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Dear Sirs, 
 
I am submitting electronically, to Biochimica et Biophysica Acta - Molecular and Cell Biology of 
Lipids, a manuscript entitled “Long-chain polyunsaturated fatty acid synthesis in a marine 

vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with 4 activity”, 
by Sofia Morais, Filipa Castanheira, Laura Martínez-Rubio, Luis E.C. Conceição and Douglas R. 
Tocher. 

Fatty acyl desaturase and elongase cDNAs corresponding to a 4fad (with some 5 activity for 
PUFA of the n-3 series) and elovl5 were cloned from a marine teleost (Solea senegalensis) and 
functionally characterized by heterologous expression in yeast. Historically, it was believed 

that the pathway for DHA synthesis would involve a 4 desaturase, as this would be the most 

direct route, but the presence of 4Fad enzymes could not be established in vertebrates and a 

4-independent pathway of DHA synthesis involving sequential elongations of EPA to 24:5n-3 

followed by 6 desaturation and partial oxidation was identified in rats and rainbow trout. 

Later, Fads with 4 activity were demonstrated in several lower eukaryotes but the 6  
pathway remained the only demonstrated mechanism for DHA biosynthesis in vertebrates. 

Very recently (PNAS 107 (2010) 16840-16845), a Fad enzyme with 4 activity was reported for 
the first time in a vertebrate species, a marine herbivorous fish. In the present study, 

characterization of another 4fad, this time in a marine carnivorous teleost, has established 

that production of DHA via 4-desaturation is likely more widespread among vertebrate 
species. From an evolutionary standpoint this finding is surprising as it was the established 
paradigm that in the marine environment, and particularly associated with a carnivorous diet, 
fish had adapted to a rich dietary supply of DHA, and therefore there would be no pressure for 
endogenous DHA biosynthesis. Therefore, the data are discussed in relation to the natural diet 
of S. senegalensis and support the alternative hypothesis that this pathway has high adaptative 
plasticity to trophic level. Furthermore, this is the first time that transcriptional regulation of 

4fad has been demonstrated. Transcripts of 4fad and elovl5 showed a pattern of regulation 
during early ontogenesis indicating adaptation to ensure availability of DHA for neurogenesis 
independent of dietary supply during a short temporal window corresponding to the start of 

exogenous feeding. Furthermore, 4fad was up-regulated in response to LC-PUFA-poor diets, 
confirming biological relevance of this pathway in reducing LC-PUFA dietary requirements in 
this species, which were empirically known to be lower than other marine fish species. 
Therefore, this paper presents novel information on LC-PUFA biosynthesis and its 
transcriptional regulation, and evidence of the plasticity of its adaptation to trophic 
environment. 

The work has not been published nor is under consideration for publication elsewhere, and its 
publication is approved by all authors. We hope the manuscript will be considered for 
publication in BBA and below append suggestions for appropriate reviewers.  
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Sofia Morais 

 

Cover Letter



 

Suggested referees: 

1. Dr. Xiaozhong Zheng 
Centre for Inflammation Research, C2.18 
Queen's Medical Research Institute 
The University of Edinburgh 
47 Little France Crescent 
Edinburgh EH16 4SA 
United Kingdom 
Tel: 0131 2426593, Fax: 0131 2426578 
email: xzheng@staffmail.ed.ac.uk 
 
Dr Zheng has done considerable work involving cloning and functional characterization of Fads 
and Elovls in fish and is therefore a very specific expert in this field. 

2. Professor Johnathan A. Napier, 
Rothamsted Research, 
Harpenden,  
Herts AL5 2JQ, UK. 
Tel: +441582763133 
Fax: +441582780981 
Email: jon.napier@bbsrc.ac.uk 
 
Prof. Napier is an expert in Fad molecular biology and has considerable expertise in pathways 
of DHA biosynthesis. 

3. Dr. Chantal Cahu 
Unité Mixte de Nutrition des poissons IFREMER-INRA B.P. 70  
29280 Plouzané  
France 
Tel: +33 02 98 22 44 03, Fax: +33 02 98 22 46 53  
E-mail: Chantal.Cahu@ifremer.fr 
 
4. Dr. Gabriel Mourente 
Departmento de Biologia 
Facultad de Ciencias del Mar 
Universidad de Cadiz 
Rio San Pedro 
E-11510, Puerto real (Cadiz) 
Spain  
Tel: +34 956016013, Fax: +34 956016019 
E-mail: gabriel.mourente@uca.es 
 
5. Dr. Manuel Yúfera 
Instituto de Ciencias Marinas de Andalucia - Consejo Superior de Investigaciones Cientificas 
Apartado Oficial 
11519 Puerto Real 
Spain 
Tel. +34 956 832612 ext 34, Fax +34 956 834701 
manuel.yufera@icman.csic.es 
 

mailto:xzheng@staffmail.ed.ac.uk
mailto:jon.napier@bbsrc.ac.uk
mailto:Chantal.Cahu@ifremer.fr
mailto:gabriel.mourente@uca.es
mailto:manuel.yufera@icman.csic.es


 
Referees #3, 4 and 5 are all experts in marine larvae nutrition including fatty acid metabolism. 
Dr Manuel Yúfera and Dr. Gabriel Mourente additionally have performed several larval 
nutrition studies in S. senegalensis. Dr. Chantal Cahu has also been involved in molecular and 
genomic studies, including the cloning and Fad expression in fish and Dr. Gabriel Mourente has 
also worked specifically with enzymes of the pathway of LC-PUFA biosynthesis. 

 
 



Highlights: 

 

> We cloned and functionally characterized a fatty acyl desaturase and elongase in sole. > 

Fad has 4-activity and Elovl has substrate specificity typical of fish Elovl5. > Sole appears 

to be able to synthesize DHA from EPA via a Sprecher-independent pathway. > 4fad and 

elovl5 showed a marked pattern of regulation during early ontogenesis. > 4fad shows 

nutritional regulation, being up-regulated in response to LC-PUFA-poor diets. 
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Abstract 

Solea senegalensis is an unusual marine teleost as it has very low dietary requirement 

for long-chain polyunsaturated fatty acids (LC-PUFA) during early development. 

Aquaculture is rapidly becoming the main source of health-beneficial fish products for 

human consumption. This, associated with limited supply of LC-PUFA-rich ingredients 

for fish feeds, render S. senegalensis a highly interesting species in which to study the 

LC-PUFA biosynthesis pathway. We have cloned and functionally characterized fatty 

acyl desaturase and elongase cDNAs corresponding to 4fad (with some 5 activity for 

the n-3 series) and elovl5 with the potential to catalyze docosahexaenoic acid (DHA) 

biosynthesis from eicosapentaenoic acid (EPA). Changes in expression of both 

transcripts were determined during embryonic and early larval development, and 

transcriptional regulation in response to higher or lower dietary n-3 LC-PUFA was 

assessed during larval and post-larval stages. There was a marked pattern of regulation 

during early ontogenesis, with both transcripts showing peak expression coinciding with 

the start of exogenous feeding. Although elovl5 transcripts were present in fertilized 

eggs, 4fad only appeared at hatching. However, eggs have high proportions of DHA (~ 

20%) and high DHA/EPA ratio (~ 11) to meet the high demands for early embryonic 

development. The fatty acid profile of larvae after the start of exogenous feeding closely 

reflected dietary composition. Nonetheless, 4fad was significantly up-regulated in 

response to LC-PUFA-poor diets, which may suggest biological relevance of this 

pathway in reducing LC-PUFA dietary requirements in this species, compared to other 

marine teleosts. These results indicate that sole is capable of synthesizing DHA from 

EPA through a Sprecher-independent pathway. 
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1. Introduction 

Long-chain polyunsaturated fatty acids (LC-PUFA) are essential nutrients in 

nutrition and health. They are major components of biological membranes, particularly 

of immune cells and neural tissue, being vital for visual and cognitive development 

during early ontogeny, important in normal growth and development, as well as for 

tissue repair during injury [1-4]. The LC-PUFA are implicated in the regulation of a 

multitude of metabolic and immune pathways through their roles as secondary 

messengers and transcription factor ligands, and are potent bioactive molecules and 

precursors of eicosanoids with pro- or anti-inflammatory properties, hence intervening 

in a number of prevalent inflammatory disorders, including cardiovascular diseases, 

cancer, asthma, and several mental disorders [5-7]. 

Polyunsaturated fatty acids (PUFA), such as -linolenic acid (ALA; 18:3n-3) and 

linoleic acid (LOA; 18:2n-6), are essential dietary nutrients in all vertebrates since they 

cannot be synthesized de novo and hence must be obtained from diet. However, within 

vertebrates, the extent to which a species can produce LC-PUFA such as arachidonic 

acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid 

(DHA; 22:6n-3) from C18 PUFA precursors varies greatly, depending on their 

repertoire of fatty acyl elongase (Elovl) and desaturase (Fad) enzymes. In teleosts a 

principle paradigm has been that species diverge according to the environment and/or 

trophic level they occupy, with essential fatty acid (EFA) requirements being satisfied 

by C18 PUFA in freshwater/diadromous species, whereas marine fish have a strict 

requirement for LC-PUFA [8]. Accordingly, in all freshwater and marine fish species 



4 
 

studied so far a cDNA has been isolated for 6Fad, required for the initial desaturation 

of LOA and ALA [9,10], but unifunctional or bifunctional Fad enzymes possessing the 

5 activity necessary to desaturate 20:3n-6 and 20:4n-3 to ARA and EPA, respectively, 

have only been found in the diadromous/freshwater species Atlantic salmon and 

zebrafish [11,12]. Thus, the inability of marine fishes to produce LC-PUFA has been 

explained by the loss of a gene encoding 5 activity, as an evolutionary adaptation to a 

DHA-rich marine ecosystem [8]. This paradigm was recently revised with the discovery 

of the first vertebrate Fad enzyme showing 4 activity and a bifunctional 6/5 Fad, in 

a herbivorous marine fish species, Siganus canaliculatus [13]. This study also revealed 

the possibility, in some vertebrate species at least, for another pathway for synthesis of 

DHA from EPA involving direct 4 desaturation of docosapentaenoic acid (DPA; 

22:5n-3), as an alternative to the “Sprecher” pathway that involves two sequential 

elongations of EPA to 24:5n-3 followed by 6 desaturation and one round of 

peroxisomal β-oxidation [14].  

Fish are highly nutritious components of the human diet and the main source of 

essential n-3 LC-PUFA. With the decrease in wild fisheries worldwide, aquaculture is 

supplying an increasing proportion of fish for human consumption, estimated at around 

50% of total supply in 2008 [15]. However, the health-beneficial fatty acid (FA) profile 

of farmed fish is achieved by the use of dietary fish oil and fishmeal, derived 

paradoxically from marine commercial fisheries, which is an unsustainable practice. 

Therefore, over the last few years, intensive research has been conducted to characterize 

LC-PUFA biosynthesis in species of aquaculture interest, including how this pathway 

might be modulated by changes in diet formulation [16]. Another complementary 

strategy to improve aquaculture sustainability is to identify fish species with lower 
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dependence on dietary n-3 LC-PUFA and that could thrive on diets containing higher 

levels of vegetable ingredients. 

Senegalese sole (Solea senegalensis Kaup, 1858) has generated great interest in 

Southern European aquaculture for two decades, based on the need to diversify 

production centered on two main species, gilthead seabream (Sparus aurata Linnaeus, 

1758) and European seabass (Dicentrarchus labrax Linnaeus, 1758), along with its high 

market value, high growth rate and ease of larval culture [17,18]. The replacement of 

fish oil by vegetable oil in on-growing feeds has not been investigated, possibly as this 

species does not perform well on diets with high lipid contents [19]. In contrast, 

replacement of fishmeal by plant-protein has been accomplished without loss in fish 

performance [20]. However, the most striking aspect in this species is the apparently 

low requirements for LC-PUFA in larval diets, which is highly unusual for a marine 

teleost. Marine fish larvae have a strict dietary requirement for high LC-PUFA and 

hence live prey commonly used in aquaculture to feed early larval stages requires 

enrichment with LC-PUFA, particularly DHA [21]. However, in contrast, Senegalese 

sole larvae can be grown on diets containing negligible DHA and low EPA levels, such 

as non-enriched live prey, without obvious detrimental effects [22,23].  

