesis is not particularly concerned with cardinal invariants, except where

they have relevance to Juhasz’s question (see Chapter 3), but we mention two of

the more notable known facts here:

Theorem 1.1.4 (J. Brendle, [3]).

♣ → (b = ω1), where b is the bounding number.

Theorem 1.1.5. Con(ZFC) → Con(ZFC + ♣ + d = ω2), where d is the domi-

nating number.
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Theorem 1.1.5 was first proved by I. Juhasz, though the proof was not pub-

lished. See [22] for a proof due to H. Mildenberger; the model constructed in [11]

also satisfies the conditions of the Theorem and was therefore the first published

proof of this result.

Arguably the most prominent open question of the form: ‘does ♣ → φ?’, where

φ is a consequence of ♦, was asked by the Hungarian set-theoretic topologist

I. Juhasz ([23]). This is the question of whether ♣ implies the existence of a

Suslin tree. Juhasz’s question forms the focus of Chapters 3 and 4 of this thesis;

the question remains open (at the time of writing) but we consider some partial

answers to it and prove some restrictions on potential techniques for forcing a

negative answer to it. Chapters 6 to 8 of this thesis concern another property of ♦

and its relation to ♣: following [9] we call this the invariance property. This is an

informally defined notion roughly expressing the fact that ♦ is formally equivalent

to many of its apparent weakenings and strengthenings. We look at the extent to

which the same is true of ♣. Both this and Juhasz’s question fall broadly under

the umbrella of the ubiquitous question: ‘How much weaker is ♣ than ♦?’

We give the background to the invariance property in Chapter 6. The back-

ground to Juhasz’s question is given in the next section.
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1.2 Suslin trees

Having introduced Guessing Axioms, and in particular ♣, we turn now to the

other combinatorial objects that dominate this thesis: Suslin trees.

We will see (Theorem 1.2.10) that ♦ implies the existence of a Suslin tree. It

is not known whether ♣ implies the existence of a Suslin tree. This question was

asked in the 1980s3 and has proved to be a remarkably persistent problem. We

review its history here:

1.2.1 Suslin’s Hypothesis

M. Y. Suslin (1894 – 1919) was a Russian mathematician, active in set theory at

the start of the previous century. He is remembered for several developments in

mathematics, and particularly for a paper that he contributed to the first issue

of the journal Fundamenta Mathematicae ([31]), which was published in 1920. A

question posed in that paper (on the properties needed to uniquely characterise

the real number line) became widely known as ‘Suslin’s Problem.’ The question

persisted into the second half of the twentieth century, awaiting the arrival of Co-

hen’s method of forcing, and later iterated forcing, which were used to conclusively

attack it. By that time the problem was known in its modern formulation, con-

cerning the existence of a certain type of tree. But first we shall state Suslin’s

3Source: a personal conversation between I. Juhasz and the author, and see also [23].
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Problem in its original form. Briefly put, Suslin asked whether the condition of

separability can be weakened in the following well-known theorem:

Definition 1.2.1. Let 〈L,≤L〉 be a linearly ordered set (for convenience we will

usually just denote it by L). Then L is dense if for all a, b ∈ L with a <L b there

is a c ∈ L such that a <L c <L b. A ⊆ L is a dense subset if A is dense and for all

a, b ∈ L with a <L b there is a c ∈ A such that a <L c <L b. L is complete if for

every set A ⊆ L that has an upper bound in L, sup(A) exists in L. L is separable

if L has a countable dense subset. L is without end-points if there is no greatest

or least element in L.

Theorem 1.2.2 (Cantor, see [15]). Let 〈L,≤L〉 be a linearly ordered set. If L is:

(i) dense,

(ii) complete,

(iii) separable,

(iv) without end-points,

Then 〈L,<L〉 is isomorphic to the real numbers, R, with the usual ordering.

Proof This proof is well-known, so we only sketch it here. The result follows

from both Dedekind’s method of constructing the real numbers as sets of rationals

and Cantor’s back-and-forth argument establishing that any two countable dense

12



linear orders without endpoints are isomorphic. The latter gives us an isomorphism

between the countable dense subset of L (call it A) and Q; identifying each r ∈ R

with the set of rationals less than it, and each l ∈ L with the set of a ∈ A less

than l, induces an isomorphism between L and R. See [15] for details.

�

Suslin asked whether condition (iii) in Theorem 1.2.2 could be weakened to the

following:

Definition 1.2.3. Let 〈L,≤L〉 be a linearly ordered set. L has the countable

chain condition (c.c.c.) if every set of pairwise disjoint open intervals from L is

countable.

Suslin’s Hypothesis (SH) states that any linearly ordered set satisfying con-

ditions (i), (ii) and (iv) of Theorem 1.2.2, which also has the property of c.c.c.,

is isomorphic to the real numbers, R. A linearly ordered set that satisfies these

properties and which is not isomorphic to R is called a Suslin line. Thus, Suslin’s

Hypothesis states that there does not exist a Suslin line. This conjecture was

shown to be independent of the axioms of ZFC in the 1960s and early 1970s, by

the combined efforts of Jech, Solovay and Tennenbaum in [32], [16] and [30] (see

[7]).

The modern formulation of SH uses the idea of a Suslin tree, which is a certain

13



type of partially ordered set (that is, a set together with an ordering relation sat-

isfying transitivity, anti-symmetry and reflexivity), as defined in Definition 1.2.5.

Definition 1.2.4. For a partial order 〈P,≤P 〉:

• A chain is a set Y ⊆ P such that for all x, y ∈ Y with x 6= y, either x <P y

or y <P x.

• An antichain is a set Y ⊆ P such that there is no z ∈ P with x ≤P z and

y ≤P z for any x, y ∈ Y .

Definition 1.2.5. A tree, 〈T,≤T 〉, is a partial order such that for every x ∈ T ,

the set {y ∈ T : y ≤T x} is well-ordered by ≤T . A Suslin tree is a tree of size

|T | = ℵ1, such that all chains and antichains in T are countable. (The fact that

all antichains are countable is what will henceforth be meant when we say that a

partial order is c.c.c.)

Definition 1.2.6. For a tree 〈T,≤T 〉 and x ∈ T , ht(x) is the order type of the set

{z : z <T x}.

We now cite a useful theorem that allows us to forget about Suslin lines in

favour of Suslin trees, which are easier to use in forcing arguments. For a mathe-

matical account of this shift in emphasis, see [19, II], or [7]; we simply note here

that this result was discovered independently by Kurepa, in 1935, and E. Miller

in 1943:
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Theorem 1.2.7 (Kurepa, Miller). There exists a Suslin tree if and only if there

exists a Suslin line.

From here onwards Suslin’s Hypothesis (SH) is taken to be the assertion that

there do not exist any Suslin trees. It is worth pointing out that Suslin’s Hypothesis

is also widely known as ‘Souslin’s Hypothesis.’ Both are valid transliterations from

the Cyrillic. We follow Kunen [19] and Jech [15] in using ‘Suslin’. We will require

some further notation:

Notation 1.2.8. Let 〈T,≤T 〉 be a Suslin tree. Then Levα(T ) = {x ∈ T : ht(x) =

α}.

Levα(T ) will be referred to as the αth level of T . It is trivial that for all α < ω1,

Levα(T ) is an antichain. Often one includes in the definition of a Suslin tree the

fact that each level is countable, but the c.c.c. property makes this redundant.

When, however, we talk about Aronszajn trees, it is to be understood that we are

defining them by replacing the c.c.c. property in the definition of a Suslin tree

with the requirement that (|Levα(T )| = ω) for all α < ω1.

Definition 1.2.9. An Aronszajn tree is a tree of size ω1 such that all levels are

countable and all chains are countable.
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1.2.2 Juhasz’s question

The definition of ♦ was extrapolated from Jensen’s proof that Suslin trees exist

assuming V = L. The following theorem is then immediate:

Theorem 1.2.10. ♦ implies that there is a Suslin tree (i.e. ♦ → ¬SH).

Proof In Theorem 3.0.5 we prove a stronger statement. For a direct proof of

Theorem 1.2.10 see [19, II].

�

This leads us to the following natural question:

Question 1.2.11 (Juhasz). Does ♣ → ¬SH?

Question 1.2.11 is commonly referred to as ‘Juhasz’s question’. Juhasz formu-

lated a weak relative of the ♣ principle in [18] and asked whether it implied ¬SH.

He then observed that it wasn’t known whether ♣ itself implies ¬SH (though nei-

ther question actually appears in [18]); thirty years later both questions remain

unanswered. It is also unknown whether ♣ is relatively consistent with the as-

sertion that all Suslin trees are isomorphic. ♦ implies that there are at least two

non-isomorphic Suslin trees.

We ought to note here that a purported answer to Juhasz’s question by Džamonja

and Shelah was published in [8], but the authors later noticed a mistake in this

paper rendering the proof incorrect [10]. The result they appeared to obtain there
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is stronger than Con(♣ + SH), as their proof would in fact establish Con(♣ + SH

+ cov(M) = ω2), if correct. But this contradicts a known (though at the time

unpublished) theorem of Miyamoto (see Chapter 3).

We examine Juhasz’s question in Chapters 3 and 4, and give some pertinent

results there.

1.3 The structure of this thesis

The structure of this thesis is as follows:

• We begin in Chapter 2 by briefly reviewing some notation and preliminaries.

• Chapter 3 is concerned with partial answers to Juhasz’s question. We first

survey some of the existing partial answers, then we define the principle Su-

perclub and prove that it implies the existence of a Suslin tree. We conjecture

that it is strictly weaker than ♦ and give some related results to substantiate

this conjecture.

• In Chapter 4 we discuss the possibility of forcing to obtain a model of Suslin’s

Hypothesis, and we establish some conditions that such a forcing would have

to meet if it were to be used to give a negative answer to Juhasz’s question.

Specifically, we define several properties that a witness to ♣ must not satisfy

if it is to be preserved (as a witness to ♣) over a forcing iteration giving us
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a model of SH.

• In Chapter 5 we review some basic facts about ♣ and its relation to cardinal

arithmetic. We give a full proof that ♣ is consistent with ¬CH and ask

under what conditions can we force ♣ to hold without collapsing cardinals.

We show that there is a c.c.c. forcing that adds a ♣-sequence (which, in

particular, does not necessarily add a ♦-sequence) whenever a weak version

of ♣ holds.

• In Chapter 6 we prove some equivalences between different versions of ♣.

We show that a greater number of ♣-like principles can be proved equivalent

as increasingly stronger cardinal arithmetic statements are assumed to hold,

though we also prove some equivalences in ZFC. Several known results on ♦

and club guessing follow from our results in this chapter as specific instances.

• Chapter 7 is a counterpart to Chapter 6. Here we extend work begun by

Džamonja and Shelah in [9] and establish a general forcing technique to show

that many of the equivalences in the previous chapter are not provable in

ZFC alone. We show that several variants of ♣, as defined on ω1, can be

proved to be pairwise inequivalent in ZFC.

• Chapter 8 generalises the results of Chapter 7 to successor cardinals greater

than ω1, and we discuss some limitations on the extent to which we can
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further generalise these results.

• Finally, in Chapter 9, we list some open questions relating to our results in

the preceding chapters.
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Chapter 2

Notation and Preliminaries

We assume the reader is familiar with the basics of set theory and logic. We

take this to include everything implicit in the previous chapter, and in particular:

the axioms of ZFC, the definitions of ordinals, cardinals, relations and functions,

stationary sets, sequences, products, models of set theory, elementary submodels,

Gödel’s incompleteness theorems and the standard variations on the Löwenheim-

Skolem theorem, which we will make frequent use of in the later chapters, and

which we note in particular can be proved in ZFC.

We cite [15] as the standard reference for the basic facts and definitions listed

above. We will now specify some of the notational conventions that are not nec-

essarily universal but that are used frequently throughout this thesis:

• Let f : A→ B be a function, and C ⊆ A. Then we write f [C] to denote the
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set {b ∈ B : ∃c ∈ C(f(c) = b)}, and f−1(b) to denote {a ∈ A : f(a) = b} if

b ∈ B, and f−1(B′) =
⋃
{f−1(b) : b ∈ B′} if B′ ⊆ B.

• A partial function f : A → B is a function f : C → B where C ⊆ A. The

cardinality of a partial function refers to the cardinality of the set C.

• We write (a, b) to denote an ordered pair, unless we are defining a partial

order (which, formally, is an ordered pair consisting of an underlying set

and a relation), in which case we use angular brackets: 〈A,≤A〉. We write

〈xα : α < λ〉 to denote a sequence of length λ and {xα : α < λ} to denote

the unordered set of elements in the range of this sequence.

• When we refer to a cardinal, we allow for the possibility that the cardinal in

question is finite, unless otherwise specified, but the word countable will be

used exclusively to describe infinite sets of size ℵ0.

• We introduced the principle ♣ in the previous chapter. An uncountable

sequence is called a ♣-sequence if it witnesses the truth of ♣. A ♦-sequence

is defined analogously. We say that a forcing (that preserves ω1) kills a ♣-

sequence, 〈Aδ : δ ∈ Lim(ω1)〉, if it adds an uncountable subset X ⊆ ω1 such

that the set {δ ∈ Lim(ω1) : Aδ ⊆ X} is empty. Likewise, we say that a

(cardinal preserving) forcing kills a Suslin tree, T , if it adds an uncountable

set that is an antichain in T .
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• A subtree of a given tree 〈T,≤T 〉 is a tree of the form 〈T ′ ⊆ T,≤T � T ′〉. We

say a Suslin tree is normal if the following hold:

(i) For every x ∈ T , and any α < ω1, there is a y ∈ Levα(T ) such that

x <T y.

(ii) Lev0(T ) has cardinality 1.

(iii) For every x ∈ Levα(T ), for any α < ω1, there are y1, y2 ∈ Levα+1(T )

with x <T y1, y2.

It is an easily provable fact that every Suslin tree has a normal Suslin subtree

(see [19, Chapter Two]); therefore we will usually work with normal Suslin

trees rather than with general Suslin trees.

Any other notation used in this thesis, where it is not in standard usage, will

be introduced as and when it is needed.

2.1 Forcing notation

We assume some familiarity with the theory of forcing, but due to the wide variety

of forcing notation that is used in the literature we will now briefly outline the

development of forcing that we have chosen to adopt.

A partial order, P = 〈P,≤P〉, consists of a set together with a relation that is

transitive, reflexive and anti-symmetric. If P is infinite, has a maximal element
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(denoted 1P), and is such that for any p ∈ P there exists p1, p2 ∈ P such that

¬∃q ∈ P (q ≤P p
1 and q ≤P p

2) then we call it a forcing notion, or just a forcing.

In this case elements in the partial order will be called conditions. We will often

abuse notation by writing p ∈ P rather than p ∈ P , and by dropping the subscript

from ≤P where P is clear from context.

When a partial order, P, is a forcing, the definition of an antichain in P differs

slightly from that given in the previous chapter. In this case an antichain is a set

of conditions in P such that for any two of them, p and q, there is no condition r

with r ≤P p and r ≤P q.

A set D ⊆ P is dense if for all p ∈ P there is a q ∈ D with q ≤P p. A filter

G is a set such that if p ∈ G and p ≤P q then q ∈ G, and such that for any two

p1, p2 ∈ G there is a q ∈ P such that q ≤P p
1 and q ≤P p

2.

Let V be a model of ZFC. Then a filter G is P-generic over V if G intersects

every dense subset D ⊂ P that is in V . If V is a countable model of ZFC and

P ∈ V , then such a G can be shown to exist; we cannot, of course, prove in ZFC

that a model of ZFC exists, so all our forcing proofs are in fact relative consistency

proofs which begin by assuming the consistency of ZFC.

A set τ̇ ∈ V is a P-name if and only if τ̇ is a set of ordered pairs and for

all (σ̇, p) ∈ τ̇ , σ̇ is a P-name and p ∈ P. This is a recursive definition, trivially

satisfied by ∅. For a P-name τ̇ and a filter G, let τ̇G = {σ̇G : ∃p ∈ G ((σ̇, p) ∈ τ̇)}.
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Again this is a recursive definition. We also set V [G] = {τ̇G : τ̇ ∈ V is a P-name}.

We make numerous uses of the following crucial theorem:

Theorem 2.1.1. Let V � ZFC and P be a notion of forcing. If G is a P-generic

filter over V , then V [G] � ZFC and G ∈ V [G].

The forcing relation 
 is defined as follows:

Definition 2.1.2. Let τ̇1, ..., τ̇n be P-names and φ(τ̇1, ..., τ̇n) be a sentence in the

language of set theory. Then for a condition p ∈ P, p 
P “φ(τ̇1, ..., τ̇n)” if and only

if for any generic filter G such that p ∈ G, we have V [G] � φ((τ̇1)G, ..., (τ̇n)G). We

usually drop the subscript from 
P when P is clear from context.

We use dotted Greek letters to denote P-names, usually τ̇ . If we are dealing

with a name for a function (or a name forced to be a function by a particular p

under consideration), then we will sometimes use ḟ to denote it; the dot is intended

to make it clear that this is a name and not a function in V . When x ∈ V there

is a canonical P-name for x, x̌ = {(y̌, 1P) : y ∈ x}, such that x̌G = x for any

filter G. Hence V ⊆ V [G]. In practice we will normally use x instead of x̌ when

writing statements of the form p 
 “φ(x̌)”; the quotation marks surrounding the

φ(x̌) are for the purposes of clarity, as it is infeasible to write φ(x̌) as a fully formal

statement in the language of set theory. Note that we have developed our notation

for forcing so that for p, q ∈ P, q ≤P p means q is a stronger condition that p. That

is, if p 
 “φ” then q 
 “φ”.

24



If V is a transitive model of ZFC then V [G] is also transitive; it is to be

implicitly understood that this will always be the case. It is straightforward to

check that ω is absolute for transitive models of ZFC. We say that ωV1 is collapsed

by G if ωV1 is countable in V [G]. Similarly, for λV , an arbitrary cardinal in V , we

say that λ is collapsed to κ if there is a bijective map from λV to κV [G] in V [G]. If

a forcing P has the λ-c.c. (i.e. all antichains in P have size < λ) then no cardinal

greater than or equal to λ is collapsed by P.

When defining a forcing we will often use the phrase “let χ be a sufficiently

large cardinal...” Specifically, we want χ to be large enough such that (H(χ),∈)

encompasses enough of V to reflect certain statements in which we are interested.

These will always be clear from context. In all cases where this phrase is used, the

forcing being defined will be formed from a set of partial functions f : κ → 2 for

some cardinal κ, and we will use a chain of elementary submodels of (H(χ),∈) to

define this set. Hence, setting χ to be strictly greater than 2κ will be sufficient, so

e.g. letting χ = 22κ works for this. We won’t explicitly state this each time the

phrase is used, but it is always possible to find a relevant χ.
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Chapter 3

Partial Answers to Juhasz’s

Question

Informally, we can state that the expected answer to Juhasz’s question is negative

(this view was expressed to the author in conversation by M. Džamonja, co-author

of [9] and [8], and by I. Juhasz himself), though the following principles are two

of the strongest weakenings of ♣ that have been shown to be consistent with SH.

