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Abstract 

Four groups of Atlantic salmon fry (n=2000) were exposed to continuous light 

(LD24:0) from first feeding on 18th April 2001, after which they were exposed to 

either an 8 or 12 week period of short days (LD10:14) starting on either the 21st May 

or the 18th June. Each group was then returned to LD24:0 until the conclusion of the 

experiment the following March. In August 200 fish per treatment were individually 

PIT tagged. All groups were maintained under an ambient temperature regime. 

 

The highest levels of sexual maturation in 0+ male parr were recorded in the 12 

week/May group (>11% of the entire male and female population), with the lowest 

levels (<1%) in the 12 week/June treatment and intermediate levels (>6%) in the 8 

week/May and 8 week/June groups (P<0.05). Between mid August and late October 

mature parr were heavier than their immature counterparts, but subsequently both 

cohorts maintained similar sizes. Fish showing signs of silvering were found from 

mid October onwards. However it was only in the 12 week/June group that silvered 

fish had a significantly reduced condition factor and an increased gill Na+, K+-ATPase 

activity, indicative of smoltification. At the conclusion of the experiment, fish 

showing signs of silvering were most prevalent (30%) in the 12 week/June group. 

 

It is concluded that the initiation of maturation can be influenced by an 8 or 12 week 

period of short days (LD10:14) applied from mid May or mid June in the first 

growing season. The duration and timing of a stimulatory short day photoperiod 

during early development may also influence whether a fish undergoes smoltification 

in the coming year or whether it delays the parr-smolt transformation for at least a 

further year. 
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1. Introduction 

In recent years efforts have been made to understand variations in the life history 

strategies of juvenile Atlantic salmon. A prominent aspect of juvenile salmonid 

development when reared under a natural photoperiod regime is the emergence of a 

bimodal population structure during late summer in the first growing season (Thorpe, 

1977; Kristinsson et al., 1985; Skilbrei, 1988), with this division determining which 

fish will smolt in the following spring and which will remain in fresh water for a least 

a further year (Thorpe, 1977; Kristinsson et al., 1985). Increasingly, accelerated 

production regimes are used stabilize seasonal fluctuations in the production of smolts 

and market sized fish. Photoperiod manipulation in particular can be used to influence 

the numbers of smolts and the yearly timing of seawater transfer. Similar to the 

influences received in the wild, a short day, winter photoperiod can be used to initiate 

smoltification, with the parr-smolt transformation then completed during a long day 

spring regime (Duston and Saunders, 1992; Sigholt et al., 1995; Duncan and 

Bromage, 1998). However, in using accelerated rearing regimes the incidence of 

sexual maturation can also be affected. Parr maturation is usually only found in male 

salmon, due to the lower nutritional requirements for male gonadal development 

(Adams and Thorpe, 1989), and although mature parr have been found to undergo 

smoltification (Saunders et al., 1994; Duston and Saunders, 1997), maturation can 

inhibit the parr-smolt transformation to some degree (Thorpe and Morgan, 1980), 

with increased androgen levels during maturation thought to play a role in this 

inhibitory process (Aida et al., 1984; Miwa and Inui, 1986). Mature parr are therefore 

poorly adapted to seawater (Saunders et al., 1994) and they are typically removed 

from commercial populations as soon as they are identified. 
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Maturation is influenced by a photoperiodically entrained endogenous rhythm(s) 

(Bromage et al., 1984; Duston and Bromage, 1986) which can be advanced by a long- 

and then short day photoperiod regime (Bromage et al., 1984). As a result of these 

photoperiodic cues complex interactions can occur between the initiation and 

completion of both maturation and smoltification. However, further to these 

influences it is believed that a size and/or nutritional threshold has to be surpassed 

before smoltification (Elson, 1957; Kristinsson et al., 1985) and maturation (Thorpe 

and Morgan, 1980; Saunders et al., 1982) can occur. It is also likely that maturation in 

particular can be influenced by such thresholds during specific times in development. 