Hence, the nutritional particularities of S. senegalensis make it an especially 

interesting model amongst marine teleosts to study LC-PUFA biosynthesis and its 

developmental and nutritional regulation. This was the aim of the present study, where 

cDNAs for two enzymes of the LC-PUFA biosynthesis pathway were cloned and shown 

to encode a 4Fad and Elovl5 with the potential to catalyze DHA biosynthesis from 

EPA. Expression of the respective transcripts, 4fad and elovl5, were determined 

during early embryonic and larval development, and their transcriptional regulation in 

response to dietary n-3 LC-PUFA (EPA and DHA) content was assessed. Results are 
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discussed in relation to the apparently lower n-3 LC-PUFA larval requirements of this 

species, compared to other marine fish species.  

 

2. Materials and methods 

 

2.1. Cloning, sequence and phylogenetic analysis 

Sequences corresponding to the open reading frame (ORF) of fatty acyl desaturases 

(fads) and elongases (elovls) from several fish species were aligned and primers 

designed on conserved regions, as described in Morais et al. [24]. Sense and antisense 

primers used were 5’-CCTGGGAGGAGGTGCAGA-3’ and 5’-

TCCGCTGAACCAGTCGTTGA-3’, respectively, for fad, and 5’-

GCTCTACAATCTGGGCCTC-3’ and 5’- CCACCAAAGATACGGCCG-3’ for elovl. 

Fragments were obtained by polymerase chain reaction (PCR) with GoTaq® Colorless 

Master Mix (Promega, Southampton, U.K.) following manufacturer’s instructions (with 

35 cycles; 55 ºC annealing and 1 min extension) on cDNA synthesized (as described 

below) from 2 μg of total RNA from liver tissue of a Senegalese sole juvenile. After 

sequencing (CEQ-8800 Beckman Coulter Inc., Fullerton, U.S.A.), the elovl ORF 

fragment was further extended by 3’ rapid amplification of cDNA ends (RACE) PCR 

(FirstChoice


 RLM-RACE kit, Ambion, Applied Biosystems, Warrington, U.K.) using 

sole-specific sense primers located in the ORF (5’-GCGCCTGAAGTGGATAAGAA-

3’ and 5’-AGCATGCTGAACATCTGGTG-3’) for nested PCR with the kit’s antisense 

primers, to obtain the sequence of the 3’ untranslated region (UTR). Additionally, the 

start of the ORF was obtained by PCR with sense primer 5’-

AAGGTGACAAATGGAAACATTCA-3’ (containing the sequence from the ATG start 

of the closely related flatfish Psetta maxima) and antisense primer 5’-
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TGAGGCCCAGATTGTAGAGC-3’. In the case of fad, however, blasting of the 

fragment obtained initially by PCR with conserved ORF region primers in the Solea 

senegalensis Pleurogene EST database retrieved a clone (sequence kindly provided by J. 

Cerdá, IRTA, Spain) presenting the whole ORF as well as 127 bp and 456 bp of 5’ and 

3’UTR, respectively. The Senegalese sole sequences corresponding to the putative fad 

and elovl are available in the GenBank database under accession numbers JN673546 

and JN793448, respectively.  

The deduced amino acid (aa) sequence of the putative fad was aligned with that of 

Salmo salar 5fad and 6fad (GenBank ID: AAL82631 and AAR21624, respectively), 

Psetta maxima 6fad (AAS49163), Siganus canaliculatus 65fad and 4fad 

(ABR12315 and ADJ29913, respectively) and Danio rerio 56fad (AAG25710) using 

ClustalW2. Equally, the aa sequence of the putative elovl was aligned with that of other 

fish elovl5’s: P. maxima (AAL69984), S. canaliculatus (ADE34561) S. salar (elovl5a; 

NP_001117039 and elovl5b; ACI62499), and D. rerio (NP_956747). To compare 

sequences two by two, the EMBOSS Pairwise Alignment Algorithms tool 

(http://www.ebi.ac.uk/Tools/emboss/align/) was used. In addition, the deduced aa 

sequences of multiple Fad proteins from fish and other organisms were aligned using 

ClustalX and sequence phylogenies were reconstructed using the Neighbor Joining 

method [25] in MEGA version 5 [26]. Confidence in the resulting phylogenetic tree 

branch topology was measured by bootstrapping through 1000 iterations.  

 

2.2. Functional characterization by heterologous expression of ORFs 

PCR fragments corresponding to the ORFs of the Senegalese sole putative Fad and 

Elovl were amplified from liver cDNA using sense and antisense primers containing a 

digestion site (underlined) - FadVF1 (CCCGAGCTCAGGATGAGAAACGGAGGT; 

http://www.ebi.ac.uk/Tools/emboss/align/
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SacI) and FadVR1 (CCGCTCGAGTCATTTATGGAGATATGCAT; XhoI); and 

ElovlVF1 (CCCGAGCTCAAAATGGAAACATTCAATCATAAACTGA; SacI) and 

ElovlVR1 (CCGCTCGAGTTAGTTTCTTGTGTGCACTGTGC; XhoI). To obtain the 

Elovl ORF a nested PCR was performed with sense and antisense primers for the first-

round PCR being 5’-AAGGTGACAAATGGAAACATTCA-3’ and 5’-

GGCTTATTTAATCTCAAGTCAACG-3’, respectively. PCR was performed using the 

high fidelity PfuTurbo DNA Polymerase (Stratagene, Agilent Technologies, Cheshire, 

U.K.), following the manufacturer’s protocol with 32 cycles, annealing at 60 ºC (or 58 

ºC for Elovl first-round PCR) and 1 min extension. The DNA fragments were then 

purified (Illustra GFX™ PCR DNA and gel band purification kit, GE Healthcare Life 

Sciences, Buckinghamshire, U.K.), digested with the corresponding restriction 

endonucleases (New England BioLabs, Herts, U.K.) and ligated into a similarly 

restricted pYES2 yeast expression vector (Invitrogen, Paisley, U.K.). Ligation products 

were used to transform Top10F’ Escherichia coli competent cells (Invitrogen) that were 

screened for the presence of recombinants. The purified plasmid constructs containing 

the ORFs (confirmed by sequencing) were then used to transform Saccharomyces 

cerevisiae competent cells (S.c. EasyComp Transformation Kit, Invitrogen). 

Transformation and selection of yeast with recombinant Fad and Elovl ORF-pYES2 

plasmids, yeast culture and FA analysis was performed as described in detail previously 

[10,11]. Briefly, cultures of recombinant yeast were grown in S. cerevisiae minimal 

medium
-uracil

 supplemented with one of the following FA substrates (>98-99% pure) 

sourced from either Cayman Chemical Co. (Ann Arbor, U.S.A.) or Sigma Chemical Co. 

Ltd. (Dorset, U.K.): 18:3n-3, 18:2n-6, 20:4n-3, 20:3n-6, 22:5n-3 or 22:4n-6 for Fad; 

18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3 or 22:4n-6 for Elovl. FAs were added to the 

yeast cultures at final concentrations of 0.5 (C18), 0.75 (C20) and 2.0 (C22) mM. After 
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2-days, yeast were harvested, washed, and lipid extracted. Fatty acid methyl esters 

(FAME) were analyzed by GC and the proportion of substrate FA converted to 

desaturated or elongated FA product was calculated as [product area/(product area 

+substrate area)] x 100. The identities of FA peaks were based on GC retention time 

and confirmed by GC-MS as described previously [13]. 

 

2.3. Larval ontogenetic development and nutritional experiments 

Senegalese sole eggs were obtained from naturally spawning captive broodstock at 

INRB/IPIMAR EPPO (Olhão, Portugal) and reared at the facilities of the Centre of 

Marine Sciences (University of Algarve, Faro, Portugal). Details of the standard culture 

protocols for this species, including feeding regimes and rearing conditions, followed in 

these experiments can be found in Conceição et al. [27] and Engrola et al. [28]. Briefly, 

rearing includes a pelagic larval phase until around 19 days after hatching (DAH), when 

larvae metamorphose and acquire a benthic lifestyle. During the pelagic phase larvae 

were reared in a semi-closed recirculation system with 100 L cylindro-conical tanks at 

80 larvae L
-1

, temperature of 20.6 ± 0.9 ºC (mean ± standard deviation, SD), salinity of 

35.2 and light/dark cycle of 14:10-h. From the start of exogenous feeding (2 DAH) until 

4 DAH, larvae were fed rotifers (Brachionus plicatilis) enriched with Easy DHA Selco 

(INVE Aquaculture NV, Dendermonde, Belgium), followed by Artemia AF nauplii 

(INVE Aquaculture NV) until 9 DAH and then freshly enriched Artemia EG 

metanauplii (INVE Aquaculture NV), fed two times daily. The benthic rearing phase, 

from 19 DAH onwards, was performed in a closed recirculation system with rectangular 

tanks (44 x 70 cm), stocked with 300 settled post-larvae each, at a temperature of 19.6 ± 

1.2 ºC, salinity of 36.8 and 12:12-h light/dark cycle. At this stage, post-larvae were fed 

frozen Artemia EG metanauplii four times daily. 
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In order to study changes in FA profile and in fad and elovl expression during early 

ontogeny, samples of eggs, newly hatched larvae (0 DAH) and larvae up to 6 DAH 

were collected daily. Three pools of eggs and larvae were sampled for FA (minimum 20 

mg per pool) and molecular (100 mg per pool) analyses. Samples were immediately 

frozen in liquid nitrogen and kept at -20 ºC (FA) or -80 ºC (molecular) pending analysis.  

In addition, a nutritional experiment was performed testing four different dietary 

regimes. During the pelagic stage, larvae were reared in 6 replicate tanks per dietary 

treatment consisting of either Artemia EG metanauplii freshly enriched (E) with a 

mixture of Easy DHA Selco and Microfeed (EWOS, Bathgate, Scotland) added to the 

enrichment tanks it two doses according to manufacturer's instructions; or non-enriched 

Artemia (NE) kept in the same conditions but without adding the enrichment product. 

From 19 to 40 DAH, post-larvae were reared in triplicate tanks and either continued on 

E or NE or their diet was swapped, giving rise to 2 further dietary treatments: E-NE and 

NE-E. Samples of the Artemia (E and NE) used to feed the larvae were taken for FA 

analysis. In addition, larvae at 19 DAH and post-larvae at 40 DAH were collected for 

FA (pool of 30 larvae per tank) and molecular (approx. 200 mg pool per tank) analysis, 

as indicated for the ontogenetic trial. Twenty fish per tank were also collected, freeze-

dried and dry weight (DW) was measured. Survival was determined at the end of the 

larval and post-larval stages (19 and 40 DAH) by direct counting of individuals, relative 

to the initial number stocked, and excluding the individuals sampled. This study was 

directed by trained researchers (following FELASA category C recommendations) and 

conducted according to the guidelines on the protection of animals used for scientific 

purposes from the European directive 2010/63/UE. 

