
Telecare Service Challenge:
Conflict Detection

Jesse Blum

Institute of Computing Science and Mathematics,

School of Natural Sciences, University of Stirling

Stirling, Scotland

jmb@cs.stir.ac.uk

Evan Magill

Institute of Computing Science and Mathematics,

School of Natural Sciences, University of Stirling

Stirling, Scotland

ehm@cs.stir.ac.uk

Abstract—Telecare and telehealth system services can be

dynamically configured to collect, analyse, store, and adapt to

multimodal data about people as they go about their activities of

daily life. These services need to be able to personalise to subjects

and adapt to changes in lifestyles, environments and technology.

Such dynamic adaptability may be well supported by a low-level

rule programming approach; however measures may need to be

taken to limit the emergence of conflicts between the distributed

rulesets owing to differing programmatic assumptions and

unexpected changes.

Here, we consider types of conflict that might arise when a

variety of care devices are brought together and begin to rely on

each others’ services. This paper describes a distributed rule-

based conflict detection approach for use with heterogeneous

mobile and home care devices. We propose methods that make it

possible to detect certain forms of rule conflict. To do so, we

introduce Event Calculus based logic for writing device rules and

an analytical framework for conflict detection.

Keywords-service conflict detection; rule-based sensor

networks; ambulatory assessment

I. INTRODUCTION

Mobile and sensor technologies are used for care and
healthcare purposes across a wide range of settings including
the home, care homes, and hospitals. They are increasingly
being used to monitor individuals on the move and indeed such
ambulatory assessment can be used in preference to hospital
visits.

Regardless of the setting however, often such telecare
systems cannot be altered, and so all individuals will
experience the same system for the duration of its use.
Ambulatory assessment systems could gain considerably from
an ability to be personalised to the subjects being monitored
[1]. A significant motivating factor for personalisation is that
diseases can manifest differences both between individuals
(inter-individual) and over time for a particular individual
(within-individual). This is particularly true for long term
assessment. The types of sensors used and their patterns of
usage must, therefore match these transient subject states. So
the system must be both personalised for an individual and
altered for that individual over time.

 Statically designed solutions are insufficient at handling
the level of change that long term telecare implies since the

designers would have to have a priori knowledge of the
changes to the behaviour of their subjects and the deployment
environments. An alternative approach is to program semi-
autonomous devices to form into dynamic ad hoc coalitions
that provide each other with services. The rules governing each
part of the telecare system can be managed separately to
personalise the telecare solution for each subject. The rules of
the overall system behaviour will therefore be distributed
amongst the network components and dynamically change in
time, but not necessarily known to or programmed by any
particular individual.

Our research into such a rules-based approach is part of the
Personalised Ambient Monitoring (PAM) project, which is
investigating the feasibility of reducing the incidence of
debilitating episodes through personalised ambient monitoring
of affective disorder patients in their homes. We are attempting
to collect patient activity signatures in an ambient and
unobtrusive manner. System personalisation is a core issue for
PAM since activity signatures differ amongst patients and can
change over the course of patient lifetime. The types of sensors
used, and their patterns of usage, must be personalised in order
to match patient states and be accepted by users. System
personalisation requires a dynamic and flexible programming
method but it must also be easy to program, represent domain
information and above all result in correct system behaviour.
One of our goals was to collect micro-data from long term
repeated sampling of people going about their lives at home
and on the move using a changing set of heterogeneous worn
and environmental devices. We acknowledge that people
change in time and that individuals vary with respect to their
concerns and disease manifestations, and therefore we placed a
great deal of value on the ability for the system to be
personalised.

We evaluated the effectiveness of the technology in
technical trials with control participants [2]. Reliability
concerns arose from our desire to use such a dynamic network.
Changes could lead to different device rules interfering with
each others’ operations. Device rules can conflict such that the
functionality of one device may modify another in unexpected
ways.

