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Abstract

Modal Transition Systems (MTS) are an extension of Labelled Transition Systems

(LTS) that have been shown to be useful to reason about system behaviour in the

context of partial information. MTSs distinguish between required, proscribed

and unknown behaviour and come equipped with a notion of refinement that sup-

ports incremental modelling where unknown behaviour is iteratively elaborated

into required or proscribed behaviour.

A particularly useful notion in the context of software and requirements engineer-

ing is that of “merge”. Merging two consistent models is a process that should

result in a minimal common refinement of both models where consistency is de-

fined as the existence of one common refinement. One of the current limitations

of MTS merging is that a complete and correct algorithm for merging has not

been developed. Hence, an engineer attempting to merge partial descriptions may

be prevented to do so by overconstrained algorithms or algorithms that introduce

behaviour that does not follow from the partial descriptions being merged. In

this thesis we study the problems of consistency and merge for the existing MTSs

semantics - strong and weak semantics - and provide a complete characterization

of MTS consistency as well as a complete and correct algorithm for MTS merging

using these semantics.

Strong and weak semantics require MTS models to have the same communicating

alphabet, the latter allowing the use of a distinguished unobservable action. In

this work we show that the requirement of fixing the alphabet for MTS seman-

tics and the treatment of observable actions are limiting if MTSs are to support

incremental elaboration of partial behaviour models. We present a novel observa-

tional semantics for MTS, branching alphabet semantics, inspired by branching

LTS equivalence, which supports the elaboration of model behaviour including

the extension of the alphabet of the system to describe behaviour aspects that

previously had not been taken into account. Furthermore, we show that some

unintuitive refinements allowed by weak semantics are avoided, and prove a num-

ber of theorems that relate branching refinement with alphabet refinement and

consistency. These theorems, which do not hold for other semantics, support the

argument for considering branching alphabet as a sound semantics to support

behaviour model elaboration.
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Chapter 1

Introduction

1.1 Motivation

The requirements and design of software systems are amenable to analysis through

the construction of behaviour models, that is, formal operational descriptions of

the intended system behaviour. This corresponds to the traditional engineering

approach to construction of complex systems.

The major advantage of using models is that they can be studied to increase confi-

dence in the adequacy of the product to be built. In particular, behaviour models

used to describe software systems can be analysed and mechanically checked for

properties in order to detect design errors early in the development process and

allow less costly fixes [17].

Widely adopted formal methods that have proved to be successful in achieving

these goals include Labelled Transition Systems (LTSs) [58] and Communicating

Sequential Processes (CSP) [44]. These methods have been applied to the analysis

19



20 Chapter 1. Introduction

and specification of distributed systems [16, 36, 69, 78] and security protocols [81,

68], among other applications.

The use of models as an integral part of the software development process is at

the core of Model Driven Software Engineering (MDSE) [80, 8], an alternative

approach to the more traditionally used techniques in the industry. This method-

ology proposes a shift from a code-centric towards a model-centric paradigm for

software development.

Although there are clear advantages that stem from the use of an MDSE ap-

proach, the adoption of such methodologies by practitioners has been slow. This

is in part due to a mismatch between most widely adopted software development

techniques and a fundamental characteristic of traditional behaviour models.

On one side, as part of the essence of widely used iterative and incremental soft-

ware development processes, the available system descriptions tend to be of a

partial nature leaving some aspects of the desired behaviour undefined until a

more advanced stage of the process is reached. Consequently, when the advan-

tages of constructing models are more rewarding the complete system description

is not available.

On the other side, semantics of traditional behaviour models such as LTSs assume

a complete description of the system behaviour up to some level of abstraction,

and hence cannot support reasoning in the presence of partial behavioural infor-

mation. To support such reasoning, a behaviour model should allow at design

time unknown aspects of system behaviour to be modelled. Moreover, it should

provide a notion of elaboration of partial descriptions into more comprehensive

ones.
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Operational models that allow explicit modelling of unknown aspects of sys-

tem behaviour are referred to as partial behavioural models. A number of

such modelling formalisms exist, including Partial Labelled Transition Systems

(PLTSs) [85], multi-valued state machines [23], Mixed Transition Systems [22],

multi-valued Kripke structures [35, 11, 14]), and Modal Transition Systems (MTSs)

[66].

Using partial behavioural models we can describe what is already known about

the desired behaviour of the system at an early stage of the software development

process, and analyse it in spite of not having complete knowledge of the expected

system behaviour. In particular, we can distinguish between positive, negative,

and unknown behaviours: positive behaviour refers to the behaviour that the

system is expected to exhibit, negative behaviour refers to the behaviour that

the system is expected to never exhibit, and unknown behaviour could become

positive or negative, but the choice has not yet been made.

Further on, once all behavioural information is available, we will need a notion

of conformance which defines whether a given non-partial behaviour model con-

forms to the required behaviour described in the partial model. If this is the case,

we say that the total model is an implementation of the partial model. There-

fore, a partial behaviour model can be thought of as specifying a set of possible

implementations. These implementations arise from making different decisions

on those aspects in which the model was partial. Moreover, if the notion of con-

formance can be shown formally to preserve certain properties, then all analysis

previously done over the partial models will also be valid for the implementation.

Refinement [66] is a generalization of the notion of implementation that allows us

to establish when one partial model conforms to another one. Intuitively, model
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N is a refinement of model M if and only if the set of implementations of model

N is a subset of the implementations of M . This notion allows us to start with

an immature model and gradually and repeatedly evolve it while new knowledge

is gathered until the complete system description is reached.

Another particularly useful notion in the context of software and requirements

engineering is that of merge [66, 90]. Merging of operational behaviour models is

similar to conjunction of declarative descriptions. The implementations described

by a merge are those that provide all the required behaviour and that prevent

any of the prohibited behaviour of the models being merged. In other words,

merging attempts to build a new model that represents the intersection of the

sets of implementations described by the models being merged.

In this thesis we concentrate on MTSs, a formalism with characteristics that make

it an attractive option to be adopted by the industry when undertaking an MDSE

approach. As already discussed, being a partial behaviour modeling formalism,

MTSs are suitable to be used as part of an iterative and incremental software

development process. Furthermore, the existence of several synthesis techniques

for various specification language styles, such as Message Sequence Charts and

Sequence Diagrams, Use Cases and Goal Models, which have been developed for

MTSs [84, 89], represents a significant advantage when considering the potential

uptake of these models as part of an MDSE approach. Moreover, as MTSs are an

extension of LTSs, they benefit from existing code generating engines [57] which

provide a key toolset for these models to be successfully adopted in practice by

the software industry.

Although MTSs have been studied extensively, and a number of theoretical re-

sults and practical algorithms to support reasoning and elaboration of partial
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behaviour models expressed in this formalism have been published [51, 66, 62,

65, 33, 88, 89], there still exist several key open questions that have impacted

the potential use of MTSs by software engineers. In particular, the problem of

developing a complete and correct algorithm for merging MTSs has not been

solved. Moreover, existing MTS semantics, strong and weak [62], assume that

alphabets of the partial models being considered are the same. For partial models

to support the elaboration of behaviour models in practice, an assumption that

requires fixing the scope, i.e., the set of relevant observable actions, of all models

a priori is too strong. In order to support widely used iterative, incremental soft-

ware development practices, the semantics of partial behaviour models and the

notion of refinement associated with it should allow for extending the alphabet

of partial models as they are elaborated. As a starting point for this thesis we

have focused on answering those open questions.

1.2 Motivating Example

In this section, we introduce a motivating example which we will also use as a

running example throughout this thesis.

Consider a specification of software controlling a bank ATM. The specification

may consist of a number of use cases exemplifying how the ATM is to be used

and some properties it is expected to satisfy. An example use case is “when a

user has successfully logged in, i.e., inserted a valid card and keyed in a valid

password, the user must be offered the following choices: withdraw cash, balance

slip or log out”. Some ATMs might have an internal timeout, so that after a

period of inactivity the system can log-out the user, or optionally ask the user if
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A :

0 1 2

3

login?

fail?
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recoverCard

login
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success?

exit success

fail?
login?

recoverCard
retainCard

fail?

fail?

balance,
topup?,
withdraw

τ?
moreTime?

exit

Figure 1.1: MTS and LTS models for an ATM.

more time is required. In addition, some ATMs may provide an optional feature

of topping up a pay-as-you-go mobile phone. A possible safety property of an

ATM is to prohibit withdrawals, balances and top-ups if the user is not logged

in.

An operational model, in the form of an MTS that captures the above use case

and property, is depicted in model A in Figure 1.1. Here, the initial state of the

model is labelled 0, transitions with labels ending with a question mark represent

possible but not required behaviour, while the rest of the transitions represent

required behaviour. If the system has provisions for logging in the user and

the login is successful, the user (in state 2) must be given a choice to withdraw

cash, obtain a balance or exit. The top-up feature is optional. The time out is

an internal event and therefore not visible to the user, so it is modelled with a

maybe τ transition to represent that is an unobservable transition and that the

system might or might not have this behaviour. No other behaviour is allowed.
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Another important property of an ATM is that a user must be allowed to attempt

login at least once and is not allowed to attempt to login after N failed attempts.

Model B in Figure 1.1 depicts an MTS with N = 2. Note that this property does

not prescribe the exact number of failed attempts after which the ATM must

retain the card; hence, model B allows a card to be retained after one or two

failed logins but forbids a third login attempt by retaining the bank card. For

the user to attempt a login once more, she must recover her card from her bank

branch.

ATM models do not have to be manually produced by an engineer. It might be

more desirable to generate them automatically from specifications expressed in

message sequence charts [54], use case diagrams [56] and structured declarative

specifications such as [26]. MTS synthesis techniques have been studied [88, 89]

but are beyond the scope of this work. The advantage of a synthesis approach

is that it allows specifying different aspects of a system using different languages

which depend on the nature of properties being expressed and preferences of the

modeller. In addition, each synthesized operational model can be used to validate

a specific aspect of the system-to-be.

Having validated models A and B, it would be desirable to compose them to un-

derstand the implications of building a system that conforms to the requirements

expressed in both models. Model C in Figure 1.1 precisely captures the behaviour

prescribed by these models; it merges the required and forbidden behaviour of

both models. How can such a model be constructed automatically? What are its

properties? How can we guarantee that it preserves the semantics of the models

being composed? How to treat models with different alphabets? In this work,

we answer these questions.
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1.3 Contributions

In this thesis we analyse from a Software Engineering point of view Modal Transi-

tion Systems (MTSs) as a formalism to model and elaborate system behaviour in

a context where initially only partial knowledge of system behaviour is available,

and iteratively this knowledge is expanded.

We first analyse MTS and its Strong Semantics as a ’platform’ for behavioural

model elaboration and find that some key theoretical questions were still open

or only partially solved. In particular, we contribute to the theory for strong

semantics of MTS with a proof that strong refinement is incomplete1; we char-

acterise consistency between two models under strong semantics and extend this

characterisation to a set of an arbitrary number of models; we analyse the merge

operator defined as the least common refinement and prove that some models

might not have any minimal common refinement although they are consistent.

For consistent models that have a minimal common refinement we provide a cor-

rect and complete algorithm to compute the merge. We present and discuss the

benefits of model elaboration using MTS and strong semantics, and conclude

that although it has a number of convenient qualities, the requirement of a fixed

alphabet is limiting when using this semantics as the basis for behavioural model

elaboration.

In order to overcome this limitation we present a novel semantics for MTS called

weak alphabet, which is an extension of weak semantics for MTS. This new se-

mantics enables the modeller to increase the scope of the description as new

concepts are identified, by augmenting the alphabet of the models and thus low-

ering the level of abstraction during the elaboration process. Furthermore, we

1This result was also presented in [64]
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extend the previously introduced consistency characterisation for weak semantics

and present sufficient conditions for consistency in weak alphabet semantics. We

also develop an extension of the merge algorithm for weak and weak alphabet

semantics and discuss its strengths, limitations and implications. Having intro-

duced weak alphabet semantics, we review its adequacy for model elaboration

and find that even though it can support the desired engineering process, this

semantics allows some counter-intuitive refinements during the elaboration pro-

cess in cases where it does not adequately preserve the branching behaviour. We

therefore consider the desired behaviour a refinement should display in order to

capture the intuition modellers may have of conformance and present a further

new semantics, branching alphabet semantics. This semantics draws from desir-

able characteristics of both weak alphabet and strong semantics, i.e. it allows for

extending the alphabet while preserving the branching structure. We extend the

characterisation of consistency and the merge algorithm to apply to branching

alphabet semantics, and prove that this semantics presents a series of desirable

properties that do not hold for weak alphabet semantics, thus supporting the ar-

gument for considering branching alphabet semantics as a sound basis for model

elaboration.

In addition, we study a series of algebraic properties of merge and parallel compo-

sition and their relationship with refinement, providing results that are essential

to support compositional construction of system behaviour models. Also, we

develop a software tool to verify the different refinement and implementation no-

tions analysed in this work, and to compute the merge algorithm presented for

the different semantics.

Finally, we exemplify the utility of the theoretical results and algorithms pre-
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sented in this thesis by applying them to support behavioural model elaboration

in the context of a case study.

The findings presented in this thesis are based on and extend several published

papers [34, 13, 25, 33, 24, 30, 31]. This thesis should be regarded as the definitive

account of this work.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we provide the

theoretical background for the rest of the work. In Chapter 3, we revisit Strong

Semantics, present a characterisation for consistency and introduce a new merge

algorithm. In Chapter 4, we present Weak Alphabet Semantics and provide an

analysis of its adequacy for model elaboration. In Chapter 5, we introduce and

validate Branching Alphabet Semantics. Chapter 6 presents algebraic properties

of merge. Chapter 7 provides a brief discussion on the tool we have developed

for computing MTS refinement and merge, while Chapter 8 presents a case study

illustrating our results and the use of the tool. Finally, in Chapter 9 we present

our conclusions.



Chapter 2

Background

In this chapter we present the theoretical background for this thesis. In particular,

we recall definitions and fix notation for Labelled Transition Systems (LTS),

related equivalences and standard refinements, and Modal Transition Systems

(MTS).

2.1 Labelled Transition Systems

Labelled Transitions Systems provide a basis for modelling and analysing system

behaviour at the software architecture level. An LTS describes how a system com-

ponent interacts with its environment through shared events. LTSs are equipped

with a distinguished event, τ , that models any internal computation that is not

observable by the environment.

Definition 2.1.1 (Labelled Transition Systems). Let States be a universal set of

states, Act be a universal set of observable action labels, and let Actτ = Act∪{τ}.

29
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A labelled transition system (LTS) is a tuple P = (S, L,∆, s0), where S ⊆ States

is a finite set of states, L ⊆ Actτ is a finite set of labels, ∆ ⊆ (S × L × S) is

a transition relation between states, and s0 ∈ S is the initial state. We use

αP = L \ {τ} to denote the communicating alphabet of P .

Figure 2.1 shows a graphical representation of two LTSs. Given an LTS P =

(S, L,∆, s0) we say P transitions on ℓ to P ′, denoted P
ℓ
−→ P ′, if P ′ = (S, L,∆, s′0)

and (s0, ℓ, s
′
0) ∈ ∆. Similarly, we write P

ℓ̂
−→ P ′ to denote that either P

ℓ
−→ P ′ or

(ℓ = τ and P = P ′) are true. We use P
ℓ

=⇒ P ′ to denote P (
τ
−→)∗

ℓ
−→ (

τ
−→)∗P ′.

Let w = w1, . . . , wk be a word over Actτ . Then P
w
−→ P ′ means that there exist

P0, . . . , Pk such that P = P0, P
′ = Pk, and Pi

wi+1

−→ Pi+1 for 0 ≤ i < k. We write

P
w
−→ to mean ∃P ′ · P

w
−→ P ′. Finally, we extend =⇒ to words in the same

way as we did for −→.

2.1.1 Equivalences

Consider that ℘ is the universe of all LTSs.

Definition 2.1.2 (Strong Bisimulation Equivalence [77, 70]). A strong bisimu-

lation relation R is a binary relation on ℘ such that if (P,Q) ∈ R then:

1. (∀ℓ, P ′)(P
ℓ
−→ P ′) =⇒ (∃Q′ ·Q

ℓ
−→ Q′ ∧ (P ′, Q′) ∈ R)

2. (∀ℓ, Q′)(Q
ℓ
−→ Q′) =⇒ (∃P ′ · P

ℓ
−→ P ′ ∧ (P ′, Q′) ∈ R)

Two LTSs P and Q are strong equivalent, written P ∼ Q, if αP = αQ and there

exists a strong bisimulation relation R such that (P,Q) ∈ R.

This notion of Bisimulation Equivalence was originally presented by Park [77] in

1981 and used by Milner in [43, 70] and in a different formulation was already
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presented by Milner [42] in 1980. Informally, two models are strong equivalent

if their initial states are strong equivalent, and two states are strong equivalent

if, whenever one action can be executed in one of them leading to a state B, the

other can execute the same action reaching a state B′, where B′ is again strong

equivalent to B. This equivalence does not distinguish τ transitions as special

or unobservable actions. A property of this equivalence is that it respects the

branching structure of processes [92].

Consider the LTSs shown in Figure 2.1. These two models are an example of

strong equivalent models, and the bisimulation relation between them is

R = {(a0, b0), (a1, b1), (a2, b2), (a0, b3), (a1, b4), (a2, b5)}.

On the other hand, Figure 2.2 shows an example of two LTSs that are not strong

equivalent. There does not exist a strong bisimulation relation for these models

because state 1 of the model in Figure 2.2(a) cannot be related to any state of

the model in Figure 2.2(b).

0

1 2

a

b c

(a)

0

1 2

3

4 5

a

ab c b c

(b)

Figure 2.1: Example of strong equivalent models.

Definition 2.1.3 (Weak Bisimulation Equivalence [72]). A weak bisimulation

relation R is a binary relation on ℘ such that if (P,Q) ∈ R then:
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Figure 2.2: Example of not strong equivalent models.

1. (∀ℓ, P ′)(P
ℓ
−→ P ′) =⇒ (∃Q′ ·Q

ℓ̂
=⇒ Q′ ∧ (P ′, Q′) ∈ R)

2. (∀ℓ, Q′)(Q
ℓ
−→ Q′) =⇒ (∃P ′ · P

ℓ̂
=⇒ P ′ ∧ (P ′, Q′) ∈ R)

Two LTSs P and Q are weak equivalent, written P ≈w Q, if αP = αQ and there

exists a weak bisimulation relation R such that (P,Q) ∈ R.

This equivalence compares the observational behaviour of models ignoring silent

actions (τ -transitions). Some authors call this equivalence observational equiv-

alence, but we are going to use this expression to refer to any equivalence that

considers τ -transitions as silent actions. Weak bisimulation equivalence is coarser

than strong equivalence and does not preserve the branching structure of pro-

cesses as it is shown in [91].

Figure 2.3 shows an example of two models that are not strong equivalent but

weak equivalent. The weak bisimulation relation between them is

R = {(a0, b0), (a1, b1), (a2, b1), (a3, b3)}.

Definition 2.1.4 (Branching Bisimulation Equivalence [93]). A branching bisim-

ulation relation R is a binary relation on ℘ such that if (P,Q) ∈ R then:
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Figure 2.3: Example of weak equivalent models that are not strong equivalent.

1. (∀ℓ, P ′)(P
ℓ
−→ P ′) =⇒ (∃Q′, Q′′ ·Q

τ̂
=⇒ Q′ ℓ̂

−→ Q′′ ∧ (P,Q′), (P ′, Q′′) ∈ R)

2. (∀ℓ, Q′)(Q
ℓ
−→ Q′) =⇒ (∃P ′, P ′′ · P

τ̂
=⇒ P ′ ℓ̂

−→ P ′′ ∧ (P ′, Q), (P ′′, Q′) ∈ R)

Two LTSs P and Q are branching equivalent, written P ≈b Q, if αP = αQ and

there exists a branching bisimulation relation R such that (P,Q) ∈ R.

Lemma 2.1.5 (Stuttering Lemma [93]). Let R be the largest branching bisimu-

lation between P and Q and (r, s) ∈ R. If r
τ
−→ r1

τ
−→ · · ·

τ
−→ rm

τ
−→ r′(m ≥ 0)

is a path such that (r′, s) ∈ R then (ri, s) ∈ R ∀ i ≤ m.
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Figure 2.4: Example of weak but not branching equivalent models.
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Branching bisimulation equivalence is an observational equivalence coarser than

strong equivalence and finer than weak bisimulation equivalence. This equiva-

lence is the coarsest equivalence that preserves the branching structure of pro-

cesses [92]. The Stuttering Lemma will have an important role in the results we

present in section 5.2.2.

Figure 2.4 shows an example of two models that are weak equivalent but not

branching equivalent. If we make a comparative analysis of models (a) and (b)

we can see that while from the initial state in model (a) we can take transition

a in only one way, in model (b) there are two different possibilities to take this

transition from state 0. One of those two possibilities leads to a state from where

both b1 and b2 transitions can be taken. This is the same that happens if we take

transition a in model (a). However, if from the initial state in model (b) we take

transition a leading to state 2 then the possibility of taking b1 is discarded before

having the chance of taking it, which is never the case in model (a). Therefore,

we can conclude that these two models do not have the same branching structure.

2.1.2 Refinements

In the previous section we presented a series of equivalences over LTSs. While all

these equivalences determine whether two models have or do not have the same

behaviour, they differ in the criteria used to interpret the behaviour given by a

model.

In the context of evolving a software model we need to be able to add further

information to the model while more knowledge regarding the system is acquired.

This implies that we do not only need to be able to assess if two models are
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equivalent or not but to define if a model with more information actually refines

a previous one. In order to do so, we will need to find a suitable semantics that

establishes an order between models.

In this section we present two different refinement notions over LTSs and we

analyse why they do not allow us to evolve a model according to our expectations.

Definition 2.1.6 (Strong Simulation [43]). A strong simulation relation R is a

binary relation on ℘ such that if (P,Q) ∈ R then:

1. (∀ℓ, P ′)(P
ℓ
−→ P ′) =⇒ (∃Q′ ·Q

ℓ
−→ Q′ ∧ (P ′, Q′) ∈ R)

Given LTSs P and Q, we say that Q simulates P , written P ⊑s Q, iff αP = αQ

and there exists a strong simulation relation R such that (P,Q) ∈ R.

While Strong Bisimulation defines an equivalence, Strong Simulation defines a

preorder over LTSs. Note that P ∼ Q =⇒ P ⊑s Q ∧ Q ⊑s P . A

classic example that ilustrates that the reciprocal of this property does not hold

is presented in [16].
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Figure 2.5: Example of LTS refinement by simulation.

A standard refinement notion between LTSs considers that P refines Q if P

simulates Q. i.e. Q ⊑s P . One of the properties that characterize this refinement



36 Chapter 2. Background

is that it reduces the degree of non-determinism. With this refinement we know

that any behaviour of Q is a valid behaviour of P . However, using this semantics

it is not possible to ensure that a forbidden behaviour for the system which is

captured in Q will be preserved in the refined model P . For example, the model

shown in figure 2.5(b) refines the one shown in figure 2.5(a) and it can be easily

seen that model 2.5(b) has the possibility of taking transition c after taking a in

spite of this being forbidden in model 2.5(a). Moreover, a model consisting of a

state with a self-transition for every element of the alphabet is a refinement of

any other model under this semantics.

On the other hand, if we consider that P refines Q if Q simulates P , i.e. P ⊑s Q,

we know that any behaviour of P is a valid behaviour of Q, but not the other

way around. Therefore, if Q determines that certain behaviour is forbidden in

a system we know that it will also be forbidden by P since any behaviour in

P can be simulated by Q. However, using this semantics it is not possible to

ensure that a desired behaviour for the system which is depicted in Q will be

preserved in the refined model P . For example, the model shown in figure 2.5(a)

refines the one shown in figure 2.5(b) and it can be easily seen that model 2.5(a)

loses the possibility of taking transition c after taking transition a. Moreover, a

model consisting of a state with no transitions is, considered by this semantics,

a refinement of any other model.

Definition 2.1.7 (Traces). A trace is a sequence (finite or infinite) w ∈ Act∗.

Given an LTS P , the set of traces of P is defined as follows:

TRACES(P ) = { w ∈ Act∗ | P
w
−→ }
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Definition 2.1.8 (Trace Refinement [4]). Let P and Q be LTSs. We say that Q

is a trace refinement of P , written P ⊑tr Q, iff TRACES(P ) ⊇ TRACES(Q).

Suppose an LTS model P describes the knowledge we have at a certain stage of

the development process. Then, according to trace refinement semantics, an LTS

model Q will be a valid implementation of P iff the set of traces of Q is a subset

of the traces of P . Therefore, P determines the set of all possible traces for the

system but cannot guarantee any of them. This means that while P describes

the “maximum” behaviour possible for the implementations it cannot assure any

required behaviour will be preserved. For example, according to this semantics, a

model consisting of only one state and no transitions is a possible implementation

of any system. Moreover, the definition of trace refinement is such that the

inclusion of any trace is independent from the inclusion of other traces (except

for its prefixes). Consequently, using this semantics it is not possible to describe

a requirement such as ‘if the implementation has this specific behaviour then it

must have this other behaviour’.

Bearing in mind our aim of supporting the evolution of behavioural models hav-

ing partial information as a starting point and enriching the model while more

requirements are gathered, the refinements presented in this section have the fol-

lowing limitation: they consider the less refined model to completely describe

either the maximum or the minimum allowed behaviour for the system. In the

first case all possible behaviour is specified whereas in the second case the model

describes all the required behaviour for the system. This means only one bound

is specified, i.e. either the lower or upper bound, and hence the other bound

remains open. This limitation is not due to the analysed refinement notions in

themselves, failures refinement [82] and testing refinement [18], for example, have
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similar problems. In fact, this limitation is an intrinsic characteristic of LTS mod-

els. Specifically, using these models it is not possible to identify which aspects

of the system have already been defined and which still have to be refined. This

is true both for the expected and the forbidden behaviour. For this reason we

will consider MTSs since they allow us to explicitly specify which behaviour is

required, possible or forbidden.

2.2 Modal Transition Systems

Definition 2.2.1 (Modal Transition Systems [66]). A modal transition system

(MTS) M is a structure (S, L,∆r,∆p, s0), where ∆r ⊆ ∆p, (S, L,∆r, s0) is an

LTS representing required transitions of the system and (S, L,∆p, s0) is an LTS

representing possible (but not necessarily required) transitions of the system. We

use αM = L \ {τ} to denote the communicating alphabet of M .

Figure 2.6 shows a graphical representation of an MTS. Transition labels that

have a question mark are those in ∆p − ∆r. We refer to these transitions as

“maybe” transitions, to distinguish them from required ones (those in ∆r). In

this example, the transition from state 1 to 3 is a maybe transition by c, while

the other two transitions are required. The labels of the states have no meaning

and are used for reference only. In the rest of this thesis we will denote the

initial state with the label 0. Given an MTS M = (S, L,∆r,∆p, s0) we say M

transitions on ℓ through a required transition to M ′, denoted M
ℓ
−→r M ′, if

M ′ = (S, L,∆r,∆p, s′0) and (s0, ℓ, s
′
0) ∈ ∆r, and M transitions through a possible

transition, denoted M
ℓ
−→p M ′, if (s0, ℓ, s

′
0) ∈ ∆p. Similarly, for γ ∈ {r, p} we
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write M
ℓ̂
−→γ M ′ to denote that either M

ℓ
−→γ M ′ or (ℓ = τ and P = P ′) are

true, and we use P
ℓ

=⇒γ P ′ to denote P (
τ
−→γ)

∗ ℓ
−→γ (

τ
−→γ)

∗P ′.

