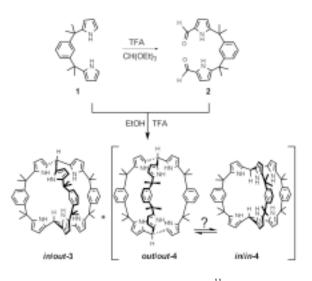

Synthesis, X-ray Structure and Anion Binding Properties of a Cryptand-Like Hybrid Calixpyrrole

Grazia Cafeo[§], Howard M. Colquhoun[◊], Angela Cuzzola[†], Mario Gattuso[§], Franz H. Kohnke[§]*, Luca Valenti[§], and Andrew J. P. White[‡]

 [§]Dipartimento di Chimica Organica e Biologica, Università di Messina, viale Ferdinando Stagno D'Alcontres 31, 98166
Messina (Italy), [§] Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK),
[†]Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa (Italy) and
[‡]Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London, South Kensington,

London, SW72AZ (UK)

franz@unime.it

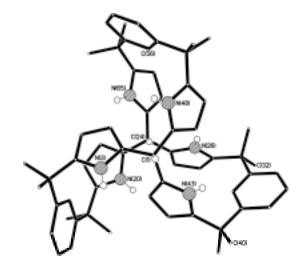

The novel cryptand in/out-3, containing two tripyrrolemethane units briged by three 1,3disopropylidenbenzene arms was readily synthesized by a convergent three-step synthesis. It binds fluoride by inclusion with excellent selectivity with respect to a number of other tested anions. The structure of the free receptor and that of its fluoride complex were investigated in solution by NMR spectroscopy. The solid state X-Ray structure of the free cryptand **3** was also determined.

Calixpyrroles are macrocycles containing pyrrole units linked to each other through quaternary carbon atoms (meso position). Since the discovery that calix[4]pyrrole is able to bind anions and small neutral molecules through the formation of hydrogen bonds,¹ these receptors have been the subject of intense study.² A large number of derivatives have been reported in which the anion-binding properties were modulated by varying the size of the macrocycle (*i.e.* by changing the number of pyrrole units or by the inclusion of other aromatic rings);³⁻⁴ by changing the nature of substituents at the β -positions of the pyrrole rings,⁵ by the use of substituents other than methyl at the *meso*-positions,⁶ or connecting two meso positions with an appropriate bridge (strapped calixpyrroles).⁷ Cryptand-like calixpyrrole can be considered a special case of strapped calixpyrrole in which the strap is the same as half of the macroring. To date, only a few

examples of such structures have been reported.^{8,9} The hostguest chemistry of the tripyrrolemethane moiety, that can be found at the poles of these cryptands, has also recently been investigated.¹⁰

Recently, we reported the synthesis of calix[2]benzo[4]pyrrole containing *m*-phenylene units^{4a} from the acid-catalysed condensation of **1** and acetone. As a development of this work, here we report the synthesis of a bicyclic[3.3.3]tribenzoesapyrrole (Scheme 1) inspired by the bicyclic[3.3.3]nonapyrrole described previously by Sessler.⁹

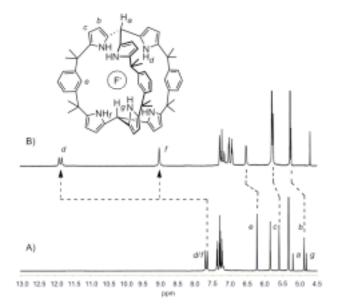
Scheme 1 Synthesis of *in/out*-bicyclic[3.3.3]tribenzoesapyrrole cryptand **3**. Stereoisomers *out/out*-**4** and *in/in*-**4** could not be found in the crude mixture.