Both are much weaker than ♣, in the sense that even in the presence of CH they

do not imply ♦, unlike those weakenings we consider later in this thesis:

( •| ) There is a set S with |S| = ω1 and |s| = ω for all s ∈ S, such that

if X ∈ [ω1]ω1 then for some s ∈ S we have s ⊆ X.

(♣W 2) There is a sequence 〈Aδ : δ ∈ Lim(ω1)〉, with Aδ ⊆ δ and
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sup(Aδ) = δ for all δ ∈ Lim(ω1), such that if X ⊆ ω1 is unbounded

then the following set is stationary:

{δ ∈ Lim(ω1) : either Aδ \X or Aδ \ (ω1 \X) is finite }.

Both of these principles are implied by ♣. The principle •| is also implied by

CH; in this case the set of all countably infinite subsets of ω1 forms a suitable S. So

the relative consistency of ( •| + SH) follows from Jensen’s proof of Con(CH + SH)

assuming Con(ZFC). The principle ♣W 2 was shown to be consistent with SH by

H. Mildenberger (in [21]).

There is a notable lack of positive partial answers to Juhasz’s question. The

most prominent result that could be so described is due to Miyamoto:

Theorem 3.0.3 (Miyamoto). If cov(M) ≥ ω2 and •| holds, then there is a Suslin

tree.

But there are no known1 guessing principles ϕ such that ϕ → ¬SH and ♦ →

ϕ→ ♣, where these implications are not reversible.

In this chapter we present a candidate for such a ϕ. We prove that it can be

used to construct a Suslin tree, and that it implies ♣. We conjecture that it is

strictly weaker than ♦.

Definition 3.0.4. The principle Superclub states that there is a sequence 〈Bδ :

1Known to the author, at least. We are using here our informal characterisation of guessing
principles, as discussed in Chapter One.
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δ ∈ Lim(ω1)〉 such that for any X ∈ [ω1]ω1 , there is a Y ∈ [ω1]ω1 such that Y ⊆ X

and the set {δ ∈ Lim(ω1) : Y ∩ δ = Bδ} is stationary.

So a witness to Superclub (a Superclub sequence) acts like ♦, but on a cofinal

subset of every unbounded X ⊆ ω1 rather than on X itself. It therefore follows

immediately that ♦ → Superclub. It is also easy to see that Superclub → ♣.

Superclub is notable mainly for the following theorem:

Theorem 3.0.5. Superclub → ¬SH.

Proof Let 〈Bδ : δ ∈ Lim(ω1)〉 be a witness to Superclub; we construct 〈ω1,≤T 〉

to be a Suslin tree, by inductively specifying the behaviour of ≤T restricted to

initial sections of ω1. Our induction will ensure that if x <T y then x < y as

an ordinal and that Levβ(T ) = [ω.β, ω.β + ω) for each β less than ω1, except

where β = 0 or 1. Throughout the proof we frequently abuse notation by writing

Levβ(T ) as shorthand for [ω.β, ω.β + ω) when 2 ≤ β < ω1, {0} when β = 0, and

[1, ω + ω) when β = 1. We also write ≤T � A to denote {(a, b) ∈ A× A : a ≤T b},

and similarly for <T � A. The induction is on the levels Levα(T ), for α < ω1, and

proceeds as follows:

1. We set <T � {0} to be empty and <T � [0, ω + ω) to be the set of all ordered

pairs (0, y) such that y is in the interval [1, ω + ω). Hence Lev0(T ) = {0}

and Lev1(T ) = [1, ω+ ω) as desired. Choose an enumeration 〈in : n < ω〉 of

the set [1, ω + ω) and let <T � (ω.2 + ω) be the set <T � [0, ω + ω) together
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with all those ordered pairs of the form (in, ω.2 + 2n) or (in, ω.2 + 2n + 1)

for n < ω, and then take the transitive closure of this. This ensures that

Lev2(T ) = [ω.2, ω.2 + ω).

2. If α is a successor ordinal greater than 2, assume α = β + 1. Then we

assume that Levβ(T ) = [ω.β, ω.β + ω) and that <T � (ω.β + ω) is already

defined. We extend the ordering <T to include [ω.α, ω.α+ω) as follows. Let

y ∈ Levβ(T ), then y = ω.β+n for some n < ω. The ordering <T is extended

by setting y <T x1 and y <T x2 where x1 = ω.α+ 2n and x2 = ω.α+ 2n+ 1,

and also setting z <T x1, x2 for all z <T y. Each element in Levβ(T ) has

exactly two successors at the level Levα(T ).

3. If α is a countable limit ordinal then we assume that <T �
⋃
β<α Levβ(T ) is al-

ready defined. Let 〈xi : i < ω〉 enumerate
⋃
β<α Levβ(T ). If

⋃
β<α Levβ(T ) =

α and Bα is an antichain in the tree:

〈α,≤T �
⋃
β<α

Levβ(T )〉

Then for each i < ω we choose a branch brα(xi) such that xi ∈ brα(xi),

sup(brα(xi)) = α and if there is some γ in Bα with γ ≤T xi or xi <T γ

then the least such γ is in brα(xi), and we also insist that if j < i < ω, then

brα(xi) 6= brα(xj).

If
⋃
β<α Levβ(T ) 6= α or Bα is not an antichain, then we choose a branch for
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each i < ω such that xi ∈ brα(xi) and brα(xi) intersects [ω.β, ω.β + ω) for

every β < α. Again, we also insist that if j < i < ω, then brα(xi) 6= brα(xj).

Having defined {brα(xi) : i < ω}, let y ∈ [ω.α, ω.α + ω). Then y = ω.α + n

for some n < ω. We then set z <T y if and only if z ∈ brα(xn). This extends

the ordering <T to
⋃
β≤α[ω.β, ω.β + ω).

This is identical to Jensen’s construction of a Suslin tree from ♦ (see [19, II])

except that at those limit stages α where Bα is an antichain, when we choose a

branch that passes through a given x and goes cofinal in the initial section of the

tree already defined, we only insist that it intersects Bα if it is possible for it to do

so (regardless of whether or not Bα is maximal in that initial section of the tree).

T is clearly a tree. We show that T is Suslin. Since every element of T has (at

least) two immediate successors, it is enough to show that T has no uncountable

antichains. So assume for a contradiction that X ⊆ ω1 is a maximal uncountable

antichain in T . Then there is a cofinal subset Y ⊆ X such that δ ∩ Y = Bδ for

stationary many δ. Let

T ′ = {x ∈ ω1 : ∃y ∈ Y (y ≤T x or x ≤T y)}

and ≤T ′ = ≤T � T ′. Clearly 〈T ′,≤T ′〉 is a tree of size ω1, and Y is a maximal

antichain in T ′. So there will be stationary many δ where Y ∩ δ is a maximal

antichain in 〈δ,≤T ′�
⋃
α<δ Levα(T ′)〉 and Bδ = Y ∩ δ and

⋃
α<δ Levα(T ′) = δ.

Take such a δ. We show that for every x ∈ Levδ(T ′) there is some y ∈ Y ∩ δ with
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y <T ′ x, meaning Y ∩ δ is already a maximal antichain in T ′, a contradiction. So

assume that for some x ∈ Levδ(T ′) there is no such y. By the construction of the

level Levδ(T
′) there is some x′ <T ′ x such that x is an upper bound to all the

elements in brδ(x
′). But since x′ ∈ T ′ and hence is clearly comparable with some

y ∈ Bδ, there must be a y ∈ Bδ such that y ∈ brδ(x
′), giving y <T x. This is a

contradiction.

So δ ∩ Y is a maximal antichain in T ′, which is also contradictory. Hence T

cannot have an uncountable antichain. This means that T is a Suslin tree.

�

It is not known if Superclub is consistent with ¬CH; it may in fact be equiva-

lent to ♦. But it is worth pointing out that the restriction of Superclub to closed

unbounded sets is demonstrably weaker than the restriction of ♦ to closed un-

bounded sets, which is equivalent to ♦. We will briefly develop this argument

here:

Definition 3.0.6. The principle SuperclubCLUB asserts the existence of a sequence

〈Bδ : δ ∈ Lim(ω1)〉 such that for any closed unbounded C ⊆ ω1, there is an

unbounded D ⊆ ω1 such that D ⊆ C and the set {α ∈ Lim(ω1) : D ∩ α = Bα} is

stationary.

Equivalently, we can insist that the D ⊆ ω1 in the above definition is closed

unbounded (simply replace each Bδ with the following set: B′δ = Bδ ∪ {α < δ :
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sup(Bδ ∩ α) = α} and then 〈B′δ : δ ∈ Lim(ω1)〉 will give us a witness to this

seemingly stronger statement). The following is well-known:

Lemma 3.0.7. If P is a c.c.c. forcing in V and G is a P-generic filter over V , then

if E ∈ V [G] is a closed unbounded subset of ω1 there exists a closed unbounded

set E ′ ⊆ ω1 in V such that E ′ ⊆ E.

This gives us the following result:

Theorem 3.0.8. Con(ZFC) → Con(ZFC + SuperclubCLUB + ¬CH).

Proof Start with a model of♦. Use the forcing consisting of finite partial functions

from ω2 to 2. This is a c.c.c. forcing and gives a generic extension in which 2ω = ω2.

It is easy to see that any witness to ♦ in the ground model will be a witness to

SuperclubCLUB in the generic extension, by Lemma 3.0.7.

�

We contrast this with the following theorem:

Definition 3.0.9. The principle ♦CLUB states that there is a sequence 〈Dδ : δ ∈

Lim(ω1)〉 with Dδ ⊆ δ for all δ, such that if C ⊆ ω1 is a closed unbounded set

then the set {α ∈ Lim(ω1) : C ∩ α = Dα} is stationary in ω1.

Theorem 3.0.10. ♦CLUB → ♦.

Proof Let 〈Dδ : δ ∈ Lim(ω1)〉 be a witness to ♦CLUB. We use Devlin’s result (in

[24]) that (♣+ CH)→ ♦ and thus split the proof into two stages.
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To see that ♦CLUB → CH, observe that if x ⊆ ω and C ⊆ ω1 is a closed

unbounded set then C ′ = (C \ω)∪ x∪{ω} is also closed unbounded. Hence there

is some δ ≥ ω such that Dδ = C ′ ∩ δ, giving Dδ ∩ ω = x.

So 〈ω∩Dδ : δ ∈ Lim(ω1)〉 contains a subsequence enumerating P(ω), implying

the continuum has size ω1.

To see that ♦CLUB → ♣, let X ⊆ ω1 be unbounded. So X ′ = X ∪ {α <

ω1 : sup(X ∩ α) = α} is a closed unbounded set. And X ′′ = X ′ \ {α < ω1 :

sup(X ∩ α) = α} is unbounded and is a subset of X. Whenever Dδ = δ ∩X ′ we

will get D′δ = Dδ \ {β < δ : sup(Dδ ∩ β) = β} ⊆ X ′′ ∩ δ ⊆ X, which will be cofinal

in δ if and only if X ′′ is cofinal in δ. So there will be stationary many δ such that

D′δ ⊆ X and sup(D′δ) = δ, hence 〈D′δ : δ ∈ Lim(ω1)〉 can be easily modified to

give a witness to ♣.

�

Hence ♦CLUB ↔ ♦.

The following definition also seems to be pertinent:

Definition 3.0.11. Superstick asserts that there is a family S ⊆ [ω1]ω with |S| =

ω1 such that for any X ∈ [ω1]ω1 the set {x ∈ S : x ⊆ X} when ordered by strict

inclusion contains a chain of length ω1.

Superstick implies •| and is a consequence of CH, so it does not imply ♣ or

Superclub. It stands in a similar relation to Superclub as CH does to ♦, so by
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analogy with the proof that (♣+ CH)→ ♦ we can prove:

Theorem 3.0.12. (♣+ Superstick)→ Superclub.

Proof Let S witness Superstick and 〈sα : α < ω1〉 enumerate S. If X ∈ [ω1]ω1

then there is an uncountable set S ′ ⊆ ω1 indexing the chain asserted to exist by

Superstick, with i, j ∈ S ′ and i < j implying si is a subset of sj. Let Y =
⋃
{sα :

α ∈ S ′}, then Y ⊆ X and |Y | = ω1. Let 〈Aδ : δ ∈ Lim(ω1)〉 witness ♣ and set

Bδ =
⋃
α∈Aδ sα, unless the latter is not a cofinal subset of δ in which case we choose

it to be an arbitrary cofinal subset of δ. There is a closed unbounded set C ⊆ ω1

for which δ ∈ C implies that sup
(⋃

α∈δ∩S′ sα
)

= δ and
⋃
α∈δ∩S′ sα = Y ∩ δ, hence

for δ ∈ C where Aδ ⊆ S ′ also holds we will have Y ∩ δ = Bδ and sup(Bδ) = δ.

There is a stationary set of such δ so 〈Bδ : δ ∈ Lim(ω1)〉 is a witness to Superclub.

�

It is not known whether Superstick→ CH. However, based on the above results

(notably Theorems 3.0.8 and 3.0.10) we form the following conjecture:

Conjecture 3.0.13. We believe the following to be true:

(i) Con(ZFC) → Con(ZFC + Superstick + ¬CH),

(ii) Con(ZFC) → Con(ZFC + Superclub + ¬♦).

It is not clear how we could prove either of these using existing forcing tech-

niques. But it is clear that if 3.0.13 (ii) is true then Superclub gives a strong
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positive partial answer to Juhasz’s question, as discussed at the start of this chap-

ter.
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Chapter 4

♣, Forcing and Suslin Trees

We mentioned in the previous chapter that the expected answer to Juhasz’s ques-

tion is negative. If this is indeed the case, then giving a proof of this would require

us to find a model of (♣ + ¬CH) in which there are no Suslin trees. The usual

method for finding a model of (♣ + ¬CH), that doesn’t involve collapsing cardi-

nals, is to preserve a witness to ♣ from an initial model while using forcing to add

reals (see the discussion of this in Chapter 5), though it is also possible for such a

forcing to introduce a new witness to ♣, not present in the ground model (see for

example [11]). In this chapter we present several conditions that such a witness

to ♣ would have to satisfy. In particular, we prove that any forcing that adds an

uncountable antichain to a single Suslin tree cannot preserve every ground model

witness to ♣. We also show that Juhasz’s question could potentially be answered

(negatively) by preserving a certain kind of ♣-sequence while killing off another.
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Unfortunately, a method for carrying out this line of attack is not known to us;

we merely prove that it would be sufficient.

4.1 T -preserving ♣-sequences

It is of interest to us to examine different types of ♣-sequences that exist in the

ground model and consider their relation to Suslin trees. The following observation

highlights a link between ♣-sequences and Suslin trees that is otherwise hidden by

their seemingly unrelated definitions:

Observation 4.1.1. Let R ⊆ [ω1]2 be a set of unordered pairs of countable ordi-

nals. We will call this a pre-relation. We define the ordering ≤R from R as follows:

x ≤R y iff x = y or {x, y} ∈ R and x is less than y as an ordinal. Then 〈ω1,≤R〉 is

a Suslin tree if and only if 〈ω1,≤R〉 is an Aronszajn tree and for any uncountable

X ⊆ ω1 there is a z ∈ R such that z ⊆ X.

Proof We know that 〈ω1 ≤R〉 is a Suslin tree if and only if it is an Aronszajn

tree and does not cannot contain any uncountable antichains. The latter condition

is equivalent to saying that any uncountable subset of ω1, X, must contain two

ordinals that are compatible with respect to the tree ordering, ≤R. Let x and y

be two such ordinals. Then {x, y} ∈ R and {x, y} ⊆ X.

�
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This gives us another characterisation of a Suslin tree. And note that the

last line of this characterisation bears a strong resemblance to the definition of

•| . Hence we can say that a Suslin tree has a certain (albeit very weak) guessing

property for unbounded subsets of ω1. Furthermore, it is precisely this guessing

property that distinguishes it from an Aronszajn tree.

Observation 4.1.1 motivates the following definition:

Definition 4.1.2. Let Ā = 〈Aδ : δ ∈ Lim(ω1)〉 be a witness to ♣ and T be a

Suslin tree such that both are in V , a model of ZFC + ♣ + ¬SH. If Ā is such that

for any forcing, P ∈ V , and any filter G that is P-generic over V , if Ā remains a

witness to ♣ in V [G] then T remains a Suslin tree in V [G], then we say that Ā is

T -preserving over V .

Normally we will just write that Ā is T -preserving, when V is clear from con-

text. The existence of T -preserving ♣-sequences for normal Suslin trees (see Chap-

ter 2 for the definition of normal) is easy to establish:

Theorem 4.1.3. Let Ā = 〈Aδ : δ ∈ Lim(ω1)〉 be a ♣-sequence and T = 〈ω1,≤T 〉

be a normal Suslin tree, both in V . Then we can define a further ♣-sequence

ĀT = 〈ATδ : δ ∈ Lim(ω1)〉 in V , such that ĀT is T -preserving over V .

Proof We assume without loss of generality that for all 0 < α < ω1, Levα(T ) =

[ω.α, ω.α + ω), and we give the construction of ĀT . Choose 〈eε : ε < ω1〉 to be an

enumeration of [ω1]2, and let Z ⊆ ω1 be such that {eε : ε ∈ Z} = {{α, β} : α <T
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β}. Let 〈zi : i < ω1〉 be an enumeration of Z, and set ATδ = δ ∩
⋃
i∈Aδ ezi for all

δ ∈ Lim(ω1), unless this gives us a set that is bounded in δ or is an antichain in T ,

in which case set ATδ to be an arbitrary cofinal subset of δ containing two ordinals

that are compatible in T . Then because T is Suslin, if X ⊆ ω1 is unbounded we

can find an uncountable set Y ⊆ Z such that γ ∈ Y ⇒ eγ ⊆ X, and for γ, ξ ∈ Y

with γ < ξ we have max(eγ) < min(eξ). The fact that we can find such a Y follows

from the fact that X cannot be (or contain) an uncountable antichain. We will

make use of the following standard definition:

Definition 4.1.4. For an unbounded set E ⊆ ω1, we write acc(E) to denote the

set: {ζ < ω1 : sup(ζ ∩ E) = ζ}.

Continuation of the Proof of Theorem 4.1.3. Let δ be such that δ ∈ acc (Y )∩

acc
(⋃

γ∈Y eγ

)
and Aδ ⊆ Y . This is possible because the set acc(E) is always closed

and unbounded in ω1 for an unbounded set E, and by the definition of ♣. Then

δ∩
⋃
i∈Aδ ezi is a subset of X and has supremum δ. Hence ĀT is also a ♣-sequence.