Note that LTSs are a special type of MTSs that do not have maybe transitions,

i.e. ∆r = ∆p

0

1

2 3

a

b c?

Figure 2.6: Example of an MTS.

2.2.1 Notation

Given an MTS M = (S,A,∆r,∆p, s0) and an action ℓ ∈ Act, we say that:

• M has a required transition on ℓ (denoted M
ℓ
−→r M

′) iff (s0, ℓ, s
′
0) ∈ ∆r

and M ′ = (S,A,∆r,∆p, s′0).

• M has a possible transition on ℓ (denoted M
ℓ
−→p M ′) iff (s0, ℓ, s

′
0) ∈ ∆p

and M ′ = (S,A,∆r,∆p, s′0).

• M has a maybe transition on ℓ (denoted M
ℓ
−→m M ′) iff (s0, ℓ, s

′
0) ∈ ∆p,

(s0, ℓ, s
′
0) 6∈ ∆r and M ′ = (S,A,∆r,∆p, s′0).

• We write M
ℓ
−→γ to mean ∃M ′ ·M

ℓ
−→γ M ′, where γ ∈ {r, p}.

• M prohibits ℓ (denoted M
ℓ

6−→) iff M does not have a possible transition

on ℓ, i.e., ∀s′0 ∈ S · (s0, ℓ, s′0) 6∈ ∆p.
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Let w = l1, . . . , lk be a word over Act∗τ . We use the following notation assuming

ℓ ∈ Actτ :

• For γ ∈ {r, p}, M
w
−→γ M ′ denotes M

l1−→γ . . .
lk−→γ M ′.

• For γ ∈ {r, p}, M
ℓ̂
−→γ M ′ denotes either that M

ℓ
−→γ M ′ or that M = M ′

and ℓ = τ .

• For γ ∈ {r, p}, M
ℓ

=⇒γ M ′ denotes M(
τ
−→γ)

∗(
ℓ
−→γ)(

τ
−→γ)

∗M ′. Similarly,

M
ℓ̂

=⇒γ M ′ denotes M(
τ
−→γ)

∗(
ℓ̂
−→γ)(

τ
−→γ)

∗M ′.

• For γ ∈ {r, p}, we extend =⇒γ to words the same way as we do −→γ.

• For γ ∈ {r, p}, we write s
ℓ
−→γ s′ to denote Ms

ℓ
−→γ Ms′ (and similarly,

for =⇒γ).
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Revisiting Strong Semantics

3.1 Definition

When considering LTS, strong semantics refers to the semantics given by strong

bisimulation. One of the particularities of this semantics is that it lacks a notion

of unobservable or internal action, i.e. τ -labelled transitions. Larsen has extended

this semantics over MTS [66].

Strong refinement of MTS captures the notion of elaboration of a partial descrip-

tion into a more comprehensive one, in which some knowledge over the maybe

behaviour has been gained. It can be seen as being a “more defined than” relation

between two partial models. Intuitively, refinement in MTS is about converting

maybe transitions into required transitions or removing them altogether: an MTS

N refines M if N preserves all of the required and all of the proscribed behaviours

of M . Alternatively, an MTS N refines M if N can simulate the required be-

haviour of M , and M can simulate the possible behaviour of N .

41
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Consider that δ is the universe of all MTSs.

Definition 3.1.1 (Strong Refinement). A strong refinement relation R is a bi-

nary relation on δ such that if (M,N) ∈ R then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃N ′ ·N
ℓ
−→r N

′ ∧ (M ′, N ′) ∈ R)

2. (∀ℓ, N ′)(N
ℓ
−→p N ′) =⇒ (∃M ′ ·M

ℓ
−→p M ′ ∧ (M ′, N ′) ∈ R)

Given MTSs M and N , we say that N is a strong refinement of M , written

M � N , iff αM = αN and there exists a strong refinement relation R such that

(M,N) ∈ R.

Note that the second condition guarantees that if N has a required transition, M

has a maybe or a required transition, whereas if N has a maybe transition, then

M has a maybe transition – otherwise, the first condition is violated. It is also

interesting to note how similar this definition is to that of strong bisimulation in

Definition 2.1.2.

Consider model A shown in Figure 1.1. If modellers decide not to support topping

up mobile phones, and also for security reasons not to offer the user the option

to request more time once the inactivity time out triggers, then the model that

would represent these decisions is the one shown in Figure 3.1. According to

strong semantics this latter model is a valid possible evolution of model A since

it is a valid refinement, that incorporates as new knowledge that the topup and

moreT ime options have been removed from the functionalities of the system.

The refinement relation between these models is

R = {(0, 0), (1, 1), (2, 2), (3, 3)}.
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Figure 3.1: A possible evolution of model A where the ATM does not support
topping up mobile phones, and it does not give the user the option to request
more time once the inactivity time out is triggered.

If an MTS I has no maybe transitions and is a valid refinement of an MTS M , I

can be considered as an LTS and in this case we say that I is an implementation

of model M .

Definition 3.1.2 ((Strong) Implementation). We say that an LTS I = (SI , LI ,

∆I , i0) is a (strong) implementation of an MTS M = (SM , LM ,∆r
M ,∆p

M , m0),

written M � I, if M � MI with MI = (SI , LI ,∆I ,∆I , i0). We also define the

set of implementations of M as I[M ] = {I ∈ ℘ |M � I}.

Property 3.1.3 (Soundness). Given MTSs M and N , if M � N then I[M ] ⊇

I[N ].

Property 3.1.3 is known as the soundness property. We say that strong refine-

ment is sound with respect to implementation inclusion. Considering that strong

refinement is transitive [66] it is straightforward to prove Property 3.1.3. Hence

when a model is evolved into a more refined one no new possible implementa-

tions for the system will be added. In fact, when a model is enriched with more

requirements the set of possible implementations can only be reduced.
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3.2 Completeness

A question that had been open is whether the reciprocal of Property 3.1.3 is also

valid. In other words, whether inclusion of implementations implies refinement,

i.e. I[M ] ⊇ I[N ] =⇒ M � N . If this is the case, we say that the refinement is

complete.

In this section we will present a counter example of completeness and discuss the

idea of defining refinement in terms of implementations. The following counter

example was developed simultaneously by the author of this thesis and other

authors, and was presented in [32, 64, 28].

Consider models A and B depicted in Figure 3.2. It is easy to see that models

I1, I2 and I3 on the same figure represent all the different implementations, up

to equivalence, of A and B, therefore I[A] = I[B]. However, B 6� A since it is

impossible to construct a refinement relation between B and A because state 1 of

model B cannot be related by a strong refinement relation with any state of A.

Therefore, these models represent a counter example of completeness for strong

refinement as they have the same set of implementations but B 6� A.

Refinements between MTSs can be defined giving an operational definition as in

Definition 3.1.1 [66]. However, the previous counter example showed that strong

refinement as defined in Definition 3.1.1 is not complete. Alternatively, we can

define refinements between MTSs using a declarative definition based on inclusion

of implementations. In this case, the refinement is complete by definition. In

order to clarify which of these notions we are referring to, when necessary we will

adopt the terminology introduced on [64], which names modal refinement to the

refinement given by an operational refinement relation as in Definition 3.1.1, and
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A : 0 1 2
a? b? B : 0

1 2

3

a?
b

a?

(a)

I1 : 0 I2 : 0 1
a I3 : 0 1 2

a b I4 : 0

1 2

3

a
b

a

(b)

Figure 3.2: Counter example of completeness for strong refinement. a) I[A] = I[B]
but B 6� A b) Implementations of A and B.

thorough refinement to the refinement given by inclusion of implementations. For

the remainder of this thesis, when we just say refinement we will be referring to

modal refinement.

We now provide a formal definition of strong thorough refinement.

Definition 3.2.1 (Strong Thorough Refinement). An MTS N is a strong thor-

ough refinement of an MTS M , written M �t N , iff I[N ] ⊆ I[M ].

It can be noted that strong thorough refinement is, by definition, sound and

complete. However, checking thorough refinement is EXPTIME-complete [3, 7].

Therefore, although incomplete, modal refinement is a more appealing and useful

notion of refinement from an engineering point of view since it can be computed

in polynomial time [34], which allows practitioners to build tools for checking

refinement and operate between models.
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3.3 Consistency

Intuitively two models that provide partial descriptions of the same system are

consistent if the required and forbidden behaviour described by each of them are

compatible. Some of the maybe behaviour of one may be required or forbidden

in the other but required behaviour in one of the models cannot be forbidden

in the other. Formally, consistency is defined as the existence of a common

implementation as stated in Definition 3.3.1.

Definition 3.3.1. (Consistency) Two MTSs M and N are consistent if there

exists an LTS I such that I is a common implementation of M and N .

Consider model H in Figure 3.3 that specifies an ATM in which, in addition to

the top-up feature being enabled, a withdrawal automatically logs the user out

(to prevent the user from forgetting her card). This model is inconsistent with

previous ATM models such as A in Figure 1.1 which forbids logging in until an

exit action has occurred. It is therefore impossible to build an ATM that satisfies

both model H and model A.

Checking if two models are consistent is of clear use to engineers that have mul-

tiple partial descriptions of system behaviour. In particular, consistency is a

pre-condition for merging models as there can be no most abstract common re-

finement if there are no common refinements.

However, this problem has not been solved for strong semantics, i.e. given two

MTSs determine if there exists a model which is a refinement of both models

using strong refinement. In [65] the independence relation was introduced, which

provides an approximation to consistency but it does not characterise it.
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H :

0

1

2login?fail?

exit, withdraw

success?

balance,
topup

Figure 3.3: Example of an inconsistent MTS. Model H is inconsistent with model
A.

Definition 3.3.2. (Independence [65]) An independence relation R is a binary

relation on δ such that if (S, T ) ∈ R then:

1. (∀ℓ, S′)(S
ℓ
−→r S

′ =⇒ (∃!T ′)(T
ℓ
−→p T ′ ∧ (S′, T ′) ∈ R))

2. (∀ℓ, T ′)(T
ℓ
−→r T

′ =⇒ (∃!S′)(S
ℓ
−→p S′ ∧ (S′, T ′) ∈ R))

3. (∀ℓ, S′, T ′)(S
ℓ
−→p S′ ∧ T

ℓ
−→p T ′) =⇒ (S′, T ′) ∈ R

Two models M and N are independent if there exists an independence relation R

such as (M,N) ∈ R.

Intuitively, the independence notion was defined to capture when two models

are not contradictory and is used to define merge (called conjunction in [65]) on

MTSs. However, in the following example we show that independence does not

characterise when two models are consistent.

Consider models A and B of Figure 3.4 which are not independent: if (0, 0) were

in an independence relation then (1, 1) would have to be as well because of rule 3.

However, rule 1 would be violated because model B can do a required action on b

from state 1 but model A cannot follow this action with a possible b. Therefore

(1, 1) cannot be in the relation, which implies that (0, 0) cannot be in it either.

Although these models are not independent they are consistent since they have

model C as a common refinement.
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A : 0

1

2

a?

c

(a)

B : 0

1 3

2

a?
b

c

(b)

C : 0 1
c

(c)

D : 0

1

2

a?

c

(d)

Figure 3.4: Example of consistent but not independent models.

We now present a new relation, strong consistency relation, and show that it

characterises consistency, i.e. we prove that two models are consistent if and only

if they can be related by the strong consistency relation.

Definition 3.3.3. (Strong Consistency Relation) A strong consistency relation

C is a binary relation on δ such that if (M,N) ∈ C then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃N ′)(N
ℓ
−→p N ′ ∧ (M ′, N ′) ∈ C)

2. (∀ℓ, N ′)(N
ℓ
−→r N

′) =⇒ (∃M ′)(M
ℓ
−→p M ′ ∧ (M ′, N ′) ∈ C)

Intuitively, this relation requires that one model provides as possible behaviour

at least all the required behaviour of the other, and vice versa. For example,

R = {(0, 0), (2, 2)}

is a strong consistency relation between models A and B in Figure 3.4. We can

see that the strong consistency relation is weaker than the independence relation

since it does not have condition 3 of the independence relation and conditions 1

and 2, although similar to those of the independence relation, do not require a

deterministic choice. This weaker relation relates models which were related by

independence but also relates pairs of models that are not independent, such as

A and B. Furthermore the strong consistency relation only relates those models

which are consistent.
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Theorem 3.3.4. (Strong Consistency Relation Characterizes Consistency) Two

MTSs M and N are consistent if and only if there exists a strong consistency

relation CMN such that (M,N) is contained in CMN .

Proof. ⇐) Let CI be a LTS defined by

CI = (CMN , Act,∆CI , (M0, N0))

where ∆CI is the smallest relation that satisfies the following rules, assuming that

{(M,N), (M ′, N ′) ⊆ CMN}.

RP
M

ℓ
−→rM

′, N
ℓ

−→pN
′

(M,N)
ℓ

−→(M ′,N ′)
PR

M
ℓ

−→pM
′, N

ℓ
−→rN

′

(M,N)
ℓ

−→(M ′,N ′)

It is easy to prove that M � CI using that

R = {(M, (M,N)) | (M,N) ∈ CMN}

is an implementation relation between M and CI.

⇒) Since M and N are consistent we can take an LTS CI such that M � CI

and N � CI. By definition of strong semantics there exist RM and RN imple-

mentation relations between M and CI, and between N and CI respectively.

Let CMN be a relation defined by CMN = RM ◦R
−1
N . It can easily be proven that

CMN is a strong consistency relation between M and N .

Note that the Strong Consistency Relation is equivalent to bisimulation when

restricted to LTSs (i.e. MTS with identical sets of required and possible tran-

sitions). This result is as expected considering that an LTS is an MTS which
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characterises only one implementation, itself. Hence, an LTS can only be consis-

tent with any LTS that is equivalent to it; equivalence which in this case is that

of LTS bisimulation.

Another observation worth mentioning is that the proof of Theorem 3.3.4 only

uses the implementation notion, thus the strong consistency characterization is

the same for strong modal refinement and strong thorough refinement. This

result is also interesting because it shows that even though checking thorough

refinement is EXPTIME-complete [7], checking if two models are consistent under

that semantics is polynomial on the size of the models.

We have developed a fixed point algorithm for checking consistency that starts

with the Cartesian product of the states and iteratively eliminates the pairs that

are not valid according to the strong consistency relation. The completeness

and correctness proofs for this algorithm are straightforward and are provided

for a similar algorithm in Section 4.2.2. This algorithm is polynomial and its

time complexity is upper bounded by O(m.n4.log(n)) while the space complexity

is O(n2), where n and m are the maximum amount of states and transitions

respectively between both models.

3.4 Merging MTS

In this section, we solve the problem of merging MTS under strong semantics. We

first recall the definition of MTS merging [65, 90], then analyse the limitations of

existing algorithms, and finally present a merge algorithm that is complete and

correct for MTSs with identical alphabets.
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The intuition captured by merge is that of augmenting the knowledge we have

of the behaviour of a system by combining what we know from two partial de-

scriptions of the system. The notion of refinement underlies this intuition as it

captures the “more defined than” relation between two partial models.

Definition 3.4.1. (Common Refinement) Given a refinement notion, �, we say

that a modal transition system P is a common refinement (CR) of modal transi-

tion systems M and N iff M � P and N � P .

We write CR(M,N) to denote the set of common refinements of models M and

N .

A common refinement cannot leave as undefined behaviour that is already de-

fined in M or N . Although a common refinement P of M and N preserves the

required and proscribed behaviour of M and N , it may be too refined. The result

of merging should not only preserve required and proscribed behaviour of M and

N but also introduce as few decisions on maybe behaviour as possible. In other

words, the merge of M and N should characterise all LTS that are implementa-

tions of both M and N . Indeed, this corresponds to the least (with respect to

refinement) common refinement of M and N .

Definition 3.4.2. (Least Common Refinement) A modal transition system P is

the least common refinement (LCR) of modal transition systems M and N if P

is a common refinement of M and N , and for any common refinement Q of M

and N , P � Q.

An LCR of the original systems may not exist for two reasons. First, it is possible

that no common refinement exists as the models might not be consistent. Second,
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a common refinement may exist, but there may be no least one. For example,

models O and P in Figure 3.5 are consistent and have models Q and R as

common refinements. These common refinements are not comparable (neither is

a refinement of the other) and it is not possible to find common refinements of

O and P which are less refined than Q or R. Hence, we refer to Q and R as the

minimal common refinements of O and P. We now provide a formal definition

of minimal common refinement.

O : 0

1 2

3 4

y? a?

y?
b?

(a)

P : 0 1 2
y a?, b?

(b)

Q : 0

1 2

3 4

y? a?

y
b?

(c)

R : 0

1 2

3 4

y
a?

y?
b?

(d)

Figure 3.5: Example of two consistent models that do not have an LCR but two
non-equivalent minimal common refinements.

Definition 3.4.3. (Minimal Common Refinement) Given a refinement notion,

�, an MTS P is a minimal common refinement (MCR) of MTSs M and N if

P ∈ CR(M,N), and for all Q ∈ CR(M,N) if Q � P , then P � Q.

We writeMCR(M,N) to denote the set of MCRs of models M and N .

Figure 3.6 provides an abstract summary of the concepts discussed in this section.

In this figure, nodes depict models and arrows depict refinements (i.e., an edge

from P to Q indicates that P is refined by Q). For simplicity, we do not depict

refinements that can be inferred by transitive closure of the ones depicted.

In conclusion, what should be the result of merging two consistent modal transi-

tion systems, M and N? If LCRM,N exists, then this is the desired result of the
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(a)

refinementsrefinement
commonLeast Common

M N

ofof andM N andM N

(b)
of M and N

of M and N
Common refinements

M

refinements

N

Minimal
common

Figure 3.6: Common refinements for consistent models M and N : (a) M and N

have a least common refinement; (b) M and N have no least common refinement.

merge. However, if M and N are consistent but their LCR does not exist, then

the merge process should result in one of the MCRs of M and N . Model merging

should support the modeller in choosing the most appropriate MCR.

3.4.1 Limitations of Existing Algorithms

In [65] an operation between two models called conjunction is defined. This

operation when applied to independent models gives their LCR.

Definition 3.4.4. (Conjunction) [65] Let M and N be MTSs, the conjunction

of M and N is defined as M ∧N = (SM ×SN , L,∆
r
M∧N ,∆

p
M∧N , (m0, n0)), where

∆r
M∧N ,∆

p
M∧N are the smallest relations which satisfy the following rules:

RP
M

ℓ
−→rM

′, N
ℓ

−→pN
′

(M,N)
ℓ

−→r(M ′,N ′)
PR

M
ℓ

−→pM
′, N

ℓ
−→rN

′

(M,N)
ℓ

−→r(M ′,N ′)
PP

M
ℓ

−→pM
′, N

ℓ
−→pN

′

(M,N)
ℓ

−→p(M ′,N ′)

The limitation of the conjunction operator is that there are models with an LCR

that the operator fails to produce. In fact, in these cases the operator does not

produce a common refinement. Consider models A and B in Figure 3.4. The

LCR of these models is C. However, the conjunction as defined in [65] is model

D, which is not a common refinement of A and B (C and D are also depicted in
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Figure 3.4). This problem occurs when two models are not independent but are

consistent.

To overcome the problems of the conjunction operator, a variation of this operator

was proposed initially in [90] and then improved in [10]. This new operator, called

+cr, generalises the problem addressed in [65] to support merging models under

weak semantics. When the models being merged have no unobservable actions,

the problem is that of merge under strong semantics, as discussed below.

Definition 3.4.5. (The +cr operator) [10] Let M and N be MTSs and let CMN

be the largest strong consistency relation between them. The +cr operator between

M and N is defined as M +cr N = (CMN , L,∆
r
M+crN

,∆p
M+crN

, (m0, n0)), where

∆r
M+crN

,∆p
M+crN

are the smallest relations which satisfy rules RP, PR, PP of

Def. 3.4.4.

Note that the difference between the conjunction operator and the +cr operator

is that the latter only considers pairs of states which are consistent. Returning

to the example of Figure 3.4, the consistency relation between models A and B is

{(0, 0), (2, 2)}, therefore if we apply the +cr to these models the rules that can be

applied are PR and RP producing a required transition between the state (0, 0)

and (2, 2) by c. Thus the result of A +cr B is model C, which is the expected

merge.

Theorem 3.4.6. [10] If M and N are consistent MTSs then M +cr N is always

a common refinement of M and N .

We now show an example of when the above operator does not produce an LCR.

Clearly the merge of a model with itself should result in the same model (i.e.
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H : 0

1 2

3 4

a?
b

a
b?

(a)

I = H +cr H : 0

1 2

3 4

5 6

a?
b

a
b?

a b
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Figure 3.7: Example showing that +cr is not idempotent.

merge should be idempotent) as every model is a refinement of itself and is the

least refined one. Consider the following example depicted in Figure 3.7: The

result of H +cr H is I, which is strictly more refined than H. Note that the

conjunction operator produces the same result, i.e. H ∧H = I.

The problem exemplified above arises because +cr does not deal correctly with

nondeterminism when there is a mix of required and maybe transitions. Under

these circumstances the +cr will apply rules RP and PR, which guarantee to

produce a CR but might fail to produce the LCR.

The point is that rules PR and RP of [90, 10] take a conservative decision on how

to merge a required with a maybe transition, i.e. that in some cases these rules

create a required transition when a maybe transition would suffice. The algorithm

we present in Section 3.4.3 is based on detecting the required transitions resulting

from these conservative rules which can be converted to maybe transitions.

3.4.2 Consistency Does Not Guarantee Existence of Merge

We have defined the merge between MTSs models as the LCR or one of the

MCRs in case there no LCR i.e. there are a non-unique MCRs. Since the

merge is defined in terms of minimal common refinements, it is evident that

the consistency between models is a necessary condition for the merge to exist.
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Otherwise, if the models are not consistent then they do not have any common

refinement and therefore the models do not have any MCR. For this reason we

have studied and presented a characterisation of consistency in Section 3.3.

An interesting question is whether consistency between models is just a necessary

or a sufficient condition for the merge to exist. On different works there is an

explicit [90, 10] or implicit [33] assumption that if M and N are consistent MTSs

then they have at least one minimal common refinement, i.e. consistency is a

sufficient condition for merge. However, in this section we present a counter

example where two consistent MTSs do not have any MCRs and therefore the

merge is not defined for them.

Proposition 3.4.7 (Consistency does not imply existence of an MCR). There

exist S and T MTSs such that they are consistent but there does not exist any

MCR between them.

Proof. Consider models S and T depicted in Figure 3.4.7. We will first show that

the amount of elements of MCR(S, T ) is less or equal to 1, up to equivalence,

i.e. |MCR(S, T )| ≤ 1. Assume that MCR(S, T ) is not empty, and consider

S : 0 1 2
start? tick

a?,b?

T : 0 1

2

3

start?
tick?

a

tick?

b

Figure 3.8: Example of two consistent MTSs that do not have anyMCR.

M,N ∈ MCR(S, T ). Since the only transition from the initial state of S and T

is a start?, it is easy to see that any transitions from the initial states of M or N
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must be a start?. Then we can define a model W by putting together model M

and N and combining their initial state into one. By construction W � M and

W � N . Considering the way W was constructed, it is trivial to see that S �W

and T � W , therefore W ∈ MCR(S, T ). Then by definition of MCR and the

fact that W � M and W � N , we got that W ≡ M and W ≡ N . Therefore

M ≡ N which implies that if we assume that MCR(S, T ) is not empty then it

has only one element up to equivalence, i.e. |MCR(S,R)| ≤ 1

If we assume thatMCR(S, T ) is not empty, then we know that it can only have

one element, so consider thatMCR(S, T ) = M , with M = (S,A,∆r,∆p, s0).

• Observation 1 For each state Mk of M all transitions of Mk have the same

label.

• Observation 2 Each state Mk 6= M0 has at least one required transition.

I :

0 1 2 3 4 n

n+ 1n+ 2

start tick a tick a tick

a

tickatick

b

Figure 3.9: Model I is a common implementation of S and T , but it is not an
implementation of M .

Let n be the smallest even number greater or equal to the amount of states of M

( n = |S|+ |S| % 2 ). Consider I the MTS depicted in Figure 3.9. Clearly S � I

and T � I. Since there is a unique MCR then M � I. Therefore, there exists

an implementation relation R between M and I. I has a sequence of tick and a

transitions between I1 and In+2 with n + 2 states which is strictly greater than

the amount of states of M , thus there exist at least two states on that sequence
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that are related to the same state of M in R. Let i and j be the largest indexes

such that (Ii,Mx) ∈ R and (Ij,Mx) ∈ R with 1 ≤ i < j ≤ n + 2. This implies

that there is a loop of length j − i in M of alternating tick and a transitions,

which is related by R to the states Ii, Ii+1, . . . , Ij. Using observation 1 and 2

it follows that at least all transitions in that loop must be required. But this

implies that I should have a loop of alternating tick and a transitions which is

an absurd that comes from the assumption that there exists an MCR between S

and T .

On this counter example we presented two consistent models that have an infinite

set of non-equivalent common refinements, and that set of common refinements

cannot be captured by an MTS. Intuitively the merge of models S and T describes

a system where always after a tick the system must be able to perform a or b,

but not necessarily either of these two actions is required. Informally, the notion

that across multiple maybe transitions at least one must be required is something

that cannot be captured by an MTS. For example, if we choose to use maybe

transitions for a and b then it is impossible to enforce that the system provides

at least one of these two actions, leading to undesired implementations. On

the other hand, if we use required transitions for a and b then the system is

much more restricted than the desired one. There are different extensions to

MTS that allow the modeller to express these relations of may and must across

multiple transitions like the Disjunctive Modal Transition Systems (DMTS) [63].

In Section 9.1 we provide a survey of related work where we analyse this and

other related formalisms.

From an algebraic point of view Proposition 3.4.7 shows that MTSs are not closed



3.4. Merging MTS 59

with respect to the merge operation. From an engineering perspective this implies

that during the elaboration process it might not be possible to construct the merge

of two models even though those models are consistent. In this situation we want

to provide the modeller with algorithms/tools where he can build a common

refinement controlling the complexity of the returned model (e.g. specifying the

maximum amount of total states; or giving the number of times a loop, that leads

to the inexistence of an MCR, is unrolled). Also, the modeller might decide to

elaborate each, or one, of these models further until the model can be merged or

the common refinement that can be generated is satisfactory.

3.4.3 A New Merge Algorithm

The algorithm we propose iteratively abstracts the result of M+crN by replacing

required transitions with maybe transitions. It does so while guaranteeing that

the resulting MTS after each iteration continues to be a refinement of M and

N . The decision of which transitions can be replaced is done by analysing all

outgoing required transitions from a given state on a given label. The key notion

here is that of Cover Set. Intuitively, a cover set describes a set of outgoing

required transitions from a given state and on a given label such that if we only

keep these as required the model continues to be a common refinement of M

and N . Technically, the definition of cover set on state c and label ℓ defines a

set of states reachable from c on required ℓ transitions such that the required

transitions can simulate all behaviour starting with ℓ from c.

