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Abstract. Different types of events occurring in computer, neural, busi-
ness, and environmental systems are discussed. Though events in these
different domains do differ, there are also important commonalities. We
discuss the issues arising from automating complex event handling sys-
tems.
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1 Introduction: events in different contexts

Events can be considered as a unifying paradigm crossing disciplinary bound-
aries. Events happen1: events are considered to occur at a particular time and
place, and to involve a number of participant entities. Generally, events have (a
non-null set of) causes, and also (a non-null set of) effects2. Events happen both
inside a system and in its environment. Events occur in all types of area: here
we discuss events in computer systems and networks, neural systems, business,
and the environment, but this represents only four example areas. What we con-
sider to be an event often depends on our standpoint, and what we are currently
interested in: events that are not of interest still occur, but we ignore them.

In terms of computer systems and networks, events range from the change
of state of a signal line inside a CPU chip or the failure to find a datum in a
CPU cache, to the pressing of a button on a mouse, to receipt of a protocol
packet, to failure of a link, or, at a higher level, the placing of an order or
the receipt of a shipment, or at a still higher level the introduction of a new
device to the market or the release of a new web portal. There are a number of
different theoretical bases that can and have been used for events primarily in this
context. These range from Petri nets [12] to calculus of communicating systems
1 “Events dear boy, events”: ascribed to Harold Macmillan, ex Prime Minister of the

UK, when asked by a reporter what was most likely to blow a government off course.
2 Events with no effects can safely be ignored
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[9] to communicating sequential processes [6] to communicating agents [10]. Each
of these has been taken up in some areas of computer systems and networks,
but they have not yet found application outside of this domain. Here, we are
concerned with what the events are, rather than with analysing or organising
them. Clearly these different levels of events are inter-related: each higher-level
event actually is made up of a large number of lower level events.

In terms of neural systems, one needs to start by considering what the events
might be3. Events could range from arrival of an action potential at a synapse
(one might start at a lower level, for example with the release of a vesicle from the
presynaptic terminal, or the arrival of molecules of neurotransmitter from such
a vesicle at a single post-synaptic ion channel), or with the detection of some
percept in the auditory or visual cortex, or the execution of a motor command.
There is little agreement about the nature of information transfer inside the
brain (beyond that it is mediated by action potentials), which makes the issue
of what is an event controversial (particularly at the level above single spikes: is
an event the reception of a stream of spikes from one other neuron? Or a volley
of spikes from a number of neurons? Or the collection of spikes that make up a
synfire chain?)

In terms of businesses, events may take many forms, ranging from the ini-
tiation of the development of a new product, the release of a new product (by
that particular business, or one of its competitors), to changes in prices of raw
materials, or the opening of a new factory or office. There is a standardised no-
tation for these events developed by the Object Management Group/Business
Process Management Initiative (http://www.bpmn.org/): see [13]: this is ori-
ented towards orchestration of these events in a computational context. As with
computer events, many of these can be decomposed: for example the opening of
a new factory is the culmination of a long sequence of events which presumably
started with a decision being taken to open a new factory (or rather, before
that, with the events that led to the requirement for a new factory). The rel-
evant events may be internal to the business, or may be within the business’s
operating environment.

In terms of events in the (natural) environment, these may be associated
with a particular occurrence, for example a tree falling over in a forest. As for
both computer events and neural events, this event is made up from many other
events: in this case it can be considered as the culmination of a set of less visible
events that started, perhaps, with the seed from which the tree grew sprouting.
We note also that the environment may refer to the environment of some other
entity (such as a computer, or a business) in which case the events of interest
will be those affecting the that entity.

3 It may be that events are not the best way of describing what is happening in such
systems, but they are nonetheless useful, and give us a means of comparing different
system types
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The primary difference between computer events4 and the neural and en-
vironmental events is that for the computer events, we know how lower level
events lead to higher level events, and how higher level events are orchestrated
by lower level events, whereas for both the environmental and neural systems
this knowledge is a great deal patchier. In systems which have been designed,
the event hierarchy is part of that design. Unlike built systems, natural systems
do not need to keep to a careful hierarchy of events they can (and surely do)
cross putative levels: indeed, one could argue that the association of levels with
events is a human way of organising these otherwise unorganised events. Events
in the business area lie somewhere between these poles: they often will have a
clear set of constituent (sub-)events. However, there will also be events with a
much less clearly defined hierarchy of (sub-)events (for example, a key employee
leaving).

