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ABSTRACT 

 

 

Semi-solid dispersions offer many advantages in the delivery of poorly soluble 

drugs. However, there is limited understanding of the mechanisms by which in vitro 

dissolution and in vivo bioavailability is enhanced. Low melting point lipidic carrier 

excipients demonstrate properties beneficial to formulation of these systems despite 

presenting further challenge in their characterisation. The physicochemical properties 

of semi-solid dispersions comprising the lipidic carrier Gelucire 44/14 with the 

poorly soluble drugs ibuprofen, indometacin and piroxicam were investigated. 

 

Conventional differential scanning calorimetry demonstrated dissolution effects, the 

slow rate allowing crystalline drug to dissolve within the molten lipid during analysis 

giving unreliable data regarding the presence of solid crystalline drug in proportion 

to that existing as a molecular dispersion. Hyper DSC was not definitively found to 

eliminate these effects, however they were reduced, giving a more accurate 

estimation of the drug solubility within the lipid. The drugs demonstrated different 

affinities for the lipid with subsequent effects on the extent of interaction. The 

presence of drug in the lipid demonstrated a significant inhibitory effect on the lipid 

crystallisation temperature, with QIMTDSC demonstrating a more extended 

crystallisation than expected. The dissolution properties of all drugs were enhanced 

when formulated into semi-solid dispersions with Gelucire 44/14, most notably with 

the low loaded systems. These low loaded systems, however, demonstrated an 

increased affinity for atmospheric moisture. Aging effects on the semi-solid 

dispersions were observed with ibuprofen and indometacin systems in which the 

drug was found to exist partially as a molecular dispersion. Piroxicam however, 

which had very limited miscibility with the lipid, was found to exhibit few aging 

effects over time. Overall, the formulated semi-solid dispersions with Gelucire 44/14 

achieved the ultimate goal of successfully enhancing the aqueous dissolution of 

poorly soluble drugs, however more research is needed in order to relate this 

successfully to in vivo bioavailability. 
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1.1 BACKGROUND OF THE PROJECT 
 

Whilst surface active lipidic carriers appear to offer advantages for the formulation 

and delivery of poorly soluble drugs in solid dispersions, there is a limited 

understanding of the key performance parameters required in the choice of semi-

solid carrier for a particular active pharmaceutical ingredient (API) or drug. 

Furthermore, low melting point excipients present significant challenge in terms of 

characterising the solid dispersion. Internal development work carried out by 

AstraZeneca on these types of formulation has exposed areas which require more 

rigorous analytical approaches to improve our fundamental understanding of the 

physicochemical properties and the subsequent impact on the dissolution mechanism, 

and the effects of processing variables and storage conditions on these solid 

dispersion formulations. 

 

1.2 POOR DRUG SOLUBILITY 

 

A drug may be defined “as ‘poorly soluble’ when its dissolution rate is so slow that 

dissolution takes longer than the transit time past its absorptive sites, resulting in 

incomplete bioavailability” (Horter and Dressman 1997). Approximately 40% of all 

newly discovered drugs display limited solubility in water and therefore poor and 

often greatly variable oral bioavailability (Gursoy and Benita 2004). Drugs can also 

be classed as poorly soluble if they exhibit solubility in water below 100µg/ml 

(Horter and Dressman 1997).  
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1.2.1 Biopharmaceutics Classification System 

 

The Biopharmaceutics Classification System is a prognostic tool by which drugs can 

be classified in terms of their gastrointestinal absorption, proposed by Amidon et al 

(1995). This classification was proposed through the recognition that the 

fundamental parameters upon which the rate and extent of drug absorption depend 

are drug solubility in aqueous media and permeability through the gastrointestinal 

cell wall. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The Biopharmaceutics Classification System (Wu and Benet 2005). 

 

In vitro / in vivo correlation is only expected for Class II drugs if the in vitro and in 

vivo dissolution rates are similar. Care must be taken however, as classification into 

this system is dependent upon the limits set for permeability and solubility. High 

permeability is classed as absorption up to or greater than 90% across the human 

jejunum, with no instability within the gastrointestinal tract. Solubility is defined as 
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the minimum drug solubility at 37oC ± 0.5 over pH 1 to 8, with high solubility being 

a dose to solubility volume ratio less than or equal to 250ml (Martinez and Amidon 

2002). 

 

Further consideration is also required for drugs which exhibit pH dependent 

solubility (as the pH varies throughout the gastrointestinal tract), drugs that display 

instability in the gastrointestinal tract, and also those who exhibit complexation with 

gastrointestinal contents (Amidon et al. 1995). 

 

Since the development of the BCS, the system has been adapted by Wu and Benet 

(2005) who proposed the Biopharmaceutics Drug Disposition Classification System 

(BDDCS). The BDDCS hopes that by classifying drug compounds by their 

mechanism of metabolism it may allow for more accurate prediction of disposition in 

vivo. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The Biopharmaceutics Drug Disposition Classification System (Wu and Benet 2005). 
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The system takes into account a number of factors: 

 

1) Route of elimination. 

2) Effect of efflux and absorptive transporters on oral absorption. 

3) Clinically significant effect of transporter-enzyme interaction e.g. low 

bioavailability and drug-drug interactions. 

4) Direction and importance of food effects. 

5) Transporter effects on systemic levels after absorption following oral and 

intravenous dosing (Wu and Benet 2005). 

 

It has however been suggested that this revised system does not apply in all cases 

with some drugs classed as highly permeable by BCS being found not to be 

extensively metabolised (Chen and Yu 2009).  

 

For the purposes of this project, the BCS terminology will be utilised. 

 

1.2.2 Factors Affecting Drug Dissolution 

1.2.2.1 Noyes-Whitney Equation 

 

The chemists Arthur Noyes and Willis Whitney carried out the first dissolution 

experiments using lead chloride and benzoic acid. They subsequently published the 

Noyes-Whitney equation in a paper entitled “The rate of solution of solid substances 

in their own solution” in 1897 (Dokoumetzidis and Macheras 2006; Leuner and 

Dressman 2000). The equation as it is used today is shown below (York 2002): 
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��
��

= ����	 − �� Equation 1.1 

 

where m is the mass of solute passed into solution at time t, A is the surface area of 

solid, Cs is the solubility of the compound in the dissolution media, C is the 

concentration of the compound in the dissolution media at time t and k is the 

dissolution rate constant. The value of k is defined by: 

 

� = �
�

 Equation 1.2 

 

where D is the diffusion coefficient, V is the volume of the dissolution media and h is 

the thickness of the boundary layer. 

 

The Noyes-Whitney equation highlights the factors which contribute to the 

dissolution of a poorly soluble drug, therefore suggesting a means of improving its 

solubility. These are: 

 

1) Increasing the surface area of the poorly soluble drug compound by decreasing 

the particle size. 

2) Enhancing the wetting properties of the drug compound surface. 

3) Reducing the boundary layer thickness. 

4) Ensuring sink conditions. 

5) Increasing drug solubility in physiologically relevant dissolution media 

(Leuner and Dressman 2000). 
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1.2.2.2 Drug Physicochemical Properties 

 

Crystalline drugs display great order of their constituent molecules which is repeated 

indefinitely in three dimensions. The most favoured and therefore common 

crystalline forms of drugs are polymorphs and solvates. Polymorphs are chemically 

identical species however they possess different crystalline packing arrangements or 

conformations and thus different physicochemical properties. These drugs are of low 

energy therefore dissolution can often be reduced. Solvates contain solvent 

molecules within the crystalline structure and can be known as pseudopolymorphs 

(Hancock and Zografi 1997; Vippagunta et al. 2001). 

 

The formation of the amorphous phase of a crystalline drug can often dramatically 

increase dissolution rate. Amorphous substances display liquid structural 

characteristics i.e. disordered molecular arrangements, but greater viscosity, and can 

be formed by the supercooling of a molten substance below its melting point (see 

Figure 1.3) (Hancock and Zografi 1997). The amorphous state is, however, 

thermodynamically metastable and much higher energy than the crystalline state, 

meaning that conversion back to the more stable and molecularly ordered crystalline 

phase is always a possibility. This conversion may be facilitated by mechanical 

processing, temperature, humidity, additive concentration and time i.e. aging 

(Hancock and Zografi 1997; Schamp et al. 2006). Storage conditions therefore play a 

key role in the degradation of dosage forms. 
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Figure 1.3 The most common ways in which amorphous character can be introduced into a 

pharmaceutical system, reproduced from Hancock and Zografi (1997). 

 

Particle size can affect drug dissolution. The smaller the particle size the greater the 

surface area in contact with the dissolution media and therefore in theory, greater 

dissolution. Particles in the range 3 to 5µm can often effectively increase solubility 

(Horter and Dressman 1997). This is especially important when considering poorly 

soluble drug substances. If the drug displays poor wetting properties then 

agglomeration of the small particles may occur, further decreasing the dissolution. 

The poor wetting characteristics of water insoluble drugs are due to their high contact 

angle. The presence of surfactants in dissolution media or in vivo can however act to 

decrease the contact angle, promoting wetting and dissolution, and preventing 

agglomeration (Horter and Dressman 1997). 

 

The pKa of a drug is its ability to partition from a lipidic to an aqueous environment, 

and it is this property which allows estimation of its aqueous solubility. The pKa 

determines the ionisation state of the drug based upon the pH of the solvent solution. 

Drugs in the ionised form tend to demonstrate greater aqueous solubility in 
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comparison to those in the unionised form. Weakly basic drugs will exhibit greater 

solubility in low pH environments, with weakly acidic drug compounds 

demonstrating greater solubility at high pH (Martinez and Amidon 2002). The pH of 

the gastrointestinal tract environment changes drastically upon transit throughout, 

therefore influencing the saturation solubility of ionisable drugs. 

 

1.2.2.3 Physiological Factors 

 

As well as drug physicochemical properties, physiological conditions can also 

greatly influence the absorption of drug substances during their transit through the 

gastrointestinal tract. Gastrointestinal pH varies depending upon the area of the tract 

involved and the presence or absence of food (Table 1.1) (Horter and Dressman 

1997).  

 

Table 1.1 Average pH values in healthy humans in the fasted and fed state at various sites in the 

upper gastrointestinal tract (Horter and Dressman 1997). 

 

Location in GI Tract Fasted State pH Fed State pH 

Stomach 1.3 4.9 

Duodenum (mid-distal) 6.5 5.4 

Jejunum 6.6 5.2-6.0 

Ileum 7.4 7.5 
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The pKa of the drug substance can therefore determine the optimum area of the 

gastrointestinal tract for dissolution. It must be taken into account however that other 

factors such as drug therapy, pathophysiological conditions and age can also play a 

role in the pH of luminal fluids (Horter and Dressman 1997). 

 

As well as influencing the gastrointestinal pH, the presence of food can facilitate 

direct interactions with the drug. These interactions, which can often occur during 

emulsification of the fatty foods into mono- and diglycerides, have sparked interest 

in the formulation of insoluble drug substances with lipophilic excipients in order to 

improve solubility and absorption (Schamp et al. 2006).  

 

The caloric content of food is known to have the potential to impact on the extent of 

food effect demonstrated on certain drug entities, however in some cases it may have 

a limited effect. The gastric emptying time is greatly increased by the fluid volume in 

the upper gastrointestinal tract meaning that any oral dosage forms present will be 

subjected to the environmental conditions for extended periods of time. This effect 

may be advantageous or detrimental depending upon the drug physical properties 

(Martinez and Amidon 2002). The intake of certain food components can influence 

the viscosity of gastrointestinal fluids which can act to decrease the diffusivity of the 

drug. The presence of food and fluid in the upper gastrointestinal tract can also 

increase the contents volume, stimulating the secretion of gastric acid, bile and 

pancreatic fluid. Gastrointestinal fluid also contains naturally occurring surfactants 

for example bile salts and lecithin, the concentrations of which do not compare to the 

unphysiologically high concentrations present in in vitro dissolution media (Horter 

and Dressman 1997). The development of accurately simulated gastric and intestinal 
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fluid in vitro for dissolution testing is a complex process, highlighted by the varying 

physiological conditions outlined above. The inability of in vitro dissolution media to 

compare to physiological conditions is the principal reason why there is currently no 

reliable correlation between the two. 

 

The bioavailability of drugs can also be significantly influenced by first pass 

metabolism. This is a process by which the drug molecule is metabolised and 

deactivated before reaching the systemic circulation, meaning therefore that the drug 

will have no therapeutic effect (Martinez and Amidon 2002) 

 

1.2.3 Measures to Improve Drug Dissolution 

 

Poorly water soluble drug compounds, provided formulation-dependent 

bioavailability issues are identified early in the development phase, can be prime 

candidates for the measures and technologies currently available to enhance in vivo 

activity. Provided these drugs are classified as BCS II then absorption will be 

dissolution limited, and therefore once in solution, the drug will be readily absorbed 

across the gastrointestinal cell wall. BCS IV compounds however are known to 

exhibit poor aqueous solubility as well as poor permeability, and therefore the 

limitations to achieving good in vivo bioavailability cannot be solved using 

formulation alone. In this case, a return to the lead optimisation phase of discovery is 

required in order to select a candidate with more favourable physicochemical 

properties (Pouton 2006). 
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There are a number of methods of formulation which have been shown in the 

literature to enhance the dissolution properties and therefore the in vitro release, and 

often in vivo bioavailability, of poorly soluble drugs, and these methods have been 

outlined in a review by Pouton (2006). Overall, they generally fall within the 

following categories: crystalline solid formulations, amorphous formulations and 

lipid formulations, and Table 1.2 below highlights the main methods.  

 

Table 1.2 Options for formulation of poorly water-soluble drugs (Pouton 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 SOLID DISPERSION SYSTEMS 

1.3.1 Definition and Mechanism of Drug Release 

 

Solid dispersions were first demonstrated in 1961 by Sekiguchi and Obi (Chiou and 

Riegelman 1971; Sekiguchi and Obi 1961; Serajuddin 1999). The term solid 
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dispersion is used to describe the mixture of a poorly soluble drug in an inert, water 

soluble carrier, usually prepared via the melt or solvent methods which are explained 

later (Serajuddin 1999). Solid dispersions are able to enhance the dissolution 

behaviour of poorly water soluble drugs and also therefore improve their in vivo 

bioavailability (Broman 2001). BCS Class II drugs are those most likely to benefit 

from solid dispersion formulation, as once they are solubilised in the gastrointestinal 

tract they will achieve an absorption profile similar to that of a Class I drug. Class III 

and IV drugs however are limited by poor membrane permeability and therefore 

require chemical modification (Pouton 2006). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 A typical representation of the biopharmaceutical classification system, indicating that 

absorption of a class II drug can be markedly improved by attention to the formulation (Pouton 2006). 

 

The drug in the solid dispersion may be dispersed as fine crystalline or amorphous 

particles, a combination of both, or be molecularly dispersed within the carrier 

excipient forming a solid solution (Craig 2002; Leuner and Dressman 2000).  
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There are a number of proposed mechanisms of enhanced drug dissolution from solid 

dispersions, some of which include: 

 

1) Reduction of particle size. 

2) Inhibition of drug aggregation. 

3) Increased drug wettability and dispersibility by the carrier. 

4) Drug solubilisation effect of the carrier. 

5) Conversion of drug to the metastable amorphous state. 

6) Dissolution of drug in the carrier. 

7) A combination of the above (Abdul-Fattah and Bhargava 2002; Damian et al. 

2000; Karatas et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 A schematic representation of the bioavailability enhancement of a poorly water soluble 

drug by solid dispersion compared with conventional tablet or capsule, reproduced from Serajuddin 

(1999). 
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When in contact with aqueous media such as gastrointestinal fluid, the carrier 

contained within the solid dispersion dissolves, exposing the poorly soluble drug to 

the aqueous environment as fine, colloidal particles. The drug surface area is greatly 

increased therefore enhancing dissolution (Serajuddin 1999). 

 

An example of a solid dispersion recently brought to market is Intelence®. Intelence 

is a formulation containing the novel second generation non-nucleoside reverse 

transcriptase inhibitor (NNRTI), etravirine, used in the treatment of HIV. Etravirine 

is a BCS class IV drug and is spray dried with HPMC in order to render it amorphous 

in combination with the glassy polymer, thus enhancing its in vivo bioavailability 

(Weuts et al. 2010). 

 

1.3.2 Methods of Solid Dispersion Formulation 

 

There are a number of methods which can be used to formulate solid dispersions. 

The hot melt method (Sekiguchi and Obi 1961) involves heating the carrier above its 

melting point so that a molten liquid is formed. The drug is added under continuous 

stirring to the molten carrier until a homogenous mix is obtained. The mix is then 

filled into hard gelatin capsules (ensuring that its temperature is below 70oC which is 

the maximum tolerated by the capsule shells) and cooled either rapidly for example 

in an ice bath, or left to cool at room temperature (Chambin and Jannin 2005; Leuner 

and Dressman 2000; Serajuddin 1999). Carriers with low melting points are most 

advantageous for this method as there is less chance of the drug degrading when 

being held at the carrier melting temperature for any length of time. 
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Hot melt extrusion (Hüttenrauch 1974) has also been used in the formulation of solid 

dispersions. This involves the simultaneous melting, homogenisation, extrusion and 

shaping of the drug and carrier into tablets, granules, pellets, sheets, sticks or 

powder. The drug and carrier are only subjected to high temperatures for a very short 

time which is an advantage when using thermolabile substances (Leuner and 

Dressman 2000). The dispersion is however subjected to mechanical processing 

which can facilitate the conversion of amorphous drug back into its crystalline form. 

 

The solvent method (Tachiban and Nakamura 1965) involves the dissolution of both 

drug and carrier in a common solvent. The solvent is then removed either via 

evaporation, freeze-drying or spray-drying. It must be ensured however that all traces 

of solvent have been removed as it has the potential to affect product performance 

(Leuner and Dressman 2000). 

 

1.3.3 Factors Influencing Solid Dispersion Behaviour 

1.3.3.1 Carrier Properties 

 

The use of surface active carriers over non-surface active carriers has the advantage 

of preventing drug rich surface layers of undissolved drug by dispersing or 

emulsifying it in a finely divided state (Serajuddin 1999). Surface active agents, or 

surfactants, possess the ability to aggregate into micelles above the critical micelle 

concentration (CMC).  
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Figure 1.6 The structure of a micelle

 

Poorly soluble or lipophilic drugs can be solubilised within the lipophilic centre of 

the micelle, enhancing drug wetting properties by decreasing the contact angle, 

preventing aggregation and increasing the surface area of the drug particles, therefore 

increasing dissolution.

 

The formation of a drug rich surface layer hinders drug dissolution and absorption as 

it prevents the uptake of water by the formulation. Drug rich surface 

formed by the aggregation of 

to use a surface active carrier during formulation in order to prevent this occurring. 

The surface active carrier is able to rapidly emulsify the solid d

liberation from the solid dispersion, ensuring dispersion as fine, colloidal particles 

with a large surface area for dissolution (

 

If formulating via the melt method it is advantageous to use a carrier with a low 

melting point to avoid drug de

term stability of the preparation may be compromised 

 

The structure of a micelle (Kumar 2009). 

Poorly soluble or lipophilic drugs can be solubilised within the lipophilic centre of 

the micelle, enhancing drug wetting properties by decreasing the contact angle, 

gregation and increasing the surface area of the drug particles, therefore 

increasing dissolution. 

The formation of a drug rich surface layer hinders drug dissolution and absorption as 

it prevents the uptake of water by the formulation. Drug rich surface 

formed by the aggregation of small water insoluble particles, therefore it is of benefit 

to use a surface active carrier during formulation in order to prevent this occurring. 

The surface active carrier is able to rapidly emulsify the solid d

liberation from the solid dispersion, ensuring dispersion as fine, colloidal particles 

with a large surface area for dissolution (Figure 1.7) (Serajuddin 1999)

If formulating via the melt method it is advantageous to use a carrier with a low 

melting point to avoid drug degradation during melt preparation, however the long 

term stability of the preparation may be compromised (Serajuddin 1999)
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Poorly soluble or lipophilic drugs can be solubilised within the lipophilic centre of 

the micelle, enhancing drug wetting properties by decreasing the contact angle, 

gregation and increasing the surface area of the drug particles, therefore 

The formation of a drug rich surface layer hinders drug dissolution and absorption as 

it prevents the uptake of water by the formulation. Drug rich surface layers can be 

therefore it is of benefit 

to use a surface active carrier during formulation in order to prevent this occurring. 

The surface active carrier is able to rapidly emulsify the solid drug particles on 

liberation from the solid dispersion, ensuring dispersion as fine, colloidal particles 

(Serajuddin 1999). 

If formulating via the melt method it is advantageous to use a carrier with a low 

gradation during melt preparation, however the long 

(Serajuddin 1999).  
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Figure 1.7 A schematic representation of the comparative dissolution of a poorly water soluble drug 

from surface active versus non-surface active vehicles, reproduced from Serajuddin (1999). 

 

1.3.3.2 Drug Properties 

 

The drug properties influencing solubility have been outlined previously, however 

the physical phase in which the drug is present can also play an important role in the 

effectiveness of solid dispersions. The two phases in which a solid drug substance 

can exist are crystalline and amorphous, and both display very individual 

characteristics. The molecules in the crystalline phase are highly ordered in three 

dimensions, and are bound tightly together by secondary interactions such as 

hydrogen bonding and ionic interactions. This is a very stable, low energy and 

unreactive phase. The molecules in the amorphous phase however have no ordered 

arrangement or crystal lattice. The amorphous phase is unstable, high energy and 
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therefore reactive, so will readily undergo conversion back into its most stable form 

(crystalline). This phase can be referred to as a supercooled liquid (Bottom 1999; 

Hancock and Zografi 1997; Zhang et al. 2004). The amorphous phase is more water 

soluble and hence it is advantageous for any drug contained within a solid dispersion 

to be in this form. It does however mean that the solid dispersion formulation is more 

susceptible to degradation during storage. 

 

Interaction between the drug and carrier material will also play a significant role in 

the physical state of the drug in the formulation. If the drug is found to exhibit high 

miscibility in the carrier then dissolution of the drug may occur during manufacture. 

This will therefore mean that the drug may be present as a molecular dispersion 

within the carrier (although not necessarily 100%), and therefore may in part be 

classified as a solid solution. 

 

1.3.3.3 Processing and Storage Variables 

 

It is essential to identify the appropriate form for the drug in the formulation and 

ensure it remains unchanged in the final product. The processes drug and carrier are 

subjected to during manufacture can greatly influence the final performance of the 

solid dispersion formulation. These processes generally involve the modification of 

crystalline into amorphous form which can affect chemical, physical and mechanical 

properties of the solid dispersion (Zhang et al. 2004).  

 

A review carried out by Zhang et al (2004) investigated the effect of process 

development of solid oral dosage forms on phase transformation. The greatest 
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increase in dissolution of poorly soluble drugs in solid dispersions occurs when they 

are in the amorphous form. The amorphous form, being high-energy, is unstable and 

has a tendency to convert back to the more stable crystalline form on processing and 

storage. The amorphous form can be created via the melt method i.e. when the carrier 

and drug are melted together, however the cooling rate of the melt can influence if 

the crystalline form is regenerated in the final dosage form. Cooling at room 

temperature has been found to encourage crystal growth as it allows the drug time to 

attain a suitable orientation for crystal nucleation. However, rapid cooling appears to 

prevent crystal growth, maintaining the amorphous state (Khoo 2000; Zhang et al. 

2004). 

 

Preparing solid dispersions via the solvent method only encourages conversions of 

the metastable phase into the stable phase when the metastable phase comes into 

contact with the saturated solvent solution. This process involves: 

 

1) Initial dissolution of the metastable phase into the solution to reach and exceed 

the solubility of the stable phase. 

2) Nucleation of the stable phase. 

3) Crystal growth of the stable phase with the continuous dissolution of the 

metastable phase (Zhang et al. 2004). 

 

Additional mechanical processing such as pulverisation and compression can also 

influence the conversion of amorphous drug into crystalline, therefore filling of the 

molten melt via the melt method into hard gelatin capsules and cooling rapidly is the 

most optimum method to maintain amorphous drug (Khoo 2000). 
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Phase conversions of the drug and carrier can occur in the solid state and can be 

influenced by factors such as particle size and distribution, impurities, crystalline 

defects and environment. Environmental factors come into play on storage of the 

finished solid dispersion dosage forms (Zhang et al. 2004). High temperature 

(especially if low melting point excipients are used) and high humidity can both 

encourage conversion of the amorphous form back into the crystalline. 

 

1.3.4 Lipid-Based Carrier Excipients 

 

Developments in the last 10 to 15 years have shown drug delivery systems composed 

of lipidic excipients to be a promising technology in the enhancement of the 

bioavailability of poorly soluble drugs. They have been shown to be successful in 

increasing solubility, lymphatic transport targeting, modulation of enterocyte-based 

drug transport and disposition, sustained release, and coating for either taste masking 

or protection of the drug (Jannin et al. 2008). They have also been found to have the 

capability of normalising drug absorption across the GI tract which can be 

advantageous for the formulation of drug compounds with a low therapeutic index 

(Hauss 2007). Lipids, which are fatty acids and their derivatives and also substances 

which are functionally or biosynthetically related, can be further classified into oils, 

waxes, fats, and more complex lipids including phospholipids and lipoproteins which 

have involvement in biological processes. The enhancement of oral bioavailability 

does however tend to be dominated by vegetable or dietary oils and their derivatives, 

which encompasses TPGS and Gelucire 44/14 which will be discussed later in the 

Chapter (Jannin et al. 2008). 
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A survey carried out by Strickley found that in the UK, lipid-based formulations 

account for 2% of commercially available drug products (Strickley 2007). These 

systems are however, known for their complexity of physicochemical properties, 

stability issues, difficulties with manufacture scale up, limited solubility of some 

drugs within lipid carriers, pre-absorptive gastrointestinal processing, a lack of 

knowledge regarding in vivo behaviour, a lack of understanding of the influence of 

co-administered drug formulations and also limitations in methods of in vitro / in 

vivo correlation (Chakraborty et al. 2009). Nonetheless research is continuing to 

expand the knowledge base available in order to take further advantage of this 

promising technology. 

 

1.3.5 Current Place in the Pharmaceutical Industry and Future Prospects 

 

The development of solid dispersions has proved an effective method of increasing 

drug solubility. However despite their advantages, the commercial production of 

water insoluble drugs in these formulations is limited by difficulties relating to 

preparation, reproducibility, formulation, scale-up and stability (Serajuddin 1999). 

Additional development is needed in these areas however the utilisation of solid 

dispersions is a promising tool in the enhancement of drug dissolution.  
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1.4  SURFACE ACTIVE LIPIDIC CARRIERS 

1.4.1 Gelucire 44/14 

 

Gelucire 44/14 is an inert, amphiphilic excipient which belongs to the lauryl 

macroglyceride group of compounds. It consists of a combination of fatty acid esters 

of polyethylene glycol (PEG) and glycerides, the combinations of which determine 

its physical characteristics (Damian et al. 2000; Serajuddin et al. 1988; Svensson et 

al. 2004). 

 

1.4.1.1 Contact with Aqueous Media 

 

Gelucire 44/14 displays a number of interesting properties on contact with water, to 

which its different components contribute. It contains mono- and di-esters of PEG 

which act as surfactants, monoglycerides which act as cosurfactants, and di- and 

triglycerides which comprise the oily phase (Chambin and Jannin 2005). Gelucire 

44/14 overall is classified as a non-ionic surfactant (Abdul-Fattah and Bhargava 

2002). 

 

Gelucire 44/14’s well balanced proportion of short, medium and long chain fatty 

acids means it has the unique property of spontaneously emulsifying on contact with 

aqueous solutions, for example gastrointestinal fluids at 37oC, forming a stable fine 

emulsion (Gattefossé 2007). The oil in water emulsion droplets formed during this 

process are approximately 3 to 300nm in size (Chambin and Jannin 2005). In the 

presence of large volumes of aqueous media at ambient temperature, glycerol and 
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PEG dissolve immediately as they are the most hydrophilic, followed by the other 

crystals i.e. PEG esters and trilaurin, the resulting liquids being mesophases. 

Dissolution is found to be a slow process due to mesophase formation, however they 

are found to melt at physiological temperature making dissolution a faster process 

(Svensson et al. 2004). This is a unique characteristic, different from all other 

Gelucires which remain essentially intact when in contact with aqueous media 

(Karatas et al. 2005). 

 

Gelucire 44/14 is also thought to have the capability of forming micelles. The CMC 

is known to be difficult to determine due to its many components, nonetheless the 

initiation of micelle formation is thought to occur at either 2µg/ml or 10µg/ml 

(Kawakami 2004; Schamp et al. 2006). The ability of Gelucire 44/14 to form 

micelles may allow it to be effectively utilised for increasing the solubility of 

lipophilic substances in aqueous media by micellar solubilisation. Gelucire 44/14 is 

able to decrease the interfacial tension of poorly soluble compounds with water, in 

turn decreasing the contact angle between the insoluble solid surface and the 

dissolution media, promoting wetting and dissolution by preventing aggregation and 

agglomeration (Damian et al. 2000; Tashtoush et al. 2004). 

 

1.4.1.2 Oral Delivery Applications 

 

Gelucire 44/14 has been established as an effective excipient for pharmaceutical 

formulations. Gelucire 44/14 does however lend itself to formulation as the sole 

excipient, particularly into self-emulsifying drug delivery systems (SEDDS) such as 

semi-solid dispersions (SSD) in hard gelatin capsules of poorly water soluble drugs. 
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This method, as well as increasing bioavailability of insoluble drugs, can also 

enhance stomach tolerance (Chambin and Jannin 2005). There are a number of 

published data looking at the formulation, characterisation, dissolution and effect of 

storage conditions of Gelucire 44/14 solid dispersions, generally in comparison with 

solid dispersions containing other excipients, physical mixtures and pure drug, which 

will be discussed. 

 

1.4.1.3 Enhancement of Dissolution Rate by Semi-Solid Dispersion Formulation 

 

The low melting temperature of Gelucire 44/14 lends it to formulation into semi-

solid dispersion systems via the melt method. This involves heating the pure Gelucire 

44/14 to a temperature above its melting point. There is, however, conflicting 

information with regards the best temperature to use for this purpose. A number of 

studies suggest 2oC and others suggest 5oC above melting point (Karatas et al. 2005; 

Pillay and Fassihi 1999; Serajuddin et al. 1988). Other studies have suggested 

between 60 and 80oC (Chambin and Jannin 2005; Schamp et al. 2006). However the 

manufacturer Gattefossé has demonstrated, using hot stage microscopy, that 

temperatures in the range 53-56oC were necessary in order to obtain a fully molten 

liquid thus ensuring that all crystals have melted. The solid drug is then added to the 

molten Gelucire 44/14 under continuous stirring and the mixture is filled into hard 

gelatin capsules at less than 70oC, which is the maximum tolerated by the capsule 

shells (Serajuddin 1999). The semi-solid dispersion formulations then undergo a 

rapid cooling process between 5-8oC or are left to cool at room temperature. 
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Figure 1.8 Formulation of Gelucire 44/14 semi
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Cryogenic grinding of Gelucire 44/14 and formulation into sold dosage forms

as tablets and pellets has been

overcome the need for time consuming melting and the requirement for high 

temperatures. Cryogenic grinding, in this case, involved grinding of the carrier at low 

temperatures, brought about by liquid nitrogen, into a powder form. The main 

concern was the chance of the mechanical activation and generation of energy 

affecting the crystalline structure of Gelucire 44/14. After characterisation and in 

vitro dissolution studies it was concluded that, although cryogenic grinding appeared 

to have no affect on the crystalline structure of Gelucire 44/14, there appeared to be 

no advantage of one manufacturing method over the other.
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spontaneously emulsifies on contact with aqueous media which in turn has been 

shown to increase drug wettability and dispersibility, protecting the particles from 

aggregation, agglomeration and precipitation (Tashtoush et al. 2004). It was 

suggested by Barker et al (2003) that the improvement in drug dissolution may, in 

part, be due to the incorporation of drug into the hydration layer of Gelucire 44/14 

during self-emulsification. 

 

Drug/carrier interactions may also play a role in the enhancement of drug dissolution, 

which can be characterised by techniques such as DSC and IR spectroscopy. A study 

carried out by Karatas et al (2005) highlighted that chemical interactions between 

drug and Gelucire 44/14, specifically the mono-, di- and triglycerides, fatty alcohols 

and polyglycolised fatty acid esters, can lead to increased solubility of the poorly 

soluble drug. Physical mixtures of the drug and Gelucire 44/14 also brought about an 

increase in dissolution, possibly due to close physical contact contributing to 

increased solubilisation and wettability on self-emulsification of Gelucire 44/14 

(Damian et al. 2000). 

 

1.4.1.4 Inhibition of P-glycoprotein Efflux Transporter 

 

P-glycoprotein or P-gp is a polarised multidrug resistance ATP-dependent efflux 

transporter (Figure 1.9). It is highly expressed on the apical membranes (luminal 

surface) of most epithelial tissues, such as intestine, liver, kidney, colon and blood 

brain barrier. P-gp belongs to the ATP binding cassette (ABC) superfamily of protein 

membrane transporters and it is expressed by the MDR or multidrug resistance gene 

(Collnot et al. 2007). It actively transports a wide range of substances out of the cell 
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against a concentration gradient, thus keeping intracellular levels low. It can 

therefore be a barrier against potentially toxic substances, protecting the cell from 

damage (Collnot et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 P-glycoprotein efflux transporter (Edwards 2003). 

 

Overexpression of the P-gp efflux transporter can lead to multidrug resistance which 

is observed in cancerous cells against chemotherapy treatments. It also leads to the 

limitation of adequate bioavailability of certain chemically unrelated drugs such as 

digoxin, antibiotics and steroids. The inhibition of P-gp by lipidic excipients 

therefore has the potential to increase the activity of chemotherapy agents against 

resistant cancers when administered in a combined formulation such as a solid 

dispersion (Collnot et al. 2007). 

 

The effect of Gelucire 44/14 on the P-gp efflux transporter has been investigated in a 

study conducted by Sachs-Barrable (2007). They established that Gelucire 44/14, at a 
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concentration of 0.02% w/v, was capable of achieving an intracellular concentration 

of the P-gp substrate Rh123, greater than that of the control. Gelucire 44/14 appeared 

to suppress the active secretion of Rh123 across a Caco-2 cell monolayer via 

inhibition of the P-gp efflux transporter. It was also noted that, after exposure to 

Gelucire 44/14, the cells down-regulated P-gp expression on the lipid membrane.  

 

1.4.1.5 Effect of Aging and Storage Conditions 

 

A number of studies have investigated the influence of varying storage conditions i.e. 

temperature and humidity on Gelucire 44/14 and its formulations. Humidity plays a 

vital role in the possible degradation of Gelucire 44/14 formulations. A study carried 

out by Svensson et al (2004) investigated the hydration of pure Gelucire 44/14 by 

humid air at ambient temperature in detail, and characterised the physical changes 

involved in the process. Below 70% relative humidity (RH) only free glycerol 

absorbed water up to approximately 1% w/w which is the maximum permitted by the 

European Pharmacopoeia. The conditions experienced during processing and storage 

would generally be between 30 and 60% RH meaning that Gelucire 44/14 would not 

exceed 1% w/w water absorption under normal storage circumstances.  However, 

above 80% RH the PEG esters dissolve and the viscosity of Gelucire 44/14 begins to 

change from a white gel at 11% w/w water, to a white dispersion at 25 to 31% w/w 

water, to a white gel at 50 to 61% w/w water, to white dispersions again at 71 to 75% 

w/w water, and then finally to separate white and transparent liquid phases. Svensson 

et al (2004) also highlighted that water uptake by Gelucire 44/14 can be effectively 

replicated by assuming independent uptake by each individual component. 
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Studies carried out by the manufacturer Gattefossé, highlighted that, above 30oC at 

75% relative humidity, Gelucire 44/14 will absorb approximately 10% water, 

indicating that temperature does play a role. It has also been demonstrated, via 

methods such as X-ray diffraction and scanning electron microscopy, that Gelucire 

44/14 does not undergo any change in crystalline structure upon aging at varying 

temperatures (below 30oC) and humidities (below 80%) (Chambin and Jannin 2005; 

Gattefossé 2007). 

 

The effect of aging has also been carried out on semi-solid dispersion formulations 

containing Gelucire 44/14. Tashtoush et al (2004) found no significant change in the 

release of drug from the formulations after aging for two months at room 

temperature. Damian et al (2002) however found that dissolution from Gelucire 

44/14 semi-solid dispersions decreased as a function of storage time, possibly due to 

a reorganisation of crystalline structure. Increasing temperature appeared to favour 

the conversion of the triglyceride fraction into a more stable form. X-ray diffraction 

studies indicated that the decreasing dissolution properties of the semi-solid 

dispersions were due only to changes in Gelucire 44/14 physical state and not that of 

the drug. 

 

Joshi et al (2004) found that storage at temperatures above 40oC caused leakage from 

the Gelucire 44/14 semi-solid dispersion capsules due to its low melting temperature 

of 44oC. Stability of the formulations could therefore not be guaranteed at high 

temperatures. 
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Serajuddin et al (1988) highlighted that drug concentration in the semi-solid 

dispersion may also play a part in the decrease in extent of dissolution. High drug 

concentrations were found to encourage drug recrystallisation in short periods of 

time (i.e. less than 7 days) becoming more stable and less water soluble. 

 

1.4.2 TPGS 

 

TPGS, or D-alpha tocopheryl polyethylene glycol 1000 succinate, is a water soluble 

derivative of fat soluble vitamin E. It is a non-ionic surfactant with amphiphilic 

properties (Eastman 2005). 

 

1.4.2.1 Contact with Aqueous Media 

 

TPGS molecules, due to their amphiphilic nature, spontaneously self associate in 

water to form micelles when present above the critical micelle concentration (CMC). 

The CMC for TPGS is relatively low at 0.02% w/v in water at 37oC. This property 

allows the effective solubilisation of lipophilic molecules in an aqueous environment, 

facilitating absorption (Eastman 2005). 

 

Figure 1.10 illustrates the liquid crystalline phases (mesophases) of increasing TPGS 

concentrations in water at 37oC. Above the CMC, TPGS micellar solutions remain 

low-viscosity until approximately 20% w/v, above which the liquid crystalline 

structure evolves through the following:  
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1) Isotropic globular micellar. 

2) Isotropic cylindrical micellar. 

3) Mixed isotropic cylindrical micellar and hexagonal. 

4) Mixed hexagonal and reversed hexagonal. 

5) Reversed globular micellar. 

6) Lamellar phase (Eastman 2005).  

 

At the extremes of concentration the solutions remain liquid-like, however between 

approximately 20 and 90% w/v the solutions demonstrate gel-like properties. 
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Figure 1.10 Liquid crystalline phases of TPGS / water systems at 37oC (Eastman 2005). 
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1.4.2.2 Absorption and Excretion 

 

TPGS micelles are thought to readily pass through cellular membranes where they 

are broken down and hydrolysed releasing the metabolites alpha-tocopherol and PEG 

1000. Alpha-tocopherol is secreted into the lymphatic system via chylomicrons, 

whereas the PEG 1000 is rapidly excreted in the urine (Eastman 2005; Traber et al. 

1988). The use of TPGS in vivo has demonstrated no detectable clinical or laboratory 

evidence of hepatic, renal, bone marrow, gastrointestinal or metabolically toxic 

effects however it has been noted that the long term toxicity of chronic absorption of 

PEG 1000 should be monitored (Sokol et al. 1991; 1988). 

 

Vitamin E plays an essential role in the antioxidant system and deficiency can cause 

varying degrees of damage to the peripheral nervous system (Traber et al. 1988). The 

ability of TPGS to form micelles has been shown to enhance intraluminal absorption, 

therefore increasing plasma levels of alpha-tocopherol, thus making it a possible 

source of vitamin E for malabsorbing patients. TPGS does however only provide one 

of the eight tocols comprising vitamin E in foods and at high doses alpha-tocopherol 

can actually deplete other essential tocols (Papas et al. 2007). 

 

1.4.2.3 Oral Delivery Applications 

 

The characteristics of TPGS lend it to use as a solubiliser and absorption enhancer of 

poorly water soluble or lipophilic drugs i.e. those in BCS class II. Studies present in 

the literature to date have been carried out investigating concomitant administration 

of liquid TPGS with poorly soluble drugs, physical mixtures and semi-solid 
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dispersions, to discover which is the most effective method of increasing the 

solubility and absorption of these drugs. These methods are nearly always compared 

to the solubility and absorption of pure drug alone. 

 

1.4.2.4 Enhancement of Dissolution Rate by Semi-Solid Dispersion Formulation 

 

There are a number of methods of preparing semi-solid dispersion formulations 

which have been mentioned previously. In general, semi-solid dispersion systems 

containing TPGS are formulated using the melt method due to its low melting point 

of between 37 and 41oC and high degradation temperature of 199oC (Shin and Kim 

2003). TPGS is melted to between 60 and 80oC to ensure complete melting of 

crystals (Schamp et al. 2006). The drug is then added to the molten TPGS and stirred 

to ensure a homogenous mixture. The mixture is then poured into hard gelatin 

capsules at a temperature less than approximately 70oC and the capsules are either 

cooled rapidly (between 5-8oC) or allowed to cool at room temperature. 

