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MESH CUTTING ALGORITHM FOR USE IN AN 
ORTHOPAEDIC SURGERY SIMULATOR 

Boothroyd, A; Gledhill, D; De Luca, D * 
University of Huddersfield * 

Huddersfield, UK 
 

ABSTRACT 

In order to develop a podiatric orthopaedic training simulator the obstacle of simulating podiatric bone surgery must be 
overcome. In order to simulate this surgery appropriately, it is necessary to be able to cut through a virtual representation 
of a patient’s foot on-screen in real-time. We investigate several methods of cutting through simulated objects in general, 
and evaluate their usefulness in simulating real-time interactive bone surgery. We determine that none of these 
conventional methods are fully suitable and instead propose, develop and test a method using planar slicing of polyhedral 
mesh geometry. 
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1. INTRODUCTION 

Orthopaedic foot surgery is carried out by podiatric surgeons and orthopaedic surgeons, and is used to treat a 
variety of ailments affecting the bones of the lower extremities. The goal of this research is to lay the 
foundation for developing a full-featured serious game simulating podiatric orthopaedic surgery, by 
overcoming the obstacle of accurately simulating cutting through a bone. Such a simulator could be used to 
train the next generation of surgeons in a safe, controlled environment (Haluck et al. 2001).   

In order to perform surgical manipulation of this type, it is necessary to be able to cut through polygon 
meshes in a manner simulating cutting through actual bone. 

Typically, in 3D graphics, meshes are either rendered unmodified (for instance, with static scenery) or 
animated. Meshes can be animated in a variety of ways, including simple geometric transformations and 
skeletal animation. Generally this involves replaying pre-recorded animations, although some animation 
systems generate animations on-the-fly in response to the mesh’s environment and stimuli, for example the 
Euphoria dynamic animation engine (McEachern 2008). However, even with dynamically generated 
animations and interactions, the meshes are generally animated using a pre-determined ‘skin’ and a collection 
of jointed ‘bones’, to provide a full range of motion. Such methods can only move vertices around and not 
normally break or cut into the mesh. 

It is necessary to perform geometric computations to deform the shape of the mesh in real-time, whilst 
maintaining an adequate frame rate and the illusion of the mesh being a solid object state of the art hardware.  

This paper evaluates different existing methods used to cut through meshes and then proposes a new 
method using planar slicing allowing real-time mesh cutting. 

The work was undertaken in the University of Huddersfield in house computer games studio, Canalside 
Studios. The studio has published both games and serious games including visualisation software and object 
handlers (De Luca & Taylor 2012). Through translational research methodology the studio rationale is to 
help entrepreneurial academics and research groups realise their potential through commercial development. 

Translational research is commonly associated with the life sciences, however translational research 
methods are currently being applied across many subject areas allowing high impact software and products to 
be realised from research groups across many disciplines. We see translational research as a means of 
ensuring that research deliverables can be exploited by the commercial community and that all parties 



involved obtain the best transfer of knowledge with a two-way flow of information resulting in best practice 
and an accelerated product development timeline. 

The UK Technology Strategy Board (TSB) defines the following when supporting innovations in the life 
sciences (Wamae et al. n.d.): 

• Translational Research - the new scientific methods and technologies, interdisciplinary 
approaches, and collaborative institutional arrangements being developed to narrow the gap 
between basic science and its application to product and process innovation. 

• Knowledge Exchange - the multi-directional flow of information of all kinds that is required as a 
basis for decision making in the translational research process. 

• Value chain - the range of activities required to bring a product or service from conception, 
through the different phases of production, to delivery to consumers. 

• Value system – the wider system within which the value chain operates including: policy and 
regulation, finance and markets, and public and stakeholder perspectives. 

2. SURGICAL SIMULATION 

2.1. Soft-tissue and Bone Simulation 

(Choi et al. 2002) proposed and developed a system of deforming soft tissue in real-time using a mass- spring 
elasticity model. Earlier simulations were typically computationally intensive, not capable of running at the 
refresh rates required for a real-time simulation (Delingette 1998). The authors solved this using a force-
propagation algorithm. 