Metcalfe (1998) and Thorpe et al. (1998) suggested that maturation could be initiated 

in November, although it could be “switched off” during a second sensitive period in 

spring. Furthermore, Thorpe (1994) has suggested that the initiation of maturation 

could be influenced prior to first feeding. Similarly, Berrill et al. (2003) found that an 

8 week period of short days (LD10:14) applied in May, shortly after first feeding in 

March, increased maturation rates compared to similar regimes applied later in the 

summer, highlighting a specific period of sensitivity in early development. 

 

Clearly, the interactions between winter photoperiod and life history strategy are 

poorly understood, especially with regards to early development. Consequently, the 

current study leads on from that of Berrill et al. (2003) and aims to investigate the 

importance of the timing and duration of short day photoperiod regimes during a 

proposed sensitive period in early development. In order to achieve this 8 and 12 

week periods of short days were applied at two times from shortly after first feeding. 
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2. Materials and Methods 

2.1. Fish stock and rearing conditions: Experimental fish were of Loch Lochy stock, 

maintained at the Buckieburn Freshwater Research Facility, Scotland (Lat. 56°N) 

under ambient water temperatures (monthly averages ranged from 14.9oC in August 

2001 to 3.1oC in December 2001). Flow rates were 1 l.s-1 and oxygen levels were >8 

mg.l-1. Feed was supplied at the manufacturer’s recommended rate (Trouw 

Aquaculture; UK), throughout the light phase of the photoperiod. 

 

2.2. Experimental regimes: From first feeding on 18th April 2001, 1000 fish were 

placed into each of eight 2m square tanks and exposed to LD24:0. On both 21st May 

and 18th June, two duplicate groups were exposed to either an 8 or 12 week winter 

photoperiod (LD10:14) after which they were returned to LD24:0 until the conclusion 

of the experiment in March 2002 (Table 1). This created four treatments termed: the 8 

week/May, 12 week/May, 8 week/June and 12 week/June treatments respectively. 

The timing of the photoperiods was determined in order to compliment the study of 

Berrill et al. (2003); in the current experiment the May treatments replicated the 

yearly timing of the May photoperiod group of Berrill et al. (2003) regardless of age 

from first feeding. Then, due to a difference in the time of first feeding between the 

two experiments, the fish from the June photoperiods of the current experiment were 

of a similar chronological age as the May photoperiod fish from Berrill et al. (2003).  

 

On 13th August, 100 fish per tank were P.I.T. tagged (AVID tags, Norco; Ca., USA), 

with the adipose fin removed for identification. Size at tagging was 4.4±0.1g 

(mean±S.E.M.) and mortality <1%. In October, due to hatchery constraints, the 
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replicates from each treatment were pooled into one of four, 4m diameter circular 

tanks. Prior to this there were no significant differences in fish size between replicates 

(P>0.05). In late January a stand-pipe accident resulted in significant losses from the 

12 week/May group and at this point the treatment was terminated. 

 

2.2. Sampling regime: On 19th April and 17th May six batches of 100 fish were 

weighed (±0.1g) and the fork lengths (±1mm) of 100 fish recorded from each 

treatment. Then at two week intervals from 18th June until 16th July 100 individual 

fork length and weight measurements were made from each treatment. From August 

until late January, fork length and weight measurements were recorded from all 

tagged fish at twice monthly intervals, and then from late January onwards monthly 

measurements were taken. At six week intervals 60 non-tagged individuals per tank 

were sampled to confirm that neither length nor weight had been affected by tagging 

(P>0.05).  

 

At each sample point all fish were examined to assess the number of mature males, 

with individuals recorded as mature only if milt could be expressed following slight 

abdominal pressure. At each sample point from mid October, when fish were first 

identified with signs of silvering, gill samples were taken from 20 randomly selected 

non-tagged fish per treatment for the assessment of Na+, K+-ATPase activity using the 

method detailed by McCormick (1993). For analytical purposes individuals sampled 

for Na+, K+-ATPase were divided into those showing signs of external silvering and 

those that appeared as parr. The weights (±0.1g) of the fish sampled for Na+, K+-

ATPase activity were also recorded. 
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At the conclusion of the experiment in March 2002, it was clear that the population 

structure of the groups was complex. Consequently all tagged and 150 non-tagged 

fish per treatment were classified into one of four cohorts, based on morphology (Birt 

and Green, 1986), maturity status and size: 

1. Silvered fish (0+): Large (>180mm) fish with some or complete silvering. From 

the data collected these fish were viewed as 0+ smolts. 