Definition 3.4.8. (Cover Set) Let A = (SA, L,∆
r
A,∆

p
A, a0), B = (SB, L,∆

r
B,∆

p
B,

b0), C = (SC , L,∆
r
C ,∆

p
C , c0) be MTSs such that there exist RAC , RBC refinement

relations between A and C, and B and C respectively. Given Ci ∈ SC and ℓ ∈ L
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we define a cover set over Ci on ℓ as a set ζCi,ℓ of states of C for which the

following holds:

1. ζCi,ℓ ⊆ ∆r
C(Ci, ℓ)

2. ∆r
A(R

−1
AC(Ci), ℓ) ⊆ R−1

AC(ζCi,ℓ)

3. ∆r
B(R

−1
BC(Ci), ℓ) ⊆ R−1

BC(ζCi,ℓ)

Notation: ∆r(S, ℓ) = { t |s
ℓ
−→r t ∧ s ∈ S}

Rule 1 states that the cover set ζCi,ℓ must be a subset of the states reachable from

Ci by single required transitions labelled ℓ. Rule 2 states that the cover set ζCi,ℓ

preserves in C the required behaviour of A with respect to label ℓ. More precisely,

that the set of states in A reachable through required ℓ transitions starting from

the states refined by Ci must be a subset of the states in A that are refined by

the cover set. In other words, that in C the transitions on ℓ from Ci to the cover

set refine all required behaviour on ℓ starting on states refined by Ci. Rule 3 is

similar to rule 2, except that it guarantees that the cover set ζCi,ℓ preserves in C

the required behaviour of B with respect to label ℓ.

As an example of cover set, consider again model I in Figure 3.7. The cover

sets for state 0 and label a are the following: {5}, {3} and {3, 5} (these sets

come from considering the following set of transitions {0
a
−→ 5}, {0

a
−→ 3}, and

{0
a
−→ 3, 0

a
−→ 5}).

The merge algorithm we propose identifies a cover set for each state s and label

ℓ of A +cr B and replaces any required transitions from s on ℓ that is not in

the cover set with a maybe transition. We call this MTS transformation an

abstraction operation and formalise it as follows:
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Definition 3.4.9. (Abstraction operation) Let A, B, C be MTSs as in Def. 3.4.8.

Given a cover set, ζCi,ℓ, over Ci on ℓ we define the following operation:

A(C, ζCi,ℓ) = (SC , L,∆
p
C ,∆

′r
C , c0) where ∆

′r
C is defined by ∆

′r
C = ∆r

C−{(ci, ℓ, c
′)|c′ 6∈

ζCi,ℓ}

It is straightforward to show that the abstraction operation on model C effectively

produces an MTS that is refined by C. However, it is also the case that it produces

a common refinement of A and B.

Theorem 3.4.10. (Abstraction operation produces a CR)

Let A, B, C be MTSs as in Def. 3.4.8 then A � A(C, ζCi,ℓ) and B � A(C, ζCi,ℓ)

for any cover set ζCi,ℓ

Proof. We want to prove that RAC is a refinement relation between A and

A(C, ζCi,ℓ). Suppose that this is false, therefore there exists a pair (A′, C ′) in

RAC that does not fulfil the refinement relation conditions. If so, we have one

possible transition of C ′ in A(C, ζCi,ℓ) that A′ cannot simulate; or A′ has one

required transition, which C ′ in A(C, ζCi,ℓ) cannot simulate with a required tran-

sition. The first of these two cases is impossible because A(C, ζCi,ℓ) has the same

possible transitions as C, and A simulates all possible transitions of C. Therefore

the latter must be the case.

Consequently there exists a required transition, A′ ℓ′

−→r A
′′, that cannot be sim-

ulated by C ′ in A(C, ζCi,ℓ), i.e. 6 ∃C
′′ · C ′ ℓ′

−→r C
′′ ∧ (A′′, C ′′) ∈ RAC . Since RAC

is a refinement relation between A and C, and C and A(C, ζCi,ℓ) only differ on

the required transitions of Ci on ℓ, then C ′ must be Ci and ℓ′ must be ℓ. Then

(A′, Ci) ∈ RAC consequently A′ ∈ R−1
AC(Ci), and by the fact that A′ ℓ′

−→r A
′′, it
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follows that A′′ ∈
ℓ
−→r (R

−1
AC(Ci)). Then by definition of cover set it follows that

A′′ ∈ R−1
AC(ζCi,ℓ). This implies that

∃C ′′ · (A′′, C ′′) ∈ RACC
′ ∧ Ci

ℓ′

−→r C
′′ ∈ A(C, ζCi,ℓ)

is a contradiction, which comes from the first assumption that RAC is not a

refinement relation between A and A(C, ζCi,ℓ). As a result we have proved that

RAC is a refinement relation between A and A(C, ζCi,ℓ)

Analogously it can be proven that B � A(C, ζCi,ℓ).

Given that many different cover sets may exist for a specific state and label, the

algorithm exploits the following results to select which cover set to use as the

basis for applying an abstraction operation and consequently producing a more

abstract common refinement. We first define a refinement relation between cover

sets which describes a preorder of cover sets based on how refined the application

of the abstraction operation using each cover set is. In other words, a cover set

is more refined than another if the abstraction operation using the former yields

a more refined model than applying the abstraction operation on the latter. We

then present a property stating that a refinement between cover sets can be

established by checking if all states in one of the cover sets is refined by some

state in the other cover set. This property provides an effective way of computing

which cover set to use when applying the abstraction operation described above.

Definition 3.4.11 (Cover Set Refinement). Given ζCi,ℓ and ζ ′Ci,ℓ
cover sets over

Ci on ℓ we say that ζCi,ℓ is refined by ζ ′Ci,ℓ
, written ζCi,ℓ � ζ ′Ci,ℓ

, iff A(C, ζCi,ℓ) �

A(C, ζ ′Ci,ℓ
). Also we might say that ζCi,ℓ is more abstract than ζ ′Ci,ℓ

.
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Property 3.4.12. Given ζCi,ℓ and ζ ′Ci,ℓ
cover sets over Ci on ℓ, ζCi,ℓ is refined

by ζ ′Ci,ℓ
if the following condition holds:

∀C1 ∈ ζCi,ℓ · ∃C2 ∈ ζ ′Ci,ℓ
· C1 � C2

We now present the merge algorithm, which starting from A +cr B iteratively

applies abstraction operations by identifying for each state and label its least

refined cover set.

Algorithm 3.4.13 (Merge algorithm - Initial Attempt).

1. M ← A +cr B, isLCR← true

2. For each (x, y) ∈ SM and each ℓ ∈ Act do

2.1 Get most abstract minimal cover set of (x, y) on ℓ.

2.2 If minimal not unique, choose any and

isLCR← false.

2.3 M ← A(M, ζ(x,y),ℓ)

3. Return (M,isLCR)

From the results described above it follows that the merge algorithm produces a

common refinement of A and B.

Theorem 3.4.14. The Algorithm 3.4.13 produces a common refinement of A

and B.

Proof. Follows from the fact that A +cr B is a common refinement of A and B

and Theorem 3.4.10, which guarantees that every time M is abstracted using

operator A the result is still a common refinement of A and B.
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Figure 3.10: Example of a case in which the new merge algorithm outperforms
the +cr.

We now apply this new algorithm to model H from our previous example (de-

picted again in Figure 3.10), where the +cr operator fails to produce the merge.

In the same figure we can see model I ′, which is the result of applying the merge

algorithm to model H and itself. Model I ′ is equivalent to model H. Therefore,

on this example the new algorithm produces the optimal solution for the mod-

els being merged, improving on the solution given by the +cr and conjunction

operators.

The time complexity of the algorithm strongly depends on the amount of non-

determinism of the initial model produced by the application of the +cr operation

on the input models. If the intermediate model is deterministic the time com-

plexity is polynomial while it grows by an exponential factor based on the degree

of non-determinism. We can say that the degree of non-determinism on one state

for a particular label is the amount of out transitions with that label minus one.

For example, if there are two transitions with the same label going out from

one state we say that the degree of non-determinism is one. Furthermore, we

say that the degree of non-determinism on a model is the sum of the degree of

non-determinism on each possible label on each state.

Although the algorithm presented so far improves the results that can be obtained

with the previous algorithms it does not always return the optimal solution, i.e.

the merge. This limitation arises when the algorithm finds more than one minimal
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cover set during the improvement phase. In Figure 3.11 we can see model G, which

is the result of the merge algorithm when applied to models E and F . However,

the merge of these two models isM, which is more abstract than G. Intuitively,

in this example, when states 1 of both models are merged, model F imposes that

at least one transition by y must be required. But, how does this requirement

impact J , which is the +cr of models E and F? Should the transition that

leads to state 2, where maybe a can be taken, be required or the transition to

state 4, where maybe b can be taken, be required? Considering the symmetry

of the example both options are valid. Requiring both the transition to state 2

and the transition to state 4 to be required is too refined. Requiring any one of

them introduces an arbitrary bias towards different sets of implementations. The

solution is to clone states in order to allow for both options.

Let us repeat the analysis above using the notion of cover set on model J . The

cover sets for state 1 on label y are { 2 } , { 4 } and { 2,4 } . The first two

cover sets are more abstract than the last one, but neither of them refine each

other. In this situation, the merge algorithm described above arbitrarily takes

one cover set and applies the abstract operator using the chosen cover set. But if

we want to build the optimal solution both options must be considered. In other

words, the merge should require one of the two y transitions but not necessarily

both. This can be achieved by cloning state 1 of model J , having each clone

to have one of the cover sets as required transitions, and ensuring that all states

that precede state 1 (in this case only state 0) choose non-deterministically over

the clones. States 1 and 1′ in M are the clones of state 1 in J , where state 1′

uses cover set { 2 } and state 1 uses cover set { 4 } . It is interesting to note

that this example also shows that amount of state of the merge can be greater

that the amount of states of the +cr between the models.
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Figure 3.11: Example showing that merge is not bounded by the states of the
+cr.

We now provide a formal definition of cloning.

Definition 3.4.15. (Clone Operation) Let M = (S,A,∆r,∆p, s0) be an MTS.

For a state s ∈ S, let the clone operation be defined as Clone(M, s) = (S ′, A,∆r′,

∆p′, s0), where ∃s′ 6∈ S, s.t. for ℓ ∈ A,

1. S ′ = S ∪ {s′}

2. ∆p′ = ∆p ∪ {(s′, ℓ, t)|(s, ℓ, t) ∈ ∆p} ∪ {(t, ℓ, s′)|(t, ℓ, s) ∈ ∆p}

3. ∆r′ = ∆r ∪ {(s′, ℓ, t)|(s, ℓ, t) ∈ ∆r} ∪ {(t, ℓ, s′)|(t, ℓ, s) ∈ ∆r}

The following property, which is straightforward to prove, states that the clone

operation preserves the semantics of the model.

Property 3.4.16. The clone operation preserves implementations. In other

words,

I[Clone(M, s)] = I[M ].
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The final merge algorithm is a variation of the one presented above, in which

when incomparable cover sets are identified for a state c, the state is cloned so

as to allow applying one cover set on each clone. This algorithm also detects if

no MCR exists for the input models by identifying cycles where the degree of

non-determinism cannot be reduced after once pass of the abstraction process.
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Algorithm 3.4.17. Merge(M , N)

Input: consistent MTSs M = (SM , Act,∆r
M , ∆p

M , s0M) and

N = (SN , Act,∆
r
N , ∆

p
N , s0N)

P ←M +cr N

repeat

Q ← emptyQueue

enqueue(Q, (s0M , s0N))

V ← ∅ //Visited and not Abstracted

W ← ∅ //Visited and Abstracted

while |Q| > 0

s← dequeue(Q)

For each ℓ ∈ Act do

Let S be the set of all minimal non-trivial cover sets of s on ℓ

if |S| = 0

if (s, ℓ) ∈ V

continue

V ← V ∪ {(s, ℓ)}

else

if (s, ℓ) ∈ W

abort

Clone state s in P |S| − 1 times

For each i do

take si in SP and ζsi,ℓ ∈ S

P ← Abs(P,∆r
P (si, ℓ) \ ζsi,ℓ)

W ←W ∪ {(si, ℓ)}

For each s′ such that (s, ℓ, s′) ∈ ∆p
P do

enqueue(Q, s’)

until no change in P

return P
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The correctness of the algorithm given above follows directly from the fact that

the clone operation and the abstraction operations are correct.

Theorem 3.4.18. The Algorithm 3.4.17 produces a common refinement of A

and B.

Proof. Follows from the fact that A+crB is a common refinement of A and B and

Theorem 3.4.10 and Property 3.4.16, which guarantee that after every operation

applied to M , the model is still a common refinement of A and B. The algorithm

stops since on each iteration the amount of covers sets for each state is reduced.

If the algorithm detects that a state that had already been abstracted on the

current iteration has increased its number of cover sets, it aborts the process as

otherwise it would enter into a loop. This situation arises when model P has

a loop than can be unrolled an arbitrary amount of times, always producing a

common refinement which is a strict abstraction on the previous model. If model

P can be strictly abstracted an arbitrary amount of times then models M and

N do not have an MCR since it is always possible to construct a more abstract

common refinement. Therefore, the algorithm aborts when detecting this case.

An overview of the completeness argument is as follows: When merging consistent

models A and B with a unique least common refinement, the only sources of

incompleteness of A+crB (where the model is too refined) are on states with non

deterministic choices in which the rules PR or RP have been applied and have

generated required transitions when these were unnecessary. Each state c that is

a potential source of non-determinism, has the abstraction operation performed

on it. The abstraction operation will remove as many required transitions on the
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non-deterministic choice as possible while preserving refinement of A and B. If

there is no unique “best” solution to removing required transitions, the algorithm

will perform all incomparable solutions on an equivalent model in which the source

of incomparable solutions has been cloned. As this “best” possible abstraction is

performed iteratively on all sources of incompleteness, the resulting model is the

least common refinement.

As with the previous algorithm, the time complexity is polynomial for determin-

istic models and grows exponentially with the degree of non-determinism of the

models.

From a practical perspective, time complexity of Merge may not be problem-

atic since the algorithm approximates the final result by iterative abstraction

operations, and thus the user may decide to cut the process short and he will

still obtain a model that is a common refinement of the original ones. As this

approximation characterizes implementations that satisfy requirements captured

in the original models, it can still be useful for validation and verification of the

system behaviour. The only potential issue with cutting the merge of MTSs M

and N short is that if the resulting model is then merged with a third model, P ,

a spurious inconsistency may be obtained: The resulting common refinement of

M and N may not be abstract enough to include a valid implementation that

is also an implementation of P . This problem can be resolved by computing an

n-ary rather than pairwise merge, which we discuss in Section 9.3.
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3.4.4 Dealing with Merge When Multiple MCRs Exist

If Algorithm 3.4.17 is applied to a pair of consistent models with multiple MCRs,

then the result is one of the MCRs, and the other non-equivalent MCRs are

encoded on the returned model as well. The returned model has one initial state

denoted by the number 0. If the initial state of the returned model is changed to

one of the states denoted by a 0′, then the other solutions can be produced. The

mechanism that deals with the existence of multiple MCRs is that of cloning. If

there is a need to clone the initial state of the model produced by +cr, and the

result of applying on each of the clones the abstraction operation using a different

cover set yields non-equivalent states, then the models being merged do not have

an LCR.

An example of this can be seen in Figure 3.12. As previously analysed in this

section, models O and P are consistent and have two minimal common refine-

ments, named Q and R (originally depicted in Figure 3.5). Model S is the result

of applying Algorithm 3.4.17 to O and P. We can see that S is equivalent to Q,

and if we consider 0′ as the initial state we get a model which is equivalent to

model R. Therefore, we have obtained all minimal solutions.

Theorem 3.4.19 (Completeness). Let A and B be MTSs with the same alphabet

and MCR(A,B) 6= ∅. Let M0 = (SM , L,∆r
M , ∆p

M , (a0, b0)
0) be the result of

applying Algorithm 3.4.17 to A and B. Then for any common implementation

I of A and B there exists (a0, b0)
j ∈ SM such that I is an implementation of

Mj = (SM , L,∆r
M ,∆p

M , (a0, b0)
j).

This theorem states that for any common implementations I of A and B there

is an election of the initial state of M such that I is an implementation of M .
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Figure 3.12: Example of a merge where no unique solution exists.

Therefore with Theorem 3.4.18 and 3.4.19 we get that the algorithm returns the

LCR or a set of MCRs that characterise all common implementations if the set

of MCRs is not empty.

Corollary 3.4.20. If Algorithm 3.4.17 does not clone the initial state, i.e. (a0, b0),

then there exists the LCR of A and B and the algorithm returns it.

3.4.5 Completeness Proof

We now provide an overview of the proof of the completeness result for Algo-

rithm 3.4.17 as formally stated in Theorem 3.4.19.

We would like to prove that Mj � I. In order to do this, we have to show that

there is an implementation relation between Mj and I, and that ((a0, b0)
j , i0)

belongs to that relation. We will do this by introducing auxiliary definitions,

presenting Lemmas 3.4.22, 3.4.23 and 3.4.25, and finally proving the theorem

using these lemmas.
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Since A � I, we can take RAI the largest implementation relation between A and

I. Analogously, we can take RBI . Let CAB = {(a, b) | (a, i) ∈ RAI ∧ (b, i) ∈ RBI}.

Let R0 = {((a, b)c, i) | (a, i) ∈ RAI ∧ (b, i) ∈ RBI ∧ (a, b)c ∈ SM}.

Definition 3.4.21. We say that R covers I iff R is a subset of R0 and has at

least one “copy” of each pair (a, b) in CAB, i.e. R ⊆ R0 such that

(∀a, b, i) ((a, i) ∈ RAI ∧ (b, i) ∈ RBI =⇒ ∃c ((a, b)c, i) ∈ R)

Lemma 3.4.22. CAB is a consistency relation between A and B.

Proof. If a
ℓ
−→r a′ then i

ℓ
−→ i′ and (a′, i′) ∈ RAI . This implies that there

exists b′ such that b
ℓ
−→p b′ and (b′, i′) ∈ RBI . Therefore, b simulates all required

behaviour of a with possible transitions and (a′, b′) belongs to C. Analogously a

simulates the required behaviour of b.

Lemma 3.4.23. Let R be such that it covers I. Then R is a simulation relation

of I by M , i.e. for all ((a, b)c, i) in R the following condition holds:

(∀ℓ, i′)(i
ℓ
−→ i′ =⇒ (∃a′, b′, c′) · ((a, b)c

ℓ
−→p (a′, b′)c

′

∧ ((a′, b′)c
′

, i′) ∈ R))

Proof. If ((a, b)c, i) in R then (a, i) belongs to RAI . Therefore, there exists a′

such that a
ℓ
−→p a′ and (a′, i′) belongs to RAI since I is an implementation of A.

Analogously, there exists b′ such that b
ℓ
−→p b′ and (b′, i′) belongs toRBI . We have

(a′, i′) ∈ RAI , (b
′, i′) ∈ RBI . Using Lemma 3.4.22 we know that (a′, b′) belongs to

A+cr B and (a, b)
ℓ
−→p (a′, b′) in the +cr. Then using that R covers I we obtain

that there exists c′ such that ((a′, b′)c
′
, i′) ∈ R) and (a, b)c

ℓ
−→p (a′, b′)c

′
.
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Definition 3.4.24. Given R ⊆ R0 and ((a, b)c, i) ∈ R we say that i simulates

(a, b)c iff for all a′, b′, c′, ℓ the following condition holds:

(a, b)c
ℓ
−→r (a

′, b′)c
′

=⇒ (∃i′)(i
ℓ
−→ i′ ∧ ((a′, b′)c

′

, i′) ∈ R))

Lemma 3.4.25. For all (a, i) ∈ RAI and (b, i) ∈ RBI then there exists c such

that i simulates (a, b)c in R0.

Proof. It is enough to show that for (a, i) ∈ RAI and (b, i) ∈ RBI and ℓ there

exists a minimal cover set ζ(a,b),ℓ of (a, b) by ℓ such that ζ(a,b),ℓ ⊆ CAB. Let

C = {(a′, b′)|i
ℓ
−→ i′ ∧ (a′, i′) ∈ RAI ∧ (b′, i′) ∈ RBI} ⊆ CAB.

It can be easily proved that C is a cover set of (a, b) by ℓ. Now we have to prove

that there exists ζ(a,b),ℓ ⊆ C, a cover set of (a, b) by ℓ, that is a minimal cover

set. We can then choose one of the copies of (a, b) that was generated by the

algorithm using ζ(a,b),ℓ as a cover set and that copy is simulated by i since all

required transitions from (a, b) go to a state in C. Let ζm ⊆ C be such that for

all ζ ⊆ C cover set, then ζ 6� ζm. Assume that ζm is not a minimal cover set.

Therefore, there exists ζ a minimal cover set of (a, b) by ℓ such that ζ � ζm and

ζ 6⊆ C. Thus we can take (ã, b̃) ∈ ζ such that (ã, b̃) 6∈ C, and this also means

that A(A+cr B, ζ) � A(A+cr B, ζm). This implies that there exists (a′, b′) ∈ ζm

with (a′, i′) ∈ RAI and (b′, i′) ∈ RBI such that (a′, b′) refines (ã, b̃) on the models

created above. Then we have that i simulates all required behaviour of (a′, b′),

but since (ã, b̃) is an abstraction of (a′, b′), i must simulate all required behaviour

of (ã, b̃) and therefore (ã, b̃) belongs to C, which is a contradiction that comes

from the assumption that ζm is not a minimal cover set.
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(Proof of Theorem 3.4.19). Let

R = {((a, b)c, i)|(a, i) ∈ RAI ∧ (b, i) ∈ RBI ∧ i simulates (a, b)c}.

We know that (a0, i0) ∈ RAI and (b0, i0) ∈ RBI , then by Lemma 3.4.25 we

know that there exists j such that i0 simulates (a0, b0)
j , which implies that

((a0, b0)
j , i0) ∈ R. By Lemma 3.4.25 we can say that R covers I. Then by

Lemma 3.4.23 we can say that Mj simulates all behaviour of I, and (by definition

of R) I simulates all required behaviour of Mj. Therefore, R is a implementation

relation between Mj and I.

3.4.6 Comparison with Existing Merge Algorithms

It is simple to show that the proposed algorithm produces a more abstract result

than [90, 10] as the algorithm starts from the result of +cr and applies zero or

more abstraction operations. This entails that for the cases where it is guaranteed

that the +cr produces the LCR, the merge algorithm presented herewith will also

compute the LCR. For the case of deterministic MTS, our algorithm produces

the same result as [90, 10]. In fact, this is also the case for models that satisfy the

non-determinacy condition (a slightly weaker condition presented in [90]). This

is due to the fact that the non-determinacy condition guarantees that the cover

set for every state s and label ℓ contains all required transitions from s on ℓ, and

consequently, the abstraction operation becomes idempotent.

The Algorithm 3.4.17 generalizes that of [65] in the sense that it results in the

same LCR for any pair of independent MTS, but can also be applied to non-

independent yet consistent MTSs producing a common refinement that is the



76 Chapter 3. Revisiting Strong Semantics

LCR or encodes all MCRs.

The fact that the merge algorithm does not pick an arbitrary minimal common

refinement when merging two models with multiple MCRs is fundamental for

supporting elaboration of partial behaviour models. The result of the algorithm

can be used to validate each of the MCRs allowing the engineer to make an

informed decision on which is the more appropriate merge.



Chapter 4

Weak Alphabet Semantics

Incremental elaboration typically involves gradually extending the scope of a de-

scription, i.e. augmenting the alphabet of the models, to describe behaviour

aspects that previously had not been taken into account. For example, in our

ATM example we may eventually want to describe with a lower level of abstrac-

tion the behaviour of the machine during a cash withdrawal operation. This can

be seen in Figure 4.1 where the withdraw loop-transition on state 2 of model A

in Figure 1.1 has been replaced by a series of transitions in order to describe in

more detail the behaviour of the ATM during this operation. In this model, after

the user selects withdraw she needs to select the amount of money she wants to

withdraw. If the user has enough funds available and there is enough cash in the

machine, the ATM will dispense the cash. Otherwise, it will display a message

indicating to the user the reason for not dispensing the cash.

Once we have extended the alphabet, we will need a way to ensure that the new

model does in fact conform to the previous one. We may also need to merge

77
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models with different scopes, each one representing a partial description of the

complete system.

Existing MTS semantics, strong and weak, require the alphabets of the models

being compared to be equal, therefore limiting their applicability in the context

of the software development processes we are aiming to support. In order to over-

come this limitation we introduce a novel semantics, weak alphabet semantics,

which allows the modeller to extend the alphabet of the model as required during

the elaboration process to increase the scope of the description. Weak alphabet

semantics is based on weak semantics, and so we will first revisit the latter in the

following section.

J :
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exit
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dispenseCash,
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m
o
re
T
im

e?

exit

Figure 4.1: A model where the behaviour of functionality associated with a cash
withdrawal operation has been detailed.

4.1 Weak Semantics

Weak MTS refinement, defined by Larsen et al. [52], is an observational semantics,

i.e. a semantics that treats τ transitions as silent ones. Therefore, it allows

for comparing the observable behaviour of models while ignoring the possible

differences that they may have in terms of internal computation. Weak MTS

refinement is defined based on LTS weak bisimulation, as can be seen in the

following definition.
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Definition 4.1.1 (Weak Refinement [52]). A weak refinement relation R is a

binary relation on δ such that if (M,N) ∈ R then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃N ′ ·N
ℓ̂

=⇒r N
′ ∧ (M ′, N ′) ∈ R)

2. (∀ℓ, N ′)(N
ℓ
−→p N ′) =⇒ (∃M ′ ·M

ℓ̂
=⇒p M ′ ∧ (M ′, N ′) ∈ R)

Given MTSs M and N , we say that N is a weak refinement of M , written

M �w N , iff αM = αN and there exists a weak refinement relation R such that

(M,N) ∈ R.

It is worth noting that the relation between weak bisimulation and weak refine-

ment follows the same pattern used to extend strong bisimulation into a refine-

ment. Also, if a model N is a strong refinement of model M (M � N) then N

is also a weak refinement of M (M �w N). Finally, as with strong refinement,

a notion of (weak) implementation can be defined between MTSs and LTSs and

refinement is sound with respect to implementation.

The previous definition of weak refinement corresponds to weak modal refine-

ment which, similarly to strong modal refinement, is incomplete. The following

definition introduces the notion of thorough weak refinement, defined in terms of

inclusion of implementations. This refinement notion, although complete, is com-

putationally expensive and therefore not well suited for our purpose. As stated

before, in the rest of this thesis we will be referring to modal refinement unless

specifically stated otherwise.

As mentioned before, weak semantics requires the models being considered to

have the same communicating alphabet and consequently is not fully adequate

to support incremental software development practices. However, it serves as
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the basis for the definition of a novel semantics, weak alphabet semantics, which

allows for extending the alphabet as the modeller needs to increase the scope of

the description during model elaboration.

4.2 Weak Alphabet Semantics

4.2.1 Definition

Weak alphabet refinement allows comparing two models in which one has an

alphabet that is a superset of the other. This refinement notion aims to capture

the intuition of having more information with respect to the common alphabet.

It considers all other actions as out of scope for the comparison. To capture

this aspect of model elaboration, we first introduce the concept of hiding, an

operation that makes a set of actions of a model unobservable to its environment

by reducing the alphabet of the model and replacing transitions labelled with an

action in the hiding set by τ , as shown below.

Definition 4.2.1 (Hiding). Let M = (S, L,∆r,∆p, s0) be an MTS and X ⊆ Act.

M with actions X hidden, denoted M\X, is an MTS (S, L\X,∆r′ ,∆p′, s0), where

∆r′ = {(s, ℓ, s′) | ℓ 6∈X ∧ (s, ℓ, s′)∈∆r} ∪ {(s, τ, s′) | ℓ∈X ∧ (s, ℓ, s′)∈∆r} and

analogously for ∆p′. We use M@X to denote M\(Act\X).

Using the concept of hiding, we now define weak alphabet refinement as an exten-

sion of weak refinement in which actions in the extended alphabet are considered

unobservable.