 

2.4. RNA extraction and real time quantitative PCR (qPCR) 
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Total RNA was isolated from 3 pools of whole eggs, larvae at various stages of 

development (0-6 and 19 DAH) and post-larvae at 40 DAH by Ultra-Turrax 

homogenization (Fisher Scientific, Loughborough, U.K.) followed by organic solvent 

extraction, according to manufacturer’s instructions (TRI Reagent; Ambion, Applied 

Biosystems, Warrington, U.K.). RNA quality and quantity was assessed by gel 

electrophoresis and spectrophotometry (NanoDrop ND-1000, Thermo Scientific, 

Wilmington, U.S.A.), respectively. Two µg of total RNA per sample pool was reverse 

transcribed into cDNA using the High-Capacity cDNA RT kit (Applied Biosystems, 

Paisley, U.K.), following manufacturer’s instructions, but using a mixture of random 

primers (1.5 µl as supplied) and anchored oligo-dT (0.5 µl at 400 ng/µl, Eurofins MWG 

Operon, Ebersberg, Germany). Negative controls (containing no enzyme) were 

performed to check for genomic DNA contamination. A similar amount of cDNA was 

pooled from all samples and the remaining cDNA was then diluted 60-fold with water.  

Primers for fad and elovl transcripts were designed using Primer3 software 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi). Primer details can be found 

in Table 1. Quantification of the expression of these genes, as well as of three reference 

genes (ubiquitin - ubq; 40S ribosomal protein S4 - rps4; and elongation factor 1 alpha – 

ef1a), previously tested for Senegalese sole larval studies [29], was performed by real 

time quantitative PCR (qPCR) analysis using relative quantification. The amplification 

efficiency of the primer pairs was assessed by serial dilutions of the cDNA pool, which 

also allowed conversion of threshold cycle (Ct) values to arbitrary copy numbers. Only 

ef1a showed a relatively stable expression across eggs and early larval stages while in 

the nutritional regulation experiment at later larval and post-larval stages, the most 

stable reference gene combination was achieved with ubq and rps4 (geNorm M value = 

0.305; [30]). Amplifications were carried out in duplicate (Quantica, Techne, 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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Cambridge, U.K.) in a final volume of 20 µl containing 5 µl diluted (1/60) cDNA, 0.5 

µM of each primer and 10 µl AbsoluteTM QPCR SYBR® Green mix (ABgene) and 

included a systematic negative control (NTC-non template control). The qPCR profiles 

contained an initial activation step at 95 °C for 15 min, followed by 30 to 35 cycles: 15 

s at 95 °C, 15 s at the specific primer pair annealing temperature (Ta; Table 1) and 15 s 

at 72 °C. After the amplification phase, a melt curve of 0.5 °C increments from 75 ºC to 

90 °C was performed, enabling confirmation of the amplification of a single product in 

each reaction. Non-occurrence of primer-dimer formation in the NTC was also verified. 

Product sizes and presence of single bands were checked by agarose gel electrophoresis. 

Additionally, identities of fad and elovl amplicons were verified by sequencing. 

Gene expression results were expressed as mean normalized values (±SD) 

corresponding to the ratio between copy numbers of fad and elovl transcripts and copy 

numbers of the reference gene ef1a or a normalization factor determined for the average 

expression of ubq and rps4 using geNorm [30]. 

 

2.5. Fatty acid analysis 

Total lipids were extracted and determined gravimetrically from 3 pools of eggs, 

larvae and post-larvae, as well as from diets (E and NE Artemia) used in the nutritional 

experiment (2 g wet weight of eggs and 0.2-1 g of remaining samples) by Ultra Turrax 

homogenization in 10-20 ml of chloroform/methanol (2:1 v/v) [31]. The FAME were 

prepared by acid-catalyzed transesterification of total lipids [32]. Following 

purification, FAME were separated and quantified by GC using a Thermo Fisher Trace 

GC 2000 (Thermo Fisher, Hemel Hempstead, UK) equipped with a fused silica 

capillary column (ZB wax, 30 m × 0.32 mm i.d.; Phenomenex, Macclesfield, UK) with 

hydrogen as carrier gas and using on-column injection. The temperature gradient was 
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from 50 to 150 °C at 40 °C/min and then to 195 °C at 1.5 °C/min and finally to 220 °C 

at 2 °C/min. Individual methyl esters were identified by comparison with known 

standards. Data were collected and processed using the Chromcard for Windows 

(version 2.00) computer package (Thermoquest Italia S.p.A., Milan, Italy). 

 

2.6. Statistical analysis 

Gene expression results, DW and arcsin-transformed survival and FA composition 

percentage data were checked for homogeneity of variances using a Levene’s test and 

then analyzed by one-way analysis of variance (ANOVA) followed by a Tukey HSD 

post-hoc test or, in the case of the nutritional experiment at 19 DAH, by an independent 

samples t-test, at a significance level of P<0.05, using the statistical software SPSS 17.0 

(SPSS Inc., Chicago, IL, USA). 

 

3. Results 

 

3.1. Sequence and phylogenetic analysis of Solea senegalensis fad and elovl 

The sequences characterized in the present paper, corresponding to a Solea 

senegalensis fad and elovl cDNA, contain 1338 bp (GenBank ID: JN673546) and 867 

bp (JN793448) ORFs, respectively, which encode putative proteins with 445 aa and 288 

aa. The deduced Fad protein contains characteristic features of microsomal fatty acyl 

desaturases, including three histidine boxes, two transmembrane regions, and N-

terminal cytochrome b5 domains containing the heme-binding motif, HPGG (Fig. 1). 

The polypeptide sequence is 78 % identical to Psetta maxima 6Fad (AAS49163) and 

Siganus canaliculatus 4Fad (ADJ29913), 77 % identical to S. canaliculatus 65Fad 

(ABR12315) and presents slightly lower identity (72-73 %) with Salmo salar 6Fad 
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(AAR21624) and 5Fad (AAL82631) and 67 % with Danio rerio 56Fad 

(AAG25710). Phylogenetic analysis of the newly described Fad shows that it clusters 

with S. canaliculatus 4Fad and 65Fad, which are most closely related to marine 

teleost 6Fads and more distantly from lower eukaryotes Fads, including other 4Fads 

(Fig. 2). The deduced Elovl protein also presented characteristic structural features, 

namely, the diagnostic histidine box HXXHH motif and two lysine or arginine residuals 

at the carboxyl terminus, KXRXX, which are proposed to function as endoplasmic 

reticulum retrieval signals. However, the putative S. senegalensis Fad is shorter than 

other fish Elovl5’s, missing 6 aa’s between the predicted V putative membrane-

spanning domain and the carboxyl terminus (Fig. 3). This is however an area of higher 

variation amongst Elovl’s and hence it probably does not affect activity or substrate 

specificity. The polypeptide sequence is 83-84 % identical to Elovl5’s of other marine 

carnivorous species, such as P. maxima and Sparus aurata (AAT81404), and has 

slightly lower identity to those of the marine herbivorous S. canaliculatus (78 %) and of 

freshwater species such as S. salar (78 %) and D. rerio (74 %). Comparison with 

polypeptide sequences from Elovl2’s revealed relatively low identities: 57% with S. 

salar Elovl2 (FJ237532) and 54 % with D. rerio Elovl2 (NP_001035452).  

 

3.2. Functional characterization 

The fatty acid composition of untransformed yeast S.cerevisiae has four main fatty 

acids, namely 16:0, 16:1n−7, 18:0 and 18:1n−9, numbered 1-4 in Figs. 4 and 5, 

consistent with the well established lack of PUFA elongase and desaturase activity in S. 

cerevisiae [11]. When yeast, transformed with the S. senegalensis Fad cDNA insert, 

was grown in the presence of substrates for 6Fad (18:3n-3 and 18:2n-6), 5Fad 

(20:4n-3 and 20:3n-6) and 4Fad (22:5n-3 and 22:4n-6), additional peaks were 
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observed in the GC traces corresponding to the exogenously added FAs but no peaks 

were observed for desaturated products of 6Fad (Fig. 4A). However, an additional 

small peak (corresponding to 2 % conversion) was observed for 20:5n-3, the 5-

desaturated product of 20:4n-3 (Fig. 4B; Table 2), and another peak (corresponding to 

16 % conversion) was seen for 22:6n-3, resulting from 4-desaturation of exogenously 

added 22:5n-3 (Fig. 4C; Table 2). Parallel incubation of yeast with equivalent n-6 

PUFA substrates only showed relevant activity for 4Fad (around 7 %) (Table 2). In 

addition, yeast was also transformed with sole Elovl cDNA insert and grown in the 

presence of different FA substrates and the GC traces show additional peaks for the 

exogenously added C18, C20 and C22 substrates, as well as for their respective 

products, indicating that all substrates were elongated, with order of activity being C20 

> C18 > C22 (Fig. 5). In this heterologous expression system, sole Elovl showed similar 

activities towards C18 (32-37 %) and C22 (circa 4 %) of both n-3 and n-6 series but for 

C20 substrates a higher activity was measured for the n-3 substrate (79 % compared to 

57 % for the n-6 substrate) (Table 2). Finally, the GC traces also showed a small peak 

for 18:1n−7 (peak 5; Fig. 5) indicating elongation of endogenous 16:1n-7. 

 

3.3. Changes in FA profile and fad and elovl expression during ontogenesis 

The FA profile and expression of 4fad and elovl5 were determined in S. 

senegalensis eggs, newly hatched larvae and in larvae up to 6 DAH, in order to examine 

changes during early ontogeny. In terms of gene expression, sole eggs only presented 

transcripts in relevant amounts for elovl5, as expression of 4fad was negligible (Fig. 

6). However, at hatching (0 DAH) there was a significant increase in 4fad transcript 

level showing a peak at 1-2 DAH followed by a return to the same level as that 

observed at hatching, from 3 to 6 DAH. In contrast, there was no change in expression 
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of elovl5 from eggs to 1 DAH but then a significant peak in transcript levels occurred at 

2-3 DAH, returning afterwards to previous levels of expression.  

The eggs and early larval stages of Senegalese sole were characterized by high 

proportions of DHA, around 20 % of total FA, accompanied by EPA of under 2 %, 

which resulted in DHA/EPA ratios of 11 in eggs and newly hatched larvae (Table 3). 

There were also relatively high levels of DPA at over 2 %. DHA was one of the few 

FAs whose level did not change significantly during ontogenetic development, although 

there was a trend for a slight increase at 3 DAH. In contrast, EPA content significantly 

increased at 4 DAH and remained constant afterwards, which was reflected in the 

DHA/EPA ratio. Levels of DPA showed the opposite pattern to EPA. Another abundant 

n-3 PUFA in eggs was ALA, which showed a gradual reduction during ontogenetic 

development. For n-6 PUFA, LOA showed a gradual decrease after 2 DAH, while for 

ARA there was a gradual increase, which became more pronounced from 2 DAH 

onwards. There was a slight increase in the percentage of saturated FAs during 

ontogenetic development, a significant decrease in total monounsaturated FAs from 2 

DAH onwards, and total PUFA broadly showed a peak at 3 DAH and decreased 

significantly by 5 DAH. 

 

3.4. Nutritional regulation 

Effects of n-3 PUFA supply during different windows of development (larvae versus 

post-larvae) were investigated using diets that contained comparable levels of n-3 

PUFA but supplied primarily as C18 PUFA, particularly ALA (diet NE) or LC-PUFA, 

EPA and DHA (diet E) (Table 4). As a consequence, larvae presented significantly 

different compositions for most FAs (including EPA and DHA) at 19 DAH, that 

reflected diet composition. Surprisingly, differences were not significant for ALA, 
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although the trend was for a higher level in larvae fed NE. When larvae continued to be 

fed the same diets from 19 to 40 DAH, or their diets were switched, clear dietary 

influences were observed, with post-larvae fed the E diet at this stage presenting 

significantly higher levels of total PUFA and n-3 PUFA, including EPA, DPA and 

DHA, independent of previous dietary regime (i.e., no differences between E and NE-

E). Similarly, all larvae fed NE diet during the post-larval stage (NE and E-NE) 

presented a similar FA profile (Table 4).  

No differences were observed in either larvae or post-larvae survival (Table 5). 