2. Immature parr (1+): Fish showing no signs of silvering and with the presence of 

distinct parr marks. These fish were significantly smaller (<180mm) than the 

silvered fish. It was believed that these fish would smolt at age 1+. 

3. Mature parr (1+): These fish were similar in size and appearance to immature parr 

but with the exception that they were mature. i.e. they did not typically display the 

morphology often recorded in mature male parr (reduced size, dark parr marks). 

4. Small parr (2+): Small fish (<110mm) showing no signs of silvering, with the 

presence of distinct parr marks. It was believed that these fish would smolt at age 

2+.  

 

2.3. Statistical analysis: Condition factor was calculated as: weight (g).fork length 

(cm)-3.100. Data were analysed using Minitab v14. Changes in weight, condition 

factor and Na+, K+-ATPase activity were compared using a General Linear Model 

(GLM). To satisfy the assumptions for the GLM, natural log transformations were 

used for the weight data. Where data from P.I.T. tagged fish were analysed, a nested 

design was used to account for the repeated measures sampling. Residual plots were 

used to confirm normality and homogeneity of variance. To analyse the final mean 

weights of each population, non-parametric Kruskal-Wallis tests were used, followed 

by Dunn’s multiple comparison test. To analyse the percentage maturation and 
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population structure data, 95% confidence intervals were calculated (Fowler and 

Cohen, 1987) and compared such that if the confidence intervals did not over lap the 

proportions were considered significantly different (P<0.05). A significance level of 

5% was applied to the statistical tests (Zar, 1999). 

 

3. Results 

3.1. Final weight and population structure: At the conclusion of the experiment in 

March 2002, the mean weights (± S.E.) of the fish within each treatment (regardless 

of population structure) were 29.8±1.0g, 23.6±1.6g, 34.5±2.1g and 31.9±2.7g for the 

8 week/May, 12 week/May, 8 week/June and 12 week/June groups respectively. The 

8 week/June fish were significantly larger than both 12 week groups (P<0.01), with 

the 8 week/May fish larger than the 12 week/May group and smaller than the 12 

week/June fish (P<0.01). 

 

At the conclusion of the experiment, similar population structures were found in the 8 

week/May, 12 week/May and 8 week/June groups (Table 2), with immature parr 

(68%, 62% and 65% respectively) the most prevalent cohort (P<0.05), low numbers 

of silvered fish (4%, 4% and 8% respectively) and a similar (P>0.05), intermediate 

incidence of mature and small parr. In the 12 week/June group the incidence of 

silvered fish and small parr was higher than in the other treatments (30% and 31% 

respectively) with lower numbers of immature (35%) and mature parr (4%) (P<0.05). 

 

3.2. Growth: In mid June, prior to P.I.T. tagging, fish from both May treatments were 

smaller than the 8 week/June fish, which were still being exposed to LD24:0 (Fig. 1). 

At this time, fish from the 8 week/May group were also smaller than the 12 
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week/June fish (P<0.05). From early July, when all treatments were exposed to 

LD10:14, both May photoperiod groups were smaller than the June fish (P<0.05) 

although the 8 week/May fish were larger than the 12 week/May fish. By mid July, 

fish from the May treatments had become similar in size, remaining smaller than the 

June fish (P<0.05).  

 

After P.I.T. tagging on 13th August, all cohorts increased in weight over the 

experimental period (P<0.001) although differences occurred in the size of fish from 

particular cohorts between the treatments (Fig. 2). Fish classified as “silvered fish” at 

the conclusion of the experiment were smallest in the 8 week/May group from late 

November onwards, with those from the 8 week/June treatment larger than the 12 

week/May and 12 week/June fish until mid November and the conclusion of the 

experiment respectively (P<0.05). Immature parr were smallest in the 12 week/June 

group (P<0.05), with those from the 12 week/May treatment smaller than both 8 week 

groups until late October (P<0.05). For mature parr no clear trends emerged, whereas 

small parr from the 8 week/May group were the smallest from late October (P<0.05). 