 

The method of enhanced absorption of poorly soluble drugs by TPGS in semi-solid 

dispersion systems appears to be two fold; incorporation of the drug into micelles, 

and inhibition of the P-glycoprotein efflux transporter, provided the drug is a 

substrate. There is evidence to suggest however that formulation into a semi-solid 

dispersion may also cause conversion of crystalline drug into the more soluble 

amorphous form (Shin and Kim 2003). This may indicate an interaction on a 

molecular level although this should possibly be evaluated on a case by case basis. 
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The nature of TPGS means it is able to form micelles on contact with aqueous media 

i.e. it can prevent the formation of a water insoluble drug rich surface layer on 

dissolution of semi-solid dispersion formulations by acting as a dispersing or 

solubilising agent (Barakat 2006). TPGS spontaneously disperses and dissolves 

releasing drug particles throughout the aqueous media. This increase in surface area 

of solid drug in turn increases its dissolution and subsequent absorption and 

bioavailability. The media becomes saturated with dissolved drug therefore the 

remaining drug precipitates as fine colloidal drug particles (Serajuddin 1999). These 

remaining drug particles are thought to be incorporated into TPGS micellular 

structures, increasing both the solubilisation into the aqueous environment of the 

gastrointestinal tract and absorption by intestinal cells into the systemic circulation. 

The TPGS molecules dissolve the lipophilic drug molecules in their lipophilic 

tocopheryl tail groups, exposing the hydrophilic PEG 1000 head groups to the 

aqueous environment, provided TPGS is present at a concentration above the CMC.  

 

TPGS has been shown to bring about limited increase in drug dissolution below the 

CMC, however above this concentration, dissolution has been observed to increase 

linearly. Once the drug molecule is incorporated into the micelle, one proposed 

mechanism is that the complete structure enters the cell and the drug is released by 

intracellular hydrolysis of the TPGS molecules (Eastman 2005; 1994; Varma and 

Panchagnula 2005; Yu et al. 1999). 

 

It is possible, after formulation of a semi-solid dispersion, to discover during 

characterisation that a solid solution has been formed instead of a solid dispersion, or 

even a combination of the two (Leuner and Dressman 2000). This means that the 
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drug will have been molecularly dispersed throughout the TPGS during melting. 

Therefore, on dissolution of the water soluble TPGS on contact with aqueous media, 

the drug will be present in a supersaturated solution. The presence of TPGS in 

solution may also prevent precipitation (Leuner and Dressman 2000). It is thought, 

however, that solid solutions are more prone to formation of drug rich surface layers 

(Serajuddin 1999). 

 

1.4.2.5 Inhibition of P-glycoprotein Efflux Transporter 

 

TPGS has been shown to be a potent inhibitor of the P-glycoprotein efflux 

transporter. The exact mechanism of inhibition of P-gp efflux by TPGS is currently 

unknown. P-gp inhibition has been observed at TPGS concentrations well below the 

CMC suggesting that it is not only restricted to micellar activity but also that of free 

TPGS molecules. TPGS appears to be a potent inhibitor of P-gp, with concentrations 

approximately 10 fold lower than the measured CMC demonstrating almost complete 

inhibition. Inhibition has also been found to be highly temperature dependent 

indicating that an active energy transport system is involved (1999; Yu et al. 1999). 

 

TPGS has been observed to bring about P-gp inhibition via energy source depletion. 

This occurs by steric hindrance of the ATPase enzyme of the Pgp transporter 

therefore obstructing substrate binding or causing allosteric modulation. This steric 

hindrance may be a result of either a direct interaction of TPGS with allosteric Pgp 

sites or incorporation of surfactant molecules into the cell membrane causing 

blockage of substrate binding sites. Unspecific membrane fluidisation or 

rigidification brought about by TPGS is thought not to be responsible for any P-gp 
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inhibition observed (Collnot et al. 2007). TPGS does however appear to cause 

rigidification of the cell membrane both above and below the CMC which should not 

be discounted as a possible method of P-gp inhibition (Rege et al. 2002). 

 

1.4.2.6 Effect of Aging and Storage Conditions 

 

Aging of semi-solid dispersion formulations containing TPGS and poorly soluble 

drugs is thought to cause instability in the system, bringing about conversion of 

amorphous drug into the more stable crystalline form. This was found to significantly 

reduce the dissolution on in vitro testing after one month of storage at room 

temperature (Schamp et al. 2006). 

 

Conversion of amorphous drug (and carrier) into the crystalline form has been found 

not to occur at room temperature and below, at 0% RH, although evidence of 

crystallinity was found as the temperature and humidity increased. It is thought that 

this is due to the PEG portions present in TPGS encouraging hydrogen bonding with 

water, therefore facilitating drug-carrier segregation and crystallisation (Barakat 

2006). 

 

1.4.3 Comparison of the Effectiveness of Gelucire 44/14 and TPGS in 

Semi-Solid Dispersion Formulations 

 

There are three key papers which highlight the effectiveness of TPGS and Gelucire 

44/14 in comparison with each other, these papers are detailed below. 
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Barakat (2006) investigated the effectiveness of solid dispersions, formulated via the 

fusion method, of etodolac with either Gelucire 44/14 or TPGS as the sole excipient. 

Using FTIR spectroscopy it was identified that there was a probable interaction 

between the imino group of etodolac and the carboxyl group of the Gelucire 44/14 

and TPGS. DSC data also suggested the formation of amorphous etodolac within the 

solid dispersions. Dissolution studies were carried out in simulated gastric fluid and 

simulated intestinal fluid. Both Gelucire 44/14 and TPGS showed enhanced 

dissolution in comparison with pure etodolac, and both solid dispersions displayed 

greater dissolution concentrations in simulated intestinal fluid, probably due to 

etodolac being weakly acidic (pKa 4.65). TPGS, in all studies, appeared to 

demonstrate enhanced solubilising properties when compared to Gelucire 44/14, as a 

greater proportion of Gelucire 44/14 was required to produce similar results. A solid 

dispersion formulation containing both Gelucire 44/14 and TPGS did however 

provide faster release profiles in both aqueous dissolution media than each excipient 

alone. 

 

A study carried out by Schamp et al (2006) investigated the development of an in 

vitro / in vivo correlation for solid dispersions of a poorly water soluble drug EMD 

57033. The solid dispersions were prepared via the melt method and it must also be 

taken into account that, in order to achieve complete dissolution of the drug in the 

carrier melt, 2-vinylpyrrolidone was added to Gelucire 44/14 and labrafil and PEG 

1000 to TPGS. Dissolution testing was carried out in simulated gastric fluid, FeSSIF 

and FaSSIF. Gelucire 44/14 produced a release profile of approximately 100% 

within 30 minutes in all media and this did not significantly change after 2 years 

storage at room temperature. TPGS however released approximately 85% drug after 



Chapter One Introduction  

62 
 

180 minutes and this decreased to less than 40% after one month storage at room 

temperature. 

 

The in vivo studies were carried out on four male beagle dogs after an overnight fast 

of 16 hours. TPGS produced drug plasma levels fourfold higher than the IV standard, 

however Gelucire 44/14 produced plasma levels 10 fold higher. These results 

coincided with the in vitro studies and it was therefore concluded that there was “a 

very strong rank order correlation” and that evaluation of solid dispersion 

formulations of poorly soluble drugs can be done at least partly on an in vitro basis. 

 

Khoo et al (2000) studied the absolute bioavailability of the poorly soluble drug 

halofantrine in lipid based solid dispersions containing TPGS and Gelucire 44/14. 

Dissolution studies were carried out in hydrochloric acid and water at 37oC. Both 

excipients increased the dissolution profile of halofantrine compared to the pure 

sample. However TPGS appeared to demonstrate slightly enhanced solubilising 

properties compared to Gelucire 44/14, as a higher proportion of Gelucire 44/14 was 

required to produce a similar result. It was also noted that a solid dispersion 

containing halofantrine, Gelucire 44/14 and TPGS in a ratio of 1:3:3 gave the most 

optimum dissolution results.  

 

1.8 AIMS OF THIS RESEARCH 

 

As detailed previously, lipid based solid dispersion formulations offer great potential 

in the enhancement of dissolution of poorly soluble drug compounds. The 

complexity of these systems along with stability issues, difficulty with scale up and 
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little knowledge of their in vivo performance makes their successful journey to 

market challenging (Chakraborty et al. 2009). The main aim of this project was to 

gain a greater understanding of the physicochemical properties of the chosen lipidic 

carrier excipients, with a view to relating these to and also explaining the 

physicochemical properties of their formulated lipid-based semi-solid dispersions. It 

was also hoped that these properties, as well as determination of the physical state of 

the model drug within the semi-solid dispersion system, could be successfully related 

to their behaviour in vitro, during hydration, and also during aging under differing 

humidity conditions. 

 

Chapter Two outlines the materials and methods used in the project and can be 

referred to throughout for methods such as sample preparation which will not be 

repeated in subsequent chapters. A more detailed methodology is given in further 

Chapters specific to the data presented. Chapter Three demonstrates characterisation 

data of the surface active lipidic carrier materials as a background prior to analysis of 

the formulated dosage forms being investigated. All subsequent Chapters are 

concerned with characterisation of the semi-sold dispersion systems of Gelucire 

44/14 with model drugs (ibuprofen, indometacin and piroxicam). Chapter Four is 

concerned with the overall characterisation of the semi-sold dispersion formulations, 

consisting of thermal analysis techniques including conventional, hyper (fast-speed) 

and quasi-isothermal differential scanning calorimetry, and also hot stage 

microscopy. Chapter Five presents in vitro release data of the drug from the semi-

sold dispersion systems. Chapter Six outlines hydration data of the semi-sold 

dispersion systems carried out using dynamic vapour sorption analysis in relation to 

the affinity with atmospheric moisture, and Chapter Seven demonstrates aging and 
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storage effects upon these formulations. Finally, Chapter Eight aims to summarise 

the project findings as well as drawing definitive conclusions from the data presented 

in this thesis. 
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MATERIALS AND METHODS 
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The way in which pharmaceutical formulations behave depends upon the 

physicochemical properties of the constituents. In order to develop a complete 

understanding of these properties it is essential to fully characterise each component 

alone and also the formulation as a whole. It is therefore beneficial to employ a 

multi-instrumental approach to ensure comprehensive characterisation. This project 

employs a variety of techniques, ranging from thermoanalytical to in vitro 

dissolution, in order to gain an in depth understanding of the physicochemical 

properties of the systems, and therefore be able to predict how these properties will 

influence the behaviour of the final formulation.  

 

In this chapter, an outline of the materials used in the project is given, as well as 

background to the techniques and methods of sample preparation. 

 

2.1 MATERIALS 

2.1.1 Surface Active Lipidic Carriers 

 

Two surface active lipidic carriers, Gelucire 44/14 and TPGS, were selected for the 

purposes of this project. They were chosen on the basis that they demonstrate an 

ability to enhance the dissolution profile of poorly soluble active drug compounds 

when formulated into semi-solid dispersion systems. These materials are detailed 

below. 
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2.1.1.1 Gelucire 44/14 

 

Gelucire 44/14 (Lot Number 103201) was kindly provided by Gattefossé (Lyon, 

France) and was used as received. 

 

Structure and Formation 
 

Gelucires are amphiphilic excipients belonging to the group of compounds lauryl 

macroglycerides (Serajuddin et al. 1988; Svensson et al. 2004). They consist of fatty 

acid esters of polyethylene glycol (PEG) and glycerides, the combinations of which 

determine their physical characteristics (Damian et al. 2000). Gelucires are 

categorised according to their melting points and hydrophilic-lipophilic balance 

(HLB) values which are denoted by numbers at the end of ‘Gelucire’. They are 

totally inert compounds which are used as excipients in a wide variety of 

pharmaceuticals worldwide (Gattefossé 2007). 

 

Gelucire 44/14 belongs to the larger group of ‘Gelucires’; however it possesses the 

unique ability to spontaneously emulsify on contact with aqueous media, which has 

been explained in detail in Chapter One. It is approved as a food additive by the FDA 

and its raw components are of food grade. It is considered to be non-toxic and can be 

safely administered orally up to 1440mg/day based on an adult of 60kg. It is formed 

via the polyglycolysis of hydrogenated palm kernel oil with PEG 1500 (Gattefossé 

2007). Being derived from vegetable oil it is well tolerated by the body and is 

‘generally regarded as safe’ (GRAS) (Chambin and Jannin 2005; Sheen et al. 1995). 

The constituents of Gelucire 44/14 are shown in Tables 2.1 and 2.2 below.  
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Table 2.1 Constituents of Gelucire 44/14 and their percentages (Gattefossé 2007; Svensson et al. 

2004). 

 

Constituent Percentage (%) 

Free PEG 1500 8 

PEG 1500 esters (mono- and di-fatty acid esters) 72 

Glycerides (mono-, di- and tri-) 20 

Glycerol 0-3 

 

 

Table 2.2 Constituent fatty acids of Gelucire 44/14 and their percentages (Gattefossé 2007). 

 

Fatty Acid Percentage (%) 

C8 (caprylic acid) <15 

C10 (capric acid) <12 

C12 (lauric acid) 30-50 

C14 (myristic acid) 5-25 

C16 (palmitic acid) 4-25 

C18 (stearic acid) 5-35 

 

 

At room temperature Gelucire 44/14 exists as a white semi solid waxy material of 

approximately 83% crystallinity. It has been found to exist in a single crystalline 

form, the crystals thought to be formed by lamellae of PEG esters and some pure 

PEG, separated by layers of fatty acid chains. There may also be amorphous regions, 

trilaurin crystals and liquid glycerol (Gattefossé 2007; Svensson et al. 2004). 
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Characteristics and Thermal Properties 
 

As explained above, ‘44/14’ denotes the melting point and HLB value for this 

particular Gelucire. This indicates Gelucire 44/14 has a melting point of 

approximately 44oC (although in reality it melts over a range of temperatures) and an 

HLB value of 14 (Barakat 2006). DSC plots produced by Gattefossé and Damian et 

al (2000) show that, on melting, Gelucire 44/14 crystals display a broad leading 

shoulder (Figure 2.1). This is thought to be brought about by the separation of 

Gelucire 44/14 components into fractions with different melting points (Gattefossé 

2007).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 DSC melting profile of Gelucire 44/14 (Gattefossé 2007). 
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2.1.1.2 TPGS 

 

TPGS (Batch Number 50037000) was kindly provided by AstraZeneca 

(Macclesfield, UK) and was used as received. 

 

Structure and Formation 
 

TPGS is a water soluble derivative of the fat soluble vitamin, vitamin E. It has the 

classification of ‘generally regarded as safe’ (GRAS) by the FDA and is effective to 

be used as a pharmaceutical excipient. It has the chemical name D-alpha tocopheryl 

polyethylene glycol 1000 succinate and is synthesised via the esterification of the 

acid group of vitamin E (crystalline D-alpha tocopheryl succinate) by polyethylene 

glycol (PEG) 1000 (Eastman 2005). At room temperature TPGS is a white to light 

brown / pale yellow waxy solid substance. 

 

 

 

 

 

 

 

 

Figure 2.2 General structure of TPGS analogues; n = 23 (Li et al 2008). 
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Characteristics and Thermal Properties 
 

TPGS is a non-ionic surfactant which has amphiphilic properties and a hydrophilic-

lipophilic balance (HLB) of approximately 13 (Eastman 2005). It consists of a 

hydrophilic polar head group (PEG) illustrated by green in Figure 2.2, a lipophilic 

tail group (tocopheryl) illustrated by black and a succinate linker illustrated by red 

(Collnot et al. 2007). These bulky groups give the molecule a large surface area 

making TPGS an effective emulsifier. It also functions as a solubiliser, absorption 

enhancer and stabiliser (Shin and Kim 2003). 

 

TPGS has a low melting point between 37 and 41oC, however it is heat stable below 

200oC and has a degradation temperature of approximately 199oC (Figure 2.3). It 

therefore displays good thermal stability during pharmaceutical formulation when 

subjected to normal processing temperatures. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The DSC melting profile and oxidative thermal degradation of TPGS (Eastman 2005). 
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2.1.2 Active Pharmaceutical Ingredients (Model Drugs)

 

The model drugs used in this project

by their nature have low aqueous solubility and 

gastrointestinal cell wall. BCS Class II drugs are prime candidates for dissolution 

enhancement using solid dispersion systems, as once they are in solution in the GI 

fluids they will be readily absorbed into the systemic circu

their in vivo bioavailability.

 

2.1.2.1 Ibuprofen

 

Ibuprofen is used pharmaceutically as a non

widely available as a ‘General Sales List’ or ‘Over the Counter’ formulation for its 

analgesic and anti-inflammatory effects. It is a non

inhibitor and exists as a white, crystalline powder. It has the systematic name (2RS)

2-[4-(2-Methylpropyl)phenyl]propanoic acid, a molecular weight of 206.3 g/mol and 

a melting point of 75

temperature is thought to be 

 

 

 

 

 

 

Figure 2.4 Structural formula of ibuprofen

Active Pharmaceutical Ingredients (Model Drugs) 

The model drugs used in this project are all BCS Class II compounds

by their nature have low aqueous solubility and high permeability across the 

gastrointestinal cell wall. BCS Class II drugs are prime candidates for dissolution 

enhancement using solid dispersion systems, as once they are in solution in the GI 

fluids they will be readily absorbed into the systemic circulation, 

their in vivo bioavailability. 

Ibuprofen 

Ibuprofen is used pharmaceutically as a non-steroidal anti-inflammatory drug and is 

widely available as a ‘General Sales List’ or ‘Over the Counter’ formulation for its 

inflammatory effects. It is a non-selective cyclo

r and exists as a white, crystalline powder. It has the systematic name (2RS)

Methylpropyl)phenyl]propanoic acid, a molecular weight of 206.3 g/mol and 

a melting point of 75-78°C (British Pharmacopoeia 2010). Its glass transition 

rature is thought to be -45.15°C (Domanska et al. 2009). 

Structural formula of ibuprofen (British Pharmacopoeia 2010). 
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It has been shown to be highly insoluble in water (0.01mg/ml (Kasim et al. 2003)) 

but freely soluble in acetone (British Pharmacopoeia 2010). The solubility of 

ibuprofen is also pH dependent as it is acidic in nature. It is thought to fall within 

BCS II due to its low solubility but high permeability. It is also thought, as with all 

NSAIDS, to promote its own transport across the GI tract (Potthast et al. 2005). It is 

for this reason that ibuprofen is a valuable model drug in the development of oral 

dosage forms to improve the bioavailability of poorly soluble drugs.  

 

Ibuprofen is usually administered as the free acid and as a racemic mixture of two 

enantiomers, S (+) and R (-), however the R (-) enantiomer has little activity 

(Potthast et al. 2005). Commercially available formulations of ibuprofen are often 

film or sugar coated and are known to demonstrate variation in terms of in vitro 

dissolution and in vivo bioavailability (Saville 2001). This will be brought about by 

the poor aqueous solubility of ibuprofen which is the rate limiting step on oral 

administration. 

 

Ibuprofen can exist as plate or needle-shaped crystals which are characterised by 

melting points of 75.1 and 75.2oC (Moneghini 2008). Despite not exhibiting genuine 

polymorphism, the crystal habit of ibuprofen has been found to change with 

pharmaceutical processing, and once mixed with excipients, the interactions between 

molecules can become destabilised (Romero et al. 1993). 
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2.1.2.2 Indometacin 

 

Indometacin is a cyclo-oxygenase inhibitor and is a ‘Prescription Only Medicine’ 

used as a non steroidal anti-inflammatory analgesic in capsule or suppository 

formulations. It has the systematic name 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-

1H-indol-3-acetic acid (molecular mass 357.81 g/mol), a melting point of between 

158 and 162oC and a decomposition temperature of 220°C (British Pharmacopoeia 

2010; Okumura et al. 2006).  

 

 

 

 

 

 

 

Figure 2.5 Structural formula of indometacin (British Pharmacopoeia 2010). 

 

Indometacin is a white / yellow crystalline powder and can exist in a number of 

different polymorphic forms. It is virtually insoluble in water, with a solubility 

recorded as 0.0025mg/ml (Bandi et al. 2004), and only sparingly soluble in alcohol 

(British Pharmacopoeia 2010). Amorphous indometacin has a glass transition 

temperature (Tg) of 43oC, below this temperature amorphous indometacin crystallises 

to the stable γ polymorphic form (m.p. 162oC), however above the Tg the metastable 

α form (m.p. 155oC) is favoured (Andronis and Zografi 2000; Otsuka et al. 2001).  
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Indometacin, like ibuprofen, is a BCS Class II compound i.e. low solubility but high 

permeability across the cell wall of the gastrointestinal tract. This means that it 

demonstrates a low and often erratic bioavailability when taken orally caused by its 

poor solubility in the GI fluids 

 

2.1.2.3 Piroxicam

 

Piroxicam is a ‘Prescription Only Medicine’ belonging to the same group of non

steroidal anti-inflammatory drugs as ibuprofen and indometacin. It is not utilised for 

its analgesic, anti-inflammatory and antipyretic properties due to its delayed onset of 

action which is caused by slow and gradual absorption and a long half life of 

elimination. Its use is therefore reserved for the acute and long term treatment of 

osteo and rheumatoid arthritis symptoms 

oxygenase inhibitor and has the systematic name 4

2-yl)-2H-1,2-benzothiazine

crystalline powder with a limited water solubility of 0.0198m

2005),. 

 

 

 

 

 

 

Figure 2.6 Structural formula of piroxicam 

 

Indometacin, like ibuprofen, is a BCS Class II compound i.e. low solubility but high 

permeability across the cell wall of the gastrointestinal tract. This means that it 

demonstrates a low and often erratic bioavailability when taken orally caused by its 

poor solubility in the GI fluids (El-Badry et al. 2009). 

Piroxicam 

Piroxicam is a ‘Prescription Only Medicine’ belonging to the same group of non

inflammatory drugs as ibuprofen and indometacin. It is not utilised for 

inflammatory and antipyretic properties due to its delayed onset of 

tion which is caused by slow and gradual absorption and a long half life of 

elimination. Its use is therefore reserved for the acute and long term treatment of 

osteo and rheumatoid arthritis symptoms (Prabhu 2005; Qi et al. 2010a)

oxygenase inhibitor and has the systematic name 4-Hydroxy-2-methyl

benzothiazine-3-carboxamind 1,1-dioxide. It exists as a white 

crystalline powder with a limited water solubility of 0.0198mg/ml 

Structural formula of piroxicam (British Pharmacopoeia 2010). 
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Indometacin, like ibuprofen, is a BCS Class II compound i.e. low solubility but high 

permeability across the cell wall of the gastrointestinal tract. This means that it 

demonstrates a low and often erratic bioavailability when taken orally caused by its 

Piroxicam is a ‘Prescription Only Medicine’ belonging to the same group of non-

inflammatory drugs as ibuprofen and indometacin. It is not utilised for 

inflammatory and antipyretic properties due to its delayed onset of 

tion which is caused by slow and gradual absorption and a long half life of 

elimination. Its use is therefore reserved for the acute and long term treatment of 

2005; Qi et al. 2010a). It is a cyclo-

methyl-N-(pyridine-

dioxide. It exists as a white 

g/ml (Karatas et al. 
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Piroxicam is known to show polymorphism however it is unknown how many 

different forms exist. An investigation carried out by Vrečer et al (1991) was able to 

isolate four polymorphic forms with melting points 201.6oC, 195.5oC, 178.4oC and 

164.1oC, and at least one pseudopolymorphic (monohydrate) modification. 

 

Piroxicam is classified as BCS II (high permeability, low solubility) and its 

bioavailability has been successfully increased using solid dispersions formulations 

in the past (Yuksel 2003). 

 

2.2 METHODS 

2.2.1 Physical Mix Preparation 

 

Physical mixes of the crystalline model drugs and lipidic carrier were created for the 

purpose of comparison with the SSD systems of the same components. Known 

amounts of crystalline drug were physically mixed with the carrier, the resulting 

melting transitions of which acted as a calibration (control) in order to calculate the 

quantity of drug dissolved in carrier during the formulation process, as opposed to 

that present as crystalline particles in the SSD.  

 

Physical mixes were created in the DSC pan by weighing the crystalline drug on top 

of the lipidic carrier, then sealing. This method was chosen in preference to making 

larger quantities as that would pose the difficulty of achieving an evenly distributed 

mix. Uneven distribution would result in unreliable data and the small quantities 

required for analysis would be likely to contain varying amounts of crystalline drug. 

The kinetic energy created by the process of mixing could also render the crystalline 
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drug amorphous. Placing the crystalline drug on top of the carrier in the DSC pan is 

able to ensure mixing when the lipid melts at lower temperatures. 

 

2.2.2 Semi-Solid Dispersion Formulation 

 

There are a number of methods available for the preparation of SSD systems, as 

described in Chapter One, such as solvent evaporation by spray or freeze-drying, or 

by hot melt extrusion. The method chosen ultimately depends upon the drug and 

excipient involved and also the physicochemical properties required of the final 

product. The properties of the carriers used in this project, being low melting point 

lipids, lend them to formulation via the hot melt method. This involves heating of the 

carrier to approximately 60oC until molten and the addition of the crystalline drug 

with continuous stirring for 5 minutes until the mix is homogeneous. The dispersions 

were then allowed to cool, protected from light, for 48 hours at either 4oC (denoted 

as SSD(4)) or 20oC (denoted as SSD(20)) before being analysed. 

 

2.2.3 Capsule Preparation 

 

Due to the viscous nature of the molten SSD systems on preparation and the resulting 

difficulty in accurately measuring the required quantity by volume, the formulations 

were allowed to cool before being filled into size 0 hard gelatin capsules. This 

allowed an accurate quantity by weight to be put into each capsule corresponding to 

the required amount of drug for each system; 25mg of ibuprofen, 25mg of 

indometacin, and 10mg of piroxicam, the total weight of SSD depending upon the 

drug loading. 
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2.2.4 Thermal Analysis Techniques 

2.2.4.1 Conventional Differential Scanning Calorimetry 

 

Differential scanning calorimetry (DSC) is the most widely used of the thermal 

analytical techniques. It is a technique by which the thermal transitions of a 

substance, such as melting, re-crystallisation, glass transition or decomposition, are 

investigated, providing quantitative and qualitative information about the samples 

physicochemical properties. Samples are subjected to a linear temperature 

programme, heating, cooling or isothermal in nature, and the response is measured in 

terms of the energy transfer to or from the sample over time or temperature. The 

energy changes which occur within the sample during these transitions are measured 

in comparison to an empty reference, generating a trace of heat flow or heat capacity 

signals against temperature which displays transitions as exothermic or endothermic 

peaks (Gabbott 2008).  

 

 

 

 

 

 

 

 

Figure 2.7 Schematic of a heat flux DSC. A = furnace, B = thermocouple (Reproduced from Reading 

and Craig (2007)). 

 

Reference Sample 

A A 

B B 
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There are two different approaches to DSC analysis, one being heat flux and the 

other power compensation. Heat flux DSC consists of only one furnace containing 

both sample and empty reference pans which are placed symmetrically within the 

cell. This furnace heats the sample and reference pans equally and the temperature 

difference between the two is measured by thermocouples placed underneath the 

pans. Heat flow from the furnace can be calculated using this equation: 

 

��
��

= ∆�
�

 Equation 2.1 

 

where dQ / dt represents heat flow, ∆T is the temperature difference between the 

furnace and the pan and R is the thermal resistance in the heat flow between the 

furnace and pan (Reading and Craig 2007). 

 

 

 

 

 

 

 

 

Figure 2.8 Schematic of a power compensation DSC. A = furnace, B = sample and reference pans, 

C = sample and reference platinum resistance thermometers (Reproduced from Reading and Craig 

(2007)). 

 

A A 

B B 

C C 
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The concept of power compensation DSC is more complex than that of heat flux. 

This approach makes use of two separate furnaces, one for each of the sample and 

reference pans. The temperature programme is the same for each furnace, however 

the difference in power required to maintain both pans at the same temperature is 

measured (Reading and Craig 2007). 

 

Heat capacity (Cp) represents the energy required to increase the sample temperature 

by 1K, and heat flow is consequently a function of heat capacity (Reading and Craig 

2007). Therefore, taking into account heat capacity and the occurrence of any kinetic 

responses of the sample, the DSC signal may be expressed as: 

 

��
��

= ��.
��
��

+ ���, �� Equation 2.2 

 

where dQ/dt represents the heat flow, Cp is the heat capacity, dT/dt is the heating rate 

and f(t,T) is a function of time and temperature representing any kinetic response 

(Hill et al. 1998) 

 

Modulated temperature differential scanning calorimetry (MTDSC) is an extension 

of conventional DSC in the fact that a modulated sinusoidal heating wave is applied 

to the standard linear temperature programme. Due to the modulating temperature, 

the heating rate also modulates accordingly, instead of remaining constant. This 

allows separation of the reversible (heat flow associated with heat capacity) and 

irreversible (heat flow associated with a chemical event) processes, making it easier 

to distinguish between phases. 
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Figure 2.9 Comparison between an MTDSC temperature profile (unbroken line) and that of 

conventional DSC (broken line) (Coleman and Craig 1996) . 

 

Reversible processes are thought to be in equilibrium with the surrounding 

temperature programme and are therefore dependent upon heating rate, for example 

crystallisation. Irreversible processes are those which are kinetically controlled and 

are therefore dependent upon absolute temperature, such as melting (Coleman and 

Craig 1996). 

 

The modulated temperature programme can be expressed as: 

 

� = �� + �� + �. sin���� Equation 2.3 

 

where T represents temperature, To is the starting temperature, t is time, A is the 

amplitude of oscillation, q is the average heating rate and ω is the frequency of 

oscillation. Therefore taking Equation 2.2 into account, the heat flow of MTDSC 

experiments can be expressed as: 
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��
��

= ���� + ��. cos����� + ���, �� + �. sin���� Equation 2.4 

 

where (q+Aω cos(ωt)) represents the derivative modulated temperature, f’( t,T) is the 

kinetic response excluding the effect of the modulation and C is the amplitude of the 

kinetic response to the modulation (Hill et al. 1998). 

 

Interaction between the drug and carrier of an SSD formulation can be characterised 

using DSC. It is known, however, that the heating rates capable of standard DSC 

instruments are slow enough to allow further dissolution of crystalline drug into the 

molten carrier during analysis. This allows false interpretation of data and may lead 

to the incorrect assumption of the presence of a solid solution. This effect could 

potentially be overcome by employing faster heating rates which is explained in 

section 2.2.4.3.  

 

 

 

 

 

 

 

 

 

Figure 2.10 TA Instruments Q2000 DSC and schematic of the heat flux cell (TA Instruments 2010). 
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All conventional DSC experiments were performed using a TA Q1000 or Q2000 

DSC instrument in TA Tzero or standard aluminium pans. These instruments 

perform using heat flux technology. 

 

2.2.4.2 Quasi-Isothermal Modulated Temperature Differential Scanning 

Calorimetry 

 

The technique of quasi-isothermal modulated temperature differential scanning 

calorimetry (QIMTDSC) is a variant of traditional MTDSC which involves the 

holding and sinusoidal modulation of the temperature programme around a specific 

temperature for extended periods of time. The temperature can be incrementally 

increased or decreased through a sample transition, eliminating the influence of 

heating or cooling rate. This method can be used in such a way as to accurately 

characterise a thermal transition, independent of rate. A disadvantage to this 

technique however is that QIMTDSC methods generally take a minimum of 12 hours 

to run which can extend to days. The outcome parameter of this method is the 

reversing “apparent” heat capacity which takes into account the reversing heat 

capacity and the effects of latent heat (Wunderlich 2003). 

 

Transitions can be detected using Lissajous analysis, whereby the modulated heat 

flow is plotted against the modulated temperature. This allows observation of the 

reproducibility of the sine wave heat flow modulations within a single isothermal 

period. The transition can be observed in real time by noting the deviation of the sine 

wave curves from the steady state through the course of the process, thereby 

providing a novel means of de-convoluting the heat flow processes associated with 
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the thermal event as a function of time, in the absence of kinetic effects. The major 

slope of the Lissajous sine wave modulations gives an indication of heat capacity. 

Any change in this slope therefore suggests a change in heat capacity of the sample 

over the course of the experiment, with a steeper slope corresponding to a greater 

heat capacity. A change in the width of the Lissajous sine wave ellipses suggests a 

difference in phase between the sample response to heat flow and the applied 

stimulus or temperature fluctuation which could be as a result of a thermal transition. 

This difference is known as phase lag however its interpretation is known to be very 

difficult. 

 

All Quasi-Isothermal MTDSC experiments were performed using a TA Q1000 or 

Q2000 DSC instrument in TA Tzero or standard aluminium pans. 

 

2.2.4.3 Hyper (Fast Speed) Differential Scanning Calorimetry 

 

Hyper DSC works under the same principles as conventional DSC however it 

involves the heating of samples at much faster rates than those possible using 

conventional DSC. The capability of achieving these high heating rates is attributed 

to the use of power compensation technology which employs a much smaller furnace 

as outlined in Section 2.2.4.1. Commercially available hyper DSC instruments can 

heat at rates up to 750oC/minute. Advantages of using increased heating rates include 

reduced run times and improved sensitivity. The sensitivity enhancement observed is 

attributable to the time lag between the sample and reference achieving the same 

temperature after a thermal transition has occurred. This time lag is the same for 

slow and fast rates, however at faster rates, the transition peak will increase in size 
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due to a greater input of energy per unit time i.e. the energy changes occur over a 

significantly shorter time period, allowing visualisation of weak transitions (Gaisford 

2008). This is useful in the detection of weaker or low energy process such as glass 

transitions. A disadvantage of enhanced sensitivity however is poor resolution. The 

increase in size of the thermal transitions can conceal other smaller transitions which 

may be occurring.  

 

It is possible in some cases, by heating at accelerated rates, to inhibit kinetic 

transitions such as crystallisation and glass transition. The temperature of these 

processes is known to increase with increasing heating rate, therefore, if the heating 

rate is fast enough it is possible to inhibit them completely. The sample is still able to 

respond to the input of energy, and thermodynamically controlled events such as 

melting are not affected (Gaisford 2008; Gramaglia 2005). A study carried out by 

Gramaglia (2005) found that fast heating rates are also capable of reducing further 

dissolution of drug into polymeric film matrices and thus giving a more accurate 

determination of its solubility in the polymer. Hyper DSC has, however, been found 

to be less robust than conventional DSC due to increased variability in measured 

enthalpies (McGregor and Bines 2008).  

 

For the purposes of this project, the main advantage of using hyper DSC was the 

reduced dissolution of drug in the molten lipidic carrier during analysis, allowing a 

more accurate determination of drug solubility within the carrier, and also 

quantification of crystalline drug present in the SSD systems after formulation. All 

hyper DSC experiments were performed using a Perkin Elmer Diamond DSC, based 

at AstraZeneca, Macclesfield, in 40µl aluminium pinhole pans. 
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2.2.4.4 Hot Stage Microscopy 

 

Hot Stage Microscopy (HSM) technique can be used for the physical characterisation 

of pharmaceutical samples and involves the observation of thermal transitions 

occurring in a sample as a function of temperature and time. HSM is a useful visual 

method which allows evaluation of the physical properties of pharmaceutical 

compounds and complete formulations and which can be used to complement and 

confirm processes which are observed using other thermal analytical techniques such 

as DSC and TGA (Vitez et al. 1998). The apparatus consists of a camera mounted 

above a polarised light microscope, into which the hot-stage, containing the sample 

on a glass slide, is placed.  

 

HSM was used in this project to characterise melting and crystallisation of the lipidic 

carriers on heating and cooling, as well as characterisation of the crystalline drugs 

and evaluation of these thermal processes when in combination as SSD systems. 

HSM experiments were performed using a Mettler Toledo FP90 Central Processor 

and an FP82HT Hot Stage, a Leica DM LS2 Microscope and a JVC digital colour 

video camera connected to a PC.  

 

2.2.5 Dynamic Vapour Sorption 

 

Dynamic Vapour Sorption is a technique by which the response of a sample material 

is measured in relation to changes in temperature and humidity over time. The loss or 

uptake of water is accurately recorded gravimetrically in comparison to an empty 

reference. It is important to understand the effect of temperature and humidity on 
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pharmaceutical excipients and active ingredients in order to predict the behaviour of 

the final formulation upon storage. The humidity in the sample and reference 

chambers is regulated by three mass flow controllers which adjust the nitrogen purge 

gas flow through the system. Humidity reservoirs are used to generate nitrogen purge 

gasses of the required moisture content, from 0 to 98%. A heat exchanger is used to 

control the temperature of the sample and reference environment between 5 and 85oC 

(TA Instruments 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 The internal components of a typical DVS instrument; MFC = Mass Flow Controller (TA 

Instruments 2010). 

 

The most common analyses performed using this technique are isotherm experiments 

which involve the sample material being subjected to increasing or decreasing 

humidity at constant temperature, and isohume experiments where the sample is 
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subjected to increasing or decreasing temperature at constant humidity (TA 

Instruments 2010). In most cases the sample is dried before analysis and the weight 

is allowed to equilibrate at each isothermal step before moving on to the next.  

 

Samples for analysis by DVS were prepared as detailed previously and all 

experiments were performed using a TA Instruments Q5000SA in 180µl quartz 

crucibles. DVS was used in this project to determine the hydration behaviour of the 

lipidic carrier material and drugs alone and in combination after formulation into 

SSD systems at varying temperature and humidity.  

 

2.2.6 In Vitro Dissolution 

 

In vitro dissolution testing is used in the pharmaceutical industry for a number of 

applications, for example in formulation science to assess the dissolution properties 

of a drug in order to aid selection of appropriate excipients for combination into oral 

dosage forms or to discriminate between formulation candidates to aid selection 

(Dressman 1998); however on the whole, dissolution testing allows characterisation 

of the release profile of immediate and modified release solid oral dosage forms. 

Ultimately, in vitro dissolution testing of pharmaceuticals is used to predict and 

assess in vivo performance i.e. bioavailability. In order to achieve a more accurate in 

vitro / in vivo correlation, the tests must be carried out under the appropriate 

conditions, and simulated gastrointestinal fluids are often used for this purpose. 
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Figure 2.12 Copley dissolution bath. 

 

Drug dissolution into the gastrointestinal fluids is an essential part of the processes 

which occur after oral administration of a solid oral dosage form, and for poorly 

soluble drugs, this is the rate limiting step. In this project, dissolution was utilised 

purely to investigate the improvement, if any, of the dissolution rate of the three 

poorly soluble drug SSD systems formulated with the chosen lipidic carrier material. 

All experiments were performed using a Copley Scientific DIS8000 dissolution bath 

attached to a Copley Scientific FH16-D heating unit. 
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3.1 INTRODUCTION 

 

The physicochemical properties of the chosen surface active lipidic carriers, such as 

melting and crystallisation temperatures, can undergo alterations during manufacture 

into formulations, and also upon storage. It is important to fully characterise these 

properties prior to formulation in order to predict their behaviour when in 

combination with the drug, and also in the final product as a whole. The lipidic 

carrier materials under investigation are largely crystalline in structure. Crystalline 

materials display significant or complete structural order which is repeated 

indefinitely in three dimensions. As well as characterisation of the physicochemical 

properties of the carriers upon heating, in order to demonstrate the changes 

undergone during manufacture, the crystallisation transition was also investigated. 

On cooling from a molten state, for example during SSD formulation, the carriers 

crystallise, however not necessarily forming the same crystalline structure as before. 

Any alteration in the crystalline packing arrangement will alter the carrier’s 

physicochemical properties. This may become a disadvantage as the behaviour of the 

final formulation will be unknown and therefore unpredictable.  

 

In this chapter, structural properties of the lipidic carrier materials are determined 

using DSC methods by observing thermal transitions upon heating and cooling. HSM 

is used to complement DSC data by visually mirroring these transitions. The 

technique of quasi-isothermal MTDSC is further developed as part of this project in 

order to characterise crystallisation of lipidic materials. The technique allows 

isolation of the temperature at which crystallisation occurs, independent of heating 

rate. DVS has also been used to investigate the water sorption properties of the 
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carriers, as such characteristics may be extremely important in determining the 

performance of the final formulation. 

 

3.2 METHODOLOGY 

3.2.1 Conventional Differential Scanning Calorimetry 

 

Conventional DSC experiments were performed under a nitrogen environment, with 

a purge rate of 50ml/minute. Calibration of the instrument was conducted prior to 

experimentation. This involved cell resistance and capacitance (baseline) calibrations 

with an empty cell and sapphire disks (Tzero calibration), cell constant calibrations 

using indium standard (Tm 156.6°C, heat of fusion 28.6J/g), and finally temperature 

calibrations using benzoic acid (Tm 122.4°C) and n-octadecane (Tm 28.2°C). 

Temperature calibrations were carried out at the same rate as intended for sample 

analysis. Samples for analysis were taken directly from the container, loaded and 

crimped into TA standard aluminium pans or Tzero aluminium pans, all of similar 

weight. 

 

Heating and cooling experiments were conducted in TA standard aluminium pans 

with a sample weight range of 2 to 2.5mg. Samples were heated from 0oC to 60oC, 

held isothermally for 10 minutes to ensure complete melting, and then cooled back to 

0oC or -10°C at a rate of 0.5, 2, 10 or 20oC/minute. Samples were also heated to 

200oC at 10oC/minute. Experiments were repeated up to four times. 
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As part of the aging study, samples were heated and cooled at 10oC/minute as 

described above, then aged in the pan for 1, 2, 3, 5, 24 and 72 hours under ambient 

conditions, after which time the method was repeated. 