However, the different dietary regimes induced significant differences in growth, 

assessed by DW, in both stages. At 19 DAH, larvae fed the E diet were heavier than 

those fed NE. However, when these larvae continued being fed the E diet during the 

post-larval stage their final weights were lower than post-larvae fed the E diet during 

only one of the developmental stages, E-NE or NE-E treatments. Larvae fed the NE diet 

throughout showed an intermediate weight not significantly different from any other 

treatment. 

Clear differences were observed in the expression of 4fad but not of elovl5, with 

4fad expression up-regulated at 19 and 40 DAH in fish fed diet NE (Fig. 6). 

Furthermore, at 40 DAH, levels of expression were similar in post-larvae being fed the 

same diet during the post-larval stage, independent of diet during the larval stage, i.e., 

higher expression in NE and E-NE and lower in E and NE-E.  

 

4. Discussion 

This paper presents novel findings concerning the LC-PUFA biosynthesis pathway in 

a marine carnivorous teleost, including a possible route for DHA synthesis from EPA 

via a 4Fad, and developmental and nutritional regulation of this transcript. The 
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simplest and most direct pathway for biosynthesis of DHA from EPA would contain a 

4Fad. However, for many years the presence of 4Fad enzymes could not be 

established in vertebrates and in the 1990’s work of Sprecher and co-workers revealed a 

4-independent pathway of DHA synthesis [14,33]. However, a Fad with 4 activity 

was finally identified in Thraustochytrium [34], and subsequently other 4Fads were 

characterized in lower eukaryotes including the microalgae Pavlova lutheri, Isochrysis 

and Thalassiosira pseudonana [35-37], the protist Euglena gracilis [38] and the 

parasitic protozoans Leishmania major, Trypanosoma brucei and T. cruzi [39]. 

Additionally, an alternative pathway for DHA synthesis involving an anaerobic 

polyketide synthase was identified in the marine protist Schizochytrium, another family 

member of the Thraustochytriidae [40]. Despite this, the Sprecher pathway remained the 

only demonstrated mechanism for DHA biosynthesis in mammals and higher 

vertebrates. However very recently, a Fad enzyme with 4 activity was reported in a 

vertebrate species, the marine herbivorous fish S. canaliculatus, suggesting that, for at 

least some vertebrates, DHA could be produced from EPA via elongation followed by 

direct 4 desaturation [13]. S. canaliculatus also displayed a 6/5Fad that, combined 

with the 4Fad, revised the view of an evolutionary dichotomy between freshwater 

(DHA-poor) and marine (DHA-rich) environments in the ability of fish species to 

produce LC-PUFA from C18 PUFA and, alternatively, indicated that trophic level is 

likely more important [13].  

The characterization of another Fad presenting 4 activity in the present study 

indicates that that production of DHA via 4-desaturation is likely more widespread 

among vertebrate species and also brings further elements to the evolutionary 

discussion, suggesting a higher adaptative plasticity than previously thought. Contrary 

to S. canaliculatus, which is a strict herbivore, S. senegalensis is a carnivorous species 
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occupying a higher trophic level. This flatfish possesses planktonic larvae feeding on 

zooplankton but after metamorphosis adopts a benthic lifestyle, inhabiting sandy or 

muddy bottoms of coastal or brackish areas feeding on benthonic invertebrates, mainly 

polychaetes, small crustacean (such as amphipods) and bivalve molluscs [41,42]. In 

captivity, the feeding regime of broodstock fish is based on squid, Loligo vulgaris, 

supplemented with polychaetes, Nereis (Hediste) diversicolor, during final maturation, 

since this has proven to stimulate gonad maturation and spawning [18]. Generally, 

benthic invertebrates have relatively low lipid contents compared to herbivorous 

zooplankton and the primary source of n-3 LC-PUFA for juvenile and adult sole is most 

likely EPA rather than DHA [43,44]. In particular, the polychaete (N. diversicolor) that 

forms an important part of Senegalese sole’s diet is a rich source of 16:0, 18:1n-9, LOA 

and EPA (5-10 mg/g DW), with only residual amounts of DHA (0.5-1 mg/g DW) [45]. 

Other natural prey items of S. senegalensis, such as the amphipod Corophium spp. and 

the bivalve Scrobicularia plana [42], also contain mainly EPA (26 % or 15 % in the 

amphipod and bivalve, respectively), with DHA at around 7 % [46,47].  

Desaturases and elongases are enzymes of wide interest, not just for biotechnological 

applications such as the production of health-beneficial EPA and DHA [36,37], but also 

in environmental genomics. The desaturases required for LC-PUFA biosynthesis are all 

from the same phylogenetic branch of desaturases (one of four) known as the “front-end 

desaturases” [48]. These desaturases, including 4, 5 and 6 Fads, are very similar in 

sequence, share the same structural motifs, and cannot be functionally clustered [49]. 

After an initial divergence of desaturases into the four subfamilies, it is believed that a 

second diversification led to a variety of substrate specificities or regioselectivities 

within each subfamily leading to an important variability in the capacity of even closely 

related organisms to synthesize a range of unsaturated FA in response to their specific 



20 
 

individual environment [48]. The present study shows that categories such as 

“marine/freshwater” or “trophic level” may be too restrictive to distinguish between 

species with respect to requirements for C18 PUFA or LC-PUFA as EFA and, even if 

trophic ecology appears to have an important influence, the precise factors driving 

evolutionary pressures remain a question of great interest.   

We have also cloned and functionally characterized an elovl cDNA with substrate 

specificity indicating a typical teleost elovl5, with the protein being mostly active on 

C20 followed by C18, with only low activity on C22 FA. It was suggested that an 

Elovl2-like enzyme, with higher substrate specificity towards C22, is required for 

efficient DHA synthesis from EPA via the Sprecher pathway but a gene coding for this 

enzyme in fish has, to date, only been shown in Atlantic salmon and zebrafish [50,51]. 

The Elovl5 characterized in the present study converted 75 % of 20:5n-3 and 54 % of 

20:4n-6 to 22:5n-3 and 22:4n-6, respectively, the substrates for 4Fad. 

Therefore, the present study presents molecular and biochemical data that suggest 

Senegalese sole possess genetic and enzymatic capabilities for DHA synthesis from 

EPA. This, in itself, does not prove that the EPA to DHA pathway is active in vivo or 

indicate the level to which it may operate. In fact, the FA composition of both larvae 

and post-larvae reflected the dietary FA composition, irrespective of regulation of 4fad 

expression, which was highly responsive to dietary n-3 LC-PUFA content being up-

regulated when sole where fed lower levels of these FAs, even if this could not raise 

DHA contents to levels approaching the E and NE-E treatments at 40 DAH. However, 

the E diet, possessing high levels of total lipid and enriched in both EPA and DHA, 

probably does not fully reflect the natural feeds of sole post-settlement (possibly with a 

higher EPA/DHA ratio), which may explain why continuously feeding the E diet to 

larvae and post-larvae led to reduced growth at 40 DAH, as had been reported 
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previously [22,23]. It could be speculated that dietary supply of DHA well in excess of 

requirements may result in higher oxidative stress associated with the peroxidative 

susceptibility of LC-PUFA [52].  

A higher DHA requirement is likely during the pelagic larval stage, which is a 

critical period of extremely fast growth and extensive neural development (fish larvae 

are visual hunters and their head/eyes constitute the major fraction of body mass), 

culminating in metamorphosis, which in flatfish involves dramatic functional and 

morphologic changes associated with extensive organogenesis and tissue remodeling 

[1,8,53]. However, at this stage it is probable that at least part of the DHA requirement 

is satisfied in nature by DHA-rich zooplanktonic diet [8]. Reduced growth at 19 DAH in 

sole fed the diet with lower n-3 LC-PUFA could be explained by insufficient DHA 

synthesis capacity, despite up-regulation of 4fad, to meet the demand required to 

support membrane synthesis and the high growth rate at this stage.  

It had been shown previously that sole eggs have an unusually high proportion of 

DHA resulting in a very high DHA/EPA ratio compared to other marine fish species, 

and this was suggested to be necessary to satisfy the high requirements for growth and 

neural tissue development during early embryonic development [22]. In the present 

study, fertilized eggs and early larval stages up to the onset of exogenous feeding 

presented a DHA content of around 20 % of total FA and a DHA/EPA ratio of about 11. 

In addition, the influence of diet on larval FA composition was observed reflecting the 

introduction at 2 DAH of rotifers enriched with DHA [54], and their replacement at 4 

DAH by Artemia AF nauplii, which are rich in EPA and practically devoid of DHA 

[55]. This explains the increase in larval EPA levels from 4 DAH onwards. In contrast, 

levels of DHA were not significantly altered during early larval development, which 

might indicate some degree of regulation of its level associated with the increased 
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expression of 4fad at 1-2 DAH and of elovl5 at 2-3 DAH, coinciding with the start of 

endogenous feeding. Hence, there is possibly a developmentally fixed pattern of 4fad 

and elovl5 expression during this critical period of development to ensure the 

availability of DHA for neurogenesis independent of dietary supply. The relatively high 

content of DPA in sole eggs may support the supply of DHA via 4-desaturation during 

a short temporal window in the event first feeding larvae do not immediately encounter 

their natural zooplanktonic prey rich in EPA and/or DHA. Hence, the decrease in DPA 

at 4 and 5 DAH, followed by an increase at 6 DAH, might reflect endogenous DHA 

synthesis after the introduction of a live prey (Artemia AF) with low levels of DPA and 

DHA but rich in EPA. Finally, an interesting difference was observed in sole eggs 

(fertilized oocytes) with respect to the start of transcription of these genes, with elovl5 

transcripts, but not 4fad, being already present at considerable levels before hatching. 

A previous study demonstrated maternal transfer of elovl5, elovl2 and 5/6fad mRNA 

in zebrafish zygotes and a coordinated regulation of elovl2 and fad with the start of LC-

PUFA biosynthesis in the embryo [51]. However, in the present study the higher levels 

of elovl5 in the egg may not be related with DHA synthesis to support embryogenesis 

due to the lack of synchrony in elovl5 and 4fad transcription. This difference is not 

necessarily surprising as the strategy in sole appears to be rather maternal provision of 

high relative levels of DHA in the egg yolk to cover the initial high requirements for 

embryonic development.  

In conclusion, the present study is the first report showing developmental and 

nutritional regulation of a 4fad in a vertebrate species, which has only been found in 

one other vertebrate, also a teleost, and confirms the existence of DHA synthesis from 

EPA in at least some vertebrates, through a Sprecher-independent pathway. The 

existence of regulation at the transcriptional level and evidence for unusually low, for a 
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marine fish species, dietary DHA requirements during early development and post-

larval stages indicates a likely relevant physiological role for this gene but the overall 

activity of the EPA to DHA biosynthetic pathway “in vivo” still requires to be assessed. 

 

Acknowledgements 

This study was funded by project EFARFish - “A New Method for the Study of 

Essential Fatty Acid Requirements in Fish Larvae” (PTDC/MAR/67017/2006), granted 

by “Fundação para a Ciência e a Tecnologia” (FCT), Portugal, with the support of 

FEDER. We are deeply thankful to Dr. Joan Cerdá for making available to us the 

sequence of the 4fad cDNA before GenBank submission. 

 

References 

 

[1] M.V. Bell, R.S. Batty, J.R. Dick, K. Fretwell, J.C. Navarro, J.R. Sargent, Dietary 

deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile 

herring (Clupea harengus L.), Lipids 30 (1995) 443-449. 

[2] M.V. Bell, D.R. Tocher, Molecular species composition of the major phospholipids 

in brain and retina from rainbow trout (Salmo gairdneri). Occurrence of high levels 

of di-(n-3)polyunsaturated fatty acid species, Biochem. J. 264 (1989) 909-915. 

[3] A. Gil, M. Ramirez, M. Gil, Role of long-chain polyunsaturated fatty acids in infant 

nutrition, Eur. J. Clin. Nutr. 57 Suppl 1 (2003) S31-34. 