We finish the proof of the theorem by establishing that ĀT is T -preserving. So

observe that the set ATδ , for any δ ∈ Lim(ω1), contains a γ and ξ with γ <T ξ.

Hence if X is an uncountable antichain for T , in V [G], then we cannot have

ATδ ⊆ X for any δ ∈ Lim(ω1). So if ĀT remains a ♣-sequence in the generic

extension then T must have no uncountable antichains in V [G], and since T is

normal this is sufficient to prove that T remains a Suslin tree.
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�

There are several ways we could have constructed such an ĀT , but we will

retain the definition used in the proof of Theorem 4.1.3 (when we write ĀT we

take it to be assumed that T is normal). So henceforth, given Ā, we set:

ĀT = 〈δ ∩
⋃
i∈Aδ

ezi : δ ∈ Lim(ω1)〉,

except where this gives us an ATδ that is not a cofinal subset of δ or that is an

antichain in T , in which case we choose such a set arbitrarily as in the above proof.

Corollary 4.1.5. If we preserve every witness to ♣ in a given forcing extension,

then every ground model normal Suslin tree remains Suslin in the generic exten-

sion.

The contrapositive to this is as follows:

Corollary 4.1.6. If V � ♣+¬SH then any forcing P ∈ V that kills normal Suslin

trees must also kill some ♣-sequences.

Proofs: Both by Theorem 4.1.3.

�

We could easily alter the definition of a T -preserving ♣-sequence so as to apply

to Suslin trees T that are not normal, but since every Suslin tree contains a normal

subtree (see Chapter 2), and the existence of Suslin trees is therefore equivalent to
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the existence of normal Suslin trees, we feel justified in restricting our attention

to trees that are normal as well as Suslin.

The next fact shows that Juhasz’s question can be reduced to a question about

separating ♣-sequences.

Fact 4.1.7. In V , let Ā be a ♣-sequence and T be a normal Suslin tree. Let P be

a cardinal preserving forcing notion and G a P-generic filter over V . Then:

If V [G] |= “Ā is a ♣-sequence” and V [G] |= “ĀT is not a ♣-sequence,”

then V [G] |= “T is not a Suslin tree”.

Proof Assume T is Suslin in the generic extension. Let X ∈ [ω1]ω1 ∩ V [G]. Then

because X cannot be an uncountable antichain in T there must be some {x, y} ⊆ X

with x <T y. By the uncountability of X there must be uncountably many such

pairs {x, y}. Let Z and Y ⊆ X be as in the proof of Theorem 4.1.3. Then ĀT

witnesses ♣, as before. This is a contradiction.

�

4.2 Directly T -preserving ♣-sequences

With the following definition we can isolate the property of ĀT that causes it to be

T -preserving. Any ♣-sequence that we hope to preserve over an iteration killing

all ground model Suslin trees must not have this property.
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Definition 4.2.1. Let Ā be a witness to ♣ and T be a normal Suslin tree. We

say that Ā is directly T -preserving if there exists a club set C ⊆ ω1 such that for

δ ∈ C ∩ Lim(ω1) there exist x, y ∈ Aδ with x <T y.

Clearly ĀT is directly T -preserving, so the existence of directly T -preserving

♣-sequences (assuming ♣ + ¬SH) is immediate. But the following question is

unresolved:

Question 4.2.2. Can there exist a ♣-sequence, Ā, such that Ā is T -preserving

but not directly T -preserving, for a normal Suslin tree T?

Assuming ♦ we can construct a ♣-sequence that is not directly T -preserving

for any normal Suslin tree T .

Theorem 4.2.3. ♦ implies the existence of a ♣-sequence, Ā, such that if T is a

normal Suslin tree then Ā is not directly T -preserving.

We prove this theorem by a series of lemmas. Let T be a Suslin tree and x, y

be elements in the tree, then we write y ⊥T x to denote the following: (x 6≤T y ∧

y 6≤T x). In this case we say that x and y are incomparable.

Lemma 4.2.4. Let T = 〈ω1,≤T 〉 be a Suslin tree. If A ⊆ ω1 is uncountable then

there is an x ∈ A such that {y ∈ A : y ⊥T x} is uncountable.

Proof Assume not. So for every x ∈ A there are only countably many elements of

A that are incomparable with x. We will inductively define an uncountable chain
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{xα : α < ω1} in T , thus obtaining a contradiction. Let x0 be min(A), which is

well-defined because A is a set of ordinals. Now, assume {xα : α < β} is already

defined and is a chain in T . We will define xβ. If β = α + 1 for some α, then by

assumption there are only countably many members of A that are incomparable

with xα, so {y ∈ A : xα <T y} is uncountable. Let xβ = min{y ∈ A : xα <T y}.

Then {xα : α ≤ β} is a chain in T .

Now assume that β is a limit ordinal. Let Y =
⋃
α<β{y ∈ A : y ⊥T xα}. So Y

is a countable union of countable sets, and hence is countable, which implies that

A \ Y is uncountable. For all z ∈ A \ Y and all α < β we have either z ≤T xα or

xα <T z. By the fact that A \ Y is uncountable we can find a z such that for all

α < β, xα <T z. Let xβ be the least ordinal such that xβ ∈ A \ Y and xα <T xβ

for all α < β, then {xα : α ≤ β} is a chain in T .

So {xα : α < ω1} is an uncountable chain in T , giving us a contradiction.

�

We henceforth assume without loss of generality that all Suslin trees with

underlying set ω1 that we consider are such that Levβ(T ) = [ω.β, ω.β + ω), when

2 ≤ β < ω1.

Lemma 4.2.5. Let T = 〈ω1,≤T 〉 be a Suslin tree. If A ⊆ ω1 is uncountable then

the set of δ < ω1 such that there is a countably infinite antichain X ⊆ A ∩ δ with

sup(X) = δ, is unbounded in ω1.
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Proof Let γ < ω1 be arbitrary. We define the antichain X = {xn : n < ω}

by induction. First, observe that we can assume A ⊆ ω1 \ γ, without loss of

generality. Let x0 be the least ordinal in A satisfying the claim of Lemma 4.2.4.

Given Xn = {xm : m ≤ n}, let us assume that Xn satisfies the following statement:

(A′n = {z ∈ A : ∀x ∈ Xn(z ⊥T x)} is uncountable) (∗)n

Clearly X0 satisfies (∗)0, and our induction will be such that if Xn satisfies (∗)n

then Xn+1 satisfies (∗)n+1. By the previous lemma there is a z ∈ A′n such that

{y ∈ A′n : y ⊥ z} is uncountable. Let xn+1 be the least ordinal in A′n having this

property. Clearly the set Xn+1 = {xm : m ≤ n + 1} satisfies (∗)n+1, and is an

antichain.

The set {xn : n < ω} is therefore a countably infinite antichain, contained

within A = A \ γ. Let δ = sup{xn : n < ω}, which will be a limit ordinal because

〈xn : n < ω〉 is an increasing sequence under the usual ordering of ordinals, so

δ > γ and the lemma is proved.

�

The next lemma tells us that the set of such δ is not only unbounded, it is

closed too.

Lemma 4.2.6. Let T = 〈ω1,≤T 〉 be a Suslin tree, and {βn : n < ω} be such that

for all n < ω, βn is a limit ordinal and βn < βn+1 < ω1, and there is an antichain
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Bn ⊆ [βn, βn+1) with sup(Bn) = βn+1. Let γ = sup{βn : n < ω}. Then there is an

antichain B ⊆
⋃
n<ω Bn such that sup(B) = γ.

Proof First, we observe that for any n ∈ ω, and any infinite B′n ⊆ Bn, there is a

b ∈ B′n such that the set {m < ω : |{y ∈ Bm : y ⊥ b}| = ω} is infinite. In other

words, there is a b ∈ B′n such that there is a cofinal subsequence {Bmi : i < ω} of

sets that contain infinitely many elements incomparable with b. To see that this is

true, assume it is not. Given some n and B′n ⊆ Bn, every x ∈ B′n fails to have such

a cofinal subsequence. Fix such an x ∈ B′n. Then for some finite m we have that

for all p ∈ ω \m and all but finitely many y ∈ Bp, x <T y. Then let x′ ∈ B′n be

distinct from x. Clearly x′ ⊥T x, because B′n is an antichain, so for all p ∈ ω \m

and all but finitely many y ∈ Bp we have x <T y and consequently x′ ⊥T y. This

contradicts our assumption that no such x′ ∈ B′n exists.

We will use this fact to define an antichain X = {xn : n < ω} by induction.

Let x0 be the least ordinal in B0 that satisfies the claim in the previous paragraph.

Assume Xn = {xm : m ≤ n} is defined and satisfies (∗)n:

(|{l < ω : Bl \ {y ∈ Bl : ∃m(m ≤ n and xm <T y)} is countable}| = ω)

Clearly X0 = {x0} satisfies (∗)0. Now let n′ be the least finite ordinal greater

than n such that B′n′ = Bn′ \ {y : ∃m(m ≤ n and xm <T y)} is countable, and let

xn+1 be the smallest ordinal b ∈ B′n′ that satisfies the claim in the first paragraph.
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Clearly, since b ∈ B′n′ , Xn+1 = {xm : m ≤ n+ 1} is an antichain satisfying (∗)n+1,

and with sup(Xn+1) ≥ βn′ .

So {xn : n < ω} ⊆
⋃
n<ω Bn is an antichain with supremum γ.

�

So combining the previous two lemmas we get: for any Suslin tree T and

unbounded A ⊆ ω1, there is a closed unbounded set of δ < ω1 such that we can

find an infinite antichain X ⊆ A ∩ δ which (considered as a set of ordinals) is

unbounded in δ. We now use this fact to prove our initial theorem.

Proof of Theorem 4.2.3: Let 〈Bδ : δ ∈ Lim(ω1)〉 be a witness to ♦. Choose

disjoint uncountable sets, A1 and A2, such that ω1 = A1 ∪ A2. Fix bijections

τ1 : A1 → [ω1]2 and τ2 : A2 → ω1. We define 〈Aδ : δ ∈ Lim(ω1)〉 as follows. If

τ1[Bδ∩A1] is the pre-relation for a tree ordering on the ordinal δ, and τ2[Bδ∩A2] is

an unbounded subset of δ that is a superset of some B with order-type ω such that

B is unbounded in δ and also forms an antichain in the tree given by 〈δ,≤τ1[Bδ∩A1]〉,

then set Aδ = B (choose such a B arbitrarily). Otherwise, let Aδ be an arbitrary

sequence cofinal in δ, of order-type ω.

We will show that 〈Aδ : δ ∈ Lim(ω1)〉 is a ♣-sequence that is not directly

T -preserving for any Suslin tree T . Assume that this is not the case, and that in

fact either there is such a T (with underlying set ω1) or there is an uncountable

set X ⊆ ω1 contradicting 〈Aδ : δ ∈ Lim(ω1)〉 being a witness to ♣. Thus we can
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either find a closed unbounded set E ⊆ ω1 such that if δ ∈ E then Aδ is not an

antichain in T or a closed unbounded set E1 such that if δ ∈ E then Aδ 6⊆ X. The

following set is also closed unbounded:

E ′ ={δ < ω1 : 〈T ∩ δ,≤T � δ〉 is a tree} ∩ {δ < ω1 : sup(X ∩ δ) = δ} ∩

{δ < ω1 : δ ∩X contains an antichain in T , cofinal in δ}.

This follows from the previous two lemmas, as well as basic facts about closed

unbounded sets. Let Y = τ−1
1 [≤T ]∪ τ−1

2 [X], and S = {α ∈ Lim(ω1) : Bα = Y ∩α}.

The latter is stationary, so S ∩ E ′ is also stationary. If δ ∈ S ∩ E ′, then by our

definition of 〈Aδ : δ ∈ Lim(ω1)〉, Aδ must be an antichain in 〈δ,≤T � δ〉 and we

must also have Aδ ⊆ X. This contradicts the fact that either E or E1 is closed

unbounded. So the theorem is proved.

�

If Ā is a witness to ♣ in V and if we hope to prove Con(ZFC) → Con(ZFC +

SH + ♣) by preserving Ā as a witness to ♣ over a forcing iteration, then Ā must

not be directly T -preserving for any normal Suslin tree T in V . This is perhaps not

a sufficient condition for the existence of an appropriate forcing, but it is certainly

a necessary condition. We have shown that under ♦ there is a ♣-sequence, Ā,

satisfying this necessary condition.

The following is unknown:
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Question 4.2.7. Can there be a model of ¬CH + ¬SH + ♣ in which for any wit-

ness to ♣, Ā, there is a normal Suslin tree T such that Ā is directly T -preserving?
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Chapter 5

Cardinal Arithmetic and ♣

We have seen that (♣ + CH)→ ♦, and that ♦ implies the Continuum Hypothesis

(see Chapter 1); intuitively, we think of ♣ as being ♦ with this cardinal arith-

metic assumption removed. In this chapter we give this intuition some further

justification, by proving that ♣ is consistent with the negation of the Continuum

Hypothesis. This result is originally due to Shelah [27]. The proof we give is due

to Fuchino, Shelah and Soukup [11] and uses forcing; it proceeds by starting from

a model of ♦ + GCH and adding Cohen reals to it while simultaneously ensuring

that a witness to ♣ in the ground model remains a witness to ♣ in the generic

extension. Most of the known proofs of the relative consistency of ♣+¬CH, that

do not involve collapsing cardinals, proceed in this manner. In Section 5.2 we ask

whether the same result can be established in a different manner: by starting with

a model of ¬CH (and possibly some other assumptions) and forcing ♣ to hold
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without collapsing the continuum. It is not known whether this can be done in

general. If it were indeed possible to find such a forcing then it could potentially

be used to obtain results on Juhasz’s question and other related matters. We give

a partial result here, showing that ♣ can always be forced when a weaker version

of ♣ holds, without collapsing 2ω.

5.1 The consistency of ♣ with ¬CH

There are many proofs of the following theorem (see Section 1.1.1). The one we

give here, which we believe to be the shortest, is due to Fuchino, Shelah and

Soukup [11]:

Theorem 5.1.1. Con(ZFC) → Con(ZFC + ♣ + ¬CH).

We start with a model of ZFC satisfying ♦ + GCH. It is straightforward to

prove that the consistency of ZFC implies the existence of such a model (see for

example [19, VI]). The forcing we use is defined as follows:

Definition 5.1.2. We define a partial order P = 〈P,≤P〉 as follows:

• Let P be the set of all countable partial functions, f , from ω2 to 2 such that

for any ordinal α ∈ Lim(ω2), dom(f) ∩ [α, α + ω) is finite.

• Let p, q ∈ P . Then q ≤P p (q is stronger than p) if and only if both of the

following hold:
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(i) q extends p as a function, i.e. q ⊇ p.

(ii) The set of α ∈ Lim(ω2), with dom(p)∩ [α, α+ω) 6= dom(q)∩ [α, α+ω)

and dom(p) ∩ [α, α + ω) 6= ∅, is finite.

It is easy to check that P is a notion of forcing. We will henceforth abuse

notation by writing p ∈ P rather than p ∈ P when p is a condition in this forcing.

Theorem 5.1.3. Let V be a model of ZFC such that V � ♦ + GCH, and let G be

a P-generic filter over V . Then the generic extension V [G] satisfies the following:

(i) ωV1 = ω
V [G]
1 and ωV2 = ω

V [G]
2

(ii) ♣

(iii) ¬CH.

For the rest of this section we fix G to be a specific P-generic filter over V , as

above; we split the proof of the theorem into a series of lemmas and a proposition:

Proposition 5.1.4. Let ḟ be a P-name for a function and p ∈ P be a condition

such that p 
 “ḟ : ωV1 → ωV1 ”. Then there is an unbounded set Ap,ḟ ⊆ ω1 in V

and a function gp,ḟ : Ap,ḟ → ω1 also in V such that for every ordinal δ < ωV1 there

exists a qδ ≤P p in P for which qδ 
 “gp,ḟ � (Ap,ḟ ∩ δ) = ḟ � (Ap,ḟ ∩ δ)”.

Proof We will make use of the following ∆-system Lemma: if κ<κ = κ, and W

is a collection of sets of cardinality less than κ, with |W | = κ+, then there is a
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U ⊆ W with |U | = κ+ and a set v such that for any distinct x, y ∈ U we have

x ∩ y = v. (For a proof of this Lemma see [19, II].)

Now fix p and ḟ to be as in the statement of the Proposition. We define two

sequences 〈pα : α < ω1〉 and 〈qα : α < ω1〉 of conditions in P, and a sequence

〈uα : α < ω1〉 of finite subsets of ω2, by induction. Let p0 = p = q0 and u0 = ∅.

When α = β + 1 and pβ, qβ and uβ are defined, we choose qα to be a condition

such that qα ≤P pβ and qα 
 “ḟ(α) = γα” for some countable ordinal γα. Let pα

be equal to:

pβ ∪
(
qα �

⋃
{[ζ, ζ + ω) : ζ ∈ Lim(ω2) and dom(pβ) ∩ [ζ, ζ + ω) = ∅}

)
.

This gives us pα ≤P pβ. Set uα to be:

{ζ ∈ Lim(ω2) : qα � [ζ, ζ + ω) 6= pβ � [ζ, ζ + ω) and pβ � [ζ, ζ + ω) 6= ∅}.

When α is a limit ordinal, let p′α =
⋃
β<α pβ, which will be a condition in P due

to the way we are constructing 〈pα : α < ω1〉, and choose a condition qα such that

qα ≤P p
′
α and qα 
 “ḟ(α) = γα” for some γα < ω1. Let pα be equal to:

p′α ∪
(
qα �

⋃
{[ζ, ζ + ω) : ζ ∈ Lim(ω2) and dom(p′α) ∩ [ζ, ζ + ω) = ∅}

)
.

Set uα to be:

{ζ ∈ Lim(ω2) : qα � [ζ, ζ + ω) 6= p′α � [ζ, ζ + ω) and p′α � [ζ, ζ + ω) 6= ∅}.

The collection {uα : α < ω1} is an uncountable set of finite sets, so by the ∆-

system Lemma there is a cofinal subsequence 〈uαε : ε < ω1〉 and a finite set u ⊆ ω2
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such that for all i, j < ω1, uαi ∩ uαj = u and because there are only countably

many possibilities for qαi �
⋃
β∈u[β, β + ω) we can choose this cofinal subsequence

to have the further property that qαi �
⋃
β∈u[β, β + ω) = qαj �

⋃
β∈u[β, β + ω) for

all i, j < ω1, and to be such that if i < j < ω1 then

{β ∈ Lim(ω2) : qαj � [β, β + ω) 6= qαi � [β, β + ω) and qαi � [β, β + ω) 6= ∅}

is a subset of u.