 

3.2.2 Quasi-Isothermal Modulated Temperature Differential Scanning 

Calorimetry 

 

Quasi-isothermal MTDSC experiments were performed under a nitrogen 

environment at a purge rate of 50ml/minute. Calibration of the instrument was 

conducted prior to experimentation, as per conventional DSC. An additional 

calibration using aluminium oxide was also carried out in order to calibrate for the 

required QIMTDSC method, determining the total and reversing heat capacity 

constants. Samples in the weight range 2 to 2.5mg were prepared into TA standard 

aluminium pans or Tzero aluminium pans, all of similar weight.  

 

All samples were heated above the melting temperature at 10oC/minute to 60oC, held 

for 10 minutes to ensure complete melting, and then cooled to the point of 

QIMTDSC. All methods employed an amplitude of ±1oC and a period of 60 seconds.  

 

Method One – Cooled from 40 to -10oC in 5oC increments, with an isotherm of 60 

minutes at each increment.  

Method Two – Cooled from 35 to 5oC in 1oC increments, with an isotherm of 20, 40 

or 60 minutes at each increment. 

Method Three – Held isothermally for 720 minutes (12 hours) at 29, 30, 31, 32, 33, 

35 or 40oC.  
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Method Four – Held isothermally for 2880 minutes (48 hours) at 29oC. 

 

3.2.3 Hot Stage Microscopy  

 

Samples for analysis were applied to glass microscope slides and heated from 30 to 

50oC at 10oC/minute, cooled to room temperature, then re-heated to 50oC. Images 

were captured at x20 magnification, under polarised light. It should be noted that the 

apparatus has no control over the rate of cooling, however it was calculated to be 

approximately 2oC/minute. 

 

3.2.4 Dynamic Vapour Sorption 

 

Samples were taken directly from the container to be analysed gravimetrically using 

DVS in quartz crucibles against an empty reference. Three different methods, under 

nitrogen environment, were used to characterise the hydration behaviour of the 

lipidic carrier. 

 

Method One – 75% RH, temperature ramped from 25 to 55oC, 60 minutes at each 

step. 

Method Two – 75% RH, held isothermally for 60 minutes at a single temperature (25, 

30, 35, 40, 45, 50 or 55oC). 

Method Three – 40oC, RH ramped from 0 to 90%, 60 minutes at each step. 

 

All samples were dried at 25oC and 0% RH for 60 minutes prior to experimentation. 

Desorption or absorption of water was measured as weight loss or gain respectively. 
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3.3 GELUCIRE 44/14 

3.3.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

 

Conventional DSC is the most widely used of the thermal analytical techniques. It is 

a fast and convenient method of determining the fundamental thermal properties of 

pharmaceutical samples and therefore an indirect indication of their structural 

properties. In this section it is used to characterise the melting and crystallisation 

transition of Gelucire 44/14 and also the dependence of these transitions upon rate 

changes, thermal history and aging. 

 

3.3.1.1 Melting 

 

The most accurate method of determining the melting temperature (Tm) of 

crystalline materials is to calculate the extrapolated onset temperature (Tm(onset)). The 

peak max (Tm(max)) is affected by the broadness of the transition which is dependent 

upon the particle size, sample mass and heating rate (Saunders 2008). On heating, 

Gelucire 44/14 exhibits a characteristic double melting endotherm (Figure 3.1). The 

smaller leading peak (secondary peak) displays a Tm(onset) of 28.3oC ± 0.3 (Tm(max) 

34.5°C ± 0.2; ∆H 21.1 J/g ± 0.3), with the main melt (primary peak) occurring at 

39.9oC ± 0.1 (Tm(max) 45.0°C ± 0.07; ∆H 91.4 J/g ± 3.2). The secondary peak, which 

appears to consist of 2 phases, is contributed by lower melting point fractions of the 

lipid (Gattefossé 2007). The larger primary melt endotherm also appears to have a 

slight shoulder. MTDSC studies carried out by the manufacturer, Gattefossé (2007), 

found the reversing and non-reversing signals to demonstrate a similar melting 



Chapter Three Characterisation of Lipidic Carriers 

96 
 

endotherm to that of the total heat flow, thus suggesting that the broad endotherm 

observed is attributable to a single melting transition only, and not a number of 

different thermal events occurring over the same temperature range. Due to the many 

components of the lipid and their complex interaction, which are not yet fully 

understood, the broad double melting endotherm and its various peaks and shoulders 

cannot be assigned to any specific components (Sutananta et al. 1994b).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Heat flow against temperature signal on heating at 10oC/minute of the Gelucire 44/14 

melting endotherm. 

 

On heating above the melting temperature of Gelucire 44/14 (Figure 3.2), an 

exotherm is observed at onset 144.14oC ± 0.2 (max 157.8°C ± 0.3; ∆H 9.0 J/g ± 1.4). 

It is possible that this exotherm is some form of decomposition of the lipid; however 

it is unlikely to be oxidative in nature. The sample pan was crimped and not 

hermetically sealed therefore any oxygen present within the pan will have been 

driven off by the nitrogen gas purge flowing through the cell during analysis. 

Dordunoo et al (1991), whilst investigating solid dispersions of Gelucire 44/14 with 
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triamterene, suggested the decomposition of Gelucire 44/14 at approximately 170oC 

however offered no suggestion as to the nature of the process. As this is not the focus 

of this study, the nature of this exotherm was not further investigated. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Heat flow against temperature signal on heating at 10oC/minute of Gelucire 44/14. Inset: 

Magnification of decomposition exotherm. 

 

3.3.1.2 Crystallisation 

 

Lipids in general consist of multiple components making the process of 

crystallisation, and subsequently its characterisation, complex. The carriers 

investigated are doubly complex since, despite being of a lipidic nature, they also 

contain polymeric elements or properties which will inevitably have an effect on the 

overall behaviour of the material. General lipidic and polymer crystallisation theory 

will however give an insight into the processes which occur upon cooling from the 

molten state. 
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Lipids are known to retain some molecular order when in the liquid phase. This order 

is lost upon heating to extreme temperatures above the melting point of the lipid. The 

temperature from which the lipid is cooled is a determining factor on the form of the 

lipid once crystallised. If the lipid order is lost then a less stable form is known to 

crystallise from the melt (Metin and Hartel 2005). This will have an impact on the 

structure of the final formulation depending upon the temperatures used during 

manufacture.  

 

The process of crystallisation relies upon two independent phenomena; nucleation 

and crystal growth. Before crystallisation can occur, the solution is required to be in 

a supersaturated or subcooled state, generally achieved once the temperature drops 

below the melting point of the lipid. The phase transformation process of 

crystallisation is dependent upon the Gibbs free energy barrier to nucleation. 

Crystallisation begins with nucleation which involves the association of molecules 

into a solid crystalline phase, i.e. a crystal lattice. Only those nuclei large enough to 

overcome the barrier of free energy will remain, those too small will disperse back 

into the supersaturated or subcooled solution (Long et al. 1995). Once a nucleus is 

formed, energy is released known as the latent heat of fusion, allowing the molecules 

to exist in a lower energy state. Upon cooling at a slow rate, the associating 

molecules have sufficient time to organise into ordered lamellae structures, whereas 

during fast cooling, a diffuse crystalline phase of low energy is known to form 

(Metin and Hartel 2005).  

 

There are three methods by which nucleation is thought to occur, as outlined by Long 

et al (1995): 
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1) Spontaneous homogeneous nucleation which involves the association of only a 

single species from a supercooled homogeneous melt. This is rarely the case. 

2) Heterogeneous nucleation around the surface of a foreign particle or phase 

present in the solution acting as a catalyst, known to reduce the free energy 

required for nucleation to occur. 

3) Orientation induced nucleation which involves the alignment of 

macromolecules and spontaneous crystallisation. 

 

Once nuclei are present in solution, greater numbers of molecules from the liquid 

phase begin to associate causing growth of the crystal which continues until 

equilibrium or complete crystallisation is achieved (Metin and Hartel 2005). 

 

One method of modelling the process of crystallisation is with the Avrami equation 

which takes the form: 

 

�1 − #� = $%&�−��'� Equation 3.1 

 

where X is the crystal fraction at time t, k is a crystallisation rate constant and n is the 

Avrami exponent (Avrami 1939). The application of this model can give an 

indication as to the mechanism by which nucleation and crystal growth occurs. The 

value of n can be expressed as  

 

( = (� + (' Equation 3.2 
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where nd relates to the dimensionality of crystal growth, and nn is the time 

dependence of nucleation. nd can be calculated to the value of 1, 2 or 3 corresponding 

to one dimensional growth, two dimensional lamellar aggregates (axialites) or three 

dimensional aggregate superstructures of radial lamellae (spherulites) respectively. 

The value of nn can assume the integers 0 or 1 signifying instantaneous nucleation or 

spontaneous nucleation respectively (Lorenzo et al. 2007). Overall therefore, total 

values of n suggest: 

 

n = 4 Heterogeneous nucleation and spherulitic crystal growth from sporadic 

nuclei in three dimensions; Constant nucleation rate which is independent 

of time.   

n = 3 Heterogeneous nucleation and spherulitic crystal growth from 

instantaneous nuclei in three dimensions; The majority of nuclei are 

formed at the beginning of the crystallisation process; The rate of 

crystallisation decreases with time. 

n = 2 Two dimensional, plate-like crystal growth; A very rapid nucleation rate 

at the outset of crystallisation which decreases with time (Metin and 

Hartel 1998). 

n = 1 One dimensional crystal growth from instantaneous nuclei. 

 

Melting, as a first order thermodynamic process, is not affected by increasing heating 

rate. Crystallisation, however, is kinetically controlled and therefore the temperature 

at which it occurs is reduced with increasing rate of cooling. Modification of lipid 

mechanical properties upon variation of cooling rate due to the formation of mixed 

glyceride crystals is well known (Sutananta et al. 1994b). Increasing the cooling rate 
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also enhances sensitivity making transitions appear larger. This effect is due to an 

increase in energy flow per unit time. This is demonstrated by Figure 3.3 in which 

the crystallisation exotherm increases considerably in size. The Tc(onset) reduces in 

temperature from 28.8oC ± 0.9 (Tc(max) 27.4oC ± 0.9; ∆H 98.7 J/g ± 8.4) cooling at 

0.5oC/minute, to 20.0oC ± 2.3 (Tc(max) 12.5oC ± 3.0; ∆H 100.6 J/g ± 1.8) at 

20oC/minute.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Heat flow against temperature signal on cooling at varying rates of Gelucire 44/14 

crystallisation. 

 

The physical state of the lipid in the formulated SSD will have implications on the 

physicochemical properties of the final product. Cooling rate has been shown to 

impact crystallisation of lipids greatly by the modification of the solid fat content and 

also the crystal habit. Slow rates of crystallisation can encourage the aggregation of 

small crystals into larger particles and therefore the formation of more stable 

polymorphs (Bourlieu et al. 2010). This can therefore affect the physical state of the 

lipid at room temperature. It is important, therefore, to have an understanding of 
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these processes in order to select the most appropriate formulation method and 

storage conditions as the formulation may have to be cooled to much lower 

temperatures than anticipated in order to achieve a fully solidified system.  

 

It is noted by Sutananta et al (1994a) that since the manufacturing of Gelucire 

formulations, in the main, involves its transformation into the liquid state before 

undergoing some form of solidification, due to the complex crystallisation behaviour 

of the lipidic material, this process may affect the physical structure and therefore the 

performance of the final product. Another paper by the same author (Sutananta et al. 

1994b) also highlights that cooling rate has a profound effect on the physical state of 

the lipid, with a faster cooling rate forming a homogeneous system and a slower 

cooling rate encouraging fractionation of the various lipid components into different 

microscopic regions. 

 

The crystallisation exotherm appears to be greatly variable in shape between repeats 

of the same sample, often demonstrating a double Tc(max) (data not shown). This may 

in part be due to the nature of the different melting point fractions of the lipid. 

Crystallisation is also very dependent upon nucleation and crystal growth and the 

rate of these processes, which can vary extensively, as therefore can the shape of the 

exotherm. The crystallisation of Gelucire 44/14 was observed to be comparable 

between those samples cooled at the same rate however melted at different rates 

(data not shown), implying that crystallisation is independent of the prior rate of 

melting and therefore that it is not necessarily dependent upon the thermal history of 

the lipid. 
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Solid Fat Content Calculation 

 

The solid fat content illustrates the proportion of the crystallisation exotherm, and 

therefore the proportion of lipid in the crystalline state, at any particular temperature 

(Bourlieu et al. 2010). It can also be used to plot the progression of the endothermic 

melting transition. The data is generally plotted against temperature; however 

plotting versus time can also give information about the crystallisation process. The 

solid fat content of Gelucire 44/14 crystallisation was calculated as a function of 

temperature using the area under the re-crystallisation plots at various temperature 

points, expressing them as percentages of the total on complete crystallisation, 

assuming that the total peak represents 100% crystallisation. This technique allows 

visual simplification of the crystallisation process. By plotting the percentage solid 

fraction against temperature, for each individual cooling rate, it is possible to identify 

the amount of Gelucire 44/14 present in the solid state at any temperature point 

during the crystallisation process.  

 

Figure 3.4 illustrates the percentage of solid Gelucire 44/14 during crystallisation 

after standard heating at 10oC/minute. The cooling rate has a significant effect on the 

crystallisation kinetics of the lipid. It can be observed that the crystallisation 

temperature decreases with increasing cooling rate. This will have a great impact on 

the physical state of the lipid at room temperature. Taking this into account and 

referring to Figure 3.4, it suggests that at cooling rates above 0.5oC/minute, the lipid 

may not be completely solidified at room temperature as the crystals have 

insufficient time to form. This does however make the assumption that the area of the 
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crystallisation DSC endotherm is directly proportional to the content of solid in the 

system (Sutananta et al. 1994a). 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Percentage solid fat of Gelucire 44/14 during crystallisation versus temperature on 

cooling at varying rates. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Fraction of solid fat of Gelucire 44/14 during crystallisation versus time on cooling at 

varying rates. 



Chapter Three Characterisation of Lipidic Carriers 

105 
 

Using the solid fat fraction at time t against time data (Figure 3.5) it was possible to 

perform Avrami analysis. The Avrami modelling parameters are illustrated in Table 

3.1. The data was found to fit well, with R2 values between 0.9934 and 0.9998. The 

crystallisation rate constant, k, was observed to increase with increasing cooling rate. 

The rate of crystallisation was also seen to have a positive relationship with the 

cooling rate on observation of the fraction of solid fat in relation to time in Figure 3.5 

above. The increase in crystallisation rate with cooling rate is attributable to a greater 

driving force for crystallisation, thus effecting nucleation and crystal growth 

(Bourlieu et al. 2010). 

 

Table 3.1 Avrami modelling parameters for the solid fat data of Gelucire 44/14. 

 

Cooling Rate 

(
o
C/minute) 

n 

k 

(min
-n

) 
R

2
 

0.5 4 0.0001 0.9934 

2 4 0.015 0.9981 

10 3.05 1.22 0.9998 

20 3.24 4.67 0.9991 

 

 

The value of the calculated n gives an indication as to the time dependence of 

nucleation and also the dimensionality of the crystal growth. Slower cooling rates 

illustrated an n value of 4 suggesting heterogeneous nucleation and spherulitic 

growth from sporadic nuclei. This also indicates that the rate of nucleation was 

constant and independent of time. Cooling rates of 10 and 20oC/minute demonstrated 

an n value of 3 (to the nearest integer) also suggesting spherulitic growth however 
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from instantaneous nuclei, with the rate of nucleation decreasing with time. 

Heterogeneous nucleation is expected in the case of Gelucire 44/14, as in most lipids, 

due to the presence of many different components. The slower cooling rates may 

allow spontaneous nuclei formation throughout the crystallisation process however 

faster rates reduce the amount of time for crystallisation to occur suggesting that 

nuclei may be instantaneously formed only at the start of the process. 

 

3.3.1.3 Temperature Cycling 

 

On re-melting after first crystallisation, with a standardised thermal history, the 

endotherm was altered in both size and shape (Figure 3.6). The secondary melt of the 

lower melting point fraction was reduced from Tm(onset) 28.3oC ± 0.3 (Tm(max) 34.5°C 

± 0.2; ∆H 21.1 J/g ± 0.3) to 23.4oC ± 0.6 (Tm(max) 28.3°C ± 1.0; ∆H 4.3 J/g ± 2.1). 

The Tm(onset) of the primary melting endotherm remained relatively constant and 

could be seen to occur at 39.9oC ± 0.1 (Tm(max) 45.0°C ± 0.07; ∆H 91.4 J/g ± 3.2) 

first melt and 40.4oC ± 0.5 (Tm(max) 44.0°C ± 0.07; ∆H 70.7 J/g ± 1.0) second melt. 

A significant change in the ∆H of the peak could however be observed.  

 

The second, third and fourth melting endotherms appeared to be identical and 

reproducible. This suggests an initial alteration in the lipid’s physicochemical 

properties, which are maintained on heating and cooling thereafter. 
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Figure 3.6 Heat flow against temperature signal of Gelucire 44/14 heated multiple times at 

10oC/minute (crystallisation data excluded). 

 

Gelucire 44/14 contains a large proportion of PEG esters (72%) and it is known that 

PEGs can exist in different polymorphic forms corresponding with different chain 

folding arrangements, which are structurally dependent upon the thermal history 

(Sutananta et al. 1994b). Lipids can also exist in varying polymorphic forms due to 

their generally complex nature, particularly natural fats which consist of multiple 

components, such as palm kernel oil (hydrogenated) which is polyglycolysed with 

PEG 1500 in the manufacture of Gelucire 44/14 (Metin and Hartel 2005). Overall 

crystallisation of Gelucire 44/14 will be a complex mixture of different crystal forms 

however the possible capacity of Gelucire 44/14 components to exist in different 

polymorphic forms may be the cause of the alteration of the melting endotherm upon 

temperature cycling. The process of the first melt may initiate this polymorphic 

change which therefore brings about a consequent change in the shape of the second 

and subsequent melts. 
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The shape of the second melting endotherm was found to be influenced by the 

cooling rate of the first crystallisation. As the rate of crystallisation increased, the 

secondary melting peak became broader, the primary peak became sharper and the 

Tm(max) increased in temperature (Figure 3.7). The rate at which the lipid crystallises 

therefore appears to have an effect upon the thermal properties of both the lower and 

higher melting point fractions. This must be taken into account when considering the 

rate of cooling of the final product after formulation. Gattefossé, the manufacturer of 

Gelucire 44/14, however, state that the structure of Gelucire 44/14 is not affected by 

cooling rate. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Heat flow against temperature signal on heating at 10oC/minute of Gelucire 44/14 second 

melting after cooling at different rates (noted on the plot). 
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3.3.1.4 Aging 

 

The melting endotherm of Gelucire 44/14 was observed to change during 

temperature cycling i.e. the second melting endotherm (after heating and cooling) 

had altered in shape as demonstrated above. In the light of this finding, the lipid was 

heated and cooled, then aged for varying lengths of time under ambient conditions 

before being heated for a second time in order to establish if the lipid remained in 

this altered state (Figure 3.8).  

 

After one hour, the shape of the second Gelucire 44/14 melting endotherm almost 

completely transformed back to that of the first; from Tm(onset) 27.4oC (Tm(max) 

33.6oC; ∆H 18.6 J/g) to 24.5oC (Tm(max) 31.3oC; ∆H 27.8 J/g) for the secondary peak, 

and Tm(onset) 40.0oC (Tm(max) 44.4oC; ∆H 73.6 J/g) to 18.6oC (Tm(max) 14.6oC; ∆H 

99.0 J/g) for the primary peak. The slight differences between endotherms became 

less and less pronounced with aging, particularly that of the primary peak. The 

differences in the secondary peak, however, appeared to remain. The two phases seen 

at time zero were reduced, as was the Tm(max). 
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Figure 3.8 Heat flow against temperature signal of Gelucire 44/14 first melt at 10oC/minute (black) 

before aging and second melt at 10oC/minute (red) after aging under ambient conditions for 1 to 72 

hours. 

 

This suggests that any alterations to the thermal properties of the lipidic carrier after 

first melting, as observed previously, may not be permanent, and almost complete 

conversion back to its original state, i.e. that observed upon first melting taken 

directly from the container, is rapid, with the slight exception of the lower melting 

point fraction thermal properties. As discussed above, the change noted in the 

Gelucire 44/14 melting endotherm upon temperature cycling may be attributable to 



Chapter Three Characterisation of Lipidic Carriers 

111 
 

the possible capacity of Gelucire 44/14 components to exist in different polymorphic 

forms after the first melt and crystallisation. The fact that the shape of the melting 

endotherm can be observed to be time limited may suggest that the new polymorphic 

form(s) is unstable and therefore upon aging, rapidly converts back to its original 

state. 

 

3.3.1.5 Continuity throughout the Container 

 

Since Gelucire 44/14 is formed directly in the container during manufacture and is 

composed of multiple constituents, it was felt necessary to ensure that continuity 

throughout could be assumed, by assessment of thermal properties by conventional 

DSC. The melting endotherm of samples obtained from the top, middle and bottom 

of the container were analysed. The Tm(onset) of the secondary melting endotherm of 

all samples was found to occur at 28.2oC, being reproducible to within ± 0.1 standard 

deviations (Tm(max) 34.2oC ± 0.4; ∆H 19.5 J/g ±1.4), with the main melt at 40.4oC ± 

1.1 (Tm(max) 45.4oC ± 0.4; ∆H 92.5 J/g ± 1.4). Crystallisation occurred at 21.8oC ± 

0.1 (Tc(max) 15.9oC ± 0.8; ∆H 101.6 J/g ±1.0) (data not shown). Samples taken from 

throughout the container demonstrated good reproducibility of the melt and 

crystallisation transition suggesting that all samples analysed in the subsequent 

studies should show good continuity and be independent of its position in the original 

container. 
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3.3.2 Crystallisation Analysis using Quasi-Isothermal Modulated 

Temperature Differential Scanning Calorimetry 

 

The technique of QIMTDSC is a variant of traditional MTDSC which involves the 

holding and modulation of a sample around a specific temperature for extended 

periods of time. The temperature can be incrementally increased or decreased 

through a transition, eliminating the influence of rate and therefore investigating time 

dependent processes. Crystallisation is a kinetic process and therefore highly 

dependent upon the rate at which the sample is cooled. QIMTDSC can be used in 

such a way as to accurately characterise crystallisation, independent of cooling rate, 

giving an indication of the true temperature at which it occurs. In the case of 

MTDSC, the kinetic nature of nucleation and crystal growth means that the single 

modulation enthalpic change can be sufficiently small that the system is rendered 

non-reversing, with the heat capacity of the system being observed in the reversing 

signal (Reading et al. 2007). The crystallisation process can also be observed through 

the creation of Lissajous figures, whereby the modulated heat flow is plotted against 

modulated temperature. This allows observation of the reproducibility of the sine 

wave heat flow modulations within a single isothermal period. The crystallisation 

can be observed in real time by noting the deviation of the sine wave curves from the 

steady state through the course of the crystallisation process, thereby providing a 

means of de-convoluting the heat flow processes associated with the thermal event as 

a function of time, in the absence of kinetic effects. 
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Figure 3.9 Reversing heat capacity versus time signal for Gelucire 44/14 QIMTDSC 60 minute 

isotherm on cooling with 5oC increments. Inset: Lissajous plot (modulated heat flow against 

modulated temperature) of the sine wave heat flow modulations at 30oC. 

 

After analysis of Gelucire 44/14 using Method One, which involved cooling from 40 

to -10oC in 5oC increments with an isotherm of 60 minutes at each increment, 

crystallisation appeared to occur during the 30oC isothermal period. This is indicated 

by the abrupt increase in reversing heat capacity and also the deviation of the sine 

wave modulations from steady state or equilibrium in the Lissajous analysis (Figure 

3.9). The distortion in shape of the sine wave ellipses correspond with a change in 

phase lag of the sample which can also suggest the occurrence of crystallisation. This 

therefore implies that the Tc of Gelucire 44/14, independent of cooling rate, lies 

between 30 and 35oC. The exact temperature could not however be determined from 

this analysis as the temperature increment was too large.  

 

Deviation of the Lissajous plot from the steady state was at its maximum during the 

first 31 minutes of the 60 minute modulation at 30oC, after this period the sine wave 
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curves reached equilibrium (see inset Figure 3.9). The change in shape of the ellipses 

indicated that the latent heat of the sample was changing at this isothermal 

temperature i.e. a thermal transition is occurring. The reversing heat capacity signal 

appeared to reduce over the course of the experiment. This suggested crystallisation 

was on going until the 0oC increment where it began to reach steady state. The 

crystallisation of Gelucire 44/14 therefore appeared to consist of an initial or primary 

energetic crystallisation, followed by a secondary slower, more extended period of 

crystallisation which continued to much lower temperatures than previously 

expected. Despite melting of Gelucire 44/14 consisting of two separate endotherms 

attributable to the lower and higher melting point fractions of the lipid, the 

crystallisation transition did not demonstrate a two step process. 

 

This phenomenon was also demonstrated by Method 2 which subjected Gelucire 

44/14 samples to a much reduced temperature increment of 1oC, from 35 to 5oC, for 

a more accurate determination of the true Tc (Figures 3.10, 3.12 and 3.13). 

 

When held isothermally for 20 minutes at 1oC increments, deviations from the 

equilibrium sinusoidal response and a change in shape and size of the sine wave 

ellipses in the Lissajous analyses were found to occur at 31oC (see inset Figure 3.10). 

Before and after this temperature, sine waves were superimposable suggesting steady 

state of the sample and therefore the absence of any thermal or energetic transition at 

these temperatures. 
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Figure 3.10 Reversing heat capacity versus time signal for Gelucire 44/14 QIMTDSC 20 minute 

isotherm on cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against 

modulated temperature) of the sine wave heat flow modulations at 31oC. 

 

It was found however, as previously, that a secondary, more extended period of slow 

crystallisation was present after 31oC in the reversing heat capacity signal, 

continuing until the conclusion of the experiment at 5oC. This is demonstrated in 

Figure 3.11 where the major slope of the sine wave ellipses can be seen to decrease, 

suggesting a subsequent decrease in the heat capacity of the sample over the course 

of the experiment. In this case the modulated heat flow was plotted against the 

modulated temperature derivative time so that the ellipses were superimposed. 
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Figure 3.11 Lissajous figures of the sine wave heat flow modulations of Gelucire 44/14 at the start 

(35oC, black) and finish (5oC, red) of the cooling experiment showing the major slope of each plot. 

 

Gelucire 44/14, when subjected to QIMTDSC 1oC increments with a 40 minute 

isotherm, Tc was found to occur at 32oC. The crystallisation transition was noted to 

be significantly more subtle that those noticed previously as the sine wave deviations 

were much less pronounced (see inset Figure 3.12). There also appeared to be a 

double peak occurring during both the 32 and 31oC increments in the reversing heat 

capacity signal, suggesting that primary crystallisation may be taking place over both 

temperature increments. This may be attributable to crystallisation of the lower and 

higher melting point fractions of the lipid at slightly different temperatures. 
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Figure 3.12 Reversing heat capacity versus time signal for Gelucire 44/14 QIMTDSC 40 minute 

isotherm on cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against 

modulated temperature) of the sine wave heat flow modulations at 32oC. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Reversing heat capacity versus time signal for Gelucire 44/14 QIMTDSC 60 minute 

isotherm on cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against 

modulated temperature) of the sine wave heat flow modulations at 31oC. It should be noted that the 

experiment only ran to the 14oC increment due to instrument inability to store the large data file 

during collection. 
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A similar trend was also demonstrated by the 60 minute isotherm (Figure 3.13). 

Lissajous analysis displayed primary crystallisation at 31oC, with secondary 

crystallisation continuing until the conclusion of the experiment in the reversing heat 

capacity signal. 

 

Method Three involved holding the sample isothermally for 720 minutes (12 hours) 

at temperatures from 29 to 40oC. Crystallisation was found to occur when held 

isothermally for 12 hours at 29, 30, 31 and 32oC, above this temperature however, no 

obvious transition was present in the reversing heat capacity signal over 12 hours 

(Figure 3.14). The time to Tc(max) was calculated to be 24.91, 50.18, 25.36 and 39.67 

minutes at 29, 30, 31 and 32oC respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Reversing heat capacity versus time signal for Gelucire 44/14 12 hour QIMTDSC at 29 

to 40oC. 

 

The shape was found to be variable between samples, possibly due to the variable 

nature of the crystallisation process and the complexity of the sample as described 
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previously. Broadness, as well as peak smoothness, increased with temperature until 

31oC, which was similar to that at 32oC. This effect may be due to the rate at which 

crystallisation occurs at each individual temperature. The further below the 

crystallisation temperature the sample is held isothermally, the faster the 

crystallisation process will be on commencement of QIMTDSC methodology, 

provided crystallisation did not occur prior to this point whilst cooling with 

conventional DSC (there was no evidence of this in the presented data). 

 

Method Four extended the isothermal time period Gelucire 44/14 was subjected to at 

the lowest temperature investigated, 29oC (Figure 3.15). This was to explore the 

extent of secondary crystallisation, and the time period over which this may occur. 

Samples were held at 29oC for 48 hours. Primary crystallisation was seen, as 

expected, at commencement of the experiment at this low temperature. There was 

also a continuous decrease in the reversing heat capacity signal over the course of the 

experiment. 

 

The present evidence suggests that Gelucire 44/14 undergoes an initial crystallization 

followed by a secondary, slower process that may potentially be extremely extensive 

and hence alter processing or performance characteristics immediately following 

manufacture into solid oral dosage forms. 
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Figure 3.15 Reversing heat capacity versus time signal for Gelucire 44/14 QIMTDSC over 48 hours 

at 29oC. 

 

3.3.3 Observation of Thermal Transitions by Hot Stage Microscopy 

 

HSM was employed to visualise the melting and crystallisation transitions of 

Gelucire 44/14, previously characterised using conventional and QIMTDSC. Figure 

3.16 shows images of these processes. Melting of Gelucire 44/14 appeared to occur 

over a wide temperature range, beginning at approximately 36oC until completion at 

46oC. This follows with the nature of Gelucire 44/14 characterised by the DSC 

studies Upon cooling, nucleation began at 30oC followed by crystal growth until 

28oC. The crystals appeared to be spherulitic and radial in nature, growing outwards 

in finger-like projections. 

 

On re-heating, melting commenced at 39oC and was completely molten by 46oC. The 

crystallisation of other Gelucires, investigated by Sutananta (1994b) suggested that 
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the crystals were formed of complex mixtures of components rather than particular 

pure components. Comparing this to data obtained from conventional and 

QIMTDSC, it is apparent that neither melting of the lower melting point fractions, or 

the extended slow crystallisation of  Gelucire 44/14 are visible using HSM. It should 

however be noted that comparison of HSM and DSC is difficult due to the nature of 

the thermal transitions in both cases i.e. HSM demonstrates crystal growth in two 

dimensions however DSC illustrates bulk thermal behaviour and crystal growth in 

three dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 HSM Images of Gelucire 44/14; a) Start; b) Melting at 36.0oC; c) Nucleation on cooling 

at 30.4oC; d) Crystal Growth end at 28.8oC. 

 

  

a) b) 

c) d) 
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3.3.4 Hydration Behaviour Analysis using Dynamic Vapour Sorption 

 

Hydration of Gelucire 44/14, as described by Svenssen et al (2004), was outlined in 

Chapter Two. This section, however, aims to establish the temperature and humidity 

parameters below which the lipidic carrier will remain stable. This is important for 

consideration of storage conditions of Gelucire 44/14 formulations. A series of 

experiments were carried out using dynamic vapour sorption in order to determine 

the response of the lipidic Gelucire 44/14 to atmospheric temperature and humidity. 

Samples undergoing all three methods were subjected to a drying period which 

consisted of 60 minutes at 25oC and 0% RH.  

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Weight percent versus time signal for Gelucire 44/14 at 75% RH with a temperature 

ramp from 25 to 55oC. 

 

Method One held each sample at 75% RH and ramped from 25 to 55oC with 60 

minutes at each step. Gelucire 44/14 was found to lose a small amount of water 

during the drying stage (0.09%, data not shown) suggesting that the lipid contains a 
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proportion of water (unknown) which can be removed, albeit very slowly, when held 

at 0% RH. At 75% RH the sample absorbed only small amounts of moisture when 

held at 25 and 30oC to a total of 0.9% (Figure 3.17). On increasing temperature up to 

40oC, larger amounts of moisture were taken up, to a total of 5.7%, with the 

maximum observed at 35oC (2.5%). At 45oC Gelucire 44/14 could be seen to begin 

losing this moisture, a loss which continued to the conclusion of the experiment at 

55oC. The crystalline lipidic carrier undergoes melting on heating which has been 

found to peak at 45oC. This suggests that Gelucire 44/14 absorbs the greatest 

quantity of moisture whilst it is undergoing melting, until it is completely molten, at 

which point it begins to lose this moisture. In all, this implies that, on storage, 

Gelucire 44/14 is relatively stable at high RH provided it remains below its melting 

temperature. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Weight percent versus time signal for Gelucire 44/14 at 75% RH isothermal at 25 to 

55°C for 60 minutes. 
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Method Two, which involved holding each sample isothermally for 60 minutes at a 

single temperature from 25 to 55oC at 75% RH, provided similar data to that of 

Method One above, however each sample was held isothermally at one temperature 

only, the temperatures ranging throughout the melt transition (Figure 3.18). 

 

At 25 and 30oC the lipidic samples appeared only to absorb small amounts of 

moisture at 75% RH, as observed above. The isotherms also appeared to level out 

suggesting a maximum was reached. At 35oC, moisture was absorbed steadily over 

the course of the experiment. Unlike that shown in Method One, Gelucire 44/14 

could be seen to absorb the greatest weight percentage of moisture at 40oC. This 

change may possibly be attributable to the amount of water previously taken up. In 

Method One, moisture had already been absorbed due to the 60 minute isotherms at 

lower temperatures, whereas in Method Two, the sample had no previous high RH 

exposure. At this temperature and above there is, however, a distinct change in the 

shape of the absorption. After initial increase in RH from 0 to 75% there is a steep 

increase in moisture uptake to a point which falls at approximately 2.5 to 3.5% 

weight increase, moisture uptake then begins to slow. 

 

Gelucire 44/14 appeared to absorb the greatest amount of atmospheric moisture at 

either 35 or 40oC, depending upon the sample history. Method Three was chosen to 

observe moisture uptake with increasing RH from 0 to 90% at 40oC with 60 minutes 

at each step (Figure 3.19). Gelucire 44/14 was observed to absorb increasing 

amounts of atmospheric moisture with increasing RH, the maximum weight increase 

occurring at 90% RH (4%).  
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Figure 3.19 Weight percent versus time signal for Gelucire 44/14 at 40°C with an RH ramp from 0 to 

90%. 

 

As shown by Svensson et al (2004), the hydration process of Gelucire 44/14 appears 

to be equivalent to the sum of the hydrations of all of the individual components. 

Upon exposure to increasing RH, Svensson demonstrated that at low RH, free 

glycerol absorbs large amounts of atmospheric moisture. This remains relatively 

insignificant due to the low Gelucire 44/14 content of glycerol (approximately 3%), 

thus allowing it to stay below the recommended limit of 1% w/w moisture uptake as 

specified by the European Pharmacopoeia. As part of their investigation, it was 

suggested that up to 70% RH (at room temperature) a 2% weight increase in the 

Gelucire 44/14 sample could be attributed solely to the absorption of moisture by 

free glycerol. In this case, however, when conducted at 40oC, over double the amount 

of moisture is absorbed by this point. The Gelucire 44/14 sample, at this temperature 

will be almost completely molten, suggesting that in this state, the affinity of 

Gelucire 44/14 for atmospheric moisture is significantly greater than at room 

temperature. This will be attributable to the completely disordered nature of the 
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Gelucire 44/14 molecules, increasing its reactivity and therefore its capacity to 

absorb atmospheric moisture. Above 70% RH, PEG is known to begin absorbing 

moisture, and at 80% and above, PEG esters contribute to the total weight increase 

observed over the course of the experiment (Svensson et al. 2004). 

 

3.3.5 Summary of Gelucire 44/14 Characterisation Studies 

 

This section has attempted to characterise the physicochemical properties of the lipid 

Gelucire 44/14 using a number of different techniques. Thermal analytical methods 

have confirmed thermal transitions which occur during heating and cooling. On 

heating, a clear double melting endotherm is observed, the Tm(onset) of which were 

found to be 28.3oC ± 0.3 and 39.9oC ± 0.1. Above the melting temperature, an 

exotherm can be noticed at onset 144.14oC ± 0.2 which may be attributable to 

decomposition.  

 

On cooling, crystallisation of Gelucire 44/14 can be observed. This transition is 

found to be greatly dependent upon the rate at which cooling occurs, the Tc(onset) 

reducing from 28.8oC ± 0.9 cooling at 0.5oC/minute, to 20.0oC ± 2.3 at 20oC/minute. 

It should be noted that cooling at rates above 2oC/minute demonstrates incomplete 

crystallisation by the time room temperature is reached which must be taken into 

account when considering the manufacturing parameters of pharmaceutical 

formulations. Re-melting of Gelucire 44/14 demonstrates an alteration in the shape 

of the characteristic double melting endotherm. This altered shape was found to be 

maintained on heating and cooling thereafter. After aging at room temperature, 

however, the shape appears to regress back to that of the original. This may be 
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attributable to the formation of different polymorphs of the Gelucire 44/14 

components, for example PEG, which are unstable and quickly convert back to the 

most stable form. 

 

QIMTDSC is a novel method in the characterisation of crystallisation. Gelucire 

44/14 was found to display a crystallisation temperature of 31oC, without the 

influence of heating rate using Lissajous analysis. The crystallisation was found to 

occur over only a single temperature increment, despite melting of the lipid 

demonstrating two fractions with different melting points. Examination of the 

reversing heat capacity time plot suggested that after an initial energetic primary 

crystallisation, the lipid undergoes a slower, more extended period of crystallisation 

which continues to much lower temperatures than previously expected. HSM 

allowed the visualisation of the fundamental thermal transitions observed using 

conventional and QIMTDSC.  

 

DVS studies suggested that Gelucire 44/14 has a great capacity to absorb 

atmospheric moisture at high temperatures and relative humidities due to its many 

different components. On storage it appears that below 35oC and 40% RH, the 

moisture content of Gelucire 44/14 remains below the limit set by the European 

Pharmacopoeia of 1% weight increase. It has however been shown that at ambient 

temperature, Gelucire 44/14 absorbs only limited moisture below 70% RH (2% 

weight increase). 
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3.4 TPGS 

3.4.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

 

Conventional DSC is used in this section to characterise TPGS thermal properties i.e. 

melting, and also crystallisation at varying rates of cooling. 

 

3.4.1.1 Melting 

 

Upon heating, the melting endotherm of TPGS was found to consist of two distinct 

peaks, the first generally being the most prominent (Figure 3.20). The sizes of these 

peaks were found to vary between samples. The Tm(onset) was observed to occur 

reproducibly at 34.79oC ± 0.07, the Tm(max) being dependent upon which of the two 

peaks was most dominant (Tm(max) 37.29°C ± 0.2; ∆H 101.1 J/g ± 0.5).  

 

No published evidence of the presence of this double melting peak has been found in 

the literature to date, with evidence only of a single melt endotherm. It does however, 

in this case, suggest the incidence of two separate chemical or physical (crystal) 

forms of the lipidic carrier being present at varying degrees from sample to sample. 
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Figure 3.20 Heat flow against temperature signal of TPGS on heating at 10oC/minute. 

 

Data collected internally at AstraZeneca, investigating the molecular weight 

distribution of TPGS, found evidence of both low and high molecular weight 

tocopheryl tails present in the sample. Both mono and di substituted PEG 1000 

chains with tocopheryl succinate groups were identified, which may be responsible 

for the observed double melting endotherms (Meehan et al. 2007). Double melt 

endotherms could also be attributable to poor contact between sample and DSC pan. 

Due to the hard waxy nature of TPGS at room temperature it is possible that 

movement during heating could bring about the appearance of two melt transitions. 

This possibility of this effect could be eliminated by temperature cycling which is 

investigated later in the Chapter. 
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3.4.1.2 Crystallisation 

 

The crystallisation exotherm of TPGS can be observed as a single peak occurring 

upon cooling. Crystallisation is highly dependent upon the rate at which the sample 

is cooled. The temperature of the transition, therefore, can be seen to reduce on 

cooling from Tc(onset) 31.9oC ± 0.6 (Tc(max) 30.4°C ± 0.4; ∆H 96.9 J/g ± 2.1) at 

0.5oC/minute to Tc(onset) 23.9oC ± 0.3 (Tc(max) 22.7°C ± 0.2; ∆H 97.5 J/g ± 0.8) at 

20oC/minute. 