Treatment of bis-pyrrole derivative 1¹¹ with triethyl-oformate/TFA gave the bis-formyl building block 2 in excellent yield. The acid-catalyzed condensation of 1 and 2, (stoichiometric ratio 2:1 respectively, in EtOH-TFA) can in principle yield two compounds: in/out-3 and the two conformers out/out-4 and in/in-4 which might be conformationally stable, i.e. incapable of interconversion by, for example, passage of one 'strap' into the cavity of the macroring defined by the other two bridges. However, only one cryptand-like compound was isolated from this reaction. The ¹H and ¹³C NMR spectra were consistent with the *in/out* configuration of the methyne meso-like hydrogen atoms and a C_{3v} time-averaged symmetry. In fact, the proton spectrum contained two different signals for the pyrrole-NH groups (δ 7.64 and 7.66 ppm respectively), and two AB systems for the pyrroles β-CH (δ 4.98, 5.65, and 5.40, 5.86 ppm). The mesolike methyne protons appeared as two singlets (& 4.82 and 5.22 ppm). These chemical shifts are analogous to those observed for the *in*-proton in the bicyclo[3.3.3]nonapyrrole derivative9 and for the methyne proton of the 'free' tripyrrolemethane unit¹⁰ respectively. Finally, the mphenylene CH protons appear as four (and not three) different resonances because the molecule does not contain an 'equatorial' plane of symmetry. These features rule out compounds 4 in which only one type of meso-like methyne protons are present and in which the pyrrole unis at the two 'polar caps' are equivalent.

Crystals of bicyclic macrocycle in/out-3 were obtained from acetone. The X-ray crystal structure (Figure 1) confirmed the *in-out* configuration assigned on the basis of NMR data. The 'in' methine CH [C(24)] points towards the cavity of the diametrically positioned cup-like tripyrrolemethane unit based around C(1). The structure is partly self-filling, with a distance of 4.5124(16) Å between C(1) and C(24). The molecule has approximate C_3 symmetry about the C(1)...C(24)vector, and as each of the three *m*-phenylene arms is folded in the same sense the molecule has conformational chirality. It is important to note however, that the molecule crystallised in a centrosymmetric space group and so there are equal numbers of both enantiomers present. Around each of the methine carbon atoms the three pyrrole rings are canted in the same sense such that the N-H groups are next to the methine proton, and the C(1)- and C(24)-based tripyrrolemethane moieties are staggered with respect to each other by ca. 41°.

The three included acetone molecules (two of which are disordered—see supporting information) are hydrogen bonded to the N-H atoms of the pyrrole units linked to C(1). The N···O, H···O distances (Å) and N-H···O angles (°) for the full or major occupancy orientations of the acetone molecules are 2.9303(16), 2.13 and 148 for the N(3)-H···O interaction, 2.894(5), 2.08 and 151 for the N(43)-H···O interaction, and 2.967(2), 2.18 and 146 for the N(48)-H···O interaction respectively. The other three N-H units are oriented towards the inside of the macrocycle and so are not available for any noteworthy intermolecular interactions.

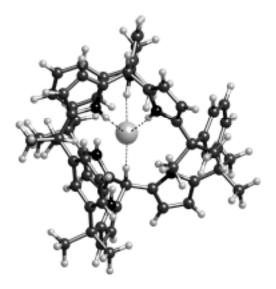
Two of the pyrrole rings and one of the *m*-phenylene rings are involved in intermolecular C–H··· π interactions with methyl groups.¹² One of the methyl hydrogen atoms of the ordered acetone molecule approaches the N(20)-based pyrrole ring with an H··· π separation of ca. 2.87 Å, and a C–H··· π angle of ca. 154°, the H··· π vector being inclined by ca. 70° to the ring plane. The N(65)-based pyrrole ring is approached by a hydrogen atom on C(40) in a neighbouring macrocycle [H··· π 2.97 Å, C–H··· π 141°, H··· π vector inclined by 82°], and the C(56)-based *m*-phenylene ring is approached by a hydrogen atom on C(32) in a different adjacent macrocycle [H··· π 3.04 Å, C–H··· π 115°, H··· π vector inclined by 77°].


Figure 1. The molecular structure of *in/out-3*.

Cryptand *in/out-3* was tested as a molecular receptor for several anions (F, Cl, NO_3 , HSO_4 , CH_3COO , H_2PO_4) as their TBA salts by ¹H-NMR titration experiments in CD_2Cl_2 .

Significant complexation induced shift (CIS) of the NH protons, that is typical for the formation of host-guest complexes with anions in the case of calixpyrroles,^{2c,4a,7a,7d} was observed only for the binding of fluoride.