This latter requirement is possible because if we are given an i < ω1 then

dom(qαi) is always countable and so, by the fact that these sets form a ∆-system,

we can find a countable ordinal α′ for which all αj with α′ < αj < ω1 are such

that qαj meets this requirement.

Once this is done, the sequence 〈qαε : ε < ω1〉 will be a decreasing sequence of

conditions such that any countable initial subsequence 〈qαε : ε < γ < ω1〉 has a

lower bound in P. We define the lower bound to be: qαγ =
⋃
ε<γ qαε .

To see that this is the case, let i < j be less than γ. The only β ∈ Lim(ω2) for

which qαi and qαj both differ from pαj on the interval [β, β + ω) are those β ∈ u,

in which case we have chosen qαi and qαj to be identical on this interval, or those

where qαi � [β, β + ω) is empty. This means that qαγ =
⋃
ε<γ qαε is a condition in

P, and is a lower bound to all qαε for ε < γ, and is also less than p.

So any countable initial subsequence 〈qαε : ε < γ < ω1〉 has a lower bound, qαγ .

Let Ap,ḟ = {αε : ε < ω1}. Then the function gp,ḟ : Ap,ḟ → ω1, given by setting
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gp,ḟ (αε) = γαε , can be defined in V , by the definability of the forcing relation, and

is such that qαγ 
 “gp,ḟ � (Ap,ḟ ∩αγ) = ḟ � (Ap,ḟ ∩αγ)”. The sequence 〈αε : ε < ω1〉

goes cofinal in ω1, so for an arbitrary δ < ω1 we can find a qδ as required.

�

Lemma 5.1.5. Let V and G be as in Theorem 5.1.3, then ωV1 = ω
V [G]
1 .

Proof Assume this is not the case. Let p be a condition and ḟ be a P-name for

a function such that p 
 “ḟ : ωV1 → ω and ḟ is injective”. Applying Proposition

5.1.4 gets us a function gp,ḟ and an uncountable set Ap,ḟ ⊆ ω1, both in V , such

that gp,ḟ : Ap,ḟ → ω1 and which witnesses the Proposition. But gp,ḟ ∈ V so cannot

both be injective and have ran(gp,ḟ ) ⊆ ω. Let δ < ω1 be such that gp,ḟ � (Ap,ḟ ∩ δ)

is either not injective or its range is not a subset of ω. Then we can find a qδ ≤P p

as in the conclusion of Proposition 5.1.4, in which case we have qδ 
 “ḟ is both

injective and not injective,” or qδ 
 “ran(ḟ) ⊆ ω and ran(ḟ) 6⊆ ω”, which either

way is a contradiction.

�

Lemma 5.1.6. Let V and G be as in Theorem 5.1.3, then ωV2 = ω
V [G]
2 .

Proof The result follows from the fact that P has the ℵ2-c.c. To see this, assume

otherwise and let 〈pα : α < ω2〉 be an antichain of size ℵ2. Then the set {{β ∈

Lim(ω2) : dom(pα) ∩ [β, β + ω) 6= ∅} : α < ω2} is a collection of countable

sets. V � GCH, so applying the ∆-system Lemma (as stated in the proof of
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Proposition 5.1.4) gives us a subsequence 〈pαε : ε < ω2〉 such that for all i, j < ω2

we have some fixed u for which {γ ∈ Lim(ω2) : dom(pi) ∩ [γ, γ + ω) 6= ∅} ∩

{γ ∈ Lim(ω2) : dom(pj)∩ [γ, γ +ω) 6= ∅} = u. If any two such pi and pj are equal

when restricted to
⋃
γ∈u[γ, γ + ω) then they will be compatible elements, by the

definition of the forcing. Furthermore, u is a countable set. But this means there

can only be ω1 many functions f :
⋃
γ∈u[γ, γ+ω)→ 2, because V � 2ω = ω1. So by

the pigeonhole principle we can find a cofinal subsequence of our original antichain,

〈pαε : ε < ω2〉, consisting of pairwise compatible conditions, which contradicts its

being an antichain.

�

Lemma 5.1.7. Let V and G be as in Theorem 5.1.3, then V [G] � ¬CH.

Proof The generic function G′ =
⋃
G is a total function from ω2 to 2 because

for each α < ω2 the set Dα = {p ∈ P : α ∈ dom(p)} is a dense subset of P in V .

For each α ∈ Lim(ω2), the set Nα = {n < ω : G′(α + n) = 1} is a subset of ω

in V [G]. Let α < β both be in Lim(ω2), then D(α,β) = {p ∈ P : 〈p(α + n) : n <

ω〉 6= 〈p(β + n) : n < ω〉} is a dense subset of P, because p � [α, α+ ω) is finite for

any α ∈ Lim(ω2). So for any α < β in Lim(ω2) we get Nα 6= Nβ, giving us a set

{Nα : α < ω2} of ℵ2 distinct subsets of ω in V [G], by Lemma 5.1.6.

�

Lemma 5.1.8. Let V and G be as in Theorem 5.1.3, then V [G] � ♣.
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Proof Let 〈Aδ : δ < ω1〉 be a witness to ♣ in V . Let ḟ , τ̇ be P-names and

p ∈ P be such that p 
 “ḟ : ω1 → ω1 is injective and τ̇ = ran(ḟ)”. Then apply

Proposition 5.1.4 to find in V a gp,ḟ and Ap,ḟ with the properties stated there. Let

B = ran(gp,ḟ ), which will be an uncountable set in V . Let δ < ω1 be such that

Aδ ⊆ B, then there is a δ′ < ω1 such that Aδ is contained in ran(gp,ḟ � (Ap,ḟ ∩ δ′)).

Then let qδ
′

be as defined in Proposition 5.1.4, giving qδ
′ ≤ p and qδ

′

 “Aδ ⊆ τ̇”.

Since p was arbitrary, except for the properties stated above, this establishes that

if r and τ̇ are such that r 
 “τ̇ ∈ [ω1]ω1” then the set of conditions forcing Aδ ⊆ τ̇

for some δ < ω1 is dense below r. Hence 〈Aδ : δ < ω1〉 remains a witness to ♣ in

V [G]. (Strictly speaking we need to show there are stationary many such δ, but

in fact it is sufficient to just show that there is at least one. Here we are implicitly

using Theorem 6.1.2, which is proved in the next chapter. A direct proof without

using this theorem is possible, but involves a slightly longer argument.)

�

This completes the proof of Theorem 5.1.3 and consequently of Theorem 5.1.1.

We have in fact proved that every witness to ♣ in the ground model remains a

witness to ♣ in the generic extension. This fact gives us the following:

Remark 5.1.9. Let T be a normal Suslin tree in V . Then T is a normal Suslin

tree in V [G].

Proof By Corollary 4.1.5, see Chapter 4.

56



�

In fact, every Suslin tree in V , whether normal or not, remains Suslin in V [G],

as discussed in Chapter 4.

5.2 A different approach to Con(♣ + ¬CH)

Now we consider whether the same result can be obtained by starting with a model

of ¬CH and ¬♣ (for example, a model of Martin’s Axiom, MA(ω1)) and forcing

to get a ♣-sequence without also forcing CH to hold. Specifically, we ask: when

can there consistently exist a forcing Q in a model V � ZFC + ¬CH + ¬♣ such

that forcing with Q causes ♣ to hold in the generic extension and doesn’t collapse

cardinals?

We will show here that such a Q exists when we assume that a weak version

of ♣ holds in V (one that in particular is not compatible with Martin’s Axiom),

but we would conjecture that in general such a Q need not exist. If such a forcing

could be constructed (in ZFC or from weaker assumptions than those in Theorem

5.2.2, such as •| ) then questions such as Juhasz’s question could potentially be

approached by, for example, starting from a model of ¬CH with no Suslin trees

and forcing ♣ to hold via a forcing that doesn’t collapse cardinals or add Suslin

trees. We do not know if this is possible.

Definition 5.2.1. ♣ω denotes the following statement: there exists a sequence
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〈Aδ : δ ∈ Lim(ω1)〉 such that for all δ ∈ Lim(ω1), |Aδ| = ω and for all A ∈ Aδ

we have sup(A) = δ and otp(A) = ω, and if X ⊆ ω1 is uncountable then the set

{δ ∈ Lim(ω1) : ∃A ∈ Aδ(A ⊆ X)} is stationary.

Theorem 5.2.2. Let V � ZFC + ♣ω. Then there is a c.c.c. forcing Q in V such

that if G is a Q-generic filter over V then V [G] � ♣.

Proof Begin by fixing 〈Aδ : δ ∈ Lim(ω1)〉, a witness to ♣ω in V . We also fix χ

to be a ‘sufficiently large’ cardinal (see the discussion of this term in Chapter 2);

taking χ = 222
ω

will suffice.

We will define Q = 〈Q,≤Q〉 by inductively defining two uncountable sequences

〈Nα : α < ω1〉 and 〈Qα : α < ω1〉. As we go along we will also define an uncountable

sequence of functions 〈fα : α < ω1〉, though we ought to note that we do not in

general define fα at the αth stage of the induction.

We first choose N0, a countable elementary submodel of (H(χ),∈) containing

ω1, in V , and let Q0 be the set:

{f ∈ N0 : f is a partial function from ω1 to 2 and otp(dom(f)) < ωω}.

Now let α = β + 1 and assume that Qβ and Nβ are already defined. If β

is a limit ordinal then assume we have also defined a sequence 〈fγ : γ < β〉.

We describe the construction of Qα. First we choose Nα, a countable elementary

submodel of (H(χ),∈) such that Nβ ⊆ Nα, β ⊆ Nα and if β is a limit ordinal then
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〈fγ : γ < β〉 ∈ Nα and for each A ∈ Aβ the set
⋃
γ∈A fγ is in Nα. We can always

find a suitable Nα by the Löwenheim-Skolem Theorem.

Then let Qα be the set:

{f ∈ Nα : f is a partial function from ω1 to 2

and otp(dom(f)) < ωω and if i < β then f � i ∈ Ni+1}.

When α is a limit ordinal and Qβ is defined for all β less than α, then let

Nα =
⋃
β<αNβ, which is also an elementary submodel of (H(χ),∈). Let Qα =⋃

β<αQβ. We may also need to extend our sequence of functions to be of length α:

specifically, if α is not a limit of limits, so is of the form α′+ω for some α′ < α, then

extend the existing sequence of functions, 〈fγ : γ < α′〉, to a sequence 〈fγ : γ < α〉

that enumerates all of Qα without any repetitions. When α is a limit of limits

then 〈fγ : γ < α〉 will already be defined.

Finally, let Q =
⋃
α<ω1

Qα and let q ≤Q p for p, q ∈ Q if and only if q ⊇ p. We

now prove the following:

Claim 5.2.3. Given W = {rα : α < ω1}, an uncountable set of conditions in Q,

we can find an uncountable U ⊆ ω1 such that {rα : α ∈ U} is a set of pairwise

compatible conditions and for stationary many δ < ω1 there is a countable set

x ⊆ U with otp(x) = ω, sup(x) = δ and such that {rα : α ∈ x} has a lower bound

(i.e. there is a condition q ∈ Q such that for any α ∈ x, q ≤Q rα).
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Proof We will need to make use of the following result of Fodor: if S ⊆ ω1 is

stationary and h : S → ω1 is such that h(α) < α for all α ∈ S (in this case we say

that h is regressive), then there is an ε < ω1 such that the set {α ∈ S : h(α) = ε}

is stationary.

Now, let W be an uncountable set of conditions in Q, as in the statement of

the claim. There is a closed unbounded set of limit ordinals C ⊆ ω1 such that for

δ ∈ C there are uncountably many conditions p ∈ W with sup(dom(p)∩δ) < δ. To

see this, assume not and let T ⊆ ω1 be a stationary set of limit ordinals such that

for δ ∈ T there are at most countably many p ∈ W with sup(dom(p)∩ δ) < δ. Let

γ be such that otp(T ∩γ) = ωω. T ∩γ is countable, so by assumption the following

set must be countable: W ′ = {p ∈ W : sup(dom(p) ∩ δ) < δ for some δ ∈ T ∩ γ}.

Let q ∈ W \W ′. Then sup(dom(q) ∩ δ) = δ for all δ ∈ T ∩ γ, but this means

dom(q) must have order type greater than or equal to ωω, which contradicts the

definition of Q.

We will now define a sequence of conditions in W , 〈pα : α ∈ C〉 where C

is as above, by induction. (Formally, this will be a cofinal subsequence of the

enumeration of W , 〈rα : α < ω1〉, but to avoid an excessive use of subscripts

we write e.g. pβ rather than rαβ .) So let pmin(C) be an arbitrary member of

W . Now assume that α < ω1 and for all i < α, pi has been defined. Choose

pα to be any condition in W not already equal to pi for any i < α, such that
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sup(dom(pα)∩α) < α. C was defined so as to make this possible. For each α ∈ C

we let h(α) = sup(dom(pα) ∩ α), giving us h : C → ω1, a regressive function. By

Fodor’s Lemma we get a stationary set S and some ε < ω1 such that α ∈ S implies

sup(dom(pα) ∩ α) = ε, hence dom(pα) ∩ [ε+ 1, α) = ∅.

Let S ′ ⊆ S be given by:

S ′ = {α ∈ S : for all β < α, sup(dom(pβ)) < α}, which is a stationary set

because the conditions in Q have countable domains. Then for any α, β ∈ S ′,

dom(pα) ∩ dom(pβ) ⊆ ε. But for any α ∈ S ′, pα � ε ∈ Nε+1 by the definition of Q,

and Nε+1 is countable, so there are only countably many possibilities for pα � ε.

There are also only countably many possibilities for the order type of pα.

Thus, because S ′ is uncountable, we can find a ρ < ωω and a function f such

that there is an uncountable S ′′ ⊆ S ′ for which α ∈ S ′′ implies pα � ε = f and the

order type of pα is ρ. We define a sequence enumerating a subset of {pα : α ∈ S ′′}

as follows:

Recall the sequence 〈fγ : γ < ω1〉 we defined in the definition of Q. This

sequence enumerates all conditions in Q with no repetitions. Let α0 = min(S ′′).

Now assume αi is defined for all i < j < ω1. Let αj ∈ S ′′ \ (sup{αi : i < j}+ 1) be

such that pαj is equal to fγ for some γ greater than sup{β < ω1 : ∃i < j(fβ = pαi)}.

This sequence, 〈pαi : i < ω1〉, thins out the set {pα : α ∈ S ′′} so as to ensure

that an increasing subsequence of 〈pαi : i < ω1〉 will correspond to an increasing
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subsequence of 〈fγ : γ < ω1〉.

Let U = {αi : i < ω1}, which is uncountable. Then the sequence 〈pαi : i < ω1〉

is not only a subsequence of the enumeration of W but also a cofinal increasing

subsequence of 〈fγ : γ < ω1〉, which enumerates all of Q. For every i < ω1, let

γi be the unique ordinal such that pαi = fγi . Then U ′ = {γi : i < ω1} is also

an uncountable set. So by the definition of ♣ω there are stationary many δ < ω1

having an A ∈ Aδ with otp(A) = ω and A ⊆ U and sup(A) = δ. Fix such a

δ. To prove the claim we need to show that the set
⋃
γi∈A pαi is a lower bound

to {pαi : γi ∈ A}. First, note that it is a function because pα, pβ agree on their

common domain, for α, β ∈ S ′′, and its domain has order type at most ρ.ω, by

the construction of S ′′. This is less than ωω because ρ is less than ωω. Also⋃
γi∈A pαi ∈ Nδ+1 by the definition of Q (our forcing was cooked up specifically for

this purpose; the fact that
(⋃

γi∈A pαi

)
� j ∈ Nj+1 for i < δ follows from the fact

that this is a union of only finitely many functions in Nj+1), so it is a condition

in Q. Setting x = {αi : γi ∈ A} gives us a countable set of the kind stated in

the Claim, and it is clearly the case that otp(x) = otp(A) = ω and x ⊆ U . And

sup(x) is equal to δ for at least stationary many of the δ under consideration. So

the claim is proved.

�

Continuation of the proof of Theorem 5.2.2: Let G be a Q-generic filter
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over V and fG =
⋃
G be the generic function. Let G′ = f−1

G (1), an unbounded

subset of ω1. Fix a series of functions 〈hα : α ∈ Lim(ω1)〉 in V such that hα :

[α, α+ ω)→ α and hα is a bijection. Then we claim that 〈hα [([α, α + ω) ∩G′)] :

α ∈ Lim(ω1)〉 is a ♣-sequence in V [G].

To see this, let p, ḟ and τ̇ be such that p 
 “τ̇ ∈ [ω1]ω1 and ḟ : ω1 → ω1 is

its increasing enumeration”. Then let 〈qα : α < ω1〉 be a sequence of conditions

such that for each α < ω1, qα 
 “ḟ(α) = γα” for some γα < ω1. There is a

closed unbounded set E ⊆ ω1 such that for all δ ∈ E, sup{γi : i < δ} = δ. So

by applying Claim 5.2.3 we can find stationary many δ ∈ E and for each one a

countable set xδ ⊆ ω1 such that qδ =
⋃
{qα : α ∈ xδ} is a condition in Q with

sup(dom(qδ)) = sup{γ : qδ 
 “γ ∈ τ̇”} = δ. Let Y = h−1
δ [{γ : qδ 
 “γ ∈ τ̇”}], a

subset of [δ, δ + ω). Then qδ+ = qδ ∪ hYδ , where hYδ is the function with domain

[δ, δ + ω) such that hYδ [Y ] = {1} and hYδ [[δ, δ + ω) \ Y ] = {0}, is a condition in Q

and clearly it is the case that qδ+ 
 “ran(hδ � ([δ, δ + ω) ∩ G′)) ⊆ τ̇”. So we have

shown that the set of δ ∈ Lim(ω1) for which there exists a dense (below p) set

of conditions forcing “hδ [([δ, δ + ω) ∩G′)] ⊆ τ̇” is stationary. Hence the sequence

〈hα [([α, α + ω) ∩G′)] : α ∈ Lim(ω1)〉 is a ♣-sequence in V [G].

It remains to check that Q does not collapse cardinals. But this is an immediate

Corollary to Claim 5.2.3, which actually establishes that the forcing has a very

strong form of the countable chain condition (stronger even than the Knaster
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property).

�
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Chapter 6

Sometimes the Same: ♣ and the

Invariance Property

In this chapter, and in Chapters 7 and 8, we define several variations on the

axiom ♣ and ask whether they are formally equivalent (either in ZFC or with

the assumption of extra axioms); we present both positive and negative results.

Consistency results are dealt with in the latter two chapters, while the present

chapter is devoted to giving combinatorial results.