 

Figure 3.21 demonstrates that on cooling at elevated rates i.e. 20oC/minute and to 

some extent 10oC/minute, the lipidic carrier may not have reached complete 

crystallisation by the time it has reached room temperature. This will have 

implications on the manufacturing process of SSD systems and also the 

physicochemical properties of the final product. 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Heat flow against temperature signal of TPGS crystallisation at varying rates after 

melting at 10oC/minute. 
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Crystallisation of TPGS was found not to be greatly dependent upon the thermal 

history of the carrier. A similar trend to that shown above was also noted after 

melting at varying rates (data not shown), with the Tc(onset) and Tc(max) coinciding 

accurately. 

 

Solid Fat Content Calculation 

 

The amount of TPGS present in the solid state at any point during crystallisation was 

determined by calculating the area under the crystallisation exotherm on cooling at 

each 1oC increment throughout the transition and plotting this as percentage of the 

total solid, against temperature (Figure 3.22). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Percentage solid fat of TPGS during crystallisation versus temperature on cooling at 

varying rates. 
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The temperature at which crystallisation occurs decreased notably with increased rate 

of cooling since it is a kinetic process. The range of temperature over which 

crystallisation occurred however did not appear to be greatly affected by the change 

in cooling rate. A much broader exotherm would be expected due to the increased 

transfer of energy per unit time associated with increasing rates. This effect may be 

attributable to the fact that TPGS is a much purer lipid in comparison to Gelucire 

44/14. 

 

In order to observe and compare the rate at which crystallisation occurred, the solid 

fat data was plotted as a fraction against time (Figure 3.23). This illustrated, as 

expected, that the rate of progression of crystallisation was considerably quicker for 

those higher cooling rates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 Fraction of solid fat of TPGS during crystallisation versus time on cooling at varying 

rates. 
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The data in Figure 3.23 fitted well with the Avrami model, with R2 values between 

0.9921 and 0.9991. Modelling allowed calculation of the n parameter as an indication 

of the time dependence of nucleation and also the dimensionality of the crystal 

growth (Table 3.2). All cooling rates demonstrated an n value of 4 (to the nearest 

integer) corresponding with heterogeneous nucleation and spherulitic growth from 

sporadic nuclei. It also indicated that the rate of crystallisation was constant and 

independent of time. The value of the crystallisation rate constant, k, sharply 

increased with cooling rate attributable to the subsequent increased driving force for 

the reaction. 

 

Table 3.2 Avrami modelling parameters for the solid fat data of TPGS. 

 

Cooling Rate 

(
o
C/minute) 

n 

k 

(min
-n

) 
R

2
 

0.5 4 0.0012 0.9967 

2 4 0.26 0.9991 

10 3.52 40.24 0.9951 

20 4 327.52 0.9921 

 

 

3.4.1.3 Temperature Cycling 

 

Upon re-heating after the first crystallisation, the Tm(onset) fell accurately at 35.1oC ± 

0.04 (Tm(max) 37.0°C ± 0.1; ∆H 102.1 J/g ± 0.4) in comparison to that of the first 

melting transition at 34.79oC ± 0.07 (Tm(max) 37.29°C ± 0.2; ∆H 101.1 J/g ± 0.5) 

suggesting no significant alteration to the thermal kinetics of TPGS (Figure 3.24). 
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The shape of the peak, however, did not accurately follow that of the first. The 

double peaks remained, but the ratio and distribution of these peaks altered after 

heating and cooling. 

 

The presence of double peaks on second melting suggests that this is not attributable 

to sample movement or poor contact with the DSC pan, as suggested previously, as 

this would have been resolved after first heating. It does however imply that two 

separate forms of the lipid may be present, as suggested by Meehan et al (2007), in 

the existence of both mono and di substituted PEG 1000 chains with tocopheryl 

succinate groups. The process of heating may bring about conversion of one form to 

another causing a shift in the peak distribution. This could be investigated using 

other techniques such as IR or Raman Spectroscopy; however this was outside the 

scope of this project. 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Heat flow against temperature signal of TPGS on first heating and also second heating at 

10oC/minute after cooling at 10oC/minute. 
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3.4.1.4 Continuity throughout the Container 

 

The continuity of TPGS throughout the container was investigated using 

conventional DSC to illustrate the reproducibility of its thermal properties. Samples 

taken from the top, middle and bottom of the container were found to demonstrate 

good continuity, with the melting endotherm Tm(onset) occurring at 34.5oC, being 

reproducible to within ± 0.3 standard deviations (Tm(max) 37.6oC ± 0.2; ∆H 103.0 J/g 

± 1.7). Crystallisation was found to occur at 26.6oC ± 0.5 (Tc(max) 25.2oC ± 0.5; ∆H 

101.1 J/g ± 1.9). 

  

3.4.2 Crystallisation Analysis using Quasi-Isothermal Modulated 

Temperature Differential Scanning Calorimetry 

 

The crystallisation transition of TPGS was further characterised using QIMTDSC. 

Samples were analysed using Method Two, cooling throughout crystallisation at 1oC 

increments, in order to establish the true Tc. When held isothermally for 20 minutes 

at each increment, Lissajous analysis of the acquired data suggested crystallisation at 

33oC by deviation of the isolated sine wave modulations from the steady state (see 

Figure 3.25 inset). The shape of the ellipses were also observed to change in shape, 

demonstrating a corresponding change in the latent heat of the sample, which also 

confirmed that a thermal transition may be occurring. The reversing heat capacity 

versus time plot (Figure 3.25), however, demonstrated an increase beginning at 33oC, 

peaking at 31oC and continuing to decrease until the completion of the experiment at 

5oC.  
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Figure 3.25 Reversing heat capacity versus time signal for TPGS QIMTDSC 20 minute isotherm on 

cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against modulated 

temperature) of the sine wave heat flow modulations at 33oC. 

 

This decrease in heat capacity, as seen with Gelucire 44/14, suggests that the 

crystallisation transition consists of an initial or primary energetic phase, followed by 

a secondary slower, more extended phase, continuing to much lower temperatures 

than previously expected. This is demonstrated in Figure 3.26 where the major slope 

of the sine wave ellipses can be seen to decrease, suggesting a decrease in the heat 

capacity of the sample over the course of the experiment. This will have implications 

on the physicochemical properties of the final formulation. On cooling to room 

temperature during manufacture, it is possible that TPGS may not be present in its 

fully crystalline form. 
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Figure 3.26 Lissajous figures of the sine wave heat flow modulations of TPGS at the start (35oC, 

black) and finish (5oC, red) of the cooling experiment showing the major slope of each plot. 

 

When held for 40 minutes at each 1oC increment, Lissajous analysis indicated an 

increased level of sine wave deviation during the 33oC increment in accordance with 

the 20 minutes isotherm data shown above. The reversing heat capacity time plot 

demonstrated two energetic crystallisations, peaking at 35 and 32oC (Figure 3.27). 

This may be attributable to the possible presence of two crystal forms of the lipid 

relating to mono and di substituted PEG 1000 chains with tocopheryl succinate 

groups, this was not observed, however, using conventional DSC. The reversing heat 

capacity was also seen to decrease over time with reducing temperature suggesting 

continuation of the crystallisation transition. 
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Figure 3.27 Reversing heat capacity versus time signal for TPGS QIMTDSC 40 minute isotherm on 

cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against modulated 

temperature) of the sine wave heat flow modulations at 33oC. 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 Reversing heat capacity versus time signal for TPGS QIMTDSC 60 minute isotherm on 

cooling with 1oC increments. Inset: Lissajous plot (modulated heat flow against modulated 

temperature) of the sine wave heat flow modulations at 33oC. It should be noted that the experiment 

only ran to the 14oC increment due to instrument inability to store the large data file during 

collection. 
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With an isotherm of 60 minutes at each increment, crystallisation was found to occur 

at 33oC using Lissajous analysis, as above. The reversing heat capacity also 

demonstrated a peak at this temperature (Figure 3.28).  

 

Lissajous analysis of all TPGS QIMTDSC data gave an indication that the true 

crystallisation temperature of the lipid, minus the effect of heating rate, may lie at 

33oC. 

 

3.4.3 Observation of Thermal Transitions by Hot Stage Microscopy 

 

Melting and crystallisation of TPGS was further characterised using HSM. Figure 

3.29 demonstrates images of the lipid during heating and cooling. Melting appeared 

to begin at 34.3oC, being completely molten by 40.6oC. Nucleation became visible at 

31oC on cooling, with crystal growth continuing until 28.5oC. Growth of the crystals 

were seen to be very spherulitic in nature with defined edges, unlike the more 

sporadic finger-like projections observed for Gelucire 44/14. On re-heating, melting 

appeared at 35.2oC until 40.4oC. The visible Tm(onset) followed closely with that 

demonstrated using conventional DSC (34.79oC ± 0.07) however the biphasic 

melting endotherm could not be detected using this method. It should be noted that 

the relationship of crystallisation observed using this technique with other methods 

such as DSC is difficult due to the two dimensional nature of crystal growth. DSC 

analysis gives crystals the opportunity to grow in three dimensions and therefore 

cannot be directly compared. 
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Figure 3.29 HSM images of TPGS: a) Start; b) Nucleation on cooling at 31.0oC; c) Crystal growth 

and d) Crystal Growth end at28.5oC. 

 

3.4.4 Summary of TPGS Characterisation Studies 

 

Characterisation of the lipidic carrier TPGS is essential in order to predict the 

physicochemical properties of the final formulation when combined with drug as part 

of an SSD system. Thermal analysis techniques discovered the melting of TPGS to 

occur at 34.79oC ± 0.07 on heating. The transition was however found to consist of 

two distinct peaks, which may be attributable to the presence of both mono and di-

substituted PEG chains (Meehan et al. 2007). Crystallisation of the lipid was 

observed on cooling, which was highly dependent upon the rate at which this took 

place. The Tc(onset) was found to reduce in temperature from 31.9oC ± 0.6 at 

0.5oC/minute to 23.9oC ± 0.3 at 20oC/minute. On temperature cycling of TPGS, the 

a) b) 

c) d) 
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Tm(onset) was found to be reproducible however the distribution of the double peaks 

appeared to shift. 

 

QIMTDSC analysis of TPGS crystallisation suggested that the transition occurred at 

33oC when isolated using Lissajous plots. The decrease in reversing heat capacity 

over time observed in all cases, however, suggested that crystallisation continued 

until the conclusion of the experiment at 5oC, to much lower temperatures than 

previously anticipated. 

 

3.5 CONCLUSIONS 

 

Characterisation of the physicochemical properties of excipients is essential before 

progressing to the investigation of formulations incorporating active model drugs. 

These properties can and will have impact on the properties of this final product, and 

full characterisation can therefore allow prediction of its behaviour. 

 

The studies carried out in this chapter have demonstrated a number of issues which 

should be taken into consideration when deciding upon manufacturing parameters of 

the final formulation. These include: 

 

1)  Unexpected properties such as the alteration of the Gelucire 44/14 melting 

endotherm upon temperature cycling and also the double peak max of the 

TPGS melting endotherm suggests that further investigation into the chemical 

composition may be required in order to fully characterise the systems. 
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2)  The rate at which the lipids are cooled appeared to impact greatly on the 

physical state at room temperature. Cooling at slower rates was found to 

promote a more complete crystallisation unlike faster rates which were found 

to create larger and broader crystallisation exotherms, being complete by much 

lower temperatures. 

3)  Crystallisation of both lipids, independent of cooling rate, was also found to 

continue to lower temperatures than expected. This could result in 

crystallisation / solidification of the formulated SSD system being incomplete 

at room temperature. 
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 4.1 INTRODUCTION 

 

Active pharmaceuticals present in semi-solid dispersion systems can exist as 

crystalline or amorphous particles, as a molecular dispersion or as a mixture. The 

physical state of the SSD is dependent upon a number of factors: the 

physicochemical properties of both the drug and the carrier, the interaction between 

the two components and also the method of formulation (Janssens and Van den 

Mooter 2009). This being the case, the release properties of drug from these 

formulations is subsequently determined by these factors. The understanding of how 

drugs are dispersed within and throughout SSD formulations is therefore a major 

priority within the field. In this study, SSD systems were formulated using the melt 

method, more specifically only the lipidic carrier was molten during mixing, at a 

temperature below the melting point of the model drug. For this reason it is the likely 

situation that the drug is either dispersed as solid crystalline particles, or as a 

molecular dispersion i.e. solid solution, dependent upon the solubility of the drug 

within the carrier. 

 

Care must be taken during the investigation and characterisation of SSD formulations 

using thermoanalytical methods. An investigation carried out by Lloyd et al (1997) 

into binary mixes and also SSD formulations of paracetamol and PEG 4000 

demonstrated that the melting behaviour of these systems was highly dependent upon 

the heating rate employed. They noted that crystalline drug dispersed within the SSD 

formulations had the potential to dissolve into the molten carrier during heating. The 

drug was therefore observed to demonstrate broad low temperature melting 

endotherms, if any at all. This was attributed to the dissolution of paracetamol into 
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the molten PEG over a wide range of temperatures, thus broadening the peak, in 

some cases to such an extent that it could not be distinguished from the baseline. At 

slow rates the drug appeared to have time to dissolve into the molten carrier during 

analysis, thus reducing or eliminating the drug melting peak. At faster rates of 

heating the paracetamol melting endotherm became apparent, attributable to the drug 

having less time to dissolve. Taking this into account, misinterpretation of DSC data 

has the propensity to lead to inaccurate estimation of drug solubility within the 

carrier and incorrect identification of solid solutions.  

 

This effect was also investigated by Gramaglia et al (2005). They highlighted that 

heating rates as low as 10oC/minute allow time for the drug crystal molecules to 

detach from the lattice in response to the input of energy, thus dissolving into the 

molten carrier. This has the effect of increasing the apparent drug solubility within 

the carrier material, attributable to the increased temperature. Heating at faster rates 

does not prevent the sample responding to the input of energy, however increasing 

the rate of heating to the order of 100-500oC/minute does allow the inhibition of 

kinetically controlled processes such as dissolution of the drug into the carrier, 

thereby allowing for a more accurate estimation of the true solubility. 

 

In a paper published by Qi et al (2010b), the authors propose a novel mathematical 

model suggesting a method by which the concentration dependence of drug 

crystallinity in hot-melt extruded SSD preparations can be interpreted in terms of the 

miscibility of the drug with the carrier material. Upon heating, it is suggested that the 

∆H of the drug melting endotherm is composed of two simultaneously occurring 

processes; crystalline drug melting, as well as drug dissolution into the molten 
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carrier. It is also suggested that depending upon the drug loading, different processes 

may manifest on heating. At low drug concentrations, below the saturation solubility 

in the carrier, drug dissolution into the carrier may take place. At high proportionate 

drug loadings, carrier dissolution into the drug will dominate. Between these 

extremes of concentration, both drug dissolution into the carrier, and carrier 

dissolution into the drug may take place simultaneously. With this in mind, plotting 

the drug melting ∆H from physical mixes of the two components against the solid 

weight content of the drug in the mix, a profile of these three phases can be observed 

(Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Illustration of the enthalpy-drug concentration plot for the range of drug-polymer mixes 

(Qi et al. 2010b). 

 

  

KDHD 
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The processes occurring at low drug loading (Phase 1) can be represented by: 

 

)*

�+,-+.�
= #�/01 + 0�2 Equation 4.1 

 

where Ht is the total amount of heat change of the exothermic peak, MD is the mass 

of drug dissolved in the carrier, MP is the mass of the polymer, XD is the weight 

fraction of the drug in the whole mixture, Hf is the heat of fusion of the drug and HD 

is the heat of dissolution of drug in the carrier (thought to be exothermic). 

 

The intermediate phase of drug concentration is represented by: 

 

)*

�+,-+.�
= #�/01 − 3�0� + 34042 + 3�0� Equation 4.2 

 

where KD is the solubility of the drug in the carrier, KP is the solubility of the carrier 

in the molten drug and HP the enthalpy of dissolution of the carrier into the molten 

drug. 

 

High drug loading (Phase 2) is thought to obey the following: 

 

)*

�+,-+.�
= #�/01 − 042 + 04 Equation 4.3 
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The solubility of the drug in the carrier (KD) and the solubility of the carrier in the 

drug (KP) can be further defined (as mass ratios) by: 

 

3� = +,5

+.5
 Equation 4.4 

 

34 = +.6

+,6
 Equation 4.5 

 

where 1 and 2 are used to denote the Phase. 

 

The solubility of the drug in the polymer is thought to be at the point whereby the 

Phase 1 and intermediate regions join, denoted by PA in Figure 4.1, with carrier 

solubility in the molten drug being at point PB where the intermediate and Phase 2 

regions intersect. 

 

From the literature, it is apparent that SSD systems are capable of enhancing the 

dissolution properties of poorly soluble drugs. The poor uptake of this technology 

onto the market is in part due to the lack of understanding of the mechanisms by 

which these systems work, with the current knowledge being relatively limited. The 

primary objective of this Chapter was therefore to form a greater understanding of 

the compatibility of the chosen model drugs with the lipidic carrier when formulated 

into SSD systems. This can be further defined as: 
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a) Characterisation of the model SSD systems using conventional DSC and 

comparison to that of the lipidic carrier alone. 

b) Development of a method to more accurately estimate solubility of the model 

drug within the carrier of the SSD systems using fast heating rates. 

c) Investigation of the effect of drug on the crystallisation process of the lipidic 

carrier. 

d) Visualisation of the formulated SSD systems using HSM to investigate drug 

distribution and phase separation. 

 

It was decided at this point to confine all subsequent SSD formulations to those 

including Gelucire 44/14, due to the possibility of further production of TPGS being 

terminated. The following results therefore only include SSD formulations of poorly 

soluble model drug with Gelucire 44/14. 

 

4.2 METHODOLOGY 

4.2.1 Conventional Differential Scanning Calorimetry 

 

Conventional DSC experiments were performed under a nitrogen environment, with 

a purge rate of 50ml/minute. Calibration of the instrument was conducted, prior to 

experimentation which involved cell resistance and capacitance (baseline) 

calibrations with an empty cell and sapphire disks (Tzero calibration), cell constant 

calibrations using indium standard (melting point 156.6°C, heat of fusion 28.6J/g), 

and finally temperature calibrations using benzoic acid (melting point 122.4°C) and 

n-octadecane (melting point 28.2°C). Temperature calibrations were carried out at 

the same rate as intended for sample analysis. Samples for analysis, in the weight 
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range 2 to 2.5mg, were taken either directly from the container or formulated into 

physical mixes or SSD systems, the preparation of which has been outlined in 

Chapter Two, then prepared into Tzero aluminium pans. 

 

All conventional DSC experiments were conducted at 10oC/minute, heating 

throughout the melting transition; to 60oC for Gelucire 44/14, 100oC for ibuprofen 

alone and its formulations, 200oC for indometacin alone and its formulations, and 

220oC for piroxicam alone and its formulations. All SSD samples, after initial 

melting, were cooled to -30oC before being heated through the melt for a second 

time. Experiments were repeated up to four times. 

 

4.2.2 Hyper (Fast Speed) Differential Scanning Calorimetry 

 

Hyper DSC experiments were performed under a helium environment, with a purge 

rate of 20ml/minute. Calibration of the instrument was conducted using indium and 

tin standards. Samples for analysis, taken directly from the original container or 

formulated as outlined in Chapter Two, were prepared into 40µl aluminium pin holed 

pans in the weight range 2 to 2.5mg. All experiments were carried out in triplicate at 

500oC/minute from -50oC to 150oC for Gelucire 44/14 alone, to 200oC for ibuprofen 

alone and its formulations, to 250oC for indometacin alone and its formulations, to 

260oC for piroxicam and 300oC for the formulations of piroxicam. 
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4.2.3 Quasi-Isothermal Modulated Temperature Differential Scanning 

Calorimetry 

 

Quasi-isothermal MTDSC experiments were performed under a nitrogen 

environment at a purge rate of 50ml/minute. Calibration of the instrument was 

conducted prior to experimentation, as per conventional DSC. An additional 

calibration using aluminium oxide was also carried out in order to calibrate for the 

required QIMTDSC method, determining the total and reversing heat capacity 

constants. Samples with the approximate weight of 2mg were prepared into Tzero 

aluminium pans.  

 

Samples were heated to either 100oC for ibuprofen SSD systems, 200oC for 

indometacin and 220oC for piroxicam at 10oC/minute. They were then cooled to 

25oC, at which point QIMTDSC was initiated in 1oC increments to 0oC, with an 

isotherm of 20 minutes, an amplitude of ±1oC and a period of 60 seconds.  

 

4.2.4 Hot Stage Microscopy 

 

Samples for analysis were applied to glass microscope slides and enclosed with a 

glass cover slip. Samples were heated from room temperature through the melt 

transitions of both the lipidic carrier and the model drug at 10oC/minute. Capture was 

terminated on visualisation of complete melting. Images were captured at x20 

magnification under polarised light.  
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4.3 IBUPROFEN AND GELUCIRE 44/14 SEMI-SOLID DISPERSION 

SYSTEMS 

 

In this section, formulations of the lipidic carrier Gelucire 44/14 with the model drug 

ibuprofen, a BSC Class II drug, were investigated, with the aim being to characterise, 

using thermal analysis techniques, the physical properties of their SSD systems as a 

whole and any subsequent interactions resulting from their combination.  

 

4.3.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

4.3.1.1 Analysis of Raw Materials 

 

The melt of the lipidic carrier Gelucire 44/14 can be observed as a characteristic and 

reproducible double endotherm displaying a Tm(onset) at 28.3°C ± 0.3 and a Tm(max) at 

45.0°C ± 0.07 (see Chapter Three, Section 3.3.1.1). The melting transition of the 

model drug, ibuprofen, can be observed to occur reproducibly at Tm(onset) 74.8oC ± 

0.05, and Tm(max) 76.4°C ± 0.07 (Figure 4.2), complying well with data presented in 

the literature (British Pharmacopoeia 2010; Moneghini 2008). 
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Figure 4.2 Heat flow against temperature signal of the ibuprofen melting endotherm on heating at 

10oC/minute. 

 

4.3.1.2 Analysis of Physical Mixes 

 

The melt transitions of ibuprofen and Gelucire 44/14, as a physical mix, were 

analysed using conventional DSC, the purpose being to characterise combinations of 

the two compounds prior to formulation. The drug melt ∆H data from the physical 

mix DSC traces also served as a calibration plot, allowing calculation of the amount 

of crystalline drug remaining in the final SSD formulation. This is outlined in section 

4.3.3.  

 

The characteristic double Gelucire 44/14 melting peak was observed, occurring 

reproducibly at Tm(onset) 26oC and Tm(max) 44°C for all drug loadings, 5 to 50% w/w 

(Figure 4.3). This confirmed the absence of any interaction between the two 

components at this point.  
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On increasing the temperature, an ibuprofen melt endotherm would be expected in all 

samples, which was indeed the case (highlighted in Figure 4.3), with the exception of 

5% w/w. Absence of the drug melting peak at 5% suggests one of two things. That 

the crystalline ibuprofen present is completely dissolving into the lipidic Gelucire 

44/14 during analysis, therefore leaving no crystalline particles for melting point 

detection by DSC; or that the ibuprofen melting peak is undetectable in this case due 

to its small mass in the mix.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Heat flow against temperature signal of ibuprofen and Gelucire 44/14 physical mixes on 

heating at 10oC/minute. 

 

The detected ibuprofen melting endotherms were measured above 70oC. The 

transition increased in size and ∆H with increasing drug loading. Taking into 

consideration the absence of an ibuprofen melt in the 5% w/w physical mix, and the 

possibility of drug dissolution into the lipid during analysis, the crystalline ibuprofen 

seen to melt in the higher loading samples may thus only be accountable for that 
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remaining after an amount of dissolution into Gelucire 44/14, given time to occur 

during the slow heating rate.  

 

The Tm(onset) and Tm(max) of the ibuprofen melt transitions were observed to vary in 

temperature, in the range of 8oC and 5oC respectively, from one drug loading to 

another. Upon analysis of SSD systems using DSC, a shift in the melting peak of 

either component, or a change in the ∆H value of the transition, can indicate an 

interaction between the SSD components (Abdul-Fattah and Bhargava 2002). This 

observed change in Tm(onset) and Tm(max) may therefore suggest an interaction of 

some kind between the remaining crystalline ibuprofen and the molten Gelucire 

44/14 during analysis. 

 

Gelucire 44/14 has the capacity to facilitate hydrogen bonding interactions, 

attributable to its many components i.e. PEG 1500, PEG 1500 fatty acid esters 

(mono- and di-), glycerides (mono-, di- and tri-) and free glycerol, in particular the 

presence of PEG (Barakat 2006). The ibuprofen molecule contains one hydrogen 

donor group and two hydrogen acceptor groups, suggesting that the two components 

may be capable of forming a large number of hydrogen bonds with each other during 

analysis (Knox et al. 2011). The calculated ∆H values of the repeated samples were 

also found to vary in size between repeats which may be caused by variations in the 

amount of dissolution able to occur during analysis. 

 

In the cases where an ibuprofen melting transition was present, the peak was very 

broad in nature, with the Tm(onset) being reduced from that of the drug alone (74.8oC) 

by up to 12°C. This suggests that the melting peak may comprise drug melting 
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energy, plus that of its dissolution into the lipid. This effect was also noted by Lloyd 

et al (1997) who attributed it to the dissolution of drug into the molten carrier over a 

wide range of temperatures. 

 

4.3.1.3 Analysis of Semi-Solid Dispersion Systems 

 

Upon heating of the ibuprofen and Gelucire 44/14 SSD systems, the characteristic 

Gelucire 44/14 double melting peak was observed, with the exception of 50% w/w 

drug loading, in both formulations i.e. those cooled at 20oC (SSD(20)) and at 4oC 

(SSD(4)) (Figure 4.4). In comparing this melt with that of the lipid alone (0%) or the 

physical mixes, there is little variation in either the Tm(onset) or Tm(max) of the 

secondary endotherm however there is an obvious reduction in temperature of the 

primary Tm(max). The primary melting peak also appears to reduce in ∆H with 

increasing drug loading. This may be attributable to decreasing lipid mass, however 

the secondary melting peak does not reduce in proportion, suggesting it may be 

caused by interaction between iburofen and the higher melting point fractions of the 

Gelucire 44/14. Chambin et al (2004) also observed a depression in temperature of 

the Gelucire 44/14 primary melting endotherm when formulated into an SSD with 

ketoprofen. It was suggested that this was brought about by solubilisation of the drug 

into Gelucire 44/14 when in the molten state. This was backed up by X-ray 

diffraction analysis which showed the disappearance of the crystalline ketoprofen 

peaks when in the SSD formulation.  

 

At 50% w/w, the primary Gelucire 44/14 melting peak is completely absent in both 

systems, with the secondary peak being shifted to a lower temperature. It is also 
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possible that the primary peak Tm may have reduced to an extent to which it is 

incorporated into that of the secondary or possibly that it is sufficiently small that it 

is hidden by that of the ibuprofen melting endotherm. With either being the case, it 

indicates an interaction with the high concentration of ibuprofen not previously 

detected with lower concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Heat flow against temperature signal on heating at 10oC/minute of ibuprofen and Gelucire 

44/14 a) SSD(20) and b) SSD(4) – First melt. 

 

a) 

b) 
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No detectable ibuprofen melt was observed in the 5, 10 or 15% w/w SSD(20) 

systems. This was also observed by Chambin et al (2004), and in combination with 

XRD studies, they concluded that the SSD system existed as a solid solution. In this 

case the data suggested either the presence of a solid solution, with the ibuprofen 

completely dissolving into the lipid during formulation, or that any remaining 

crystalline drug dissolved during analysis at the slow heating rate, as suggested by Qi 

et al (2010b) and demonstrated by the physical mix study. This was investigated in 

more detail using HSM and Hyper DSC later in the Chapter. At this point however it 

indicated, when compared to the physical mix analysis (with the exception of the 5% 

system which did not demonstrate a drug melt), that a degree of ibuprofen 

solubilisation into Gelucire 44/14 occurred during formulation. If this had not been 

the case, an ibuprofen melt transition would have been detected. 

 

An ibuprofen melting transition was observed at 50% w/w in both the SSD(20) and 

SSD(4) systems, occurring at Tm(onset) 42.8oC ± 1.3 and Tm(max) 64.0oC ± 1.0; 

Tm(onset) 56.2oC ± 6.5 and Tm(max) 68.2oC ± 2.4 respectively. This was significantly 

broader and lower in temperature than that seen for the drug alone, which displayed a 

sharp peak at Tm(onset) 74.8oC and Tm(max) 76.4°C. This broad peak may be a 

combination of melting of the Gelucire 44/14 higher melting point fractions, and also 

that of ibuprofen. It must be considered that, once the Gelucire 44/14 lower melting 

point fractions become molten, the solid higher melting fractions begin to melt, as 

well as the crystalline ibuprofen in the formulation beginning to dissolve, with these 

two processes possibly occurring simultaneously. The endothermic peak may 

therefore represent both events. At this high drug loading, lipid dissolution into the 

drug may also be occurring, which may account for the changes seen in the Gelucire 
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44/14 melt transition. In the SSD(4) system, a larger ibuprofen melting endotherm 

was detected with an ∆H of 29.2 J/g ± 2.5 in relation to that of 17.5 J/g ± 3.4 for 50% 

SSD(20). This suggests the presence of a greater concentration of crystalline 

ibuprofen which may be affected by rate of cooling of the formulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Heat flow against temperature signal on heating at 10oC/minute of ibuprofen and Gelucire 

44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

Crystallisation was seen to occur upon cooling and representative plots are displayed 

in Figure 4.5. The crystallisation transition in all cases was found to vary in shape 

a) 

b) 
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between repeated samples of each system, however the Tc(onset) and Tc(end) of the 

transitions were comparable. This was likely to be due to the complex nature of the 

process and also the complexity of the lipid-drug system itself. In the main, however, 

the 5, 10 and 15% w/w samples demonstrated similar peak shapes, a main peak with 

a leading shoulder which decreased in size and temperature with increasing drug 

loading. The different peak shapes observed during crystallisation illustrated the 

presence of different crystal formations, created via interaction between Gelucire 

44/14 and molecularly dispersed ibuprofen. 

 

In comparison of the SSD(20) and SSD(4) systems, the crystallisation ∆H values of 

each drug loading corresponded closely with each other, however there were 

significant differences in the shape of the exotherm. The faster cooled systems 

demonstrated much broader peaks than those of the slower cooled systems, therefore 

losing resolution between the primary peak and the leading shoulder. Both however 

could still be well defined. This suggested that crystal growth was a slower process, 

occurring to the same extent but over a wider temperature range. 

 

The temperature of the leading shoulder appeared to correspond well with 

crystallisation of Gelucire 44/14 alone (Figure 4.5, 0%). Lloyd et al (1997) suggested 

that a bimodal crystallisation peak observed in PEG 4000 was attributable to the 

formation of two different crystalline forms. Taking this into account it may be 

possible that, in this case, the observed primary crystallisation peak may be due to a 

new crystal entity. This exotherm, and also its decrease in Tc(max), which can be seen 

to further decrease in temperature with increasing drug, may be due to dissolved drug 

acting as a diluent and subsequently reducing nuclei concentration, thereby 
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decreasing crystallinity of the sample (Long et al. 1995). Following this, at 50% w/w, 

there is little to no obvious crystallisation occurring, particularly for the SSD(4) 

system. An additional peak began to appear at approximately -10oC in the SSD(20) 

systems which increased in size with increasing drug loading; most prominent in the 

15 and 50% w/w systems. This also suggested the formation of an additional crystal 

species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Heat flow against temperature signal on heating at 10oC/minute of ibuprofen and Gelucire 

44/14 a) SSD(20) and b) SSD(4) – Second melt. 

 

a) 

b) 
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Upon re-melting, none of the SSD systems demonstrated an ibuprofen melting peak 

(Figure 4.6). This suggested that by this point the drug was either completely 

dissolved within the Gelucire 44/14 (which may have been the case with the 5 to 

15% w/w systems), or that the remaining crystalline drug, seen to melt on first 

heating at 50% w/w, may now be present in the amorphous form. The glass transition 

of ibuprofen is known to be approximately -45oC (Domanska et al. 2009) and would 

therefore not have been detected. 

 

The Gelucire 44/14 melting endotherm no longer existed as two distinct peaks but as 

one larger peak with a leading shoulder. The lower and higher melting fractions 

could however still be defined, similar to that observed for the lipid alone (Figure 

4.6, 0%). The changes observed in the lipid melting peak may possibly therefore be 

attributed to both the immediate cooling and re-melting of the sample, in addition to 

dissolution of the crystalline drug into the lipid and their subsequent interaction. 

 

The overall endotherm shape corresponded closely with that of Gelucire 44/14 alone 

however the Tm(onset) and Tm(max) could be seen to reduce in temperature with 

increasing drug concentration which may be due to further lipid-drug interaction. 

The high crystalline drug content at 50% w/w, as highlighted by Qi et al (2010b), 

may also bring about dissolution, to an unknown extent, of the SSD carrier Gelucire 

44/14 into the drug. The small melting endotherm detected at 50% does however 

suggest that there was a small degree of crystallisation which was difficult to detect 

on cooling at 10oC/minute, particularly for the SSD(4) systems. 
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4.3.2 Assessment of Thermal Properties using Hyper (Fast Speed) 

Differential Scanning Calorimetry 

4.3.2.1 Analysis of Raw Materials 

 

The raw components of the SSD systems were first analysed at 500oC/minute in 

order to investigate their response to the fast heating rate. The characteristic double 

melting endotherm of Gelucire 44/14 was observed (Figure 4.7). The resolution or 

separation of the primary and secondary peaks was reduced however due to the speed 

of melting, so for this reason the peak ∆H was measured as a whole. The peak was 

found to display an Tm(onset) of 33.5oC ± 5.1, a Tm(max) of 56.0oC ± 2.2 with an ∆H of 

97.3J/g ± 8.3. In comparison to that at 10oC/minute, the Tm(onset) increased in 

temperature, as did the primary Tm(max). The increase in Tm(onset) will be due to 

integration of the peak as a whole, instead of the two peaks individually, with the 

increase in Tm(max) being attributable to the fast heating rate broadening the 

transition. 

 

 

 

 

 

 

 

 

 

Figure 4.7 Heat flow against temperature signal of the Gelucire 44/14 melting endotherm on heating 

at 500oC/minute. 
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The ibuprofen melting endotherm was significantly broader than that observed at 

slower rates due to thermal lag making the Tm(max) fall at a temperature 

approximately 7oC higher at 83.9oC ± 2.0 (Figure 4.8). The Tm(onset), however, was 

found to correspond closely at 75.5oC ± 0.6 compared to 74.8oC ± 0.05 as should be 

the case with thermodynamic events such as melting.  

 

 

 

 

 

 

 

 

 

Figure 4.8 Heat flow against temperature signal of the ibuprofen melting endotherm on heating at 

500oC/minute. 

 

4.3.2.2 Analysis of Physical Mixes 

 

When heated at a rate of 500oC/minute, the shape of the Gelucire 44/14 melting 

endotherm was observed to change with increasing drug loading (Figure 4.9). The 

peaks, unlike those at 10oC/minute, were integrated as a whole due to reduced 

resolution and therefore reduced separation of the two peaks. Maximum of the lipid 

secondary melting peak appeared to maintain at approximately 25oC in all samples. 

The higher melting temperature primary peak was however observed to reduce in 

size with increasing ibuprofen loading as observed at 10°C/minute. This may be 
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caused by reduction in mass of the lipid in the mix and also broadening of the peak 

due to heating at such a fast rate, bringing about reduced resolution of the peak from 

the melting endotherm of ibuprofen. 

 

Ibuprofen melting endotherms were detected as low as 10% w/w, the ∆H values of 

which increased with loading. At higher drug loadings, reproducibility of peak ∆H 

was found to decline, however the Tm(max) could be observed to fall reproducibly at 

79.7oC ± 0.8. Variability was also observed to be an issue in other studies such as 

McGregor and Bines (2008). Onset temperature of the ibuprofen melting endotherm 

reduced by approximately 1oC with each increase in drug loading concentration 

which may be an effect of the peak merging with that of the primary Gelucire 44/14 

melting endotherm as suggested above. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Heat flow against temperature signal of ibuprofen and Gelucire 44/14 physical mixes on 

heating at 500oC/minute. 
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4.3.2.3 Analysis of Semi-Solid Dispersion Systems 

 

Analysis of the Gelucire 44/14 and ibuprofen SSD systems at a heating rate of 

500oC/minute demonstrated disappearance of the Gelucire 44/14 primary melting 

endotherm, with a depression in the Tm(max) of the secondary peak, in both the slow 

cooled (SSD(20)) and fast cooled (SSD(4)) formulations. The complete 

disappearance of the primary lipid melting endotherm implies some level of 

interaction of these crystals with the drug, brought about by solubilisation of drug 

into Gelucire 44/14 when in the molten state, as suggested by Chambin et al (2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Heat flow against temperature signal of ibuprofen and Gelucire 44/14 a) SSD(20) and b) 

SSD(4) on heating at 500oC/minute. 

a) 

b) 
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An ibuprofen melting endotherm could be detected for the 50% w/w systems only, in 

both cases. In ∆H, the peaks were found to be similar in both the SSD(20) and 

SSD(4) systems, however the peak Tm(onset) was approximately 20oC lower in the 

SSD(4) formulation than that of SSD(20), 45.4oC ± 0.6 and 65.7oC ± 1.1 

respectively. There was also a significant difference in the Tm(max) at 68.0 ± 1.0 for 

SSD(4) and 82.3oC ± 4.0 for SSD(20). This may be due to varying levels of 

interaction between the primary melting fractions of the lipid with the drug during 

cooling. 

 

4.3.3 Comparison of Conventional and Hyper Differential Scanning 

Calorimetry Data 

 

As outlined previously, the assumption of a solid solution should not be made on the 

basis of the absence of a drug melting endotherm using DSC analysis at slow heating 

rates (10oC/minute) due to dissolution of drug into the lipid carrier during analysis. 

The use of fast heating rates (500oC/minute) has highlighted the possibility of 

reduction, but not complete elimination, of these dissolution effects seen at slower 

rates.  

 

In theory, analysis of physical mixes of lipid and drug should illustrate melting 

endotherms of both components, independent of each other. In reality, this has been 

shown not to be the case i.e. the disappearance of a drug melting peak at 5% w/w. 

This phenomenon will therefore impact the assumptions made regarding the physical 

state of the final formulated SSD system. Qi et al (2010b) proposed that the ∆H value 

of the drug melting peaks measured represents not only melting but also the energy 
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of its dissolution into the carrier lipid. In order to determine the extent of molecular 

dispersion into Gelucire 44/14 during formulation, minus dissolution during analysis, 

physical mix analysis was used as a calibration plot.  

 

All physical mix systems were analysed for ibuprofen melt ∆H values which were 

plotted against the initial crystalline ibuprofen concentration. For those systems 

subjected to heating at 10°C/minute, a linear relationship was not observed, as 

predicted by the Qi model (Figure 4.11). Similarly, the ∆H values for 25, 30 and 

40% w/w systems were larger than expected compared to pure drug, probably due to 

dissolution effects contributing to the measured value. 

 

 

 

 

 

 

 

 

 

Figure 4.11 Crystalline ibuprofen content in the physical mix against the measured ibuprofen melt 

enthalpy analysed on heating at 10oC/minute. 

 

The ∆H values for physical mixes analysed at 500°C/minute also appeared to follow 

the Qi model, however the point at which lipid dissolution into the drug became the 

dominant process did not appear to have been reached, suggesting that Gelucire 

44/14 solubility in ibuprofen is less than 50% w/w (Figure 4.12). This also suggested 
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that faster heating rates reduce, but do not eliminate, the dissolution effects seen at 

10°C/minute. The disappearance or reduction of the drug melting ∆H does not 

therefore necessarily signify the presence of a solid solution since no drug 

dissolution could have occurred prior to analysis for these physical mixes.  

 

Given the above, it was decided to use the 500oC/minute physical mix data as a 

calibration standard in that, by comparing the SSD ibuprofen ∆H values to the 

physical mixes, a more reliable method of ascertaining solid crystalline drug content 

may be derived. The physical mix plot was not linear but demonstrated two of the 

three phases outlined by Qi et al (2010b). 

 

 

 

 

 

 

 

 

 

Figure 4.12 Crystalline ibuprofen content in the physical mix against the measured ibuprofen melt 

enthalpy analysed on heating at 500oC/minute. 

 

Using this approach it was possible to estimate the solid drug content of the SSD 

systems using the equation from the appropriate region of the calibration plot (Table 

4.1). For both SSD systems, ibuprofen melting peaks were detected only at 50% w/w 

when analysed at either 10 or 500oC/minute. On the whole the data indicated that the 
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drug was present as crystalline particles and also, to a small extent, a molecular 

dispersion within the Gelucire 44/14.  

 

Table 4.1 Calculated crystalline (Cryst.) and molecular (Mol.) ibuprofen content of SSD systems. 