Figure 2. Partial ¹H NMR (CD₂Cl₂, 500 MHz) spectra of: A) the free receptor *in/out*-**3**, and B) of TBA[*in/out*-**3**·F] complex including the most significant assignments and CISs.



This complex was found to be kinetically slow on the NMR time scale and its spectrum (see Figure 2) was consistent with a 1:1 stochiometry. The association constant (K 1562 \pm 163 M⁻¹) could easily be determined by integration of the resonances of free and complexed cryptand.¹³ In the complex, the NH protons appear as two signals of equal intensity, one as a doublet (δ 11.9 ppm, $J_{\rm HF}$ 40 Hz)^{2c} and one as a singlet (δ 9.00 ppm) respectively. Only the pyrrole AB system that in free *in/out-3* resonates at higher chemical shifts (δ 4.82 and 5.22 ppm) is dramatically affected by the complexation and it is shifted to low field. We believe that this is caused by a conformational rearrangement upon binding of fluoride, by which the tripyrrolemethane component having the 'out' methyne configuration adopts a perching conformation with all of the three NH protons pointing towards the center of the cryptand containing the fluoride ion. Consequently, the β pyrrole CH units that were partly filling the cryptand in the free receptor and hence shielded and resonating at unusually high fields (see also X-Ray structure, Figure 1), are ejected from the cavity and resonate at the usual δ values in the complex. Moreover, in the complex the three 'isolated' phenylene protons resonate as a singlet and are shifted to lower field ($\Delta \delta$ 0.35 ppm). These spectral features demonstrate that in/out-3 is capable of forming an inclusion complex with fluoride.

The formation of a 1:1 inclusion complex is also consistent with the observed high selectivity towards fluoride. The binding constant is surprisingly small, especially compared to the 1:1 binding constants reported previously for the tripyrrolemethane group with TBAF in more polar solvents (41000 and 5000 M⁻¹ in CD₃CN and DMSO-d₆ respectively).¹⁰

Unfortunately our attempts to obtain crystals of the n-TBA[*in/out-3*[·]F⁻] complex have not been successful to-date. However, further evidence for the above described mode of binding of fluoride by cryptand in/out-3 was provided by a modeling computational experiment. The crystallographically-determined structure of the in-out cryptand 3 was imported into Cerius2 (v.3.5, Accelrys Inc., San Diego), and the three pyrrole rings of the "out" unit were re-oriented to bring their NH groups inside the cavity. A fluoride ion was inserted into the cryptand and chargeequilibration was used to redistribute atomic charges within the complex. The system was then minimised (molecular mechanics, Dreiding II¹⁴ force field), resulting in a structure with an almost perfect 3-fold rotation axis through the fluoride ion. In the minimised structure, the cryptand forms three strong hydrogen bonds to fluoride via the re-oriented pyrrole NH groups. The H-bond parameters are very close to those reported in a previous paper,4a averaging ca. 2.97 Å (N…F), 2.01 Å (H…F) and 169° (N-H…F), with the fluoride ion perching symmetrically on the three NH groups. The "in" methyne CH unit also points directly at the fluoride ion, though making a somewhat longer contact, with parameters 3.44 Å (C···F), 2.36 Å (H···F) and 178° (C-H···F). This completes a "tetrahedral" coordination of the fluoride ion, with 3 close NH and one more distant CH unit forming the anion-binding pocket. The three remaining NH hydrogens, although oriented inwards, lie too far from the fluoride ion to form hydrogen bonds (average H - F = 3.06 Å, $N - H - F = 137^{\circ}$). The final model, with three bound and three non-bound NH hydrogens, is thus in excellent agreement with the ¹H NMR data.

Figure 3. The Dreiding II force field minimized molecular model of the complex [in/out-**3**·F], showing a geometry consistent with that assigned on the basis of its ¹H NMR spectrum.

Encouraged by these results we attempted alternative syntheses of the cryptands 4 which could be prepared together with in/out-3, by the acid-promoted condensation of 1,3-bis(1',1'-dimethylhydroxymethyl) benzene with tripyrrolyl-methane. However, these reactions were fruitless, and in spite of our efforts, cryptand(s) 4 remain elusive.