The main contribution of this paper is to show how a
collection of devices can be used for telecare and to show that
it is possible to detect various types of conflict in a rule-based

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9050644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approach to programming telecare solutions. Detecting
conflicts should aid in reducing reliability concerns and thereby
increase adoption of rule-based telecare. We have developed
rule conflict investigation tools. These tools permit dynamic
and straightforward personalisation of network behaviour.
They also support additional equipment as and when they
become available.

II. RELATED WORK

A. Ambulatory Assessment

This work focuses on mental health assessment. Although it
is not a new concept, ambulatory psychological/psychiatric
assessment has recently begun to emerge as an important tool
for clinicians and researchers as a result of methodological and
technological trends. Questions have arisen in
psychology/psychiatry concerning how closely subjective
reports from questionnaires and laboratory findings match real
world in-context behaviour [3]. Concurrently, sensors,
computers, and communication devices are becoming smaller,
more reliable, less expensive and easier to use.

Ambulatory assessment promises to provide clinicians,
researchers, and individuals with real-time collected,
ecologically valid, unbiased contextualised data about
symptoms, physiology, activity, behaviour and
mental/emotional state [4]. It has been suggested that
individualised interactive moment-specific real-world treatment
could be provided based on ambulatory assessment systems,
and longitudinal continuous data could greatly enhance social
science research. Ambulatory assessment systems are still in
their infancy and much work remains to be addressed. This
paper proposes techniques to ensure that personalisation results
in a stable system. In particular this work addresses rule-based
systems that support dynamic real time system behavioural
changes by allowing the rules to be changed at run-time. It is
crucial that the changing rules remain consistent and do not
degrade system performance.

B. Rule-based Sensor Networks

Rule-based middleware for sensor networks has been used
in a number of projects such as [5] - [8]. These studies show
that the programming and concurrency models are simplified
compared with other approaches. Furthermore they indicate

that program correctness is easier to prove, and that rule-based
systems remain sufficiently expressive at high conceptual
levels. Also rule notations that employ an event driven
paradigm find favour in sensor networks; whereas an
imperative paradigm does not.

More generally rule-orientation is seen as a more natural
way to express programs for sensor networks. It was pointed
out by [8] that application developers using rule-oriented
middleware are protected from complexities arising from tight
real-world integration, network dynamics, and resource
limitations. Rule based systems have been built that allow the
rules to be changed at run time [8]. This is very attractive for
personalised systems that must change over time. Maintaining
a consistent set of rules across the system, however, is
challenging.

C. Rule consistency

In rule-based systems where rules may originate from a
number of sources and end up being executed across a number
of destinations, there is a strong possibility of the rules being
inconsistent and causing behavioural conflict. This has been
noted in [8], where they discuss the importance of detecting
and resolving such conflicts. However that paper did not
address a method to do it; rather by not employing rules
between nodes but only accepting them from a single trusted
server, they avoided this requirement. The trusted server
employed meta-rules [9] to ensure conflict was resolved within
the server and so conflicting rules were not distributed.

In this paper we draw on a wider literature of programming
conflict frequently described as Feature Interaction [10]. This
topic was initially addressed in telephony, but has expanded to
a wide range of domains experiencing program or control
conflict; such as cars, lifts, internet services, and building
control. Here the focus is on rule conflict in telecare sensor
networks.

III. OUR METHODS

Attempting to personalise devices and networks to monitor
subjects in-situ exposes the need to use adaptable programming
approaches. Reliability concerns arise, however, from having
the need for a dynamic network, with features that change in
time. These dynamic changes could lead to different features
interfering with each others’ operations.

We have been considering whether a rule-based approach
to programming devices provides a natural way to express
device behaviour whilst limiting the risks of rule conflict. Here
we present Event Calculus based feature rule descriptions and
conflict analysis rules.