 

System 

Heating 

Rate 

(°C/min) 

Ibup 

Conc 

(%w/w) 

Enthalpy 

(J/g) 

Cryst. Ibup 

Dispersion 

(%w/w) 

Mol. Ibup 

Dispersion 

(%w/w) 

SSD(20) 
10 50 17.5 ± 3.4 46.6 3.4 

500 50 16.6 ± 1.4 45.1 4.9 

SSD(4) 
10 50 29.2 ± 2.5 66.1 0 

500 50 16.9 ± 2.6 45.7 4.3 

 

 

Ibuprofen melt ∆H values were found to be similar, if not slightly lower, when 

analysed at 500oC/minute, which was unexpected. If the fast speed was preventing 

further dissolution of the drug into the lipid during analysis, peak ∆H values should 

be greater thus corresponding with a more accurate estimation of drug concentration 

as a molecular dispersion after formulation into an SSD system. This however was 

not the case. As mentioned above, data obtained using the hyper DSC method was 

found to be lacking in reproducibility which will impact on the final calculated 

crystalline and molecular dispersion concentration values. It was however observed, 

with the exception of 10% SSD(4), that despite the rate of heating, the calculated 

concentration of molecular dispersion in the SSD system was circa 4% w/w. 

Unfortunately the data did not show, with any great certainty, the benefits of using 

fast heating rates and more research is required to this effect. It did however give an 
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indication that ibuprofen solubility in Gelucire 44/14 may fall at approximately 20% 

w/w. 

 

4.3.4 Crystallisation Analysis using Quasi-Isothermal Modulated 

Temperature Differential Scanning Calorimetry 

 

Quasi-Isothermal MTDSC was used to further characterise the crystallisation 

transition of the formulated SSD systems containing ibuprofen with the lipidic carrier 

Gelucire 44/14. The technique allows isolation of the true crystallisation temperature, 

independent of the kinetic effects of heating rate. This can then be compared with 

that of the lipid alone in order to establish the effect of drug presence on the 

transition. All SSD systems were analysed with an isothermal period of 20 minutes 

and an increment of -1oC, reducing stepwise throughout the crystallisation 

temperature range. The reversing heat capacity time plot for representative samples 

of the SSD systems can be seen in Figure 4.13. 

 

The crystallisation temperatures of the formulations cooled slowly (SSD(20)) and 

quickly (SSD(4)) appeared to correspond relatively closely with each other. In 

general, the crystallisation temperature of the lipid was decreased from 31oC for the 

lipid alone, to 25oC and below in the presence of ibuprofen, with the crystallisation 

temperature decreasing with increasing drug loading. At 50% w/w, no obvious 

crystallisation was observed. As suggested by Long et al (1995), the decrease in 

crystallisation temperature may be brought about by the drug acting as a diluent and 

subsequently reducing the concentration and number of nuclei able to bring about the 

process of crystallisation. 
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Figure 4.13 Reversing heat capacity versus time signal for ibuprofen and Gelucire 44/14 a) SSD(20) 

and b) SSD(4) QIMTDSC 20 minute isotherm on cooling with 1oC increments. 

 

In all cases, after the event of crystallisation, the reversing heat capacity continued to 

decrease over time. This phenomenon was observed for Gelucire 44/14 alone in 

Chapter Three and was thought to be brought about by an initial or primary energetic 

crystallisation, followed by a secondary slower, more extended period of 

crystallisation which continued to much lower temperatures than previously 

expected. 

 

b) 

a) 
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Figure 4.14 Lissajous figures of the sine wave heat flow modulations (crystallisation) of ibuprofen 

and Gelucire 44/14 SSD systems; SSD(20) a) 5% b) 10% c) 15% and SSD(4) d) 5% e) 10% f) 15%. 

 

Lissajous figures were isolated for each temperature increment by plotting the 

modulated heat flow against modulated temperature to observe any deviation from 

the steady state thus indicating the occurrence of crystallisation. Representative 

samples can be seen in Figure 4.14. The Lissajous analyses were found, on the 

whole, to support the crystallisation temperatures observed from the reversing heat 

capacity time plots above. Isolation of each QIMTDSC temperature increment for 

the 50% w/w samples showed no obvious sine wave deviation, as suggested by the 

reversing heat capacity time plot above, therefore this data is not presented. 

 

a) d) 

e) b) 

c) f) 



Chapter Four Characterisation of Semi-Solid Dispersions 

174 
 

The major slope of the Lissajous analysis is known to give an indication of the heat 

capacity of the sample. In all samples, the axis was found to reduce from the start to 

the conclusion of the experiment, suggesting a subsequent decline in heat capacity. 

This agrees with the observation from the reversing heat capacity time plot above 

(and also that of Gelucire 44/14 alone in Chapter Three) of an extended period of 

secondary crystallisation after that of the primary energetic phase. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Lissajous figures of the sine wave heat flow modulations of ibuprofen and Gelucire 44/14 

SSD(20) 10% w/w systems at the start (25oC, black) and finish (0oC, red) of the cooling experiment 

showing the major slope of each plot. 

 

Of the repeated sample analyses carried out for each formulation, reproducibility of 

the detected crystallisation temperatures was found to be poor, with the transition 

being found to occur over two temperature increments in one of the three repeats (see 

Table 4.2). This may be brought about by nucleation occurring at varying rates, and 

also the growth of different crystal formations. It may also be due to crystallisation of 
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the lower and higher melting point fractions of Gelucire 44/14 crystallising over two 

different temperatures. 

 

Table 4.2 Measured crystallisation temperatures for ibuprofen and Gelucire 44/14 SSD systems using 

QIMTDSC reversing heat capacity versus time and Lissajous analysis.  

 

System 
Ibuprofen 

Loading (%w/w) 

Crystallisation Temp: 

Reversing Cp (
o
C) 

Crystallisation Temp:  

Lissajous (
o
C) 

SSD(20) 

5 24.8
o
C ± 0.2 24.8

o
C ± 0.2 

10 21.7 ± 3.2 21.8 ± 3.4 

15 21.7 ± 0.6 21.7 ± 0.6 

50 None None 

SSD(4) 

5 24.7 ± 0.6 24.8 ± 0.3 

10 22.7 ± 2.3 23.2 ± 2.8 

15 21.3 ± 0.6 21.3 ± 0.4 

50 None None 

 

 

4.3.5 Observation of Thermal Transitions by Hot Stage Microscopy 

 

On visualisation of the 5% w/w SSD(20) systems there appeared to be a small 

number of ibuprofen crystallites, which dissolve rapidly during and after melting of 

Gelucire 44/14 (Figure 4.16 b). This confirmed that complete ibuprofen dissolution, 

at this drug loading, did not occur during formulation as suggested by thermal 

analysis at slow and also higher rates, and that an amount of dissolution occurs 

during formulation into the Gelucire 44/14 since the crystallites have sufficient time 
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to dissolve prior to their melting temperature. At 5% w/w SSD(4) however, there is 

no indication of any crystalline ibuprofen (Figure 4.16 d). This may suggest that 

complete dissolution does occur during formulation however, the slower cooling rate 

of the SSD(20) systems allows formation of small ibuprofen crystallites before 

complete solidification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 HSM images of a) ibuprofen, b) SSD(20) 5%, c) SSD(20) 50%, d) SSD(4) 5% and e) 

SSD(4) 50% at 50oC in order to visualise only crystalline ibuprofen. 

 

At 50% w/w a significant number of ibuprofen crystals could be observed in both 

formulations (Figure 4.16 c and e). These crystals were larger in size than those seen 

at 5% SSD(20), however, with the exception of a small number, were smaller in size 

than crystalline ibuprofen alone (Figure 4.16 a). These crystals began to reduce in 

size immediately post Gelucire 44/14 melting, initially due to dissolution into the 

b) c) 

d) e) 

a) 
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molten lipid, and then melting with increasing temperature, having completely 

disappeared before 70oC. This indicated melting point depression, as demonstrated 

by conventional DSC, as crystalline ibuprofen alone can be seen to begin melting 

just after 70oC, being molten by 80oC. 

 

It should be noted at this point that HSM and DSC measurements cannot be 

compared directly with any absolute certainty due to differences in measurement 

method. Data obtained from HSM gives an indication as to the behaviour of a small 

number of individual crystals; however DSC averages the melting of all the crystal 

species at a similar temperature as a whole. It should also be considered that the heat 

flux experienced by a sample enclosed in an aluminium pan will not be the same as 

that experienced by a sample exposed to the atmosphere (Sutananta et al. 1994b). 

 

4.3.6 Summary of Ibuprofen and Gelucire 44/14 Semi-Solid Dispersion 

System Characterisation Studies 

 

The characterisation of SSD systems composed of ibuprofen and Gelucire 44/14 has 

produced some interesting findings into the existence of drug within the formulation 

and also to the interpretation of data. The DSC physical mix data at 10 and 

500°C/minute showed a similar trend in that a drug melting peak was absent at 5% 

w/w. This could be taken to suggest that the crystalline ibuprofen present is 

dissolving during analysis or that the mass falls below the instrument limit of 

detection. So at first glance there is no difference and also little benefit of the faster 

heating rate in this case. Analysis using fast heating rates may be best suited to linear 

models. On plotting the crystalline ibuprofen melt ∆H values against the initial 
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crystalline ibuprofen content, it became apparent that the faster heating rate followed, 

to some extent, the model put forward by Qi et al (2010b), highlighting the processes 

of drug dissolution into the lipid at low drug loadings, lipid dissolution into the drug 

at high drug loadings and both occurring in between. The use of the corresponding 

sections of the plot to calculate the crystalline ibuprofen content of the SSD systems 

suggested that those systems with a measurable drug melt ∆H (50% w/w at both 

10°C/min and 500°C/min) also, on the whole, contained molecularly dispersed drug 

of circa 4% w/w. Conventional DSC along with Quasi-isothermal MTDSC showed 

the decrease of lipid crystallisation temperature with increasing drug loading, thought 

to be due to dilution of nuclei by the molecularly dispersed drug (Long et al. 1995). 
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4.4 INDOMETACIN AND GELUCIRE 44/14 SEMI-SOLID DISPERSION 

SYSTEMS 

 

In this section, formulations of the lipidic carrier Gelucire 44/14 with the model drug 

indometacin, a BSC Class II drug, were investigated. 

 

4.4.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

4.4.1.1 Analysis of Raw Materials 

 

The melting endotherm observed upon heating of crystalline indometacin presents as 

a sharp peak occurring reproducibly at Tm(onset) 159.6oC ± 0.04 and Tm(max) 160.7°C 

± 0.09 (Figure 4.17). 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Heat flow against temperature signal of the indometacin melting endotherm on heating at 

10oC/minute. 
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4.4.1.2 Analysis of Physical Mixes 

 

Upon analysis of indometacin and Gelucire 44/14 physical mixes using conventional 

DSC, the characteristic Gelucire 44/14 double endotherm was observed in all cases 

(Figure 4.18). The Tm(onset) and Tm(max) values of both the primary and secondary 

endotherms occurred reproducibly at 40.0oC ± 0.1 and 44.9oC ± 0.1, and 27.2oC ± 

0.4 and 34.3oC ± 0.2 respectively, corresponding well with those of the lipid alone. 

This confirmed the absence of any previous interaction between the two components 

prior to analysis. The ∆H values for both peaks could however be observed to 

decrease with increasing indometacin loading attributable to the decreasing mass of 

lipid in the binary mix. 

 

The baseline at the point of indometacin melting was found, in most cases, to be very 

noisy. At least six repeats were therefore carried out in order to achieve a minimum 

of three measurable and usable results for further analysis. Measurable melting 

endotherms were detected at 15% w/w indometacin and above. In general, the 

Tm(onset) and Tm(max) values appeared to increase with increasing drug loading in the 

range 122 to 146oC and 136 to 151oC, both of which were significantly lower than 

those observed for the crystalline drug alone (Tm(onset) 159.6oC, Tm(max) 160.7°C). 

Both this and the increased broadness of the peaks suggested an interaction with the 

molten lipid during analysis. As outlined earlier, peak broadness is thought to be 

attributed to the melting and dissolution of the drug over a wide range of 

temperatures. The measured ∆H values were also observed to increase.  
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Figure 4.18 Heat flow against temperature signal of indometacin and Gelucire 44/14 physical mixes 

on heating at 10oC/minute. 

 

As with the ibuprofen physical mixes, the absence of a drug melting peak at 5% w/w 

suggests one of two things. That the crystalline indometacin present is completely 

dissolving into the Gelucire 44/14 during analysis, or that the indometacin melting 

peak is undetectable due to its small mass in the mix, which is certainly much less 

likely with the 10% systems. The crystalline indometacin seen to melt at the higher 

drug concentrations may thus only be accountable for that remaining after a standard 

amount of dissolution into the lipid given time to occur during the slow heating rate. 

The ∆H values may also be attributable, in some part, to the energy of dissolution of 

indometacin into the molten Gelucire 44/14 during analysis, as discussed previously. 
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4.4.1.3 Analysis of Semi-Solid Dispersion Systems 

 

Upon melting of the formulated SSD systems, the Gelucire 44/14 double melting 

endotherm could be observed to occur reproducibly at Tm(onset) 39oC and Tm(max) 

35oC (Figure 4.19). In comparison with the lipid alone, both peaks corresponded well 

however a slight decrease in the primary Tm(max), in the range of 3oC, could be 

observed. This melting point depression of the higher melting point fraction of the 

lipid may suggest solubilisation of indometacin into the molten Gelucire 44/14 either 

during formulation or analysis, or a combination of the two. The ∆H values of the 

lipid melting endotherms in both systems did not demonstrate any particular pattern 

of change with increasing drug. At 50%, however, the ∆H value decreased 

considerably, possibly owing to the reduced lipid mass in the mix. 

 

An indometacin melting endotherm could be detected only for the 50% w/w 

formulations of both the SSD(20) and SSD(4) systems. The Tm(onset) and Tm(max) 

values of the peaks, in both cases, were reduced in comparison to those of the 

crystalline drug alone, again suggesting interaction with the lipidic carrier during 

manufacture and analysis, the extent to which is attributable to analysis cannot be 

defined at this stage. The indometacin molecule is known to consist of four hydrogen 

bond acceptor groups and one hydrogen bond donor group. It is reasonable to assume 

that the indometacin molecule may therefore be capable of forming hydrogen bonds 

with the many components of Gelucire 44/14 which express both hydrogen acceptor 

and donor groups. The interaction observed between indometacin and Gelucire 44/14 

may be stronger in nature that that seen with ibuprofen due to the larger number of 

groups capable of bonding. 
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Figure 4.19 Heat flow against temperature signal on heating at 10oC/minute of indometacin and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – First melt. 

 

Crystallisation upon cooling of the SSD systems is shown in Figure 4.20. The 

temperature of crystallisation was reduced significantly when compared to that of 

Gelucire 44/14 alone. It could also be observed to decrease further with increasing 

indometacin loading. This may be attributable to dissolved drug acting as a diluent 

and subsequently reducing nuclei concentration, thereby decreasing crystallinity of 

the sample (Long et al. 1995), as observed with the ibuprofen SSD systems. The 

shape of the crystallisation exotherm varied between formulations due to the 

b) 

a) 
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complex nature of the process and of the lipid-drug system itself. The different peaks 

observed possibly representing different crystal formations due to hydrogen bonding 

between the molten lipid and molecularly dispersed drug (Lloyd et al 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Heat flow against temperature signal on heating at 10oC/minute of indometacin and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

The 5 to 15% w/w formulations demonstrated a leading shoulder at approximately 

15oC which appeared to correspond well with crystallisation of Gelucire 44/14 alone. 

As noted previously, Lloyd et al (1997) suggested that the appearance of a bimodal 

b) 

a) 
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crystallisation peak may indicate the presence of two different crystal forms. In this 

case, the observed leading shoulder may be attributable to the formation of a 

proportion of the original lipid crystal configuration, with the majority constituting 

the formation of a new crystal entity or entities. The crystallisation peaks appeared to 

be uncharacteristically sharp in nature, since in general the lipid demonstrated a 

broader transition in relation to the complexity of the process. No obvious 

crystallisation was observed to occur upon cooling of the 50% w/w formulations of 

either SSD system, suggesting complete inhibition of crystallisation of lipid over the 

temperature range observed in the presence of a large concentration of molten drug, 

with the systems remaining, on the whole, liquid in nature. 

 

The second heating of both SSD systems demonstrated changes to the Gelucire 44/14 

melting endotherm from those observed upon first heating (Figure 4.21). There was 

reduced separation between the primary and secondary peaks, which could also be 

observed for the lipid alone, with the Tm(max) values in both cases decreasing with 

increasing indometacin loading, probably due to interaction with the drug. Despite no 

obvious sign of crystallisation on cooling of the 50% w/w systems, a small 

endothermic peak was detected upon reheating. It should be considered that, at this 

large drug concentration, not only will dissolution of drug be occurring into the lipid 

but vice versa and also a combination of the two. No measurable indometacin 

melting peaks could be detected in all cases suggesting that it may be present as a 

molecular dispersion or exist in the amorphous form. 
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Figure 4.21 Heat flow against temperature signal on heating at 10oC/minute of indometacin and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Second melt. 

 

  

b) 

a) 
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4.4.2 Assessment of Thermal Properties using Hyper (Fast Speed) 

Differential Scanning Calorimetry

4.4.2.1 Analysis 

 

Upon analysis at fast heating rates, crystalline indometacin displayed a sharp 

endotherm at Tm(onset)

increased in comparison with those measured using conventional DSC.

 

 

 

 

 

 

 

 

 

Figure 4.22 Heat flow against temperature signal of the indometacin melting endotherm 

500oC/minute. 

 

4.4.2.2 Analysis of Physical Mixes

 

Analysis of indometacin and Gelucire 44/14 physical mixes allowed distinction of 

the characteristic lipid melting endotherm in all cases. The peak Tm

values displayed no particular pattern of change with increasing drug loading, 

occurring at 35.0oC ± 4.7 and 53.4

Characterisation of 

Assessment of Thermal Properties using Hyper (Fast Speed) 

Differential Scanning Calorimetry 

of Raw Materials 

Upon analysis at fast heating rates, crystalline indometacin displayed a sharp 

(onset) 158.7oC ±1.0 and Tm(max) 165.5oC ± 0.8. These values 

increased in comparison with those measured using conventional DSC.

Heat flow against temperature signal of the indometacin melting endotherm 

Analysis of Physical Mixes 

Analysis of indometacin and Gelucire 44/14 physical mixes allowed distinction of 

the characteristic lipid melting endotherm in all cases. The peak Tm

values displayed no particular pattern of change with increasing drug loading, 

C ± 4.7 and 53.4oC ± 1.2 respectively. These values differ
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Assessment of Thermal Properties using Hyper (Fast Speed) 

Upon analysis at fast heating rates, crystalline indometacin displayed a sharp 

C ± 0.8. These values 

increased in comparison with those measured using conventional DSC. 

Heat flow against temperature signal of the indometacin melting endotherm on heating at 

Analysis of indometacin and Gelucire 44/14 physical mixes allowed distinction of 

the characteristic lipid melting endotherm in all cases. The peak Tm(onset) and Tm(max) 

values displayed no particular pattern of change with increasing drug loading, 

C ± 1.2 respectively. These values differed from 
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those of the lipid alone probably due to limited reproducibility of the technique 

however it did still suggest no prior interaction between the two components.  

 

Indometacin melting endotherms could be measured in all samples, from 5% w/w 

and above, occurring reproducibly at Tm(onset) 154.8oC ± 0.6 and Tm(max) 161.5oC ± 

0.8, both of which were slightly reduced in comparison with those of the drug alone. 

This may be as a result of possible hydrogen bonding with the molten lipid during 

analysis. This effect should be reduced due to the fast heating rate, however will not 

be completely eliminated.  

 

 

 

 

 

 

 

 

 

Figure 4.23 Heat flow against temperature signal of indometacin and Gelucire 44/14 physical mixes 

on heating at 500oC/minute. 

 

4.4.2.3 Analysis of Semi-Solid Dispersion Systems 

 

Analysis of indometacin and Gelucire 44/14 SSD systems at 500oC/minute heating 

rate can be observed in Figure 4.24. The Tm(onset) and Tm(max) values of the lipidic 

melting endotherm appeared to vary between repeated samples as observed 
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previously using this technique. In all cases, the measured Tm(onset) values were 

greater in temperature compared to that of the lipid alone, being most prominent at 

50% w/w. The Tm(max) of the melting peaks however were found to be lower, 

suggesting that the peak is narrower. This shifting of the transition as a whole may 

suggest possible hydrogen bonding interaction with the drug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Heat flow against temperature signal of indometacin and Gelucire 44/14 a) SSD(20) and 

b) SSD(4) on heating at 500oC/minute. 

 

Distinct and measurable indometacin melting endotherms could be distinguished at 

15 and 50% for SSD(20) and 10 to 50% w/w for the SSD(4) systems. These peaks, 

however, demonstrated poor reproducibility. At 15%, the indometacin melting 

a) 

b) 
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endotherm was observed to consist of two peaks, this event however was not 

observed in all repeated samples.

 

4.4.3 Comparison of Conventio

Calorimetry Data

 

All conventional DSC 

mix ∆H data was plotted against the initial crystalline i

discussed previously,

represents not only melting of the 

carrier lipid. The ∆H against crystalline i

at 10°C/minute demonstrate

w/w whose value was

dissolution effects contributing to the measured value

 

 

 

 

 

 

 

 

 

Figure 4.25 Crystalline indometacin content in the physical

melt enthalpy analysed on heating

Characterisation of 

endotherm was observed to consist of two peaks, this event however was not 

observed in all repeated samples. 

Comparison of Conventional and Hyper Differential Scanning 

Calorimetry Data 

DSC data was analysed for indometacin melt ∆

H data was plotted against the initial crystalline indometacin

discussed previously, Qi et al (2010b) proposed that the measured 

represents not only melting of the drug but also the energy of its dissolution into the 

∆H against crystalline indometacin plot for physical mixes analysed 

demonstrated a comparatively linear relationship

as larger than expected compared to pure drug, p

dissolution effects contributing to the measured value (Figure 4.25

indometacin content in the physical mix against the measured

on heating at 10oC/minute. 
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that the measured ∆H value 

but also the energy of its dissolution into the 
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linear relationship, excluding 20% 

larger than expected compared to pure drug, possibly due to 
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At 500oC/minute, the measured indometacin 

model in that it was triphasic in nature (Figure 

20% w/w were higher than expected, again possibly due to dissolution effects, 

however this should be reduced in comparison to that seen for conventional DSC. 

This plot was therefore used as a calibration standard against which to determine the 

solid crystalline indometacin content of the formulated SSD systems (

could also be determined from this plot that indometacin solubility in Gelucire 44/14 

appears to be 25% w/w, with Gelucire 44/14 solubility within molten indometacin 

being 60% w/w. 

 

 

 

 

 

 

 

 

 

Figure 4.26 Crystalline indometacin content in the physical mix

melt enthalpy analysed on heating 

 

Indometacin peaks were detected only at 50% w/w for those SSD systems analysed 

at 10oC/minute; however at a heating rate of 500

endotherms could be measured as low as 15% for SSD(20) and 10% for the SSD(4) 

systems. Firstly this highlights that heating at slower rates allows dissolution of 

crystalline drug into the molte

Characterisation of 

C/minute, the measured indometacin ∆H valuess appeared to follow the Qi 

model in that it was triphasic in nature (Figure 4.26). The values obtained for 15 and 

20% w/w were higher than expected, again possibly due to dissolution effects, 

however this should be reduced in comparison to that seen for conventional DSC. 

This plot was therefore used as a calibration standard against which to determine the 

lline indometacin content of the formulated SSD systems (

could also be determined from this plot that indometacin solubility in Gelucire 44/14 

25% w/w, with Gelucire 44/14 solubility within molten indometacin 

indometacin content in the physical mix against the measured

on heating at 500oC/minute. 

Indometacin peaks were detected only at 50% w/w for those SSD systems analysed 

however at a heating rate of 500oC/minute, crystalline melting 

endotherms could be measured as low as 15% for SSD(20) and 10% for the SSD(4) 

systems. Firstly this highlights that heating at slower rates allows dissolution of 

crystalline drug into the molten lipid during analysis, thus preventing detection and 
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). The values obtained for 15 and 

20% w/w were higher than expected, again possibly due to dissolution effects, 

however this should be reduced in comparison to that seen for conventional DSC. 

This plot was therefore used as a calibration standard against which to determine the 

lline indometacin content of the formulated SSD systems (Table 4.3). It 

could also be determined from this plot that indometacin solubility in Gelucire 44/14 

25% w/w, with Gelucire 44/14 solubility within molten indometacin 

the measured indometacin 

Indometacin peaks were detected only at 50% w/w for those SSD systems analysed 

C/minute, crystalline melting 

endotherms could be measured as low as 15% for SSD(20) and 10% for the SSD(4) 

systems. Firstly this highlights that heating at slower rates allows dissolution of 

n lipid during analysis, thus preventing detection and 
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measurement of drug melting and therefore the incorrect assumption of a solid 

solution created purely from the formulation process. And secondly, by increasing 

the rate at which the sample is heated, the extent to which the crystalline drug 

dissolves during analysis can be reduced though not completely prevented. At 

500oC/minute, the SSD(4) system demonstrated a drug melt at a lower drug 

concentration than that seen for SSD(20), and therefore a larger concentration of 

crystalline drug after formulation. It may be a possibility that any remaining 

crystalline drug may continue to dissolve in the molten lipid whilst cooling at a slow 

rate to room temperature. 

 

The measured crystalline indometacin melt ∆H values at 500oC/minute were found 

to be similar to those at the slower heating rate, subsequently giving comparable 

calculated values of crystalline indometacin in the final SSD systems. It would be 

expected that heating at faster rates would demonstrate larger indometacin melt ∆H 

values. It should however be considered that there are a great number of factors 

which can affect the data obtained, such as instrument error, calibration and baseline 

error, sample and reference pan variation etc. The measured ∆H values of the repeat 

samples were significantly variable in value, as can be seen by the standard 

deviation, which will give a false indication as to the true concentration. 
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Table 4.3 Calculated crystalline (Cryst.) and molecular (Mol.) indometacin content of SSD systems. 

 

System 

Heating 

Rate 

(°C/min) 

Indo 

Conc 

(%w/w) 

Enthalpy 

(J/g) 

Cryst. Indo 

Dispersion 

(%w/w) 

Mol. Indo 

Dispersion 

(%w/w) 

SSD(20) 

10 

10 _ _ _ 

15 _ _ _ 

50 29.7 ± 2.0 37.8 12.2 

500 

10 _ _ _ 

15 23.7 ± 11.1 34.6 0 

50 24.6 ± 6.9 35.2 14.8 

SSD(4) 

10 

10 _ _ _ 

15 _ _ _ 

50 31.3 ± 2.2 36.6 13.4 

500 

10 1.8 ± 0.5 6.6 3.4 

15 2.7 ± 1.7 10.7 4.3 

50 19.6 ± 2.3 32.5 17.5 

 

 

The molecular dispersion concentration values increased with increasing 

indometacin loading into the SSD formulation. This may suggest that the system was 

unable to reach indometacin saturation into the molten Gelucire 44/14 during the 

time allowed for mixing during manufacture. At 50% w/w, the calculated 

concentrations of molecularly dispersed indometacin were similar in value, ranging 

from 12.2 to 17.5% w/w which may suggest that it is at this point that saturation is 

achieved. 
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4.4.4 Crystallisation Analysis using Quasi-Isothermal Modulated 

Temperature Differential Scanning Calorimetry 

 

Quasi-Isothermal MTDSC was utilised as a tool to identify the true crystallisation 

temperature of the formulated SSD systems, and also to investigate the effect of drug 

presence on the lipidic carrier. The reversing heat capacity time plot for 

representative samples of the SSD systems are demonstrated in Figure 4.27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Reversing heat capacity versus time signal for indometacin and Gelucire 44/14 a) 

SSD(20) and b) SSD(4) QIMTDSC 20 minute isotherm on cooling with 1oC increments. 

b) 

a) 
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Overall, crystallisation of Gelucire 44/14 was significantly reduced in temperature 

from 31oC to 25oC and below due to interaction, possibly hydrogen bond related, 

with indometacin, as also demonstrated with ibuprofen. This effect may have been 

caused by molten indometacin acting as a diluent, reducing the number of nuclei and 

subsequently delaying crystallisation (Long et al. 1995). The reversing heat capacity 

of all systems could be observed to decrease over time, even after the main energetic 

crystallisation had taken place, suggesting a secondary process ongoing over a longer 

time and to much lower temperatures. No energetic crystallisation process was 

detected for the 50% w/w formulations of either SSD system, the reversing heat 

capacity did however still decrease over time.  

 

   

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.28 Lissajous figures of the sine wave heat flow modulations (crystallisation) of indometacin 

and Gelucire 44/14 SSD systems; SSD(20) a) 5% b) 10% c) 15% and SSD(4) d) 5% e) 10% f) 15%. 

c) f) 

e) b) 

a) d) 
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Deviation of the sine wave modulations was observed using Lissajous analyses, 

indicating the occurrence of crystallisation (Figure 4.28). The extent to which the 

sine wave ellipses deviated from the steady state of the liquid or solid form varied 

between SSD systems and even between samples. On the whole however, the 

crystallisation temperature indicated by modulation of the Lissajous analyses 

coincided with the equivalent reversing heat capacity time plot. Following the 

absence of crystallisation in all 50% w/w formulations in the reversing heat capacity 

time plots, isolation of each temperature increment as a Lissajous figure 

demonstrated no sine wave deviation, and therefore no crystallisation. This data is 

not shown.  

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Lissajous figures of the sine wave heat flow modulations of indometacin and Gelucire 

44/14 SSD(20) 10% w/w systems at the start (25oC, black) and finish (0oC, red) of the cooling 

experiment showing the major slope of each plot. 

 

The major slope of the sine waves could be observed to change between samples, 

thus suggesting that the extent to which the samples were loaded with drug, and also 
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the rate at which the SSD systems were cooled during manufacture, affected the heat 

capacity of the final formulation. The slope was also found to reduce from start to 

finish of each experiment, in all cases, confirming that the heat capacity of each 

sample reduced over the course of the experiment. This provides further evidence of 

an extended period of secondary crystallisation (Figure 4.29). The width of the 

ellipses were also observed to increase which can suggest that there is a change in the 

phase lag, probably brought about by the sample undergoing crystallisation. The 

interpretation of phase lag should be done with care as a change can also be caused 

by factors such as asymmetry of the reference and sample pan placement and uneven 

purge gas. 

 

Table 4.4 Measured crystallisation temperatures for indometacin and Gelucire 44/14 SSD systems 

using QIMTDSC reversing heat capacity versus time and Lissajous analysis. 

 

System 
Indometacin 

Loading (%w/w) 

Crystallisation Temp: 

Reversing Cp (
o
C) 

Crystallisation Temp:  

Lissajous (
o
C) 

SSD(20) 

5 21.3 ± 1.5 21.3 ± 1.5 

10 24.6 ± 0.6 24.8 ± 0.3 

15 22.3 ± 2.4 22.3 ± 2.4 

50 None None 

SSD(4) 

5 21 ± 4.6 21 ± 4.6 

10 22.2 ± 2.8 22.2 ± 2.8 

15 24.3 ± 0.6 24.0 

50 None None 
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Reproducibility of the detected crystallisation temperatures for formulations of the 

SSD(20) and SSD(4) systems was found to be poor, occurring at a different 

temperature for each of the repeated samples (Table 4.4). On the whole, however, the 

crystallisation temperature was reduced, from that observed for Gelucire 44/14 alone 

(31oC), most significantly by the 5% w/w formulation. The 10 and 15% systems 

demonstrated a reduction in crystallisation temperature to a lesser extent. 

 

4.4.5 Observation of Thermal Transitions by Hot Stage Microscopy 

 

Observation of the SSD systems using HSM demonstrated that at 5% w/w no 

crystalline indometacin was present (Figure 4.30 b and d). It should be noted that the 

dark areas observed in these images were not indometacin crystals. They did not melt 

at the indometacin melting temperature, and were most probably dirt on the slide or 

lens and therefore should be discounted. The absence of visible indometacin crystals 

confirmed that dissolution during analysis did not contribute to the absence of a drug 

melting endotherm in both conventional and hyper DSC data, and that the solubility 

of indometacin in Gelucire 44/14 is greater than 5% w/w. 

 

 At 50% w/w, indometacin crystals were very dense in the formulation (Figure 4.30 c 

and e), however these crystals began to dissolve into the molten Gelucire 44/14 well 

below their own melting temperature of 160oC, thus confirming the presence of 

dissolution effects caused by slow heating rates. Dissolution of the crystals appeared 

to be complete by approximately 150oC in both systems i.e. melting point depression 

as observed using thermal analysis.  
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Figure 4.30 HSM images of a) indometacin, b) SSD(20) 5%, c) SSD(20) 50%, d) SSD(4) 5% and e) 

SSD(4) 50% at 50oC in order to visualise only crystalline indometacin. 

 

4.4.6 Summary of Indometacin and Gelucire 44/14 Semi-Solid Dispersion 

System Characterisation Studies 

 

Characterisation of indometacin and Gelucire 44/14 SSD systems using thermal 

analysis techniques has given an insight into the physical state of the incorporated 

constituents. When investigated at slower heating rates using conventional DSC, 

dissolution effects during analysis of physical mixes brought about the absence of 

indometacin melting endotherms at 5 and 10% w/w. At higher drug loading, changes 

could be observed to the melting endotherm suggesting interaction with Gelucire 

44/14 occurring during analysis, possibly due to potential hydrogen bonding between 

b) c) 

d) e) 

a) 
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the two components. Solid dispersions demonstrated indometacin melting 

endotherms only at 50% w/w however the presence of a solid solution at lower drug 

loadings could not be attributed to either dissolution into the lipid during analysis or 

during formulation at this point. Analysis using hyper DSC confirmed that the 

absence of indometacin melting peaks at the lower drug loadings were contributed to 

by dissolution effects during analysis by demonstrating peaks at 10 and 15% w/w. 

The crystalline indometacin concentration versus the indometacin melting ∆H plot 

closely followed the model proposed by Qi et al (2010b) however subsequent 

calculation of SSD indometacin molecular dispersion content of 50% formulations 

showed a value in the range of 12 to 17% w/w suggesting a the dissolution of a 

standard amount of indometacin in all cases. The solubility of indometacin in 

Gelucire 44/14 was also calculated to be 25% w/w, just above the molecular 

dispersion value, with Gelucire 44/14 solubility in molten indometacin being 60% 

w/w. QIMTDSC data confirmed the decrease in temperature of the Gelucire 44/14 

crystallisation transition as observed for ibuprofen. 
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4.5 PIROXICAM AND GELUCIRE 44/14 SEMI-SOLID DISPERSION 

SYSTEMS 

 

In this section, formulations of the lipidic carrier Gelucire 44/14 with the model drug 

piroxicam, a BSC Class II drug, were investigated. 

 

4.5.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

4.5.1.1 Analysis of Raw Materials 

 

Upon heating, crystalline piroxicam displayed a sharp melting endotherm at Tm(onset) 

201.8oC ± 0.2, Tm(max) 202.3oC ± 0.06 and ∆H 108.3 J/g ± 1.6. This data will act as a 

comparison on which to base any observed changes to the melt as part of a physical 

mix or SSD. 

 

 

 

 

 

 

 

 

 

Figure 4.31 Heat flow against temperature signal of the piroxicam melting endotherm on heating at 

10oC/minute. 
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4.5.1.2 Analysis of Physical Mixes 

 

Representative samples of piroxicam and Gelucire 44/14 physical mixes, analysed 

using conventional DSC, are demonstrated in Figure 4.32. The Tm(onset) and Tm(max) 

values of the Gelucire 44/14 double melting endotherms remained stable over the 

increasing piroxicam concentrations. These values also corresponded well with those 

of the lipid alone, thus confirming the absence of any interaction between the two 

components prior to analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 Heat flow against temperature signal of piroxicam and Gelucire 44/14 physical mixes on 

heating at 10oC/minute. 

 

Piroxicam melting endotherms could be detected from 10% w/w and above. The 

baseline around this peak tended to be noisy however it was still possible to measure 

usable ∆H values. These values increased with increasing piroxicam concentration. 

No particular pattern of change was noted for the Tm(onset) and Tm(max) values which 

remained in the region of 183 and 190oC, both of which are well below those of the 
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crystalline drug alone, thus suggesting interaction with the molten lipid during 

analysis. 

 

The absence of a piroxicam melting endotherm at 5% w/w suggests either the 

complete dissolution of the crystalline drug during analysis, or the limit of detection 

of the instrument lies above the mass of the drug in the mix. If the former is the case, 

then it is reasonable to assume that the measured ∆H values for the drug melting 

endotherms of the higher loading mixes may be contributed to by an unknown extent 

of dissolution into the lipid during analysis, as suggested by the Qi model. 

 

4.5.1.3 Analysis of Semi-Solid Dispersion Systems 

 

SSD formulations of piroxicam and Gelucire 44/14, upon heating, demonstrated the 

characteristic lipid melting endotherm (Figure 4.33). With increasing drug 

concentration, the Tm(onset) and Tm(max) remained consistent at 29.1oC ± 0.7 and 

35.3oC ± 0.3, 40.1oC ± 0.1 and 43.5oC ± 0.2; and 28.9oC ± 1.1 and 34.9oC ± 0.9, 

40.1oC ± 0.05 and 43.4oC ± 0.1 for SSD(20) and SSD(4) respectively. These values 

corresponded very closely with those of the lipid alone. The lipid double melting 

endotherm appeared to remain unchanged by formulation into an SSD with 

crystalline piroxicam, possibly due to low compatibility between the two 

components. 
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Figure 4.33 Heat flow against temperature signal on heating at 10oC/minute of piroxicam and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – First melt. 

 

Measurable crystalline piroxicam melting peaks, with a Tm(max) between 185 and 

202oC, were detected in all cases, increasing in ∆H with increasing drug 

concentration. In general, the baseline around the crystalline piroxicam melting peak 

was found to exhibit a degree of noise making confident measurement more difficult. 

 

At 10 and 15% w/w, in addition to a piroxicam melting peak at the lower 

temperature of circa 187oC, another endotherm was observed, occurring in the region 

a) 

b) 
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of 110oC at 10% and 124oC at 15% w/w (Figure 4.34). These additional endotherms, 

despite the integration values of which being variable in nature, were found to occur 

in all repeat samples for these formulations. It is known that piroxicam can display 

polymorphism and it is unknown how many different forms exist (Vrečer et al. 

1991). It may be possible that, during formulation, conversion to an alternative 

polymorphic form may have been induced by the kinetic energy of the process. 

Another possibility may be that piroxicam present as a molecular dispersion may 

have crystallised during cooling into a metastable form.  

 

 

 

 

 

 

 

 

 

 

Figure 4.34 Heat flow against temperature signal on heating at 10oC/minute of piroxicam and 

Gelucire 44/14 SSD – First piroxicam melt at 10 and 15% w/w magnified. 

 

An endothermic peak was also observed in similar formulations of piroxicam and 

Gelucire 44/14 by Karataş et al (2005) who suggested it may be attributable to an 

interaction between the benzothiazine ring -OH group of piroxicam with the fatty 

acid esters of the lipid, initiated by applied heat during the formulation process. 
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At 50% w/w, the broad piroxicam melting endotherm was found to occur at 

approximately 196oC Tm(max) for both SSD systems. This reduced temperature may 

be attributable to melting point depression brought about by interaction of the 

piroxicam with Gelucire 44/14. It could also be due to the creation of an alternative 

polymorphic crystalline formation with a melting point of 195oC as noted by Vrečer 

et al (1991). 

 

Upon cooling of the molten SSD systems, the 50% w/w formulations of both the 

SSD(20) and SSD(4) systems demonstrated no obvious crystallisation. At 5 to 15%, 

both the Tm(onset) and Tm(max) of the transition were found to decrease, in comparison 

with Gelucire 44/14 alone, with increasing piroxicam concentration (Figure 4.35). As 

suggested previously in this Chapter, this effect may be due to the molten drug acting 

as a diluent, thereby reducing the nuclei concentration and decreasing crystallinity of 

the system (Long et al. 1995). In all cases, with the exception of 50%, a leading peak 

was present at a temperature corresponding with the Tc(max) of crystallisation of the 

lipid alone suggesting formation of the original Gelucire 44/14 crystal arrangement 

(Lloyd et al 1997). In addition to this, the formulations appeared to form another 

crystal entity, indicated by the shoulder of the main peak. This peak became less 

prominent and lower in temperature with increasing drug loading, being completely 

absent by 15%. It should also be noted that again, as seen for indometacin systems, 

the crystallisation peaks were uncharacteristically sharp in nature. 
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Figure 4.35 Heat flow against temperature signal on heating at 10oC/minute of piroxicam and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

Re-heating of the SSD systems demonstrated an endothermic transition in the region 

of 20 to 50oC in all cases, most likely attributable to melting of re-crystallised 

Gelucire 44/14 (Figure 4.36). At 5% w/w, the endotherm was unchanged from that of 

Gelucire 44/14 alone, confirming its presence and crystal formation in the system, 

and also the lack of interaction with piroxicam. At 10%, the secondary peak became 

more prominent, with the primary peak being completely absent at 15%. The ∆H was 

found to decrease with increasing drug loading. This may suggest a closer proximity 

a) 

b) 
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between the piroxicam and Gelucire 44/14 on a molecular level than the complete 

lack of interaction observed upon initial melting, promoted by melting both 

components together. The interaction appeared to occur with the higher melting point 

fractions of the lipid, suggested by the disappearance of the primary melting 

endotherm, with the effect becoming more prominent with increasing drug loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36 Heat flow against temperature signal on heating at 10oC/minute of piroxicam and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Second Melt. 

