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Reproducibility of Limb Power Outputs and Cardiopulmonary Responses to Exercise 

Using a Novel Swimming Training Machine 

 

 

RUNNING TITLE: Novel Swimming Training Machine 

 

Abstract 

The purpose of this study was to determine the reproducibility of limb power output and 

cardiopulmonary responses, to incremental whole-body exercise using a novel swimming 

training machine. Eight swimmers with a mean age of 23.7 ± 4.6 (yrs), stature 1.77 ± 0.13 (m) 

and body mass of 74.7 ± 2.8 (kg) gave informed consent and participated in repeat exercise 

testing on the machine. All subjects performed two  incremental exercise tests to exhaustion 

using front crawl movements. From these tests peak oxygen consumption (VO2peak), peak 

heart rate (HRpeak), peak power output (Wpeak) and individual limb power outputs were 

determined. Results showed there were no significant differences between test 1 and 2 for any 

variable at exhaustion, and the CV% ranged from 2.8% to 3.4%. The pooled mean values 

were; VO2peak 3.7 ± 0.65 L.min-1, HRpeak 178.7 ± 6.6 b.min-1 and Wpeak 349.7 ± 16.5 W. The 

mean contributions to the total power output from the legs and arms were (37.3 ± 4.1 % and 

62.7 ± 5.1 % respectively). These results show that it is possible to measure individual limb 

power outputs and cardopulmonary parameters reproducibly during whole-body exercise 

using this training machine, at a range of exercise intensities.  
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Introduction 

Laboratory-based ergometers, such as the swim bench have been used previously to study 

swimmers [6, 11, 21, 23, 25-27]. This has been mostly to assess arm power [3, 6, 8, 12, 31] 

but also to assess cardiopulmonary responses to exercise [25, 27, 28]. More recently, Swaine 

[30] has reported arm and leg power in swimmers during separate laboratory-based ergometer 

tests which attempted to replicate the front crawl arm-stroke and leg-kick. Konstantaki et al. 

[14] have reported cardiopulmonary responses to simultaneous front crawl arm and leg 

exercise. However, there are no previous reports which have measured the individual limb 

power outputs at the same time as cardiopulmonary parameters during incremental whole-

body simulated swimming. 

 

In swimming itself, the relative contribution from each limb to the total power generated 

during front crawl is unknown. The absence of such data is largely because it has been 

impossible to measure the individual limb power outputs during swimming itself. This is 

because the force applied by the swimmer partly results in propulsion but is also partly 

dissipated in moving water [33]. Knowledge of the relative contributions to the total power 

output from each of the swimmer’s limbs might enhance understanding of the priciples of 

front crawl swimming. 

 

Previously, it has been possible to measure the propulsive power that results from the work 

done by the swimmer [9] and the leg-kick was shown to contribute approximately 10% to the 

total front crawl swimming propulsive power. However, this study reports the resultant 

propulsive power during swimming and not the power output from the swimmer’s limbs. 

Indeed, in a review by Toussaint and Beek [33] the assumption is made that since most 

propulsion comes from the arms in swimming, then the power output delivered by the 

swimmer will mainly come from the arms and trunk. However, there are no direct studies to 

support this. Quantification of power output from each limb during whole-body exercise on a 

machine might provide some insight into the contribution that each limb makes to the total 

power output of  the swimmer during front crawl swimming. 
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The quantification of the contribution of each limb to the total power output during exercise 

on a swimming machine requires an ergometer capable of measuring power output from each 

limb and which allows manipulation of exercise intensity. A prototype ergometer has been 

detailed previously [14, 29]. Such an ergometer would allow incremental testing to exhaustion 

and it would permit the freely-chosen contribution that each limb makes, to total power 

output, to be assessed through a range of exercise intensities. This type of measurement has 

not been made previously. Accordingly, the purpose of this study was to assess the 

reproducibility of the  limb power outputs and cardiopulmonary responses to repeated 

incremental exercise tests using a novel swimming training machine. 

 

Methods 

Subjects 

Eight men of mean age 23.7 ± 4.6 (yrs), stature 1.77 ± 0.13 (m) and body mass 74.7 ± 2.8 (kg) 

(mean ± SD) performed two incremental exercise tests to exhaustion. The mean best times for 

400m front crawl swimming within the 3 month period prior to testing were 262.7 ± 50 (s). 

Six of the eight swimmers were right-arm dominant, and seven were ‘bilateral breathers’ 

(with one swimmer breathing right-side only) during training. The participants were trained 

swimmers who, for the 6 months prior to the testing, completed a minimum of 6 swimming 

training sessions per week, of 1.5 hours duration. The study was conducted according to the 

ethical standards of this journal [7] and all participants gave written informed consent prior to 

participation and the study which was given approval by the University Ethics Committee. 