We begin by observing that ♦ is formally equivalent to many of its apparent

weakenings and strengthenings: this phenomenon is widely documented (see [19,

II] or Section 6.1, below) and leads us to say, following [9], that ♦ has an invariance

property. The extent to which ♣ shares this invariance property is not as widely
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known, although the paper [9] has answered several key questions in this area.

Our purpose here and in the following two chapters is to extend the known results

on this and to refine the techniques that can be used to attain them.

In this chapter, for the first time, we will work with slightly different definitions

of both ♦ and ♣, which allow us to take a stationary set as a parameter and which

can be immediately generalised to uncountable regular cardinals other than ω1. So

let S be a stationary subset of a regular cardinal λ, consisting only of limit ordinals.

We generalise ♦ and ♣ as follows:

(♦(S)) There exists a sequence 〈Bδ : δ ∈ S〉 such that Bδ ⊆ δ for all

δ ∈ S and if X ⊆ λ, where λ = sup(S), then the set {δ ∈ S : X ∩ δ =

Bδ} is a stationary subset of λ.

(♣(S)) There exists a sequence 〈Aδ : δ ∈ S〉 such that Aδ ⊆ δ with

sup(Aδ) = δ, for all δ ∈ S, and if X ∈ [λ]λ, where λ = sup(S), then

the set {δ ∈ S : Aδ ⊆ X} is a stationary subset of λ.

The specific axioms ♣ and ♦ that we have been working with up to now

are therefore ♣(Lim(ω1)) and ♦(Lim(ω1)) respectively, though in future we will

denote them ♣(ω1) and ♦(ω1) for the sake of convenience. Our notation for ♣(S)

and ♦(S) does not make explicit reference to λ, but it will always be clear from

context.
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6.1 The invariance property of ♦

Perhaps the most well-known result exemplifying the invariance property of ♦ is

due to K. Kunen, who considered the following axiom:

(♦−(S)) Let λ = κ+ and S ⊆ λ be stationary. Then there exists a

sequence 〈Bδ : δ ∈ S〉, for which Bδ = {Bi
δ : i < κ} and Bi

δ ⊆ δ for each

δ ∈ S and i < κ, such that if X ⊆ λ then the set {δ ∈ S : X ∩ δ ∈ Bδ}

is a stationary subset of λ.

Kunen proved that this apparent weakening of ♦ is not in fact a weakening

at all. The proof generalises to any uncountable successor ordinal λ, and any

stationary S:

Theorem 6.1.1 (Kunen). ♦−(S)↔ ♦(S).

Proof See [19, II].

�

Many other equivalent versions of ♦ have since been found, all of which seem at

first sight to be substantially different statements; see for example [6]. (We should

point out, however, that there are also many variants of ♦ that are known to be

strictly weaker or stronger that ♦: for instance ♦∗ and ♦+ are both stronger. See

[19, II].) Equivalences between different versions of ♣ have not been explored to

the same extent. The equivalence of the following two statements is perhaps the
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most widely known positive result in this vein. Let S be a stationary subset of a

regular uncountable cardinal λ:

(♣1(S)) There exists a sequence 〈Aδ : δ ∈ S〉 such that Aδ ⊆ δ with

sup(Aδ) = δ, for all δ ∈ S, and if X ∈ [λ]λ then the set {δ ∈ S : Aδ ⊆

X} is a stationary subset of λ.

(♣2(S)) There exists a sequence 〈Aδ : δ ∈ S〉 such that Aδ ⊆ δ with

sup(Aδ) = δ, for all δ ∈ S, and if X ∈ [λ]λ then the set {δ ∈ S : Aδ ⊆

X} is non-empty.

Theorem 6.1.2. ♣1(S)↔ ♣2(S).

Proof ♣1(S)→ ♣2(S) is trivial, so we prove ♣2(S)→ ♣1(S).

In fact, we show that a witness to ♣2(S) is also a witness to ♣1(S). Let

〈Aδ : δ ∈ S〉 witness ♣2(S), and X be in [λ]λ. Assume that C ⊆ λ is a closed

unbounded set having empty intersection with {δ ∈ S : Aδ ⊆ X}. Choose an

increasing sequence of ordinals less than λ, denoted 〈γα : α < λ〉 such that if α is

a successor ordinal then γα ∈ C and if α is a limit ordinal then γα ∈ X. Both C

and X are cofinal in λ so this can be easily done. Then {γα : α ∈ Lim(λ)} ⊆ X

is unbounded so there is a δ ∈ S with Aδ ⊆ {γα : α ∈ Lim(λ)} ⊆ X. From our

construction of 〈γα : α < λ〉 we can find a set of ordinals in C with supremum δ,

hence δ ∈ C because it is closed. This is a contradiction.
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There is a good explanation as to why Theorem 6.1.2 is perhaps the only well-

known example of an equivalence between two variants of ♣: it is one of only very

few such statements that are actually true. We give a further example in Corollary

6.2.4, but most of the variants of ♣ that we consider in this thesis can be shown

to be pairwise inequivalent (see Chapters 7 and 8).

However, we have seen in Chapter 1 that (♣ + CH) is equivalent to ♦; in

fact, many weaker variants of ♣ are also equivalent to ♦ in the presence of CH.

So if the Continuum Hypothesis holds, the equivalence of two different variations

on ♣ can often be inferred from the fact that they are both equivalent to ♦. We

conclude from this that the invariance property of ♣ is dependent on the cardinal

arithmetic statements that are assumed to hold in the set-theoretic universe. In

this chapter we show that, even with seemingly weak cardinal arithmetic assump-

tions (in particular, those that allow ♦ to fail), we can find non-trivial variants of

♣ that are formally equivalent. Our technique derives from the proof of a recent

theorem of Shelah that improved on a classical result of Gregory:

Definition 6.1.3. Let λ and κ be infinite regular cardinals with κ < λ. Then

Sλκ denotes the set {α < λ : cf(α) = κ}, which will always be stationary. And

Sλ6=κ = {α < λ : cf(α) 6= κ}, which will be stationary when λ > ω1.

Theorem 6.1.4 (Gregory, [13]). If κ is regular and λ is such that λκ = λ and
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2λ = λ+, then ♦(Sλ
+

κ ) holds.

Shelah’s result removes one of the conditions from this theorem, giving us full

equivalence between ♦(λ+) and 2λ = λ+:

Theorem 6.1.5 (Shelah, [29]). Let λ be uncountable and S ⊆ Sλ
+

6=cf(λ) be a sta-

tionary subset of λ+. If 2λ = λ+ then there exists a sequence witnessing ♦(S).

Notation 6.1.6. We will write CHλ to denote the statement that 2λ = λ+.

Shelah’s result established the equivalence between CHλ and ♦(λ+) for all un-

countable cardinals λ, but there remain open questions concerning the stationary

sets S that can be taken as parameters. For example, when λ is singular it is not

known whether ♦(Sλ
+

cf(λ)) follows from CHλ. M. Zeman proved that the answer

is positive assuming the weak square, �∗λ (see [33]). A. Rinot isolated the use

of �∗λ in this proof and was able to replace it with a weaker assumption called

the Stationary Approachability Property (SAPλ), see [26]. The common methods

used in all of these proofs are foreshadowed in at least two classical results of

combinatorial set theory: Shelah’s theorems on club guessing and Kunen’s result

in Theorem 6.1.1. Both Theorem 6.1.5 and 6.1.1, as well as several club guessing

theorems, follow from our results in this chapter as specific instances.
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6.2 ♣ with multiple guesses

We begin by defining a weakening of ♣(S) that generalises the axiom ♣ω we

encountered in the previous chapter. Again this axiom asserts the existence of a

sequence indexed by a stationary set of limit ordinals, but rather than presenting

us with a cofinal subset of δ, for each δ in the indexing set, the sequence now

presents us with a set of cofinal subsets of δ. We signify this by writing Aδ instead

of Aδ, and we specify some bound on the size of Aδ to avoid trivialities. The axiom

♣ω was first introduced by M. Rajagopalan in [25].

Definition 6.2.1. For λ a regular cardinal, κ < λ a cardinal, and S ⊆ λ a

stationary set, the axiom ♣κ(S) is the statement that there exists a sequence

〈Aδ : δ ∈ S〉 such that |Aδ| = κ for all δ ∈ S, and for every unbounded subset

X ⊆ λ there exists a δ ∈ S and an Aiδ ∈ Aδ, such that Aiδ ⊆ X and sup(Aiδ) = δ.

Notation 6.2.2. Let κ and λ be ordinals and X ⊆ κ × λ. Then for i < κ, let

(X)i = {β < λ : (i, β) ∈ X}.

Theorem 6.2.3. Let κ < λ be cardinals, with λ regular. If λκ = λ then ♣κ(S)↔

♣(S), for any stationary S ⊆ λ.

Proof Let 〈Aδ : δ ∈ S〉 be a witness to ♣κ(S) and let 〈Aiδ : i < κ〉 enumerate Aδ

for each δ ∈ S. Let 〈Dα : α < λ〉 be an enumeration of [κ× λ]≤κ, which is possible

because λκ = λ and |κ× λ| = λ. Then for some i < κ the sequence 〈Bi
δ : δ ∈ S〉,
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given by setting Bi
δ = δ∩

⋃
α∈Aiδ

(Dα)i for all δ ∈ S (unless this gives us a bounded

subset of δ, in which case choose an appropriate Bi
δ arbitrarily) is a witness to

♣(S).

To prove this, assume it is not the case. Then for each i < κ there is an

unbounded set Xi ⊆ λ and a closed unbounded set Ei ⊆ λ such that Xi is not

a superset of Bi
δ for any δ ∈ Ei ∩ S. Let E =

⋂
i<κEi, and for each i < κ, let

〈xiε : ε < λ〉 be an increasing enumeration of Xi. Then set Zε =
⋃
i<κ ({i} × {xiε}).

Clearly each Zε has size κ, and is a subset of κ× λ.

We define two sequences of ordinals 〈αρ : ρ < λ〉 and 〈βρ : ρ < λ〉 by induction.

Let α0 be the least ordinal such that Z0 = Dα0 , and let β0 = 0. Assume αµ and

βµ are defined for all µ < ρ. Let αρ be the least ordinal greater than sup{xiβµ : i <

κ, µ < ρ} so that if βρ is such that Zβρ = Dαρ then min({xiβρ : i < κ}) is greater

than sup({αµ : µ < ρ}). Fix βρ to be as specified. This completes the definitions

of 〈αρ : ρ < λ〉 and 〈βρ : ρ < λ〉.

The set {αρ : ρ < λ} is an unbounded subset of λ, so there will be some j < κ

and a stationary S ′ ⊆ S such that for δ ∈ S ′ we have Ajδ ⊆ {αε : ε < λ}. (The

existence of such a j follows from the fact that the union of κ many non-stationary

subsets of λ cannot be stationary, so assuming there is no such j gives an immediate

contradiction. Of course, j depends on the set {αρ : ρ < λ}, otherwise the theorem

would be trivial.)
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Let δ ∈ S ′∩E; there are stationary many such δ. We have set Bj
δ =

⋃
α∈Ajδ

(Dα)j

and Ajδ is a subset of {αρ : ρ < λ}, so for all β ∈ Ajδ there is an ε with Dβ = Zε =⋃
i<κ ({i} × {xiε}). Hence Bj

δ ⊆ Xj. The fact that sup(Bj
δ) = δ follows from the

construction of the sequence 〈αρ : ρ < λ〉. This contradicts our choice of Xj and

the statement is proved. The reverse direction of the theorem is trivial.

�

It is worth noting that Kunen’s result in Theorem 6.1.1 is a specific instance of

the above theorem, telling us that ♣(ω1)↔ ♣ω(ω1) if CH holds (though to obtain

this fact from Kunen’s proof we would have to reason via the chain of equivalences:

(CH +♣ω(ω1))↔ ♦ω(ω1)↔ ♦(ω1)↔ (CH +♣(ω1))).

We also obtain the following ZFC result:

Corollary 6.2.4. For n < ω, λ regular and S ⊆ λ stationary, ♣n(S) is equivalent

to ♣(S).

This answers a question asked by Rajagopalan in [25].

6.3 Another weak ♣ principle

We now prove a similar result for a variation on ♣(S) where the guessing property

is weakened from subsethood to cofinal intersection. This holds trivially if we don’t

put some kind of bound on the size of each Aiδ (otherwise we could set Aiδ = δ).
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Even with such a bound, a version of this principle holds in ZFC for successor

cardinals greater than ω1.

Definition 6.3.1. For λ a regular cardinal, η < λ a cardinal, and S ⊆ λ a

stationary set, the axiom ♣∼η,κ(S) is the statement that there exists a sequence

〈Aδ : δ ∈ S〉 with Aδ = {Aiδ : i < κ} and |Aiδ| < η for all δ ∈ S and i < κ, such

that for any cofinal subset X ⊆ λ the following set is stationary: {δ ∈ S : ∃i < κ

(sup(Aiδ ∩X) = δ)}.

When λη = λ this apparent weakening is equivalent to ♣κ(S). We prove this

by using a sequence of possible counterexamples to filter out those x ∈ Aiδ that

prevent 〈Aδ : δ ∈ S〉 from having the required guessing property.

Assuming λη = λ, once we have fixed a ♣∼η,κ(S)-sequence 〈Aδ : δ ∈ S〉 and an

enumeration 〈dα : α < λ〉 of [η × λ]≤η then we can make the following definition:

Definition 6.3.2. For a sequence of sets 〈Xα : α < γ ≤ η〉 with Xα ∈ [λ]λ for

each α < γ, we define V̄ δ,i (for δ ∈ S and i < κ) to be the sequence 〈V δ,i
α : α ≤ γ〉

where V δ,i
α = {ε ∈ Aiδ : for all β < α, (dε)β ⊆ Xβ}.

Lemma 6.3.3. If 〈Aδ : δ ∈ S〉 is a witness to ♣∼η,κ(S) and 〈Xα : α < γ〉 is such

that for each α < γ there exists a club set Eα with δ ∈ Eα∩S implying that either

V δ,i
α+1 ( V δ,i

α or sup(V δ,i
α ) < δ for all i < κ, then we must have γ < η.

Proof Assume not. Then let 〈Xα : α < η〉 be a sequence contradicting the lemma,

and 〈Eα : α < η〉 the associated club sets. Let E ′ =
⋂
α<η Eα, and let 〈ξαµ : µ < λ〉
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be the increasing enumeration of Xα. Then the family of sets {eµ : µ < λ}, defined

by setting eµ = 〈ξαµ : α < η〉 for all µ < λ, is a subset of [η × λ]≤η, so there is a

sequence 〈εµ : µ < λ〉 of ordinals less than λ such that dεµ = eµ for each µ < λ.

Then if β < η we have (eµ)β = {ξβµ}, so (eµ)β ⊆ Xβ. Let δ ∈ S and i < κ be such

that sup(Aiδ ∩Y ) = δ, where Y = {εµ : µ < λ}. Hence Aiδ ∩Y ⊆ V δ,i
α for all α < η,

so sup(V δ,i
α ) = δ for all α < η, and because δ ∈ E ′ this means that we must have

V δ,i
α+1 ( V δ,i

α , for all α < η, giving us a strictly decreasing chain under containment,

of length η. But V δ,i
0 ⊆ Aiδ and |Aiδ| < η, which is a contradiction.

�

Lemma 6.3.4. Having fixed a ♣∼η,κ(S)-sequence as above, let 〈Xα : α < γ <

η〉 be a maximal sequence satisfying the conditions of Lemma 6.3.3. Then the

sequence 〈Bδ = {δ ∩
⋃
ε∈V δ,iγ

(dε)γ : i < κ} : δ ∈ S〉, suitably modified to exclude

bounded subsets of δ, gives us a witness to ♣κ(S).

Proof Assume not. Then let Xγ ∈ [λ]λ be a set contradicting this, so there is

a closed unbounded set Eγ for which δ ∈ Eγ implies that for all i < κ either⋃
ε∈V δ,iγ

(dε)γ 6⊆ Xγ or sup(
⋃
ε∈V δ,iγ

(dε)γ) < δ. Either way we can find a closed

unbounded set Eγ so that Xγ continues the sequence, contradicting its maximality.

�

This gives us:

Theorem 6.3.5. If λ is a regular cardinal and η < λ is a cardinal, such that
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λη = λ, then ♣∼η,κ(S)→ ♣κ(S).

Proof By Lemmas 6.3.3 and 6.3.4.

�

Writing ♣∼η(S) for ♣∼η,1(S), we also get:

Corollary 6.3.6. If λ is a regular cardinal and η < λ is a cardinal, such that

λη = λ, then ♣∼η(S)→ ♣(S).

It is also possible to prove:

Theorem 6.3.7. For λ regular, η and κ cardinals < λ, and S ⊆ λ stationary, if

λκ = λ then ♣∼η,κ(S)→ ♣∼η(S).

Proof The proof of Theorem 6.2.3 can be altered slightly to give this result.

�

Theorems 6.3.5 and 6.2.3 were used implicitly by Shelah to show that CHλ ↔

♦(λ+) for λ an uncountable cardinal. This is because a guessing principle of the

kind given in Definition 6.3.1 holds in ZFC for successor cardinals above ω1.

Theorem 6.3.8. Let λ be uncountable and S ⊆ Sλ
+

6=cf(λ) stationary. Then♣∼λ,cf(λ)(S)

is true in ZFC.

Proof For each δ < λ+ let 〈cδk : k < cf(λ)〉 be such that for j < k < cf(λ) we have

cδj ⊆ cδk, |cδk| < λ, and
⋃
k<cf(λ) c

δ
k = δ (this is possible because each δ < λ+ has

cardinality less than or equal to λ). Let X ⊆ λ+ be unbounded and δ ∈ S be such

76



that sup(X ∩ δ) = δ. Then because cf(δ) 6= cf(λ) there must be some ζ < cf(λ)

with sup(cδζ ∩X) = δ. Hence 〈〈cδk : k < cf(λ)〉 : δ ∈ S〉 witnesses the theorem.

�

Applying Theorems 6.2.3 and 6.3.5, we can conclude the following:

Corollary 6.3.9. If 2λ = λ+ holds, then ♣∼λ,λ(S)→ ♣(S).

Corollary 6.3.10. If S ⊆ Sλ
+

6=cf(λ) is stationary, then 2λ = λ+ → ♣(S).

Combining this with the fact that for S ⊆ λ+, (CHλ + ♣(S)) is equivalent to

♦(S), gives us an alternative proof of Shelah’s main result in [29].

6.4 ♣ restricted to filters

All of the variants of ♣ that we have considered so far have been able to, in some

sense, ‘guess’ arbitrary unbounded subsets of a regular λ. We can form weaker

variants of ♣ by requiring them to guess only those subsets of a regular λ that

are in some fixed uniform filter F on λ (a filter is uniform if it only contains

unbounded sets). “Club guessing” is a widely known example of this, where F is

the club filter.