 

b) 

a) 
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The 15% w/w formulation of the SSD(20) system and the 5 to 15% formulations of 

the SSD(4) systems demonstrated a small endothermic peak at approximately 157oC 

and all of similar ∆H which may be attributable to the melting of a new piroxicam 

polymorph created after melting and cooling. 

 

 

 

 

 

 

 

 

 

Figure 4.37 Heat flow against temperature signal of piroxicam and Gelucire 44/14 50% SSD systems 

– Second Melt magnified. 

 

At 50% piroxicam loading, no crystallisation peak was detected upon cooling 

however a possible melting peak, at Tm(max) 17oC, was present during re-heating in 

the region of Gelucire 44/14 melting (Figure 4.37). The Tm(max) was found to occur 

at 26.1oC ± 0.3 and 27.6oC ± 2.7 for SSD(20) and SSD(4) respectively. In addition to 

this lipidic melting peak, a small peak was detected at 123.3oC ± 3.0 for SSD(20) and 

119.7oC ± 0.6 for SSD(4) systems, with an ∆H larger in that of the SSD(20) 

formulations at 2.7 J/g ± 3.2 in comparison with 0.5 J/g ± 0.5 for SSD(4). This 

additional peak may be attributable to a new polymorph of piroxicam, crystallising 

from the amorphous form. It is possible that the formation of microcrystals occurred 

upon cooling which was undetectable using thermal analysis in this case, the melting 
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of which was able to overcome the instrument detection limit and therefore 

demonstrating an endotherm on the DSC plot. 

 

4.5.2 Assessment of Thermal Properties using Hyper (Fast Speed) 

Differential Scanning Calorimetry 

4.5.2.1 Analysis of Raw Materials 

 

Under analysis at fast heating rates, crystalline piroxicam demonstrated a melting 

endotherm on heating, occurring at Tm(onset) 198.9oC ± 0.6 and Tm(max) 206.1oC ± 

1.3. The Tm(onset) value corresponded closely to that of the drug at slower heating 

rates, as described above, falling within a couple of degrees. The ∆H of the 

endotherm was also found to be comparable, at 102.3 J/g ± 0.6. The peak was 

however much broader, increasing the Tm(max) by approximately 4oC.  

 

 

 

 

 

 

 

 

 

Figure 4.38 Heat flow against temperature signal of the piroxicam melting endotherm on heating at 

500oC/minute. 
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4.5.2.2 Analysis of Physical Mixes 

 

Overall, on heating, the Gelucire 44/14 melting endotherm remained generally 

unchanged for the physical mixes, with an Tm(onset) of 37.5oC ± 1.7 and Tm(max) of 

55.5oC ± 1.1, comparable to that of the lipid alone. This indicated the absence of any 

prior interaction with piroxicam. Peak ∆H was found to decrease with increasing 

piroxicam concentration. A piroxicam melting endotherm could be detected in all 

cases, being reproducible between repeated samples and also with increasing loading 

(Tm(onset) 197.3oC ± 1.2; Tm(max) 204.6oC ± 1.8), thus also confirming that no 

interaction had taken place between the two components. The ∆H of these peaks 

increased with piroxicam concentration. 

 

 

 

 

 

 

 

 

 

Figure 4.39 Heat flow against temperature signal of piroxicam and Gelucire 44/14 physical mixes on 

heating at 500oC/minute. 
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4.5.2.3 Analysis of Semi-Solid Dispersion Systems 

 

Analysis of Gelucire 44/14 and piroxicam SSD systems at 500oC/minute 

demonstrated that the lipid melting endotherm remained a similar shape to that of the 

lipid alone, as the drug concentration increased. However, despite the Tm(onset) being 

increased from 33.5oC for the lipid alone to 39.3oC ± 0.9 and 38.5oC ± 1.0 for the 

SSD(20) and SSD(4) systems respectively, the Tm(max) was comparable in both cases 

for all formulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40 Heat flow against temperature signal of piroxicam and Gelucire 44/14 a) SSD(20) and b) 

SSD(4) on heating at 500oC/minute. 

 

b) 

a) 
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A piroxicam melting endotherm could be detected at all drug concentrations. At 5 to 

15% w/w drug concentration, the peak was found to occur at a Tm(onset) and Tm(max) 

significantly higher that observed for the drug alone (Tm(onset) 198.9oC; Tm(max) 

206.1oC). The values corresponded closely between formulations at Tm(onset) 

approximately 210oC and Tm(max) approximately 218oC for the SSD(20) systems, as 

did those for SSD(4) at Tm(onset) approximately 211oC and Tm(max) approximately 

219, with the exception of 15% Tm(onset) at 213oC. It should be considered that this 

increased piroxicam melt (particularly the Tm(onset), as the Tm(max) would increase 

due to peak broadness at fast heating rates) may be attributable to a different 

polymorphic form, the conversion to which was brought about during manufacture. 

This was not, however, observed at slower heating rates suggesting that any 

conversion taking place does not occur during manufacture but during analysis. In 

theory however any change occurring in the sample should be reduced the faster the 

analysis takes place. The measured ∆H values were found to be equally small for 5 to 

15% formulations with no particular pattern of change. Again, the values obtained 

using this technique were found to be variable. 

 

At 50% w/w, the piroxicam melting endotherm was observed to occur at a lower 

temperature than that of the lower drug loaded formulations and also of the drug 

alone at an Tm(onset) of approximately 175oC and a Tm(max) of approximately 197oC. 

Such a melting point depression was also noted for the SSD systems analysed using 

conventional DSC and attributed to possible interaction with the molten lipid during 

analysis. 
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4.5.3 Comparison of Conventional and Hyper Differential Scanning 

Calorimetry Data

 

Upon examination of the piroxicam and Gelucire 44/14 physical mixes using 

conventional and hyper DSC (

measured drug melt ∆

(2010b).  

 

 

 

 

 

 

 

 

 

Figure 4.41 Crystalline piroxicam content in the physical mix

enthalpy analysed on heating 

 

At 500oC/minute, the melt 

two of the three phases suggested by the model indicating that the point of Gelucire 

44/14 solubility in piroxicam had not been reached, therefore 

w/w. This was not unexpected as the DSC data did

two components. Piroxicam solubility in Gelucire 44/14 could however be estimated 

as 10% w/w. This plot was used for the purposes of determining the crystalline 

piroxicam concentration in t

Characterisation of 

Comparison of Conventional and Hyper Differential Scanning 

Calorimetry Data 

of the piroxicam and Gelucire 44/14 physical mixes using 

conventional and hyper DSC (Figures 4.41 and 4.42), it was apparent that the 

measured drug melt ∆H values again followed the model proposed by Qi et al 

piroxicam content in the physical mix against the measured

on heating at 10oC/minute. 

C/minute, the melt ∆H versus crystalline concentration plot demonstrated 

two of the three phases suggested by the model indicating that the point of Gelucire 

44/14 solubility in piroxicam had not been reached, therefore being lower than 50% 

unexpected as the DSC data did suggest low compatibility

two components. Piroxicam solubility in Gelucire 44/14 could however be estimated 

as 10% w/w. This plot was used for the purposes of determining the crystalline 

piroxicam concentration in the formulated SSD systems, and subsequently the 
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Figure 4.42 Crystalline piroxicam content in the physical mix

enthalpy analysed on heating 

 

All SSD systems, at both 10 and 500

endotherm, from 5 to 50% w/w. 

the drug melt ∆H, and subsequently 

analysed at 500oC/minu

was unexpected. If the fast heating rat

during analysis, the crystalline melt 

demonstrateed that speeds greater 

in order to overcome drug dissolution effect into the carrier material during analysis. 

 

 

Characterisation of 

amount, if any, present as a solid solution or molecular dispersion. It wa

that this data represented a more accurate estimation of the true physical state of drug 

in the SSD system since the fast heating rate reduced, but not eliminate

into the molten lipid during analysis. 

piroxicam content in the physical mix against the measured

on heating at 500oC/minute. 

systems, at both 10 and 500oC/minute, demonstrated a piroxicam melt 

endotherm, from 5 to 50% w/w. Table 4.5 does however highlight that, in all cases, 

H, and subsequently the crystalline concentration, wa

C/minute in comparison with those measured at 10

s unexpected. If the fast heating rate was reducing drug dissolution into the lipid 

during analysis, the crystalline melt ∆H should have been greater. This again 

that speeds greater than those employed in this study may be required 

in order to overcome drug dissolution effect into the carrier material during analysis. 
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a more accurate estimation of the true physical state of drug 

, but not eliminated, dissolution 

the measured piroxicam melt 

C/minute, demonstrated a piroxicam melt 

does however highlight that, in all cases, 

the crystalline concentration, was reduced when 

te in comparison with those measured at 10oC/minute which 

s reducing drug dissolution into the lipid 

greater. This again 

than those employed in this study may be required 

in order to overcome drug dissolution effect into the carrier material during analysis.  
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Table 4.5 Calculated crystalline (Cryst.) and molecular (Mol.) piroxicam content of SSD systems. 

 

System 

Heating 

Rate 

(°C/min) 

Pirox 

Conc 

(%w/w) 

Enthalpy 

(J/g) 

Cryst. Pirox 

Dispersion 

(%w/w) 

Mol. Pirox 

Dispersion 

(%w/w) 

SSD(20) 

10 

5 3.2 ± 0.6 10.3 0 

10 1.9 ± 1.7 7.3 2.7 

15 3.6 ± 2.3 10.7 4.3 

50 32.2 ± 2.8 38.6 11.4 

500 

5 1.3 ± 0.8 5.2 0 

10 3.3  ± 3.8 10.4 0 

15 2.1 ± 2.0 8.3 6.7 

50 24.3 ± 4.5 29.9 20.1 

SSD(4) 

10 

5 2.8 ± 1.8 10.0 0 

10 4.1 ± 1.3 11.1 0 

15 3.7 ± 1.1 10.8 4.2 

50 28.4 ± 2.9 34.4 15.6 

500 

5 1.9 ± 1.6 7.5 0 

10 1.4 ± 0.2 5.4 4.6 

15 0.4 ± 0.05 1.4 13.6 

50 23.5 ± 9.1 29.0 21.0 

 

 

The extent to which piroxicam was molecularly dispersed within Gelucire 44/14 was 

found to increase with increasing piroxicam loading into the SSD formulation. 

Piroxicam demonstrated a lower solubility of 10% w/w in the lipid when in 

comparison with ibuprofen (20% w/w) and indometacin (25% w/w). Reaching a 
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value of 21% molecular dispersion within Gelucire 44/14 would therefore be 

unexpected, especially since at low piroxicam concentrations there appeared to be no 

molecular dispersion. As discussed previously, it is likely that the drug melting 

endotherm observed upon heating of the SSD systems may be attributable to not only 

melting of the crystalline drug alone, but its dissolution into the carrier excipient. It 

may also be possible that the endotherm ∆H is contributed to by dissolution of the 

lipid into the high concentration of molten drug. This would bring about an increase 

in the measured ∆H value and a therefore a subsequent increase in the calculated 

content of what was assumed to be solely molecularly dispersed piroxicam making 

interpretation of this value incorrect. 

 

4.5.4 Crystallisation Analysis using Quasi-Isothermal Modulated 

Temperature Differential Scanning Calorimetry 

 

The piroxicam and Gelucire 44/14 SSD systems were analysed using QIMTDSC in 

order to further characterise the effect of drug on crystallisation of the lipidic carrier. 

As with the other two model drugs, piroxicam was also found to significantly reduce 

the measured crystallisation temperature of Gelucire 44/14, independent of heating 

rate, to 25oC and below. The reversing heat capacity time plot also demonstrated the 

noted energetic primary crystallisation followed by a slower more extended period of 

secondary crystallisation continuing to much lower temperatures, as observed for the 

lipid alone (Figure 4.43). 
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Figure 4.43 Reversing heat capacity versus time signal for piroxicam and Gelucire 44/14 a) SSD(20) 

and b) SSD(4) QIMTDSC 20 minute isotherm on cooling with 1oC increments. 

 

Isolation of the Lissajous figures allowed the sine wave modulations to be monitored 

for any deviation from the equilibrium or steady state. Representative samples can be 

seen in Figure 4.44. On the whole, the detected crystallisation temperatures 

corresponded well with those observed from the reversing heat capacity time plots. 

Reproducibility between repeated samples was however found to be poor (Table 

4.46).  

 

b) 

a) 
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Figure 4.44 Lissajous figures of the sine wave heat flow modulations (crystallisation) of piroxicam 

and Gelucire 44/14 SSD systems; SSD(20) a) 5% b) 10% c) 15% and SSD(4) d) 5% e) 10% f) 15%. 

 

In all samples, the major slope was found to reduce from the start to the conclusion 

of the experiment, suggesting a subsequent decline in heat capacity. This provided 

further weight to the argument of a slower, extended period of secondary 

crystallisation taking place after the initial energetic crystallisation as observed in the 

reversing heat capacity time plot above. 

  

a) 

b) 

c) 

d) 

e) 

f) 
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Figure 4.45 Lissajous figures of the sine wave heat flow modulations of piroxicam and Gelucire 44/14 

SSD(20) 10% w/w systems at the start (25oC, black) and finish (0oC, red) of the cooling experiment 

showing the major slope of each plot. 

 

Table 4.6 Measured crystallisation temperatures for piroxicam and Gelucire 44/14 SSD systems using 

QIMTDSC reversing heat capacity versus time and Lissajous analysis. 

 

System 
Piroxicam 

Loading (%w/w) 

Crystallisation Temp: 

Reversing Cp (
o
C) 

Crystallisation Temp:  

Lissajous (
o
C) 

SSD(20) 

5 24.0  ± 1.0 23.8 ± 0.8 

10 19.7  ± 2.3 19.7  ± 2.3 

15 22.7  ± 0.6 23.2  ± 1.1 

50 None None 

SSD(4) 

5 21.3  ± 3.1 21.3  ± 3.1 

10 21.7  ± 3.2 21.7  ± 3.2 

15 18.3  ± 4.2 20.0  ± 4.2 

50 None None 
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4.5.5 Observation of Thermal Transitions by Hot Stage Microscopy 

 

HSM of the formulated piroxicam and Gelucire 44/14 SSD systems allowed 

visualisation of the physical state of the drug. At 5% w/w a large number of 

piroxicam crystals were present in both the SSD(20) and SSD(4) systems. These 

crystals began to dissolve immediately post Gelucire 44/14 melting, with the process 

being complete by approximately 120oC in both cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.46 HSM images of a) piroxicam, b) SSD(20) 5%, c) SSD(20) 50%, d) SSD(4) 5% and e) 

SSD(4) 50% at 50oC in order to visualise only crystalline piroxicam. 

 

This temperature was lower than that expected in comparison with that measured for 

conventional DSC This effect highlighted the process by which crystalline drug can 

dissolve into the molten lipid during DSC analysis at slow heating rates. At 50% 

b) c) 

d) e) 

a) 
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w/w, the drug crystals appeared very dense in the formulation. Again these crystals 

began to dissolve once in molten lipid, with all signs of solid drug gone by 188 and 

194oC for the SSD(20) and SSD(4) systems respectively. 

 

4.5.7 Summary of Piroxicam and Gelucire 44/14 Semi-Solid Dispersion 

System Characterisation Studies 

 

Considering the DSC data, limited alterations to the thermal properties of either the 

piroxicam or Gelucire 44/14 were detected. Even after formulation into SSD 

systems, at low piroxicam concentration, and at slow heating rates, it was possible to 

detect measurable drug melting endotherms. This suggested that the compatibility 

between the two components was limited. Analysis of physical mix data at 

500oC/minute, to some extent, followed the Qi model in that it demonstrated the first 

two proposed phases. From this, piroxicam solubility in Gelucire 44/14 could be 

estimated as 10% w/w. It was however noted that, in general, this fast heating rate 

gave lower piroxicam melt ∆H values which was unexpected. This subsequently 

suggested that dissolution effects known to occur during thermal analysis were 

occurring to a greater extent at the faster heating rate. The hyper DSC data was 

however found to exhibit poor reproducibility which may contribute to this effect. 

QIMTDSC data also further confirmed the inhibition of Gelucire 44/14 

crystallisation by the presence of molten piroxicam. 
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4.6 CONCLUSIONS 

 

All the investigated model drug SSD systems with Gelucire 44/14 were found to 

follow the Qi model to some extent. This therefore does suggest that using faster 

heating rates does give a more accurate estimation of the actual crystalline content of 

the SSD systems. However, in the systems studied in this project, the measured ∆H 

values of the crystalline drug melt at 500oC/minute were found to be similar, if not 

less, than those measured at 10oC/minute. Despite heating at speeds of 500oC/minute, 

it proved insufficient to overcome the dissolution effect of drug into the lipidic 

carrier during analysis since many of the components of Gelucire 44/14 such as PEG, 

when in the molten state, are good drug solubilisers. A rate of up to 1500oC/minute is 

most likely required, for systems with this complexity, before a reliable effect can be 

seen. Nonetheless the model drug solubilities in the lipidic carrier Gelucire 44/14 

were approximated to be 20%, 25% and 10% w/w for ibuprofen, indometacin and 

piroxicam respectively, with Gelucire 44/14 solubility in indometacin being 60% 

w/w. An estimation of Gelucire 44/14 in ibuprofen and piroxicam could not be 

speculated since the third phase of the Qi model was not achieved below 50% w/w 

drug loading (up to which was tested), thus suggesting that in both cases the 

solubility is less than 50% w/w. HSM proved useful in confirming the presence, or 

not, of drug crystals in the lower drug loaded systems, thus confirming the presence 

of dissolution effects at slower heating rates. Cooling of the molten systems during 

analysis using conventional DSC demonstrated the reduction in temperature, and 

almost complete inhibition at 50% w/w, of the lipidic crystallisation process. This 

data coincided with that obtained from QIMTDSC in all cases; however it was found 

to demonstrate poor reproducibility.  
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 5.1 INTRODUCTION 

 

Gelucire 44/14 is well established as an effective excipient known for improving the 

dissolution properties of poorly soluble drugs and consequently increasing their 

bioavailability. This effect has been demonstrated with a number of different drug 

SSD systems, including halofantrine (Abdul-Fattah and Bhargava 2002), rofecoxib 

(Ahuja et al. 2007) and glibenclamide (Tashtoush et al. 2004). The process by which 

this dissolution enhancement occurs is not completely understood however there are 

many suggestions in the literature. Gelucire 44/14 is known to spontaneously 

emulsify on contact with aqueous media which in turn has been shown to increase 

drug wettability and dispersibility, protecting the particles from aggregation 

agglomeration and precipitation (Tashtoush et al. 2004). The incorporation of drug 

into the hydration layer of the lipid after self-emulsification has also been noted 

(Barker et al. 2003). Alongside this, other authors have suggested a decrease in 

interfacial tension between the drug and water by microemulsion (Ahuja et al. 2007) 

and decrease in drug particle size (Abdul-Fattah and Bhargava 2002).  

 

Upon in vitro dissolution of drug and lipid SSD systems, the first minutes are 

occupied with disintegration of the hard gelatin capsule surrounding the formulation. 

Dissolution of the drug from the SSD then occurs once in contact with the aqueous 

media. Drug release from swellable matrices can be controlled by one or more of a 

number of processes: 
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1. Water diffusion into the matrix. 

2. Swelling of the matrix due to hydration or relaxation of the polymer chains 

(“Case II Transport”), i.e. structural polymer changes brought about by the 

penetration of water, causing the polymer to swell. 

3. Drug diffusion through the swollen matrix and existing pores if present. 

4. Matrix erosion or dissolution (Sutananta et al. 1995a). 

 

The mechanism by which drug is released from the formulation can be determined 

via the application of a mathematical model to the dissolution data collected.  

 

The Higuchi model is the most well known method used to describe the rate of 

release of drug from a matrix system, however it only applies when pure diffusion is 

the controlling mechanism (Gao 2011; Higuchi 1961): 

 

+*

+7
= �√� Equation 5.1 

 

Where Mt/M∞ is the fraction of drug released at time t and k is a constant which takes 

into account the design variables of the system. This equation therefore demonstrates 

that the fraction of drug released is proportional to the square root of time. In order to 

apply this model, a number of assumptions have to be made, these include the fine 

state of suspended particles, negligible swelling or dissolution of the matrix, and one-

dimensional diffusion of the formulation, among others, which for SSD systems are 

not suitable or applicable (Siepmann and Peppas 2001). 
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However, the semi-empirical power-law model, developed by Korsmeyer and co-

workers has been found to best describe the drug release kinetics from these kinds of 

systems (Ahuja et al. 2007). 

 

The power-law model is demonstrated as follows (Korsmeyer et al. 1986a; 

Korsmeyer et al. 1986b): 

 

+*

+7
= ��' Equation 5.2 

 

Where Mt/M∞ is the fraction of drug released at time t as previously, k is the release 

constant and n is the release exponent. The n value is a dimensionless number which 

is suggestive of the dominating mechanism of drug release from the formulation. For 

n = 0.5, Fickian diffusion of drug through the matrix controls release, n = 1 indicates 

Case II Transport or non-Fickian transport, and any value between (0.5 < n < 1) 

indicates anomalous transport i.e. a combination of the two processes (Qi et al. 

2008). Values of n below 0.5 are also thought to suggest anomalous transport, 

however in this case a combination of diffusion and fast release brought about by 

disintegration is thought to be responsible (Gao 2011). It should be noted however 

that these values are valid only for formulations with a slab geometry, for cylindrical 

or spherical systems, the values are replaced with 0.45 to 0.89 and 0.43 to 0.85 

respectively. The model has been found to hold true for the first 70% of drug 

released (Sutananta et al. 1995a). 

 

The mechanisms by which drugs are released from Gelucires are dependent upon the 

composition of the base. The fast rate of drug release from pharmaceutical glycerides 
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with high HLB values, such as Gelucire 44/14, is thought to involve both dissolution 

and erosion processes. These Gelucires may also swell when in contact with aqueous 

media (Sutananta et al. 1995a). Furthermore, a study conducted by Ahuja et al (2007) 

also found that Gelucire 44/14 SSD systems containing rofecoxib demonstrated 

slightly non-Fickian release behaviour. 

 

In addition to determining if drug release from SSD systems is controlled by 

diffusion or case II transport, another method of defining this release is presented in a 

review by Craig (2002). The model attempts to explain the behaviour of drug 

particles during dissolution by suggesting dissolution may be controlled either by the 

drug or the carrier material. In carrier-controlled systems the rate of drug release is 

equivalent to that of the polymer alone, and in general, the drug is required to be 

present as the minor component. The ratio of carrier to drug at which dominance of 

control of dissolution changes can be presented using Equation 3 

 

9:

9;
= �:<=:

�;<=;
 Equation 5.3 

 

where N represents the proportion of carrier (A) and drug (B), D is the diffusion 

coefficient and CS the solubility of each component in the investigated media. The 

ratio at which the change in control of dissolution occurs is dependent upon the 

solubility of the drug in relation to the carrier. If the drug demonstrates a low 

solubility compared to that of the carrier then the ratio at which carrier-controlled 

release will dominate also be low, and vice versa. If the carrier is known to control 

dissolution, it has been argued that the drug physical form should therefore have no 

effect on the rate of release (Lloyd et al 1999). Dissolution of SSD systems may also 
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be controlled by the properties of the drug if the concentration is high enough i.e. the 

dissolution properties are similar to those of the drug alone due to the formation of an 

drug rich layer exposed to the dissolution media. 

 

The model proposed by Craig (2002) is illustrated by the following schematic 

(Figure 5.1). It makes the assumption that there is a polymer-rich layer at the surface 

which becomes hydrated when in contact with aqueous media. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 A schematic diagram showing the fate of drug particles during the dissolution process; (a) 

carrier-controlled dissolution (b) drug-controlled dissolution, where large spheres represent 

undissolved drug particles, small spheres partially dissolved drug particles and shaded regions 

hydrated material. 

 

Carrier-controlled dissolution (a), involves the rapid molecular dispersion of drug 

particles in the carrier-rich diffusion layer, and therefore the rate limiting step to 

dissolution is the release of the carrier. This method of drug release is largely 

dependent upon drug solubility in the carrier. Drug-controlled dissolution (b) 

a) b) 
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however involves slow molecular dispersion of drug into the carrier-rich diffusion 

layer and the subsequent release of intact drug particles into the aqueous media. This 

process is therefore determined by drug properties such as physical form and particle 

size (Craig 2002). 

 

In this chapter, in vitro dissolution studies have been used to establish any 

enhancement of the aqueous dissolution properties of the poorly soluble model drugs 

investigated, and also to analyse the release characteristics of drug from the 

formulated Gelucire 44/14 SSD systems. 

 

5.2 METHODOLOGY 

 

Prior to data collection, a calibration plot was produced for each of the three model 

drugs by either dissolving an amount of the appropriate 5% w/w SSD(20) for 

ibuprofen and indometacin or equal parts piroxicam and Gelucire 44/14, in 500ml 

distilled water on shaking and heating. The addition of Gelucire 44/14 was chosen in 

an attempt to reduce the solubility issues associated with the crystalline drugs alone 

which are known to be highly water insoluble, and obtain at least a small amount of 

drug in aqueous solution for detection. A series of dilutions were made, the 

absorbances of which were measured using a UV spectrometer at a wavelength of 

220nm for ibuprofen, 320nm for indometacin and 356nm for piroxicam (Figure 5.2 

a, b and c).  
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Figure 5.2 Calibration plot of UV absorbance against drug concentration for a) ibuprofen, b) 

indometacin and c) piroxicam. 

a) 

b) 

c) 
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Samples for analysis were formulated and prepared into capsules as outlined in 

Chapter Two. The drug content in each capsule was equivalent to 25mg ibuprofen, 

25mg indometacin and 10mg piroxicam. The quantities of indometacin and 

piroxicam were chosen to match the lowest strength oral formulations currently on 

the market. Since marketed formulations of ibuprofen contain a minimum of 200mg, 

a reduced ibuprofen content was chosen for this study i.e. 25mg. The insoluble 

nature of the drugs, and also the equipment available, made it impracticable to obtain 

sink conditions in all cases. It did however allow the comparison of drug release 

from the formulated SSD systems with that of the drugs alone. Dissolution studies 

were carried out, in triplicate, in 900ml distilled water at 37oC over 45 minutes. 

Samples, 10ml in volume, were withdrawn periodically and replaced with an 

equivalent volume of dissolution medium at the same temperature. The samples were 

filtered through a 0.45µm filter, the UV absorbances of which were recorded in 

triplicate. 
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5.3 IN VITRO RELEASE PROFILE OF IBUPROFEN AND GELUCIRE 

44/14 SEMI-SOLID DISPERSION SYSTEMS 

5.3.1 In Vitro Release Studies of Ibuprofen and Gelucire 44/14 Semi-Solid 

Dispersion Systems 

 

Upon in vitro dissolution analysis of ibuprofen and Gelucire 44/14 SSD systems in 

water at 37oC, the dissolution properties of ibuprofen were observed to be greatly 

improved in comparison to that of the crystalline drug alone (Figure 5.3). In the cases 

of 5, 10 and 15% w/w, ibuprofen was released to its greatest extent. The mean 

dissolution time for ibuprofen release up to 50% indicated that all lower ibuprofen 

loaded systems demonstrated a fast release of similar time ranging from 4 to 8 

minutes (Table 5.1). For both SSD(20) and SSD(4) the 50% w/w systems were 

observed to release ibuprofen at the slowest rate, as expected due to the probable 

formation of a crystalline drug rich surface layer hindering dissolution. The extent to 

which ibuprofen was released from the 50% w/w systems was however still observed 

to be greater than that of the drug alone. 

 

In an attempt to determine the mechanism of drug release from the formulated SSD 

systems, the power-law mathematical model was used to fit the dissolution data. The 

data was found, in most cases, to fit this law relatively poorly. It should be noted at 

this point that Gelucire 44/14 is an amphiphilic excipient known to spontaneously 

emulsify on contact with aqueous media and therefore care should be taken when 

attempting to categorise the mechanism of drug release from these systems. The n 

values obtained did however give an indication as to the method of drug release. All 

n values calculated were found to be lower than 0.5 which is outside the limits of the 
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power-law in this case. This suggested that the mechanisms of drug release were 

controlled by both diffusion and fast release by disintegration. No trend in the values 

appeared to be present.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Percentage release of ibuprofen over time from a) SSD(20) and b) SSD(4) systems in 

water at 37oC. 

 

a) 

b) 
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Table 5.1 Mean dissolution time for ibuprofen release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation MDT-50% (min) 
Power-Law 

Model n 
R

2
 

Ibuprofen Alone 34.8 0.45 0.989 

SSD(20) 

5% 7.5 0.37 0.862 

10% 4.9 0.27 0.913 

15% 6.4 0.32 0.864 

50% 8.6 0.34 0.940 

SSD(4) 

5% 8.1 0.39 0.880 

10% 6.3 0.33 0.865 

15% 4.7 0.24 0.913 

50% 11.8 0.43 0.961 

 

 

Thermal characterisation of these systems detailed in Chapter Four suggested that 

ibuprofen, in lower concentrations, was present in the form of a molecular 

dispersion. This was highlighted by the absence of an ibuprofen melting endotherm, 

even at high heating rates. It would be reasonably assumed, in the case of molecular 

dispersion, that drug release would be controlled purely by those mechanisms 

thought to be attributable to the lipid carrier alone i.e. the anomalous transport of a 

combination of dissolution, erosion and swelling, demonstrating an n value of 

between 0.5 and 1. Alteration to the Gelucire 44/14 melting endotherm upon heating 

of the SSD systems however suggested some degree of interaction, potentially 

hydrogen bonding, between ibuprofen and the lipid which may have an effect on the 

mechanism by which the drug was released. Values lower than 0.5 were calculated, 
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indicating that the mechanism of release had changed to not only diffusion but fast 

release of drug due to disintegration. This is in line with the mechanism of release for 

the pure drug alone.  

 

5.3.2 Summary of Ibuprofen and Gelucire 44/14 Semi-Solid Dispersion 

System In Vitro Release Studies 

 

Dissolution properties of ibuprofen were found to be drastically enhanced by 

formulation into SSD systems with the lipid Gelucire 44/14. All formulations, with 

the exception of the highest loading of 50% w/w, were found to release ibuprofen up 

to 100%. Overall, the mechanism of ibuprofen release was found to be anomalous, 

consisting of both diffusion and disintegration despite the presence of a suspected 

molecular dispersion in the lower loaded systems. 
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5.4 IN VITRO RELEASE PROFILE OF INDOMETACIN AND 

GELUCIRE 44/14 SEMI-SOLID DISPERSION SYSTEMS 

5.4.1 In Vitro Release Studies of Indometacin and Gelucire 44/14 Semi-

Solid Dispersion Systems 

 

Formulation of crystalline indometacin with the lipid Gelucire 44/14 into SSD 

systems demonstrated an improvement in dissolution compared with crystalline 

indometacin alone, however complete dissolution was not achieved (Figure 5.4). 

Both the 5 and 10% w/w systems were found to release indometacin to the largest 

extent, with the two being comparable. It would be expected however that the release 

of indometacin would continue to increase over the course of the experiment rather 

than reach equilibrium at just below 60%. This suggests that the dissolution media 

may have become saturated due to non-sink conditions. An increase in the extent of 

indometacin after formulation into an SSD with Gelucire 44/14 could be observed 

nonetheless.  

 

The mean dissolution time for indometacin release up to 50% i.e. rate of release, was 

found to be similar if not slightly faster for 10% w/w (Table 5.2). The 15 and 50% 

w/w systems, along with indometacin alone, were found not to reach 50% drug 

release over the 45 minute course of the experiment. 
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Figure 5.4 Percentage release of indometacin over time from a) SSD(20) and b) SSD(4) systems in 

water at 37oC. 

 

Modelling of the dissolution data using the power-law equation gave an indication of 

the process by which indometacin was released from the formulation, however due to 

the nature of the emulsifying properties of Gelucire 44/14, the data again did not fit 

well. Crystalline indometacin alone demonstrated an n value of 0.34 suggesting that 

a) 

b) 
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it was controlled by diffusion and disintegration. At 5% w/w SSD indometacin 

loading, an n value of slightly greater than 0.5 was achieved in both cases, indicating 

anomalous transport, being controlled by diffusion as well as swelling/erosion 

processes. This was also true for the 50% w/w loaded formulations. However, at 10 

and 15% w/w, low values of n were calculated indicating that indometacin release is 

controlled again by diffusion and disintegration as for indometacin alone. It should 

be considered that the value of n also depends upon the geometry of the system and 

the particle size distribution. Qi et al (2008) noted that for microsphere systems, 

particle sizes of below 180µm demonstrated an n value of below 0.5 which was 

assigned to accelerated drug transport and dissolution of the small particle size. 

Particle sizes of 180 to 250µm showed values close to 0.5.  

 

Table 5.2 Mean dissolution time for indometacin release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation MDT-50% (min) 
Power-Law 

Model n 
R

2
 

Indometacin Alone > 45 0.34 0.759 

SSD(20) 

5% 17.7 0.54 0.813 

10% 13.3 0.38 0.780 

15% > 45 0.40 0.819 

50% > 45 0.56 0.956 

SSD(4) 

5% 16.6 0.51 0.808 

10% 14.8 0.43 0.759 

15% > 45 0.37 0.788 

50% > 45 0.51 0.952 
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At 5% w/w, thermal characterisation outlined in Chapter Four suggested that 

indometacin may be molecularly dispersed throughout Gelucire 44/14. The n value 

of slightly greater than 0.5, indicating diffusion along with swelling/erosion, is 

known to occur with this lipid. At 10 and 15% w/w, solid crystalline indometacin 

particles were thought to be present in the system. Formulation into SSD systems 

with Gelucire 44/14 is known to reduce the particle size of the dispersed drug, thus 

improving wetting properties and encouraging micellar solubilisation. The n value, 

being lower than 0.5, may be influenced by the particle size of these crystals as in the 

Qi et al (2008) study. At 50% w/w, a large proportion of crystalline indometacin 

particles were found to be present. The n value, calculated to be slightly greater than 

0.5, may therefore be influenced by the larger particle size in combination with the 

lipid. 

 

5.4.2 Summary of Indometacin and Gelucire 44/14 Semi-Solid Dispersion 

System In Vitro Release Studies 

 

The dissolution properties of indometacin were found to improve with formulation 

into SSD systems with the lipid Gelucire 44/14. Lower drug concentrations were 

found to be optimum, with 5 and 10% w/w achieving the largest extent of release. In 

all cases however, no greater than 56% indometacin release was achieved in water at 

37oC, most likely due to non-sink conditions. The mechanism of release was found to 

vary with indometacin loading, possibly being influenced by particle size of the 

crystalline drug distributed throughout the lipid SSD system. 
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5.5 IN VITRO RELEASE PROFILE OF PIROXICAM AND GELUCIRE 

44/14 SEMI-SOLID DISPERSION SYSTEMS 

5.5.1 In Vitro Release Studies of Piroxicam and Gelucire 44/14 Semi-Solid 

Dispersion Systems 

 

The formulation of piroxicam into SSD systems with Gelucire 44/14 was observed to 

greatly increase the extent of dissolution in water at 37oC (Figure 5.5). At 5% w/w 

piroxicam loading, on completion of the experiment, dissolution to the extent of 95% 

was achieved. As the piroxicam content was increased, the extent of dissolution was 

found to decrease. 

 

Considering the mean dissolution time for piroxicam release up to 50% (Table 5.3), 

the 5 and 10% w/w SSD(20) systems demonstrated a rate of release of approximately 

11 minutes, with that of 15% being slightly slower at 15 minutes. The SSD(4) 

systems showed similar release rates for 5, 10 and 15% w/w formulations, being 12 

to 13 minutes. The lower piroxicam loaded systems all demonstrated similar release 

rates, despite being released to varying extents. The 50% piroxicam loaded systems 

were found to release the drug at a much slower rate, with 50% of the drug being 

released after 39 minutes for SSD(20) formulations or over 45 minutes for SSD(4). 

This was similar to piroxicam alone which did not reach 50% drug release over the 

course of the 45 minute experiment. 
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Figure 5.5 Percentage release of piroxicam over time from a) SSD(20) and b) SSD(4) systems in 

water at 37oC. 

 

The n values calculated by modelling the collected dissolution data using the power-

law equation are shown in Table 5.3. As expected for Gelucire 44/14 SSD systems, 

the data did not fit well, however an n value of 1 was obtained for piroxicam alone 

and 50% w/w systems for both SSD(20) and SSD(4), thus confirming zero order 

a) 

b) 
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release kinetics. It suggested that drug release was controlled by case II transport 

(erosion/swelling). The lower piroxicam loaded systems all demonstrated similar n 

values (n = 0.53 to 0.68) suggesting that with increasing Gelucire 44/14 content and 

decreasing drug loading, drug release was controlled mainly by Fickian diffusion, 

with an element of swelling/erosion which follows the observations made by 

Sutananta et al (1995a) and Ahuja et al (2007) outlined in the introduction of this 

chapter. 

 

Table 5.3 Mean dissolution time for piroxicam release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation MDT-50% (min) 
Power-Law 

Model n 
R

2
 

Piroxicam Alone > 45 1 -0.500 

SSD(20) 

5% 11.3 0.55 0.857 

10% 11.5 0.56 0.842 

15% 15.1 0.68 0.870 

50% 39.2 1 0.678 

SSD(4) 

5% 12.3 0.62 0.861 

10% 13.8 0.66 0.840 

15% 13.5 0.53 0.877 

50% > 45 1 0.632 

 

 

Thermal characterisation of the piroxicam and Gelucire 44/14 SSD systems outlined 

in Chapter Four suggested low compatibility between the two components indicated 

by crystalline melting endotherms in all systems. This was found to result in the 
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major proportion of piroxicam being dispersed in the lipid as crystalline particles, 

with only a small amount being molecularly dispersed. Dissolution of piroxicam 

present as crystalline particles, upon spontaneous emulsification of Gelucire 44/14 in 

contact with water, may be brought about by emulsification and micellar 

solubilisation and therefore improved wetting characteristics (Karatas et al. 2005).  

 

A study carried out by Karatas et al (2005) investigated the combination of 

piroxicam with Gelucire 44/14 as a solid dispersion. They also found the dissolution 

properties of piroxicam to be increased, from approximately 40% alone to 75.6% in 

water at 37oC for 5% w/w loaded dispersions. They noted that piroxicam release was 

pH dependent, with 100% in buffer 6.8 and 71.6% in 4.5. The extent of release was 

found to improve upon the addition of labrasol, a liquid surfactant with an HLB also 

of 14. In this present study however, piroxicam dissolution in water at 37oC was 

discovered to be almost optimum, reaching 95 and 98% for the 5% w/w SSD(20) and 

SSD(4) systems respectively. Karatas et al also observed that in simulated gastric 

fluid without pepsin (pH 1.2) at 37oC, 5% w/w piroxicam SSD release was complete 

within 45 minutes, giving an indication that these types of systems may allow total 

piroxicam release in vivo, although it is difficult to make this correlation with any 

certainty. The authors attributed this enhanced dissolution to partial molecular 

dispersion, solubilising effects of the carriers, and also an improvement in wettability 

of the piroxicam. 
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5.5.2 Summary of Piroxicam and Gelucire 44/14 Semi-Solid Dispersion 

System In Vitro Release Studies 

 

SSD formulation of piroxicam with Gelucire 44/14 was found to notably improve the 

dissolution profile of the drug in aqueous media. Of all the drug loadings, a 

piroxicam content of 5% was found to be optimum in terms of drug release, being 

almost 100%. At low piroxicam loadings, release was found to be controlled by both 

diffusion and case II transport and demonstrated first order release kinetics. 

 

5.6 CONCLUSIONS 

 

Overall, SSD formulations of poorly soluble drugs in combination with the lipid 

Gelucire 44/14 appear to consistently increase the rate and extent of drug dissolution 

in aqueous media, whether by molecular dispersion of drug or increased wetting or 

micellar solubilisation of solid drug particles, as demonstrated by this study and also 

many examples in the literature. This dissolution enhancement may correspond to a 

subsequent improvement in the in vivo bioavailability however this correlation is 

difficult to establish. The power-law mathematical model is a useful tool to predict 

the mechanism of drug release from the formulation, although care should be taken 

when relating these data to systems composed of Gelucire 44/14 due to its ability to 

spontaneously emulsify on contact with aqueous media. 
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CHAPTER SIX 

HYDRATION STUDIES OF SEMI-SOLID DISPERSION SYSTEMS 
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6.1 INTRODUCTION 

 

The hydration properties of the lipid Gelucire 44/14 have been outlined previously in 

this thesis, in terms of the literature detailed in Chapter One and dynamic vapour 

sorption analysis in Chapter Three. This analysis was useful in giving an indication 

as to temperature and humidity parameters below which the lipidic carrier alone 

would remain stable. These studies suggested that the capacity of Gelucire 44/14 to 

absorb atmospheric moisture increased at high temperatures and relative humidities 

attributable to its many components, in particular the presence of PEG which serves 

to facilitate hydrogen bond interactions with water molecules (Barakat 2006). Below 

30oC and 40% RH, the moisture content of the lipid remained below the European 

Pharmacopeia limit of 1% weight increase and at ambient temperatures only limited 

moisture was absorbed below 70% RH. These properties will inevitably be altered by 

the incorporation of insoluble drug as an SSD. In this case however, any solid drug 

present in the formulation is likely to be present in the insoluble crystalline form and 

not the more soluble amorphous energy state, as is the case in the vast majority of 

SSD systems. This will therefore have an impact upon the affinity for atmospheric 

water demonstrated and it is accepted that the association of water with components, 

drugs in particular, at relatively low levels can and will affect the physicochemical 

properties of the formulation for example chemical degradation and dissolution rate 

(Ahlneck and Zografi 1990). 