Definition 4.2.2. (Weak Alphabet Refinement) An MTS N is a weak alphabet

refinement of an MTS M , written M �wa N , iff αM ⊆ αN and M �w N@αM .
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Now consider again model J depicted in Figure 4.1. If we use weak alphabet

refinement to compare it with the initial model A, it can be stated that J is a

refinement of A being the refinement relation

R = {(0, 0), (1, 1), (2, 2), (2, 4), (2, 5), (3, 3)}.

Thus, as expected, with this semantics the analysed model is an adequate evolu-

tion of the initial one.

It is worth noting that weak alphabet refinement is a generalization of weak and

strong refinements. In other words, given two models with the same alphabet

and no τ -transitions, if one is a strong refinement of the other, then it is also

a weak alphabet refinement of the other. Similarly, given two models with the

same alphabet but with τ -transitions, if one is a weak refinement of the other,

then it is also a weak alphabet refinement of the other.

It is also worth noting that we can have a thorough or modal notion of weak

alphabet refinement depending on whether the underlying notion of weak refine-

ment used in its definition is thorough or modal, respectively. As in the case

of strong and weak refinement, thorough weak alphabet refinement is complete

albeit computationally expensive while modal weak alphabet refinement is in-

complete but can be computed in polynomial time. As mentioned before, in the

rest of this thesis if we do not explicitly mention which of these two notions we

are referring to, it should be assumed we refer to modal refinement.

If we now go back to the definition of common refinement (Definition 3.4.1), we

can see this notion is effectively parameterized by a particular refinement def-

inition, e.g., strong, weak, or weak alphabet. In particular, we can use strong
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G :

3

0 1 2 4 5

6

ex
it

successlogin fail login fail

retainCardrecoverCard

success

balance,topup?,withdraw

Figure 4.2: An example of weak alphabet common refinement of models A and
B shown in Figure 1.1.

common refinement when models have the same vocabulary and do not use τ -

transitions, weak common refinement when models have the same vocabulary

but do use τ -transitions, and weak alphabet common refinement if the alphabets

are different. However, for the remainder of this chapter, we assume that com-

mon refinement refers to weak alphabet common refinement, unless otherwise

specified.

Model G, depicted in Figure 4.2, is an example of a weak alphabet common

refinement of models A and B shown in Figure 6.1. G specifies that the ATM

must provide two opportunities for logging in, that at the second failed attempt

the card is retained, and that once the user is logged in, she can execute several

operations. It leaves open whether the ATM should provide a top-up feature.

Model G refines model A which describes operations to be provided by the ATM

to users and also refines model B which sets the maximum number of failed login

attempts to two.

This illustrates how common refinements add required behaviour. Although there

is a required transition for withdrawals in model A, this transition is not reach-

able (through required transitions) from the initial state and thus A allows imple-

mentations in which withdrawals are not possible. However, B guarantees that

implementations will allow succesful logins. Hence, a common refinement of A
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E :

3

0 1 2 4 5

6

ex
it

successlogin fail login fail

retainCardrecoverCard

success

balance,withdraw

F :
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0 1 2 4 5

6

ex
it

successlogin fail login fail

retainCardrecoverCard

success

balance,topup,withdraw

Figure 4.3: Examples of weak alphabet implementations of model G shown in
Figure 4.2.
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Figure 4.4: Weak alphabet refinement relation between ATM models.

and B, such as G, requires that implementations allow for withdrawals.

Models E and F in Figure 4.3 are two examples of implementations of G. We can

see that both implementations include the withdraw operation.

In Figure 4.4, we depict the alphabet refinement relations that exist between the

ATM models previously discussed.

4.2.2 Consistency

In this section, we define consistency relations for weak and weak alphabet se-

mantics and discuss the role of the largest such relation.

In order to merge two consistent models, it is necessary to understand precisely

which of their behaviours can be integrated. In particular, a state in any common

refinement of two models is intuitively a combination of two consistent states: one

from each of the original models. InM = (SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN ,
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AN , ∆
r
N , ∆

p
N , s0N), states s ∈ SM and t ∈ SN are consistent if and only if there

is a common refinement of Ms and Nt (where Ms indicates changing the initial

state of an MTS M to s). Therefore, Nt@αM should be able to simulate required

behaviour at Ms with possible behaviour, and vice-versa. A consistency relation

is used to describe pairs of reachable consistent states.

Definition 4.2.3. (Weak Consistency Relation) A weak consistency relation is

a binary relation C ⊆ ℘ × ℘, such that the following conditions hold for all

(M,N) ∈ C:

1. (∀ℓ,M ′) · (M
ℓ
−→r M

′ =⇒ ∃N ′ · (N
ℓ̂

=⇒p N ′ ∧ (M ′, N ′) ∈ C))

2. (∀ℓ, N ′) · (N
ℓ
−→r N

′ =⇒ ∃M ′ · (M
ℓ̂

=⇒p M ′ ∧ (M ′, N ′) ∈ C))

The weak consistency relation requires that each model can simulate the required

transitions of the other using possible transitions. That is, if M can go to M ′

on an observable action ℓ 6= τ through a required transition (M
ℓ
−→r M

′), then

N can go to N ′ on a possible transition (N
ℓ̂

=⇒p N ′) such that M ′ and N ′ are

consistent. However, N can do so by performing zero or more τ transitions before

and after ℓ. On the other hand, if M can move to M ′ on a τ transition, N can

move to N ′ in zero or more τ moves.

Definition 4.2.4. (Weak Alphabet Consistency Relation) A weak alphabet con-

sistency relation is a binary relation C ⊆ ℘×℘, such that the following conditions
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Q: 0 1 2
b? b?

c a?

R: 0 1
a

c?
U : 0 12

aa?
c?

V: 0 12
aa

c?
V ′: 0 1

a

A: :0 1 2
τ b

c

B: 0 1 2 3
a τ b

c

Figure 4.5: Example MTSs for illustrating Weak Alphabet Consistency.

hold for all (M,N) ∈ C, provided that ℓ ∈ Actτ :

1. ∀M ′ · (M
ℓ
−→r M

′ ∧ ℓ 6∈ αN ∪ {τ}) =⇒ ∃N ′ · (N
τ̂

=⇒p N ′ ∧ (M ′, N ′) ∈ C)

2. ∀M ′ · (M
ℓ
−→r M

′ ∧ ℓ ∈ αN ∪ {τ}) =⇒ ∃x1, . . . , xn ∈ (αN\αM)·

∃N1, . . . , Nn, N
′ · (N

x1=⇒p N1 · · ·
xn=⇒p Nn

ℓ̂
=⇒p N ′) ∧

(∀i · 1 ≤ i ≤ n =⇒ (M,Ni) ∈ C) ∧ (M ′, N ′) ∈ C

3. Condition 1 defined for N .

4. Condition 2 defined for N .

The weak alphabet consistency relation is similar in spirit to the weak consis-

tency version (see Definition 4.2.3): a behaviour required in one model must be

possible in the other. However, it has two important differences. Firstly, it allows

one model to simulate a required ℓ action by performing not only τ ’s before ℓ,

but also any other non-shared action. That is, if M can go to M ′ through a

required transition on a shared action ℓ (M
ℓ
−→r M

′) (antecedent of condition 2

in Definition 4.2.3), then N@αM can simulate ℓ using, if necessary, a succession

of possible transitions on actions not in αM . Secondly, it requires that the states

traversed by one model to simulate the other preserve the consistency relation.

In other words, if M
ℓ
−→r M ′, then all hops

xi=⇒p starting from N before the

transition on ℓ (i.e., from N to Nx) must be consistent with M .
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For example, consider models A and B in Figure 4.5. These models are related

by weak alphabet consistency:

CAB = {(A0,B0), (A0,B1), (A1,B2), (A2,B3)}

The transition A0
c
−→r A0 is simulated by B with B0

ac
=⇒r B1. That is, B

first performs an action that is not observable for A, and then simulates the

c action. As we show below (Theorem 4.2.5), the existence of a consistency

relation guarantees consistency. Thus, since model B is a common weak alphabet

refinement of itself and model A, these models are consistent.

Consider models Q and R in Figure 4.5, where αR = {a, c}. There is no weak

alphabet consistency relation between them: If there were one, (Q0,R0) should

be in it. As R0
a
−→r R1, Q must match this behaviour with Q0

b
=⇒p Q1

b
=⇒p

Q2
a

=⇒p Q2. The definition of weak alphabet consistency requires intermediate

state Q1 to be related to state R0. But Q1
c

=⇒r Q1 and R1 prohibits c. Hence,

assuming a weak alphabet consistency with (Q0,R0) leads to a contradiction.

The above example illustrates the importance of requiring that intermediate

states in the simulation of a by Q0 be in the consistency relation. If this ad-

ditional constraint were not included, it would be possible to match R0
a
−→r R1

with Q0
a

=⇒p Q2, constructing the consistency relation between R and Q. Yet,

these models are inconsistent!

The following theorems show the relation between weak and weak alphabet con-

sistency relations and the notion of consistency.

Theorem 4.2.5. (Weak Consistency Relation Characterizes Weak Consistency)

Two MTSs are weak consistent iff there is a weak consistency relation between
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Figure 4.6: MTSs for showing that weak alphabet consistency does not imply
existence of a weak alphabet consistency relation between the models.

them.

Theorem 4.2.6. (Weak Alphabet Consistency Relation Entails Weak Alphabet

Consistency) Two MTSs are weak alphabet consistent if there is a weak alphabet

consistency relation between them.

Note that the relationship in Theorem 4.2.6 (entailment) is weaker than the one

in Theorem 4.2.5 (characterization). The converse of Theorem 4.2.6 does not

hold. For example, consider models C and D in Figure 4.6. Model E is their

common weak alphabet refinement, so C and D are weak alphabet consistent.

However, there does not exist a weak alphabet consistency relation between these

models: (C0,D0) must be in the relation and, as C0
l
−→r C1, so must (C1,D2)

and intermediate state (C0,D1). However, the latter is clearly inconsistent as

C0
m
−→r but this is not the case for D1 since D1 6

m
−→r.

A consistency relation between two models describes consistent behaviours: any-

thing one model does can be simulated by the other. Thus, an interesting and

useful consistency relation is the one that captures as much of the consistent

behaviour between the models as possible. To describe all reachable consistent

behaviours between two consistent models, we give the notion of the largest con-

sistency relation. It is straightforward to show from Definition 4.2.4 that the

union of two consistency relations is also a consistency relation.
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Definition 4.2.7. (Largest Consistency Relation) The largest consistency rela-

tion between consistent MTSs M and N is

⋃
{CM,N · CM,N is a consistency relation between M and N}.

For example, consider models R and U in Figure 4.5 defined over the vocabulary

{a, c}. While CRU = {(R0,U0), (R1,U1), (R1,U2))} is the largest consistency

relation between them, C ′
RU = CRU \ {(R1,U2)} is a consistency relation as well.

In particular, these two relations correspond to different common refinements of

R and U , namely, V and V ′ in Figure 4.5. Unlike V ′, model V does not rule out

the possibility of an action c occurring after an action a because CRU does not

exclude the consistent behaviours at R1 and U2.

Computing the largest consistency relation between M and N can be done using

a fixpoint algorithm, similar to those used for computing bisimulations [34]. Such

an algorithm (see Algorithm 4.2.8 below) starts with the Cartesian product of

states of MTSs M and N , and then iteratively removes pairs that are not i-step

consistent, where i is the number of iterations performed so far.

Algorithm 4.2.8. LargestWeakAlphabetConsistencyRelation(M , N)

Input: MTSs M = (SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N)

C0 = {(Ms, Nt) · s ∈ SM and t ∈ SN}

Repeat

Ci+1 ← {(P,Q) ∈ Ci | (P,Q) satisfies conditions 1-4 of Definition 4.2.4}

Until Ci+1 = Ci

Return Ci
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It is easy to show that the algorithm terminates as it starts from a finite set,

C0, and Ci+1 ⊆ Ci; hence, the greatest fixpoint is reached in at most ‖C0‖ steps.

Therefore, the time complexity of this algorithm is O(m× n4 × log(n)) and the

space complexity is O(n2), where n and m are the maximum number of states

and transitions of the input models, respectively. Furthermore, if there exists a

consistency relation between M and N then the algorithm returns the largest

consistency relation between them.

Theorem 4.2.9. (Soundness of Algorithm 4.2.8) Let M = (SM , AM , ∆r
M , ∆p

M ,

s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N) be MTSs and C be the relation returned

by Consistency(M,N). If (M,N) ∈ C then C is a weak alphabet consistency

relation between M and N .

The consistency algorithm can be used to check whether two models with

identical alphabets are consistent (Theorem 4.2.5). However, since the converse

of Theorem 4.2.6 does not hold, we cannot rely on this algorithm when it returns

false in the case of models with different alphabets. The following result, however,

partially resolves this issue by converting the consistency problem between models

with different alphabets to a consistency problem between models with identical

alphabets.

Theorem 4.2.10. (Consistency Implies Consistency over Common Alphabet) If

M and N are consistent, then M@(αM ∩ αN) and N@(αM ∩ αN) are consistent

as well.

Hence, if two models are inconsistent w.r.t. their common alphabet, as computed

by consistency, they are not consistent. Thus, we can determine consistency

of models M and N with different alphabets via the following process:
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Algorithm 4.2.11. WeakAlphabetConsistent(M , N)

Input: MTSs M = (SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N)

If (M,N) ∈WeakAlphabetConsistencyRelation(M,N)

Return True

M ′ ← M@(αM ∩ αN)

N ′ ← N@(αM ∩ αN)

If (M ′, N ′) 6∈WeakAlphabetConsistencyRelation(M ′, N ′)

Return False

Return Unknown

In summary, in this section we have characterized weak (non-alphabet) consis-

tency by means of the existence of a weak consistency relation. In addition, we

have shown that the existence of a weak alphabet consistency relation entails the

existence of a common weak alphabet refinement. To mitigate the fact that the

non-existence of a weak alphabet consistency relation does not entail inconsis-

tency, we have proved a theorem allowing us to relate consistency of models with

different alphabets to consistency over their shared alphabet.

4.2.3 Merge

In this section, we describe the algorithm for constructing merge under weak

alphabet refinement. We first redefine the +cr operator under weak alphabet

semantics and show that if there is a consistency relation between M and N ,

then M +cr N is a common refinement of M and N . As with strong semantics,

the result of +cr may not be an MCR. Hence, we extend the Merge algorithm
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Figure 4.7: Example MTSs for illustrating merge.

(Algorithm 3.4.17) to apply to weak alphabet semantics. This algorithm itera-

tively abstracts M +cr N while guaranteeing that the result is still a common

refinement of M and N , and copes with the case in which two models have more

than one MCR.

Building a Common Refinement

In this subsection, we introduce the +cr operator for weak alphabet semantics and

show that if there is a consistency relation between M and N , then M +cr N is

an element of CR(M,N), which preserves the properties of the original systems.

Definition 4.2.12. (The +cr operator under weak alphabet semantics) Let M =

(SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N ) be MTSs and let

CMN be the largest weak alphabet consistency relation between them. M +cr N is

the MTS (CMN , AM ∪AN ,∆
r,∆p, (s0M , s0N)), where ∆r and ∆p are the smallest

relations that satisfy the rules below, for ℓ ∈ Actτ :

RP
M

ℓ̂
=⇒rM

′, N
ℓ̂

=⇒pN
′

(M,N)
ℓ

−→r(M ′,N ′)
PR

M
ℓ̂

=⇒pM
′, N

ℓ̂
=⇒rN

′

(M,N)
ℓ

−→r(M ′,N ′)

PD
M

ℓ
=⇒pM

′, N
τ̂

=⇒pN
′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αN ∪ {τ}) DP

M
τ̂

=⇒pM
′, N

ℓ
=⇒pN

′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αM ∪ {τ})

PP
M

ℓ̂
=⇒pM

′, N
ℓ̂

=⇒pN
′

(M,N)
ℓ

−→p(M ′,N ′)
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Intuitively, the areas of agreement (described by the consistency relation) of the

models being combined are traversed simultaneously, synchronizing on shared

actions and producing transitions in the resulting model that amount to merg-

ing knowledge from both models. Thus, transitions which are possible but not

required in one model can be overridden by transitions that are required or pro-

hibited in the other. For example, if M can transit on ℓ through a required

transition and N can do so via a possible but not necessarily required transition,

then M +cr N can transit on ℓ through a required transition, captured by rules

RP and PR in Definition 4.2.12.

The cases in which the models agree on possible transitions are handled by rule

PP in Definition 4.2.12. If both M and N can transit on ℓ through possible

transitions, then M +cr N can transit on ℓ through a possible transition.

The rules mentioned so far do not apply to non-shared actions. If ℓ 6= τ is

not in a model’s alphabet, then that model is not concerned with ℓ. Therefore,

if the other model can transit on the non-shared action ℓ through a required

transition, the merge can do so as well. Rules PD and DP allow the model which

does not have ℓ in its alphabet to stay in the same state or to move through

τ transitions to another state. The following example motivates this. Consider

models I and J in Figure 4.7 and assume that αI = {a, b} and αJ = {a}. The

largest consistency relation for I and J is CIJ = {(I0, J0), (I1, J1)}. I
b
−→r I1,

but (I1, J0) 6∈ CIJ (the above definition requires the resulting model I +cr J to

stay within consistent states), and therefore, I0 +cr J0
b

6−→ I1 +cr J0. However,

J0
τ
−→r J1, and (I1, J1) ∈ CIJ. Rule PD allows I+crJ to have a required transition

on b, i.e., I0+cr J0
b
−→r I1+cr J1. In fact, I+cr J is precisely I, which is in CR(I,J).

Note that rules PD and DP are conservative, i.e., they introduce required rather
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Figure 4.8: (a) Example MTSs. (b) Weak alphabet refinement relation between
models of (a).

than possible transitions on ℓ even when neither of the models being composed has

a required transition on ℓ. In these rules, if +cr were constructed with possible

but not required transitions, then the resulting MTS would not be a common

refinement of the models being composed. For instance, considering the models

in Figure 4.8(a), I +cr J would yield I (which is not a refinement of J ) rather

than O.

Special care must be taken in order to combine only consistent behaviours of the

two systems (i.e., elements in the consistency relation). For example, suppose

that model F +cr F (see Figure 4.7) were built without this restriction. There

are two transitions on a from the initial state of F, and, therefore, four ways of

combining them via the rules in Definition 4.2.12. This composition results in

model H, which is not a refinement of F. On the other hand, since the pairs

(F1,F2) and (F2,F1) are not in any consistency relation between F and itself,

constructing F+cr F using this restriction yields F, as desired.

When a consistency relation exists, the +cr operator as defined above yields a

common refinement of its operands:
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Theorem 4.2.13. (+cr builds CRs) If there is a weak alphabet consistency rela-

tion between M and N , then M +cr N is in CR(M,N).

For example, suppose we are interested in computing the merge of models F and

G shown in Figure 4.7, where αF = αG = {a, b, c}. The largest consistency

relation is CFG = {(F0,G0), (F2,G1), (F3,G2)}. Since F0
a

=⇒p F2, G0
a

=⇒r G1,

and (F2,G1) ∈ CFG, it follows that (F0,G0)
a
−→r (F2,G1) is a transition of F+crG

by the PR rule. Since F2
c

=⇒r F3, G1
c

=⇒r G2, and (F3,G2) ∈ CFG, it follows

that (F2,G1)
c
−→r (F3,G2) is a transition in F +cr G. Hence, F +cr G = G, as

desired.

Extending the Merge Algorithm for Weak Alphabet Semantics

While the +cr operator can sometimes produce the LCR, as in the above example,

it is generally imprecise. For example, for models I and J in Figure 4.8, I+crJ =

O, but MCRs of I and J are K and L. Since rules DP and PD convert all possible

but not required transitions on non-shared actions to required in the composition,

thus making the conservative choice, the +cr operator computes a CR that is not

necessarily minimal.

Below, we present an extension of the Merge algorithm (Algorithm 3.4.17) for

weak alphabet semantics. As mentioned in Section 3.4.3, the algorithm works by

detecting the required transitions resulting from the conservative rules of the +cr

operator and converting them into possible but not required transitions. It does

so while guaranteeing that after each iteration, the resulting MTS continues to

be a refinement of the models being merged.
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We begin by generalising the abstraction operation so that given an MTS and a

subset of its required transitions, it returns an MTS in which these transitions

are possible but not required:

Definition 4.2.14. (Abstraction Operation) Let M = (S,A,∆r,∆p, s0) be an

MTS and let Λ ⊆ ∆r be a subset of required transitions. Then the abstraction

operation is defined as follows:

Abs(M,Λ) , (S,A,∆r \ Λ,∆p, s0)

We now use the abstraction operation to define a more generalised notion of

Cover Set which considers a set of labels rather than a single label, and uses weak

alphabet as the underlying notion of refinement. With this definition, a Cover

Set is a set of outgoing required transitions from a given state on a given set of

labels such that if these are the only transitions kept as required, the resulting

model continues to be a common refinement of the models being merged.

Definition 4.2.15. (Cover Set) Let M = (SM , AM , ∆r
M , ∆p

M , s0M), N =

(SN , AN , ∆
r
N , ∆

p
N , s0N ) and P = (SP , AP , ∆

r
P , ∆

p
P , s0P ) be MTSs, with P ∈

CR(M,N). For s ∈ SP and A ⊆ AP , a set ζs,A ⊆ ∆r
P is a cover set of the state

s on labels A iff the following conditions hold:

1. ζs,A ⊆ ∆r
P (s, A), where ∆r

P (s, A) = {s
ℓ
−→ s′ ∈ ∆r

P | ℓ ∈ A)}

2. M �wa Abs(P,∆
r
P (s, A) \ ζs,A)

3. N �wa Abs(P,∆
r
P (s, A) \ ζs,A)

The first rule states that a cover set ζs,A of P with respect to M and N is a set

of required transitions of P originating from state s on labels in A. The second
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K : 0
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3 4
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b?
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c?

L : 0 1 2
a b? M : 0
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b?
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N : 0

1 2

3

a
b?

a?

O : 0

1 2

3 4

a?
b?

a?
c?

P : 0

1 2

3

a?
b?

a

Figure 4.9: Example MTSs for illustrating cover sets.

(third) rule states that if all the required transitions from s on a label in A that

do not belong to ζs,A are removed, leaving their behaviour as possible but not

required, then the resulting MTS is a refinement of M (respectively N).

For example, consider model M which is a common refinement of models K and

L (see Figure 4.9). ζ0,a = {0
a
−→ 3} is the only non-trivial cover set for M. The

result of executing Abs(M,∆r
M(0, a) \ ζ0,a) is model N, which is an abstraction of

M while remaining to be a refinement of K and L.

Thus, given two models M and N , in order to compute their merge the algorithm

should continuously abstract M +cr N while ensuring that the result remains a

refinement of M and N , and it seems that the approach to do this is to apply

the abstraction operation on cover sets of the common refinement of M and

N . However, more than one cover set can exist in this case. For example,

consider again models in Figure 4.9. Model M is a common refinement of models

O and L and has exactly two non-empty cover sets: ζ0,a = {0
a
−→ 1} and

ζ ′0,a = {0
a
−→ 3}. The result of Abs(M,∆r

M(0, a) \ ζ0,a) is model N, and the result

of Abs(M,∆r
M(0, a) \ ζ

′
0,a) is model P. While P is a refinement of N, N is not a

refinement of P. Hence, out of the two choices of cover sets, the better one is

ζ0,a since it yields the less refined model. We say that the cover set ζ ′0,a refines

ζ0,a (and thus ζ0,a is the minimal cover set). We formalise this intuition below,
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Figure 4.10: Example MTSs for illustrating the need for cloning states.

generalising the cover set refinement definition (Definition 3.4.11) to consider a

set of labels rather than a single one.

Definition 4.2.16. (Cover Set Refinement) Let an MTS P = (SP , AP , ∆r
P ,

∆p
P , s0P ) be given and let A ⊆ AP . For a pair of cover sets over a state s

on A, ζs,A and ζ ′s,A, we say that ζs,A is refined by ζ ′s,A, written ζs,A � ζ ′s,A, iff

Abs(P,∆r
P (s, A) \ ζs,A) � Abs(P,∆r

P (s, A) \ ζ
′
s,A).

As expected, refinement of cover sets defines a preorder, i.e. a common refinement

may have two cover sets where neither refines the other. Consider the models

in Figure 4.10. Model S, a common refinement of Q and R, has exactly two

non-empty cover sets: ζ1,y = {1
y
−→ 2} and ζ ′1,y = {1

y
−→ 4}. Neither of these

cover sets refine each other as Abs(S,∆r
S(1, y)\ζ1,y) (model U) is not a refinement

of Abs(S,∆r
S(1, y) \ ζ

′
1,y) (model T), nor is the latter a refinement of the former.

As analysed in Chapter 3, an algorithm that picks only one of these cover sets to

abstract S is not able to compute the LCR of Q and R: model V. To compute

V from S, we need to clone state 1 in model S, obtaining an equivalent model,

model W, which allows an application of a different cover set for each copy of
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Algorithm 4.2.17. Merge(M , N)

Input: consistent MTSs M = (SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N)

P ← M +cr N

A ← {{ℓ} | ℓ ∈ (αM ∩ αN)} ∪ {(αM \ αN) ∪ (αN \ αM) ∪ {τ}}
repeat

Q ← emptyQueue

enqueue(Q, (s0M , s0N))
V ← ∅ //Visited and not Abstracted
W ← ∅ //Visited and Abstracted
while |Q| > 0

s← dequeue(Q)
For each A ∈ A do

Let S be the set of all minimal non-trivial cover sets of s on A

if |S| = 0
if (s, A) ∈ V

continue

V ← V ∪ {(s, A)}
else

if (s, A) ∈ W
abort

Clone state s in P |S| − 1 times
For each i do

take si in SP and ζsi,A ∈ S
P ← Abs(P,∆r

P (si, A) \ ζsi,A)
W ←W ∪ {(si, A)}

For each s′ such that exists ℓ ∈ A · (s, ℓ, s′) ∈ ∆p
N do

enqueue(Q, s’)
until no change in P

return P

Figure 4.11: The Merge algorithm.

state 1 in order to abstract the model.

We are now ready to present the Merge algorithm for weak alphabet semantics

(see Algorithm 4.2.17 in Figure 4.11). As illustrated earlier in this section, the

Merge algorithm computes a common refinement of two consistent models and

then iteratively abstracts it by abstracting required transitions based on least

refined cover sets of the common refinement. Should there be more than one, the
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algorithm clones the appropriate states and applies abstraction with respect to

each cover set to each clone.

When applied to models Q and R in Figure 4.10, this algorithm yields model V,

as desired.

The algorithm includes one small optimization: rather than looking for cover sets

for all possible subsets of αM ∪ αN , it only builds cover sets for singleton sets

over the common alphabet of M and N (i.e., {ℓ} | ℓ ∈ (αM ∩ αN)) and the set

of actions that are not observable to either M or N (i.e., (αM \ αN) ∪ (αN \

αM) ∪ {τ}). This is because any other subset of αM ∪ αN will, by definition of

cover set and refinement, never yield a cover set.

Termination of the algorithm is guaranteed as each iteration considers a fewer

number of cover sets for the current state and its clones. Otherwise, an abort

statement is invoked. The correctness of this algorithm is straightforward to

prove using properties of cloning and cover sets. The latter are by definition

guaranteed to result in a common refinement when used in the context of an

abstraction operation.