(Pflesser et al. 2000) presented a volume rendering system for visualizing bone dissections (such as 
mastoidectomies), which uses a sub-voxel rendering method to accurately simulate sections of bone being 
cut. A further development as described by (Petersik et al. 2002) incorporates haptic feedback to make the 
system more realistic. Similar systems are presented by (Morris et al. 2004; Morris et al. 2006), again using 
volume rendering to provide haptic feedback. However, this system employs a hybrid data structure for the 
rendering, which produces a triangle mesh from the volumetric model data for conventional rendering. The 
vertex positions are inferred from the volumetric data, using pre-calculated normal and texture co-ordinate 
information. Cutting is only performed on the volume data, with the polygon mesh being regenerated from 
the resulting voxels. As the cutting performed with this system simulates that of a burr a volume data 
structure is well suited to this task, as the volumetric nature of the geometry allows arbitrary shaped volumes 
to be removed at will. Similar volumetric systems are also employed by (Agus et al. 2002; Agus et al. 2003). 

Cuts performed through bone with an electric saw do not typically result in an elastic deformation of the 
bone as when cutting through soft tissue — cuts will typically be straight, and remove a narrow channel of 
bone in front of the saw blade. Therefore, the mass-spring elasticity algorithms for deforming soft tissue will 
not produce a suitable result when simulating bone. 

Volumetric approaches do not provide optimal solutions for the kind of cutting we intend to perform. This 
is partly because of the performance costs and complexity associated with volume rendering. The cuts we 
intend to simulate will not be modeled very accurately or efficiently by a volumetric model. There are three 
reasons for why we believe this to be the case: first, only a very narrow sliver of bone matter will be removed 
when cutting through a model, so the vast amount of data in a volumetric model would be unused. Second, it 
will be necessary for part of the volume to be severed, moved and reattached at a different angle. The 
movement of a severed piece of bone could be simulated within the same volumetric model as the rest of the 
bone, in which case a large amount of data must be moved around per frame and likely cause a large 
performance loss. Alternatively, the severed bone could be split off into its own volumetric model, which 
would be more performant, but would entail running two separate volumetric models in very close proximity. 
Third, when cutting through a volumetric model at any non-axis-aligned angle, a ‘stair-step’ of voxels will be 
left behind by the cut. Using a volumetric model of uniform density with the required fine granularity would 
be inefficient, as cutting operations will only involve a small part of the model. To limit overhead of 
increased density, a low-density model could be used, increasing the density around the cut as necessary. 
Voxel subdivision could increase density in these relevant areas. 



2.2. Mesh Cutting 

We propose a solution combining the geometric nature of the soft-tissue simulation with the non-deforming 
nature of the bone simulation, modeling the patient’s foot as a 3D polygon mesh and respond to the cutting 
action of the user by employing geometric methods to remove matter from the mesh.  

2.2.1. Mesh Sculpting 
One of the simplest methods of altering a 3D polygon mesh is to sculpt its surfaces. Of particular note, 

one of the earliest computer sculpting systems allowed the user to control the sculpting operation using a 
polyhedral tool (Parent 1977). The system we propose will support multiple polygon-mesh-based tools based 
on real-world equivalent surgical tools tools that the user can control. 

In most early sculpting systems, standard keyboard and mouse controllers were used to control the 
sculpting tool. However, (LeBlanc et al. 1991) proposed a system using the Spaceball 6D human interface 
device, which allows the user 6 degrees of freedom in their input. This device is used with one hand, and a 
computer mouse in the other hand, to more accurately perform sculpting. We use a similar, but more modern, 
device (the Sensable Phantom) to allow the user to control our system. 

To perform sculpting, Parent used ‘decay functions’ to determine the effect of the user’s input on 
individual vertices, based on proximity to the position of the user’s tool. A refined technique was applied to 
the whole mesh by (Allan et al. 1988), and later refined again into an adaptive subdivision by (Bill 1994), in 
order to afford the user a finer degree of control over the manipulated surface. 

2.2.2. Metaballs 
Metaballs are a class of implicit algebraically-described geometries, whose surfaces contain points 

satisfying one or more functions of the form . Computer-rendered algebraic geometries of 
this nature were initially described by (Blinn 1982), with what he termed “blobby” modeling. Methods for 
rendering parameterized surfaces individually were already well-known at this point (Lane et al. 1980), but 
Blinn blended multiple surfaces together. Lone metaballs will produce a single geometric shape, typically a 
sphere or ellipsoid, but large groups of metaballs can be used to represent more complex shapes. Since the 
surfaces created by metaballs are the result of blended continuous algebraic functions (as opposed to the 
discrete geometric segments in polygon mesh geometry), they provide a smooth transition between their 
different functions and as a result produce very smooth, soft-looking structures. 

It should be noted that the influence provided by a given metaball need not be positive. In order to ‘cut 
through’ a metaball surface, it is possible to define metaballs with negative influence. These negative 
metaballs create indentations in positive metaball geometry, by reducing the total influence of points within 
an area below the required threshold.  