A. Event Calculus Based Rules

The Event Calculus was designed by Kowalski & Sergot as
a way of representing and reasoning about actions and their
effects in time [11]. It is expressed using the Horn clause subset
of first-order predicate logic and its ontology contains three
main concepts: fluents, actions (or events) and time points.
Fluents are properties of the universe of discourse that can
change in time. These properties may either take a
propositional form such as “the subject is in the house” or a
quantifiable form, for instance the level of ambient sound in a

Figure 1. Example Data Storage Through Processing

feature rule

 dstp(T1) :-
 T2 is T1+1 ... T7 is T1 + 6,
 initiallyN(connection),
 initiallyP(message),
 happens(listen_for_connection,T1),
 happens(transfer_data,T3),
 happens(process_data,T4),
 happens(store_data,T5),
 happens(dstp(T7),T7),
 initiates(listen_for_connection,

 connection,T2),
 terminates(transfer_data,connection,T4),
 terminates(process_data,message,T6).

Figure 2. Missed Trigger Interaction occurs when the Context

Triggering rules delay the activation of a home gateway.

room. A fluent can hold at a given point in time, if it was
previously initiated by an action and has not been subsequently
terminated. Actions occur at points in time and can modify
fluents. Time points provide a narrative based structure
independent of any particular action.

We identified device control and knowledge management
service feature rules from a literature review of state of the art
ambulatory assessment systems. We encoded each of these
rules into Event Calculus based rules in Prolog. For instance,
figure 1 shows the encoding of a Data Storage Through
Processing rule that could be used by a node to handle
incoming data by processing them, then storing the processed
data. Such a rule might describe that the recipient begins in a
state listening for a connection. When a triggering message
arrives, data is streamed and collected. The data are processed
using appropriate algorithms once the streaming has
completed. The processed data are stored and the device goes
back to listening for more connections. If a connection is
established the data is uploaded and the connection is
terminated upon data transfer completion. The recipient should
then return to a state where it can repeat the process for new
inbound data.

B. Conflict Detection

A networked environment with a dynamic collection of
sensing and processing nodes that attempt to detect for unusual
subject behaviour could be a recipe for network device
conflicts. For instance, features operating within and across
devices could rely on synchronisation and concurrency patterns
that may not actually arise owing to interactions between the
devices and the rest of the network. Device conflicts reduce the
levels of certainty that we can have in the care assessment data
and conclusions to actuate based on them. We used the Event
Calculus to look for conflicts by analysing the device rules.

This work is inspired by research on the feature interaction
problem as there are many similarities between this problem
and rule conflict. A classic telephony example from the feature
interaction literature involves the user Alice subscribed to the
feature Originating Call Screening (OCS), screening out calls
to the user Charlie. The user Bob is subscribed to the feature
Call Forwarding when Busy (CFB), forwarding calls to Charlie

when busy. A conflict can occur if Alice calls Bob when he is
busy, because either the call from Alice would be forwarded to
Charlie, thereby invalidating OCS, or else the call would be
blocked, thereby invalidating CFB. In either case, the operation
of one of the two features would be invalidated by the presence
of the other.

Searching for such conflicts in Event Calculus forms of the
narratives and service specifications can lead to the discovery
of conflicts amongst them. In order to detect conflicts between
rules, we developed an analytical rule system that can be used
to understand what happens when multiple feature rules are
triggered. The system analyses rule execution sequences to
determine whether the rules lead to conflict. The framework
ignores the contents of the triggering messages, the actions that
arise from being triggered and the semantic meanings of the
features. Prolog programs based on the framework resolve
goals by loading the feature rules and then proceeding to check
for interactions between every possible pair of features
(including checking features against themselves).

Checking a pair of features involves two phases:
initialisation and detection. The initialisation phase resets the
Prolog environment by removing all assertions from it. It then
adds a number of time points (establishing a linear order
amongst them) and initialises a message fluent that can be sent
to the features. The detection phase involves passing feature
rules, time points and messages to conflict detection rules. The
conflict detection rules are then used to evaluate whether the
feature rules are concordant or conflict, and to record
evaluation results.