 

Differences were also found when the four cohorts were compared within each 

treatment (Fig. 3). From early August in the 8 week/May, 8 week/June and 12 

week/June groups, silvered fish were the heaviest individuals, with small parr the 

smallest and immature parr intermediate in weight (P<0.001). In the 12 week/May 

group, silvered fish were heavier than immature parr from late October (P<0.001), 

with small parr the smallest fish from mid August (P<0.001).  
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In the 8 and 12 week/May groups, mature parr were heavier than immature parr 

between September and October (P<0.05), with those from the 8 week/June treatment 

heavier from mid August until late October (P<0.05). At all other times, and 

throughout the 12 week/June treatment, mature and immature parr maintained similar 

weights (P>0.05). 

 

For condition factor, the most significant temporal change occurred in the silvered 

fish from the 12 week/June group (Fig. 4), where condition declined to a minimum in 

late November before rising to the conclusion of the experiment (P<0.001). In the 8 

week/May, 8 week/June and 12 week/June treatments the condition of silvered fish, 

immature parr and small parr declined over the course of the experiment, with that of 

the 8 week/June mature parr also decreasing (P<0.01). In the 12 week/May group 

only the condition of the immature parr decreased during the experiment (P<0.01).  

 

In the 8 week/May, 12 week/May and 8 week/June groups, mature parr maintained 

the highest condition. In the 8 week/May group, mature parr had a higher condition 

than silvered fish and small parr from early October until early January and mid 

February respectively (P<0.05), with the condition of immature parr lower from mid 

August until early January (P<0.01). In the 12 week/May group, mature parr had a 

higher condition than immature parr from mid October until late November (P<0.01). 

Mature parr in the 8 week/June group had a higher condition than silvered fish from 

late October until mid February, with that of immature parr lower in October 

(P<0.05). 
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In the 12 week/June group, the condition of silvered fish was lower than that of the 

immature parr and small parr from October until mid March (P<0.01), and lower than 

the mature parr from October to mid February (P<0.05). 

 

3.3. Maturation: Mature fish were first identified in the 8 week/May and 8 week/June 

groups in late October (Fig. 5) and during November and December the incidence of 

maturation increased in all treatments. The highest levels of maturity were found in 

the 12 week/May group (P<0.05), rising to a peak (>11% of the entire male and 

female population) in early January. From late November levels of maturity in the 8 

week/May and 8 week/June treatments remained similar (P>0.05) with peaks of 

approximately 6% in mid December and early January respectively. The 12 

week/June group had the lowest incidence of maturity (P<0.05), with levels never 

exceeding 1%. 

 

3.4. Na+, K+-ATPase: In the 12 week/June group, silvered fish had higher gill ATPase 

activities than non silvered fish until mid December (P<0.05) (Fig. 6), although no 

differences were found within the other treatments. However, throughout the 

experiment ATPase activities did not exceed 6µmol ADP hydrolysed-1. mg protein-1. 

h-1 and they did not increase over the course of the experiment. In the 12 week/June 

group silvered fish weighed more than non silvered fish (P<0.001), although no clear 

trends could be found in the other treatments. 

 

4. Discussion 

The timing and duration of a period of short days, applied during early development, 

influenced the growth and development of juvenile Atlantic salmon. Previously Berg 
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et al. (1994) and Berrill et al. (2003) have shown that a period of short days, applied 

shortly after first feeding, influences the initiation of maturation and the current 

experiment provides further support. The incidence of maturation was highest in the 

12 week/May group and lowest in the 12 week/June treatment. This implies that the 

initiation of maturation occurs near to first feeding and that the proposed period when 

maturation can be influenced (Saunders et al., 1982; Thorpe, 1994) may be fairly rigid 

in duration, such that slightly later in the year (i.e. June) short days will not be as 

influential. Furthermore, as intermediate levels of maturation were found in the 8 

week groups, it seems that during this period, 12 weeks of short days will influence 

maturation to a greater level than 8 weeks.  