 

The swimming training machine 

Subjects performed exercise testing on a prototype novel whole-body swimming training 

machine which was built for this study and can be seen in Figure 1. Resistance to the 

movement of each limb was created by four air-dynes (Lawler Engineering, UK) which were 

mounted on spindles which rotated upon pay-out of pull-ropes, attached to hand-paddles or 

foot-plates. The design of the leg-kick ergometer allowed force to be exerted in the upward 

and downward kicking action but only during the pulling action of the arms, not during the 
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recovery phase. On each air-dyne there was a photoelectric sensor which detected the 

revolution of the air-dyne. The revolution rate that each air-dyne made was passed into a 

computer where power was derived using software which contained a previously-determined 

calibration algorithm. Subjects adopted a prone position and were instructed to simulate the 

front crawl swimming action as closely as possible (including arm recovery), attempting to 

achieve maximum pull and kick movements in each arm-stroke or leg-kick. Mean power 

output for leg-kick and arm-stroke was averaged over each arm-pull or leg-kick. After 

computation, the instantaneous mean power output for the combination of arm stroking and 

leg-kicking was fed back to the swimmer on a visual display unit. The power output of the 

swimmer was plotted against a ‘target’, so that the intensity of exercise could be manipulated. 

This was done in a similar way to that first detailed in Swaine [25]. 

 

Calibration of the air-dynes 

For each air-dyne the relationship between force applied and revolution rate was determined 

by suspending known weights (0.5 to 4.5 kg) from the drive gear of the air-dynes. This 

calibration technique has been used previously [23, 26]. An algorithm was derived for use in 

the computer software used to feedback the power output to the swimmer. 

 

Measurement of cardiopulmonary variables 

Analysis of expired air was made using a breath-by-breath gas analysis system (Innocor, 

Innovision, Denmark). This system uses laser diode absorption spectroscopy for oxygen and 

photoacoustic spectroscopy for carbon dioxide analysis and a differential pressure sensor for 

determination of ventilatory flow rates. The VO2peak was defined as the highest oxygen 

consumption value recorded. Heart rates were determined using a Polar heart rate monitor 

(Polar AB, Finland) which gave instantaneous values at 5 s intervals. 

 

Determination of the reproducibility of peak responses to incremental exercise 

Assessment of the reproducibility of the peak responses to exercise required the subjects' 

attendance at the laboratory on three occasions which were arranged at the same time of day. 
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The first visit was so that subjects could become accustomed to the swimming training 

machine and the incremental exercise test procedures. On each visit the swimmers performed 

an incremental exercise test to volitional exhaustion, however analysis of expired air was only 

made on the second and third visits. During the incremental test the power output ‘target’ on 

the visual display unit commenced at 100 W and was increased by 25 W.min-1 and swimmers 

were permitted to meet the increasing demands through a freely-chosen combination of work 

from all four limbs at freely-chosen stroke rates. The maximal revolution rates of the air-dyne 

devices was 15 s-1 so that maximal pull velocity and stroke rates were close to those shown 

previously to best replicate free swimming [27]. 

 

Analysis of data 

Reproducibility was assessed by comparison of means (t) for test 1 and 2 and accompanied by 

coefficient of variation (CV%). Differences in submaximal limb power outputs and 

cardiopulmonary responses to the two tests were assessed using analysis of covariance 

(ANCOVA) for comparison of the slopes and elevations of the linear relationships between 

VO2 and W, and between HR and W. This comparison was performed on individual and 

group mean relationships. Differences in individual peak limb power outputs were analysed 

using one-way analysis of variance (ANOVA) with TUKEY’S honestly significant difference 

(HSD) post-hoc test. Population normality was checked using Shapiro-Wilks and Levene’s 

test was used to test for equality of variances.     
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Results 

The mean values for VO2peak, HRpeak and Wpeak from test 1 and 2 are given in Table 1, along 

with statistical test values for differences, CV% and intra-class correlation. A Bland and 

Altman plot of test-retest differences in VO2peak is given in Figure 2. There were no significant 

differences between test 1 and 2 for any variable at exhaustion (P<0.05). The CV% (with 95% 

CI) were 2.8% (1.4 to 3.6) for VO2peak; 3.3% (2.0 to 5.4) for HRpeak ; and 3.4% (1.9 to 4.8) for 

Wpeak. The pooled mean values of VO2peak, HRpeak and Wpeak were; 3.7 ± 0.65 L.min-1, 178.7 ± 