Experimental Section

1,3-Bis[1'-(pyrrol-2-yl)-1',1'-(dimethyl)methyl]benzene 1 was prepared as described in ref. 11.

1,3-Bis[1'-(pyrrol-2-carboxaldehyde-5-yl)-1',1'-(dimethyl)methyl]benzene 2.

Triethylorthoformate (2 mL) was added to a mixture of 1 (1 g, 3.4 mmol) and TFA (5 mL) at -10°C under Ar. The red mixture was stirred at this temperature for 5 min, then poured onto ice (600 mL) and EtOAc (300 mL). The organic phase was separated, washed with aq. NaHCO₃ (3 x 200 mL), dried (MgSO₄) and concentrated. The resulting red oil was subjected to column chromatography (SiO₂, hexane:EtOAc 3:1) to give a vellow solid as the main fraction which was characterized without further purification as 2: 72 % yield (0.85 g). mp 155-6 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.65 (s, 12H, CH₃), 6.18 (m, 2H, CH-Py), 6.88 (m, 2H, CH-Py), 6.99 (m, 1H, CH-Ar), 7.08 (m, 2H, CH-Ar), 7.23 (m, 1H, CH-Ar), 8.85 (sbr, 2H, NH), 9.37 (s, 2H, CHO); ¹³C NMR (125 MHz, CDCl₃): δ 29.6 (CH₃), 39.9 [C(CH3)2], 108.5, 121.7 (CH-Py), 123.8, 124.4, 128.6 (CH-Ar), 132.0, 147.5, 149.6 (Cg), 178.5 (CHO). Calculated for $C_{22}H_{24}N_{2}O_{2}M = 348.2$; found ESI-MS (+): $[M+H]^{+}$, 349.2 m/z. A good match between measured (accurate MS-ESI) and calculated isotopic pattern was obtained (see SI).

Cryptand in/out-3.

A mixture of 1 (0.60 g, 2.05 mmol) and 2 (0.36 g, 1.02 mmol) in EtOH dry (250 mL) was degassed by bubbling with Ar for 5 min., and TFA (1.57 ml, 20.5 mmol) was added under Ar at 0 °C. The mixture was stirred for 4h at RT, quenched by addition of aqueous NaHCO₃ (50 mL), concentrated and diluted with CH₂Cl₂ (50 mL). The organic layer was separated, washed with aq. NaHCO₃ (3 x 50 mL), dried (MgSO₄) and concentrated. The resulting brown oil was subjected to column chromatography (SiO₂, hexane:EtOAc 95:5) to give a orange solid as the main fraction which was crystallized from acetone to give in/out-3: 0.14 g, 15 %, mp 168 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.52 (s, 18H, CH₃), 1.66 (s, 18H, CH₃), 4.83 (m, 1H, CH-in), 4.98 and 5.65 (2 x m, 6H, CH-Py), 5.22 (m, 1H, CHout), 5.40 and 5.86 (2 x m, 6H, CH-Py), 6.22 (m, 3H, CH-Ar), 7.20 (m, 3H, CH-Ar), 7.27 (m, 3H, CH-Ar), 7.35 (m, 3H, CH-Ar), 7.64 (sb, 3H NH), 7.66 (sb, 3H, NH); ¹³C NMR (125 MHz, CDCl₃): 8 28.9, 30.1 (CH3), 36.6 (CH-in), 36.8 (CH-out), 39.0, 39.6 (C(CH₃)₂), 101.8, 104.2, 104.7, 105.0 (CH-Py), 120.9, 123.2, 126.6, 127.9 (CH-Ar), 130.0, 131.8, 137.2, 142.1, 148.3, 151.5 (Cq). Calculated for $C_{62}H_{68}N_6$ M = 896.5; found ESI-MS (+): $[M+H]^+$, 896.8 m/z. Elemental analysis gave inconsistent results because variable amounts of residual acetone solvent were retained after prolonged drying (see X-Ray structure).