 

In the current study fish that were destined to mature were larger than immature parr 

until October. However, after this period immature and mature fish maintained similar 

weights, with the 12 week/June fish maintaining similar weights throughout the 

experiment. Previously Naevdal (1983) reported a similar finding although the 

majority of evidence suggests a divergence in the size of mature and immature fish 

(Dalley et al., 1983; Rowe and Thorpe, 1990; Berglund, 1995) in particular as 

gonadal development ensues (Berglund, 1992), which results in mature fish being 

smaller than immature individuals at maturation (Dalley et al., 1983; Saunders et al., 

1982). Clearly, the short day regimes experienced in the current experiment 

influenced the growth of mature and/or immature fish although the mechanisms by 

which this has occurred are not known. However, it is important to note that as well 

as the short day regimes, an interaction between the subsequent extended period of 

continuous light may have been influential in the observed growth profiles, 

particularly during the warm summer months, as both light and increased 
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temperatures can provide good conditions for growth (Solbakken et al., 1994; Sigholt 

et al., 1995; Handeland and Stefansson, 2001). 

 

The gill Na+, K+-ATPase activities of silvered fish and the incidence of such 

individuals at the conclusion of the experiment were poor in comparison to previous 

studies (c.f. Duncan et al., 1998; Handeland and Stefansson, 2001), with only the 12 

week/June treatment resulting in fish that showed signs of undergoing the parr-smolt 

transformation. It is well documented that smoltification is dependant on the 

attainment of a specific size threshold (Elson, 1957; Skilbrei, 1988), and it is thought 

that this threshold must be achieved either before (Kristinsson et al., 1985; Skilbrei, 

1991) or during (Duston and Saunders, 1997) winter. It is therefore likely that 

because the 12 week/June photoperiod was applied later in the year, with an extended 

period of short days, this was the only group where high numbers of fish achieved the 

threshold for smoltification at the appropriate time. However, it is also important to 

note that for the silvered fish in the 12 week/June group, gill Na+, K+-ATPase activity 

was only elevated until mid December. Therefore although silvered fish were 

recorded at the end of the experiment in March, it is likely that these fish had passed 

through the window where smoltification was possible and could not be considered as 

true smolts at that time. 

 

It has previously been suggested that approximately 8 weeks of short days are 

sufficient to initiate smoltification (Sigholt et al. 1995; Duncan and Bromage, 1998; 

Duncan et al. 1998) although Duston and Saunders (1995) quote unpublished data 

indicating that 3 months of short days in June are better at stimulating smoltification 

than 2 months. In the current experiment the 12 week/June group produced more 
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silvered fish than the 8 week/June group and therefore it is likely that if growth is 

limited prior to winter, a longer period of short days may result in a greater incidence 

of smoltification. This also suggests that the size threshold for successful 

smoltification can be achieved during, and not solely prior to, winter (Duston and 

Saunders, 1997). 

 

Prior to tagging the June photoperiod fish rapidly became larger than those that were 

exposed short days in May. It is well documented that increases in daylength enhance 

growth (Solbakken et al., 1994; Handeland and Stefansson, 2001) and the exposure of 

the June treatment fish to a longer period of continuous light prior to the application 

of their winter photoperiod would have resulted the observed differences in size. 

Following tagging individual cohorts could be investigated. However, no clear trends, 

such as those observed prior to tagging, could be identified between the treatments. 

The reasons for this absence of distinct trends are unclear, but it is possible that the 

short day regimes used were insufficiently different to cause any consistent 

differences between the groups. 

 

Within each treatment, the cohorts of fish had either diverged in weight by the time of 

tagging, or did so shortly afterwards. Previously, Saunders et al. (1982) and Thorpe 

(1994) have suggested that the initiation of maturation occurs in early development, 

although it can be “switched off” during a sensitive period in spring (Metcalfe, 1998; 

Thorpe et al., 1998). From the findings of the current experiment, it seems that as well 

as maturation, the decision to smolt in the current year or in subsequent years can also 

be influenced during early development. 
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Changes in condition have been linked to maturation (Rowe and Thorpe, 1990; 

Duston and Saunders, 1997) and in the current experiment the condition of maturing 

fish was greater than immature individuals. However, the condition of mature fish 

was not consistently elevated above all cohorts suggesting that it may be unreliable 

for predicting which fish will undergo maturation (Duston and Saunders, 1997). 