Definition 6.4.1. For a uniform filter F on a regular cardinal λ, and a stationary

set S ⊆ λ, the axiom ♣F(S) asserts the existence of a sequence 〈Cδ : δ ∈ S〉 with
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sup(Cδ) = δ for all δ ∈ S, such that for all F ∈ F the set {δ ∈ S : Cδ ⊆ F} is

stationary.

We can define variants of ♣F(S) that are analogous to those variants of ♣(S)

that we have already considered in this chapter:

(♣κF(S)) For a uniform filter F on a regular cardinal λ, and a stationary

set S ⊆ λ, the axiom ♣κF(S) asserts the existence of a sequence 〈{Ci
δ :

i < κ} : δ ∈ S〉 with sup(Ci
δ) = δ for all δ ∈ S and i < κ, such that for

all F ∈ F the set {δ ∈ S : ∃i < κ(Ci
δ ⊆ F )} is stationary.

(♣∼η,κF (S)) For a uniform filter F on a regular cardinal λ, and a station-

ary set S ⊆ λ, the axiom ♣∼η,κF (S) asserts the existence of a sequence

〈{Ci
δ : i < κ} : δ ∈ S〉 with sup(Ci

δ) = δ and |Ci
δ| < η for all δ ∈ S and

i < κ, such that for all F ∈ F the set {δ ∈ S : ∃i < κ(sup(Ci
δ∩F ) = δ)}

is stationary.

We can then obtain results analogous to Theorems 6.2.3 and 6.3.5 in ZFC

alone, using completeness properties of the filter rather than cardinal arithmetic.

(We say F is κ-complete for a cardinal κ if the intersection of < κ many sets in F

is also in F . This is sometimes called κ-closed.)

Theorem 6.4.2. Let F be a κ+-complete uniform filter on a regular λ, with κ ≤ λ,

and S ⊆ λ stationary. Then ♣κF(S)→ ♣F(S).
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Proof Let 〈〈Ci
δ : i < κ〉 : δ ∈ S〉 be a witness to ♣κF(S). Then for some j < κ,

〈Cj
δ : δ ∈ S〉 witnesses ♣F(S). To see this, assume not. Then for each i < κ

there is an Fi and a club set Ei witnessing the failure of 〈Ci
δ : δ ∈ S〉 to provide

a stationary set of guesses for Fi. Let E ′ =
⋂
i<κEi and F ′ =

⋂
i<κ Fi, which

are in the club filter and F respectively, by the completeness properties of both.

Choose some δ′ ∈ E ′ ∩ {δ ∈ S : ∃k < κ(Ck
δ ⊆ F ′)}, hence for some k < κ we get

Ck
δ′ ⊆ F ′ ⊆ Fk and δ′ ∈ Ek, which contradicts our choice of Fk and Ek.

�

Theorem 6.4.3. Let F be an η+-complete uniform filter on a regular λ, with

η ≤ λ, and S ⊆ λ stationary. Then ♣∼η,κF (S)→ ♣κF(S).

Proof The proof is similar to that of Theorem 6.3.5. Let 〈{Ci
δ : i < κ} : δ ∈ S〉

be a witness to ♣∼η,κF (S). For a sequence of sets 〈Fα : α < γ〉 with Fα ∈ F for

each α < γ, we define W̄ δ,i to be the sequence 〈W δ,i
α : α < γ + 1〉 where W δ,i

0 = Ci
δ

and for β > 0, W δ,i
β = Ci

δ ∩
⋂
α<β Fα. Then if 〈Fα : α < γ〉 is such that for each

α < γ there exists a club set Eα with δ ∈ Eα ∩S implying that for all i < κ either

W δ,i
α ) W δ,i

α+1 or sup(W δ,i
α ) < δ, we must have γ < η.

To see this, assume that 〈Fα : α < η〉 contradicts the claim, and 〈Eα : α < η〉

are the associated club sets. Let E ′ =
⋂
α<η Eα and F ′ =

⋂
α<η Fα, which are in

the club filter and F respectively.

Let S ′ ⊆ S be the set {δ : ∃i < κ (sup(Ci
δ ∩ F ′) = δ)}. Take some δ′ ∈ S ′ ∩E ′.
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Clearly for some i < κ, sup(W δ′, i
η ) = δ′ because δ′ ∈ S ′. So for all α < η we must

have W δ′,
α ) W δ′,

α+1, giving us a strictly decreasing chain under containment, of

length η. As before, this is a contradiction.

So let 〈Fα : α < γ < λ〉 be a maximal sequence of this type. Then the set

〈{W δ,i
η : i < κ} : δ ∈ S〉 is a witness to ♣F(S). If not, we can find an F ∈ F such

that there exists a club set E = {δ : for all i < κ,W δ,i
γ * F or sup(W δ,i

γ ) < δ}. In

which case we can continue our maximal sequence, contradicting its maximality.

�

As before, we can also use the proof of Theorem 6.4.2 to get the result:

Theorem 6.4.4. If F is a κ+-complete uniform filter on a regular λ, and S ⊆ λ

is stationary, then ♣∼η,κF (S)→ ♣∼ηF (S).

From the above theorems, and Theorem 6.3.8, we can conclude:

Theorem 6.4.5. If λ is uncountable, F ⊆ P(λ+) is a λ+-complete uniform filter

and S ⊆ Sλ
+

6=cf(λ) is stationary, then ♣F(S) holds in ZFC.

Proof By Lemmas 6.3.8 and 6.4.4.

�

Club guessing is an instance of this theorem. However, Theorem 6.4.5 does not

strictly extend the known results on club guessing, since it can be shown that there

is a club guessing sequence for λ+, where λ is singular, indexed by S ⊆ Sλ
+

cf(λ). Since

Theorem 6.3.8 fails for such an S the following question is of particular interest:
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Question 6.4.6. For F a λ+-complete uniform filter on λ+, where λ is singular,

is it the case that ZFC ` ♣F(Sλ
+

cf(λ))?

When �∗λ holds (or SAPλ, see [26]) it is known that the answer is yes, but it is

not clear if this is the case in ZFC alone.
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Chapter 7

Consistency Results on ♣ and

Invariance, I

In this chapter we obtain consistency results pertaining to the invariance property

of ♣(ω1). Recall from Chapter 6 that we say ♦ has an invariance property because

many of its apparent weakenings and strengthenings are in fact formally equivalent

to it. We also saw in that chapter that when certain cardinal arithmetic statements

hold several variants of ♣(λ), for a regular cardinal λ, will be formally equivalent.

Thus we can say that in general ♣ will increasingly approximate the invariance

property of ♦ as increasingly stronger cardinal arithmetic statements are assumed.

(Specifically, if we fix a regular λ then a greater number of variations on ♣(λ) can

be proved equivalent as µ increases, where µ is the supremum of {κ : λκ = λ}.)
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We will see in the present chapter, and in Chapter 8, that these equivalences do

not in general hold in ZFC alone. The present chapter is concerned with variations

on ♣(ω1); other uncountable cardinals are dealt with in Chapter 8.

We have defined several variants of ♣(ω1) already in this thesis, and we define

several more below: for any two of them, call them ♣1(ω1) and ♣2(ω1), we can

usually find a forcing that preserves ♣1(ω1) while ensuring that ♣2(ω1) fails to hold

in the generic extension, or vice versa, except where the results in the previous

chapter set limitations to this. The forcing techniques we use to show this are

similar to those seen already in Chapter 5.

In addition to those already defined, we will consider the following variants of

♣(ω1), where S ⊆ ω1 is stationary:

(∼ ♣(S)) There is a sequence 〈Aδ : δ ∈ S〉 such that for all δ ∈ S,

Aδ ⊆ δ, otp(Aδ) = ω and sup(Aδ) = δ, and if X ⊆ ω1 is unbounded

then there is a δ ∈ S such that Aδ \X is finite.

(♣<ω(S)) There is a sequence 〈Aδ : δ ∈ S〉 such that for all δ ∈ S,

Aδ ∈ [P(δ)]<ω with x ∈ Aδ implying x ⊆ δ and sup(x) = δ, and if

X ⊆ ω1 is unbounded then there is a δ ∈ S such that x ⊆ X for some

x ∈ Aδ.

(
♣[otp](S)

)
There is a sequence 〈Aδ : δ ∈ S〉 such that for all δ ∈ S,

Aδ ⊆ δ and sup(Aδ) = δ and otp(Aδ) = δ, and if X ⊆ ω1 is unbounded

83



then there is a δ ∈ S such that Aδ ⊆ X.

With the exception of ♣[otp](S), all of these principles were considered by

Džamonja and Shelah in [9]. There they developed a forcing iteration related

to that of Fuchino, Soukup and Shelah in [11], adapted to deal with forcings where

the iterands are uncountable but have a strong form of the Knaster property and

only contain conditions from the ground model. Aside from the trivial fact that

♣ω(S) is a direct weakening of both ∼ ♣(S) and ♣<ω(S), and all are weakenings

of ♣(S), Džamonja and Shelah proved that no other implications exist between

these principles in ZFC. ♣[otp](S), which is not addressed in their paper, is trivially

stronger than ♣(S); we prove here that it is strictly stronger. We also prove that

♣(S) does not imply ♣(T ) for any disjoint stationary sets S and T in the absence

of CH. These results are dependent on violating the Continuum Hypothesis, as

illustrated by the following simple extension of some well-known theorems:

Theorem 7.0.7. If 2ω = ω1, then ∼ ♣(S)↔ ♣ω(S)↔ ♣<ω(S)↔ ♣[otp](S), and

all are equivalent to ♣(S).

Proof The statement follows if we prove:

(i) ∼ ♣(S)↔ ♣(S),

(ii) ♣ω(S)↔ ♣(S),

(iii) ♣<ω(S)↔ ♣(S),
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(iv) ♣[otp](S)↔ ♣(S).

It is clear that (ii) follows from Theorem 6.2.3, and (ii) immediately implies (iii)

since ♣(S) → ♣<ω(S) → ♣ω(S). Also, (iv) follows from the fact that (CH +

♣(S))↔ ♦(S) and that a witness to ♦(S) can be trivially modified to produce a

witness to ♣[otp](S). This leaves only (i), but it is easy to see that if 〈Aδ : δ ∈ S〉

is a witness to ∼ ♣(S) then 〈Aδ : δ ∈ S〉 is a witness to ♣ω(S), where Aδ = {Anδ :

n < ω} is constructed by letting Anδ be Aδ with the n least elements removed.

Hence ∼ ♣(S)→ ♣ω(S)→ ♣(S) and the theorem is proved.

�

♣(S), for a particular S ⊆ ω1, is stronger than ♣(ω1) and differs from ♣[otp](ω1)

in that even when CH holds it does not seem to be equivalent to ♣(ω1). We will

prove the following two theorems:

Theorem 7.0.8. Con(ZFC)→ Con(ZFC +♣(ω1) + ¬(♣[otp](ω1))).

Theorem 7.0.9. Con(ZFC) → Con(ZFC + ¬CH + ♣(S) + ¬♣(T )), whenever S

and T are disjoint stationary subsets of ω1.

7.0.1 The forcing Pω2

We will prove both Theorems 7.0.8 and 7.0.9 using a single forcing. The argument

will be simplified somewhat by the fact that neither of the two ♣-principles that

we wish to prevent from being true in the generic extension will require us to use
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an iteration. This is not the case with those considered by Džamonja and Shelah

in [9].

Theorem 7.0.10. If S and T are disjoint stationary sets in V and V |= ♦(S) +

2ω1 = ω2, then there is a partial order Pω2 such that if G is a Pω2-generic filter over

V then V [G] |= ♣(S) + ¬♣(T ) + ¬♣[otp](ω1).

To prove this we begin by fixing S, T and V for the rest of this chapter to be

as in the statement of this theorem. To ensure that our forcing preserves ♣, we

use an equivalent version of ♦ that can guess initial sections of sequences of the

form 〈〈bα, g1
α, ..., g

n
α〉 : α < ω1〉, where n ∈ ω, gmα is a countable partial function

from ω1 to 2 for all 1 ≤ m ≤ n and α < ω1, and the 〈bα : α < ω1〉 form a strictly

increasing sequence of countable ordinals. This is defined formally as follows:

Definition 7.0.11. Let S ⊆ ω1 be stationary. Then ♦′(S) is the statement: there

exists a sequence 〈Bα : α ∈ S〉 such that if 〈〈bα, g1
α, ..., g

n
α〉 : α < ω1〉 is a sequence

where n < ω and 〈bα : α < ω1〉 is a strictly increasing sequence of countable

ordinals, gmα ∈ {(f : X → 2) : f 6= ∅ and X ⊆ ω1 and |X| = ω} for all α < ω1 and

1 ≤ m ≤ n, then the following set is stationary:

{δ ∈ S : Bδ = 〈〈bα, g1
α, ..., g

n
α〉 : α < δ〉}.

Notation 7.0.12. Let F = {(f : X → 2) : f 6= ∅ and X ⊆ ω1 and |X| = ω}.
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The axiom ♦′(S) is equivalent to ♦(S), as we will now show. The techniques

are similar to those in [19, II]:

Theorem 7.0.13. ♦(S)↔ ♦′(S).

Proof We first prove ♦(S) → ♦′(S). Let {In : n < ω} be a family of pairwise

disjoint uncountable subsets of ω1 such that
⋃
n<ω In = ω1. Fix a sequence of

bijections 〈ρn : n < ω〉, where ρ0 : I0 −→ ω1 × ω1 and for 1 ≤ m < ω we have

ρm : Im −→ ω1 × F.

Let 〈Dα : α ∈ S〉 be a witness to♦(S). We will use this to construct our witness

to ♦′(S). So given Dδ, if ran(ρ0 � (Dδ ∩ I0)) is an increasing sequence of countable

ordinals indexed by δ, then set 〈bα : α < δ〉 equal to this sequence. If not, then let

it be an arbitrary sequence of countable ordinals indexed by δ. Similarly, for each

1 ≤ m < ω, if ran(ρm � (Dδ∩Im)) is a sequence (of functions) indexed by δ, then let

〈gmα : α < δ〉 be equal to this sequence. Otherwise let it be an arbitrary sequence of

functions indexed by δ. Then we claim that 〈Bδ = 〈〈bβ, g1
β, g

2
β, ...〉 : α < δ〉 : δ ∈ S〉

is a witness to ♦′(S).

To see that this works, let 〈Cα = 〈cα, h1
α, ..., h

n
α〉 : α < ω1〉 be a sequence

of the type we would like to guess. We let X = ρ−1
0 [{(α, cα) : α < ω1}] ∪⋃

1≤m≤n (ρ−1
m [{(α, hmα ) : α < ω1}]). Now observe that for each 1 ≤ m ≤ n there

is a closed unbounded set of δ such that ran (ρm � (δ ∩ Im ∩X)) = {hmα : α < δ}.

Call such a δ good for m. Similarly, there is a closed unbounded set of δ such
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that ran (ρ0 � (δ ∩ I0 ∩X)) = {cα : α < δ}; call such a δ good for 0. Then be-

cause the intersection of countably many closed unbounded sets is itself closed

unbounded, we can find a stationary set of δ that are good for all m ≤ n and such

that Dδ = X ∩ δ. Then it can be seen by our construction of Bδ that Bδ is equal

to 〈Cα : α < δ〉. This completes the proof.

To see that ♦′(S) → ♦(S), let X ⊆ ω1 be arbitrary, and 〈cα : α < ω1〉 its

increasing enumeration. The sequence 〈Cα = 〈cα〉 : α < ω1〉 is of the correct form

to be guessed by ♦′(S) (with n = 0 in this case), allowing us to construct a witness

to ♦(S), denoted 〈Dδ : δ ∈ S〉, by setting Dδ = {cα : α < δ and (α, 〈cα〉) ∈ Bδ} if

〈cα : α < δ〉 is a sequence of countable ordinals, and setting Dδ to be an arbitrary

subset of δ if not.

�

Now, towards the proof of Theorem 7.0.10 we fix a witness to ♦′(S) in V ,

denoted 〈Bδ : δ ∈ S〉. Our forcing will be rigged so as to preserve a particular

♣-sequence, which we define using the sequence 〈Bδ : δ ∈ S〉.

So let δ be in S. Given Bδ = 〈〈bα, g1
α, ..., g

nδ
α 〉 : α < δ〉, we will define the set Aδ

as follows: choose a strictly increasing sequence of ordinals, 〈εl : l < ω〉, that has

order type ω and is cofinal in δ. Given 〈bα : α < δ〉, set Aδ = {bεl : l < ω}. It is

simple to check that 〈Aδ : δ ∈ S〉 forms a witness to ♣(S) in V (in fact, it follows

from our construction of Dδ in the latter half of the proof of Theorem 7.0.13).
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We also make the following definition, to be used when defining our forcing (this

is used to ensure that 〈Aδ : δ ∈ S〉 remains a witness to ♣(S) in the generic

extension), for 1 ≤ n ≤ nδ:

F n
δ =

⋃
l<ω

gnεl

For some values of δ and n, F n
δ will be a function, while for others it will not.

We now define the forcing we will use:

Definition 7.0.14. We will force with the product of ω2 and a single c.c.c. forcing

Q. We define Q like so:

(i) Fix a continuously increasing sequence 〈Ni : i ∈ C〉 of countable elementary

submodels of (H(χ),∈), where χ is a “sufficiently large” cardinal (for an

explanation of this phrase, see Chapter 2) and C is a closed unbounded

subset of ω1 with the property that Nα ∩ ω1 = α for α ∈ C. We also

insist that for all α ∈ C, and all n < ω, if F n
α (as defined above) is a non-

empty well-defined partial function from ω1 to 2, then F n
α ∈ Nmin(C\(α+1))

for 1 < n < nα. There are only finitely many such functions for any α ∈ C

so it is possible to find such a sequence of elementary submodels, by the

Löwenheim-Skolem theorem.

(ii) Q is the set of those countable partial functions f : X ⊆ ω1 → 2 in V with

the following further properties:
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(a) otp(dom(f)) < ωω

(b) f � i ∈ Nmin(C\(i+1)) for all i < ω1

(c) If δ ∈ T then dom(f) ∩ δ < δ.

(iii) The ordering of Q is by extension: f ≤Q g (f is stronger than g) iff f ⊇ g.

Definition 7.0.15. When α is an ordinal we define Pα as follows:

(i) Set Pα = {p : p is a function with dom(p) = α and ran(p) = Q such that

{β < α : p(β) 6= 1Q} is countable}.

(ii) The ordering in Pα is given by q ≤Pα p if and only if for all β < α, q(β) ≤Q

p(β), and

{β < α : p(β) 6= 1Q and q(β) 6= p(β)} is finite.