[4] B. Koletzko, E. Lien, C. Agostoni, H. Böhles, C. Campoy, I. Cetin, T. Decsi, J.W. 

Dudenhausen, C. Dupont, S. Forsyth, I. Hoesli, W. Holzgreve, A. Lapillonne, G. 

Putet, N.J. Secher, M. Symonds, H. Szajewska, P. Willatts, R. Uauy, World 

Association of Perinatal Medicine Dietary Guidelines Working Group, The roles of 



24 
 

long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of 

current knowledge and consensus recommendations, J. Perinat. Med. 36 (2008) 5-14. 

[5] D.B. Jump, S.D. Clarke, A. Thelen, M. Liimatta, B. Ren, M. Badin, Dietary 

polyunsaturated fatty acid regulation of gene transcription, Prog. Lipid Res. 35 

(1996) 227-241. 

[6] P.C. Calder, Dietary modification of inflammation with lipids, Proc. Nutr. Soc. 61 

(2002) 345-58. 

[7] N.D. Riediger, R.A. Othman, M. Suh, M.H. Moghadasian, A systemic review of the 

roles of n-3 fatty acids in health and disease, J. Am. Diet. Assoc. 109 (2009) 668-

679. 

[8] D.R. Tocher, Fatty acid requirements in ontogeny of marine and freshwater fish, 

Aquacult. Res. 41 (2010) 717-732. 

[9] X. Zheng, I. Seiliez, N. Hastings, D.R. Tocher, S. Panserat, C.A. Dickson, P. Bergot, 

A.J. Teale, Characterisation and comparison of fatty acyl Δ6 desaturase cDNAs from 

freshwater and marine teleost fish species, Comp. Biochem. Physiol. 139B (2004) 

269-279. 

[10] X. Zheng, D.R. Tocher, C.A. Dickson, J.R. Dick, J.G. Bell, A.J. Teale, Highly 

unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and 

characterisation of a ∆6 desaturase of Atlantic salmon, Lipids 40 (2005) 13-24. 

[11] N. Hastings, M. Agaba, D.R. Tocher, M.J. Leaver, J.R. Dick, J.R. Sargent, A.J. 

Teale, A vertebrate fatty acid desaturase with Δ5 and Δ6 activities, Proc. Natl. Acad. 

Sci. U.S.A. 98 (2001) 14304-14309. 

[12] N. Hastings, M.K. Agaba, D.R. Tocher, X. Zheng, C.A. Dickson, J.R. Dick, A.J. 

Teale, Molecular cloning and functional characterization of fatty acyl desaturase and 

elongase cDNAs involved in the production of eicosapentaenoic and 



25 
 

docosahexaenoic acids from -linolenic acid in Atlantic salmon (Salmo salar), Mar. 

Biotechnol. 6 (2005) 463-474. 

[13] Y. Li, O. Monroig, L. Zhang, S. Wang, X. Zheng, J.R. Dick, C. You, D.R. Tocher, 

Vertebrate fatty acyl desaturase with Δ4 activity, Proc. Natl. Acad. Sci. U.S.A. 107 

(2010) 16840-16845. 

[14] A. Voss, M. Reinhart, S. Sankarappa, H. Sprecher, The metabolism of 

7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat 

liver is independent of a 4-desaturase, J. Biol. Chem. 266 (1991) 19995-20000. 

[15] FAO, The State of World Fisheries and Aquaculture 2008, Food and Agriculture 

Organization of the United Nations, Rome, 2009. 

[16] B.E. Torstensen, D.R. Tocher, The Effects of fish oil replacement on lipid 

metabolism of fish, In: G.M. Turchini, W.-K. Ng, D.R. Tocher (Eds.), Fish Oil 

Replacement and Alternative Lipid Sources in Aquaculture Feeds, Taylor & Francis, 

CRC Press, Boca Raton, 2010,  pp. 405-437. 

[17] M.T. Dinis, Aspects of the potential of Solea senegalensis Kaup for aquaculture: 

larval rearing and weaning to artificial diets, Aquacult. Fish. Manage. 23 (1992) 515-

520. 

[18] M.T. Dinis, L. Ribeiro, F. Soares, C. Sarasquete, A review on the cultivation 

potential of Solea senegalensis in Spain and in Portugal, Aquaculture 176 (1999) 27-

38. 

[19] P. Borges, B. Oliveira, S. Casal, J. Dias, L. Conceição, L.M. Valente, Dietary lipid 

level affects growth performance and nutrient utilisation of Senegalese sole (Solea 

senegalensis) juveniles, Br. J. Nutr. 102 (2009) 1007-1014. 

[20] J.M.G. Silva, M. Espe, L.E.C. Conceição, J. Dias, L.M.P. Valente, Senegalese sole 

juveniles (Solea senegalensis Kaup, 1858) grow equally well on diets devoid of fish 



26 
 

meal provided the dietary amino acids are balanced, Aquaculture 296 (2009) 309-

317. 

[21] J.R. Sargent, L.A. McEvoy, J.G. Bell, Requirements, presentation and sources of 

polyunsaturated fatty acids in marine fish larval feeds, Aquaculture 155 (1997) 117-

128. 

[22] S. Morais, L. Narciso, E. Dores, P. Pousão-Ferreira, Lipid enrichment for 

Senegalese sole (Solea senegalensis) larvae: effect on larval growth, survival and 

fatty acid profile, Aquacult. Int. 12 (2004) 281-298. 

[23] M. Villalta, A. Estévez, M.P. Bransden, J.G. Bell, The effect of graded 

concentrations of dietary DHA on growth, survival and tissue fatty acid profile of 

Senegal sole (Solea senegalensis) larvae during the Artemia feeding period, 

Aquaculture 249 (2005) 353-365. 

[24] S. Morais, G. Mourente, A. Ortega, J.A. Tocher, D.R. Tocher, Expression of fatty 

acyl desaturase and elongase genes, and evolution of DHA:EPA ratio during 

development of unfed larvae of Atlantic bluefin tuna (Thunnus thynnus L.), 

Aquaculture 313 (2010) 129-139. 

[25] N. Saitou, M. Nei, The neighbor-joining method. A new method for reconstructing 

phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406-425. 

[26] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: 

Molecular Evolutionary Genetics Analysis using Maximum Likelihood, 

Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evol. (2011) 

doi: 10.1093/molbev/msr121. 

[27] L.E.C. Conceição, L. Ribeiro, S. Engrola, C. Aragão, S. Morais, M. Lacuisse, F. 

Soares, M.T. Dinis, Nutritional physiology during development of Senegalese sole 

(Solea senegalensis), Aquaculture 268 (2007) 64-81. 



27 
 

[28] S. Engrola, L. Figueira, L.E.C. Conceição, P.J. Gavaia, L. Ribeiro, M.T. Dinis, Co-

feeding in Senegalese sole larvae with inert diet from mouth opening promotes 

growth at weaning, Aquaculture 288 (2009) 264-272. 

[29] C. Infante, M.P. Matsuoka, E. Asensio, J.P. Cañavate, M. Reith, M. Manchado, 

Selection of housekeeping genes for gene expression studies in larvae from flatfish 

using real-time PCR, BMC Mol. Biol. 9 (2008) 28. 

[30] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, F. 

Speleman, Accurate normalization of real-time quantitative RT-PCR data by 

geometric averaging of multiple internal control genes, Gen. Biol. 3 (2002) 34.1-

34.11 

[31] J. Folch, M. Lees, G.H. Sloane-Stanley, A simple method for the isolation and 

purification of total lipides from animal tissues, J. Biol. Chem. 226 (1957) 497-509. 

[32] W.W. Christie, Lipid analysis, 3rd Edition, The Oily Press, Bridgewater, UK, 

2003. 

[33] H. Sprecher, D.L. Luthria, B.S. Mohammed, S.P. Baykousheva, Reevaluation of 

the pathways for the biosynthesis of polyunsaturated fatty acids, J. Lipid Res. 36 

(1995) 2471-2477. 

[34] X. Qiu, H. Hong, S.L. MacKenzie, Identification of a Delta 4 fatty acid desaturase 

from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by 

heterologous expression in Saccharomyces cerevisiae and Brassica juncea, J. Biol. 

Chem. 276 (2001) 31561-31566. 

[35] T. Tonon, D. Harvey, T.R. Larson, I.A. Graham, Identification of a very long chain 

polyunsaturated fatty acid Delta4-desaturase from the microalga Pavlova lutheri, 

FEBS Lett. 553 (2003) 440-444. 



28 
 

[36] T. Tonon, O. Sayanova, L.V. Michaelson, R. Qing, D. Harvey, T.R. Larson, Y. Li, 

J.A. Napier, I.A. Graham, Fatty acid desaturases from the microalga Thalassiosira 

pseudonana, FEBS J. 272 (2005) 3401-3412. 

[37] S.L. Pereira, A.E. Leonard, Y.S. Huang, L.T. Chuang, P. Mukerji, Identification of 

two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, 

eicosapentaenoic acid, into docosahexaenoic acid, Biochem. J. 384 (2004) 357-366. 

[38] A. Meyer, P. Cirpus, C. Ott, R. Schlecker, U. Zähringer, E. Heinz, Biosynthesis of 

docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for 

the involvement of a Delta4-fatty acyl group desaturase, Biochemistry 42 (2003) 

9779-9788. 

 [39] K.E. Tripodi, L.V. Buttigliero, S.G. Altabe, A.D. Uttaro, Functional 

characterization of front-end desaturases from trypanosomatids depicts the first 

polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan, FEBS J. 

273 (2006) 271-280. 

[40] J.G. Metz, P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. 

Valentine, K. Lardizabal, F. Domergue, A. Yamada, K. Yazawa, V. Knauf, J. 

Browse, Production of polyunsaturated fatty acids by polyketide synthases in both 

prokaryotes and eukaryotes, Science 293 (2001) 290-293. 

[41] E. Garcia-Franquesa, A. Molinero, J. Valero, R. Flos Influence of sex, age and 

season on the feeding habits of the flatfish Solea senegalensis, Environ. Biol. Fish. 

47 (1996) 289-298. 

[42] H.N. Cabral, Comparative feeding ecology of sympatric Solea solea and S. 

senegalensis, within the nursery areas of the Tagus estuary, Portugal, J. Fish Biol. 57 

(2000) 1550-1562. 



29 
 

[43] M. Graeve, G. Kattner, D. Piepenburg, Lipids in Arctic benthos: does the fatty acid 

and alcohol composition reflect feeding and trophic interactions?, Polar Biol 18 

(1997) 53-61. 

[44] V.I. Kharlamenko, S.I. Kiyashko, S.A. Rodkina, A.B. Imbs, Determination of food 

sources of marine invertebrates from a subtidal sand community using analyses of 

fatty acids and stable isotopes, Russ. J. Mar. Biol. 34 (2008) 101-109. 

[45] O.J. Luis, A.M. Passos, Seasonal changes in lipid content and composition of the 

polychaete Nereis (Hediste) diversicolor, Comp. Biochem. Physiol. 111B (1995) 

579-586. 

[46] R.G. Ackman, D.M. Nash, Lipids and fatty acids of Corophium volutator from 

Minas basin, Proc. N.S. Inst. Sci. 29 (1979) 501-516.  

[47] S.A. Bradshaw, S.C.M. O'Hara, E.D.S. Corner, G. Eglinton, Effects on dietary 

lipids of the marine bivalve Scrobicularia plana feeding in different modes, J. Mar. 

Biol. Ass. U.K. 71 (1991) 635-653. 

[48] K. Hashimoto, A.C. Yoshizawa, S. Okuda, K. Kuma, S. Goto, M. Kanehisa, The 

repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic 

genomes, J. Lipid Res. 49 (2008) 183-191. 