6.6 b.min-1 and 349.7 ± 16.5 W respectively. On average at exhaustion, the total power output 

from each limb was: 111 ± 12.3 W (W-RApeak); 108 ± 13.1 W (W-LApeak); 68.1 ± 9.1 W (W-

RLpeak) and 62.6 ± 8.3 W (W-LLpeak). ANOVA revealed significant differences in these mean 

limb peak power values (F= 3.6; P=0.012). The Tukey HSD multiple comparisons revealed no 

significant difference between right and left arm (P<0.05) or between right and left leg 

(P=0.01), but the legs produced less power than the arms (P<0.01) This equated to 

approximate contributions of 29%, 33%, 16% and 22% for right arm, left arm, right leg and 

left leg respectively. The contribution  to the total power output from both legs and both arms 

were (37.3 ± 4.1 % and 62.7 ± 5.1 % respectively). An example of the contribution made by 

each limb throughout an incremental test for one subject is given in Figure 3.  

 

The mean data for VO2 at each incremental power output (W), for test 1 and test 2 are shown 

in Figure 4. Comparison of the submaximal relationships between VO2 and W revealed that in 

all individuals this relationship was linear (r at least 0.89; p<0.05). The slopes were different 

in 3 of the eight participants (P<0.05), which precluded comparison of elevations. In the 

remaining 5 participants there was no difference in the slope (P>0.05) or elevation (P>0.05). 

The group mean relationship showed no difference in either slope (P=0.09) or elevation 

(P=0.07). For the HR vs W relationship, responses in all individuals were linear (r at least 

0.93; p<0.05). The slopes were different in 1 participant (P<0.05), but in the remaining 7 

participants there was no difference in the slope (P>0.05) or elevation (P>0.05). Again the 

group mean relationship for HR vs W showed no difference in either slope (P=0.1) or 

elevation (P=0.09).  
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(Figures 1 to 4, Table 1 here) 

 

Discussion 

This study demonstrated that it is possible to assess cardiopulmonary responses to whole-body 

exercise which mimic the front-crawl swimming movements. Furthermore, it was possible to 

relate the cardiopulmonary responses to power output of the limbs throughout this exercise. 

The peak cardiopulmonary reponses to this exercise were shown to have small repeat-test 

coefficient of variation between 2.8 and 3.4%. There are no previous measures of 

reproducibility for whole-body exercise using a swimming machine, with which to compare 

the data from the present study, but these values compare favourably with previous values for 

arms-only swim bench exercise of 1.0 to 2.1% [26]. These values also compare well with 

reproducibility of peak cardiopulmonary responses to treadmill running [23] and cycle 

ergometer exercise [1].  

The reproducibility of the responses recorded on the novel swimming training machine can be 

used to inform sample size requirement for future studies, as advocated by Hopkins [11]. For 

a crossover or simple test-retest study the number of participants required is based around 

precision, defined by the 95% confidence limit (deriving a power 0.8). Hopkins [11] 

calculates sample size as n= 8s
2
/d

2
, where n is the sample size, s is the typical error and d is 

the smallest worthwhile effect. If d is presented as a proportion (%) of mean group score then 

CV% can be inserted for s. These figures are changed to n=32s2/d2 for a study using an 

experimental and control group. Using 0.2 of the between-subject variation as the smallest 

worthwhile change [5], the sample sizes required for these types of studies (based on the 

VO2peak data) are presented in Table 2. These calculations suggest that this machine, protocol 

and gas analysis system could be used with relatively small groups of swimmers to detect 

small changes in VO2peak. Indeed, an expected change in VO2peak of ~2% would require 

between 4 and 26 participants, based on the current findings. This analysis indicates that the 

methods used in the present study could comfortably detect the large (11%) training-induced 

changes in VO2peak reported previously in recreational swimmers [16] and might be able to 

detect the much smaller changes consistent with ergogenic supplementation.  
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(Table 2 here) 

There are only two previous studies with which to compare our whole-body incremental 

exercise measurements [13,14]. Konstantaki et al., [14] reported VO2peak values of 2.85 L.min
-

1 
for combined arm-stroke and leg-kick, but their measuresments were made on younger 

swimmers. Kimura et al., [13] used simultaneous arm-cranking and leg-kicking and measured 

VO2peak in varsity swimmers. In their study it was 3.6 ± 0.3 L.min
-1

 and in ours it was 3.7 ± 

0.63 L.min
-1

, therefore our results confirm those of these previous studies. In the variety of 

studies that have assessed VO2peak during flume and tethered swimming, the values have been 

2.6 to 3.2 lmin
-1

 [2, 10, 15, 20]. Therefore, our results for exercise using this novel swimming 

training machine appear to be  similar to those of free swimming. 