The support of p, written supp(p), will as usual denote the set {β < α : p(β) 6=

1Q}. We will also make use of the following notation:

Definition 7.0.16. If q, p ∈ Pγ and q ≤Pγ p then we write (abusing notation)

q ≤h p if q � supp(p) = p, and q ≤v p if supp(q) = supp(p). The h and v stand for

horizontal and vertical respectively. Of course, it is possible that q <Pγ p can hold

while q ≤h p and q ≤v p both fail to hold.

We will force with Pω2 . This type of product forcing is based on that of Fuchino,

Shelah and Soukup in [11]. The partial order Q is proper (see the discussion after
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Lemma 7.0.21) and consequently Pω2 is also proper, see [11]. However, we will

not make explicit use of this fact and will later give a direct proof that ω1 is not

collapsed (see Lemma 7.0.23).

We will need the following two technical lemmas, both of which were used in

Chapter 5. They will be used frequently throughout this chapter and the next, so

we state them in full generality here:

Lemma 7.0.17 (The ∆-system Lemma). If κ<κ = κ, and W is a collection of sets

of cardinality less than κ, with |W | = κ+, then there is a U ⊆ W with |U | = κ+

and a set v such that for any distinct x, y ∈ U we have x ∩ y = v. In this case we

say that U forms a ∆-system and v is referred to as the root of the ∆-system.

Lemma 7.0.18 (Fodor’s Lemma). Let λ be a regular cardinal. If S ⊆ λ is

stationary and f : S → λ is such that f(α) < α for all α ∈ S (in which case we

say that f is a regressive function), then there is some ε < λ such that {β < λ :

f(β) = ε} is a stationary subset of λ.

Proof See [15] or [19, II].

�

Lemma 7.0.19. Pω2 has the ℵ2-c.c.

Proof Assume otherwise and let 〈pα : α < ω2〉 be a sequence enumerating an

antichain of size ℵ2. Then the set {supp(pα) : α < ω2} is a collection of countable
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sets. V � CH, so applying the ∆-system Lemma gives us a subsequence 〈pαε : ε <

ω2〉 such that for all i, j < ω2 we have some fixed countable v for which supp(pαi) ∩

supp(pαj) = v. If any two such pαi and pαj are identical when restricted to v then

they will be compatible elements, by the definition of the forcing. There can only

be ω1 many functions f : v → Q, because V � CH. So by the pigeonhole principle

we can find a cofinal subsequence of our original antichain, 〈pαε : ε < ω2〉, consisting

of pairwise compatible conditions, which contradicts its being an antichain.

�

We will also need the following two facts to establish the preservation properties

of our forcing:

Lemma 7.0.20. Let C ⊆ ω1 be a closed unbounded set of limit ordinals. Given

an uncountable set X = {di : i < ω1} of countable subsets of ω1, each with order

type < ωω, there is a β ∈ C such that for δ ∈ C \ β there are uncountably many

i < ω1 with sup(di ∩ δ) < δ.

Proof See the proof of Claim 5.2.3, the lemma is proved there.

�

Lemma 7.0.21. Q has the following properties:

(i) Q has the Knaster property (i.e. given an uncountable set X of conditions

in Q we can find an uncountable subset Y ⊆ X such that any two conditions

in Y are pairwise compatible).
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(ii) Any partial order of the form
∏

i∈I Qi where each Qi = Q and I is finite,

ordered by the product order, has the Knaster property.

(iii) If
∏

i∈I Qi is as in (ii) and 〈pδ : δ < ω1〉 is an uncountable sequence of distinct

elements in
∏

i∈I Qi, then there is an uncountable subsequence 〈pδ(βα)
: α <

ω1〉 such that if x ⊆ ω1 has order type ω then fx,i =
⋃
α∈x

pδ(βα)
(i) is a countable

partial function from ω1 to 2 with otp(dom(fx,i)) < ωω, for each i ∈ I.

Proof It is clear that (iii) ⇒ (ii) ⇒ (i), so we concentrate on proving (iii).

Given 〈pδ : δ < ω1〉, let dδ =
⋃
i∈I

dom(pδ(i)), for each δ ∈ ω1. Then each dδ

is a subset of ω1 of order type less than ωω, because it is a finite union of such

sets. Let ξ be the least ordinal in C (where C is as in Definition 7.0.14) such that

C \ ξ is a final section of C of the type asserted to exist in Lemma 7.0.20. We

define a sequence 〈δβ, εβ : β ∈ C \ ξ〉 by induction. Assume δj, εj are defined for

j ∈ β ∩ (C \ ξ). Let δβ be the least countable ordinal such that δβ 6= δj for any

j ∈ β ∩ (C \ ξ), and sup(dδβ ∩ β) < β. By the previous lemma we know we can

carry out this induction, and it is well-defined even when β = min(C). We then

let εβ = sup(dδβ ∩ β). Then the function h : C \ ξ → ω1 given by h(β) = εβ

is regressive. By Fodor’s lemma there is some ε < ω1 such that for a stationary

subset S1 ⊆ C \ ξ, we have β ∈ S1 ⇒ εβ = ε.

For all β ∈ S1 and i ∈ I we must have pδβ(i) � ε ∈ Nmin(C\(ε+1)), by the

definition of Q, so because I is finite and Nmin(C\(ε+1)) is countable there are only
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countably many possibilities for the sequence 〈pδβ(i) � ε : i ∈ I〉 whenever β is

in S1. There are also only countably many possibilities for 〈otp(pδβ(i)) : i ∈ I〉,

whenever β ∈ S1, since there are only countably many order types < ωω. Hence

we can find a stationary set S2 ⊆ S1 with α, β ∈ S2 implying 〈pδα(i) � ε : i ∈ I〉 =

〈pδβ(i) � ε : i ∈ I〉 and 〈otp(pδα(i)) : i ∈ I〉 = 〈otp(pδβ(i)) : i ∈ I〉; if we couldn’t

find such a set then we would have a partition of S1 into ω many non-stationary

sets, which is contradictory.

Now we will fix S2 to be as above and define the required sequence 〈βα : α < ω1〉

by induction. Let β0 be an arbitrary member of S2. Let α < ω1 and assume 〈βj :

j < α〉 is already defined and is such that for j < k < α, sup(dδ(βj)) < inf(dδ(βk) \ ε)

and βj, βk ∈ S2.

Let J =
⋃
j<α dδ(βj) . Then sup(J) is a countable ordinal. So if β′ ∈ S2 is

such that sup(J) < β′ then we know h(β′) = sup(dδβ′ ∩ β
′) = ε and consequently

dδβ′ ∩ sup(J)\ ε = ∅. Thus we choose βα to be the least member of S2 greater than

sup(J) that has not already been chosen.

To see that this works, and that 〈pδ(βα)
: α < ω1〉 is a subsequence of the

required kind, we first remark that for any two j < k < ω1, pδ(βj) and pδ(βk) are

pairwise compatible. To see this, assume not. Then there is some m ∈ I and

γ < ω1 such that (pδ(βj)(m))(γ) 6= (pδ(βk)(m))(γ). If γ < ε, this contradicts the fact

that βj and βk are both in S2 and hence that 〈pδ(βj)(i) � ε : i ∈ I〉 = 〈pδ(βk (i) � ε :
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i ∈ I〉. So γ > ε, but then we must have that γ ∈ dδ(βj) \ ε, in which case k was

chosen so that γ 6∈ dδ(βk) . This is a contradiction, so all such pδ(βj) and pδ(βk) are

pairwise compatible.

Now to complete the proof of the lemma, let x ⊆ ω1 have order type ω. We

know that fx,i =
⋃
α∈x

pδ(βα)
(i) is a function for all i ∈ I, otherwise pairwise com-

patibility would not hold. We now just need to check that otp(dom(fx,i)) < ωω,

for each i ∈ I. So let m ∈ I, and consider fx,m. For all α ∈ x we have βα ∈ S2, so

pδ(βα)
(m) has a fixed order type, call it ρ. We also know that there is a partition

of sup(x) \ ε into ω many intervals such that the intersection of dom(fx,m) with

each interval has order type ρ, due to the way we defined 〈pδ(βα)
: α < ω1〉 so that

sup(dδ(βj)) < inf(dδ(βk)) \ ε whenever j < k < ω1. Consequently, dom(fx,m) has

order type < ρ.ω. Since ρ < ωω this implies that otp(dom(fx,m)) < ωω, because

ωω is closed under ordinal multiplication.

Therefore 〈pδ(βα)
: α < ω1〉 has the required properties and parts (i), (ii) and

(iii) of the lemma are proved.

�

We write V Pω2 � φ if it is the case that 1Pω2 
 φ. The following lemma

establishes one half of the proof of Theorem 7.0.10. The other half of the proof is

given in Section 7.0.2.

Lemma 7.0.22. V Pω2 |= ¬♣[otp](ω1) + ¬♣(T ).
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Proof We begin by proving V Pω2 |= ¬♣[otp](ω1). Assume otherwise. If we fix a

sequence of functions 〈hδ : δ ∈ Lim(ω1)〉 in V such that hδ : [δ, δ + ω) → δ is a

bijection, any witness to ♣[otp](ω1) in V [G] can be coded by an unbounded subset

of ω1 in V [G]. Let τ̇ be a name for a set that codes a witness to ♣[otp](ω1) in V [G],

ḟ a name for its increasing enumeration, and let p ∈ Pω2 force this. We will write

〈Bδ : δ ∈ Lim(ω1)〉 to denote this witness to ♣[otp](ω1) in V [G] and p′ 
 “γ ∈ Bδ”

to mean p′ 
 “β ∈ τ̇” where β is in [δ, δ + ω) and hδ(β) = γ.

Then there is an α < ω2 such that supp(p) ⊆ α and for every γ < ω1 and

every p′ ∈ Pω2 with p′ ≤ p and supp(p′) ⊆ α there is some r ∈ Pω2 with r ≤ p′

and supp(r) ⊆ α such that r 
 “ḟ(γ) = ε” for some ε < ω1. To see this, let

ζ < ω2, then there are only ω1 many conditions below p in Pω2 with their support

contained in ζ. Each of these conditions has a smaller condition determining the

value of ḟ(γ), for each γ < ω1, so let the function πγ be defined as follows:

If ζ < ω2 and γ < ω1 then:

πγ(ζ) = min{ρ < ω2 : ∀p′ ≤ p (supp(p′) ⊆ ζ ⇒

∃r ≤ p′(supp(r) ⊆ ρ and ∃ε < ω1(r 
 “ḟ(γ) = ε”)))}.

The function πγ is closed on a closed unbounded set of ordinals in ω2, hence

there is a closed unbounded set of ordinals less than ω2 on which πγ is closed for

all γ < ω1. Let α be in this closed unbounded set and be such that supp(p) ⊆ α,

then α is as required.
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Fix such an α. Let G be a Pω2-generic filter over V containing p and write

Gα =
⋃
{r(α) : r ∈ G}. Then Gα is a function from ω1 to 2, so let Xα = {β <

ω1 : Gα(β) = 1}. We will show that for all δ ∈ Lim(ω1)\ωω, the set of p′ ≤ p that

force Aδ 6⊆ Xα is dense below p in Pω2 , completing the proof.

So let p′ ≤ p be a condition in Pω2 and δ be in Lim(ω1) \ ωω. Then the set:

{ε < δ : there exists a q ≤Pω2 (p′ � α) ∪ (1Pω2 � (ω2 \ α)) with

supp(q) ⊆ α and q 
 “ε ∈ Aδ”}

must have order type greater than or equal to ωω. Hence we can find a β < δ

which is in this set and which is not in dom(p′(α)), because dom(p′(α)) has order

type less than ωω by the definition of Q. Let qβ be the condition witnessing

the fact that β is in this set, so that supp(qβ) ⊆ α. Then setting q+ = (qβ �

α)∪ (p′(α)∪ (β, 0))∪ (p′ � (ω2 \α+ 1)) gives us a condition q+ ≤Pω2 p
′ that forces

β ∈ Aδ and β 6∈ Xα, hence forces Aδ 6⊆ Xα. But p′ was an arbitrary condition

below p, so for all δ ∈ Lim(ω1) \ωω the set of conditions forcing Aδ 6⊆ Xα is dense

below p. This contradicts the fact that p forces 〈Aδ : δ ∈ Lim(ω1)〉 to be a witness

to ♣[otp](ω1).

A similar argument establishes that V Pω2 |= ¬♣(T ). Having assumed there is

a p ∈ Pω2 forcing 〈Aδ : δ ∈ T 〉 to be a witness to ♣(T ) (coded by τ̇ , a name for

an uncountable subset of ω1), we can find an α < ω2 as before. Given a p′ ≤ p

we can then find a β < δ for all δ ∈ T such that β 6∈ dom(p′(α)) and then we can
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construct a q+ forcing Aδ 6⊆ Xα exactly as before. This completes the proof of the

lemma.

�

7.0.2 Preservation properties of our forcing Pω2

The proof of the next theorem makes use of an inductive argument that will be

crucial in determining several properties of the generic extension:

Theorem 7.0.23. Forcing with Pω2 does not collapse ω1.

Proof Assume that it does, and that ḟ is a Pω2-name and p forces ḟ : (ω1)V → ω

to be an injective function. Then we define 〈pα, qα, uα : α < ω1〉 by induction:

(i) Let p0 = q0 = p and u0 = ∅.

(ii) Let α = β + 1, and assume that pβ, qβ and uβ are defined. Pick qα to be a

condition such that qα ≤ pβ and for some n < ω we have qα 
 “ḟ(α) = n”.

We then set pα = pβ � supp(pβ) ∪ qα � (ω2 \ supp(pβ)) and let uα = {δ ∈

supp(pα) : qα(δ) 6= pα(δ)}. So uα is a finite set. We also get that qα ≤v

pα ≤h pβ. In fact, pα is the unique condition satisfying this inequality.

(iii) For α limit, begin by defining p′α =
⋃
β<α pβ. This is a condition because pi

and pj for i, j < α are defined so as to agree on all γ ∈ supp(pi) ∩ supp(pj).
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Again, find a qα ≤ p′α such that qα 
 “ḟ(α) = n” for n < ω, and set pα = p′α �

supp(p′α) ∪ qα � (ω2 \ supp(p′α)). Let uα = {δ ∈ supp(pα) : qα(δ) 6= pα(δ)}.

For all α, uα is a finite subset of
⋃
β<α supp(pβ). By the ∆-system lemma,

7.0.17, we can find an uncountable set D ⊆ ω1 and I ∈ [ω2]<ω such that {uα : α ∈

D} is a ∆-system with root I. Since I is finite, by Lemma 7.0.21 (ii) we can find

a D′ ⊆ D such that α, β ∈ D′ implies qα � I and qβ � I are compatible conditions

in the partial order
∏

i∈I Qi where each Qi = Q. We claim that for such α, β ∈ D′

we must also have that qα and qβ are compatible conditions in Pω2 .

To see this, assume without loss of generality that α < β. Then for γ ∈

supp(qβ)\I, if γ ∈ uβ then γ 6∈ uα because uβ∩uα = I, so qα(γ) = pα(γ) by the defi-

nition of uα, and either pα(γ) = pβ(γ) or pα(γ) = 1Q, which means qα(γ) is compat-

ible with qβ(γ) in Q. If γ 6∈ uβ then qβ(γ) = pβ(γ), which means qα(γ) is compatible

with qβ(γ) in Q. Either way, the condition q(α,β) = (pβ � {γ < ω2 : γ 6∈ uα ∪ uβ})∪

(qα � (uα \ I))∪(qβ � (uβ \ I))∪({qβ(γ) ∪ qα(γ) : γ ∈ I}) is therefore a lower bound

to both qα and qβ in Pω2 . And q(α,β) ≤ p because {γ ∈ supp(p) : q(α,β)(γ) 6= p(γ)}

is a subset of uα ∪ uβ and is therefore finite.

To complete the proof, observe that there must be some n′ < ω such that

{α ∈ D′ : qα 
 “ḟ(α) = n′”} is an uncountable set, by the pigeonhole principle.

But any two ordinals in this set, α and β, will be such that q(α,β) is an upper bound

to both qα and qβ, so q(α,β) will force ḟ(α) = ḟ(β) and thus force ḟ to not be an

99



injective function, while itself being a stronger condition than p, which forces the

opposite. This is a contradiction.

�

We are now ready to prove our main theorem:

Lemma 7.0.24. Let p ∈ Pω2 and τ̇ be a name such that p 
 “τ̇ ∈ [ω1]ω1 ” and

let 〈Aδ : δ ∈ S〉 be our previously fixed witness to ♣(S) in V (see the discussion

after Theorem 7.0.13). Then the set of q such that for some δ ∈ S, q 
 “Aδ ⊆ τ̇”

is dense below p.

Proof Initially the proof mimics that of Theorem 7.0.23. We define two sequences

of conditions in Pω2 , 〈pα : α < ω1〉 and 〈qα : α < ω1〉, by induction so that for

all α < ω1, qα ≤ pα ≤ p. We also inductively define uα for all α < ω1 and ζα for

1 ≤ α < ω1:

(i) Begin by setting q0 = p0 = p, and u0 = ∅.

(ii) We handle the successor case first. Let α = β + 1, and assume that pβ and

qβ are defined, as are uβ and ζβ (ζ is not defined if β = 0, but this will not

cause problems). Pick qα to be an arbitrary condition with qα ≤ pβ and such

that for some ζ greater than:

max{α, sup({δ : ∃i < α (qi 
 “δ ∈ τ̇”)})},

we have qα 
 “ζ ∈ τ̇”. Let ζα be the least such ζ, having already chosen qα.
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(We can always find such a qα, unless some qi forces ω1 many ordinals into

τ̇ , in which case the lemma is trivial, so we assume otherwise.) We then set

pα = pβ � supp(pβ) ∪ qα � (ω2 \ supp(pβ)), and let uα = {δ ∈ supp(pα) :

qα(δ) 6= pα(δ)}. So uα is a finite set, by the definition of the forcing, and pα

is the unique condition such that qα ≤v pα ≤h pβ.

(iii) For α a limit ordinal, begin by defining p′α =
⋃
β<α pβ. This is a condition

because pi and pj for i, j < α are defined so as to agree on supp(pi)∩supp(pj),

and α is countable. Find a qα ≤ p′α such that qα 
 “ζ ∈ τ̇” for ζ >

max{α, sup({δ : ∃i < α (qi 
 “δ ∈ τ̇”)})}, set pα = p′α � supp(p′α) ∪ qα �

(ω2 \ supp(p′α)), and let ζα be the least such ζ, having chosen qα. Again, let

uα = {δ ∈ supp(pα) : qα(δ) 6= pα(δ)}.

For all α, uα is a finite subset of
⋃
β<α supp(pβ). By the ∆-system Lemma,

7.0.17, we can find an uncountable set D ⊆ ω1 and I ∈ [ω2]<ω such that {uα :

α ∈ D} is a ∆-system with root I. We now need to find a further uncountable

set D′ ⊆ D; we do this by induction, using 〈dα : α < ω1〉 to denote the increasing

enumeration of D′:

(i) Let d0 = min(D).