For this work we studied feature rules looking for instances
of different types of conflict: Shared Trigger Interaction (STI),
Sequential Action Interaction (SAI), Sequential Action
Interaction (SAI), and Missed Trigger Interaction (MTI). STIs
occur when the antecedents of multiple features are satisfied
such that they each perform actions in response to the same
triggering event, and the operation of one or more of the
features is different from how it would have reacted had it been
the sole responder. SAIs occur when the operation of a feature
is triggered in response to the actions of another feature. LIs are
special cases of SAI whereby the operation of the chained
features leads to redundant cycles. MTIs arise when the
operation of a feature prevents the triggering of the operation of
another one. The second feature may get stuck awaiting its
trigger which is delayed, thereby causing the feature to operate
incorrectly or not at all.

To contextualise sensor networks for behaviour monitoring,
we considered case studies based on a scenario involving
researchers interested in studying the impact of Bipolar
Disorder on subjects conducting their usual activities of daily
living. Bipolar disorder is a severe psychiatric disorder
characterised by patients being in patterned (possibly cyclic
and/or recursive) affective states, including mania, hypomania,
eurythmia, depression and mixed states.

The scenario case studies depict how features could conflict
by a particular conflict type. For example, an example MTI
case study is shown in figure 2. It shows rules for a case study
in which a mobile phone is subscribed to a feature rule that
delays the transmission of a message that would activate a

Figure 3. MTI conflict detection rule.

home monitoring system. Such delays may be reasonable from
a phone programmer’s point of view to minimise bandwidth
usage and maximise battery life. If the subject travels from
home, returns home briefly, then sets off again the home
monitor would remains off because a trigger to turn it on would
not be sent by the phone. This would lead to not capturing any
abnormal behaviour about the brief return. Section 4 shows
results of five case studies (one for each interaction type).

C. Conflict Detection Rules

Each of the conflict types were encoded as detection
algorithms. These detection rules can be loaded into the
analysis engine to check different rules for conflict.

Detecting MTI can be accomplished by testing features
sequentially to ensure that a common fluent holds before being
passed to each of the tested features. The fluent can be
considered as a type of triggering message that should remain
in a consistent state between features. Such an approach need
not make any assumptions about the contents of the message,
nor about the actions that should be performed by the features,
nor also about what the rules do upon receiving a message.
The algorithm for detecting MTI is shown in figure 3. The
analytical framework evaluates a MTI concordance rule with
arguments that consist of a pair of feature description rules,
time points for the start times of each of the features, and the
message fluent. The fluent initially holds prior to being passed
to the first feature. Features conflict if the fluent becomes
clipped prior to the execution of a feature.

STI detection, shown in figure 4, begins by loading
arguments that consist of a pair of feature description rules, but

Figure 4. STI conflict detection algorithm.

ignores the time points and the message fluent arguments. The
fluent initially holds prior to being passed to the first feature
and the second feature. Features conflict if a check of the
initiated actions from the first instance of the first rule does not
match the second instance's initiated actions.

SAI can be detected by testing to determine if a feature rule
performs an action that leads to actions being performed by a
second rule. This can be accomplished by running rules
sequentially within the framework and checking for α
sentences that describe actions that will be performed as a
result of the firing of the two rules. The analytical framework

Figure 5. SAI conflict detection algorithm.

performs the procedures shown in figure 4. It uses the standard
initialisation phase and then loads the SAI detection rule. This
begins by ensuring the correct ordering of the time points. It
then performs the first feature rule, stores its α sentences, and
then re-initialises the world. Then it performs the second
feature rule and stores its α sentences whereupon it re-runs the
first rule and subtracts the second rule's actions from its
actions. The remaining α sentences are compared with the
actions from the initial run of the first rule. If they are the same
then the second rule results in no additional actions, therefore
the rules concord; otherwise they conflict by SAI.

LI occurs when one rule triggers another which in turn
causes the first one to be re-triggered. LI, therefore, is a special
case of SAI that can be defined as SAI leading to the triggering
of the first rule's actions. This can be detected by performing
SAI checks on the features and examining the output for cases
where two features have SAI regardless of whether they are the
first or second rule.