 

The individual limb peak power output values were somewhat surprising, especially the mean 

contribution made by the leg-kick (37.3%). These results could be suggestive that a much 

greater proportion of the total power output during swimming might be done by the legs than 

previously thought. Certainly, these relative contributions from arms and legs cast doubt on 

the previous suggestions that the power output delivered by the swimmer  comes almost 

entirely from the arms and trunk [33]. Indeed, although we did not make a systematic analysis 

of the contribution that the legs made through all intensities of exercise, several of our 

swimmers generated higher power outputs from the legs than from the arms when nearing 

exhaustion. 

 

There are no previous power output values with which to compare our results for whole-body 

power output using a swimming training machine. Swaine [28] reported separate peak power 

output values, at exhaustion, during incremental exercise using front crawl arm-stroke and 

leg-kick tests. The sum of the separate values from that study (170 W for arm-stroke and 141 

W for leg-kick) is similar to our mean of 352 W but perhaps suggests that it is possible to 

generate a small amount of additional power by combining the upper and lower limbs in a 

synchronised way. Front crawl swimming is known to involve highly-skilled co-ordination of 

the leg-kick and arm-stroke in such a way as to achieve greatest forward propulsion [4].  
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Toussaint et al. [32] has reported power output values of swimmers from measurements using 

the fixed push-off pads of the MAD system [9]. However, measurements were only made for 

arm-stroke power output (leg-kick power was derived by subtracting arm power from whole-

stroke power). Also, in that study it was not possible to precisely manipulate the exercise 

intensity in the same way that we did. Therefore, it is difficult to compare our power output 

values to those reported in the study by Toussaint et al. [32]. However, his reported power 

output values, estimated at 1000 W of ‘power input’, were between 50 and 120 W (as derived 

from arms-only swimming) which are much lower than our power output values and would 

represent approximately 20-30% of whole-body exercise power output at exhaustion in our 

subjects. Unfortunately, it is not possible to determine exactly what relative exercise intensity 

1000 W represented in the study of Toussaint et al. [32] and therefore it is not possible to 

directly compare our power output values with such previous studies. 

 

Simultaneous arm and leg work has been studied previously, using arm-cranking and cycling 

[22]. However, the freely-chosen contribution from the arms and legs was not assessed in this 

study. Rather, the contribution was set by the investigator. Nevertheless, this study showed 

that the additional oxygen uptake achieved when adding arm- to leg-work represented 

approximately 15% in this type of exercise. Similarly, Swaine and Zanker [27] showed that 

the VO2peak during swim bench arms-only exercise was approximately 2.9 L.min
-1

 and our 

results of 3.8 L.min
-1

 for whole-body exercise would represent a 0.9 L.min
-1

 or 31% increase 

in arms-only VO2peak, due to addition of the leg-kick. Therefore, this difference in VO2peak 

must be considered when interpreting data from previous reports that have used swim bench 

exercise. 

 

The extent to which combining the arm-stroke and leg-kick enhances the total power output of 

the swimmer, during whole-body exercise, remains to be determined. It is unlikely to be 

simply represented by the sum of the separate arm- and leg-power outputs reported by Swaine 

[30]. The combining of the upper and lower body during swimming is known to enhance total 
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power output by allowing transfer of energy between the limbs [17]. The combining of arm-

stroke and leg-kick is likely to affect the total efficiency, at any given exercise intensity. 

Therefore, it might be expected that the oxygen cost for a given exercise intensity using 

combined arm-stroke and leg-kick would be lower than the sum of the oxygen cost values for 

separate arm-stroke and leg-kick. This could be studied by using the whole-body swimming 

training machine. 

 

Also, it was notable during our investigation that ventilatory thresholds (as identified using 

breath-by-breath gas exchange) appeared to coincide with changes in the contribution of each 

limb to the total power output. Although it was not the purpose of this study to identify 

ventilatory thresholds, it appeared that quite marked changes occurred at these thresholds. 

Therefore, it might be useful in future studies, to systematically investigate the pattern of 

change in limb contribution, during incremental simulated swimming, and relate this pattern 

to the gas exchange or lactate markers of the onset of anaerobiosis. Currently, it is not known 

how the relative contributions of the arm-pull and leg-kick contribute to fatigue (lactate 

accumulation) or how fatigue influences the freely-chosen relative contribution from each 

limb. 

 

Of course, we acknowledge that there are significant differences in the movement patterns of 

exercise using a machine, compared to ‘free swimming’ and this presents a limitation to the 

direct comparison between measurements made in the laboratory and during swimming itself. 