As we discussed in Section 3.4.2, two consistent models may have a unique least

common refinement, a set of non-equivalent minimal common refinements, or

there may not exist any minimal common refinement at all. When there exists a

consistency relation between the models being merged the algorithm deals with

all these three cases correctly and effectively, returning the LCR if the LCR exists,

a model that encodes all MCRs if there are multiple MCRs, or aborting if the

merge is not defined for the given models.

However, unlike merge under strong semantics, the Merge algorithm for weak
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alphabet semantics is not complete. The reason for incompleteness is that in

the case of weak alphabet semantics, the non-existence of a consistency relation

does not imply inconsistency. Hence, given two consistent models, the Merge

algorithm may not execute because a consistency relation does not exist. This

is not a limitation if the two models being merged have the same alphabet,

possibly with τ transitions, as the notion of consistency relation is complete with

respect to weak semantics. In addition, the algorithm presented in this section

is an extension of Algorithm 3.4.17 and hence is complete with respect to strong

semantics.

While incomplete, the Merge algorithm improves on the one presented in [90].

For the cases handled by the algorithm in [90], Merge can compute more ab-

stract common refinements. In addition, Merge can compute minimal common

refinements for a broader range of consistent MTSs.

The Merge algorithm for weak alphabet semantics has the same complexity as

the merge algorithm for strong semantics. However, while both algorithms are

exponential in time and polynomial in space, the degree of non-determinacy tends

to be higher for the cases of weak alphabet refinement, rendering the correspond-

ing algorithm more expensive in practice.



Chapter 5

Branching Alphabet Semantics

5.1 Motivation

One of the problems of weak MTS semantics is that it allows implementations

that can be considered unintuitive. Consider the MTS K in Figure 5.1, which is

a valid implementation of model A of the ATM (Figure 1.1) based on the weak

implementation relation

R = {(0, 0), (1, 1), (2, 2)}.

K : 0 1 2
login?

fail?

success?

exit

Figure 5.1: A valid implementation of model A according to weak refinement.

Note that inA the exact details of the login process, such as the maximum number

101
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of failed login attempts, are yet to be defined, but if the user succeeds on the login

we would expect the balance, withdraw and optionally the topup functions to be

reachable for the user. However, in the implementation proposed above the user

never has the possibility of selecting any of these functionalities after successfully

logging in. This implementation does not reflect the expected behaviour for the

system, thus breaking the intuition behind the notion of implementation. This

example shows that weak semantics does not seem to be adequate to support

evolving software modelling since it accepts as valid refinements counter intuitive

implementations. In subsequent sections we shall also show that weak semantics

lacks some properties that relate refinement with action hiding. These properties

are linked to some degree to the existence of such unintuitive implementations

that weak semantics allows.

To gain some insight as to why weak refinement leads to such unintuitive im-

plementations an alternative (yet equivalent) standard definition of weak refine-

ment can be used. Weak refinement can be thought of as simply applying strong

refinement to the models obtained from performing the transitive closure of τ

transitions (Property 5.1.2).

Definition 5.1.1 (Observational Graph). Given an MTS M = (S, L,∆r,∆p, s0),

the observational graph of M is the derived MTS Obs(M) = (S, L,∆r
o,∆

p
o, s0)

where ∆r
o,∆

p
o are given by:

∆r
o = {M

ℓ
−→ M ′ | M

ℓ̂
=⇒r M

′}

∆p
o = {M

ℓ
−→M ′ | M

ℓ̂
=⇒p M ′}

Definition 5.1.2 (Weak Refinement). N is a weak refinement of M , written

M �w N , if and only if Obs(M) � Obs(N).
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We now revisit the example with this alternative definition of weak semantics.

The transitive closure of τ performed on model A yields the model in Figure 5.2.

The transition labelled success in model A gives rise to two different maybe

transitions in Figure 5.2, i.e. 1
success
−→ m 2 and 1

success
−→ m 3. To obtain the imple-

mentation in Figure 5.1, we can consider that these two transitions were refined

differently: 1
success
−→ m 3 became a required behaviour while 1

success
−→ m 2 became

proscribed. This kind of “inconsistent” decisions that weak refinement allows

over different transitions in the closured model, that were originated from the

same maybe transition in the original model, are the cause for these unexpected

implementations.

Obs(A): 0 1 2

3

login?

fail?

success?

exit

τ ,
balance,
topup?,
withdraw,
moreTime?

τ?,
balance?,
topup?,

withdraw?

m
o
re
T
im

e?

exit

success?

τ
τ

τ

Figure 5.2: Observational graph of model A in Figure 1.1.

So far we have seen that although an observational semantics is required to sup-

port incremental elaboration of partial behaviour models, the observational se-

mantics based on weak refinement might not adequately reflect the intended

meaning of an MTS. In the next section we introduce a semantics that not only

resolves the case discussed above but also provides a number of theoretical results

that support the argument for a novel observational semantics for MTS.
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5.2 Branching Semantics

We have analysed the shortcomings of strong and weak semantics for our mod-

elling purposes. The former semantics does not distinguish observable from unob-

servable actions and hence does not support elaboration when varying the level of

abstraction of partial models. The latter does not preserve branching behaviour

adequately, therefore allowing implementations that contradict the intuition users

may have of partial models. In the rest of this chapter, we will first explore the

intuition we have for MTS semantics by analysing specific examples and then

formally define a novel semantics that captures this intuition.

5.2.1 Exploration

We have already settled that the new semantics should be an observational one

that also preserves the branching structure. In this section we present a series

of examples that will allow us to further clarify the behaviour we are looking for

in the new semantics. Each of the examples consists of a model M and a model

N and all of them fulfil the following condition: according to weak semantics N

is considered to be a refinement of M , whereas according to strong semantics no

refinement relation can be defined between them. In each case, we are going to

state whether or not we expect the new semantics to define a refinement relation

between the two models and explain the reasons that support this choice.
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M1 : 0 1 2

3

τ? a

b

6� N1 : 0 1

2

a?

b

(5.1)

Consider example (5.1). In this case it can be seen that a valid implementation

of N1 is (a+b). However, we do not want that implementation to be a valid one

for M1 since intuitively this would not preserve the branching structure. If we

look at modelM1 we will realize that in order to take a we should always reach

a state from where a can be taken but b cannot. Thus, allowing (a+b) as a

possible implementation would violate the branching structure and so in the new

semantics N1 should not constitute a refinement ofM1.

M2 : 0 1

2

3

τ?
a

b

6� N2 : 0

1

2

a?

b

(5.2)

In example (5.2) our intention with model M2 is to describe that either the

system cannot take any observable transition or it can take both a and b (a+b).

On the other hand model N2 allows b as a possible implementation and hence

we do not want N2 to be a refinement ofM2 in the new semantics.
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M3 : 0 1

2

3
4

τ?
a

b
b?

6� N3 : 0 1

2

a?

b?

(5.3)

Model N3 allows a as a possible implementation. However, model M3 has a

structure such that if transition a can be taken then transition b is also possible.

For this reason we do not want the new semantics to consider model N3 to be a

refinement of modelM3.

M4 : 0 1 2

3

4
5

τ τ?
a

b
b

6� N4 : 0 1

2

a?

b

(5.4)

ModelM4 is different from modelM3 in that it adds a new required τ transition

in such a way that any implementation that aims to preserve the branching

structure should have two branches. Therefore, b is not a valid implementation

of this model. Since N4 accepts this implementation as a valid one, we expect

the new semantics not to consider N4 as a refinement ofM4.

Let’s consider now the following example:
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M5 : 0 1 2

3

4

τ? τ?
a

b
� N5 : 0

1

2

a

b
(5.5)

Model N5 is a weak implementation of modelM5 and, since obviously the latter

preserves the structure of the former, we would like the new semantics to also

consider model N5 as an implementation ofM5.

M6 : 0 1 2

3

4
5 6

τ? τ?
a

b
b? c

6� N6 : 0

1

2

a?

b
(5.6)

Finally, consider example (5.6) where model N6 accepts (a+b) as a valid im-

plementation. If we analyse model M6 we will see that intuitively any valid

implementation of this model that includes transition a should also include the

possibility of taking transition c before. This is another example that depicts

how weak semantics allows for refinements that contradict the intuitive idea of

elaboration of partial models since it does not preserve branching behaviour ad-

equately.

5.2.2 Definition

In this section we define a new semantics that has the desired properties of

both weak and strong semantics, i.e. an observational semantics that preserves
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branching structure. To do this we consider a third equivalence over LTSs called

branching equivalence which, as we have already seen in the background, can be

situated between strong and weak equivalences.

As shown previously, the three equivalences on LTSs are given by a symmetric

simulation relation, the difference between them is the way a transition on one

model is simulated by the other model. Figure 5.3 shows a graphical represen-

tation of how a transition is simulated in each of these three equivalences. We

have also shown strong and weak MTS refinements to be loosely based on the

corresponding LTS equivalences by having a slightly asymmetric bisimulation in

that every required transition in the less refined model must be simulated by the

refined model using only required transitions, and every possible transition in the

refined model must be simulated by possible transitions of the less refined model.

ℓ ℓ

(a)

ℓ ℓ̂

τ̂

(b)

ℓ ℓ̂

τ̂

τ̂

(c)

Figure 5.3: Depiction of how a transition ℓ is simulated in bisimulation:

(a) strong; (b) branching; (c) weak.

LTS branching bisimulation cannot be adapted in a similar way to produce an

adequate MTS refinement. Definition 5.2.1 presents the refinement that would

result from doing so.

Definition 5.2.1 (Näıve branching refinement relation). A näıve branching re-

finement relation R is a binary relation on δ such that if (M,N) ∈ R then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃N ′, N ′′ ·N
τ

=⇒r N
′ ℓ̂
−→r N

′′ ∧ (M,N ′), (M ′, N ′′) ∈ R)

2. (∀ℓ,N ′)(N
ℓ
−→p N ′) =⇒ (∃M ′,M ′′ ·M

τ
=⇒p M ′ ℓ̂

−→p M ′′ ∧ (M ′, N), (M ′′, N ′) ∈ R)
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0 1 2 3

4

τ? τ b
a �b1

0 1
b

Figure 5.4: Example of a refinement according to Definition 5.2.1, where the
branching structure of the less refined process is not preserved.

If we said that N is a näıve branching refinement of M if αM = αN and (M,N)

is contained in some branching refinement relation R, the above definition would

not lead to an adequate refinement notion since it does not preserve branching

structure. Figure 5.4 shows an example of a model refining another model without

preserving the branching structure;

R = {(0, 0), (2, 0), (3, 1)}

is the refinement relation between these models according to the previous defini-

tion.

The reason why this definition does not preserve the branching structure is that

it does not guarantee that all intermediate states of M
τ

=⇒p M ′ are related to

N , as the stuttering lemma (2.1.5) states for branching equivalence. To amend

this problem the previous definition needs to be reinforced by explicitly requiring

that all intermediate states reached by τ transitions have to be in the relation,

enforcing the stuttering property, as shown in the following definition:

Definition 5.2.2 (Branching refinement relation). A branching refinement rela-
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tion R is a binary relation on δ, such that if (M,N) ∈ R then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃N0, . . . , Nn, N
′ ·

Ni
τ
−→r Ni+1 ∀ 0 ≤ i < n ∧ Nn

ℓ̂
−→r N

′ ∧

N0 = N ∧ (M,Ni) ∈ R ∀ 0 ≤ i ≤ n ∧

(M ′, N ′) ∈ R)

2. (∀ℓ, N ′)(N
ℓ
−→p N ′) =⇒ (∃M0, . . . ,Mn,M

′ ·

Mi
τ
−→p Mi+1 ∀ 0 ≤ i < n ∧ Mn

ℓ̂
−→p M ′ ∧

M0 = M ∧ (Mi, N) ∈ R ∀ 0 ≤ i ≤ n ∧

(M ′, N ′) ∈ R)

Let us consider that N is a branching refinement of M if αM = αN and (M,N)

is contained in some branching refinement relation R. Then this definition will

preserve the branching structure, since every intermediate state a model goes

through when simulating a transition on the other model is actually related to

the initial state of that transition. Intuitively, this means that none of those

intermediate states present more or less behaviour than the initial state. In

particular, it solves the problem depicted in Figure 5.4.

However, this modal definition would not induce a complete semantics. In other

words, if we consider the set of implementations of M and N the fact that one

is included in the other one does not imply the existence of a refinement relation

between them. Figure 5.5 shows an example of this case. Although the two

models shown have the same set of possible implementations according to Defini-

tion 5.2.2, there is no appropriate refinement relation for A1 �b A2. This result

is expected if we note that strong modal refinement is finer than the modal refine-

ment we have just defined, and as shown in section 3.2 strong modal refinement
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does not induce a complete semantics.

A1 : 0 1 2τ? a 6�b A2 : 0 1a?

Figure 5.5: Models A1 and A2 have the same set of implementations according
to Definition 5.2.2 but one is not a branching modal refinement of the other
according to the same definition.

To overcome these limitations, and recalling that an MTS semantics is com-

pletely defined by stating which are valid implementations for a model, we define

branching thorough refinement based on inclusion of implementations. The no-

tion of branching thorough refinement comes naturally as N is a refinement of

M if all the branching implementations of N are branching implementations of

M . Branching modal refinement can be seen as an operation that approximates

thorough refinement. As with strong and weak refinement, the modal refinement

can be computed in polynomial time, while thorough refinement is computation-

ally more expensive. Although we have not studied the complexity of computing

branching thorough refinement, a lower bound is given by the complexity of com-

puting strong thorough refinement, which is EXPTIME-complete [7].

We now formalise the definition of branching implementation. Recall that ℘ is

the universe of all LTSs and δ of all MTSs.

Definition 5.2.3 (Branching Implementation). A branching implementation re-
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lation R is a binary relation on δ × ℘ such that if (M, I) ∈ R then:

1. (∀ℓ,M ′)(M
ℓ
−→r M

′) =⇒ (∃ I0, . . . , In, I ′ ·

Ii
τ
−→ Ii+1 ∀ 0 ≤ i < n ∧ In

ℓ̂
−→ I ′ ∧

I0 = I ∧ (M, Ii) ∈ R ∀ 0 ≤ i ≤ n ∧

(M ′, I ′) ∈ R)

2. (∀ℓ, I ′)(I
ℓ
−→ I ′) =⇒ (∃M0, . . . ,Mn,M

′ ·

Mi
τ
−→p Mi+1 ∀ 0 ≤ i < n ∧ Mn

ℓ̂
−→p M ′ ∧

M0 = M ∧ (Mi, I) ∈ R ∀ 0 ≤ i ≤ n ∧

(M ′, I ′) ∈ R)

Let M be an MTS, and I an LTS. We say that I is a branching implementation

of M , written M �b I, iff αM = αI and there exists a branching implementation

relation R such that (M, I) ∈ R.

It can be clearly observed that if this relation is restricted to LTSs it coincides

with branching equivalence. It can also be easily proved that if M �b I and

I ≈b I ′ then M �b I ′. Therefore, this novel implementation relation is a sound

extension of branching equivalence.

In this way we have defined a new semantics over MTS that extends branching

equivalence.

5.2.3 Validation

In Section 5.2.1 we explored the behaviour desired for a new MTS semantics

based on the analysis of a series of examples. Furthermore, in section 5.2.2 we
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formally defined a new MTS semantics. In this section we validate that semantics

by assessing if it complies with the expected behaviour for the examples analysed

in Section 5.2.1 as well as for our running example. In order to do so, we should

bear in mind that according to the definition of branching thorough semantics N

is a refinement ofM iff every implementation of N is also an implementation of

M. The strategy to validate the definition will be the following:

• Firstly, we examine the results achieved for all the examples for which

intuitively we do not consider model Ni to be a refinement of modelMi, i.e.

Mi �w Ni butMi 6�b Ni. We demonstrate that the branching semantics

matches the expected behaviour by showing a counterexample consisting of

a model Ii that is actually an implementation of model Ni but not ofMi

according to this newly defined semantics.

• Secondly, we study the examples we do consider to be valid refinements, i.e.

Mi �b Ni. Due to the infinite set of possible implementations, in order to

validate that every implementation of Ni is also an implementation ofMi,

we analyse the results for at least one member of each of the equivalence

classes of the set of implementations of Ni given by branching equivalence.

To further complete the validation, we have also included for each example

an LTS model that is not a valid branching implementation of Mi and

therefore it should not be a valid branching implementation of Ni either.

All these tests have been performed using the software tool MTSA described in

Chapter 7. The results are shown in the following tables, where True (False) in

a cell indicates whether the model in that row is (is not) a branching implemen-

tation of the model in the corresponding column.
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Table 5.1: Validating that N does not refineM.

M1 : 0 1 2

3

τ? a

b

N1 : 0 1

2

a?

b

I11 : 0 1

2

a

b

False True

M2 : 0 1

2

3

τ?
a

b

N2 : 0

1

2

a?

b

I21 : 0 1
b False True

M3 : 0 1

2

3
4

τ?
a

b
b?

N3 : 0 1

2

a?

b?

I31 : 0 1
a False True

M4 : 0 1 2

3

4
5

τ τ?
a

b
b

N4 : 0 1

2

a?

b

I41 : 0 1
b False True

M6 : 0 1 2

3

4
5 6

τ? τ?
a

b
b? c

N6 : 0

1

2

a?

b
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I61 : 0

1

2

a

b
False True

Table 5.2: Validating that N refinesM.

M5 : 0 1 2

3

4

τ? τ?
a

b
N5 : 0

1

2

a

b

I51 : 0

1

2

a

b
True True

I52 : 0 1

2

3

τ
a

b
True True

I53 : 0 1
a False False

All the above results show that branching semantics matches the desired be-

haviour for a new MTS semantics. Furthermore, we have also validated this new

semantics using the running example, testing if it rejects the undesired implemen-

tation depicted in Figure 5.1 as a valid implementation of the initial model shown
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in Figure 1.1. The result is that branching semantics rejects that implementation

as we expected.

5.3 Branching Alphabet Semantics

5.3.1 Definition

Branching refinement, similarly to weak refinement, does not allow for the com-

parison of models with different alphabets. However, we can do so by using the

hiding operator, i.e. hiding the new labels of the extended alphabet. For exam-

ple, given a model M and a model N , the latter with an alphabet that extends

the alphabet of M , i.e. αM ⊆ αN , in order to assess whether N is a refinement

of M we compute M � N@αM .

This operation gives a new refinement, therefore defining a new semantics for

MTSs for which it is possible to extend the alphabet of the models. We will now

provide a formal definition for this novel semantics.

Definition 5.3.1 (Branching Alphabet Refinement). An MTS N is a branching

alphabet refinement of an MTS M , written M �ab N , if αM ⊆ αN and M �b

N@αM .

Note that this new semantics is an extension of branching semantics, as they

behave in the same way when comparing models with identical alphabets.

We now show that a sound relationship between branching implementation se-

mantics and its alphabet extension exists, but first we define formally equivalence

and alphabet extension for MTS.
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Definition 5.3.2 (Equivalence). Given a refinement for MTS, �, we say that

M and N are equivalent, written M ≈ N , iff M � N and N � M . We shall

sometimes subindex ≈ to explicitly note the underlying refinement relation, e.g.

≈b for branching refinement �b.

Definition 5.3.3 (Alphabet Extension). Given an observational refinement for

MTS, �, we say that M ′ is an alphabet extension of M iff M ′@αM ≈w M .

Theorem 5.3.4 (Branching semantics is sound w.r.t Alphabet Extension). Let

M be an MTS and I be an LTS such that I is a branching implementation of M ,

i.e. M �b I. Given M ′ an MTS that is a branching alphabet extension of M ,

then there exists I ′ a branching alphabet extension of I such that M ′ �b I ′.

Proof. By theorem 5.3.9, M ′ and I are consistent since αM ′ ∩ αI = αM , M

and I are consistent, M ′@αM �ab M and I@αM �ab I. Hence there exists

I ′ a common implementation of M ′ and I, thus I �ab I ′ which is equivalent

to I �b I ′@αI. Considering that refinement restricted to LTSs coincides with

branching bisumulation we obtain that I ≈b I ′@αI.

Intuitively, if a model M is extended into a model M ′ then all implementations

of M can be extended to be an implementation of M ′. Figure 5.6 provides a

graphical representation of this. We say, informally, that the diagram commutes,

meaning that it is possible to obtain the same result by taking an implementation

of M and then extending the alphabet of that implementation; or by extending

the alphabet of M and then taking an implementation of that model.

From an engineering perspective this result implies that whatever implementa-

tion we have in mind for a given partial model, refining the alphabet of the partial
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M

I

M ′

I ′

branching

α extension

branching

α extension

branching

impl

branching

impl

branching α impl

Figure 5.6: Informally, alphabet extension and branching implementations com-
mute.

A′ :

0 1 2

3

login?

fail?

success?

exit

balance,
topup?,
withdraw

timeout?

m
o
re
T
im

e?

exit

Figure 5.7: Extension of model A from Figure 1.1.

model will not rule out that implementation: extending the original implemen-

tation to make it an implementation of the new model is possible.

It is important to note that it is not possible to formulate a similar soundness

result as the one above for weak semantics:

Remark 5.3.5 (Weak semantics is not sound w.r.t Alphabet Extension). Let M

and M ′ be MTSs such that M ′ is a weak alphabet extension of M . It is not the

case that for all LTSs I such that M �w I then there exists I ′ such that M ′ �w I ′

and I ′ is a weak alphabet extension of I.

Proof.

Consider the example described in Section 5.1. Assume we extend model A given

in Figure 1.1 to produce A′ by extending its alphabet with the label timeout, and

replacing the τ transition from state 2 to state 3 with a timeout transition as

depicted in Figure 5.7. It would be reasonable to expect that model K (Figure 5.1)
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could be extended with timeout into a K′ to obtain an implementation of A′.

However, this is not possible. If we analyse this in further detail, we can see that

we would need K′ to be able to perform a timeout after success. Hence, K′ would

have a new state in between exit and timeout. This leads to one of two options,

either the new state does not simulate the required behaviour of state 2 of model

A′ because it does not have transitions balance and withdraw, and therefore K′

could not be an implementation of A′; or it does have those transitions and refines

state 2 of model A′, but in this case K′@αK would not be equivalent to K since

K does not have any of the functionalities available after success and therefore

K′ could not be an alphabet extension of K.

5.3.2 Consistency

In this section, we focus on analysing the notion of consistency under branching

alphabet semantics and comparing the results with those applicable to weak

alphabet semantics. In particular, we provide a complete characterization of

consistency under branching alphabet semantics and show that, unlike in weak

alphabet semantics, consistency is preserved by hiding non-shared actions.

The problem of characterising consistency has been solved for strong and weak

semantics in Sections 3.3 and 4.2.2, where a sufficient and necessary condition for

determining if there exists a common strong or weak refinement for two models is

presented (similar results are unavailable for weak alphabet semantics). We now

define a new relation, branching alphabet consistency relation, and show that it

characterises branching alphabet consistency.

Definition 5.3.6 (Branching Alphabet Consistency Relation). A branching al-
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phabet consistency relation is a binary relation C ⊆ δ×δ, such that the following

conditions hold for all (M,N) ∈ C:

1. (M
ℓ
−→r M

′) =⇒ (∃N0, . . . , Nn, N
′) · ((Ni

vi−→p Ni+1 ∧ vi 6∈ αM) ∀ 0 ≤ i < n ∧

N0 = N ∧ Nn
ℓ̂
−→p N ′ ∧ (M,Ni) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

2. (N
ℓ
−→r N

′) =⇒ (∃M0, . . . ,Mn,M
′) · ((Mi

vi−→p Mi+1 ∧ vi 6∈ αN) ∀ 0 ≤ i < n ∧

M0 = M ∧ Mn
ℓ̂
−→p M ′ ∧ (Mi, N) ∈ C ∀ 0 ≤ i ≤ n ∧ (M ′, N ′) ∈ C

Intuitively, this relation requires that one model provides as possible behaviour

at least all the required behaviour of the other, and vice versa.

The branching alphabet consistency relation defined above characterises branch-

ing alphabet consistency, as stated in the following theorem.

Theorem 5.3.7 (Characterisation of Branching Alphabet Consistency). MTSs

M and N are branching alphabet consistent iff there exists a branching alphabet

consistency relation CMN such that (M,N) is in CMN .

Proof. ⇐) Let CI be an LTS defined by CI = (CMN , Act,∆CI , (M0, N0)), where

∆CI is the smallest relation that satisfies the following rules, assuming that

{(M,N), (M ′, N ′) ⊆ CMN}.

M
ℓ

−→rM
′, N

ℓ̂
−→pN

′

(M,N)
ℓ

−→(M ′,N ′)

M
ℓ̂

−→pM
′, N

ℓ
−→rN

′

(M,N)
ℓ

−→(M ′,N ′)

M
ℓ

−→pM
′, ℓ 6∈αN

(M,N)
ℓ

−→(M ′,N)

N
ℓ

−→pN
′, ℓ 6∈αM

(M,N)
ℓ

−→(M,N ′)

It is easy to prove that M � CI using that

R = {(M, (M,N)) | (M,N) ∈ CMN}

is a branching implementation relation between M and CI@αM .
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⇒) Since M and N are consistent we can take an LTS CI such that M � CI,

N � CI and αCI = αM ∪ αN . By definition of branching alphabet semantics

there exist RM and RN implementation relations between M and CI@αM , and

between N and CI@αN , respectively. Let CMN be a relation defined by CMN =

RM ◦R
−1
N . It can easily be proved that CMN is a branching alphabet consistency

relation between M and N .

Note that the Branching Alphabet Consistency Relation is equivalent to branch-

ing bisimulation when restricted to LTSs with the same alphabet. This result is

as expected, since an LTS is an MTS that characterises only one implementa-

tion, itself. Hence, it can only be consistent with any LTS that is equivalent to

it; equivalence which in this case is that of LTS branching bisimulation.

In the same way Theorem 5.3.4 relates refinement with alphabet extension, it is

interesting and relevant to analyse the relation between consistency and alpha-

bet extension. Here we also find that the expected results hold for branching

semantics but not for weak semantics.

The following theorem establishes that models are branching alphabet consistent

if and only if they are branching consistent over their common alphabet.

Theorem 5.3.8. Let M and N be MTSs, and A = αM ∩ αN be the common

alphabet of M and N . M@A and N@A are branching consistent iff M and N

are branching alphabet consistent.

From an engineering point of view, this theorem expresses the fact that in order

to assess whether two models are consistent it is sufficient to evaluate whether

they are consistent over their common alphabet. On the other hand, it tells



122 Chapter 5. Branching Alphabet Semantics

us that given two consistent models with the same alphabet it is possible to

elaborate those models independently, extending their alphabets over different

labels, knowing that the models will always remain consistent. This is a useful

feature, especially when comparing two models taken from different viewpoints of

the system, and for which there is a requirement to increase the level of detail with

regards to different aspects. Interestingly, weak alphabet consistency does not

satisfy the left-to-right implication of the above theorem. In other words, if two

models are weak consistent, extending them over new labels does not guarantee

they will remain consistent.

A related result, that in a way is more general than Theorem 5.3.8 is shown

below. Note that the converse of Theorem 5.3.9 is not generally true, but in the

particular case of Theorem 5.3.8 the converse is also true and it can be trivially

proved.

Theorem 5.3.9. Let M ′ and N ′ be MTSs, and A = αM ′ ∩ αN ′ be the common

alphabet of M ′ and N ′. If there exist MTSs M and N such that M ′@A �ab M ,

N ′@A �ab N , and M and N are branching alphabet consistent, then M ′ and N ′

are branching alphabet consistent.