IV. EXPERIMENTAL RESULTS

Case studies were used to validate the detection algorithms
against device rules. Here, we describe the results from one
case study per conflict type.

A. MTI Case study

This is an MTI example of potentially conflicting rules. The
rules describe features for subject response prompting and
notification suppression (which might be enabled if a subject
were in a meeting for instance). These rules each receive
variables for the triggering message fluent and the time points
for when they are respectively executed. Conclusions and
Future Work

The results of analysing these features using the analysis
engine for MTI are shown in table 1. The table shows that if the
notification suppression feature is used prior to a second usage
of the feature or the use of the response prompting feature then
MTI occurs. In addition two instances of the response
prompting feature will conflict if they are used together, as will
response prompting when it is called before notification
suppression.

B. STI Case study

This case study is characterised by the use of features from
different services that run on the same device. In this case a

Feature 1 Feature 2 Result

Context Trigger Context Trigger STI

Context Trigger State Trigger A STI

Context Trigger State Trigger B Concordance

State Trigger A Context Triggering STI

State Trigger A State Trigger A STI

State Trigger A State Trigger B Concordance

State Trigger B Context Trigger Concordance

State Trigger B State Trigger A Concordance

State Trigger B State Trigger B Concordance

mobile phone has features for Context Trigger to determine
what activity the subject is engaged in when leaving home.

Similarly, rules have been set up using State Trigger to
determine the emotional state that the subject is in when the
subject’s behavioural state changes from sitting to walking. An
interaction can occur when the subject walks away from home.
Here, both features may be triggered, however only one can
elicit a response at a time, therefore a conflict occurs and the
other feature will not be fulfilled.

Table 2 shows the analysis results for this case study. It
shows the results of the use of two different versions of the
state trigger rule. Normally, only one form of a feature would
be used; however, in this case it is interesting to see what
would happen depending on the form used. Form A responds to
changes upon receiving state information in a similar manner
as the Context Trigger rule. They both trigger an action in
response to being triggered. Form B of the state triggering rule
however is inert.

C. SAI Case Study

The case study features the rules Data Transfer and
Redirect Data Stream. Data Transfer causes an action to occur,
but Redirect Data Stream initiates a fluent change in response
to the action. The fluent change in turn leads to the
performance of another action. It is this connection which
characterises a sequential interaction.

The results of testing the feature rules in the analytical
framework using the SAI detection rule are shown in table 3.

Feature 1 Feature 2 Result Looping
Case

Data Transfer| Data Transfer| SAI Yes

Data Transfer| Data Redirect SAI Yes

Data Redirect Data Transfer| SAI Yes

Data Redirect Data Redirect Concordance No

Feature 1 Feature 2 Result

Notification
suppression

Notification
suppression

MTI

Notification
suppression

Response
prompting

MTI

Response
prompting

Notification
suppression

MTI

Response
prompting

Response
prompting

MTI

TABLE III. SAI CASE STUDY DETECTION RESULTS

TABLE I. MTI CASE STUDY DETECTION RESULTS TABLE II. STI CASE STUDY DETECTION RESULTS

SAI was detected when Data Redirect was the first feature rule
and Data Transfer was the second. This situation resulted in
Data Transfer preceding Data Redirect and thereby initiating an
action that leads to the initiation of an action within Data
Redirect. SAI also resulted when Data Transfer was the first
feature followed by either another Data Transfer or Data
Redirect.

D. LI Case study

This case study considered a case where Data Transfer and
Data Redirect are used on two devices, each directing the
stream to the other. The results are also presented in table 3. A
check of Data Transfer as both the first and second features
resulted in LI in this case.

V. CONCLUSIONS AND FUTURE WORK

A vision of telecare is one of continuous collection, storage,
analysis and reaction to multimodal data streams from a variety
of sources. These processes will automatic, adaptive and
personalised. The fusion of objectively measured and
subjectively reported data on physical activity, location,
interactions with others, psychological state and context will
provide a wealth of knowledge from which we can tailor
appropriate care.