For example, during exercise on a machine there is restriction of body roll, which is known to 

be an important aspect of front crawl swimming [19]. However, the arrangement of the 

swimmer in a suspended ‘cradle’ appeared to allow greater body roll than that seen in 

previous swim bench work [25, 27]. Also, the ‘cradle’ that we used was foreshortened so that 

it did not restrict the movement of the thoracic cavity as much as has been experienced when 

using the swim bench [26]. However, it has been shown previously, through EMG 

measurement, that the movement patterns of dry land training devices are quite different to 

those of free swimming [18]. 
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In addition to the restricted body roll, the swimming training machine cannot quantify power 

generated by the swimmer’s limbs during many of the lateral or rotational movements of the 

hands and feet. These movements are known to be important components of the front crawl 

swimming technique. Indeed, the current arrangement of the pulley-ropes means that tension 

is only developed in the direction dictated by the fixed point of the pulley. This presents a 

further limitation of exercise on the swimming training machine. Therefore, machine-based 

exercise in swimmers has limitations in its direct application to free swimming. Of course, 

future studies with this novel machine would be required, to establish the extent to which 

power output from the limbs and cardiopulmonary responses during such exercise are 

reflective of swimming itself. 
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Table 1 Mean values and reproducibility measures for peak oxygen consumption (VO2peak), 

peak heart rate (HRpeak) and peak total power output (Wpeak) from the novel 

swimming training machine. 

Table 2 Sample size calculations based on the methods described by Hopkins (2000), using 

the 95% confidence interval for the CV (1.4 – 3.6%). The smallest worthwhile 

change (d) was derived as 0.2 of the between-subject variation from (a) the pooled 

data from the current study, (b) the pre-intervention data of Magel et al. (1975), and 

(c) tethered swimming data from Bonen et al. (1980).            

 

 

Figure 1  Photograph of the prototype novel swimming training machine showing, the leg air-

dynes to the rear, the use of a suspended ‘cradle’ for body support, and pulley ropes 

used to drive the four air dynes.  

Figure 2 A Bland and Altman plot of individual test-retest differences in VO2peak 

Figure 3. An example of the relative contribution of each limb to total power output  

 during incremental whole-body simulated swimming to exhaustion. 

Figure 4. The group mean data for VO2 and total power output (W) during incremental 

exercise tests 1 and 2, using the novel swimming training machine. 
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Figure 1. Photograph of the novel swimming training machine.  
609x450mm (96 x 96 DPI)  
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Figure 2. An example of the relative contribution of each limb to total power output during 
exhaustive incremental exercise using the novel swimming training machine.  

164x114mm (96 x 96 DPI)  
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Figure 3. The group mean relationships between VO2 and total power output (W) during 
incremental exercise test 1 and test 2, using the novel swimming training machine.  

148x95mm (96 x 96 DPI)  
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Figure 4. The group mean data for VO2 and total power output (W) during incremental 

exercise tests 1 and 2, using the novel swimming training machine. 
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Table 1 Mean values and reproducibility measures for peak oxygen consumption (VO2peak), 

peak heart rate (HRpeak) and peak total power output (Wpeak) from the novel 

swimming training machine. 

 

 Mean test 1 Mean test 2 t-test CV% Correlation 

VO2peak 

(L.min-1) 

3.68± 0.65  3.72 ± 0.61 t=1.4; p=0.7 3.4 r=0.94; 

p=0.01 

HRpeak  

(b.min-1) 

 

177.7 ± 6.6  180.2± 6.2 t=3.7; p=0.01 2.8 r=0.92; 

p=0.01 

W peak  

(Watts) 

345.7 ± 15.2  356.7 ± 16.0 t=4.9; p=0.01 3.1 r=0.90; 

p=0.02 
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Table Table Table Table 2.2.2.2.    Sample size calculations based on the methods described by 

Hopkins (2000), using the 95% confidence interval for the CV (1.4 - 3.6%). 

The smallest worthwhile change (d) was derived as 0.2 of the between 

subject variation from (a) the pooled data from the current study, (b) Magel 

et al’s [15] pre intervention data, and (c) Bonen et al’s [2] tethered swimming 

data.            

 

VO2peak  SD d (0.2 

SD) 

Participant number 

required for a 

simple test retest 

experiment. 

Participant number 

required for a study 

with an experimental 

and control group. 

3.70a 0.65 3.5% 2 - 9 6 – 34 

3.44b 0.49 2.9% 2 - 13 8 - 50 

3.53c 0.27 1.5% 7 - 47 28 - 184 
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