 

The analysis presented in this Chapter hopes to provide an insight into the changes in 

the hydration process of the lipid in combination with drug to assist in the 
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anticipation of SSD behaviour, which will in turn facilitate prediction of the 

behaviour of the final product during storage. 

 

6.2 METHODOLOGY 

6.2.1 Dynamic Vapour Sorption 

 

Samples to be analysed gravimetrically using DVS were formulated using the 

method outlined in Chapter Two and prepared into quartz crucibles against an empty 

reference. All samples were dried at 25oC and 0% RH for 60 minutes before being 

held isothermally at 75% RH and either 35, 45 or 55oC for 60 minutes. Desorption 

and absorption of water was measured as weight loss or gain. Samples were analysed 

in triplicate. 
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6.3 HYDRATION BEHAVIOUR OF IBUPROFEN AND GELUCIRE 

44/14 SEMI-SOLID DISPERSION SYSTEMS 

 

Upon holding at isothermal temperatures at 75% RH, the SSD(20) systems 

demonstrated properties on the whole that were different to those of the lipid alone 

(Figure 6.1). At 35oC, Gelucire 44/14 absorbed the smallest proportion of 

atmospheric moisture; however the presence of 5% w/w ibuprofen allowed the 

uptake of a much greater weight percent of moisture (Figure 6.1 a).  

 

At 5% w/w, the analysis shown in Chapter Four suggested that the majority of 

ibuprofen present in these systems existed as a molecular dispersion in Gelucire 

44/14, attributable to its reasonable solubility in the lipid. The ordered molecular 

arrangement of crystalline solids is known to be altered by defects and imperfections, 

and it is not unreasonable to assume that a molecular dispersion of drug within 

Gelucire 44/14 will demonstrate a similar effect on the crystalline lipid (Figure 6.2). 

This effect is recognized to bring about regions of local molecular disorder with 

enhanced chemical reactivity due to increased molecular movement and the exposure 

of a greater number of reactive chemical groups (Ahlneck and Zografi 1990). This 

suggests therefore that, since at this temperature the lipid would on the whole be in 

the solid state, the potential increased chemical reactivity of the crystalline Gelucire 

44/14 may encourage the uptake of atmospheric moisture to a greater extent than 

observed for the lipid alone. 
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Figure 6.1 Weight percent versus time signal for ibuprofen and Gelucire 44/14 SSD(20) a) 5% w/w 

and b) 50% w/w compared to that of Gelucire 44/14 alone at 75% RH isothermal at 35, 45 and 55°C. 

 

At temperatures above 35oC, the SSD(20) systems showed similar moisture uptake to 

that of the lipid alone. Once in the liquid state, the SSD(20) with ibuprofen 

molecularly dispersed within it and the lipid alone are disordered to equal extents, 

therefore demonstrating comparable atmospheric moisture absorption profiles. 

 

 

a) 

b) 
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Figure 6.2 Schematic of potential defects in the ordered structure of a crystalline particle (adapted 

from Kopeliovich (2009)).
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Schematic of potential defects in the ordered structure of a crystalline particle (adapted 
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This effect will be attributable to the large proportion of insoluble drug present in the 

of Gelucire 44/14. Even when 
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solid particles. Crystalline ibuprofen is known to have the capacity to adsorb water 

up to two molecular layers at high RH, however since Gelucire 44/14 is water 

soluble, the moisture uptake would most likely entirely be associated with Gelucire 

44/14 (Nokhodchi 2005). The presence of these particles and the subsequent 

reduction in mass of Gelucire 44/14 would thus limit the extent of water uptake 

achieved. 

 

Table 6.1 Moisture uptake as percentage weight gain by ibuprofen and Gelucire 44/14 SSD systems in 

comparison with Gelucire 44/14 alone under isothermal temperature conditions at 75% RH. 

 

Isothermal 

Temperature (
o
C) 

Formulation 
Weight Gain  

(%) 

Standard 

Deviation 

35 

Gelucire 44/14 3.8 1.4 

5% SSD(20) 5.2 1.8 

50% SSD(20) 3.8 1.0 

45 

Gelucire 44/14 5.7 1.8 

5% SSD(20) 5.4 1.8 

50% SSD(20) 3.7 1.0 

55 

Gelucire 44/14 5.2 1.6 

5% SSD(20) 5.0 1.7 

50% SSD(20) 3.9 1.2 

 

 

Overall, the collected DVS data was relatively reproducible (Table 6.1), with the 

variation of the weight gain values most likely being attributable to a number of 

factors including the mass of sample in the crucible, the initial moisture content after 

drying for 60 minutes and also instrument effects. 
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6.4 HYDRATION BEHAVIOUR OF INDOMETACIN AND GELUCIRE 

44/14 SEMI-SOLID DISPERSION SYSTEMS 

 

Upon analysis by DVS, indometacin and Gelucire 44/14 SSD(20) systems 

demonstrated properties similar to those observed for the ibuprofen formulations. At 

35oC, the 5% w/w systems were found to absorb atmospheric moisture to a much 

greater extent than the lipid alone (Figure 6.3 a). It did however show a similar curve 

shape suggesting that moisture absorption steadily increased over time. The DSC 

analysis presented in Chapter Four suggested that at 5% w/w the indometacin was 

present as a molecular dispersion, completely dissolved within Gelucire 44/14. The 

increased affinity of SSD(20) for atmospheric moisture at this temperature, as 

detailed above, may therefore be explained by the disordered nature of the lipid 

crystalline structure due to the incorporation of molecular indometacin disrupting the 

crystal formation and packing, and thus increasing its chemical reactivity in localised 

regions. 

 

At higher temperatures (45 and 55oC) both the SSD(20) systems and Gelucire 44/14 

displayed similar weight increases. The shapes of the curves were also similar, 

appearing to undergo a rapid moisture intake up to weight gain of 2.5 to 3.5% which 

then slowed for the remainder of the experiment. It suggested that once in the molten 

state, the addition of indometacin at low concentrations did not significantly affect 

the absorption properties of the lipid. This would be attributable to the equal state of 

molecular disorder experienced by the samples in the liquid state. 
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Figure 6.3 Weight percent versus time signal for indometacin and Gelucire 44/14 SSD(20) a) 5% w/w 

and  b) 50% w/w compared to that of Gelucire 44/14 alone at 75% RH isothermal at 35, 45 and 55°C. 

 

At 50% w/w (Figure 6.3 b), the SSD(20) systems were observed to absorb less 

moisture than Gelucire 44/14 at all temperatures. At 35oC however, the shape of the 

SSD(20) plot appeared to be closer to that of the samples analysed at higher 

temperatures, with a rapid water uptake initially which began to slow over time, 

unlike that of the lipid alone at this temperature which absorbed moisture at a steady 

rate over the course of the experiment. 

 

a) 

b) 
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Table 6.2 Moisture uptake as percentage weight gain by indometacin and Gelucire 44/14 SSD systems 

in comparison with Gelucire 44/14 alone under isothermal temperature conditions at 75% RH. 

 

Isothermal 

Temperature (
o
C) 

Formulation 

Weight Gain 

(%) 

Standard 

Deviation 

35 

Gelucire 44/14 3.8 1.4 

5% SSD(20) 5.9 1.6 

50% SSD(20) 2.8 0.7 

45 

Gelucire 44/14 5.7 1.8 

5% SSD(20) 5.3 2.0 

50% SSD(20) 3.0 0.7 

55 

Gelucire 44/14 5.2 1.6 

5% SSD(20) 4.9 1.7 

50% SSD(20) 2.7 0.7 

 

 

At this high concentration, the drug constitutes a major component of the SSD 

system, and it was shown in Chapter Four that of the solid crystalline indometacin 

that was formulated into the system, approximately 35% w/w remained in the 

crystalline state. It would be reasonable to assume that whether the lipid be in the 

solid or liquid state, the presence of a large proportion of insoluble crystalline drug 

particles would retard the water absorption capability and capacity of the 

formulation. It should also be noted that Gelucire 44/14 would only constitute 50% 

w/w of the system and therefore, in terms of mass in the crucible, would be 

significantly less than that of the lipid alone. 
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6.5 HYDRATION BEHAVIOUR OF PIROXICAM AND GELUCIRE 

44/14 SEMI-SOLID DISPERSION SYSTEMS 

 

The piroxicam and Gelucire 44/14 SSD(20) systems demonstrated a similar 

hydration profile as that observed for both ibuprofen and indometacin. At 35oC low 

piroxicam concentrations (5% w/w) were seen to have a greater affinity for 

atmospheric moisture than that of the lipid alone (Figure 6.4 a). Data outlined in 

Chapter Four however suggested unexpectedly that, at 5% w/w, there was no 

molecular dispersion of piroxicam possibly due to low miscibility between the lipid 

and drug, and subsequently therefore that the piroxicam existed in the formulation as 

solid crystalline particles. Despite this, this hydration data may give an indication 

that there could possibly be a small extent of molecular piroxicam dispersion, enough 

to create sufficient lipid crystalline molecular disorder to allow an increased level of 

water uptake when in comparison with the lipid alone.  

 

The SSD(20) systems at 45 and 55oC absorbed moisture at a similar rate and to a 

similar extent as the lipid alone due to the molten state of the systems creating 

complete molecular disorder to equal extents in both the SSD(20) and Gelucire 44/14 

samples alike. 
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Figure 6.4 Weight percent versus time signal for piroxicam and Gelucire 44/14 SSD(20) a) 5% w/w 

and  b) 50% w/w compared to that of Gelucire 44/14 alone at 75% RH isothermal at 35, 45 and 55°C. 

 

At a piroxicam loading concentration of 50% w/w, the SSD(20) systems showed a 

consensus of reduced water affinity compared to that of the lipid alone at all 

temperatures (Figure 6.4 b). This was as expected due to the likelihood of the large 

proportion of solid insoluble crystalline piroxicam still present in the system during 

analysis retarding the water uptake capability of the SSD(20) systems along with a 

reduced mass of Gelucire 44/14. 

 

a) 

b) 
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Table 6.3 Moisture uptake as percentage weight gain by piroxicam and Gelucire 44/14 SSD systems 

in comparison with Gelucire 44/14 alone under isothermal temperature conditions at 75% RH. 

 

Isothermal 

Temperature (
o
C) 

Formulation 
Weight Gain  

(%) 

Standard 

Deviation 

35 

Gelucire 44/14 3.8 1.4 

5% SSD(20) 5.9 1.4 

50% SSD(20) 2.6 0.6 

45 

Gelucire 44/14 5.7 1.8 

5% SSD(20) 5.5 1.7 

50% SSD(20) 2.7 0.8 

55 

Gelucire 44/14 5.2 1.6 

5% SSD(20) 4.9 1.7 

50% SSD(20) 2.5 0.7 

 

 

6.6 CONCLUSIONS 

 

Overall, the DVS analysis of the three insoluble model drug SSD systems 

demonstrated very similar results. The most interesting point to note is that at low 

drug SSD loading and at the lowest temperature investigated, 35oC (which is not 

unattainable during storage), the affinity for water of the formulation increased 

noticeably. Despite this experiment being conducted at 75% RH, it gave a good 

indication of the samples response to humidity, and it should be considered that 

under ambient conditions the RH will fluctuate, potentially reaching a maximum of 

60%. This effect of low drug concentration will have an impact on the effect of 
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storage on the formulation and should therefore be taken into consideration. At high 

drug concentrations, the effect of temperature appeared to have little effect upon the 

water affinity of the SSD systems, with all absorbing moisture to similar extents. It 

therefore seems reasonable that not only should the enhancement of dissolution 

properties be taken into account (which decreases with increasing drug) but also the 

effect on the affinity for atmospheric moisture (which decreases with increasing 

drug) when selecting suitable drug loadings for formulated drug SSD systems. 
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CHAPTER SEVEN 

EFFECT OF AGING ON SEMI-SOLID DISPERSION SYSTEMS 
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7.1 INTRODUCTION 

 

Aging of formulations upon storage and subsequent alteration of their physical 

properties is a major issue governing the success of prospective dosage forms. These 

changes must therefore be fully investigated and characterised, determining the effect 

on the biopharmaceutic parameters and thereby allowing establishment of product 

stability and optimum conditions for storage over its intended shelf life. Gelucires, 

being composed of varying amounts of glycerides and PEG esters, and their 

formulations are known to exhibit physical instability upon aging thereby causing 

modification to the in vitro and in vivo release of drug from the dosage form. The 

glyceride and PEG ester components of Gelucires are known to display different 

physical properties and limited solubility within one another meaning that, after 

aging, extensive segregation of these components into different melting fractions in 

microscopic regions has been noted in the literature. These changes have also been 

correlated with alterations in tensile strength of the sample (San Vincente et al. 2000; 

Sutananta et al. 1994a). It should also be considered that Gelucires, being lipidic in 

nature, have the capacity to spontaneously react with oxygen bringing about 

subsequent degradation of the excipient (San Vincente et al. 2000). 

 

Gelucires have been found to demonstrate increased melting temperatures after 

storage however this effect could not be correlated with drug release (Dennis 1988). 

Thermal history has also been shown to impact the crystal structure and dissolution 

properties of PEGs which are found in large proportions in many grades of Gelucires 

(Craig and Newton 1991). There have however been studies which noted no change 
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in the dissolution properties of SSD systems of Gelucire 44/14 after storage over 3 

months (Dordunoo et al. 1991).  

 

Khan and Craig (2004) noted that upon storage of Gelucire 50/13 and caffeine or 

paracetamol SSD systems, significant changes in the surface morphology were found 

to take place in the form of microcracks (due to contraction of the matrix) and also 

blooming which, in relation to fat systems, is associated with the migration of lipid to 

the surface of the formulation rather than polymorphic changes, most likely to occur 

in soft, low melting point lipid systems like those of Gelucire 44/14. These gross 

surface alterations were attributed to supramolecular or microscopic changes in the 

SSD integrity which were undetectable using DSC. 

 

These factors are investigated in this chapter with aged SSD formulations being 

characterised using conventional differential scanning calorimetry and hot stage 

microscopy, and the release properties of the model drugs from the formulations 

being observed using in vitro dissolution testing. 

 

7.2 METHODOLOGY 

7.2.1 Conventional Differential Scanning Calorimetry 

 

Conventional DSC experiments were performed under a nitrogen environment, with 

a purge rate of 50ml/minute. Calibration of the instrument was conducted, prior to 

experimentation which involved cell resistance and capacitance (baseline) 

calibrations with an empty cell and sapphire disks (Tzero calibration), cell constant 

calibrations using indium standard (melting point 156.6°C, heat of fusion 28.6J/g), 
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and finally temperature calibrations using benzoic acid (melting point 122.4°C) and 

n-octadecane (melting point 28.2°C). Temperature calibrations were carried out at 

the same rate as intended for sample analysis. Samples were formulated into SSD 

systems as outlined in Chapter Two, prepared and crimped into Tzero aluminium 

pans and analysed at time zero and also after being stored at room temperature and 

humidity, protected from light, for 12 months. 

 

Experiments were conducted at 10oC/minute, heating throughout the melting 

transition to 100oC for ibuprofen formulations, 200oC for indometacin, and 220oC for 

piroxicam. Samples were then cooled to -30oC. Experiments were repeated four 

times. 

 

7.2.2 Hot Stage Microscopy 

 

Samples for analysis were formulated into SSD systems as outlined in Chapter Two 

and stored at room temperature and humidity, protected from light, for 12 months 

prior to analysis. Samples were applied to glass microscope slides, enclosed with a 

glass cover slip and heated from room temperature through the melt transitions of 

both the lipidic carrier and the model drug at 10oC/minute. Capture was terminated 

on visualisation of complete melting. Images were captured at x20 magnification 

under polarised light. 
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7.2.3 In Vitro Release 

 

Samples for analysis were formulated and prepared into capsules as outlined in 

Chapter Two. Capsules were stored at ambient temperature and either ambient 

humidity or 0% relative humidity achieved under a phosphorous pentoxide 

environment, protected from light, for 2 months. Dissolution studies were carried 

out, in triplicate, in 900ml distilled water at 37oC over 45 minutes. Samples, 10ml in 

volume, were withdrawn periodically and replaced with an equivalent volume of 

dissolution medium at the same temperature. The samples were filtered through a 

0.45µm filter, the UV absorbances of which were recorded in triplicate. Full details 

of calibration data can be found in Chapter Five, Section 5.2. 
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7.3 AGED IBUPROFEN AND GELUCIRE 44/14 SEMI-SOLID 

DISPERSION SYSTEMS 

7.3.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

 

Differential scanning calorimetric analysis of the first melting transition of SSD 

samples at time zero and after storage under ambient conditions for 12 months is 

shown in Figure 7.1. For 5% w/w systems, the melting endotherm of the lower 

melting point fractions of Gelucire 44/14 displayed an increase in Tm(onset) and 

Tm(max) for the SSD(20) formulations, also noted by Dennis (1988), with only a 

higher Tm(onset) for SSD(4). In both cases, a small increase in ∆H of the peaks was 

measured. Damian (2002) made a similar observation and attributed it to a 

reorganisation of the Gelucire 44/14 structure. Following on from this however, the 

primary melting endotherm corresponding to the higher melting point fractions was 

found to occur at a lower Tm(max) with a significantly reduced ∆H value in both cases 

i.e. from 44.7 J/g ± 1.8 to 15.5 J/g ± 5.5 for SSD(20) and 40.4 J/g ± 1.6 to 24.6 J/g ± 

1.4 for SSD(4) also possibly attributable to a structural reorganisation. The aged 

samples did not demonstrate an ibuprofen melting endotherm, comparable with the 

fresh samples, which suggests that a molecular dispersion of the drug still existed 

and therefore no phase separation occurred during storage. 

 

There are many different opinions with regards aging of Gelucires presented in the 

literature. A study carried out by Sutananta et al (1994a) noted that Gelucire 50/13, 

known to contain both glycerides and PEG esters, like 44/14, which display varying 

physical properties, separated into its constituent parts or melting fractions upon 
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aging. This segregation was more prominent for those samples that had been cooled 

slowly from the melt due to increased opportunity for segregation. It was also 

observed that the solubility between glycerides and PEG esters was limited which 

would also promote separation. This effect was not necessarily observed in the data 

collected in this present study, however changes in DSC traces after storage were 

found to be associated with the recombination or segregation of the numerous 

components into different regions on a microscopic scale. Further to this, it was 

observed by San Vicente et al (2000) that the mechanism behind the aging effects 

seen in Gelucires may in part be attributed to the conversion of triglycerides into 

more stable polymorphic forms, however they did not observe any noteworthy 

changes in the DSC trace after 12 months storage. This effect was most prominent in 

fast release lipidic systems (as is Gelucire 44/14) due to the low melting point and 

the subsequent possibility of a proportion of the lipid being liquid in nature at 

ambient temperature which may recrystallise on storage. 

 

At 50% w/w, as described in Chapter 4, the primary melting endotherm was 

completely absent suggesting interaction between the higher melting point fractions 

with the ibuprofen. This was not detected at lower drug concentrations. This was also 

confirmed by the broadening of the ibuprofen melting peak with a subsequent 

depression in the melting point from 76oC for ibuprofen alone to 68oC. This effect 

was also seen in the aged samples. For the SSD(20) systems, the ibuprofen melt 

endotherm was found to increase significantly in Tm(onset) and ∆H, in the range of 

11oC and 14 J/g respectively, suggesting recrystallisation of the molecularly 

dispersed ibuprofen over time. The SSD(4) however only demonstrated a slight 

increase in the Tm(onset), with the Tm(max) and ∆H being similar in value. In both cases 
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the lipid secondary peak was smaller and sharper, with an increased Tm(onset) and 

reduced Tm(max). The ∆H of the peaks was significantly reduced from 28.1 J/g ± 1.9 

to 2.7 J/g ± 0.7 for SSD(20) and 25.1 ± 1.1 to 4.1 J/g ± 1.2 for SSD(4). The changes 

in the DSC traces again suggested that upon aging, reorganisation of the Gelucire 

44/14 structure may have taken place, involving the recombination or segregation of 

components into different microscopic regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Heat flow against temperature signal on heating at 10oC/minute of aged ibuprofen and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – First melt. 

  

a) 

b) 
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Figure 7.2 Heat flow against temperature signal on heating at 10oC/minute of aged ibuprofen and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

Upon cooling of the 5% w/w aged systems, in both cases, the shape of the 

crystallisation exotherm demonstrated changes in relation to that prior to aging 

(Figure 7.2). A leading shoulder was still observed, which appeared to correspond 

with the original Gelucire 44/14 crystal formation at approximately 20oC, however 

the main crystallisation peak reduced in temperature to below 0oC. In the aged 

SSD(20) formulations, an additional shoulder was present, which appeared to 

b) 

a) 
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correlate with that of the main crystallisation peak of the freshly prepared 

formulations.  

 

After heating however, both the lipid and drug were in the molten state and therefore 

isotropic in nature, and theoretically identical to that of the fresh samples. One 

possible explanation for the changes observed in the crystallisation transition may be 

that Gelucire 44/14 underwent auto-oxidation during storage bringing about 

degradation of the lipid (San Vincente et al. 2000). 

 

7.3.2 Observation of Thermal Transitions by Hot Stage Microscopy 

 

HSM images were captured of SSD formulations after aging. At 5% w/w, the fresh 

and aged samples were observed to be much the same in appearance, with the 

complete absence of ibuprofen crystal particles. This was attributable to the 

dissolution of ibuprofen during formulation creating a molecular dispersion, and it 

therefore suggests the absence of phase separation of the ibuprofen from the lipid 

during storage, in line with conventional DSC.  

 

At 50% w/w however, as expected, crystalline ibuprofen was present. The crystals 

present in the freshly formulated sample were visibly smaller in size and great in 

number. After aging however the ibuprofen crystals were much larger and more 

structured in shape. It should be considered that the position of the microscope over 

the sample may be a factor. It is also possible however that during formulation the 

molten Gelucire 44/14 became supersaturated with molecularly dispersed ibuprofen, 

which then proceeded to recrystallise out of the lipid during storage causing growth 
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of the pre-existing crystals. DSC was able to lend weight to this conclusion by 

demonstrating an increased ∆H of the ibuprofen melt for the aged SSD(20) systems, 

however this was not the case for the SSD(4) systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 HSM images of ibuprofen and Gelucire 44/14 SSD(20) a) 5% fresh; b) 5% aged; c) 50% 

fresh; d) 50% aged; and SSD(4) e) 5% fresh; f) 5% aged; g) 50% fresh; h) 50% aged at 50oC in order 

to visualise only crystalline ibuprofen. 

 

a) b) 

c) d) 

f) e) 

g) h) 
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7.3.3 In Vitro Release Profile 

 

In the literature it is apparent that many studies have found it difficult to correlate 

changes observed in the physicochemical properties of the aged SSD systems with 

those subsequent changes seen in the dissolution profile (Sutananta et al. 1995b; 

Sutananta et al. 1996). 

 

In this study, upon in vitro dissolution of ibuprofen and Gelucire 44/14 SSD systems 

in water at 37oC after aging under ambient conditions, no noteworthy changes in the 

release profile were observed. At 5% both aged formulations achieved a total 

ibuprofen release of 100%, comparable to that of the fresh samples. The MDT-50% 

values were also similar. At 50% w/w again there were no significant changes 

observed in the release profile or MDT-50%, with both the aged and fresh 

formulations releasing ibuprofen to approximately 80%.  
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Figure 7.4 Release of ibuprofen from a) SSD(20) and b) SSD(4) systems over time in water at 37oC 

either freshly prepared or after storage at ambient and 0% RH. 

 

  

a) 

b) 
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Table 7.1 Mean dissolution time for ibuprofen release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation 
Storage 

Humidity 

MDT-50%  

(min) 

Power-Law Model 

n 

Ibuprofen Alone  34.8 0.45 

SSD(20) 

5% 

Fresh 7.5 0.37 

Aged Ambient 8.6 0.96 

Aged 0% RH 9.1 1 

50% 

Fresh 8.6 0.34 

Aged Ambient 8.2 0.45 

Aged 0% RH 9.1 0.38 

SSD(4) 

5% 

Fresh 8.1 0.39 

Aged Ambient 8.8 1 

Aged 0% RH 9.3 1 

50% 

Fresh 11.8 0.43 

Aged Ambient 8.9 0.61 

Aged 0% RH 9.3 0.44 

 

 

In studies carried out by Khan and Craig (2004) however, an increased release rate 

and extent of release were observed. This increase was backed up by SEM data 

which indicated that supramolecular changes in the Gelucire 50/13 SSD matrix had 

occurred during storage, compromising its integrity with a subsequent increase in 

erosion of the matrix and therefore drug release rate. In this case, minor changes to 

the thermal properties were noted using conventional DSC suggesting 

physicochemical alteration on storage to some extent, possibly due to degradation of 
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the lipid by auto-oxidation; however these changes do not appear to have impacted 

the release of ibuprofen from the formulations. 

 

The power-law mathematical model was used to give an indication as to the 

mechanism of drug release from the aged SSD systems, which was used as a 

comparison with the fresh samples. It is essential to bear in mind at this point that 

care must be taken in the interpretation of the modelling data. These systems are 

known to self emulsify upon contact with aqueous media due to the nature of 

Gelucire 44/14 and therefore the mechanisms of drug release cannot be easily 

categorised. It is however interesting to note how the data fits the model. The 

calculated values, n, are presented in Table 7.1. In all cases, changes in the values 

and therefore the mechanism of drug release were observed. At 5% w/w, n was 

found to take a value of 1 or close to, in comparison with a value of less than 0.5 for 

the fresh samples. This suggests that after storage under ambient conditions, drug 

release from the SSD systems changed from anomalous transport, diffusion and 

disintegration controlled, to a release controlled by case II transport 

(erosion/swelling) with zero order kinetics. It is not possible to speculate as to the 

exact mechanism by which the release of ibuprofen has been altered, however it is 

reasonable to suggest that the possible reorganisation of the lipid components into 

different microscopic regions during storage, as demonstrated by thermal analysis, 

may be a contributing factor. At 50% w/w however n was found to be closer in value 

to that of the fresh samples. For the SSD(20) systems, the mechanism of ibuprofen 

release remained controlled by diffusion although the SSD(4) formulations 

demonstrated anomalous drug transport i.e. a combination between both processes.  
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San Vicente et al (2000) found the n value of all investigated Gelucires not to change 

significantly upon aging, suggesting that despite physical changes occurring during 

storage, with subsequent dissolution changes, the mechanism was found to be 

maintained. 

 

Again, after storage at 0% RH, the fresh and aged 5% w/w samples demonstrated 

comparable ibuprofen release profiles, with similar extent of release and MDT-50% 

values (Figure 7.4 and Table 7.1). In both cases the 50% w/w systems were also 

found to display a dissolution profile similar to that of the fresh and aged at ambient 

formulations. This suggests that since the majority of the drug present in the system 

was in the stable crystalline form, that storage and even ambient humidity, which can 

reach levels as high as 60%, had little effect on the formulation.  

 

After modelling of the dissolution data using the power-law equation (Table 7.1), it 

was observed that at 5% w/w, after aging at 0% RH, the mechanism of release was 

similar to if not the same as the aged at ambient systems. Again this showed that 

before aging and storage, drug release was controlled by Fickian diffusion and 

disintegration, which is found to change to non-Fickian case II transport, again 

possibly due to the reorganisation or segregation of the lipid components over time. 

At 50% w/w however, those systems aged at 0% humidity were found to display n 

values comparable with those of the fresh samples i.e. diffusion and disintegration 

controlled release, which lends weight to the assumption that the large proportion of 

stable crystalline ibuprofen, alongside the crystalline lipid did not promote 

physicochemical changes over time. 
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Literature has suggested that the effect of storage humidity on the physicochemical 

properties of Gelucires, and therefore the rate of drug release from their SSD 

formulations, may be determined by the mechanism by which drug is released from 

the system. In the case of Gelucire 50/02, drug release from SSD formulations is 

controlled by diffusion and after aging under high RH, the dissolution rate was 

observed to decrease. Drug release from systems composed of Gelucire 50/13, 

however, is known to be controlled by erosion (case II transport) and formulations of 

this lipid were found to demonstrate an increase in drug release after storage at high 

RH. This may be due to the presence of a high proportion of PEG stearates which 

can hydrogen bond with atmospheric moisture and bring about significant changes in 

the lipid structure (Sutananta et al. 1996). In this case however, despite Gelucire 

44/14 being known to contain up to 72% PEG esters, no change in the ibuprofen 

release was observed after aging, either at ambient or 0% RH suggesting that the 

formulations were very stable on storage. 

 

7.3.4 Summary of Aged Ibuprofen and Gelucire 44/14 Semi-Solid 

Dispersion System Characterisation Studies 

 

Characterisation of the ibuprofen and Gelucire 44/14 SSD systems over time has 

demonstrated a number of changes to the physicochemical properties of the 

formulations. DSC analysis of these systems suggested that in all cases a 

reorganisation of the lipid components into different microscopic regions may have 

taken place during storage bringing about alterations in the observed melting 

endotherm. The formulations with a higher ibuprofen content also suggested that 

there may have been further crystallisation of the molecularly dispersed drug upon 
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aging. The HSM images showed no change to the 5% w/w systems in the absence of 

crystalline ibuprofen particles, however at 50% w/w the crystals appeared to be 

larger in size, which backed up the observation from the DSC data of further 

crystallisation at this drug concentration. 

 

Despite these changes, a subsequent alteration to the in vitro ibuprofen release profile 

from the SSD systems was not observed after storage at either ambient or 0% RH. 

The mechanism of drug release from the low concentration systems was seen to 

change after aging from diffusion and disintegration controlled to solely case II 

transport. The mechanism of ibuprofen release from the high concentration 

formulations did not change, possibly attributable to the large proportion of stable 

ibuprofen crystals. The formulations therefore demonstrated good stability in terms 

of in vivo ibuprofen release after aging. 
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7.4 AGED INDOMETACIN AND GELUCIRE 44/14 SEMI-SOLID 

DISPERSION SYSTEMS 

7.4.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

 

After aging of indometacin and Gelucire 44/14 SSD formulations under ambient 

conditions the characteristic lipid melting endotherm could be observed (Figure 7.5 a 

and b). At 5% w/w the secondary melting peak of the lipid lower melting point 

fractions was found to occur at a slightly lower Tm(onset) and Tm(max), however the 

measured ∆H values were comparable to those of the fresh samples. The lipid 

primary melting endotherm corresponding to the most prominent peak of the higher 

melting point fractions was observed to show similar Tm(onset) and Tm(max) to the 

fresh samples however were measured to have greater ∆H values i.e. from 52.8 J/g ± 

1.8 to 65.9 J/g ± 2.9 for SSD(20) and 51.6 J/g ± 0.9 to 64.1 J/g ± 1.2 for SSD(4).  

 

This change in transition ∆H may be attributable to a reorganisation of the lipid 

structure brought about by recombination or segregation of the many components 

into different microscopic regions (Damian 2002; Sutananta et al. 1994a). As with 

the fresh samples, the aged systems did not display indometacin melting endotherms 

suggesting that, even after storage, a molecular dispersion of indometacin was still 

present despite alterations within the lipid. 
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Figure 7.5 Heat flow against temperature signal on heating at 10oC/minute of aged indometacin and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – First melt. 

 

At 50% w/w, the secondary melting endotherm was observed to shift to a slightly 

lower Tm(onset) and Tm(max) than that of the fresh samples. The melt ∆H was also 

observed to decrease in the range of 2 to 3J/g. The temperatures of the primary 

melting transition were found not to have changed after aging, however the ∆H 

increased by 10J/g in both cases, again possibly due to lipid segregation or 

reorganisation. On average, the indometacin melting endotherm, after aging of the 

SSD(20) systems was observed to shift to a higher Tm(onset) and Tm(max) by 10oC in 

a) 

b) 
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each case, with a reduced ∆H in the region of 7J/g in comparison with the freshly 

analysed samples. The drug melt of the SSD(4) formulations however were 

comparable with those of the fresh samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Heat flow against temperature signal on heating at 10oC/minute of aged indometacin and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

Upon cooling of the 5% w/w SSD systems, in both cases, the main crystallisation 

peak was observed to visually decrease in size (Figure 7.6 a and b). The Tc(onset) was 

found to remain the same at -3oC after aging. In terms of peak ∆H, this was 

a) 

b) 
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comparable for the SSD(4) systems however it was observed to decrease from 89.6 

J/g ± 2.7 to 67.2 J/g ± 3.4 for the SSD(20) formulations. The shapes of the 

crystallisation transition demonstrated obvious differences however. The fresh 

samples displayed a small leading shoulder to the crystallisation exotherm which 

appeared to correspond well with that of the Gelucire 44/14 alone. In the aged 

samples, this shoulder appeared to be more prominent suggesting more extensive 

conversion of the lipid to its original crystalline formation. It should be noted that the 

crystallisation peaks for both the fresh and aged samples were uncharacteristically 

sharp for lipids which tend to be broad in nature due to their complex characteristics. 

The observed changes may have been attributable to lipid degradation brought about 

by auto-oxidation as suggested earlier in the Chapter. At 50% w/w, again no 

crystallisation transition could be observed for the aged samples as was observed 

with those analysed at time zero. 

 

7.4.2 Observation of Thermal Transitions by Hot Stage Microscopy 

 

In all cases, there were no obvious differences in the HSM images of the aged SSD 

systems in comparison with the fresh samples. Crystalline indometacin particles were 

completely absent from the 5% w/w systems confirming the presence of a molecular 

drug dispersion in the lipid. As expected, a large number of indometacin crystals 

were observed at 50% w/w which was comparable between the fresh and aged 

samples. 
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Figure 7.7 HSM images of indometacin and Gelucire 44/14 SSD(20) a) 5% fresh; b) 5% aged; c) 

50% fresh; d) 50% aged; and SSD(4) e) 5% fresh; f) 5% aged; g) 50% fresh; h) 50% aged at 50oC in 

order to visualise only crystalline indometacin. 

  

a) b) 

d) c) 

e) f) 

h) g) 
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7.4.3 In Vitro Release Profile 

 

The dissolution profile of indometacin and Gelucire 44/14 SSD systems, aged under 

ambient conditions protected from light, were investigated in water at 37oC over 45 

minutes (Figure 7.8). The 5% w/w systems released indometacin to the same extent, 

slightly less than 60%. This is likely to be attributable to non-sink conditions of the 

experiment. After aging however indometacin was released at a slower rate than that 

of the fresh samples, with the MDT-50% increasing from 17.7 to 25.8 minutes for 

SSD(20) and 16.6 to 31.1 minutes for SSD(4). The changes observed in the DSC 

traces of the aged samples suggested a reorganisation or segregation of the Gelucire 

44/14 components which may have an effect on the rate at which the indometacin 

was released. The DSC data demonstrated that at 5%, the indometacin was still 

present as a molecular dispersion after aging suggesting that the extent to which it 

was released over the course of the experiment would be comparable. However it 

was suggested by Remunan et al (1992) that changes in the dissolution profile of 

Gelucire 53/10 SSD systems may be attributable to the formation of microcrystals 

which were undetectable using DSC which may be a possibility in this case. At 50% 

w/w, the SSD systems demonstrated equivalent dissolution profiles suggesting little 

change in the SSD physicochemical properties over time, most likely attributable to 

the large proportion of stable crystalline indometacin present in the formulation. 
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Figure 7.8 Release of indometacin from a) SSD(20) and b) SSD(4) systems over time in water at 37oC 

either freshly prepared or after storage at ambient and 0% RH. 

 

  

a) 

b) 
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Table 7.2 Mean dissolution time for indometacin release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation 
Storage 

Humidity 

MDT-50%  

(min) 

Power-Law 

Model n 

Indometacin Alone  >45 0.34 

 

 

 

SSD(20) 

5% 

Fresh 17.7 0.54 

Aged Ambient 25.8 1 

Aged 0% RH 24.4 1 

50% 

Fresh > 45 0.56 

Aged Ambient > 45 0.71 

Aged 0% RH > 45 0.73 

 

 

 

SSD(4) 

5% 

Fresh 16.6 0.51 

Aged Ambient 31.1 1 

Aged 0% RH 21.1 1 

50% 

Fresh > 45 0.51 

Aged Ambient > 45 1 

Aged 0% RH > 45 1 

 

 

After modelling using the power-law equation, the n value obtained gave an 

indication of the mechanism by which drug was released from the formulation (Table 

7.2). Again however, care should be taken in interpretation of these data due to the 

self-emulsifying nature of Gelucire 44/14. After aging under ambient conditions, the 

release of drug from the 5% w/w SSD systems in both cases shifted from anomalous 

transport to that entirely dominated by case II transport. At 50% w/w, the SSD(20) 

systems were found still to demonstrate anomalous drug release i.e. a combination of 
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diffusion and case II transport (erosion / swelling). The indometacin release from 

SSD(4) formulations was however found to be controlled solely by case II transport. 

As was the case with ibuprofen and also demonstrated by the thermal analysis of the 

indometacin systems, the possible recombination or segregation of the Gelucire 

44/14 components over time may be a contributing factor to the changes in drug 

release mechanism observed. 

 

Aging under conditions with 0% RH did not demonstrate noteworthy differences to 

those SSD systems which were exposed to a greater RH over time during storage 

(Figure 7.8). In both cases, the 5% w/w systems were found to release indometacin to 

equal extents, demonstrating similar release profiles (note the error bars for SSD(4) 

aged in Figure 7.8). The 50% w/w systems were also observed to demonstrate 

dissolution profiles with similar properties suggesting again that there was little 

change to the formulation over time. 

 

The n values of the SSD systems aged at 0% RH, calculated by modelling of the 

dissolution data using the power-law equation, were found to demonstrate values 

very close to if not equal to those obtained for those samples aged under ambient 

conditions (Table 7.2). This suggests that the absence of atmospheric moisture in this 

case did not have any advantageous effect in comparison to those formulations stored 

under ambient conditions. 
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7.4.4 Summary of Aged Indometacin and Gelucire 44/14 Semi-Solid 

Dispersion System Characterisation Studies 

 

A reorganisation or segregation of the Gelucire 44/14 components was suggested by 

the DSC data collected for the indometacin and Gelucire 44/14 SSD systems after 

aging. The 5% w/w formulations still however suggested that the indometacin 

existed as a molecular dispersion within the lipid. Similar changes were observed in 

the 50% w/w systems. The HSM images did not demonstrate any alterations to the 

physical state of the indometacin in the samples after aging, with crystalline drug 

particles being completely absent at 5% w/w and in great abundance at 50% w/w. A 

decrease in indometacin rate of release was observed after aging of the 5% w/w 

systems under ambient conditions which may possibly be due to the formation of 

insoluble microcrystals, undetectable using DSC. These changes also led to 

subsequent changes in the mechanism of drug release. Few changes were noted in 

the 50% w/w formulations. 

 



Chapter Seven Aging of Semi-Solid Dispersions 

288 
 

7.5 AGED PIROXICAM AND GELUCIRE 44/14 SEMI-SOLID 

DISPERSION SYSTEMS 

7.5.1 Assessment of Thermal Properties using Conventional Differential 

Scanning Calorimetry 

 

After aging under ambient conditions, the heating profiles of the aged piroxicam and 

Gelucire 44/14 SSD systems are demonstrated in comparison with the fresh samples 

in Figure 7.9. Upon calculation of the transition properties for the 5% w/w systems, 

the secondary peak corresponding to the lower melting point fractions of the lipid 

was observed to decrease in Tm(onset) and Tm(max) in both cases after aging, in the 

range of 2 to 6oC, however the ∆H was comparable in value. The main primary lipid 

melt peak was observed to be comparable in all properties with the exception of the 

SSD(4) formulations which were found to increase in ∆H from 62.9 J/g ± 0.7 to 71.8 

J/g ± 2.2.  

 

Unlike these other model drug systems, due to the low solubility of piroxicam in 

Gelucire 44/14, a drug melting endotherm could be measured as low as 5% w/w. As 

observed in Chapter Four, the melting endotherm of crystalline piroxicam present in 

the SSD systems demonstrated poor reproducibility with large standard deviation 

values. However on average, the piroxicam melt of the aged samples was found to 

occur at a lower Tm(onset) and Tm(max), with ∆Hs similar to those calculated at time 

zero. Taking this into account, the changes observed in the lipid melting endotherm 

were less noteworthy than those observed for the other model drug systems presented 

above suggesting limited aging effects occurring during storage possibly due to the 

poor compatibility with the drug and therefore limited interaction between the two. 
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Figure 7.9 Heat flow against temperature signal on heating at 10oC/minute of aged piroxicam and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – First melt. 