With adaptation, however, comes the concern of
minimising device conflicts. Like other complex adaptive
systems such as call control systems, interactions can emerge
that degrade the integrity of the network. These must be
guarded against in future telecare systems.

We have begun this process by developing and testing
algorithms that can be used to detect conflicts between telecare
service features. In this paper we have reported the detection of
four kinds of conflict that emerged in distributed telecare
service rule descriptions. Situations that involve the distributed
operation of a variety of devices are likely to occur. It is
important to guard against conflicts within them to ensure the
reliability of data collection and analysis procedures that will
underpin the delivery of care.

The next step in this work will be a more thorough
exploration of our initial results employing a broader range of
scenarios and exercises. Also, the technique has a strong
potential to be embedded more effectively within a future
version of the PAM network architecture to provide a more
responsive coverage. This will allow personalised telecare
networks to self-heal when conflicts are detected and resolve
problems in such a way as to maximise the integrity of the data.

Resolving conflicts in real-time will be an important aspect of
such work. Future technical trials of embedded conflict
detection will allow us to collect real-world data which could
be compared with trial data from our system with conflict
detection switched off. These steps are being actively pursued.

ACKNOWLEDGMENT

This work was carried with the support of the EPSRC
funded project EP/F003684/1 (Enabling health, independence
and wellbeing for psychiatric patients through Personalised
Ambient Monitoring (PAM)). The PAM project is a
collaborative project between the Universities of Stirling,
Nottingham and Southampton.

REFERENCES

[1] S. Intille et al., "Tools for studying behavior and technology in natural
settings", Proc. of UbiComp 2003: Ubiquitous Computing, pp. 157-174,
2003

[2] J. Blum and E. Magill, “The Design and Evaluation of Personalised
Ambient Mental Health Monitors,” Proc. Of IEEE CCNC, 2010.

[3] U.W. Ebner-Priemer and T.J. Trull, "Ambulatory assessment - an
innovative and promising approach for clinical psychology", European
Psychologist, vol. 14, pp. 109–119, 2009.

[4] J.B.J. Bussmann, U.W. Ebner-Priemer, and J. Fahrenberg, "Ambulatory
behavior monitoring:Progress in measurement of activity, posture, and
specific motion patterns in daily life", European Psychologist, vol. 14(2),
pp.142–152, 2009.

[5] M. Zoumboulakis, G. Roussos, and Poulovassilis, A., “Active rules for
sensor databases,” ACM International Conference Proceeding Series,
vol. 72, pp. 98-103, 2004.

[6] K. Terfloth, G. Wittenburg, and J. Schiller, “FACTS - A Rule-Based
Middleware Architecture for Wireless Sensor Networks,” Proceedings of
the First International Conference on COMmunication System softWAre
and MiddlewaRE (COMSWARE ’06), 2006.

[7] S. Sen, and R. Cardell-Oliver, “A rule-based language for programming
wireless sensor actuator networks using frequence and communication,”
Proceedings of Third Workshop on Embedded Networked Sensors
(EMNETS), 2006.

[8] X. Fei, and E. Magill, “Rule Execution and Event Distribution
Middleware for PROSEN WSN,” Second International Conference on
Sensor Technologies and Applications, SENSORCOMM’08, pp. 529–
551, 2008.

[9] G.A. Campbell and K.J. Turner, "Goals and Policies for Sensor Network
Management", Proc. 2nd Int. Conf. on Sensor Technologies and
Applications, pp. 354-359, 2008.

[10] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec, "Feature
interaction: a critical review and considered forecast", Computer
Networks, vol. 41(1), pp. 115–141, 2003.

[11] R Kowalski and M. Sergot, "A logic-based calculus of events", New
generation computing, vol. 4, no. 1, pp. 67–95, 1986.