Whilst the output of a metaball system can be a polygon mesh, the input can not. Traditional polyhedral 
geometries cannot be automatically converted to metaball-based structures. An approximation could be made 
using numerous tiny metaballs, however, using this approach would be very inefficient, with an excessively 
large number of metaballs being required. As such, in order to use metaballs within an orthopedic simulation, 
a model of the patient’s foot must first be constructed entirely from metaballs. This would require a 
modelling expert to be available for the laborious task of remodeling all polyhedral meshes for the system. 

2.2.3. Constructive Solid Geometry 
Constructive Solid Geometry (CSG) is a method of defining geometry in terms of two or more other 

geometries combined using Boolean set operations (Requicha et al. 1978). The three binary set operations 
used in CSG are union (or addition), difference (or subtraction), and intersection, which are applied to the 
volume enclosed by the combined geometries. The surface produced as a result of these operations contains 
the volume previously occupied by either object, only one object, or both objects, respectively. Entire 
geometries can be represented by a hierarchy of CSG operations performed on implicit primitives and the 
results of previous operations, forming a binary tree of set operations (Requicha 1980). The terminal nodes in 
such a tree represent implicit primitives, and the nonterminal nodes represent a single binary set operation 
performed on the two child nodes. It allows highly accurate smooth surfaces and intersections to be 
represented. A polygonization of the CSG tree will necessarily reduce the level of detail and accuracy in the 



rendering, but its approximate nature is considered an acceptable tradeoff since it allows the geometry to be 
rendered at refresh rates suitable for interactive viewing and manipulation of the CSG tree, however, 
polygon-mesh geometry cannot be easily converted to CSG format. Therefore, reference data of medically-
accurate foot models represented as polygon meshes cannot be used as a CSG tree. 

2.2.4. Polyhedral Boolean Set Operations 
Operations topologically equivalent to the Boolean set operations used in CSG trees may be applied 

directly to polygon mesh geometry (Aftosmis et al. 1998). When applied to polyhedra, the boundary 
representation of each object’s surface is segmented based on its intersection with the other object. The 
segments of each object are then combined into a new polygon mesh or discarded, based on their relationship 
to the other object. Of particular relevance is the Boolean subtraction (difference) operation, which forms a 
new object containing the volume enclosed by one object but unenclosed by the other. This Boolean 
subtraction operation is commonly available in 3D-modelling software, and has also been used in industrial 
simulation software — for example, in simulated log sawing (Occena & Tanchoco 1988). 

Boolean subtraction has also been used to simulate soft-tissue cutting in surgical operations. In a system 
used to simulate operating on gunshot wounds (Delp et al. 1997), the user can manipulate a virtual scalpel, 
used as an operand in a Boolean subtraction, to cut through soft tissue.  

2.2.5. Conclusion 
Four distinct methods widely used to manipulate geometry could potentially be used to simulate cutting 

through bone. Mesh morphing, as commonly used, does not provide the necessary control over the deformed 
polygon mesh to realistically simulate cutting. Metaballs would provide a simple method of representing the 
path of a cut through bone — however, they are computationally expensive to modify at real-time refresh 
rates, and cannot be used with polygon mesh representations of medically-accurate foot models. CSG trees 
present similar benefits and drawbacks to metaballs, but allow more accurate, sharply-defined cuts to be 
performed. The Boolean difference operation, commonly used in CSG trees, may be applied instead to 
polyhedral mesh-based geometry, with a modified algorithm that operates on the surfaces of the geometry.  

3. SIMPLIFICATION OF SERIAL BOOLEAN OPERATIONS 

3.1. Cutting Cross-sections 

Consider the case where one or a series of Boolean subtractions (using a convex polyhedral cutting 
volume) cut through the complete cross-section of a convex triangle mesh severing to form two new meshes. 
The newly-hewn sides of the two new meshes (which previously intersected the cutting volume) are defined 
by two surfaces. These surfaces are bounded by the curves of intersection formed between the sides of the 
cutting volume and the mesh. 

The geometry that lies between the two cutting surfaces would be discarded, and the rest would be added 
to whichever of the two newly-created meshes is appropriate, based on its position relative to the surfaces. 
The geometry of each cutting surface would be appended to the new mesh adjacent to it. 

3.2. Geometry-in-polyhedron Testing 

It is generally necessary to test all the polygons in each mesh to determine which lie entirely outside or 
inside of the other mesh, and those that lie partially inside and outside the other. The test can be performed in 
a number of ways — the easiest being the ray-cast method. 