Proof. Since M and N are consistent there exists I a common implementation

of them. Considering that M ′@A �ab M and N ′@A �ab N we get that I is a

common implementation of M ′@A and N ′@A. Therefore, by theorem 5.3.7 there

exists a consistency relation, CM ′N ′ , between M ′@A and N ′@A. Then, using that

M ′@A and N ′@A have been produced by hiding the non-common alphabet of M ′

and N ′ respectively, it can be easily proved that CM ′N ′ is a branching alphabet

consistency relation between M ′ and N ′.
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In summary, we have provided a complete characterization for consistency under

branching alphabet semantics and shown that it has the expected properties when

considered in the context of alphabet extension. These results do not exist for

weak alphabet refinement of MTSs.

5.3.3 Merge

We will now introduce a +cr operator that given two branching alphabet consis-

tent models produces a common refinement under this semantics. This operator

follows the same pattern as with the other semantics, taking a conservative ap-

proach when putting together the common behaviour of the given models, result-

ing in a common refinement that might not be the LCR or an MCR even though

these models may exist. However, unlike the same operator under weak alpha-

bet semantics, given a pair of branching alphabet consistent models, the +cr can

always produce a common refinement. This is due to the fact that a branching

alphabet consistency relation can always be built for a pair of branching alpha-

bet consistent models, while the +cr operator for weak alphabet semantics might

fail because it cannot build a weak alphabet consistency relation for the given

models.

Definition 5.3.10. (The +cr operator under Branching Alphabet Semantics)

Let M = (SM , AM , ∆r
M , ∆p

M , s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N ) be MTSs

and let CMN be the largest branching alphabet consistency relation between them.

M +cr N is the MTS (CMN , AM ∪AN ,∆
r,∆p, (s0M , s0N)), where ∆r and ∆p are

the smallest relations that satisfy the rules below, for ℓ ∈ Actτ :
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RP
M

ℓ̂
−→rM

′, N
ℓ̂

−→pN
′

(M,N)
ℓ

−→r(M ′,N ′)
PR

M
ℓ̂

−→pM
′, N

ℓ̂
−→rN

′

(M,N)
ℓ

−→r(M ′,N ′)

PD
M

ℓ
−→pM

′, N
τ̂

−→pN
′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αN ∪ {τ}) DP

M
τ̂

−→pM
′, N

ℓ
−→pN

′

(M,N)
ℓ

−→r(M ′,N ′)
ℓ 6∈(αM ∪ {τ})

PP
M

ℓ̂
−→pM

′, N
ℓ̂

−→pN
′

(M,N)
ℓ

−→p(M ′,N ′)

In order to merge models under branching alphabet semantics we can parame-

terise Algorithm 4.2.17 using the branching alphabet refinement relation and the

+cr operator for branching alphabet semantics, thus obtaining a merge algorithm

for this semantics. The resulting algorithm is complete, i.e. if it is applied to

two models that have an LCR or a set of MCRs it will find them. Therefore,

it improves on the merge algorithm for weak alphabet semantics since it is not

limited by the incompleteness of the underlying +cr operator for that semantics.

As with the merge algorithm for strong or weak alphabet semantics, this algo-

rithm is still limited by the intrinsic incompleteness of the merge operator. In

this case, when two consistent models do not have an LCR nor a set of MCRs

because there is an infinite sequence of common refinements where each model

is more abstract than all the previous ones, the algorithm detects this situation

and returns a common refinement.

Although it would be desirable that the result of merging two models was always

well defined and unique, from an engineering point of view we can see the cases

where the merge returns multiple MCRs or no MCRs exist as a chance to guide

the modeller to elicit new requirements.

Based on our discussion on Section 3.4.4 we know that if the merge returns multi-

ple MCRs, these models only differ in their initial states. In particular, we know
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that there are non-deterministic choices from the initial state and the models

differ in which of those actions are required and which are maybe. Moreover,

the different options cannot be reconciled into one MTS. This case can guide the

modeller to further analyse which are the sources of non-determinism in the ini-

tial state and potentially gather more knowledge of the system that would allow

him to select the most appropriate MCR.

We will now analyse the case where two models do not have a set of MCRs but

infinite common refinements. In this case, each model has a loop with maybe

and required transitions, and although the behaviour described by each of these

loops is consistent with each other, it is not possible to reconcile their behaviour

into a unique loop. This is because potentially on each iteration the decision

about which must be required transitions and which are maybe transitions might

alternate. This leads to infinite common refinements, where all these potential

different options are unfolded and expressed. In this case the modeller can analyse

how the repetitive behaviour of the two models should be combined and whether

there is one alternative that is appropriate, eliminating the uncertainty that leads

to the infinite different unfoldings.

Summarising, in this chapter we have defined a new observational semantics for

MTSs that preserves the branching structure, thus avoiding the unintuitive im-

plementations allowed by weak semantics. Furthermore, we have formally defined

an extension of this semantics that supports not only the elaboration of model

behaviour but also the extension of their alphabets, laying the foundations for

a sound elaboration process where the level of detail of the models can be in-

creased over time. We have also shown that extending the alphabet of a partial

behaviour model is a sound operation with respect to branching semantics, while
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the same is not true for weak semantics. Finally, we have provided a characteri-

sation of branching alphabet consistency and solved the problem of merge under

this semantics. In Chapter 8 we will apply these results to a case study.



Chapter 6

Algebraic Properties of Merge

In practice, partial behaviour model construction, refinement and merging are

likely to be combined in many different ways, possibly in conjunction with other

operators on partial models, such as parallel composition. Therefore, it is essential

to study their algebraic properties, to guarantee that the overall process yields

sensible results. For example, does the order in which various partial models

are merged matter? Is merging two models and elaborating the result through

refinement equivalent to elaborating the models independently and then merging

them? In this section, we aim to answer such questions. Specifically, we show

that while the existence of multiple non-equivalent MCRs does not guarantee

many of the properties that hold when LCRs exist, the right choice of an MCR

among the possible options can be made in order to guarantee particular algebraic

properties.

127
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6.1 Properties of Parallel Composition1

We first study properties of the parallel composition operator proposed by Larsen

et al. in [66, 52]. We study the relation between the implementations of two MTSs

to be composed in parallel with the implementations of the model resulting from

the application of the parallel composition operator. The results provide, on one

hand, an insight into the semantics of the parallel composition operator, and on

the other, property preservation results that are important to understand how

merge and parallel composition can be used together.

Larsen and Thomsen [66] defined a parallel composition operator over MTSs,

intended to describe how models of two different systems work together:

Definition 6.1.1. (Parallel Composition [66]) Let M = (SM , AM , ∆r
M , ∆p

M ,

s0M) and N = (SN , AN , ∆
r
N , ∆

p
N , s0N) be MTSs. Parallel composition (‖) is

a symmetric operator such that M‖N is the MTS (SM × SN , AM ∪ AN , ∆r,

∆p, (s0M , s0N )), where ∆r and ∆p are the smallest relations that satisfy the rules

below, where ℓ ∈ Actτ :

RD
M

ℓ
−→rM

′

M‖N
ℓ

−→rM ′‖N
ℓ 6∈αN PR

M
ℓ

−→pM
′, N

ℓ
−→rN

′

M‖N
ℓ

−→pM ′‖N ′
ℓ 6= τ PD

M
ℓ

−→pM
′

M‖N
ℓ

−→pM ′‖N
ℓ 6∈αN

RR
M

ℓ
−→rM

′, N
ℓ

−→rN
′

M‖N
ℓ

−→rM ′‖N ′
ℓ 6= τ PP

M
ℓ

−→pM
′, N

ℓ
−→pN

′

M‖N
ℓ

−→pM ′‖N ′
ℓ 6= τ

When restricted to LTSs, the parallel composition operator defined above be-

comes the standard one (e.g., [60]).

1I would like to thank Nicolas D’Ippolito for his contribution on the study of the properties
of parallel composition of MTS. In particular, he has elaborated Theorems 6.1.4, 6.1.5 and 6.1.6,
which are included in this section in order to provide a more comprehensive cover on the subject.
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Figure 6.1: Model C from Figure 1.1, D models the assumptions on the user
behaviour, and C‖D is the parallel composition of these two models.

In the rules in Definition 6.1.1, “R” stands for “required”, “P” stands for “pos-

sible”, and “D” stands for “don’t care”. In particular, rule RR captures the case

when there is a required transition in both models, PR — when there is a possible

but not required transition in one model and a required transition in the other,

and RD — when there is a required transition in one model on a non-shared

action (i.e., on an action the other system is not concerned with).

Let’s now apply the parallel composition operator to our running example. Fig-

ure 6.1 depicts a model characterising the ATM (C), a model of the user (D) and

their parallel composition (C||D). This composition has a deadlock (see state 5 in

model C||D ) since composing the user model with an implementation of C that

prohibits more than a single failed login can exhibit the following scenario: the

user, after failing to login once, tries to login again (see state 3 in model D) and

yet the ATM does not allow it, instead attempting to retain the card (see state 5

in model C). The two systems cannot synchronize, thus resulting in a deadlock.
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We now recall some properties of parallel composition of MTS. Note that it does

not preserve refinement. For instance, C‖D is not a refinement of C.

Property 6.1.2. Parallel composition satisfies the following properties [52] (with

αM = αN and αP ⊆ αM):

1. (Commutativity) M‖N = N‖M .

2. (Associativity) (M‖N)‖P = M‖(N‖P ).

3. (Monotonicity) M � N ⇒ M‖P � N‖P .

Before continuing with the study of the properties of parallel composition, we

introduce the following definition of deterministic MTS which will be used for

the remainder of this thesis. We say that an MTS is deterministic if it has no

τ transitions and there is no state that has two outgoing possible transitions on

the same label.

Definition 6.1.3. (Determinism) Let M = (S,A,∆r,∆p, s0) be an MTS. M is

deterministic iff τ 6∈ A and

∀s, s′, s′′ ∈ S · (s
ℓ
−→p s′ ∈ ∆p ∧ s

ℓ
−→p s′′ ∈ ∆p) =⇒ (s′ = s′′).

We refer to the set of all deterministic implementations of an MTS M as Idet[M ].

Composing two MTSs in parallel should result in a model that characterizes all

pairwise parallel compositions of implementations of each of the MTSs. In other

words, given MTSs M and N , it is expected that

I[M ||N ] = {IM ||IN | IM ∈ I[M ] ∧ IN ∈ I[N ]}) (6.1)
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independently of the choice of refinement (strong, weak, weak alphabet, branch-

ing, branching alphabet).

However, this is not the case even under strong refinement. Consider the models

in Figure 6.2. Model IF||G is a strong refinement of F||G. Yet it is easy to see

that there are no implementations IF and IG of F and G, respectively, such that

IF||G ≡ IF||IG: In all implementations of F, if ℓ occurs, b is then enabled. In

implementations of G, the trace ℓ, b must be possible. So the parallel composition

of an implementation of F and G must either not have ℓ transitions, or it must

allow the behaviour ℓ, b.

Although it is tempting to think that the problem is the non-deterministic choice

in G, this is not the case. Consider models in Figure 6.3. Both H and I are

deterministic, and IH||I is a strong refinement of H||I. Yet there are no IH and II

such that their parallel composition is equivalent to IH‖I. Intuitively, the problem

is that if we pick implementations of H and I which admit b and a respectively,

their parallel composition should admit any interleaving of these two actions. Yet

in IH‖I, only one interleaving is allowed.

Summarizing, the MTS parallel composition operator in [52] produces a superset

of the expected implementations (see Equation (6.1) above) independently of the

choice of refinement:

Theorem 6.1.4. (Implementations of the MTS Parallel Composition Opera-

tor [31]) For MTSs M and N ,

I[M‖N ] ⊇ {IM‖IN | IM ∈ I[M ] ∧ IN ∈ I[N ]}).

It is possible to enunciate restrictions that make the parallel composition operator
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F||G:
0 1

2

ℓ?

ℓ?
a?

b

F:
0 1

ℓ?
a, b G:

0 1

2

ℓ?

ℓ
a?

b

IF||G:
0 1

ℓ
a

Figure 6.2: Examples for Parallel Composition: Non-Deterministic Models.

H||I:
0 1

2 3

a?

b?
a?

b? H:
0 1

b?

I:
0 1
a?

IH||I: 0 1 3
a b

Figure 6.3: Example for Parallel Composition: Deterministic Models with Dif-
ferent Alphabets.

correct and complete with respect to a semantic definition along the lines of the

one proposed in Equation (6.1). The restrictions are that the two MTSs to

be composed in parallel have the same alphabet and that the operator yields a

deterministic MTS. In addition, we must restrict the result to the universe of

deterministic implementations:

Theorem 6.1.5. (Parallel Composition Preserves Deterministic Implementa-

tions [31]) For MTSs M and N , if αM = αN and M ||N is deterministic, then

Idet[M ||N ] = {IM ||IN | IM ∈ I
det[M ] ∧ IN ∈ I

det[N ]})

under strong, weak, weak alphabet, branching and branching alphabet refinement.

Even though the parallel composition operator admits more implementations

than it should (Theorem 6.1.4), the following result provides guarantees of prop-

erty preservation and gives methodological guidelines as to how to use parallel

composition in partial behaviour model elaboration.

The implementations characterized by M‖N can be simulated by the parallel

composition of some choice of implementations of M and N .

The notion of simulation between transition systems was originally introduced
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in [43]. A formal definition was presented in Chapter 2 (Definition 2.1.6).

Theorem 6.1.6. (Parallel Composition Preserves Simulation [31]) Let M and

N be MTSs and IM ||N be an LTS. If IM ||N ∈ I[M ||N ], then

∃IM ∈ I[M ], IN ∈ I[N ] · (αIM ∩ αIN = αM ∩ αN) ∧ (IM ||N ⊑s IM‖IN)

Given that simulation relations preserve safety properties ([1]), a corollary of the

above theorem is that true safety properties are preserved by parallel composi-

tion. That is, if a safety property holds in an MTS, it also holds in its parallel

composition with every other MTS.

The implications of the results discussed so far are that if, when elaborating the

behaviour of the system-to-be, we have a partial description of the system and

a partial behaviour of the environment, it is possible to reason compositionally

about the safety properties of the composite system-environment. However, it is

incorrect to compose these models in parallel and continue the elaboration process

based on the composite model; elaboration must proceed in a component-wise

fashion, refining the model of the system and of the environment separately.

In fact, component-wise elaboration is standard for traditional approaches to

behaviour modelling and analysis.

In Section 6.2, we show that the result on property preservation discussed above

also plays a role in behaviour elaboration when using merge, more specifically, in

the distributivity of merge over parallel composition.
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J: 0 1
c K: 0 1

c? L: 0 M: 0 1 2
c? a N: 0 1

b P: 0 1 2
c b

Figure 6.4: Example MTSs for algebraic properties.

6.2 Properties of LCRs

In this section, we discuss properties related to models for which the existence

of a unique minimal common refinement can be guaranteed. In the next section,

the uniqueness requirement is relaxed.

Property 6.2.1. For MTSs M , N , and P , the following properties hold:

1. (Idempotence) LCRM,M ≡M .

2. (Commutativity) If ∃LCRM,N , then LCRM,N ≡ LCRN,M .

3. (Associativity) If ∃LCRM,N , ∃LCRP,LCRM,N
, and ∃LCRN,P , then

∃LCRM,LCRN,P
and LCRP,LCRM,N

≡ LCRM,LCRN,P
.

A useful property of LCRs is monotonicity with respect to refinement as it allows

elaborating different viewpoints independently while ensuring that the properties

of the original viewpoints put together still hold.

Property 6.2.2. (Monotonicity 1) Let MTSs M , N , and P be given. If LCRM,N

exists, M � P and N � Q, then LCRM,N � C for all C ∈ CR(P,Q).

We now look at distributing merge over parallel composition: Assume that two

stakeholders have developed partial models M and N of the intended behaviour

of the same component. Each stakeholder will have verified that some required

properties hold in a given context (other components and assumptions on the

environment P1, . . ., Pn). It would be desirable if merging viewpoints M and N

preserved the properties of both stakeholders under the same assumptions on the

environment, i.e., for LCRM,N ‖ P1 ‖ · · · ‖ Pn.
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The following property supports the above reasoning:

Property 6.2.3. (Monotonicity 2) If M � N and αP ⊆ αM , then M‖P �

N‖P .

6.3 Properties of MCRs

In this section, we present algebraic properties of merging without assuming the

existence of the LCR. The algebraic properties are therefore stated in terms of sets

and the different choices that can be made when picking an MCR. Idempotence is

the only property of Section 6.2 that still holds as is, since an LCR always exists

between a system and itself. The rest of the properties discussed in Section 6.2

require some form of weakening.

Commutativity of merge holds independently of the existence of an LCR. The

following property states that the set of MCRs obtained from M and N is the

same as those obtained from N and M .

Property 6.3.1. (Commutativity) MCR(M,N) =MCR(N,M).

On the other hand, associativity cannot be guaranteed the same way as com-

mutativity. That is, it cannot be guaranteed that the same MCRs are achieved

regardless of the order in which the three MTSs are merged. However, the set

of implementations reachable through refinement is not affected by the merge

order.

Property 6.3.2. (Associativity) Let I(X) =
⋃

x∈X

I(x) and let M , N , and P be

MTSs. Then,



136 Chapter 6. Algebraic Properties of Merge

I(
⋃

A∈MCR(N,P )

MCR(M,A)) = I(
⋃

A∈MCR(M,N)

MCR(A, P )).

From a practical perspective, the above property says that an engineer with a

specific implementation in mind is able to reach it through successive refinements,

regardless of the merge order of the three models. However, if the goal is not

to achieve a specific implementation but rather obtain a particular partial model

characterizing the implementations that conform to the three MTSs, then the

merge order becomes important. This problem can be solved by defining an

n-ary merge, as discussed in Section 9.3.

Monotonicity is also disrupted by multiple MCRs. It is not expected that any

choice fromMCR(M,N) is refined by any choice fromMCR(P,N) when M is

refined by P , because incompatible decisions may be made in the two merges.

Rather, there are two desirable forms of monotonicity: (1) whenever a choice

from MCR(M,N) is made, a choice from MCR(P,N) can be made such that

a refinement holds; and (2) whenever a choice fromMCR(P,N) is made, some

model inMCR(M,N) can be chosen for a refinement to exist.

Form (1) does not hold, as the following example shows. Consider models K and

N in Figure 6.4 with αK = {c} and αN = {b}. These models are consistent, and

their merge may result in model P ∈ MCR(K,N). Also, K � L (assuming that

αL = {c}) and models L and N are consistent. However, LCRL,N is equivalent to

N over {b, c}, and since N � P, no MCR of L and N that refines P can be chosen.

Form (1) fails because there are two choices of refinement being made. On the one

hand, by picking one minimal common refinement for M and N over others, we

are choosing one of several incompatible refinements. On the other hand, we are

also choosing how to refine M into P . These two choices might be inconsistent,
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leading to the failure of monotonicity. This tells us that choosing an MCR adds

information to the merged model, which may be inconsistent with evolutions of

the different viewpoints that are represented by the models being merged.

Form (2) always holds, as stated below.

Property 6.3.3. (Monotonicity) If M, N, P, and Q are MTSs, then:

M � P ∧N � Q⇒ ∀B ∈MCR(P,Q) · ∃A ∈MCR(M,N) · A � B.

Thus, once a model in MCR(P,Q) is chosen, there always exists some model

in MCR(M,N) that it refines, and so the properties of each MCR of M and

N are preserved by the MCRs of P and Q. If MCR(M,N) is a singleton set,

Property 6.3.3 reduces to Property 6.2.3, as expected. In practical terms, this

means that if the various viewpoints are still to be elaborated, the results of rea-

soning about one of their possible merges (picked arbitrarily) are not guaranteed

to carry through once the viewpoints have been further refined.

In this section, we have shown that properties which hold for LCRs do not hold

when consistent models have no unique MCR. Intuitively, the existence of non-

equivalent MCRs implies that merging involves a choice that requires some form

of human intervention: a choice which requires domain knowledge. While this

affects some of the algebraic properties of merge, we have shown that these prop-

erties do hold in terms of preservation of implementations.
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6.4 Proofs

In this section, we give proofs and proof sketches for various theorems and prop-

erties presented in this chapter.

Before proving Theorem 6.1.4, we introduce the following lemma.

Lemma 6.4.1. (Equivalence LTS-MTS Parallel Composition) The MTS parallel

composition operator restricted to LTSs is equivalent to the LTS parallel compo-

sition operator.

Proof. Restricting a given MTS M to its required behaviour yields the exact

same rules as shown in Definition 6.1.1.

Theorem 6.4.2 (6.1.4). (Implementations of the MTS Parallel Composition

Operator [31]) For MTSs M and N ,

I[M ||N ] ⊇ {IM ||IN | IM ∈ I[M ] ∧ IN ∈ I[N ]}).

Proof. By Lemma 6.4.1 and Proposition 4.1 in [66].

The following definition will be used below.

Definition 6.4.3. (Possible LTS) Let M = (S,A,∆r,∆p, s0) be an MTS. We

define Mp = (S,A,∆p, s0) as the possible LTS of M .

Before proving the next theorem, we introduce a lemma with the following intu-

ition. Given an LTS I and an MTS M , if the behaviour of I over the alphabet

of M can be simulated by the possible behaviour of M (as per Definition 6.4.3,
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we refer to it as Mp), through a relation T (written I@ αM ⊑T Mp), then it is

possible to extend R = T−1 and the behaviour of I, into R′ and I ′ such that M

is refined by I ′ over the alphabet of M through R′ (written M �R′
I ′@ αM).

Lemma 6.4.4. (Simulation Relation Extension) Let M be an MTS, I be an LTS,

T be a relation such that T ⊆SI×SM and R = T−1. If I@ αM ⊑T Mp, then it

is possible to extend R and the behaviour of I into R′ and I ′, respectively, such

that M �R′
I ′@ αM .

Proof. The proof of this lemma is constructive, using Algorithm 6.4.5 executed

with M , I and T , s.t. I ⊑T Mp, as inputs. With these inputs, provided that

I@ αM ⊑T Mp, the algorithm extends R = T−1 and the behaviour of I into R′

and I ′ such that M �R′
I ′@ αM .

The algorithm first initializes the variables I ′ = I, R′ = R = T−1, toVisit =

∅ and visited = ∅. Then it loops, adding the required behaviour of M that is

needed in I ′ and R′ to satisfy both refinement conditions.

In every step, the set of visited pairs grows by one, and the number of pairs to

visit is bounded (by (|SI |3×|SM |)); thus, the algorithm terminates. Moreover, in

each step R′−1 is preserved as a simulation relation, and the required behaviour

is added only if it is needed, which means that R′ satisfies both refinement con-

ditions in one step and therefore, is “closer” to being a refinement relation.

Finally, when the procedure terminates, both refinement conditions hold, and

therefore, M �R′
I ′@ αM .

Algorithm 6.4.5. Simulation Relation Extension

Procedure Relation Extension (Relation T , MTS M , LTS I)
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R← T−1; R′ ← R; I ′ ← I
toV isit← {(sM , sI′)|(sM , sI′) ∈ R′}; visited← ∅

For all (sM , sI′) ∈ toV isit
visited← visited ∪ {(sM , sI′)}

For all sM
ℓ
−→r s

′
M · sM

ℓ
−→r s

′
M ∈ ∆r

M

For all s′I′ ∈ Closure(sI′, I
′)

If ∃s′′I′ ∈ SI′ · s
′
I′

ℓ
−→ s′′I′ ∈ ∆I′

Let s′′′ : state

For all s′′I′ ∈ SI′ · s
′
I′

ℓ
−→ s′′I′ ∈ ∆I′

If (s′M , s′′I′) /∈ R′

// sM simulates s′I by R′, which means that there should
// be a transition (possibly including τ -transitions) over
// ℓ from sM to s′′M (with sM 6= s′′M), and the pair

// (s′′M , s′′I′) is in R′. Therefore, sM
ℓ
−→r s

′
M must be a

// “non-deterministic” transition.
SI′ ← SI′ ∪ {s

′′′}

∆I′ ← ∆I′ ∪ {sI′
ℓ
−→ s′′I′}

R′ ← R′ ∪ {(s′M , s′′′)}
If (s′M , s′′′) /∈ visited

toV isit← toV isit ∪ {(s′M , s′′′)}
EndIf

EndFor
Else

// We found a required transition which is not part of the
// behaviour of I ′.
If ∃s′′I′ ∈ SI′ · (s

′
M , s′′I′) ∈ R′

// In this case, (s′M , s′′I′) were already in R, which means that
// we need to add another transition between them.

∆I′ ← ∆I′ ∪ {sI′
ℓ
−→ s′′I′}

Else
Let s′′′ : state
SI′ ← SI′ ∪ {s

′′′}

∆I′ ← ∆I′ ∪ {sI′
ℓ
−→ s′′′}

R′ ← R′ ∪ {(s′M , s′′′)}
If (s′M , s′′′) /∈ visited

toV isit← toV isit ∪ {(s′M , s′′′)}
EndIf

EndIf
EndFor

EndFor
toV isit← toV isit \ {(sM , sI′)}

EndFor
Return (R′, I ′)
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Theorem 6.4.6 (6.1.5). (Parallel Composition Preserves Deterministic Imple-

mentations [31]) For MTSs M and N , if αM = αN and M ||N is deterministic,

then

Idet[M ||N ] = {IM ||IN | IM ∈ I
det[M ] ∧ IN ∈ I

det[N ]})

under strong, weak, weak alphabet, branching and branching alphabet refinement.

Proof. (⇐) By Theorem 6.1.4.

(⇒)

i) We construct IM and IN by the same process used in the proof of Theorem 6.1.6.

It is easy to see that bisimulation conditions between I and IM ||IN hold if the

behaviour of IM ||IN is restricted to the subset of transitions to and from states

of the form (sIM||N
, sIM||N

).

ii) Now we show that every transition of IM ||IN is of the form (sIM||N
, sIM||N

),

i.e.,

∀(sIM||N
, sIM||N

) ∈ SIM ||IN · (sIM||N
, sIM||N

)
ℓ
−→ (s′IM||N

, s′IM||N
).

Let R, RM and RN be relations such that M ||N �R IM ||N , M �RM IM , N �RN

IN , respectively. By i), (s0IM||N
, s0IM||N

) ∈ SIM ||IN holds.

We proceed by proof by contradiction. Let’s choose a state (sIM||N
, sIM||N

) such

that our hypothesis does not hold, i.e.,

∃(i, j) ∈ SIM ||IN · (sIM||N
, sIM||N

)
ℓ
−→ (i, j) ∈ ∆IM ||IN ∧ i 6= j
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Then,

(M ||N and IM ||N satisfy Definition 6.1.3, αM = αN)

⇒ 6 ∃s′IM||N
· sIM||N

ℓ
−→ s′IM||N

∈ ∆IM||N

(Definition 6.1.1)

⇒ (i ∈ SM · sIM
ℓ
−→ i ∈ ∆IM ) ∧ (j ∈ SN · sIN

ℓ
−→ j ∈ ∆IN )

(Procedure in proof of Lemma 6.4.4)

⇒ (∃s′M ∈ SM · (s
′
M , i) ∈ RM ∧ sM

ℓ
−→r s

′
M ∈ ∆r

M) ∧

(∃s′N ∈ SN · (s
′
N , j) ∈ RN ∧ sN

ℓ
−→r s

′
N ∈ ∆r

N )

(Definition 6.1.1)

⇒ (sM , sN)
ℓ
−→r (s

′
M , s′N) ∈ ∆r

M ||N

(Definition 3.1.1)

⇒ ∃s ∈ SIM||N
· ((s′M , s′N), s) ∈ R ∧ sIM||N

ℓ
−→ s ∈ ∆IM||N

(Our assumption)

⇒ false

Therefore, every state in IM ||IN is of the form (sIM||N
, sIM||N

).