Crystal data for *in/out-3*: $C_{62}H_{68}N_6 \cdot 3C_3H_6O$ M = 1071.46, monoclinic, $P_{21/n}$ (no. 14), a = 13.3422(2), b = 22.6427(4), c = 21.7077(3) Å, $\alpha = 102.5717(16)^{\circ}$, V = 6400.74(18) Å³, Z = 4, $D_{\rm c} = 1.112$ g cm⁻³, μ (Mo-K α) = 0.068 mm⁻¹, T = 173 K, yellow prisms, Oxford Diffraction Xcalibur 3 diffractometer; 20074 independent measured reflections ($R_{\rm int} = 0.0218$), F^2 refinement, R_1 (obs) = 0.0511, wR_2 (all) = 0.1328, 11778 independent observed absorption-corrected reflections [$|F_0| > 4\sigma$ ($|F_0|$), $2\theta_{\rm max} = 66^{\circ}$], 789 parameters. CCDC 768744

¹H NMR Complexation studies and titrations:

The n-TBA salts were dried in a vacuum oven for at least 24 h. Solvents were used as supplied in sealed ampoules, and care was taken to minimize exposure to moisture. The anions were added as measured volumes of solution (ca 0.035 M) in CD_2Cl_2 to a solution of *in/out-3* (0.0025 M) in the same solvent (0.7 mL), the total volume was kept constant by evaporation with anhydrous nitrogen. After each addition, the stoichiometric ratios between salts and in/out-3 were also redetermined from the resonance intensities of the host proton towards those of the TBA cation. Quantitative ¹H NMR integrations were obtained by the use of appropriate pulse delays in all cases. Slow exchange was observed in the titration of in/out-3 with F anion and the K values were determined from the ratios of the intensities of bound and free species for solutions having different ratios of cryptand and salt.¹³ Measurements were averaged and found reproducible to within 15%.

Acknowledgement. We thank the University of Messina for financial support.

Supporting Information Available:

Details of experimental procedures, ¹H and ¹³C NMR spectra for compounds **2** and **3** and ¹H NMR spectra used for determination of the association constant for the TBA[*in/out-***3**F] complex, MS spectra for the new compounds, X-Ray crystallographic file (CIF) for *in/out-***3**, atomic coordinates for the Dreiding II force field minimized molecular model of the complex [*in/out-***3**F]. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u> The CIF files are also available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K. [fax: _44(0) 1223 336033 or e-mail deposit@ccdc.cam.ac.uk], under CCDC reference 768744

References

- 1 (a) Gale, P. A.; Sessler, J. L.; Krål, V.; Lynch, V. J. Am. Chem. Soc. 1996, 118, 5140-5141; (b) Allen, W. E.; Gale, P. A.; Brown, C. T.; Lynch, V. M.; Sessler, J. L. J. Am. Chem. Soc. 1996, 118, 12471-12472.
- 2 (a) Sessler, J. L.; Camiolo, S.; Gale, P. A. Coord. Chem. Rev. 2003, 240, 17-55; (b) Gale, P. A.; Anzenbacher, Jr.; Sessler, J. L. Coord, Chem. Rev. 2001, 222, 57-102; (c) Gale, P. A.; Sessler, J. L.; Krål, V. Chem. Commun. 1998, 1-8, and references therein.
- 3 (a) Cafeo, G.; Kohnke, F. H.; Parisi, M. F.; Nascone, R. P.; La Torre, G. L.; Williams, D. J. Org. Lett. **2002**, *4*, 2695-2697; (b) Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Nascone, R. P.; White, A. J. P.; Williams, D. J. Chem. Eur. J. **2002**, *8*, 3148-3156; (c) Turner, B.; Shterenberg, A.; Kapon, M.; Suwinska, K.; Eichen, Y. Chem. Commun. **2002**, 404-405; (d) Turner, B.; Shterenberg, A.; Kapon, M.; Suwinska, K.; Eichen, Y. Chem. Commun. **2001**, 13-14; (e) Turner, B.; Botoshansky, M.; Eichen, Y. Angew. Chem., Int. Ed. **1998**, *37*, 2475-2478.