 

At 50% w/w, the SSD(20) systems after aging demonstrated no obvious differences 

to the fresh samples in terms of the Gelucire 44/14 melting transition. The measured 

piroxicam peak however was seen to broaden after storage, with a reduced Tm(onset) 

and increased Tm(max). The ∆H values were found to be comparable. The secondary 

Gelucire 44/14 melting peak of the SSD(4) formulations was observed to decrease in 

Tm(onset), and also in ∆H by approximately 12J/g. The primary lipid melting peak did 

not change greatly. In terms of the piroxicam melting, the endotherm was seen to 

a) 

b) 
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shift to a slightly lower Tm(onset). This may not however suggest a definitive change 

in the melting endotherm as differentiation of the peak from the baseline was 

difficult due to its noisy nature. The measured ∆H values remained similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Heat flow against temperature signal on heating at 10oC/minute of aged piroxicam and 

Gelucire 44/14 a) SSD(20) and b) SSD(4) – Crystallisation. 

 

The 5% w/w formulations demonstrated similar crystallisation peak pattern after 

aging to those seen for the fresh samples. In terms of calculated peak properties, the 

peaks were comparable i.e. Tc(onset), Tc(max) and ∆H, however there appeared to be a 

a) 

b) 
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redistribution of crystalline formations. The leading shoulder which appeared to 

correspond with the crystallisation of Gelucire 44/14 alone was more prominent in 

the SSD(20) aged samples. In the SSD(4) systems however, the main peak had 

shifted to a lower temperature and the leading lipid peak appeared to be less 

prominent than the fresh formulations. Again, as noted for the indometacin 

formulations, the crystallisation peaks appeared to be uncharacteristically sharp. As 

discussed previously, the changes observed in the crystallisation transition may be 

attributable to oxidative degradation of the lipid during storage. As at time zero in 

both cases, a crystallisation transition in the aged 50% w/w systems was not visible. 

 

7.5.2 Observation of Thermal Transitions by Hot Stage Microscopy 

 

The presence of piroxicam crystalline particles and the extent to which they existed 

in the SSD systems were comparable between the fresh and aged samples in all cases 

due to the relatively immiscible nature of the piroxicam with Gelucire 44/14. The 5% 

w/w formulations were observed to contain crystals which appeared to be evenly 

dispersed. At 50% w/w the piroxicam were much more abundant as expected. There 

did not appear to have been any significant change in the appearance i.e. shape and 

size of the piroxicam crystalline particle after aging. 
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Figure 7.11 HSM images of piroxicam and Gelucire 44/14 SSD(20) a) 5% fresh; b) 5% aged; c) 50% 

fresh; d) 50% aged; and SSD(4) e) 5% fresh; f) 5% aged; g) 50% fresh; h) 50% aged at 50oC in order 

to visualise only crystalline piroxicam. 

  

a) b) 

d) c) 

e) f) 

h) g) 



Chapter Seven Aging of Semi-Solid Dispersions 

293 
 

7.5.3 In Vitro Release Profile 

 

The dissolution profiles of the Gelucire 44/14 and piroxicam SSD systems upon 

aging, protected from light under ambient conditions, can be observed in Figure 7.12. 

At 5% w/w, the rate of piroxicam release and also the extent to which it was released 

over the course of the experiment was significantly reduced after aging. The overall 

drug release was less by approximately 20%, with the MDT-50% being increased in 

the region of 4 to 6 minutes. In Chapter Four it was suggested that at 5% w/w, 

piroxicam exists solely in the crystalline form. This may suggest that since there was 

little possibility of the reduced dissolution rate being attributable to changes in the 

physicochemical properties of the drug, it must therefore be due to alterations 

occurring in the lipid. These alterations, as detailed above, have been noted 

previously however only minor changes were detected in the DSC data of the aged 

samples. At 50% w/w there was little change in the drug release over time in both 

cases with regards rate and extent of release suggesting no significant changes in the 

SSD physicochemical properties over time. 
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Figure 7.12 Release of piroxicam from a) SSD(20) and b) SSD(4) systems over time in water at 37oC 

either freshly prepared or after storage at ambient and 0% RH. 

 

  

a) 

b) 
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Table 7.3 Mean dissolution time for piroxicam release up to 50% (MDT-50%) and the calculated 

release exponent n using the Power-Law. 

 

Formulation 
Storage 

Humidity 

MDT-50% 

(min) 

Power-Law 

Model n 

Piroxicam Alone  > 45 1 

SSD(20) 

5% 

Fresh 11.3 0.55 

Aged Ambient 17.2 1 

Aged 0% RH 17.3 1 

50% 

Fresh 39.2 1 

Aged Ambient 43.1 0.98 

Aged 0% RH > 45 1 

SSD(4) 

5% 

Fresh 12.3 0.62 

Aged Ambient 16.8 1 

Aged 0% RH 18.5 1 

50% 

Fresh > 45 1 

Aged Ambient > 45 1 

Aged 0% RH > 45 1 

 

 

The n value calculated by applying the power-law model to the dissolution data is 

detailed in Table 7.3. The freshly prepared 5% w/w systems demonstrated a drug 

release mechanism consisting of anomalous transport with a value between 0.5 and 

1. After aging under ambient conditions however, drug release became controlled 

solely by case II transport (erosion / swelling). The changes noted, as suggested 

earlier, are most likely attributable to the lipid in the SSD system. Limited aging 

effects were noted upon heating of the formulations, however alterations to the 
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crystallisation transition could possibly be caused by oxidative degradation of the 

samples over time, which could potentially have a subsequent impact upon the drug 

release. The 50% w/w formulations showed no change in drug release mechanism, 

being controlled by case II transport both before and after aging and suggesting that 

the release mechanism is maintained during storage. This follows the DSC and 

dissolution profile data which also imply little alteration to the formulation. It should 

be noted that fitting of these data to the power-law model should be considered with 

care due to the self-emulsifying nature of these systems imparted by the lipid 

Gelucire 44/14. 

 

The Gelucire 44/14 and piroxicam SSD systems were also stored under dry 

conditions (0% RH, ambient temperature) before in vitro dissolution analysis (Figure 

7.12). In this case the 5% w/w SSD(20) systems showed little change from those 

aged under ambient conditions, however the SSD(4) formulations demonstrated a 

greater difference in the extent of piroxicam release. Those samples stored under 

ambient conditions were observed to release the drug to a greater extent than those 

aged at 0% RH, however it should be noted that the error bars coincide for a number 

of data points. This effect was also observed by Sutananta et al (1996). They 

suggested that since slow cooling from the melt appeared to result in an increase in 

dissolution rate in comparison with ambiently cooled samples (not noted in this 

study), that the increase in dissolution rate observed for the formulations stored under 

high humidity may be attributable with the presence of atmospheric moisture 

producing a similar structure to that of the fresh slow cooled systems. The 50% w/w 

systems in both cases demonstrated similar profiles with relatively large error bars 

suggesting poor reproducibility. 



Chapter Seven Aging of Semi-Solid Dispersions 

297 
 

The power-law n values of the SSD systems aged at 0% RH were found, in all cases, 

to be the same as those calculated for the samples stored under ambient conditions, 

suggesting that the release mechanism of the formulations was not altered by the RH 

(Table 7.3). In relation to those of the fresh samples only the 5% w/w systems 

demonstrated a change from anomalous transport to case II transport (erosion / 

swelling) alone, again potentially attributable to auto-oxidation of the Gelucire 44/14 

during storage. 

 

7.5.4 Summary of Aged Piroxicam and Gelucire 44/14 Semi-Solid 

Dispersion System Characterisation Studies 

 

As detailed in Chapter Four, piroxicam was calculated to have a lower solubility with 

Gelucire 44/14 than the other model drugs and therefore limited if not no interaction 

between the two components. For this reason the formulated SSD systems 

demonstrated little change in the DSC melting profile after aging. The HSM images 

were comparable before and after aging which followed the DSC data. Upon 

dissolution of the SSD systems aged under ambient conditions, a decrease in drug 

release was demonstrated. It is most likely that these changes are attributable to 

aging effects of the lipid, possibly degradation suggested by DSC crystallisation, 

since initial characterisation suggested the absence of any molecular dispersion of 

piroxicam and its almost complete existence in the crystalline form. The mechanism 

of release (n) was found to change from anomalous transport to case II transport 

(erosion / swelling) on storage. The 50% w/w systems did not demonstrate any 

significant change in drug release over time and the mechanism by which drug is 

released was maintained as case II transport over the course of the experiment.  
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After aging under dry conditions only minor changes were observed for the 50% w/w 

systems although the reproducibility of the data was poor. There was also no obvious 

change to the dissolution at 5% for the SSD(20) formulations however piroxicam 

dissolution from the SSD(4) systems was found to decrease compared to that of the 

ambiently stored samples, possibly do to moisture effects also seen by Sutananta et al 

(1996). The mechanism of release in all cases was comparable to that of the samples 

stored under ambient conditions. 

 

7.6 CONCLUSIONS 

 

Overall, the data demonstrated that Gelucire 44/14 can exhibit aging effects during 

storage possibly attributable to reorganisation of the lipid components and also auto-

oxidative degradation. Aging of SSD formulations of Gelucire 44/14 with model 

poorly soluble drugs appeared to depend upon the compatability and also the extent 

of interaction between the two components. As the solubility of the drug in the lipid 

increased, as did the tendency to age over time, as determined by DSC and HSM. 

The effects of storage appeared to be more extensive in those systems containing 

ibuprofen and indometacin, in comparison with those of piroxicam which 

demonstrated limited solubility in the lipid and therefore limited changes upon aging. 

The aging effects seen using DSC and HSM did not however translate to the in vitro 

dissolution profiles of the formulations. The ibuprofen and indometacin SSD 

systems, which demonstrated more significant physicochemical changes using DSC 

and HSM, did not demonstrate a subsequent change in the in vitro release 

characteristics. The extent of drug released from the low loaded piroxicam and 

Gelucire 44/14 SSD systems was however found to reduce after aging without 
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corresponding changes to the DSC and HSM data. In this case the two components 

demonstrated little interaction after formulation. This could possibly make the 

Gelucire 44/14 more prone to oxidative degradation, as with the lipid alone. In the 

case of the indometacin and ibuprofen SSD systems, the aging effect seen using 

thermal analysis techniques are most likely due to segregation of the lipid 

components, possibly encouraged by the disruption of the lipid crystalline structure 

by molecularly dispersed drug. This segregation may not necessarily bring about a 

reduction in the activity of the lipid to enhance the dissolution properties. The 

dissolution effect of aging appears to be difficult to predict, not always correlating 

well with DSC analysis. The aging of lipidic SSD systems, particularly with 

Gelucires appears to be dependent upon numerous factors and is therefore 

unpredictable. 

 

 



  

300 
 

 

 

CHAPTER EIGHT 

CONCLUDING REMARKS AND FUTURE WORK 

 

 

 

 



Chapter Eight Concluding Remarks and Future Work 

301 
 

8.1 CONCLUDING REMARKS 

 

This project has attempted to enhance the current knowledge surrounding lipid based 

semi-solid dispersion systems in the hope of bringing the industry a small step closer 

to taking full advantage of this promising technology. The work in this project has 

focussed around the surface active lipidic carrier excipient, Gelucire 44/14, the 

poorly soluble model drugs, ibuprofen, indometacin and piroxicam, their 

physicochemical characterisation alone and also in combination as an SSD. The 

ultimate goal was to successfully enhance the in vitro dissolution profile which in 

turn may lead to an increase in in vivo bioavailability. Gelucire 44/14 is capable of 

self-emulsifying upon contact with aqueous media allowing solubilisation of the 

poorly soluble drug particles, increasing their contact angle, reducing their surface 

tension and thus preventing aggregation and agglomeration. Gelucire 44/14 does 

however have a very complex multi-component structure which subsequently 

imparts complex physicochemical and behavioural properties upon the SSD systems 

into which it is incorporated. This complex nature means that a multi-instrumental 

approach is essential in order to establish a full characterisation profile. The aim of 

this study was therefore to provide a thorough characterisation of the structure, 

behaviour and performance of Gelucire 44/14 SSD formulations, in particular 

developing a range of analytical methods, so that the associations between these 

factors could be identified. 

 

Chapter Three presented physicochemical characterisation of the selected surface 

active lipidic carrier materials, Gelucire 44/14 and TPGS, upon heating and cooling. 

The key points to note from these data were found to be: 
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1. Complex properties occurred during melting and temperature cycling of both 

lipids, for example a double melting endotherm consisting of low and high 

melting point fractions of Gelucire 44/14 and a double Tm for TPGS possibly 

attributable to the presence of both mono- and di-substituted PEG chains. 

2. The rate at which the lipids are cooled appears to greatly impact the physical 

state at ambient temperature. Cooling at slower rates was found to promote a 

more complete crystallisation by ambient temperature unlike faster rates which 

were observed to create larger and broader crystallisation exotherms being 

complete by much lower temperatures. 

3. Crystallisation of both lipids, independent of cooling rate, was found to 

continue to much lower temperatures than originally expected, the transition 

being composed of an initial primary energetic crystallisation followed by a 

much slower extended crystallisation. 

 

Chapter Four began to characterise the physicochemical properties of binary physical 

mixes and SSD formulations of Gelucire 44/14 and the model drugs, ibuprofen, 

indometacin and piroxicam, using thermal analysis techniques. The key findings 

presented can be summarised by: 

 

1. Conventional DSC demonstrated dissolution effects of the model drug into the 

carrier during analysis. This was suggested by the disappearance of the drug 

melting endotherm. Melting point depression of the lipid and drug was noted 

for both the ibuprofen and indometacin SSD systems suggesting interaction 

between the two components; however this was not the case for the piroxicam 

formulations due to poor miscibility. 



Chapter Eight Concluding Remarks and Future Work 

303 
 

2. Fast heating rates appeared to reduce these dissolution effects however not to a 

significant extent, suggesting that rates greater than 500oC are required due to 

the complexity of the systems. Analysis of the drug crystalline melt 

endotherms did however appear to follow the model proposed by Qi et al 

(2010b) for all drug systems suggesting that a more accurate estimation of drug 

solubility in the carrier and also therefore the crystalline drug content in the 

formulated SSD could be calculated. 

3. Drug solubilities in Gelucire 44/14 were calculated to be 20%, 25% and 10% 

w/w for ibuprofen, indometacin and piroxicam respectively, with Gelucire 

44/14 solubility in indometacin being 60% w/w. 

4. The presence of drug solid crystalline particles at low drug loading was 

confirmed using HSM for piroxicam however no evidence of solid drug 

crystals was noted for ibuprofen or indometacin systems, suggesting the 

presence of a molecular dispersion or solid solution. 

5. Upon cooling of the molten SSD systems, the presence of drug was found to 

reduce the Gelucire 44/14 Tc to the extent that at 50% w/w, crystallisation was 

completely inhibited in all cases. Quasi-isothermal MTDSC confirmed this 

finding however the extended period of slow crystallisation was still apparent 

despite not being visible using conventional DSC methods. 

 

Chapter Five demonstrated the drug release profile from the formulated SSD systems 

in water at 37oC. The main points to note are as follows: 

 

1. In all cases the dissolution properties of the poorly soluble model drugs were 

greatly enhanced by the formulation of SSD systems with Gelucire 44/14 
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consistently when compared with the crystalline drug alone. Overall a lower 

drug concentration with a greater lipid fraction was found to be optimum, 

demonstrating a higher extent of release. As the drug load increased the extent 

of release decreased due to the larger proportion of solid crystalline drug. 

2. Dissolution enhancement may correspond to subsequent improvement in in 

vivo bioavailability however correlation is difficult to establish. 

3. The power-law mathematical model proved a useful tool in the prediction of 

the mechanism of drug release from the SSD formulations however the data 

should be considered with care due to the complex nature of the lipid and also 

its ability to self emulsify upon contact with aqueous media. 

 

Chapter Six outlined the hydration properties of the formulated SSD systems upon 

exposure to varying temperatures at high RH. The key points were found to be: 

 

1. All model drug systems demonstrated similar hydration properties. 

2. The affinity for water was found to increase considerably at 35oC at low drug 

loading. This may have a significant effect on the formulation upon storage and 

should therefore be taken into consideration. This effect may be attributable to 

the molecular incorporation of drug into the lipid crystalline structure, 

disrupting the crystal formation and packing and therefore increasing its 

chemical reactivity in localised regions allowing hydrogen bonding with 

atmospheric moisture. 

 

Chapter Seven outlined the effect of aging on the formulated SSD systems using 

thermal analysis methods along with in vitro drug release. These data suggested that: 
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1. Gelucire 44/14 exhibits aging effects upon storage possibly due to auto-

oxidative degradation and also reorganisation of the lipid components. 

2. The solubility of the drug within the lipid and therefore the miscibility of the 

two components appeared to affect the extent of lipid aging demonstrated by 

the SSD formulations. As the compatibility of the drug and lipid increased, as 

seen with ibuprofen and indometacin, the aging effects became more 

prominent. However, limited drug solubility and therefore poor miscibility 

with the lipid, as demonstrated by piroxicam, exhibited greater stability over 

time due to both components being present in the stable crystalline form. 

3. The effect of aging on drug release from the SSD formulations was difficult to 

predict. A greater change was noted in the case of piroxicam which 

demonstrated limited miscibility with Gelucire 44/14. In the case of increased 

drug solubility, the changes observed using thermal analysis techniques did not 

correspond with the in vitro dissolution profile which demonstrated little 

change.  

 

Table 8.1 Parameters of the model drug compounds. 

 

Parameter Ibuprofen Indometacin Piroxicam 

Aqueous Solubility 0.01 mg/ml 0.003 mg/ml 0.02 mg/ml 

Sol. in Gelucire 44/14 20 % w/w 25% w/w 10% w/w 

pKa 4.91 4.5 6.3 

logP 3.6 3.4 3.0 
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Table 8.2 Key parameters of the formulated SSD systems using the model drugs ibuprofen, 

indometacin and piroxicam. 

 

Parameter 

Ibuprofen 

SSD 

Indometacin 

SSD 

Piroxicam 

SSD 

Drug Sol. In Gelucire 44/14 20 % w/w 25% w/w 10% w/w 

Change in Gelucire 44/14 melt 

(10
o
C/min) 

Yes Slight No 

Drug melt detected at 

concentration (10
o
C/min) 

50% w/w 50% w/w 5, 10, 15 and 

50% w/w 

Change in Gelucire 44/14 melt 

(500
o
C/min) 

Yes Yes No 

Drug melt detected at 

concentration (500
o
C/min) 

50% w/w 10, 15 and 

50% w/w 

5, 10, 15 and 

50% w/w 

Effect of ↑ heaHng rate on 

adherence with Qi model 

Low High Low 

↓ Lipid Tc (QIMTDSC) Yes Yes Yes 

Maximum drug release 100% 60%  95% 

Maximum drug released at 

concentration 

5, 10 and 

15% w/w 

5 and 10% 

w/w 

5% w/w 

Affinity for moisture High High High 

Tendency to age High High Low 
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Solubility of the drug compound in Gelucire 44/14 determined using the Qi model 

appeared to be proportional to the logP value and inversely proportional to the 

aqueous solubility and pKa value of the drug (Table 8.1). The affinity of the drug for 

the lipid Gelucire 44/14 therefore increased as the drug lipophilicity increased. Drug 

solubility in Gelucire 44/14 and therefore interaction between the two components 

was suggested by subsequent alteration of the Gelucire 44/14 melting endotherm 

upon heating which was less significant in the case of piroxicam which demonstrated 

the lowest lipid solubility. 

 

The processing variable, cooling rate, unexpectedly did not impart any great 

fundamental difference to the behaviour or physicochemical properties of the SSD 

dosage form, with the formulations cooled slowly at 20oC and quickly at 4oC being 

comparable in almost all situations. The physical state of Gelucire 44/14 alone at 

ambient temperature was greatly dependent upon the rate of cooling from the molten 

state, with slower cooling encouraging a more complete crystallisation. This was 

however found not to be of great consequence. The novel technique QIMTDSC was 

further developed as a means of determining a more accurate estimation of the true 

crystallisation temperature, independent of cooling rate. Crystallisation of the lipid 

was found to be significantly hindered by the presence of drug, with complete 

crystallisation inhibition at 50% w/w drug loading, thought to be due to the molten 

drug acting as a diluent and subsequently reducing nuclei concentration. 

 

Dissolution of the drug into Gelucire 44/14 during analysis, known to be affected by 

the rate of heating, appeared of little consequence to the adherence of ibuprofen and 

piroxicam systems to the Qi model i.e. both calibration plots of crystalline drug 
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concentration against crystalline drug melt enthalpy of physical mixes were 

comparable, with drug melt endotherms detected only at 50% w/w for ibuprofen or 

for all drug loading concentrations for piroxicam. Indometacin systems appeared to 

be greatly influenced by the heating rate, attributable to the increased solubility 

within Gelucire 44/14 and therefore a greater capacity for any remaining crystalline 

drug to dissolve during analysis. In terms of the quantity of molecularly dispersed 

drug present in each SSD system, estimated using the Qi model calibration plot, 

ibuprofen appeared to remain stable at circa 4% w/w in those systems in which a 

drug melt could be detected. In the case of indometacin and piroxicam SSD systems, 

the quantity of molecularly dispersed drug increased with increasing drug loading. 

For indometacin this may suggest that the saturation concentration of the drug had 

not yet been reached. However in the case of piroxicam it is possible that the 

calculated molecular dispersion values may have been influenced by the enthalpy of 

Gelucire 44/14 dissolution into the drug. 

 

Both ibuprofen and piroxicam SSD systems released drug to the greatest extent. 

Indometacin however did not reach 100% release but reached a plateau at 

approximately 60%, probably due to non-sink conditions of the experiment impeding 

indometacin release. All low drug loading SSD systems appeared to be most 

successful in enhancing drug release to the greatest extent, most likely due to the 

existence of molecularly dispersed drug present in the formulation. At 50% w/w the 

extent of drug release decreased in all cases due to a large presence of solid 

crystalline drug particles, however it remained markedly greater than that of the solid 

crystalline drug alone suggesting that the lipid successfully increased the wettability 



Chapter Eight Concluding Remarks and Future Work 

309 
 

and dispersibility of the crystalline particles allowing for a greater dissolution into 

the aqueous media. 

 

All 5% w/w drug loaded SSD systems demonstrated a greatly increased affinity for 

atmospheric moisture in comparison with Gelucire 44/14 alone at 35oC. This 

increase may be attributable to the molecularly dispersed drug causing local 

molecular disorder of the crystalline lipid, resulting in increased chemical reactivity. 

This effect had the potential to bring about extensive aging effects over time with a 

subsequent decrease in drug release. This however was not the case. The drug 

concentration within the SSD formulations, and also the miscibility between the two 

components played a vital role in determining the physical state of the drug in the 

final dosage form and therefore also its behaviour at time zero as well as after aging. 

Low drug/carrier affinity and therefore the presence of a large proportion (if not 

solely) crystalline particles appeared to limit aging effects within the lipid as noted 

by thermal analysis however a reduction in drug release was demonstrated, possibly 

due to degradation of the lipid. Higher drug/carrier compatibility, allowing for the 

presence of a molecular dispersion or solid solution, left the formulation more 

susceptible to changes in the physicochemical properties however the dissolution 

properties remained similar over time. This may be attributable to the limited effect 

of segregation of the lipid components. The effect of aging on the prediction of in 

vitro drug release remains difficult. 

 

Overall, therefore, this study has developed a range of characterisation techniques 

that has led to new insights into not merely the structure but also the behaviour of 

Gelucire 44/14 SSD formulations in terms of solidification, water uptake and ageing. 
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This information has in turn been related to the drug release properties of the 

corresponding SSD systems. The behaviour of the final SSD formulations has 

ultimately been found to be related to the aqueous solubility of the incorporated drug 

which in turn determines the solubility within the lipid carrier excipient. The less 

aqueous soluble the drug compound, the more soluble it is likely to be in the lipid. 

The more soluble the drug in the lipid, the more the drug was found to exist as a 

molecular dispersion within the SSD system. The formulation of SSD systems using 

Gelucire 44/14 was successful in all cases of enhancing the extent to which the 

poorly aqueous soluble drug was released into aqueous media at 37oC. Generally, 

however, lower drug loadings demonstrated greater release which corresponded well 

with a greater proportion of molecular dispersion in the formulation. The presence of 

molecularly dispersed drug did however bring about a significantly increased 

capacity of the lipid to uptake atmospheric moisture, thought to be due to the 

disruption of the ordered lipid crystalline structure and the subsequent increased 

reactivity. This increase in affinity for moisture did not relate to increased aging 

effects as expected. The increased presence of molecular dispersion did however 

appear to bring about more extensive physicochemical aging effects which did not 

correspond with decrease in vitro drug release. 

 

The theme running through these data appears to be that the existence or non-

existence of poorly soluble drug as a molecular dispersion within the lipid carrier 

excipient of the formulated SSD system, determined by the solubility of the drug 

within the lipid, is a determining factor of the subsequent behaviour and stability of 

the final SSD system.  
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8.2 FUTURE WORK 

 

The data collected during this project, as with any research, has highlighted areas 

requiring more in depth investigation which falls outside the scope of this study. In 

relation to the characterisation of the lipids alone, infrared spectroscopy may be 

useful to gain a greater insight into the chemical composition; however the 

usefulness of this technique may be diminished by the complexity of the sample. 

 

In terms of further characterisation of the SSD systems, these other techniques and 

experiments may useful: 

 

1. X-ray diffraction to confirm the presence of crystallinity in the SSD sample 

which can be utilised as an adjunct to thermal methods. 

2. SEM to observe the sample in greater detail; however this may prove difficult 

due to the waxy nature of the carrier. 

3. Infrared spectroscopy to further investigate interactions occurring between 

SSD components; however again the complex nature of the systems may make 

interpretation of the data difficult. 

4. Dissolution studies in more realistic media, for example simulated gastric and 

intestinal fluid, in order to make more accurate assumptions regarding the in 

vitro / in vivo correlation. In vivo bioavailability testing in animals may also be 

useful in this regard. 

5. Expansion of the DVS studies to include a more extensive hydration profile of 

each SSD system in order to allow more accurate prediction of the dosage form 

behaviour during storage and aging.  
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6. Expansion of the aging study to include a wider range of storage temperatures 

and humidities which can be linked to the DVS data. 

7. It would also be beneficial to further develop the method of QIMTDSC for 

characterisation of the SSD crystallisation transition. 
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CONFERENCE PROCEEDINGS 

 

 

British Pharmaceutical Conference, Manchester, UK, September 2008. 

The use of quasi-isothermal modulated temperature DSC as a means of 

characterising the re-crystallisation of Gelucire 44/14. Otun S.O, Meehan E., Qi S. 

and Craig D.Q.M. Journal of Pharmacy and Pharmacology, 60, A41-A42. 

 

Objectives: To use standard and quasi-isothermal modulated DSC methods to characterise the re-

crystallisation process of Gelucire 44/14 in order to determine the effect of cooling rate. 

Methods: Samples of Gelucire 44/14 in the weight range 2-2.5mg were prepared in standard 

aluminium crimped pans and run using standard DSC, melting and cooling at 0.5, 2,10 and 20oC/min. 

The solid fat content of Gelucire 44/14 was calculated as a function of temperature using the area 

under the re-crystallisation traces at various temperature points and expressed as percentages of the 

total on complete re-crystallisation. Samples of Gelucire 44/14, prepared in the same manner as 

above, after complete melting at 60oC for 10 minutes, were run using quasi-isothermal modulated 

temperature DSC with an amplitude of ± 1oC and a period of 60 seconds, cooling at 1oC increments 

from 35-5oC with an isotherm of 10 and 40 minutes at each increment. 

Results: Using standard DSC, re-crystallisation of Gelucire 44/14 occurred at decreasing 

temperatures with increasing cooling rate. Profile measurements were repeated four times each with 

excellent reproducibility throughout. The solid fat content technique allowed the visual simplification 

of the re-crystallisation process. By plotting the percentage solid against the temperature, for each 

individual cooling rate, it is possible to identify the amount of Gelucire 44/14 present in the solid state 

at any temperature point during the re-crystallisation process. The quasi-isothermal modulated 

temperature DSC method allowed the isolation of the temperature at which Gelucire 44/14 re-

crystallisation occurred by holding the molten sample at each temperature increment for an extended 

period. This was detected by the use of Lissajous figures, whereby the modulated heat flow is plotted 

against modulated temperature.  This in turn allows observation of the reproducibility of the sine 

wave heat flow modulations within a single isothermal period. The re-crystallisation could be 

observed in real time by noting the deviation of the sine wave curves from the steady state through the 

course of the crystallisation process, thereby providing a novel means of deconvoluting the heat flow 

processes associated with the thermal event as a function of time.  It was noted that the re-

crystallisation temperature of Gelucire 44/14 was 32-31oC with an isotherm of 40 minutes, and 30oC 

with an isotherm of 10 minutes. 

Conclusions: Quasi-isothermal MTDSC appears to be a very promising new tool in the investigation 

of the Gelucire 44/14 re-crystallisation process. By holding the sample at each temperature increment 
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for an extended period, it is possible to isolate the re-crystallisation process. This in turn leads to the 

possibility of mathematically modelling the associated kinetics; work is ongoing to this effect. 

 

British Pharmaceutical Conference, Manchester, UK, September 2009. 

Overcoming Dissolution Effects: The use of hyper differential scanning calorimetry 

to detect drug melting in solid dispersion systems. Otun S.O, Blade H., Meehan E., 

Qi S. and Craig D.Q.M. 

 

Objectives: To investigate the potential advantages of hyper DSC over standard to determine the 

presence of crystalline indometacin in solid dispersions using the polymer Gelucire 44/14. At slow 

heating rates, crystalline drug dispersed in a solid dispersion can further dissolve into the molten 

carrier, therefore eliminating the drug melting peak (Lloyd et al 1997). This may be interpreted 

incorrectly as the solid dispersion actually being a solid solution of drug in the carrier. This effect 

could potentially be overcome by increasing the rate of heating as this is known to inhibit kinetically 

controlled events such as dissolution (Gramaglia et al 2005). 

Methods: Physical mixes at concentrations of 5, 10, 15, 20 and 25% w/w indometacin in Gelucire 

44/14 were formulated in the DSC pan by weighing indometacin on top of Gelucire 44/14. This 

allowed mixing of the solid indometacin with molten Gelucire 44/14 during analysis. Solid dispersions 

at concentrations of 5, 10 and 50% w/w were formulated by adding indometacin to molten Gelucire 

44/14 with continuous stirring, then cooling at room temperature for 48 hours. Samples were run at 

10oC/min using a TA Q1000 DSC in aluminium standard crimped pans, and 500oC/min using a Perkin 

Elmer Diamond DSC in aluminium pin-hole pans. 

Results: A) Physical Mixes: Crystalline indometacin melt enthalpies could be obtained for all 

physical mixes when heated at 500oC/min. These enthalpies (x) were plotted against physical mix 

initial crystalline indometacin concentration (y) and extrapolated back to zero; the relationship y = 

1.468x + 3.3125 was derived.  This therefore allows us to calculate the % crystallinity in the solid 

dispersion systems.  The 5 and 15% w/w physical mixes analysed at 10oC/min did not display melting 

peaks. An endothermic transition was present on the 25% w/w physical mix DSC trace, however the 

peak max was found to be 139.70oC, approximately 20oC lower than that expected for indometacin. B) 

Solid Dispersions: Solid dispersions at concentrations of 5, 10, and 50% w/w were heated at 

500oC/min and analysed for crystalline indometacin melt enthalpies. These enthalpies were used to 

calculate the concentration of crystalline indometacin remaining in the formulation by applying the 

physical mix calibration plot equation (above). The 5, 10 and 50% w/w solid dispersions were 

calculated to contain 3.9%, 6.9% and 32.5% crystalline indometacin respectively.  The study has 

therefore provided a new method of estimating crystalline drug concentration in polymers.  

Conclusions: The fast heating rates employed by Hyper DSC appears to be a useful tool in 

determining a more accurate value for the true indometacin solubility by significantly reducing its 

further dissolution in the polymer Gelucire 44/14 during analysis. The data obtained at slower rates 
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has the disadvantage of giving misleading conclusions due to the elimination of crystalline drug 

melting peaks. 

References: 1) Lloyd, G. R., Craig, D. Q. M., Smith, A. (1997) Int. J. Pharm. 158: 39-46 2) 

Gramaglia, D., Conway, B. R., Kett, V. L., Malcolm, K. R., Batchelor, H. K. (2005) Int. J. Pharm. 

301: 1-5 

 

American Association of Pharmaceutical Scientists Conference, Los Angeles, 

USA, November 2009. 

Overcoming Dissolution Effects: The use of hyper differential scanning calorimetry 

to detect drug melting in solid dispersion systems. Otun S.O, Blade H., Meehan E., 

Qi S. and Craig D.Q.M. Journal of Pharmacy and Pharmacology, 61, A48-A49.  

 

Purpose: To investigate the potential advantages of hyper over standard DSC to overcome dissolution 

effects and determine the presence of crystalline indometacin in solid dispersions containing the 

polymer Gelucire 44/14.  

Methods: Indometacin and Gelucire 44/14 were formulated into physical mixes directly in the DSC 

pans at concentrations from 5 to 25% w/w. Solid dispersions, at concentrations of 5 to 50% w/w, were 

prepared via the melt method and held at 20°C or 4°C to cool for 48 hours prior to DSC 

measurements. Samples were analysed at 10°C/min and 500°C/min. 

Results: In order to understand the miscibility of indometacin crystals in Gelucire 44/14 on heating, 

physical mixes were studied using hyper DSC. Crystalline indometacin melt enthalpies (x) were 

obtained at 500°C/min for all physical mixes and plotted against initial crystalline indometacin 

concentration (y). A linear relationship y = 1.468x + 3.3125 was derived. Solid dispersions were 

heated at 500°C/min and analysed for crystalline indometacin melt enthalpies. The crystalline 

indometacin (% w/w) in the formulation was calculated using the physical mix calibration plot 

obtained above. The 20°C cooled 5, 10, 15 and 50% w/w solid dispersions were calculated to contain 

3.9, 6.9, 3.3 and 32.5% w/w crystalline indometacin respectively. The equivalent 4°C cooled solid 

dispersions contained 5.3, 4.4, 6.2 and 31.4% w/w crystalline indometacin. The increased rate of 

cooling showed no significant effect on the crystalline indometacin contents in the solid dispersions. 

Solid dispersions at concentrations of 5, 10 and 15% w/w, heated at 10°C/min, demonstrated no 

obvious indometacin melting peaks, indicating further dissolution of indometacin in Gelucire 44/14 

during heating. Therefore, the fast heating rate showed potential in minimising the dissolution of 

model drug in the polymer matrix in solid dispersions during heating. 

Conclusions: The fast heating rates employed by Hyper DSC appears to be a useful tool in providing 

more accurate estimation of crystalline drug concentration in polymeric solid dispersions compared 

to standard DSC by significantly reducing dissolution effects of the model drug in the polymer during 

analysis. 
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Academy of Pharmaceutical Scientists, Nottingham, UK, September 2010. 

The characterisation of slow crystallisation of lipidic solid dispersion systems using 

Quasi-isothermal MTDSC. Otun S.O, Meehan E., Qi S. and Craig D.Q.M. Journal of 

Pharmacy and Pharmacology, 62 (10) 1352-1353. 

 

Introduction: Quasi-isothermal modulated temperature DSC is a technique by which the sample 

material is subjected to modulations about a constant temperature for a prolonged period of time. 

This temperature is incrementally increased or decreased through a thermal transition, minimising 

the kinetic effects of the heating programme and meaning that the isothermal data sequence obtained 

illustrates the true transition temperature of the sample (Manduva et al 2008). In this study this 

method has been used to investigate the crystallisation process of lipid-based solid dispersion 

systems.  In particular, it is recognized that slow or incomplete crystallisation is a significant 

manufacturing issue, but very little information is available on this phenomenon.  Here we suggest a 

novel means by which it may be quantitatively monitored.    

Materials and Methods: Samples of Gelucire 44/14 and the formulated solid dispersion systems, in 

the weight range 1.97 to 2.25mg, were prepared into aluminium Tzero pans and analysed using a TA 

Q2000 DSC. After complete melting at 60°C for Gelucire alone and a maximum of 220°C for the 

model drug systems to allow for any crystalline drug melting, the samples were run using Quasi-

Isothermal MTDSC, cooling at 1°C increments from 35 to 5°C for Gelucire 44/14 alone and 25 to 0° 

for solid dispersions, with an isotherm of 20 minutes at each increment, an amplitude of ± 1°C and a 

period of 60 seconds. 

Results and Discussion: Quasi-Isothermal MTDSC Lissajous analysis of the polymer Gelucire 44/14 

illustrates obvious crystallisation on cooling at 31°C. Observation of the reversing heat capacity as a 

function of time, however, demonstrates crystallisation onset during the 33°C modulation, continuing 

until the conclusion of the experiment at 5°C, thus suggesting incomplete crystallisation. Solid 

dispersion formulation of Gelucire 44/14 with the selected model drugs appears to significantly 

reduce the polymer crystallisation temperature. Those systems containing 5% w/w ibuprofen reduced 

the crystallisation temperature to 25°C, with increasing drug loading reducing the temperature 

further still. At 50% w/w ibuprofen no obvious crystallisation occurred, however in all cases the 

reversing heat capacity steadily decreased over time suggesting that equilibrium was not reached and 

crystallisation was therefore incomplete. Indometacin and piroxicam solid dispersions with Gelucire 

44/14 were also found to have a much reduced crystallisation onset at 21, 25 and 21 for indometacin 

24, 21 and 25°C for piroxicam 5, 10 and 15% w/w drug loadings respectively. Again the 50% w/w 

systems for both model drugs did not demonstrate an obvious crystallisation peak however, as with all 

cases there was a steady decrease in heat capacity over time, becoming more pronounced at 7°C in 

the case of piroxicam. We believe the model drugs present in the solid dispersions to be crystalline, as 

a melt transition can be seen for the higher drug loadings on heating. Typically one would expect 

drugs to either promote crystallization (via nucleation) or to have no effect, hence the counterintuitive 

observation of retardation is of interest and practical significance. The presence of un-dissolved drug 
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particles is known to affect the overall crystal growth rate of the polymer (Long et al 1995). In the 

present case, however, we suggest that dissolved drug may be suppressing either nucleation or 

growth. Solid dispersions of Gelucire 44/14 with the model crystalline drugs ibuprofen, indomethacin 

and piroxicam were prepared via the melt method at 60°C and allowed to cool at 20°C for 48 hours 

prior to analysis. 

Conclusions: Quasi-isothermal MTDSC appears to be a promising tool in the investigation of the 

crystallisation process. The combination of drug with polymer in solid dispersion systems appears to 

reduce the crystallisation temperature quite significantly if not eradicating it altogether. It is 

imperative to have an understanding of this process in order to predict its impact on the 

physicochemical properties of the final product. We would like to acknowledge AstraZeneca for the 

funding of this project. 

References: 1) R. Manduva, V. L. Kett, S. R. Banks, J. Wood, M. Reading and D. Q. M. Craig, J. 

Pharm. Sci, 97 (2008) 1285 – 1300. 2) Y. Long, R. A. Shanks and Z. H. Stachurski, Prog. Polym. Sci, 

20 (1995) 651 – 701. 

 

American Association of Pharmaceutical Scientists Conference, New Orleans, 

USA, November 2010. 

The use of quasi-isothermal MTDSC to characterise slow crystallisation of lipidic 

solid dispersion systems. Otun S.O, Meehan E., Qi S. and Craig D.Q.M. 

 

Purpose: To investigate the crystallisation process of lipid based solid dispersion systems using 

Quasi-Isothermal MTDSC. Here we suggest a novel means by which slow crystallization may be 

quantitatively monitored.    

Methods: Samples of Gelucire 44/14 and the formulated solid dispersion systems were prepared into 

aluminium Tzero pans and, after complete melting, were run using Quasi-Isothermal MTDSC. The 

samples were cooled at 1°C increments from 35 to 5°C for Gelucire 44/14 alone and 25 to 0°C for 

solid dispersions, with an isotherm of 20 minutes at each increment, an amplitude of ± 1°C and a 

period of 60 seconds. Solid dispersions of Gelucire 44/14 with the model drugs ibuprofen, 

indometacin and piroxicam were prepared via the melt. 

Results: Quasi-Isothermal MTDSC Lissajous analysis of the polymer Gelucire 44/14 illustrates 

obvious crystallisation on cooling at 31°C. Observation of the reversing heat capacity as a function of 

time, however, demonstrates crystallisation onset during the 33°C modulation, continuing until the 

conclusion of the experiment at 5°C, thus suggesting incomplete crystallisation. Solid dispersion 

formulation of Gelucire 44/14 with the selected model drugs appears to significantly reduce the 

polymer crystallisation temperature. For example, those systems containing 5% w/w ibuprofen 

reduced the crystallisation temperature to 25°C, with increasing drug loading reducing the 

temperature further still. Indometacin and piroxicam solid dispersions with Gelucire 44/14 were also 

found to have a much reduced crystallisation onset temperature. Typically one would expect drugs to 

either promote crystallization (via nucleation) or to have no effect, hence the counterintuitive 
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observation of retardation is of interest and practical significance. The presence of un-dissolved drug 

particles is known to affect the overall crystal growth rate (Long et al 1995). In the present case, 

however, we suggest that dissolved drug may be suppressing either nucleation or growth. 

Conclusions: Quasi-isothermal MTDSC appears to be a promising tool in the investigation of the 

crystallisation process. The combination of drug with polymer in solid dispersion systems appears to 

reduce the crystallisation temperature significantly. We would like to acknowledge AstraZeneca for 

the funding of this project.  
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