Ray-casting for the purpose of collision detection calculates the intersection of a hypothetical ‘ray’ with 
object geometry. In order to determine whether a given point lies within a given triangular mesh or not using 
ray-casting, rays must be emitted from the point, and the number of triangles the ray intersects counted. A 
simple test with a closed mesh can be performed using only two rays, both emitted in opposite directions — 
if both rays pass through an odd number of surfaces, then the point is enclosed on both sides. Where the 
number of surfaces is even or zero, the point is outside the mesh. 



All polygons in each mesh must be tested to determine whether they intersect the other mesh, which 
entails testing all vertices in each mesh. Assuming a suitable spatial subdivision technique is used to optimise 
the ray test, each test will be of O(1) complexity in the average case, and O(n) in the worst case (Szirmay-
Kalos & Márton 1998). Since all vertices must be tested per Boolean operation, this results in an overall 
complexity of O(n) (average case) or O(n2) (worst case) for the intersection tests. 

The remainder of the algorithm will require classifying all polygons based on their intersection or non-
intersection of the opposing mesh (O(n)), adding each new vertex or index (reallocating buffers each time 
would be O(n2); with optimised buffers this is closer to O(n)) and removing deleted vertices and indices 
(O(n)). 

3.3. Segmentation of Triangles 

 
Figure 1: Before splitting a triangle along a plane (line 

of intersection with plane marked as thick line) 
 

Figure 2: After triangle is split 

In its simplest form, a mesh is divided along a single infinite plane, as in Figure 1. Those ‘above’ or ‘below’ 
the plane relative to its normal are placed into the relevant group; those lying on the plane are split along it. 
This usually results in three additional polygons being generated per polygon sliced —  Figure 2. 

The points of intersection between AB and AC are labeled P and Q respectively. In order to be able to 
manipulate geometry on both sides of the split independently, the vertices P and Q must be duplicated to 
create P1, P2, Q1 and Q2. 

One triangle (AP1Q1) will be above, whereas the other two will form a convex quadrilateral below (BCP2 
and CP2Q2). Of the original edges, BC is retained to form the base of the quadrilateral. The other two edges 
are split at their point of intersection with the plane to form four smaller edges — AP1 and BP2 derived from 
AB, and AQ1 and CQ2 derived from AC. 

Unless both polyhedra have a similar density of vertices around the intersecting area, the segmentation 
will generate a large number of small triangle fragments — there will be a constant net increase in polygons. 
As more polygons are generated, this leads to a constant slowdown of the cutting operation. 

The problem of exponentially-increasing polygon count can be mitigated by mesh simplification. There 
are several techniques that reduce the number of polygons in a mesh whilst retaining an approximation of its 
original shape (Turk 1992). Simplification algorithms typically operate on an entire mesh and this adds to the 
processing time required (Kalvin & Taylor 1996). A suitable algorithm could be implemented that efficiently 
simplified only the geometry modified by the Boolean operation each frame, keeping the number of polygons 
in the mesh largely constant over several iterations of the cutting algorithms. 

Calculating the point of intersection between an edge and a plane gives a distance along the edge, which 
can be normalized by dividing it by the total length of the edge. For edge pq where , the distance 
from vertex p to the point of intersection with a plane in the form 

 
is calculated with the formula: 

 

The normalized distance can then be obtained thus: 



 

This normalized distance can be used to produce a new vertex that lies on the plane. All the properties of 
the vertices at the opposing ends of the edge are linearly interpolated to produce the new blended vertex. As 
well as their positions, these properties will include all fields in the vertex format, including their normal 
vectors, colours, texture coordinates, tangents, binormals, etc. 

Since the edge is to be divided into non-adjacent separated polygons, a copy of the interpolated vertex 
must be created. One of the vertices is associated with the edges and triangles on one side of the plane and 
the other vertex is associated with the edges and triangles on the opposite side of the plane. 

3.4. Biplanar Subtraction 

When cutting through bone, the path of the saw will typically follow a plane with a normal vector 
matching that of the saw blade. For our purposes in simulating bone surgery we shall assume that, for each 
cut made, the blade movement becomes limited to the plane defined by its position and normal when it first 
touches the bone. This implies that the saw blade cannot move along its normal vector due to matter either 
side of the blade, and the only axis it may rotate around is defined by its normal vector. Within these 
constraints, the series of Boolean subtraction operations described previously will remove a volume bounded 
by two surfaces lying on planes parallel to the cutting plane, separated by the width of the simulated blade, 
illustrated by  
Figure 3 and Figure 4. 