[49] K. Hashimoto, A.C. Yoshizawa, K. Saito, T. Yamada, M. Kanehisa, The repertoire 

of desaturases for unsaturated fatty acid synthesis in 397 genomes, Genome Inform. 

17 (2006) 173-183. 

[50] S. Morais, O. Monroig, X. Zheng, M.J. Leaver, D.R. Tocher, Highly unsaturated 

fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-

like elongases, Mar. Biotechnol. 1 (2009) 627-639. 

[51] O. Monroig, J. Rotllant, E. Sánchez, J.M. Cerdá-Reverter, D.R. Tocher, Expression 

of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during 



30 
 

zebrafish Danio rerio early embryogenesis, Biochim. Biophys. Acta 1791 (2009) 

1093-1101. 

[52] M. Takahashi, N. Tsuboyama-Kasaoka, T. Nakatani, M. Ishii, S. Tsutsumi, H. 

Aburatani, O. Ezaki, Fish oil feeding alters liver gene expressions to defend against 

PPARα activation and ROS production, Am. J. Physiol. Gastrointest. Liver Physiol. 

282 (2002) G338-348. 

[53] C. Fernández-Díaz, M. Yúfera, J.P. Cañavate, F.J. Moyano, F.J. Alarcón, M. Díaz, 

Growth and physiological changes during metamorphosis of Senegal sole reared in 

the laboratory, J. Fish Biol. 58 (2001) 1-13. 

[54] M. Naz, The changes in the biochemical compositions and enzymatic activities of 

rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and 

starvation periods, Fish Physiol. Biochem. 34 (2008) 391-404. 

[55] V.C. Nhu, K. Dierckens, T.H. Nguyen, M.T. Tran, P. Sorgeloos, Can umbrella-

stage Artemia franciscana substitute enriched rotifers for Cobia (Rachycentron 

canadum) fish larvae?, Aquaculture 289 (2009) 64-69. 

 

 



31 
 

Table 1  

Primers used for real-time quantitative PCR (qPCR). Shown are sequence and annealing 

temperature (Ta) of the primer pairs, size of the fragment produced, reaction efficiency 

and accession number of the sequence used for primer design.  

Transcript Primer sequence Fragment  Ta Efficiency Accession No. 

fad  AAGCCTCTGCTGATTGGAGA 131 bp 60ºC 0.989
1
/0.982

2
 JN673546 

 GGCTGAGCTTGAAACAGACC     

elovl TTTCATGTTTTTGCACACTGC 161 bp 60ºC 0.994
1
/0.999

2
 JN793448 

 GACACCTTTAGGCTCGGTTTT     

Ubq
3
 AGCTGGCCCAGAAATATAACTGCGACA 93 bp 70ºC 0.838

2
 AB291588 

 ACTTCTTCTTGCGGCAGTTGACAGCAC     

rpsa
3
 GTGAAGAAGCTCCTTGTCGGCACCA 83 bp 70ºC 1.000

2
 AB291557 

 AGGGGGTCGGGGTAGCGGATG     

ef1a1
3
 GATTGACCGTCGTTCTGGCAAGAAGC 142 bp 70ºC 0.999

1
 AB326302 

 GGCAAAGCGACCAAGGGGAGCAT     
1 
Ontogenetic regulation experiment.

  

2 
Nutritional regulation experiment.  

3 
Infante et al. [29].
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Table 2  

Functional characterization of Solea senegalensis proteins encoded by fatty acyl 

desaturase (fad) and elongase (elovl) genes. Results are expressed as a percentage of 

total fatty acid (FA) substrate converted to elongated/desaturated product. Percentage of 

stepwise conversion into intermediary products of the elongation pathway is also 

shown. 

FA Substrate Product Conversion (%) Activity 

    

    

Fatty acyl desaturase (fad) 

18:3n-3 18:4n-3 0.3 ∆6 

18:2n-6 18:3n-6 0.6 ∆6 

20:4n-3 20:5n-3 2.2 ∆5 

20:3n-6 20:4n-6 0.4 ∆5 

22:5n-3 22:6n-3 16.1 ∆4 

22:4n-6 22:5n-6 6.8 ∆4 

    

Fatty acyl elongase (elovl) 

18:4n-3 20:4n-3 20.1 C1820 

 22:4n-3 11.8 C2022 

 24:4n-3 0.0 C2224 

 Total 31.9  

18:3n-6 20:3n-6 28.6 C1820 

 22:3n-6 8.0 C2022 

 24:3n-6 0.0 C2224 

 Total 36.6  

20:5n-3 22:5n-3 75.0 C2022 

 24:5n-3 4.4 C2224 

 Total 79.4  

20:4n-6 22:4n-6 53.9 C2022 

 24:4n-6 3.2 C2224 

 Total 57.1  

22:5n-3 24:5n-3 3.7 C2224 

22:4n-6 24:4n-6 3.8 C2224 
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Table 3  

Change in fatty acid composition (% of total fatty acids) during ontogenetic development up to 6 days after hatching (DAH).  

Fatty acids Eggs 0 DAH 1 DAH 2 DAH 3 DAH 4 DAH 5 DAH 6 DAH 

(% of total FA)         

Total saturated 23.3  0.9 
ab

 23.7  1.2 
ab

 24.1  1.0 
ab

 25.8  1.5 
bc

 26.7  2.9 
bc

 29.9  0.8 
c
 35.8  0.8 

d
 32.6  1.4 

cd
 

Total monoenes 36.1  0.4 
a
 35.9  0.6 

a
 35.5  0.7 

a
 34.5  1.0 

a
 28.2  1.5 

b
 28.6  1.7 

b
 28.3  4.0 

b
 24.6  1.8 

b
 

18:2n-6 8.7  0.0 
a
 8.8  0.1 

a
 8.6  0.1 

a
 8.2  0.2 

a
 7.4  0.4 

b
 6.2  0.1 

c
 4.9  0.2 

d
 5.2  0.2 

d
 

18:3n-6 0.2  0.0 
ac

 0.1  0.0 
ac

 0.1  0.0 
a
 0.1  0.0 

ac
 0.2  0.0 

abc
 0.2  0.1 

abc
 0.4  0.1 

b
 0.3  0.1 

bc
 

20:2n-6 0.6  0.0 
ab

 0.8  0.0 
bc

 0.6  0.0 
a
 0.6  0.0 

a
 0.8  0.1 

c
 0.6  0.0 

abc
 0.5  0.1 

a
 0.6  0.1 

a
 

20:3n-6 0.1  0.0 0.1  0.0 0.1  0.0 0.1  0.1 0.1  0.1 0.1  0.1 0.1  0.1 0.2  0.0 

20:4n-6 1.0  0.0 
a
 1.2  0.0 

ab
 1.5  0.0 

bc
 1.7  0.1 

c
 2.6  0.2 

d
 2.7  0.2 

d
 2.6  0.2 

d
 3.7  0.2 

e
 

22:4n-6 0.3  0.0 0.3  0.0 0.3  0.0 0.5  0.3 0.5  0.3 0.3  0.0 0.3  0.0 0.3  0.0 

22:5n-6 0.5  0.0 
a
 0.6  0.0 

ab
 0.5  0.0 

a
 0.6  0.1 

ab
 0.8  0.1 

ab
 0.8  0.0 

ab
 0.9  0.3 

ab
 1.2  0.5 

b
 

Total n-6 PUFA 11.5  0.1 
ab

 11.9  0.2 
ab

 11.7  0.1 
ab

 11.8  0.3 
ab

 12.3  0.6 
a
 10.8  0.3 

b
 9.7  0.3 

c
 11.4  0.7 

ab
 

18:3n-3 2.5  0.0 
a
 2.6  0.1 

a
 2.2  0.1 

ab
 2.0  0.0 

b
 1.2  0.1 

c
 1.0  0.1 

cd
 0.7  0.2 

d
 0.8  0.1 

cd
 

18:4n-3 0.4  0.0 
a
 0.3  0.0 

a
 0.3  0.0 

a
 0.3  0.0 

ab
 0.2  0.0 

ab
 0.2  0.1 

ab
 0.1  0.2 

b
 0.2  0.1 

ab
 

20:3n-3 0.2  0.0  0.2  0.0 0.2  0.0 0.2  0.0 0.2  0.0 0.2  0.4 0.0  0.1 0.0  0.1 

20:4n-3 0.3  0.0 
a
 0.3  0.0 

ab
 0.3  0.1 

ab
 0.2  0.0 

ab
 0.2  0.0 

ab
 0.1  0.1 

b
 0.1  0.1 

ab
 0.1  0.1 

ab
 

20:5n-3 1.8  0.1 
a
 1.8  0.1 

a
 1.7  0.1 

a
 1.7  0.1 

a
 1.9  0.1 

a
 3.2  0.2 

b
 2.9  0.8 

b
 3.0  0.5 

b
 

22:5n-3 2.6  0.1 
a
 2.4  0.1 

ab
 2.7  0.1 

a
 2.4  0.2 

ab
 2.2  0.1 

bd
 1.5  0.0 

c
 1.4  0.1 

c
 1.9  0.2 

d
 

22:6n-3 20.5  0.9 20.0  1.4 20.3  1.3 20.2  1.9 25.9  1.9 22.9  2.5 19.5  4.5 23.4  1.8 

Total n-3 PUFA 28.4  1.2 
ab

 27.6  1.8 
ab

 27.7  1.6 
ab

 26.9  2.2 
ab

 31.7  2.1 
a
 29.0  2.3 

ab
 24.8  3.6 

b
 29.4  1.6 

ab
 

DHA/EPA 11.4  0.2
 ab

 11.0  0.4
 ab

 12.0  0.3
 ab

 12.1  0.3
 ab

 13.5  0.4
 a
 7.4  1.3

 b
 7.3  3.9

 b
 8.1  1.9

 b
 

Total PUFA 40.6  1.3
 ab

 40.5  1.8
 ab

 40.3  1.7
 ab

 39.7  2.5
 ab

 45.1  2.1
 a
 41.6  2.4

 ab
 35.9  3.7

 b
 42.8  2.4

 a
 

Different superscript letters in the same row indicate significant differences (P<0.05) between dietary regimes at the assessed age (19 or 40 

DAH) (SPSS 17.0). 
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Table 4 

Effect of diet (enriched – E – or non-enriched – NE – Artemia EG metanauplii) on larval and post-larval fatty acid composition (% of total fatty 

acids), at 19 and 40 days after hatching (DAH), respectively. 