The issue then is whether this event-based view of business, environmen-
tal and neural systems is useful. It clearly is useful for computer systems and
networks. For business systems, there can be a direct connection to events in
computer systems, although this does not capture all the events in a business
context. For neural systems, we currently always need to ask about the level of
the events in which we are interested: further and most critically, we do not un-
derstand how synaptic/action potential events lead to higher level events. (We
have some understanding of how such events lead to further synaptic/action po-
tential events, but these further events are essentially the same level. Are there
higher level events in neural systems? We clearly do have (first-person) men-
tal events, and we believe that these are mediated by action potential/synaptic
events: but the relationship between these two is not yet anything like fully elu-
cidated. There are higher-level theories of mental function (such as those of [5] or
[3]), but these are largely narrative models5 rather than precise simulations. For
natural environmental systems, the issues are perhaps easier, since we already
have a large volume of physics, much of which is about the inter-relationship
between events in the physical world. The events that we are interested in can
only be those that we can detect or infer, and these are then the inputs to our
computational systems (and, indeed, our own neural systems as well).

2 Contexts 1: events and robotics

Robots interact with their environment and this interaction can be considered to
be mediated by events. These may be generated by the environment, and sensed
by way of the robots sensors (whether visual, auditory, tactile, or whatever), or
they may be generated by the robot, in which case we would more usually call
them actions. These output events are not sensed as such by the environment, but
result in the generation of new and perhaps different events by the environment
as detected by the robots sensors. There may also be events generated by the
4 In complex event processing (CEP) an event is an object that can be subjected to

computer processing [8]: but this is a somewhat circular definition here.
5 That is, stories of how a system might work
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robot which are internal: what we might describe as cognitive events, resulting
from sensory events, and perhaps actions as well.

Real (natural) environments are not well defined6. Environments are inher-
ently changeable, and largely unpredictable. Even simple actions, such as turning
a robots driving wheel will not always have the same effect wheels slip, for exam-
ple. Further, the sensor data received from the environment is always uncertain:
this may be due to noise, or deficiencies in the sensors themselves, but may
also be due to variation in the environment, for example variations in the light-
ing affecting the visual sensor, or extraneous sounds and reflections affecting an
auditory sensor.

The aim in much of robotics is effective autonomous operation, in spite of
these difficulties. Unpredictability and variation in operation are just some of
the problems in this area: there are others as well, such as goal setting, and
adjudging performance.

3 Contexts 2: Time series

Time series are sequences of data, often measurements, over a period of time.
Each value can be considered to be an event. Often the values are recorded at
regular intervals, but this need not always be the case. Analysis of time series
may have several aims: classification of the time series, prediction of future events
(such as the next few values of the time series), or error or novelty detection (that
is: has something generating the time series changed in some way).

Time series arise in many domains (certainly including all those discussed
above). One particular area of commercial interest is in demand forecasting. Util-
ities (gas, electricity, water etc.), automated teller machine networks, telephone
companies, internet service providers, call centres and many other businesses
all have multiple levels of seasonal variation in demand. The operators of these
industries want to know (for example) likely immediate and short-term require-
ments, as well as if some particular form of error condition (for example large
scale leaks in the water industry, or system failures in an ATM network) holds.
Further, the environment in which these time series values are being recorded
is not constant: external events can have a major effect on the time series. For
example, major sporting events, of sudden changes in weather, or even televi-
sion programming may influence user behaviour in a non-random way, and thus
result in major changes in demand.

The operators have good reasons for needing this information: altering their
capacity to respond to alterations in demand may require time. For utilities,
generators may need to be started up, power grid lines or pipelines reassigned, or
(for ISPs) new servers assigned, or low-bandwidth pages set up. These operators
have had coped with these problems for many years: they have staff whose job it
is to predict demand, and their experience is a major asset to these companies.

6 This might, of course, be different for an artificial environment, such as that in a
game or other simulation.
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4 Automating complex event handling systems

In both the above contexts, there are existing solutions. But these solutions
are incomplete. Robotic behaviour is generally brittle, automated time series
prediction is known to be a difficult problem, and understanding the ways in
which human predictors of demand operate (or eliciting their knowledge) can
be difficult. Static rule based systems work only in static known environments.
This suggests that adaptive systems will be necessary to cope with altering
environments. But how should such adaptation be implemented? When should
a system learn? What should a system learn? How should what is learned be
applied to the problem at hand?