 
Figure 3: Before biplanar subtraction. Red triangles 

are removed; yellow triangles are sliced 

 
Figure 4: After biplanar subtraction 

The mesh can be divided into two new meshes, with the geometry between the two planes being 
removed, the rest being divided into one of the new meshes, based on position relative to the cutting planes. 

3.5. Capping 

Once the mesh has been split along the plane, the resulting gap is then filled with non-overlapping co-
planar polygons to form a cap, as shown in Figure 5 and Figure 6. A minimum number of polygons should be 
used to create the cap, maintaining the illusion of solidity.  

For cuts with convex cross-sections, a simple method of capping the sides of the cut is to create a triangle 
fan. A new vertex is added at the midpoint of the cross-section, which allows the original vertices to be 
sorted according to their bearing from the midpoint vertex. Once the vertices have been sorted, each vertex 
contributes a triangle to the cap. Each vertex’s triangle is comprised of the current vertex, the vertex 
following it in the list, and the midpoint. To seal the cap all the way round, the last vertex wraps around to 
use the first vertex as its following vertex. 

 



 
Figure 5: Cross-section vertices before capping 

 
Figure 6: After capping 

A more robust triangulation algorithm is the ear-clipping method (Eberly n.d.), which recursively finds 
‘ears’ of the cross-section polygon. An ear in this context is defined as three consecutive connected vertices 
that form a triangle such that no other vertices lie within the triangle, and the edge joining the first and last 
vertices forms a diagonal of the cross-section. Each iteration of the algorithm finds an ear, adds it to the final 
triangulation and removes it from the initial polygon, until there is only one triangle left.  

 

3.6. Single Plane Slicing 

The caveat with using the biplanar slice method is that it appears that the user has sliced through the 
entire mesh. In order to overcome this, there are two possible approaches. The new geometry could be 
extruded to meet in the middle, and as the blade passes near to the vertices involved, they can be returned to 
their original locations to create the illusion of slowly separating the mesh. However, for any triangles not 
exactly perpendicular to the cutting plane, this will cause a visual modification to the mesh at the instant that 
the biplanar method is applied. 

An alternative method is to perform the slice using only one plane (see Figure 7 and Figure 8). All the 
triangles in the mesh lying on the slice plane will have been split along the plane, and no geometry will have 
been removed. This planar partitioning process is used in binary space partitioning (BSP trees), where it is 
commonly used to divide a 3D scene graph into segments (Fuchs et al. 1980). A scene divided into a BSP 
tree can be used for more efficient rendering and collision detection, and BSP trees can be merged to perform 
CSG operations on the polyhedra they represent. In BSP trees, segments created by slicing do not have 
geometry added to create a visible partition - however, this is required for our purposes. 

In our method, the vertices lying on the slice plane will be used to form two cross-section caps, 
effectively creating two barriers across the partition sliced. At the instant that a uniplanar slice is performed, 
there will be no visible difference in the mesh, despite it being separated into two discrete entities. However, 
as the blade of the saw passes near to each pair of the coexisting vertices in the sliced cross-section, they can 
be moved apart to create a gap in the mesh. This is consistent with the mesh being separated only as the blade 
of the saw passes through the geometry. 

 
Figure 7: Before single plane sliced. Yellow triangles 

are sliced 

 
Figure 8: After single plane slice 

All volume occupied by the blade throughout the previous series of iterations of the Boolean subtraction 
algorithm will have been removed from the initial mesh. Performing a uniplanar slice and separating the 
vertices as described above does not guarantee that this holds true, as the exact geometry of the blade is not 
removed per frame. However, since the geometry of the rendered saw blade obscures the cut whilst it is being 
made in the mesh, this inadequacy should not be noticeable to the user. 

3.7. Localised Slicing 

When cutting into the side of a toe bone, the plane on which the cut is performed will almost always 
intersect the other toes, so an unbounded slice along this plane would cut matter not relevant to the operation. 



A localised version of the planar slice must therefore be used, by limiting the triangles on which the 
operation is performed. 

The only relevant triangles are those whose lines of intersection with the cutting plane form a contiguous 
cross-section, starting with the triangle first intersected by the blade as it begins the cut. 