By i) and ii), we showed that I ∼ IM‖IN and thus the theorem holds.

Before stating and proving Theorem 6.1.6, we introduce another lemma. Intu-

itively, it states that given two MTSs, M and N , and an LTS I, if M ||N is refined

by I over the alphabet of M ||N , then I can be simulated (over the alphabet of

M) by M .

Lemma 6.4.7. (Decomposition Simulation) Let M and N be MTSs and I be an
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LTS. If M ||N � I@(αM ∪ αN), then the following holds:

I@αM ⊑s Mp

Proof. We first define a relation S as follows:

S = {(sI , sM)|∃sN · ((sM , sN), sI) ∈ R}

We now show by contradiction that S is a simulation relation. Intuitively, if

I@αM ⊑s Mp does not hold, then the MTS refinement condition 2 on M ||N �R

I@(αM ∪ αN) does not hold either. We check the conditions for simulation:

(1) By definition of S, (s0I , s0M ) ∈ S

(2) By definition of S, (s′I , s
′
M) ∈ S. Assume that ¬∃s′M · sM

ℓ
=⇒p s′M .

(Definition 6.1.1)

⇒ sN
ℓ

=⇒p s′N ∈ ∆p
N ∧ ℓ ∈ (αN \ αM) ∪ τ

(Definition 4.1.1)

⇒ sM(
ℓ

=⇒p)
0sM ∧ (s′I , sM) ∈ S

This contradicts the assumption. Thus, simulation condition 2 holds.

Theorem 6.4.8 (6.1.6). (Parallel Composition Preserves Simulation [31]) Let M

and N be MTSs and IM ||N be an LTS. If IM ||N ∈ I[M ||N ], then

∃IM ∈ I[M ], IN ∈ I[N ] · (αIM ∩ αIN = αM ∩ αN) ∧ (IM ||N ⊑s IM‖IN)
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Proof. By Lemma 6.4.7, IM ||N@ αM ⊑s Mp and IM ||N@ αN ⊑s Np; by Lemma 6.4.4,

it is possible to build IM and IN such that IM ∈ I[M ] and IN ∈ I[N ] by applying

Algorithm 6.4.5.

We now define Q as follows:

Q = {(sIM||N
, (sIM||N

, sIM||N
))|sIM||N

∈ SIM||N
}

By construction of IM and IN , IM ||N ⊑
Q IM ||IN and αIM ∩αIN = αM ∩αN .

Lemma 6.4.9. (Alphabet reduction) If A and B are sets and M and N are

MTSs, then

B ⊆ A⇒ (M@A � N@A⇒M@B � N@B).

Proof. We show that the refinement relation that exists because M@A �w N@A

is also a refinement relation between M@B and N@B, hence leading toM@B �w

N@B.

Property 6.4.10 (6.2.1). For MTSs M , N , and P , the following properties hold:

1. (Idempotence) LCRM,M ≡M .

2. (Commutativity) If ∃LCRM,N , then LCRM,N ≡ LCRN,M .

3. (Associativity) If ∃LCRM,N , ∃LCRP,LCRM,N
, and ∃LCRN,P , then

∃LCRM,LCRN,P
and LCRP,LCRM,N

≡ LCRM,LCRN,P
.

Proof. (1) and (2) follow straightforwardly from the definition of LCR (see Defi-
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nition 3.4.2). (3) Let Q be LCRP,LCRM,N
.

LCRM,LCRN,P
� Q

(Definition 3.4.2)

LCRN,P � Q@(αN ∪ αP ) ∧M � Q@αM

(Definition 3.4.2)

⇐ Q@(αN ∪ αP ) ∈ CR(N,P ) ∧M � Q@αM

(Definition 3.4.1)

⇐ N � Q@αN ∧M � Q@αM ∧ P � Q@αP

(N � LCRM,N@αN � Q@αN ∧M � LCRM,N@αM � Q@αM)

(Lemma 6.4.9)

⇐ N � LCRM,N@αN ∧M � LCRM,N@αM ∧ LCRM,N � Q@(αM ∪ αN) ∧

∧P � Q@αP

(Definition 4.2.2 and Definition 3.4.2)

= t.

The other direction (Q � LCRM,LCRN,P
) is proven similarly.

Property 6.4.11 (6.2.2). (Monotonicity 1) Let MTSs M , N , and P be given. If

LCRM,N exists, M � P and N � Q, then LCRM,N � C for all C ∈MCR(P,Q).
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Proof. Let C ∈MCR(P,Q).

(Since P � C@αP , Q � C@αQ, αP = αM , and αQ = αN)

⇒ (M � P ⇒M � C@αM) ∧ (N � Q⇒ N � C@αN)

(Properties of ⇒ and ∧, and Definition 3.4.1)

⇒ (M � P ) ∧ (N � Q)⇒ C ∈ CR(M,N)

(Definition 3.4.2)

⇒ (M � P ) ∧ (N � Q)⇒ LCRM,N � C

Property 6.4.12 (6.2.3). (Monotonicity 2) If M �a N and αP ⊆ αM , then

M‖P �a N‖P .

Proof. M �wa N implies M �w N@αM . From [52], we then have M‖P �w

(N@αM‖P ). Given that αP ⊆ αM , we have (N@αM‖P ) = (N‖P )@αM .

Hence M‖P �w (N‖P )@αM which by definition means that M‖P �wa (N‖P ).

Property 6.4.13 (6.3.3). (Monotonicity) If M, N, P, and Q are MTSs, then:

M � P ∧N � Q⇒ ∀B ∈MCR(P,Q) · ∃A ∈MCR(M,N) · A � B

Proof. Assume B ∈MCR(P,Q). Then N � Q � B∧M � P � B which entails

B ∈ CR(M,N). Hence either B ∈ MCR(M,N) or ∃A ∈ MCR(M,N) · A �

B.
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Tool Support

As part of this thesis we have developed a tool, the Modal Transition System

Analyzer (MTSA), which builds upon the Labelled Transition System Analyzer

(LTSA) [60], extending it to support the construction and analysis of MTS mod-

els. In MTSA we have implemented the algorithms for computing refinement,

consistency and merge for the different semantics analysed in this thesis. The

basic mechanism for describing MTS models is using a text language based on the

FSP process algebra [60], and includes operators such as sequential and parallel

composition, and hiding, in addition to the MTS merge operator. The tool also

supports visualization of MTSs in a graphical format, analyses such as animation,

consistency checking, as well as deadlock freedom and refinement checks.

MTSA is available as an Open Source project in order to allow other researchers

to contribute or to use the code base to write their own tools (available at

http://sourceforge.net/projects/mtsa/).

147
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Figure 7.1: Architecture diagram of the MTSA tool.

Figure 7.1 shows a diagram of the architecture of MTSA. The system is divided

in five main components organized in three layers.

The top layer is the Graphical User Interface (GUI), which controls the inter-

action with the user and implements the different input/output panels. This

component is originally from LTSA and it was extended with new functionality

specific for MTSs.

The second layer is the Dispatcher, which serves as an abstraction between the

GUI and the Core.

The Core is where the actual algorithms and data structures for LTSs and MTSs

are implemented. In this layer there are two main components, the LTSA Core

and the MTSA Core. The LTSA Core comes from the original implementation
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of LTSA, and it includes the FSP parser and other algorithms for LTSs such as

model checking and simulation. This component also provides the data structure

to represent an LTS, which is used by all the algorithms of the LTSA Core as

well as by the GUI. The FSP parser was extended in order to support the new

operators defined for MTSs. The MTSA Core is a new module implemented

to support all the different algorithms for MTSs presented in this thesis. This

module is completely decoupled from the rest of the system and can easily be

embedded into other systems that require any of the algorithms or data structures

provided as part of this module.

In order to be able to reuse and leverage the GUI and the FSP parser from the

LTSA code base we have adopted the following encoding of an MTS into a an LTS.

Given an MTS M = (S, L,∆r,∆p, s0) we encode M as an LTS M ′ = (S, L′,∆, s0)

where

L′ = L ∪ {ℓ? | ℓ ∈ L}

and

∆ = ∆r ∪ {s
ℓ?
−→ s′ | s

ℓ
−→ s′ ∈ ∆p ∧ s

ℓ
−→ s′ 6∈ ∆r}.

In other words, we encode an MTS M into an LTS M ′ by introducing two labels

into M ′ for each label in M , one being exactly the original label and the other

one with a question mark added at the end. For each required transition on

M we have a transition on M ′ using the original label, and for each maybe

transition on M we have a transition on M ′ using the corresponding label with

a question mark added at the end. This transformation is implemented in the

LTSA - MTSA Translation component and it is used by the Dispatcher in order

to adapt the corresponding data structures when invoking functions from the

different modules.
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In the rest of this chapter we will first give a brief introduction to FSP followed

by a more detailed description of MTSA, including examples of how to apply the

different algorithms.

7.1 Finite State Processes

Finite State Processes (FSP) is a process algebra notation with a semantics in

terms of LTS introduced by Magee et al [60]. It has been designed to textually

specify LTS in a concise way.

A process written in FSP is given by an expression consisting of composition

operators, processes and actions. While processes’ names begin with an uppercase

letter, actions’ names start with a lowercase letter. A process is defined by one

or more local processes separated by commas, and the end of the definition is

marked with a full stop.

We will now define the basic operators using the following notation: x and y

denote actions while P and Q denote processes. In addition, for each of the

operators we include an example of an FSP expression using such operator as

well as the graphical representation of the model described by that expression.

For a full description of FSP syntax and semantics refer to [60].

• Primitive Process ‘‘STOP’’: FSP has the primitive local process STOP

which is a process that cannot engage in any action.

A = STOP. A:
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• Action Prefix ‘‘->’’: ( x -> P ) describes a process that initially en-

gages in the action x and then behaves exactly as described by P.

A = ( a -> STOP ). A: a

• Choice ‘‘|’’: ( x -> P | y -> Q ) describes a process which initially

engages in either action x or y. If the first action is taken then the subse-

quent behaviour is described by P while if the second action is taken then

Q describes the subsequent behaviour.

A = ( a -> STOP | b -> STOP ). A:

a

b

• Recursion: the behaviour of a process can be defined recursively. The

recursion may be directly in terms of the process being defined, or indirectly

in terms of other processes.

A = ( a -> B ), B = ( b -> A). A:
a

b

In order to be able to also define MTSs we have developed an extension to FSP.

The idea is to allow the use of question marks in such a way that if an ac-

tion’s name includes at least one question mark then the corresponding transi-

tion should be interpreted as a maybe one. Otherwise, the action represents a

required transition.

The labels of the MTS model are obtained by removing from the actions’ names

all occurrences of the question mark symbol. For example, ( topup? -> STOP



152 Chapter 7. Tool Support

) represents a maybe transition through the topup label. It can also be written

using the following notation: ( top?up -> STOP ). The decision of allowing the

inclusion of question marks in any part of the action’s name apart from the first

symbol is due to the fact that some advanced FSP operators generate actions

with suffixes. Therefore, it is not possible to guarantee that if a question mark

is included in the name it will be its last symbol.

The following example represents a simple MTS described by an FSP expression.

A = ( a?1 -> STOP | a2 -> STOP ). A:

a1?

a2

• Parallel Composition ‘‘||’’: The Parallel Composition between models

(Definition 6.1.1) is defined with the || operator. FSP syntax requires to

prefix the name of the model with a “||” when the definition of the model

uses previously defined models.

A = ( a -> b? -> STOP). A:
a b?

B = ( a? -> b -> STOP). B:
a? b

||PC = ( A || B). PC:
a? b?

• Common Refinement ‘‘+cr’’: The +cr operator (Definition 4.2.12) can

be applied between models in order to define a new model. Following the

FSP syntax in order to define a model that surges as an operation between
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previously defined models the prefix “||” has to be used in front of the name

of the model.

A = ( a -> b? -> STOP). A:
a b?

B = ( a? -> b -> STOP). B:
a? b

||CR = ( A +cr B). CR:
a b

• Merge ‘‘++’’: The Merge algorithm (Algorithm 4.2.17) can be applied

using the ++ operator.

A = ( x? -> A1),

A1 = ( y? -> a? -> STOP |

y? -> b? -> STOP).

A: 0 1

2 3

4 5

x?
y? a?

y?
b?

B = (x? -> y -> { a?,b? } -> STOP). B: 0 1 2 3
x? y a?, b?

||M = ( A ++ B). M: 0

1 2 3

4 51′

x?

x?

y? a?

y

b?
x? y

y?

7.2 Modal Transition System Analyser

In this section we show how to use MTSA and how to apply the main algorithms

that we presented along this work. We divided the presentation in three main

use cases: defining models and applying the merge operator, checking refinement,

and checking consistency.
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7.2.1 Model Definition and Merge

Figure 7.2: MTSA Edit panel with the FSP definition for models A, B, and C of

the running example.

In Figure 7.2 we can see a screenshot of the MTSA tool. In this figure the Edit

panel is selected. This panel is where the user can introduce model definitions

using FSP as described in section 7.1. In this particular example, we can see

the FSP definition of models A, B, and C of our ATM running example (these
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models are depicted in Figure 1.1). Models A and B have been explicitly defined

using FSP, while model C is the result of applying the merge algorithm (Algo-

rithm 4.2.17) to models A and B. After defining the models in the Edit panel

the user can compile them to generate the models, and then be able to visualise

and operate with the models. In Figure 7.3 we can see the Output panel that

displays the result of the compilation process. In case that there are any errors

during the compilation process those errors would be display in this panel.

Figure 7.3: MTSA Output panel after compiling the models.
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In Figure 7.4 we can see the Draw panel, where the different models can be vi-

sualised.

Figure 7.4: MTSA Draw panel displaying models A, B, and C.
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7.2.2 Refinement

In order to check refinement between two models the user should first define and

compile those models. Once the models are generated the user can check refine-

ment by selecting Refinement from the MTS menu. Figure 7.5 shows the dialog

window that allows the user to select which models to check and the desired

semantics. MTSA checks refinement using a fix-point algorithm to calculate the

corresponding refinement relation. We have implemented a parallel version of the

fix-point algorithm that leverages all the available cores in the system making a

better use of the available resources and reducing the run time of the algorithm

almost proportionally to the number of cores.

Figure 7.5: MTSA Refinement dialog window, with the options set to check weak

alphabet refinement between models A and C.

In Figure 7.6 we can see how MTSA displays the results of the refinement check

in the Output panel.
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Figure 7.6: Results of checking weak alphabet refinement between models A and

C, and vice versa.

7.2.3 Consistency

The steps to check consistency between two models are similar to those followed

to check refinement. From the MTS menu the user selects Consistency and a

dialog window that allows the user to select the models to be checked and the

desired semantics appears (Figure 7.7).
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Figure 7.7: MTSA Consistency dialog window, with the options set to check

branching alphabet consistency between A and B.

Internally, in order to check consistency the tool uses the same parallel fix-point

algorithm that is used for checking refinement, but parameterised with the “sim-

ulation” rules for consistency. The fix-point algorithm was implemented in such

a way that a user can easily implement different “simulation” relations between

models and calculate them using this parallel fix-point algorithm.

In MTSA we have implemented the algorithms to calculate consistency relations

for each of the semantics included in this thesis. It is worth noting that in the

case of Weak Alphabet semantics, where the consistency relation we proposed is

not complete, the algorithm we have implemented is the one presented in 4.2.11,

which is more adequate for this semantics, as described in Section 4.2.2.

Finally, in Figure 7.8 we show the Output panel with the results of checking

Branching and Branching Alphabet consistency between models A and B.
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Figure 7.8: Results of checking branching alphabet consistency between A and

B.



Chapter 8

Case Study - Mine Pump

The purpose of this chapter is to show, by means of a case study, how the results

described earlier in this thesis are applied in the context of an incremental be-

haviour model elaboration process. We base our analysis on the Mine Pump [59]

case study, in which a pump controller is used to prevent the water in a mine

pump from passing some threshold, and hence flooding the mine. To avoid ex-

plosions, the pump may only be active when there is no methane gas present

in the mine. The pump controller monitors the water and methane levels by

communicating with two sensors.

All analyses for this case study were performed automatically by means of the

MTSA tool described in Chapter 7. It is worth noting that, while we only include

as part of this chapter figures of the most relevant models (either in a graphical

or textual representation), all models mentioned in this case study are defined

in an FSP file that can be found at [29], and they can be visualised using the

MTSA tool.

161
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0 1
switchOn?

switchOff?

(a) Pump

0 1 2

medWater highWater

medWaterlowWater

(b) WaterLevelSensor

0 1

methAppears

methLeaves

(c) MethaneSen-
sor

Figure 8.1: The LTSs for (a) Pump, (b) WaterLevelSensor, and (c) MethaneSen-
sor.

This chapter is organised as follows. In Section 8.1, we provide a high level

description of the Mine Pump System and its components. In Section 8.2, we

focus on the most complex component of the system, the Mine Pump Controller,

and show how it can be constructed by merging several partial models and how

tool-supported validation of the resulting model can prompt further elaboration.

We then construct the final model of the Mine Pump System, which satisfies the

expected requirements, through successive merge operations over partial models.

In Section 8.3 we show how the Mine Pump System can be extended as new

requirements are identified. Finally, in Section 8.4 we discuss the results.

8.1 Mine Pump System Description

The mine pump system consists of four components: Pump, PumpController,

WaterLevelSensor, and MethaneSensor. The complete system, MinePumpSys-

tem, is the parallel composition of these components. The component Pump

models the physical pump, which can be switched on and off. PumpController

describes the controller that monitors the water and methane levels, and con-

trols the pump in order to guarantee the correct behaviour for the mine pump
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system. WaterLevelSensor models the water sensor and includes assumptions

on how the water level is expected to change between low, medium, and high.

MethaneSensor keeps track of whether methane is present in the mine.

The LTSs for the Pump, WaterLevelSensor, and MethaneSensor components are

shown in Figure 8.1, where we assume that initially the water is low, the pump

is off, and no methane is present.

The description given above leaves open the exact water level at which to turn

the pump on and off. For example, the pump could be turned on when there is

high water or possibly when the water is not low, (e.g., at a medium level). The

pump could be turned off when there is low water or possibly when the water is

not high. In what follows, we investigate in more detail partial models for the

pump controller, which are intended to be merged to create a model of the entire

controller, namely, PumpController.

8.2 Pump Controller Construction and Elabo-

ration

8.2.1 Initial Partial Models

Assume that requirements specification of the pump controller has been organized

following the IEEE Recommended Practice for Software Requirements Specifica-

tions Standard 830 [53], which provides a template for structuring requirements

based on the operation mode of the system-to-be. Consequently, requirements
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are grouped for example into those that are relevant when the mine pump is on

and those in which the mine pump is off.

As with the ATM running example, the operational requirements for the mine

pump controller could be given in a variety of specification languages. From some

of these languages (e.g., MSCs, use cases or temporal logics), MTS models could

be synthesized automatically [88, 89]. Synthesis of MTSs is beyond the scope of

this thesis and consequently of this case study. Hence, we assume that the MTSs

have been constructed manually or (semi-)automatically from the requirements

corresponding to each mode.

We model the mine pump controller giving three descriptions of the controller

from different points of view, that capture the initial requirements that have

been gathered. Each of these descriptions is a partial description and focuses on

one aspect of the controller behaviour, and might have been provided by differ-

ent stakeholders. These descriptions are modelled with MTSs and each model

characterises the set of all controllers which manifest the described behaviour.

The three models are: OnPolicy, OffPolicy, and SafetyPolicy. The complete con-

troller, PumpController, is the merge of these models.
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switchOff
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SafetyPolicy = PUMP[False ][ False],

PUMP[methane :Bool][ pumpOn :Bool] = (

switchOff ? -> PUMP[methane ][ False] |

methLeaves ? -> PUMP[False ][ pumpOn ] |

when (! methane && pumpOn ) methAppears ? -> switchOff -> PUMP[True][ False ] |

when (! methane && !pumpOn ) methAppears ? -> PUMP[True ][ False] |

when (! methane ) switchOn ? -> PUMP[False ][ True]

).

Figure 8.2: FSP and graphical representation of the MTS of the Safety Policy.
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medWater?
highWater?
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medWater?
highWater?
switchOn?

medWater?

highWater?

lowWater?
switchOn?

lowWater?

switchOff?switchOff

OffPolicy = PUMP[True ][ False],

PUMP[lowWater :Bool ][ pumpOn :Bool] = (

when (! lowWater ) switchOn ? -> PUMP[lowWater ][ True] |

switchOff ? -> PUMP[lowWater ][ False ] |

{medWater ?,highWater ?} -> PUMP[False ][ pumpOn ] |

when (pumpOn ) lowWater ? -> ( switchOff -> PUMP[True ][False ] ) |

when (! pumpOn ) lowWater ? -> PUMP[True ][ False]

).

Figure 8.3: FSP and graphical representation of the MTS of the Off Policy.
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OnPolicy = PUMP[False ][ False ][ False ],

PUMP[highWater :Bool ][ methane :Bool ][ pumpOn :Bool] = (

methAppears ? -> PUMP[highWater ][ True][ pumpOn ] |

switchOff ? -> PUMP[highWater ][ methane ][ False] |

switchOn ? -> PUMP[highWater ][ methane ][ True] |

{lowWater ?,medWater ?} -> PUMP[False ][ methane ][ pumpOn ] |

when (methane )

highWater ? -> PUMP[True][ True][ pumpOn ] |

when (! methane && !pumpOn )

highWater ? -> ( switchOn -> PUMP[True][ False ][ True ]) |

when (! methane && pumpOn )

highWater ? -> PUMP[True][ False ][True] |

when (methane && highWater && !pumpOn )

methLeaves ? -> ( switchOn -> PUMP[True][ False ][True] ) |

when (! methane || !highWater || pumpOn )

methLeaves ? -> PUMP[highWater ][ False ][ pumpOn ]

).

Figure 8.4: FSP and graphical representation of the MTS of the On Policy.



8.2. Pump Controller Construction and Elaboration 167

OnPolicy describes when the pump must be turned on to avoid flooding the mine,

leaving open the option of turning the pump on with a lower level of water. It

specifies that the pump must be turned on if the water level is high and there is

no methane. The pump might be damaged if it works with not enough water to

pump out. Therefore the controller has to protect the pump and guarantee that

the pump will not work with a low level of water. This property is captured with

OffPolicy and leaves open the option of turning the pump off with a higher level

of water. SafetyPolicy captures the requirement that the pump must be kept

off under the presence of methane in order to prevent an explosion in the mine.

This model only specifies that the pump must be turned off immediately when

methane appears and that the pump cannot be turned on if there is methane

present in the mine, leaving open when the controller should turn the pump on

or off when there is no methane present.

The MTS obtained from the merge of the described models characterises the set of

LTSs that fulfil the mentioned properties. As mentioned before, the requirements

captured so far do not specify the exact water level at which to turn the pump on

and off, leaving these decisions open for a further refinement based on gathering

more detailed requirements or an arbitrary election of one implementation among

all the possible implementations.

In Figures 8.2, 8.3 and 8.4 we can see the described models. It is important to

highlight that all these models are a partial description of the whole controller,

and they have been modelled using only the alphabet which is relevant for the

behaviour that each of them is describing. Being able to use only the alphabet

which is relevant to each model allows us to produce simpler and more compact
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models. This is possible because we are using branching alphabet semantics.

In [33] we presented a predecessor to this case study. At that time, we were limited

to applying the merge algorithm under strong semantics only and therefore the

whole alphabet had to be embedded in all models leading to more complex and

harder to follow models.

Our goal is to build an MTS which characterises all the LTSs which satisfy all

the requirements that we have captured for the controller so far. This could be

achieved by combining the three models that we have created.

8.2.2 Merge vs. +cr operator

Now that we have a set of MTSs that describe different aspects of the pump

controller we would like to combine them in order to get a more precise and

consolidated description of the behaviour of the controller. As we have been

arguing along this work the merge operation provides the right support to do

so, while previous approaches might be insufficient since they fail to obtain the

LCR or a common refinement which is abstract enough to carry on with the

elaboration process.

If we attempt to combine the OnPolicy, OffPolicy and SafetyPolicy using the +cr

operator instead of the merge, we would not be able to get a common refinement

of our three models for the pump controller. For example, if we apply the +cr

first to OnPolicy and OffPolicy, the result that we get is not the LCR between

these models but a more refined model. The resulting model is inconsistent with

SafetyPolicy, which prevents the elaboration process to continue. If we try the

other two possible ways of combining these models with the +cr operator we will
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PumpController = Q0 ,

Q0 = ({ lowWater ?, methLeaves ?,

switchOff ?} -> Q0

|methAppears ? -> Q1

|medWater ? -> Q2

|highWater ? -> Q3),

Q1 = (methLeaves ? -> Q0

|{ lowWater ?, switchOff ?} -> Q1

|highWater ? -> Q9

|medWater ? -> Q10),

Q2 = (lowWater ? -> Q0

|{ medWater ?, methLeaves ?,

switchOff ?} -> Q2

|highWater ? -> Q3

|switchOn ? -> Q6

|methAppears ? -> Q10),

Q3 = (switchOn -> Q4),

Q4 = ({ highWater ?, methLeaves ?,

switchOn ?} -> Q4

|lowWater ? -> Q5

|medWater ? -> Q6

|switchOff ? -> Q7

|methAppears ? -> Q8),

Q5 = (switchOff -> Q0

|methLeaves ? -> Q5),

Q6 = (switchOff ? -> Q2

|highWater ? -> Q4

|lowWater ? -> Q5

|{ medWater ?, methLeaves ?,

switchOn ?} -> Q6

|methAppears ? -> Q11),

Q7 = (lowWater ? -> Q0

|medWater ? -> Q2

|highWater ? -> Q3

|switchOn ? -> Q4

|{ methLeaves ?, switchOff ?} -> Q7

|methAppears ? -> Q9),

Q8 = (highWater ? -> Q8

|switchOff -> Q9

|medWater ? -> Q11),

Q9 = (lowWater ? -> Q1

|methLeaves ? -> Q3

|{ highWater ?, switchOff ?} -> Q9

|medWater ? -> Q10),

Q10 = (lowWater ? -> Q1

|methLeaves ? -> Q2

|highWater ? -> Q9

|{ medWater ?, switchOff ?} -> Q10 ),

Q11 = (highWater -> Q8

|switchOff ? -> Q10

|medWater ? -> Q11).

Figure 8.5: First model for the PumpController resulting from merging Safety-
Policy, OnPolicy, and OffPolicy.

find that all of them fail to produce a common refinement of the three models.

If we now try to combine our three models for the pump controller using the

merge operator we do get a branching alphabet common refinement regardless

of the order in which we apply the merge operator. It is worth noting that in

this case, the order in which the models are merged together leads to differ-

ent MCRs. This is in line with Property 6.3.2 and the discussion we presented

in Section 6.3 in relation to this property. In Figure 8.5 we can see the result

of (SafetyPolicy++OnPolicy)++OffPolicy. This operation returns an MTS with

maybe transitions, implying that there are many LTSs which satisfy all the re-

quirements. This indicates that we can continue the elaboration process of the

pump controller by eliciting more requirements, or alternatively we can choose

at this stage one of the valid implementations of the model that we have built so

far.
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ImplOff = Q0 ,

Q0 = ({ lowWater , medWater ,

methLeaves , switchOff } -> Q0

|highWater -> Q1

|methAppears -> Q5),

Q1 = (switchOn -> Q2),

Q2 = (switchOff -> Q3),

Q3 = ({ lowWater , medWater } -> Q0

|{ methLeaves , switchOff } -> Q3

|methAppears -> Q4),

Q4 = (methLeaves -> Q1

|{ highWater , switchOff } -> Q4

|{ lowWater , medWater } -> Q5),

Q5 = (methLeaves -> Q0

|highWater -> Q4

|{ lowWater , medWater , switchOff }

-> Q5).