In the relatively restricted case of time series prediction, at first sight, these
questions appear to boil down to issues of selection of mechanisms for prediction
(of which there are many). However, in reality, there is extraneous information
available as well as the actual numbers in the time series. Then one needs to
consider which aspects of this additional available information should be used or
even if one should be seeking out further information not currently available. In
the relatively less restricted domain of autonomous robotics, these two aspects
of what might be learned become issues of altering the decision system, and
seeking out appropriate perceptual input (that is, issues of active perception).
The robot can move and/or alter its sensors to alter what might be detected by
its sensors. Further, by appropriate movement, it can learn more about what it
is sensing, because it knows what it has altered in order to alter the sensation
received. Animals do this all the time, moving their whole bodies or their heads
to alter visual, auditory and olfactory perceptions. In a business context, finding
appropriate extraneous information, and bringing it to the locations at which
decisions are made is a difficult task: one can argue that neural decision making
shares many of the same problems, particularly relating to the range of possibly
relevant information that might be available. The amount of data that might
be processed is generally huge: as we attempt to process more, the problem
becomes harder, but if we restrict what is processed, the lack of data may mean
that important information is lost. Knowing or learning what matters, and what
may safely be ignored is is challenging: a related problem exists in statistics
where it is called feature selection [2][7], and remains the subject of current
research.

Non-static situations require non-static responses: we cannot expect to pre-
determine all responses or predictions. Such learning needs to be underpinned
by some form of change or adaptation. Widder et al. present an approach to
identify suspicious, unknown events in an event cloud [15]. Discriminant anal-
ysis is applied to detect unknown or suspicious combinations of events which
havent be seen in the past. This approach can be used for fraud detection (see
the ATM example above). We believe it is possible to make a learning system
more robust than a non-learning system, but such an outcome is not necessarily
the case. Simple neurally inspired learning systems (such as back-propagating
neural networks or radial basis function networks) essentially learn statistical
information about their environments [1]. For such learning systems, the larger
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the volume of training data available, the better: although even here, the data
needs to be appropriate and clean: feature selection is again important. There
are other types of learning as well, for example reinforcement learning [14], where
what is required is a signal to show when the behaviour is appropriate (reward)
or inappropriate (punishment). In the case of event streams, similarity search
techniques are applied to react to recurrent situations and to predict (business)
processes (e.g.,[11]). Similarly, historical data (events) can be analyzed to es-
tablish a proactive control of manufacturing processes (e.g., [4]). The similarity
search techniques are better, if the volume of available data (events) increases.
Nevertheless, a risk might be the solidification of what has been learned in the
past (that is, innovation can be hindered). But even for animals, learning can
go wrong, as appears to be the case in, for example, autism.

One advantage that modern computer systems have in this area is the avail-
ability of large amounts of processing power and memory. Parallelism means
that, for example, all the sensors in a robotic system can be processed at the
same time, and cross-modal percepts can be computed, continuously. Thus even
if certain types of processed sensor information are not always required, they can
be made instantaneously available. Further, memory can be used to look back on
actions taken and predictions made in the light of more recent events, and these
can, for example, be re-run using different learning techniques to adjust what
might be applied to future events, enabling more sophisticated learning tech-
niques. The issue is determining which particular current and historical events
are most relevant. Similarity search techniques may also prove useful in this
context.

5 Conclusions

Events do provide a useful unifying paradigm across a wide range of domains,
including the four that we have discussed here. We can interpret events both in
terms of the input (from outside) to a system, and the output (to outside) from
a system, as well as being internal to either the system itself, or the environment
of the system. This is useful in the making the system/environment concept
applicable in areas outside of the robot/environment system area, for example,
in the business/business environment domain. A similar approach can be taken
to the application of event-based approaches to prediction/error-detection in
utilities, and these can use the same types of learning based approaches, and
event selection techniques.

There are some differences: e.g. the nature of active sensing is different in
utilities, (where it is about the search for appropriate extraneous information)
from in robotics (where it is about the way in which the robot itself can alter its
own input), and business events come in many diverse forms, not all of which
can easily be placed in formal contexts such as those in [13]. However, events can
be used in quite different domains, and similar techniques and technologies used
across those domains. There remains, however, a need to work on the best way
of organising and theorising about these events, and in selecting a technology for
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this which can be used by those designing and analysing these systems across
different domains.
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