Fatty acids Artemia  19 DAH S. senegalensis larvae  40 DAH S. senegalensis post-larvae 

(% of total FA) E NE  E NE  E NE E-NE NE-E 

Total saturated 19.0 21.0  24.8  0.8 
x
 26.6  0.4 

y
  22.8  0.5 

a
 26.6  1.9 

b
 27.3  1.9 

b
 22.4  0.5 

a
 

Total monoenes 33.9 32.7  35.2  1.0 
x
 32.2  0.9 

y
  31.6  0.6 33.1  0.8 32.5  1.2 32.4  0.3 

18:2n-6 5.3 4.8  4.9  0.2 
x
 5.7  0.6 

y
  5.6  0.1 6.1  0.4 6.0  0.3 5.7  0.1 

18:3n-6 0.4 0.5  0.2  0.1 
x
 0.5  0.0 

y
  0.5  0.0 0.5  0.0 0.5  0.0 0.4  0.2 

20:2n-6 0.4 0.4  0.5  0.0 
x
 0.4  0.0 

y
  0.4  0.0 1.1  1.0 0.5  0.0 0.5  0.0 

20:3n-6 0.1 0.2  0.2  0.0 
x
 0.3  0.0 

y
  0.3  0.0 

a
 0.4  0.1 

b
 0.4  0.0 

b
 0.2  0.0 

a
 

20:4n-6 0.7 0.6  2.5  0.1 
x
 3.1  0.1 

y
  2.0  0.1 1.7  0.2 2.0  0.3 1.8  0.0 

22:4n-6 0.0 0.0  0.2  0.3 0.1  0.0  0.1  0.0 
ab

 0.2  0.1 
b
 0.1  0.0 

a
 0.1  0.0 

a
 

22:5n-6 0.1 0.0  0.2  0.0 0.1  0.0  0.3  0.0 
a
 0.5  0.6 

ab
 0.2  0.0 

b
 0.3  0.0 

b
 

Total n-6 PUFA 7.1 6.5  8.6  0.4 
x
 10.3  0.7 

y
  9.1  0.1 

a
 10.5  0.2 

b
 9.6  0.7 

ab
 8.9  0.2 

a
 

18:3n-3 24.5 29.1  12.6  1.0 13.7  0.7  15.2  0.5 16.5  1.1 15.3  0.8 16.0  0.6 

18:4n-3 4.2 4.9  1.6  0.2 1.7  0.1  2.1  0.1 
a
 1.7  0.1 

b
 1.6  0.1 

b
 2.3  0.1 

a
 

20:3n-3 1.1 1.6  1.3  0.1 
x
 1.4  0.1 

y
  1.6  0.1 

a
 2.4  0.2 

b
 2.3  0.2 

b
 1.6  0.0 

a
 

20:4n-3 0.9 0.8  0.7  0.1 
x
 0.8  0.1 

y
  1.0  0.0 

a
 1.2  0.1 

b
 1.2  0.1 

ab
 1.0  0.0 

a
 

20:5n-3 4.1 1.7  4.8  0.2 
x
 3.6  0.0 

y
  3.1  0.1 

a
 1.8  0.3 

b
 1.9  0.3 

b
 3.0  0.0 

a
 

22:5n-3 0.3 0.0  2.6  0.2 
x
 2.1  0.1 

y
  2.6  0.0 

a
 1.3  0.2 

b
 1.7  0.3 

b
 2.4  0.1 

a
 

22:6n-3 3.0 0.1  6.1  0.2 
x
 5.3  0.4 

y
  9.4  0.6 

a
 3.0  0.6 

b
 4.8  1.0 

c
 8.2  0.3 

a
 

Total n-3 PUFA 38.1 38.3  29.5  1.5 28.7  0.8  35.0  0.4 
a
 27.9  2.5 

b
 28.8  2.5 

b
 34.5  0.3 

a
 

DHA/EPA 0.8 0.1  1.3  0.1 
x
 1.5  0.1 

y
  3.1  0.2 

a
 1.7  0.1 

b
 2.5  0.2 

c
 2.7  0.1 

ac
 

Total PUFA 47.2 46.4  40.0  1.7 41.2  1.0  45.7  1.0 
a
 40.2  2.5 

b
 40.2  3.0 

b
 45.2  0.2 

ab
 

Different superscript letters in the same row indicate significant differences (P<0.05) between dietary regimes at the assessed age (19 or 40 

DAH) (SPSS 17.0). 
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Table 5 

Growth performance and survival of Solea senegalensis with different dietary regimes. 

 19 DAH S. senegalensis larvae  40 DAH S. senegalensis post-larvae 

 E NE  E NE E-NE NE-E 

Dry weight  

(mg/larva) 

0.34 ± 0.15
x
 0.21 ± 0.09

y
  2.41 ± 1.04

a
 2.78 ± 1.26

 ab
 3.18 ± 1.44

b
 3.29 ± 1.56

b
 

Survival (%) 23.0 ± 4.4 22.2 ± 4.1  93.0 ± 1.7 95.0 ± 2.2 91.3 ± 2.8 94.0 ± 0.6 

 

Values are mean ± SD. Values with different superscript letters in the same row are 

significantly different at each age (one-way ANOVA, P< 0.001). Absence of letters 

indicates no statistical differences (P>0.001). 
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Figure captions 

 

Fig. 1. ClustalW2 alignment of the deduced amino acid sequences of different fish 

species Fads, including the sole (S. senegalensis) Fad characterized here (GenBank 

ID:JN673546), Atlantic salmon (S. salar) 5Fad (AAL82631) and 6Fad (AAR21624), 

turbot (P.maxima) 6Fad (AAS49163), rabbitfish (S. canaliculatus) 65Fad 

(ABR12315) and 4Fad (ADJ29913) and zebrafish (D. rerio) 56Fad (AAG25710). 

Identical residues are shaded black and similar residues (based on the Gonnet matrix, 

using ClustalW2 default parameters) are shaded grey. The cytochrome b5-like domain 

is dot-underlined, the two transmembrane regions are dash underlined, the three 

histidine-rich domains are solid underlined and asterisks on the top mark the hame-

binding motif, HPGG. 

 

Fig. 2. Phylogenetic tree comparing the deduced aa sequence of Solea senegalensis Fad 

with Fad proteins from fish and other organisms. The tree was constructed using the 

Neighbour Joining method [25] with MEGA5.05 [26]. The horizontal branch length 

corresponds to the aa substitution rate per site. Numbers represent the frequencies with 

which the tree topology presented was replicated after 1,000 bootstrap iterations. 

 

Fig. 3. ClustalW2 alignment of the deduced amino acid sequences of different fish 

species Elovl5’s, including the sole (S. senegalensis) Elovl characterized here (GenBank 

ID:JN793448), P. maxima (AAL69984), S. canaliculatus (ADE34561) S. salar 

(elovl5a; NP_001117039 and elovl5b; ACI62499), and D. rerio (NP_956747). Identical 

residues are shaded black and similar residues (based on the Gonnet matrix, using 

ClustalW2 default parameters) are shaded grey. Indicated are the conserved histidine 
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box motif (underlined), five (I-V) predicted membrane-spanning domains (underlined 

with dashed line) and asterisks mark the lysine or arginine residuals (ER retrieval 

signals). 

 

Fig. 4. Functional characterization of Solea senegalensis putative fatty acyl desaturase 

in transgenic yeast (Saccharomyces cerevisiae) grown in the presence of n-3 FA 

substrates; 18:3n-3 (A); 20:4n-3 (B); and 22:5n-3 (C).  Fatty acids were extracted from 

yeast transformed with pYES2 vector containing the ORF of the putative fatty acyl 

desaturase cDNA as an insert. Peaks 1-4 represent the main endogenous FAs of S. 

cerevisiae, namely 16:0 (1), 16:1n-7 (2), 18:0 (3) and 18:1n-9 (4). The remaining main 

additional peaks correspond to the exogenously added FAs (*) and the products of their 

desaturation. Vertical axis, FID response; horizontal axis, retention time. 

 

Fig. 5. Functional characterization of Solea senegalensis putative fatty acyl elongase in 

transgenic yeast (Saccharomyces cerevisiae) grown in the presence of n-3 FA 

substrates; 18:4n-3 (A); 20:5n-3 (B); and 22:5n-3 (C).  Fatty acids were extracted from 

yeast transformed with pYES2 vector containing the ORF of the putative fatty acyl 

elongase cDNA as an insert. Peaks 1-4 represent the main endogenous FAs of S. 

cerevisiae, namely 16:0 (1), 16:1n-7 (2), 18:0 (3) and 18:1n-9 (4). Peak 5 corresponds 

to 18:1n-7 resultant from the elongation of the yeast endogenous16:1n-7 and the 

remaining main additional peaks correspond to the exogenously added FAs (*) and the 

products of their elongation. Vertical axis, FID response; horizontal axis, retention time. 

 

Fig. 6. Regulation of Solea senegalensis fatty acyl desaturase (fad) and elongase (elovl) 

genes during early ontogenetic development, determined by qPCR in whole eggs and 
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larvae. The results shown are normalized values (reference gene: ef1a) corresponding to 

a mean of n=3 with standard deviation (SD). Different letters above the columns 

represent significant differences (P<0.05) between ages, for each gene (SPSS 17.0). 

 

Fig. 7. Nutritional regulation of Solea senegalensis fatty acyl desaturase (fad) and 

elongase (elovl) genes in whole larvae and post-larvae, at 19 and 40 days after hatching 

(DAH), respectively, determined by qPCR. Larvae were fed either enriched (E) or non-

enriched (NE) Artemia until 19 DAH and then either kept on enriched (E) or non-

enriched (NE), or switched from E to NE (E-NE) or from NE to E (NE-E) Artemia from 

19 to 40 DAH. The results shown are normalized values (reference genes: ubq and rpsa) 

corresponding to a mean of n=3 with standard deviation (SD). Different letters above 

the columns represent significant differences (P<0.05) between the dietary regimes at 

the assessed age (19 or 40 DAH) (SPSS 17.0). 
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S.salar- 5                MGGGGQQTESSEPAKGDGLEPDGGQGGSAVYTWEEVQRHSHRSDQWLVIDRKVYNITQWA 60 

S.salar- 6                MGGGGQQNDSGEPAKGDRGGPGGGLGGSAVYTWEEVQRHSHRGDQWLVIDRKVYNITQWA 60 

S.senegalensis-Fad        MRNGGQLTKPGELCNG---------QAGAVYTWKEVQSHSSKNDQWLVIDRKVYNTTQWS 51 

P.maxima- 6               MGGGGQLTEQGETGSK---------RAGCVYTWEEVQSHSSRTDQWLVIDRKVYNTTQWA 51 

S.canaliculatus- 6 5      MGGGGQPRESGEPG-----------SSPAVYTWEEVQHHSSRNDQWLVIDRKVYNISQWA 49 

S.canaliculatus- 4        MGGGGQLGESGENGCK---------SAAGVYTWEEVQHHSNRNDQWLVIDRKVYNVTQWA 51 

D.rerio- 5 6              MGGGGQQTDRITDTNG----------RFSSYTWEEVQKHTKHGDQWVVVERKVYNVSQWV 50 

                           

 

S.salar- 5                KRHPGGIRVISHFAGEDATEAFSAFHLDANFVRKFLKPLLIGELAPTEPSQDHGKNAALV 120 

S.salar- 6                KRHPGGIRVISHFAGEDATDAFVAFHPNPNFVRKFLKPLLIGELAPTEPSQDHGKNAVLV 120 

S.senegalensis-Fad        KRHPGGFRVITHYAGQDATEAFAAFHPDAKFVHKFLKPLLIGELAPSEPSHDGNKNAGLI 111 

P.maxima- 6               KRHPGGFHVISHYAGQDATEAFTAFHPDLKFVQKFLKPLLIGELAATEPSQDRNKNAALV 111 

S.canaliculatus- 6 5      KRHPGGYRVIGHYAGEDATEAFTAFHPDLKFVQKFLKPLLIGELAATEPSQDRNKNAALI 109 

S.canaliculatus- 4        KRHPGGFRVLNHYAGEDATEAFTAFHPDIKFVQKYMKPLLVGELAATEPSQDQDKNAALI 111 

D.rerio- 5 6              KRHPGGLRILGHYAGEDATEAFTAFHPNLQLVRKYLKPLLIGELEASEPSQDRQKNAALV 110 

                           

 

S.salar- 5                QDFQALRDHVEREGLLRARLLFFSLYLGHILLLEALALGLLWVWGTSWSLTLLCSLMLAT 180 

S.salar- 6                QDFQALRNRVEREGLLRARPLFFSLYLGHILLLEALALGLLWVWGTSWSLTLLCSLMLAT 180 

S.senegalensis-Fad        QDFHALRAQVESQGLFQAQPLFFFLHLGHIVLLEALAWLMIWLWGSNWILTILCAVLLAT 171 

P.maxima- 6               QDFHTLRVKAESKGLFQARPLFFCLHLGHIVLLEALAWLIIWVWGTNWILTFLCALLMTI 171 

S.canaliculatus- 6 5      QDFHTLRQQAESEGLFQARPLFFLLHLGHILLLEALALLMVWHWGTGWLQTLLCAVMLAT 169 

S.canaliculatus- 4        QDFHTLRQQAESEGLFQARPLFFLLHLGHILLLEALALLMVWHWGTGWLQTLLCAVMLAT 171 

D.rerio- 5 6              EDFRALRERLEAEGCFKTQPLFFALHLGHILLLEAIAFMMVWYFGTGWINTLIVAVILAT 170 

                           