(ii) Assume dβ is defined for all β < α. We define dα to be the least ordinal in

D such that udα ∩
⋃
β<α supp(qdβ) = I. To see that this is well-defined, let
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U =
⋃
β<α supp(qdβ) and note that this is a countable set. For γ ∈ U \ I

there is at most one j ∈ D with γ ∈ uj (by the definition of a ∆-system),

so because U is countable and D is uncountable there must exist an ordinal

dα ∈ D with udα ∩
⋃
β<α supp(qdβ) = I as required. Thus dα is well-defined

and our induction is complete.

This ensures that for α, β ∈ D′ with β < α, we have that for γ ∈ supp(qβ) \ I

we have qα(γ) = qβ(γ) = pα(γ) = pβ(γ).

Since I is finite, by Lemma 7.0.21 (iii) we can find an E ⊆ D′ with 〈eα : α < ω1〉

its increasing enumeration such that 〈qeα � I : α < ω1〉 has the properties stated in

that lemma. So if x ⊆ ω1 has order type ω then
⋃
α∈x qeα(i) is a partial function

with a domain having order type < ωω for each i ∈ I.

So let x ⊆ E be a set of order type ω in V . Set qx =
⋃
a∈x qa � (ω2 \ I) ∪

〈
⋃
a∈x qa(ε) : ε ∈ I〉. Whether qx is a condition in our forcing or not will depend

on whether qx(ε) satisfies the requirements (ii)(b) and (ii)(c) in the definition of Q

(see Definition 7.0.14), when ε is in I. But first we need to observe that if qx(ε)

for ε ∈ I satisfies these requirements and hence is a condition then it will be a

stronger condition than each qa for a ∈ x. This is easy to see from the way we

have defined E; for any α ∈ x it is the case that {γ ∈ supp(qα) : qα(γ) 6= qx(γ)} is

finite.

However, qx will not in general be a condition. We need to use our original fixed
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♦′ sequence to find such qx that are conditions and which furthermore establish

that our fixed sequence 〈Aδ : δ ∈ S〉 remains a witness to ♣(S) in V [G].

Let 〈ξm : m < n〉 enumerate I and set D = 〈〈ζeα , qeα(ξ0), ..., qeα(ξn−1)〉 : α <

ω1〉. Recall that our ♦′(S) sequence was cooked up to guess initial sections of

sequences such as D. Let δ ∈ S be such that Bδ = D � δ, otp{eα : α < δ} = δ and

sup{ζeα : α < δ} = δ and for all m < n, sup ({dom(qeα(ξm)) : α < δ}) = δ. These

latter three requirements each hold for a closed unbounded subset of ω1, so it is

possible to find such a δ ∈ S. Then the set A′ = {eα < δ : ζeα ∈ Aδ} is a subset

of E, with order type ω, and our forcing was defined in such a way that F ξm
δ =⋃

i∈A′ qi(ξm) is in Nmin(C\(δ+1)) for all m < n. Hence the set F ξm
δ is a condition in

Q for all m < n, and so q+ = pδ � (ω2 \ {ξm : m < n}) ∪ {(ξm, F ξm
δ ) : m < n} is

a condition extending all members of {qj : j ∈ A′}. And D was defined in such a

way that q+ 
 “Aδ ⊆ τ̇”.

Note that p was arbitrary and {γ ∈ supp(p) : p(γ) 6= qx(γ)} ⊆ I, so q+ < p

and the theorem is proved.

�

The final thing we need to prove is that S remains stationary after forcing with

Pω2 .

Corollary 7.0.25. Let p ∈ Pω2 and τ̇ be a name such that p 
 “τ̇ ∈ [ω1]ω1 is closed

unbounded”. Then the set of q such that for some δ ∈ S, q 
 “δ ∈ τ̇” is dense
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below p.

Proof This is a simple extension to the proof of Lemma 8.0.17. Again we define

an uncountable set of conditions 〈qα : α < ω1〉 forcing ordinals ζα into τ̇ and we

find an uncountable E as before. By the methods used in the earlier proof, we

then find a q+ < p such that for some δ ∈ S, q+ 
 “Aδ ⊆ τ̇”. Then because

sup(Aδ) = δ and q+ forces τ̇ to be a closed subset of ω1 (since q+ extends p) we

must have that q+ 
 “δ ∈ τ̇”. Since p was arbitrary and δ is in S, we obtain the

required result.

�

We could also infer the fact that S remains stationary from Lemma 6.1.2,

which effectively states that ♣(S) is contradictory if S is not a stationary set.

This completes the proof that:

Con(ZFC)→ Con(ZFC + ¬CH +♣(S) + ¬♣(T ) + ¬♣[otp](ω1))1.

7.1 Consistency results using iterated forcing

It remains for us to mention those consistency results that were obtained by

Džamonja and Shelah in [9] using iterated forcing; these are summarised in the

following theorem.

1S. Fuchino and L. Soukup have improved on this result since the time of writing, proving
that there can consistently be further variants of ♣ which sit strictly between ♣ and ♣[otp](ω1).
See [12].
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Theorem 7.1.1 (Džamonja, Shelah).

(a) Con(ZFC) → Con(ZFC + ∼ ♣(ω1) + ¬♣(ω1)),

(b) Con(ZFC) → Con(ZFC + ♣<ω(ω1) + ¬(∼ ♣(ω1))),

(c) Con(ZFC) → Con(ZFC + ∼ ♣(ω1) + ¬♣<ω(ω1)).

Unlike our approach in Section 7.0.2, Džamonja and Shelah used a forcing

iteration of length ω2 to prove Theorem 7.1.1 rather than a product. This seems

to be necessary.
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Chapter 8

Consistency Results on ♣ and

Invariance, II

In this chapter we generalise the consistency results of Chapter 7. We can adapt

the forcing technique we used there so as to apply to variations on ♣(κ+), for any

infinite regular κ. In the general case, however, we encounter limitations that do

not occur in the case where κ = ω; these are discussed at the end of the present

chapter.

Specifically, we are able to prove the following analogue of Theorem 7.0.8:

Definition 8.0.2. Let S ⊆ λ be a stationary subset of a regular cardinal. Then

♣[otp](S) asserts the existence of a sequence 〈Aδ : δ ∈ S〉 such that for all δ ∈ S,

Aδ ⊆ δ and sup(Aδ) = δ and otp(Aδ) = δ, and if X ⊆ λ is unbounded then there
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is a δ ∈ S such that Aδ ⊆ X.

Theorem 8.0.3. Let κ be an infinite regular cardinal. If S and T are disjoint

stationary subsets of Sκ
+

κ in V and V |= ♦(S) + GCH, then there is a partial order

Pκ++ such that if G is a Pκ++-generic filter over V then V [G] |= ♣(S) + ¬♣(T ) +

¬♣[otp](κ+).

As before, we fix S, T and V for the rest of the proof to be two disjoint

stationary subsets of κ+ and a model of ZFC + ♦(S) + GCH respectively. We

will again need to use an alternative but equivalent version of ♦(S):

Definition 8.0.4. ♦′(S) is the statement that there exists a sequence 〈Bα : α ∈ S〉

such that if 〈〈bα, g1
α, ..., g

ρ
α〉 : α < κ+〉 is a sequence where ρ < κ is an ordinal and

〈bα : α < κ+〉 is a strictly increasing sequence of ordinals, gνα ∈ {(f : X → 2) :

f is non-empty and X ⊆ κ+ and |X| = κ} for all α < κ+ and 1 ≤ ν ≤ ρ, then

the following set is stationary:

{δ ∈ S : Bδ = 〈〈bα, g1
α, ..., g

ρ
α〉 : α < δ〉}.

Notation 8.0.5. Let F = {(f : X → 2) : f 6= ∅ and X ⊆ κ+ and |X| = κ}.

The axiom ♦′(S) is equivalent to ♦(S).

Theorem 8.0.6. ♦(S)↔ ♦′(S).

Proof The proof follows that of Theorem 7.0.13, with only minor modifications

needed, so we will not reproduce it here.
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�

As before, let 〈Bδ : δ ∈ S〉 be a fixed witness to ♦′(S) in V . We define a witness

to ♣(S) that will preserved by our forcing:

Definition 8.0.7. Let δ be in S. Given Bδ = 〈〈bα, g1
α, ..., g

ρδ
α 〉 : α < δ〉, we will

define the set Aδ as follows: choose a strictly increasing sequence of ordinals,

〈εl : l < κ〉, that is cofinal in δ. Then set Aδ = {bεl : l < κ}, unless this does not

give us a set of ordinals cofinal in δ, in which case we choose one arbitrarily. This

defines the sequence 〈Aδ : δ ∈ S〉.

Lemma 8.0.8. 〈Aδ : δ ∈ S〉 forms a witness to ♣(S) in V .

Proof The proof is as in Chapter 7, following Lemma 7.0.13.

�

Definition 8.0.9. Let F ρ
δ =

⋃
l<κ g

ρ
εl

for all δ ∈ S and ρ < κ.

It is again not important that for some values of δ and ρ, F ρ
δ will not be

a function, or will be empty. We can now define the forcing we will use. The

similarities with the forcing defined in Chapter 7 are manifest, but nonetheless we

will give the definition in full, due to the central role it will play throughout the

present chapter:

Definition 8.0.10. We force with the product of κ++ and a single forcing Q. We

define Q like so:
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(i) Fix a continuously increasing sequence 〈Ni : i ∈ C〉 of elementary submodels

of (H(χ),∈), where χ is a “sufficiently large” cardinal and C is a closed

unbounded subset of κ+ with the property that Nα ∩ κ+ = α and |Nα| = κ

for all α ∈ C. Also, if α ∈ C is such that sup(C∩α) 6= α and {fi : i < γ < κ}

is a set of functions from κ+ to 2, each of which is in Nα, then
⋃
{fi : i < γ}

is in Nα. That is, Nα for such α is closed under unions of less than κ

many functions from κ+ to 2. We also insist that for all α ∈ C, and all

ρ < κ, if F ρ
α is a non-empty well-defined partial function from κ+ to 2, then

F ρ
α ∈ Nmin(C\(α+1)) for 1 < ρ < ρα.

(ii) Q is the set of those functions f : X ⊆ κ+ → 2 in V , where |X| = κ, with

the following further properties:

(a) otp(dom(f)) < κκ

(b) f � i ∈ Nmin(C\(i+1)) for all i < κ+

(c) If δ ∈ T then dom(f) ∩ δ < δ.

(iii) The ordering of Q is by extension: f ≤Q g iff f ⊇ g.

Definition 8.0.11. We define Pκ++ as follows:

(i) Set Pκ++ = {p : p is a function with dom(p) = κ++ and ran(p) = Q such

that |{β < κ++ : p(β) 6= 1Q}| = κ}.

109



(ii) The ordering in Pκ++ is given by q ≤Pκ++ p if and only if for all β < κ++,

q(β) ≤Q p(β), and

|{β < κ++ : p(β) 6= 1Q and q(β) 6= p(β)}| < κ.

The support of p, supp(p), is defined as usual. We also carry over the notation

q ≤h p and q ≤v p from the previous chapter; the definition given before applies

equally to conditions in Pκ++ .

The following is immediate:

Lemma 8.0.12. Pκ++ has the κ++-c.c.

Proof We can use the ∆-system Lemma, 7.0.17, because GCH holds. The proof

is the same as that of Lemma 7.0.19 in the previous chapter.

�

Lemma 8.0.13. Pκ++ does not collapse cardinals ≤ κ.

Proof It is sufficient to prove that any decreasing sequence of conditions of length

γ < κ has a lower bound in Pκ++ . Let {pα : α < γ < κ} be such a sequence.

Let q ∈ Pκ++ be defined by setting q(i) =
⋃
α<γ pα(i) for all i < κ++. Then

we claim that q is the required lower bound. To see this, we first need to check

that for each i < κ, q(i) is a condition in Q. So let i be less than κ++, then q(i) is

clearly a function because the functions in {pα(i) : α < γ} are pairwise compatible.

Furthermore, its domain will have order type less than κκ because the domain of
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each pα(i) does and γ < κ. It remains to check that q(i) � δ ∈ Nmin(C\(δ+1)) for

all δ < κ. So let δ be less than κ, but then pα(i) � δ ∈ Nmin(C\(δ+1)) for each

α < γ, because they are all conditions in Q, and we insisted that Nmin(C\(δ+1)) be

chosen so as to be closed under unions of less than κ many functions, giving us

the required result.

That q is a condition in Pκ++ follows from the fact that
⋃
α<γ supp(pα) is a

set of size at most κ. And it is a lower bound to each pα for α < γ because

the set {β ∈ supp(pα) : q(β) 6= pα(β)} has size less than κ due to the fact that

{pα : α < γ} is a decreasing sequence in Pκ++ and γ < κ.

�

We will also need the following two facts:

Lemma 8.0.14. Let C ⊆ κ+ be a closed unbounded set of limit ordinals. Then

given a set X = {di : i < κ+} of size κ+ with otp(di) < κκ for all i < κ+, there

is a β ∈ C such that for all δ ∈ C \ β there is an unbounded set Y ⊆ κ+ with

i ∈ Y ⇒ sup(di ∩ δ) < δ.

Proof Assume not, then there is a cofinal subset D ⊆ C witnessing the failure of

the Lemma. Let γ < κ+ be such that D∩γ has order type κκ. By assumption, for

any δ ∈ D ∩ γ, there are at most κ many di whose intersection with δ is bounded

below δ. Hence we can find a j < κ+ such that sup(dj ∩ δ) = δ for all δ ∈ D ∩ γ,

which contradicts dj having order type less than κκ.
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�

Lemma 8.0.15. Q has the following properties:

(i) Q has the κ+-Knaster property. Given a set X, with |X| = κ+, consisting

of conditions in Q, we can find a cofinal subset Y ⊆ X such that any two

conditions in Y are pairwise compatible.

(ii) Any partial order of the form
∏

i∈I Qi where each Qi = Q and I has size κ,

ordered by the product order, has the κ+-Knaster property.

(iii) If
∏

i∈I Qi is as in (ii) and 〈pδ : δ < κ+〉 is a sequence of distinct elements

in
∏

i∈I Qi, then there is a cofinal subsequence 〈pδ(βα)
: α < κ+〉 such that

if x ⊆ κ+ has order type κ then fx,i =
⋃
α∈x

pδ(βα)
(i) is a countable partial

function from κ+ to 2 with otp(dom(fx,i)) < κκ, for each i ∈ I.

Proof We have that (iii) ⇒ (ii) ⇒ (i), trivially.

Part (iii) can be proved by an argument directly analogous to that in the proof

of Lemma 7.0.21, where we define sequences of length κ+ rather than ω1, and then

appeal to the generalised ∆-system Lemma, Lemma 8.0.14 and the fact that, like

ωω, κκ is closed under ordinal multiplication.

�

The following lemmas are all proved by arguments similar to those used in

Section 7.0.2. Only very minor modifications are needed, so we will not give the
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proofs again.

Lemma 8.0.16. Forcing with Pκ++ does not collapse κ+.

Lemma 8.0.17. Let p ∈ Pκ++ and τ̇ be a name such that p 
 “τ̇ ∈ [κ+]
κ+

” and

let 〈Aδ : δ ∈ S〉 be our fixed witness to ♣(S) in V . Then the set of q such that for

some δ ∈ S, q 
 “Aδ ⊆ τ̇” is dense below p.

Lemma 8.0.18. V Pκ++ |= ¬♣[otp](κ+) + ¬♣(T ).

Thus we are able to prove Theorem 8.0.3.

Recall that we required S and T to be subsets of Sκ
+

κ ; if this is the case and

κ is regular then the proofs of the previous chapter can be generalised directly,

as outlined above. If, however, either S or T is not a subset of Sκ
+

κ then we

cannot obtain the results of Theorem 8.0.3. The reason is that if, for example,

T ⊆ Sκ
+

<κ then we cannot force ♣(T ) to fail while also allowing the forcing to have

the property that decreasing sequences of length less than κ have a lower bound,

which means we cannot prove that κ is not collapsed.
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Chapter 9

Some Open Questions

Several open questions have been brought to light in the course of this thesis. We

collect the most prominent ones here.

The main open question concerning ♣ remains, of course, that of Juhasz:

Question 9.0.19 (Juhasz). Does ♣ → ¬SH?

A variation on this question was asked by Brendle:

Question 9.0.20 (Brendle, [3]). Does •| + ¬CH→ ¬SH?

Miyamoto’s Theorem 3.0.3 is a partial answer to this.

Recall our definitions of Superclub and Superstick in Chapter 3. The following

two questions remain open:

Question 9.0.21. Does Superstick imply CH? Does Superclub imply ♦?

114



In Chapter 4 we defined the notion of a T -preserving ♣-sequence and a directly

T -preserving ♣-sequence, where T is a normal Suslin tree.

Question 9.0.22. Given Ā, a ♣-sequence in V , is there a forcing P ∈ V which

preserves Ā as a ♣-sequence while introducing a Suslin tree T so that Ā is T -

preserving (or directly T -preserving) in any P-generic extension?

Question 9.0.23. Is there a model of ZFC + ♣ in which for any witness to ♣,

Ā, there is a Suslin tree TĀ such that Ā is TĀ-preserving?

Question 9.0.24. Given a Suslin tree T , can a ♣-sequence be T -preserving with-

out being directly T -preserving?

In Chapter 5 we examined the relationship between ♣ and cardinal arithmetic.

Though the basics of this are well-known, there is a surprisingly large amount that

remains to be proved on this. Our main question in Chapter 5 could be stated as

follows:

Question 9.0.25. If V � ZFC + ¬CH + •| + ¬♣, is there a cardinal preserving

forcing P ∈ V such that 1P 
P “♣”?

The author is not aware of any known answer to the following:

Question 9.0.26. Does ♣+ ¬CH → 2ω = 2ω1?

The following question relates to our results in Chapter 6:
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Question 9.0.27. For F a λ+-complete uniform filter on λ+, where λ is singular,

is it the case that ZFC ` ♣F(Sλ
+

cf(λ))?

This is related to the following prominent open question on ♦:

Question 9.0.28. If λ is a singular cardinal, does 2λ = λ+ imply ♦(Sλ
+

cf(λ))?

Regarding our consistency results in Chapters 7 and 8, we ask the following:

Question 9.0.29. If λ is regular and T, S ⊆ λ are disjoint stationary sets, when

can we prove Con(ZFC) → Con(ZFC + ♣(S) + ¬♣(T ))?

For example, it is not possible to do this when λ = µ+ and κ < µ if T ⊆ Sλκ , S

is a reflecting stationary set, and �∗µ holds (see e.g. [33]).
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