4 (a) Cafeo, G.; Kohnke, F. H.; White, A. J. P.; Garozzo, D.; Messina, A. *Chem. Eur. J.* **2007**, *13*, 649-656; (b) Sessler, J. L.; An, D.; Cho, W.-S.; Lynch, V.; Yoon, D.-W.; Hong, S.-J.; Lee, C.-H. *J. Org. Chem.* **2005**, *70*, 1511-1517; (c) Song, M. Y.; Na, H. K.; Kim, E. Y.; Lee, S. J.; Kim, K. 1.; Baek, E. M.; Kim, H. S.; An, D. K.; Lee, C. H. *Tetrahedron Lett.* **2004**, 45, 299-301; (d) Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Pistone Nascone, R.; White, A. J. P.; Williams, D. J. *Chem. Eur. J.* **2002**, *8*, 3148-3156.

5 (a) Sessler, J. L.; Roznyatovskiy, W.; Lynch, V. M. J. Porphyrins Phthalocyanines 2009, 13, 322-325; (b) Aydogan, A.; Sessler, J. L.; Akar, A.; Lynch, V. Supramol. Chem. 2008, 20, 11-21; (c) Levitskaia, T. G.; Marquez, M.; Sessler, J. L.; Shriver, J. A.; Vercouter, T.; Moyer, B. A. Chem. Commun., 2003, 2248-2249.

6 (a) Bruno, G.; Cafeo, G.; Kohnke, F. H.; Nicolò, F. *Tetrahedron* **2007**, *63*, 10003-10010; (b) Ji, X. K.; Black, D. St. C.; Colbran, S. B.; Craig, D. C.; Edbey, K. M.; Harper, J. B.; Willett, G. D. *Tetrahedron* **2005**, *61*, 10705-10712; (c) Woods, C. J.; Camiolo, S.; Light, M. E.; Coles, S. J.; Hursthouse, M. B.; King, M. A.; Gale, P. A.; Essex, J. W. J. Am. Chem. Soc. **2002**, *124*, 8644-8652; (d) Camiolo, S.; Gale, P. A. Chem. Commun. **2000**, 1129-1130.

7 (a) Lee, C. H.; Miyaji, H.; Yoon, D. W.; Sessler, J. L. Chem. Commun. 2008, 24-34; (b) Jeong, S. D.; Yoo, J.; Na, H. K.; Chi, D. Y.; Lee, C. H. Supramol. Chem. 2007, 19, 271-275; (c) Cafeo, G.; Kaledkowski, A.; Kohnke, F. H.; Messina, A. Supramol. Chem. 2006, 18, 273-279; (d) Lee, C.-H.; Lee, J.-S.; Na, H.-K.; Yoon, D.-W.; Miyaji, H.; Cho, W.-S.; Sessler, J. L. J. Org. Chem. 2005, 70, 2067-2074; (e) Lee, C.-H.; Na, H.-K.; Yoon, D.-W.; Won, D.-H.; Cho, W.-S.; Lynch, V. M.; Shevchuk, S. V.; Sessler, J. L. J. Am. Chem. Soc. 2003, 125, 7301-7306.

8 (a) Fox, O. D.; Rolls, T. D.; Drew, M. G. B.; Beer, P. D. *Chem. Commun.* **2001**, 1632-1633; (b) Beer, P. D.; Cheetham, A. G.; Drew, M. G. B.; Fox, O. D.; Hayes, E. J.; Rolls, T. D. *Dalton Trans.* **2003**, 603-611.

9 Bucher, C.; Zimmerman, R. S.; Lynch, V.; Sessler, J. L. J. Am. Chem. Soc. 2001, 123, 9716-9717.

10 Denekamp, C.; Suwinska, K.; Salman, H.; Abraham, Y.; Eichen, Y.; Ari, J. B. Chem. Eur. J. 2007, 13, 657-665.

11 Sessler, J. L.; Cho, W. -S.; Lynch, V.; Kràl, V.; Chem. Eur. J. 2002, 8, 1134-1143.

12 For the purposes of these calculations all of the parent C–H distances have been normalised to 0.96 Å.

13 Hirose, K. J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 193-209.

14 Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897-8909.