 

S.salar- 5                SQAQAGWLQHDYGHLSVCKKSSWNHKLHKFVIGHLKGASANWWNHRHFQHHAKPNVFRKD 240 

S.salar- 6                SQSQAGWLQHDYGHLSVCKKSSWNHVLHKFVIGHLKGASANWWNHRHFQHHAKPNVLSKD 240 

S.senegalensis-Fad        AQSQAGWLQHDFGHLSVFKKSRWNHLVHKLVIGHLKGASANWWNHRHFQHHAKPNVFKKD 231 

P.maxima- 6               AQSQAGWLQHDFGHLSVFKQSRWNHLLQKFAIGHLKGASANWWNHRHFQHHAKTNIFRKD 231 

S.canaliculatus- 6 5      AQSQAGWLQHDFGHLSVFKKSRWNHLVHHFVIGHLKGASANWWNHRHFQHHAKPNIFKKD 229 

S.canaliculatus- 4        AQSQAGWLQHDFGHLSVFKKSRWNHLVHKFVIGHLKGASANWWNHRHFQHHAKPNIFKKD 231 

D.rerio- 5 6              AQSQAGWLQHDFGHLSVFKTSGMNHLVHKFVIGHLKGASAGWWNHRHFQHHAKPNIFKKD 230 

                           

 

S.salar- 5                PDINSLPVFVLGDTQPVEYGIKKLKYMPYHHQHQYFFLIGPPLIVPVFFNIQIFRTMFSQ 300 

S.salar- 6                PDVNMLHVFVLGDKQPVEYGIKKLKYMPYHHQHQYFFLIGPPLLIPVFFTIQIFQTMFSQ 300 

S.senegalensis-Fad        PDINLMDVFVLGTTQPVEYGVKKIKNMPYQHQHQYFFLVGPPLLIPVFYNFNIMYTMLSR 291 

P.maxima- 6               PDVNMLNIFVIGATQPVEYGVKKIKHMPYHRQHQYFFLVGPPLLIPVYFQMQLMNSIISR 291 

S.canaliculatus- 6 5      PDINMVDLFVLGETQPVEYGVKKIKLMPYNHQHQYFHLIGPPLLIPVFFHYQLLKIMISH 289 

S.canaliculatus- 4        PDINMVDLFVLGETQPVEYGIKKIKNMPYNHQHKYFFLVAPPLLIPVFYNYNIMMTMITR 291 

D.rerio- 5 6              PDVNMLNAFVVGNVQPVEYGVKKIKHLPYNHQHKYFFFIGPPLLIPVYFQFQIFHNMISH 290 

                           

 

S.salar- 5                RDWVDLAWSMSFYLRFFCCYYPFFGFFGSVALISFVRFLESHWFVWVTQMNHLPMEMDHE 360 

S.salar- 6                RNWVDLAWSMTFYLRFFCSYYPFFGFFGSVALITFVRFLESHWFVWVTQMNHLPMEIDHE 360 

S.senegalensis-Fad        RDWVDLSWAMTYYLRYFYCYVPLFGVFGSLALMTFVRFLESHWFVWVTQMNHLPMDIDYE 351 

P.maxima- 6               HDWVDLGWSMSYYLRFFCCYIPMYGLFGSVALIIFVRFLESHWFVWVTQMNHLPMDIDHE 351 

S.canaliculatus- 6 5      RYWLDLVWCLSFYLRYMCCYVPVYGLFGSVVLIVFTRFLESHWFVWVTQMNHLPMDINYE 349 

S.canaliculatus- 4        RDYVDLSWAMTFYIRYMLCYVPVYGLFGSLALMMFARFLESHWFVWVTQMSHLPMDK--- 348 

D.rerio- 5 6              GMWVDLLWCISYYVRYFLCYTQFYGVFWAIILFNFVRFMESHWFVWVTQMSHIPMNIDYE 350 

                             

 

S.salar- 5                RHQDWLTMQLSATCNIEQSTFNDWFSGHLNFQIEHHLFPTMPRHNYHLVAPLVRTLCEKH 420 

S.salar- 6                RHQDWLTMQLSGTCNIEQSTFNDWFSGHLNFQIEHHLFPTMPRHNYHLVAPLVRTLCEKH 420 

S.senegalensis-Fad        KHQDWLTMQLQATCNIEQSSFNDWFSGHLNFQIEHHLFPRMPRHNYSLVAPQVRALCEKH 411 

P.maxima- 6               KHKDWLTMQLQATCNIEQSFFNDWFSGHLNFQIEHHLFPTMPRHNYHLVAPQVRALCAKY 411 

S.canaliculatus- 6 5      NHNDWLSMQLQATCNVEQSLFNDWFSGHLNFQIEHHLFPTMPRHNYHLVVPRVRALCEKH 409 

S.canaliculatus- 4        -RRDWLSMQLQATCNIEKSFFNDWFSGHLNFQIEHHLFPRMPRHNYHLVAPQVQTLCEKH 407 

D.rerio- 5 6              KNQDWLSMQLVATCNIEQSAFNDWFSGHLNFQIEHHLFPTVPRHNYWRAAPRVRALCEKY 410 

                            

 

S.salar- 5                GVPYQVKTLQKGMTDVVRSLKKSGDLWLDAYLHK 454 

S.salar- 6                GIPYQVKTLQKAIIDVVRSLKKSGDLWLDAYLHK 454 

S.senegalensis-Fad        GMSYQVKTMWQGFADIVKSLKASGDLWLDAYLHK 445 

P.maxima- 6               GITYQVKTMWQGLADVFRSLKTSGELWRDAYLHK 445 

S.canaliculatus- 6 5      EIPYQVKTLPQAFADIIRSLKNSGELWLDAYLHK 443 

S.canaliculatus- 4        GIPYEVKTLWKGMVDVVRALKKSGDLWLDAYLHK 441 

D.rerio- 5 6              GVKYQEKTLYGAFADIIRSLEKSGELWLDAYLNK 444 
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* * 

S.salar-Elovl5a             METFNYKLNMYIDSWMGPRDERVQGWLLLDNYPPTFALTVMYLLIVWLGP 50 

S.salar-Elovl5b             MEAFNHKLNTYIDSWMGPRDERVQGWLLLDNYPPTFALTLMYLLIVWLGP 50 

P.maxima-Elovl5             METFNHKLNTYIDSWMGPRDQRVRGWLLLDNYPPTFALTVMYLLIVWMGP 50 

S.senegalensis-Elovl        METFNHKLNTHIDSWLGPRDQRVRGWLLLDDYPPTFALTVMYLLIVWMGP 50 

S.canaliculatus-Elovl5      MEDFNRKLNSYFESWIGPRDQRLQGWLLLDNYPPTFALTVVYLLIVWLGP 50 

D.rerio-Elovl5              METFSHRVNSYIDSWMGPRDLRVTGWFLLDDYIPTFIFTVMYLLIVWMGP 50 

                             

 

S.salar-Elovl5a             KYMRHRQPVSCRGLLLVYNLGLTILSFYMFYEMVSAVWHGDYNFYCQDTH 100 

S.salar-Elovl5b             KYMRHRQPVSCQGLLVLYNLALTLLSFYMFYEMVSAVWQGGYNFYCQDTH 100 

P.maxima-Elovl5             KYMKNRQPYSCRGLLVVYNLGLTLLSFYMFYELLTAVWHGDYNFYCQDTH 100 

S.senegalensis-Elovl        KYMQHRQPYSCRGLLVLYNLGLTLLSFYMFYELVSAVWHGGYNFYCQDIH 100 

S.canaliculatus-Elovl5      KYMKNRPAYSCRGLMVIYNLGLTLLSFYMFYELGSAIWFGGYHFYCQNTH 100 

D.rerio-Elovl5              KYMKNRQAYSCRALLVPYNLCLTLLSLYMFYELVMSVYQGGYNFFCQNTH 100 

                             

 

S.salar-Elovl5a             SAGETDTKIINVLWWYYFSKLIEFMDTFFFILRKNNHQITFLHIYHHASM 150 

S.salar-Elovl5b             SAGETDTKIINVLWWYYFSKVIEFMDTFFFILRKNNHQITFLHIYHHASM 150 

P.maxima-Elovl5             SVPEVDNKIINALWWYYFSKLIEFMDTFFFILRKNFHQITFLHIYHHASM 150 

S.senegalensis-Elovl        SAPEVDKKVIKVLWWYYFSKVIEFMDTFFFILRKNNHQITFLHIYHHASM 150 

S.canaliculatus-Elovl5      SLPEMDNKVMRALWWYYFSKLIEFMDTFFFILRKNNHQITFLHIYHHASM 150 

D.rerio-Elovl5              SGGDADNRMMNVLWWYYFSKLIEFMDTFFFILRKNNHQITFLHVYHHATM 150 

                             

 

S.salar-Elovl5a             LNIWWFVMNWVPCGHSYFGASLNSFIHVLMYSYYGLSAVPALRPYLWWKK 200 

S.salar-Elovl5b             LNIWWFVMNWVPCGHSYFGASLNSFVHVLMYSYYGLSAVPAIRPYLWWKK 200 

P.maxima-Elovl5             LNIWWFVMNSIPCGHSYFGASLNSFVHVAMYSYYGLSAIPAIRPYLWWKR 200 

S.senegalensis-Elovl        LNIWWFVMNWIPCGHSYFGASINSFVHVVMYSYYGLSAIPAVRPYLWWKR 200 

S.canaliculatus-Elovl5      FNIWWFVMNWIPCGHSYFGASLNSFVHVVMYSYYGLSAVPSLRPYLWWKK 200 

D.rerio-Elovl5              LNIWWFVMNWVPCGHSYFGATFNSFIHVLMYSYYGLSAVPALRPYLWWKK 200 

                             

 

S.salar-Elovl5a             YITQGQLIQFFLTMSQTICAVIWPCGFPRGWLYFQIFYVVTLIALFSNFY 250 

S.salar-Elovl5b             YITQGQLIQFFLTMSQTICAVIWPCGFPRGWLFFQIFYMASLIAFFSNFY 250 

P.maxima-Elovl5             YITQLQLIQFFLTMSQTMCAVIWPCDFPRGWLYFQISYVVTLIILFSNFY 250 

S.senegalensis-Elovl        YITQLQLIQFFLTVFHTMSAVIWPCGFPMRWLYFQISYMVTLIILFANFY 250 

S.canaliculatus-Elovl5      YITQLQLVQFFLTMFQTYCAVLWPCGFPIGWLYFQISYMVTLVVLFSNFY 250 

D.rerio-Elovl5              YITQGQLVQFVLTMFQTSCAVVWPCGFPMGWLYFQISYMVTLILLFSNFY 250 

                             

 

S.salar-Elovl5a             IQTYKKHLVSQKKECHQNGSVASLNGHVNGVTPTETITHRKVRGD 295 

S.salar-Elovl5b             IQTYKKHRVSQK-EYHQNGSVDSLNGHANGVTPTETITHRKVRVD 294 

P.maxima-Elovl5             IQTYKKHNATLQ-KQHPNGSAVSRNGHSNGTPSAEHMAHKKLRVD 294 

S.senegalensis-Elovl        IQTYKKRSGSQQ-KGSP------AHGHTNGTPSMEHSAHKKLRVD 288 

S.canaliculatus-Elovl5      IQTYKKRSSSRK-TDHQNGSPLSTNGHANGK---ESAAHKKLRVD 291 

D.rerio-Elovl5              IQTYKKRSGSRK-SDYPNGS---VNGHTNGVMSSEKIKHRKARAD 291 
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