In order to determine which polygons are relevant to a given operation, it is necessary to traverse the 
mesh from a given starting point, illustrated in Figure 9 and Figure 10. In our case, this will be the point at 
which the surgical tool first touches the mesh. The polygons forming a contiguous border around the cross-
section containing the starting point can then be determined by traversing adjacent polygons that lie on the 
cutting plane. A starting polygon is chosen, and marked as visited and added to a stack to test. 

 
Figure 9: Initial traversal. The green triangle is marked 

as to be sliced 

 
Figure 10: Final traversal. The yellow triangles are 

traversed to, but not sliced 

Once a list of polygons has been obtained that form a contiguous boundary around the maximum volume 
of the mesh to be cut, the planar slice algorithm can be applied. The effect is that the infinite plane slice is 
carried out on only a small part of the mesh. 

3.8. Advantages of Single Plane Slicing 

In terms of performance, this method requires an initial overhead of processing time (to compute the 
planar slice), but in subsequent frames the separation uses a minimal amount of processing time. This results 
in a smooth frame-rate, enabling real-time cutting to be approximated throughout the operation. 

Unlike Boolean subtraction, planar slicing does not require the geometry-in-polyhedron test to determine 
whether the cutting mesh (in this case, the cutting plane) lies within the target mesh. All the polygons in the 
target mesh must instead be tested to determine which side of the plane their vertices lie on. Although this is 
an operation of O(n) complexity, it need only be performed once (at the start of a cutting operation) instead 
of per frame as with Boolean subtraction. 

Furthermore, the number of triangles generated by this method cannot rise exponentially with the duration 
of the cut. The number of extra triangles added is fixed after the initial slice operation, with all subsequent 
frames in a given cutting operation simply moving vertices. The maximum number of triangles added is 
limited to 3n for the worst-case of all triangles in the mesh lying on the cutting plane. However, in practice, 
the percentage of polygons in the mesh that intersect a given plane diminishes as the total number of 
polygons increase. From testing, we see a maximum of around 25% of polygons intersecting the cutting 
plane for meshes with low numbers of polygons, and around 1% for meshes with higher totals of polygons. 
The system can be seen in Figure 11. 

  
Figure 11: Showing the foot model and testing the cutting on a sphere 

3.9. Disadvantages of Single Plane Slicing 

With single plane slicing, the accuracy of the cut during intermediate frames is not as accurate as that 
possible when using Boolean subtraction. When a triangle fan is used to cap the two cross-sections, moving 



the vertices apart individually has the visual appearance of ‘folding’ the caps apart. However, the inaccuracy 
is typically only visible between the two cross-sections of the slice, which is difficult to see from a viewpoint 
outside of the mesh, and the geometry of the saw will tend to obscure these details. Once the cut is complete, 
these inaccuracies are no longer visible. A likely cause of visual inaccuracies is when vertices are moved a 
given distance from the plane, they share edges with other vertices whose distance to the plane is less than 
the movement distance. This will cause edges that previously pointed towards the plane to now point away 
from it (or vice-versa), which in the best case will introduce new concavities into the mesh, and in the worst 
case will cause the extrusion away from the plane to crease back over other geometry, creating a visible fold 
around the edges of the slice. One way of mitigating this is to move all vertices within the movement distance 
from the cutting plane, instead of just the new vertices created along it. This will collapse all nearby vertices 
and edges onto a plane at the given distance from the cutting plane, eliminating any overlap. 

 CONCLUSION 

Of the conventional geometry cutting methods described, we believe the most suitable method to simulate 
bone cutting is Boolean subtraction operating on polygonal meshes. However, although Boolean subtraction 
provides an accurate cut, it is not suitable for use in real-time cutting. 

Therefore, using assumptions of how the cutting will be used to perform surgery, we proposed a 
simplification of the Boolean process that obtains the same result by slicing mesh geometry with two planes. 
A refinement of this planar slice technique using one plane allows the mesh to be cut without undergoing 
immediate visual modification. After the initial cut using this technique, the two sides of the mesh can be 
separated over the course of many frames simply by moving vertices, which is an operation fast enough to 
run at real-time interactive rates. 

Slicing along an infinite plane works well on convex meshes, but with concave meshes (especially those 
with multiple parallel protrusions, such as the bones of a foot) slicing this way will cause distant, unrelated 
parts of a mesh to be sliced if they happen to intersect the cutting plane. To overcome this limitation, we 
propose traversing the mesh by triangles that intersect the cutting plane to determine the set of relevant 
triangles. Furthermore, in order to detect if part of the mesh has been severed from the rest, a similar traversal 
algorithm can be used to find all contiguous groups of triangles. 
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