Figure 8.6: Valid implementation for the pump controller depicted in Figure 8.5.

8.2.3 Further Elaboration of the Pump Controller

We will continue the elaboration process by eliciting new requirements. We can

drive this process by analysing possible implementations of the current model

with the stakeholders of the system. Figure 8.6 shows a valid implementation

of the model for the PumpController presented in Figure 8.5, hence it is also a

valid implementation of SafetyPolicy, OnPolicy, and OffPolicy, as we can check

with the MTSA tool. This implementation fulfils the requirements that we have

captured so far for the pump controller. However, if we look at state 2 we can

see that this potential controller always turns the pump off immediately after it

turns the pump on. Analysing the behaviour of this implementation allows us to

extract the following new requirement:

- [OffPolicy2 ] The pump should not be turned off with a high water level except

if methane appears.

By analysing the MTS for the pump controller and the different maybe transitions

it presents, the following additional requirements were also identified:

- [OnPolicy2 ] The pump should only be turned on if the water level is high.

- [OffPolicy3 ] The pump should be turned off as soon as the water level is below

high.
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PumpController = Q0 ,

Q0 = ({ lowWater ?, methLeaves ?,

switchOff ?} -> Q0

|methAppears ? -> Q1

|medWater ? -> Q2

|highWater ? -> Q3),

Q1 = (methLeaves ? -> Q0

|{ lowWater ?, switchOff ?} -> Q1

|highWater ? -> Q9

|medWater ? -> Q10),

Q2 = (lowWater ? -> Q0

|{ medWater ?, methLeaves ?,

switchOff ?} -> Q2

|highWater ? -> Q3

|switchOn ? -> Q6

|methAppears ? -> Q10),

Q3 = (switchOn -> Q4),

Q4 = ({ highWater ?, methLeaves ?,

switchOn ?} -> Q4

|lowWater ? -> Q5

|medWater ? -> Q6

|switchOff ? -> Q7

|methAppears ? -> Q8),

Q5 = (switchOff -> Q0

|methLeaves ? -> Q5),

Q6 = (switchOff ? -> Q2

|highWater ? -> Q4

|lowWater ? -> Q5

|{ medWater ?, methLeaves ?,

switchOn ?} -> Q6

|methAppears ? -> Q11),

Q7 = (lowWater ? -> Q0

|medWater ? -> Q2

|highWater ? -> Q3

|switchOn ? -> Q4

|{ methLeaves ?, switchOff ?} -> Q7

|methAppears ? -> Q9),

Q8 = (highWater ? -> Q8

|switchOff -> Q9

|medWater ? -> Q11),

Q9 = (lowWater ? -> Q1

|methLeaves ? -> Q3

|{ highWater ?, switchOff ?} -> Q9

|medWater ? -> Q10),

Q10 = (lowWater ? -> Q1

|methLeaves ? -> Q2

|highWater ? -> Q9

|{ medWater ?, switchOff ?} -> Q10 ),

Q11 = (highWater -> Q8

|switchOff ? -> Q10

|medWater ? -> Q11).

Figure 8.7: Second model for the PumpController resulting from merging Safe-
tyPolicy, OnPolicy, OffPolicy, OnPolicy2, OffPolicy2, and OffPolicy3.

To build a new model for the controller which satisfies all the requirements that

have been captured so far, we refine the PumpController model, merging it with

the models which capture the new requirements. Figure 8.7 presents the MTS

that results from this operation. As we can see, it is an MTS with maybe transi-

tions. If we compose in parallel the new model for the pump controller with the

models of the environment (Pump, WaterLevelSensor, and MethaneSensor) we

obtain an MTS for the whole system. This model of the entire system still has

maybe transitions. However, all the maybe transitions are on actions from the

environment (lowWater, medWater, highWater, methAppears, and methLeaves)

and there are no maybe transitions on any of the controllable actions (switchOn,

switchOff ). This indicates that in fact there are no more possible refinements to

do on the pump controller that would change how the pump is controlled. The

only possible refinement that we can do on the pump controller would be adding
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PumpControllerImpl = Q0,

Q0 = ({ lowWater , medWater ,

methLeaves , switchOff } -> Q0

|highWater -> Q1

|methAppears -> Q6),

Q1 = (switchOn -> Q2),

Q2 = ({ highWater , methLeaves ,

switchOn } -> Q2

|{lowWater , medWater } -> Q3

|methAppears -> Q4),

Q3 = (switchOff -> Q0

|methLeaves -> Q3),

Q4 = (highWater -> Q4

|switchOff -> Q5),

Q5 = (methLeaves -> Q1

|{ highWater , switchOff } -> Q5

|{ lowWater , medWater } -> Q6),

Q6 = (methLeaves -> Q0

|highWater -> Q5

|{ lowWater , medWater , switchOff }

-> Q6).

Figure 8.8: Implementation for the PumpController obtained as a result of the
elaboration process.

MinePumpSystem = Q0 ,

Q0 = (medWater -> Q1

|methAppears -> Q8),

Q1 = (lowWater -> Q0

|highWater -> Q2

|methAppears -> Q7),

Q2 = (switchOn -> Q3),

Q3 = (medWater -> Q4

|methAppears -> Q5),

Q4 = (switchOff -> Q1),

Q5 = (switchOff -> Q6),

Q6 = (methLeaves -> Q2

|medWater -> Q7),

Q7 = (methLeaves -> Q1

|highWater -> Q6

|lowWater -> Q8),

Q8 = (methLeaves -> Q0

|medWater -> Q7).

Figure 8.9: Model for the MinePumpSystem that results from the parallel com-
position of PumpControllerImpl, WaterLevelSensor, MethaneSensor, and Pump.

assumptions or preconditions on how the environment behaves. Therefore, we

will stop the elaboration process at this point taking the implementation that

has the maximum behaviour possible, i.e. all maybe transitions are converted to

required. In this way we are producing a controller that does not make any as-

sumptions on the behaviour of the environment nor does it impose any particular

preconditions on it. Figure 8.8 shows the model PumpControllerImpl, which is the

implementation for the pump controller that we obtained with this elaboration

process. Figure 8.9 shows the final model for the whole mine pump system that

results from the parallel composition of PumpControllerImpl, WaterLevelSensor,

MethaneSensor, and Pump.
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AlarmPolicy = Q0 ,

Q0 = ({ lowWater ?, medWater ?,

methLeaves ?, switchOff ?, switchOn

?} -> Q0

|highWater ? -> Q1

|methAppears ? -> Q8),

Q1 = ({ lowWater ?, medWater ?} -> Q0

|{ highWater ?, methLeaves ?,

switchOff ?, switchOn ?} -> Q1

|methAppears ? -> Q2),

Q2 = (highWater ? -> Q2

|switchOff -> Q3),

Q3 = (alarmOn -> Q4),

Q4 = ({ highWater ?, switchOff ?,

switchOn ?} -> Q4

|methLeaves ? -> Q5

|medWater ? -> Q7

|lowWater ? -> Q10),

Q5 = (switchOn -> Q6),

Q6 = (alarmOff -> Q1),

Q7 = (alarmOff -> Q8),

Q8 = (methLeaves ? -> Q0

|{ lowWater ?, medWater ?,

methAppears ?, switchOff ?,

switchOn ?} -> Q8

|highWater ? -> Q9),

Q9 = (alarmOn -> Q4),

Q10 = (alarmOff -> Q8).

Figure 8.10: Model for the AlarmPolicy.

8.3 Extending the Mine Pump System

After the model PumpControllerImpl was built the stakeholders identified that

the system could be in a state where the water level is high and there is methane

in the mine, leading to a highly risky situation. Therefore, they requested to add

to the system an alarm that should be on while the system is in the described

condition, and off otherwise. Also, considering the risk of explosion in the mine

if the pump is on and the presence of methane is detected, the pump should be

turned off before activating the alarm if necessary.

To incorporate these new requirements we will add a new component Alarm to

the system, which represents the physical alarm, and update the controller in

order to handle not only the pump but also the alarm. The alarm is modelled

similarly to the pump, but in this case we have the actions alarmOn and alarmOff.

We will then compose the Alarm model with the rest of the models (Pump,

PumpController, WaterLevelSensor, and MethaneSensor) to obtain a model for

the whole system.

The controller needs to be extended to handle the alarm as required, while its

behaviour keeps fulfilling the previous requirements. The need to control the
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alarm raises the need to expand the alphabet of the controller model with the

labels alarmOn and alarmOff. In order to incorporate this new requirement into

the controller we can follow the same elaboration process used with the initial

requirements. We produce an MTS that captures the behaviour required to

control the alarm while leaving open any other behaviour, and we then merge

this new model with our existing model for the controller. In Figure 8.10 we can

see the AlarmPolicy model that captures the requirements to control the alarm.

As we can see, the model uses the new labels alarmOn and alarmOff, so merging

this model with the existing pump controller, which does not have these labels,

would not be supported under traditional semantics for MTSs. However, we

can merge these models using branching alphabet semantics, producing a model

which is not only a common refinement but also an alphabet extension.

Consider that an implementation for the controller had already been built based

on the PumpControllerImpl model that we generated in the previous elaboration

phase. In order to save implementation efforts it would be useful to question

whether it is possible to extend the existing implementation with the AlarmPol-

icy. To answer this we need to check if the PumpControllerImpl is consistent

with the AlarmPolicy. Using the MTSA tool we verify that these models are

consistent, and therefore the implementation can be extended. In order to do so

we merge it with the AlarmPolicy model. Once this step is completed, we com-

pose in parallel the models of the environment with the extended implementation

for the pump controller in order to generate the model for the complete system.

Figure 8.11 shows the final mine pump system that we obtain after following this

process.
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SystemWithAlarm = Q0,

Q0 = (medWater -> Q1

|methAppears -> Q12),

Q1 = (lowWater -> Q0

|highWater -> Q2

|methAppears -> Q11),

Q2 = (switchOn -> Q3),

Q3 = (medWater -> Q4

|methAppears -> Q5),

Q4 = (switchOff -> Q1),

Q5 = (switchOff -> Q6),

Q6 = (alarmOn -> Q7),

Q7 = (methLeaves -> Q8

|medWater -> Q10 ),

Q8 = (switchOn -> Q9),

Q9 = (alarmOff -> Q3),

Q10 = (alarmOff -> Q11),

Q11 = (methLeaves -> Q1

|highWater -> Q6

|lowWater -> Q12 ),

Q12 = (methLeaves -> Q0

|medWater -> Q11 ).

Figure 8.11: The final model for the entire MinePumpSystem with the alarm.

8.4 Discussion

In this case study we have shown how branching alphabet semantics allows us

to support an iterative modelling process in a context where initially only par-

tial information is available and new information becomes available as the project

evolves. While traditional semantics would not be suited for incremental elabora-

tion, branching alphabet semantics allows us to do this by extending the alphabet

as we need to do so. This approach also eases the modelling process by allowing
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the modeller to construct many simpler partial models that capture individual

requirements, which are easier to build as well as easier to validate. Furthermore,

this case study shows how the consistency and merge algorithms presented in this

thesis can be used to adequately support the elaboration process, improving on

previously defined algorithms.



Chapter 9

Conclusions

In this chapter we first present a review of relevant related work, followed by an

evaluation of the contributions presented in this thesis and suggested directions

for future work.

9.1 Related Work

Below, we survey related work along three directions: (1) behaviour modelling,

(2) consistency and merge, and (3) abstraction and property preservation with

respect to partial models.

Behaviour Modelling

A significant body of work has been produced in the area of behaviour mod-

elling, including research on process algebras (e.g., [45]), notions of equivalence

177
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and refinement (e.g., [70]), and model checking (e.g., [16]). The bulk of this work

has used a two-valued semantics approach to behaviour modelling (e.g., using

LTSs [58] as the underlying formalism). Typically, the behaviour explicitly de-

scribed by the underlying state-machine is considered to be required, while the

rest is considered to be prohibited. As stated previously, the assumption that

the underlying state machine is complete, up to some level of abstraction, is

limiting in the context of iterative development processes [9], and in processes

that adopt use-case and scenario-based specifications (e.g., [19, 87]), or that are

viewpoint-oriented [47].

While LTSs and other two-valued state machine formalisms can capture some

notion of partiality, the behaviour they describe is considered as either the upper

or the lower bound to the final, complete, system behaviour (see our discussion

in Section 2.1), but not both. Partial behavioural formalisms capture this nicely,

by capturing the unknown behaviour explicitly, so as new information becomes

available, the two bounds can be refined simultaneously. In MTSs, this unknown

behaviour is specified by transitions which are possible but not required.

A number of formalisms exist which allow explicit modelling of lack of informa-

tion. Partial Kripke structures [11] and Kripke Modal Transition Systems [49]

extend Kripke structures to support propositions in states to be one of three

values (true, false, and unknown). In our work, states in themselves do not have

any semantics, we focus only on observable system behaviour as described by

the labelled transitions between states, hence we build on models in the labelled

transition systems [58] style.

Our definition of Modal Transition Systems is essentially that proposed by Larsen

et al. [66]. However, in [66] all MTSs have the same alphabet, the universe of
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all labels, while we extend the definition of MTSs to include a communication

alphabet in line with [60]. Having the communication alphabet allows scoping

models and capturing the fact that system components may control and monitor

different sets of events [55].

In this work, we have focused on Modal Transition Systems which are less expres-

sive than other partial behaviour modelling formalisms that have been proposed,

such as multi-valued Kripke structures [14] and Mixed Transition Systems [22].

There is a trade-off between expressiveness, tractability and understandability

and further studies, extending the results presented in this thesis to these for-

malisms, are necessary.

Numerous extensions of MTS exist such as Mixed Transition Systems [22] and

Disjunctive Modal Transition Systems [63]. Antonik et. al. [2] present a survey

which provides an excellent coverage of the relation between these different for-

malisms and other extensions. The novel semantics we proposed could be studied

for these formalisms too. We believe that existing weak and strong refinement no-

tions in these settings will suffer from the same shortcomings as MTSs. A slightly

different approach to modelling unknown behaviour is taken in [85, 71]. In [85]

the authors have studied Partial Labelled Transition Systems, where each state

is associated with a set of actions that are explicitly proscribed from happening.

Extended Transition Systems [71] also associate a set of actions with each state,

but in this case it models the actions for which the state has been fully described.

These models are special MTSs [51], the new notions of refinement introduced

in this work and the merge operation have yet to be studied when restricted to

these models.

A recent extension to MTSs has been presented by Bauer et al. [6], where MTSs
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are extended with structured labels that represent quantitative aspects of the

models. A new refinement notion for these models is also presented, which ex-

tends the classical notion of strong refinement for MTS to include the capability

to refine labels based on their pre-order in the label set. This notion of refinement

is orthogonal to the alphabet refinement we presented in this work. While the

label-structured refinement allows the modeller to gradually refine the label of

one transition, the alphabet refinement we presented allows him to introduce new

concepts into the model.

Consistency and Merge

Composition of behaviour models is not a novel idea [70, 45]; however, its main

focus has been on parallel composition, which describes how two different com-

ponents work together. In the context of model elaboration, we are interested in

merge, i.e., composing two partial descriptions of the same component to obtain a

model that is more comprehensive than either of the original partial descriptions.

The notion of merge in itself is not novel either; it underlies many approaches to

system model elaboration such as viewpoints [20], aspects [15], and scenario/use

case composition (e.g., [86, 61]). However, the interplay of partial descriptions

and merge is not necessarily treated explicitly and formally.

Larsen et. al. originally introduced a merge operator (called conjunction), but

defined it only for MTSs over the same vocabulary without τ transitions, and

for which there is an independence relation (at which point the least common

refinement exists) [65]. Their goal is to decompose a complete specification into

several partial ones to enable compositional proofs. Although not studied in
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depth, the operator in [65] is based on strong refinement. In particular, [65, 62] use

an incomplete notion of consistency and do not address the problem of multiple

MCRs.

In [90] an initial study of merge and consistency for weak semantics is presented;

however, the results presented in here are stronger. The subtleties of the existence

of multiple MCRs under weak semantics were also initially discussed in [90] and

then resolved as part of this work.

In [63] a conjunction operator for Disjunctive MTSs (DMTSs), similar to the one

in [65], is defined. These models simplify merging by allowing inconsistencies of

models being merged to be encoded within the DMTSs. However, the compu-

tational complexity of merging MTS is traded for the complexity of detecting

contradictions: Checking that a DMTS has an implementation by inspection is

non-trivial even in small examples and in general it is computationally as ex-

pensive as merge is in MTS. Checking consistency of an MTS is trivial as by

definition any MTS has an implementation. The goal of [63] is to characterize

equation solving in process algebra. In particular, consistency is used to prove

satisfiability of a given specification.

In [3, 7] a study of the complexity of different decision problems for MTSs and

Mixed transition systems is presented. In particular it is shown that thorough

refinement for strong and weak semantics is EXPTIME-complete, considering

that branching alphabet refinement is between these two is expected to have the

same complexity but further study is necessary.

Hussain and Huth [48] also study the consistency problem, solving it for multiple

3-valued models, representing different views, with the same alphabet. But, they
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focus on the complexity of the relevant model-checking procedures: consistency,

satisfiability, and validity. Instead, our work addresses the more general problem

of supporting engineering activities in model elaboration. Finally, our models

are more general than the models of Hussain and Huth in that we merge models

with different vocabularies and τ transitions, but less general in that Hussian

and Huth handle hybrid constraints, e.g., restricting the number of states a given

proposition is evaluated in.

MTSs are defined over flat state spaces: ∆r and ∆p give a partial description of

the behaviours over a finite set of states. Huth et al. [50] use the mixed power-

domain of Gunter [39] to generalize MTSs to non-flat state spaces, modelled as

domains. This extension is more expressive than MTSs, and can be used to rep-

resent other formalisms such as Mixed MTSs or partial Kripke structures. This

extension guarantees uniqueness of merge, but at the expense of a non-trivial

consistency check for one model. Checking whether a model has at least one

valid implementation cannot be done in polynomial time. This complexity is

“transferred” to the modeller when he or she attempts to understand a model

drawing an intuition from the implementation set given by that model. In addi-

tion, non-uniqueness of merge over MTSs encountered in our work can be seen as

an opportunity for elicitation, validation, and negotiation of partial descriptions.

Other approaches support merging inconsistent and incomplete views, i.e., en-

abling reasoning in the presence of inconsistencies [27, 79]. In [27] it is assumed

that only states with the same label can be merged, and a similar consistency

assumption is made in [95] in the context of UML differencing. On the other

hand, in [79] a more general category-theoretic approach is presented which is

based on the observation that it is not always clear how to relate two views. They
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use graph morphisms to express such relationships, enabling the user to provide

this as a third argument to merge. Nejati and Chechik present a framework

for merging 4-valued Kripke structures [73], where the fourth value indicates

disagreement. The aim is to support negotiation for inconsistency resolution,

helping users identify and prioritize disagreements through visualization. A key

difference with the above approaches is that we focus on merging models that

describe only the observable behaviour of a system. Hence, simulation-like rela-

tions, as opposed to relations that focus on the state structure, are appropriate

for merging. Models merged by [27, 79, 73, 76] include state information, and

consequently other notions of preservation, such as isomorphism, apply.

An alternative to partial operational descriptions, which we focus on, is the use

of declarative specifications. For instance, classical logics are partial in that a

theory denotes a set of models, hence they support merging as the conjunction

of theories which denotes the intersection of their models. Similarly, Live Se-

quence Charts [41] support merging through logical conjunction, as each chart

can be interpreted as a temporal logic formula. We believe that our approach is

complementary and the fact that it models explicitly possible but not required

behaviour may facilitate exploration and validation of unknown behaviours facil-

itating further elicitation.

The operation of merging also arises in several other related areas, including

synthesis of StateChart models from scenarios [61], program integration [46], and

combining program summaries for software model-checking [5].

The notion of system composition through partial descriptions is at the core of

approaches to feature interaction in telecommunication systems (e.g., [12, 75]).

These approaches aim to describe a product through a composition of features.
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When features are described via operational models such as state machines, the

formalisms require that each feature be fully specified. It is not possible to model

the fact that certain aspects of a feature are presently unknown, to compose these

features without having to resolve the unknowns, and to analyze the resulting

model in the presence of these unknowns. Thus, there is no support for reasoning

about a family of products resulting from the unknown aspects of the features

used to build the product model. Furthermore, the notions of merge and compo-

sition, prevalent in the feature interaction literature, differ from the ones used in

this work (see [74] for details).

Abstraction and Property Preservation

Explicit partiality corresponds naturally to the lack of information at modelling

time. Our work has focused on finding a more elaborate model, based on refine-

ment, that preserves the properties of two consistent partial models. The reverse

of this process is abstraction, in which a less refined model is constructed. Unlike

merge, abstract models are usually hidden from the user for use in automatic

procedures, e.g., for efficient model-checking of large or infinite state systems. In

addition, the notion of consistency is irrelevant in abstraction, as there is always

a model that refines an abstraction, namely, the original model itself. However,

like merge, soundness of abstractions with respect to property preservation is of

fundamental importance in order for abstractions to be of any use when checking

properties.

The approach of extending transition systems with a second transition relation

describing unknown behaviour was originally proposed by [66], and independently

by [22]. Larsen and Thomsen introduced MTSs as a solution to the complete-
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ness limitation of LTSs, and proved that Hennessy-Milner logic [43] characterizes

strong refinement. Dams’ Mixed Transition Systems [22, 21], which are MTSs

that do not assume that all required transitions are possible transitions, are used

for abstracting Kripke structures. It is shown that 3-valued CTL* properties

are preserved by the refinement preorder between these models [22]. Bruns and

Godefroid introduced partial Kripke Structures (PKs) [11], which have a single

unlabelled transition relation and 3-valued state propositions. They show that

3-valued CTL defined over PKs characterizes their completeness preorder.

In [50] Huth et al. introduced Kripke MTSs (KMTSs) – a state-based version of

MTSs. A KMTS has two transition relations, as in an MTS, but instead of having

labelled transitions, each state is labelled with a set of 3-valued propositions. It

is shown that 3-valued µ-calculus characterizes refinement defined over KMTSs,

which is used as the basis for a 3-valued framework for program analysis. A proof

that model checking of 3-valued µ-calculus properties for KMTS can be reduced

to model checking of 3-valued µ-calculus properties on regular Kripke Transition

Systems is provided in [49].

When a property evaluates to maybe in an abstract model, the model must be

further refined (where refinement corresponds to splitting abstract states). [83]

shows that even standard methods of refining abstract models (e.g. [37]) are not

monotonic with respect to property preservation. Shoham and Grumberg define

Generalized KMTSs (GKMTSs), an extension of KMTSs with hyper-transitions,

as a solution to this problem, and obtain a monotonic abstraction-refinement

framework with respect to 3-valued CTL.

Finally, MTSs, KMTSs, and PKs have the same expressive power [38]. The same

is true for 4-valued Kripke structure, Mixed Transition Systems and Generalized
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Kripke MTSs [40, 94], which represent another group of equivalent models.

9.2 Evaluation of Achievements

The motivation for the work presented in this thesis comes from the need to

better support the elaboration of partial behaviour models in the context of

currently used software development practices. In particular, we aimed to develop

theoretical results and practical tools to support modelling processes that allow

both the level of detail of the models to be increased over time as well as different

viewpoints of the system to be integrated into the overall system description

as they become available. These two characteristics are essential if an MDSE

approach is to be adopted as part of industry standard software developments

techniques, which are characterised by their incremental and iterative nature.

We have achieved these goals by developing a novel MTS semantics, branching

alphabet semantics, which allows for the elaboration of model behaviour with

increasing level of detail. We have shown that, unlike other MTS semantics, this

semantics is sound with respect to alphabet extension and can therefore support

iterative software development practices, as desired. Moreover, we have developed

a merge algorithm that successfully allows for different views of the same system

to be combined, further enhancing its applicability in the context of currently

used software development techniques. We have also studied relevant properties

of merge, providing essential results to support the use of compositional modelling

from a practical perspective. The development of a software tool that allows the

user to apply the different concepts presented in this thesis and analyse the results

further contributes to this aim.
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Additional contributions of our work include a thorough analysis of the strengths

and shortcomings from a software elaboration point of view of the different previ-

ously existing MTS semantics. As part of this analysis we solved open theoretical

questions providing results such as a characterisation of consistency, a complete

merge algorithm, and a proof that MTSs are not closed with respect to the merge

operation. This analysis also led us to the development of branching alphabet

semantics, which we have shown combines the benefits while avoiding the main

limitations of existing MTS semantics, as shown in our case study.

9.3 Future work

In the future, we intend to continue experimentation by conducting larger case

studies in order to further explore the opportunities and limitations of the work

presented in this thesis.

The fact that MTSs are not closed under merge, i.e., that MCRs may not exist,

prompts the question of whether other partial behaviour modelling formalisms

could be developed to better support incremental behaviour model elaboration.

In the case of MTSs, we expect to address the practical difficulties introduced by

merging MTS models with no least common refinement by developing an n-ary

merge operator that constructs a common refinement from an unbounded number

of MTSs and iteratively abstracts the result. Such an operator would remove the

necessity of choosing MCRs for the n − 1 pairwise merges needed to merge n

MTSs and would prevent the propagation of any incompleteness introduced by

merging models, further facilitating the elaboration process.
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Volker Gruhn, editors, ICSE, pages 41–50. ACM, 2008.

[85] S. Uchitel, J. Kramer, and J. Magee. “Behaviour Model Elaboration using

Partial Labelled Transition Systems”. In ESEC/FSE’03, pages 19–27, 2003.

[86] S. Uchitel, J. Kramer, and J. Magee. “Synthesis of Behavioural Models from

Scenarios”. IEEE Transactions on Software Engineering, 29(2):99–115, 2003.

[87] S. Uchitel, J. Kramer, and J. Magee. “Incremental Elaboration of Scenario-

Based Specifications and Behaviour Models using Implied Scenarios”. ACM

Transactions on Software Engineering and Methodology, 13(1):37–85, 2004.

[88] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model syn-

thesis from properties and scenarios. In ICSE, pages 34–43. IEEE Computer

Society, 2007.

[89] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Synthesis of partial

behavior models from properties and scenarios. IEEE Trans. Software Eng.,

35(3):384–406, 2009.

[90] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural models.

In Richard N. Taylor and Matthew B. Dwyer, editors, SIGSOFT FSE, pages

43–52. ACM, 2004.

[91] Rob J. van Gabbeek and W. Peter Weijland. Branching time and abstraction

in bisimulation semantics. J. ACM, 43(3):555–600, 1996.

[92] Rob J. van Glabbeek. What is branching time semantics and why to use it?

pages 469–479, 2001.



BIBLIOGRAPHY 201

[93] Rob J. van Glabbeek andW. Peter Weijland. Branching time and abstraction

in bisimulation semantics. J. ACM, 43:555–600, May 1996.

[94] O. Wei, A. Gurfinkel, and M. Chechik. “Mixed Transition Systems Revis-

ited”. In Proceedings of 10th International Conference on Verification, Model

Checking and Abstract Interpretation (VMCAI’09), volume 5403 of LNCS,

pages 349–365, January 2009.

[95] Z. Xing and E. Stroulia. “UMLDiff: An Algorithm for Object-Oriented

Design Differencing”. In Proceedings of 20th IEEE International Conference

on Automated Software Engineering (ASE’05), pages 54–65. IEEE Computer

Society, 2005.