 

In conclusion, to maximise smolt production, whilst limiting parr maturation, it may 

be necessary to consider the use of longer periods of short days to stimulate 

smoltification, possibly at earlier stages in development than are currently used. Such 

photoperiods could allow fish that have previously been considered to small to smolt 

more time to achieve the threshold necessary for smoltification during the “winter” 

photoperiod and may also influence periods in development when maturation can be 

reduced. However, the current study has shown that depending on the duration and 

timing of such short day regimes, levels of maturation can be both increased and 

decreased, and consequently further research is needed before any changes to current 

rearing protocols can be considered. 
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Fig. 1.  Changes in weight of Atlantic salmon parr that were exposed to different 

short day photoperiod treatments (LD10:14) in an otherwise continuous light regime. 

Weights are those recorded prior to PIT tagging in mid August (mean ± S.E.M., n=2). 

Differences in lettering denotes statistical differences (P<0.05). Lettering has been 

stacked in the same order as the graph lines. 

 

Fig. 2. Changes in weight of each of four cohorts of individually PIT-tagged Atlantic 

salmon parr exposed to different short day photoperiods (LD10:14) in an otherwise 

continuous light regime. Cohorts were determined at the conclusion of the experiment 

in March 2002. The figure compares within cohort differences between the treatments 

(mean ± S.E.M., n=150-200). Differences in lettering denotes statistical differences 

(P<0.05). Lettering has been stacked in the same order as the graph lines. 

 

Fig. 3. Changes in weight of four cohorts of individually PIT-tagged Atlantic salmon 

parr exposed to different short day photoperiods (LD10:14) in an otherwise 

continuous light regime. Cohorts were determined at the conclusion of the experiment 

in March 2002. The figure compares between cohort differences within each 

treatment (mean ± S.E.M., n=150-200). Differences in lettering denotes statistical 

differences (P<0.05). Lettering has been stacked in the same order as the graph lines. 

 

Fig. 4. Changes in condition factor of four cohorts of individually PIT-tagged Atlantic 

salmon parr exposed to different short day photoperiods (LD10:14) in an otherwise 

continuous light regime (mean ± S.E.M., n=150-200). Cohorts were determined at the 

conclusion of the experiment in March 2002. Differences in lettering denotes 

statistical differences (P<0.05). Lettering has been stacked in the same order as the 



   

 

22

graph lines. 

 

Fig. 5. Changes in the percentage maturation of Atlantic salmon parr exposed to 

different short day photoperiods (LD10:14) in an otherwise continuous light regime 

(n=400-1400). Differences in lettering denotes statistical differences (P<0.05). 

Lettering has been stacked in the same order as the graph lines. 

 

Fig. 6. Changes in the gill Na+, K+-ATPase activities of Atlantic salmon parr exposed 

to different short day photoperiods (LD10:14) in an otherwise continuous light regime 

(mean ± S.E.M., n=20). The ATPase activities of fish showing signs of silvering and 

those without silvering have been separated to aid interpretation. The weights (mean 

± S.E.M., n=20) of fish sampled have also been represented. Differences in lettering 

denotes statistical differences (P<0.05). Statistical differences in the weight data have 

been omitted to improve the clarity of the figure. 
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Fig. 2 
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Fig. 3 

8 week/May photoperiod

0

20

40

60

80

100

120

Silvered fish (0+)
Immature parr (1+)
Mature parr (1+)
Small parr (2+)

8 week/June photoperiod

0

20

40

60

80

100

120

12 week/May photoperiod

0

20

40

60

80

100

120

12 week/June photoperiod

Date

Aug 01  Oct 01  Dec 01  Feb 02  Apr 02  
0

20

40

60

80

100

120

a
ab
b
c

a
a
b
c

a
b
b
c

a
b
c
d

a
b
c
d

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
c
d

a
b
c
d

a
b
c
d

a
b
c
d

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
a
a
b

ab
a
b
c

ab
a
b
c

a
a
a
b

a
a
a
b

a
a
a
b

a
a
a
b

a
a
a
b

a
a
a
ba

ab
b
c

a
ab
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c

a
b
b
c



   

 

26

Fig. 4 
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Fig. 5 
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Fig. 6 
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Table 1. The start and end dates of the four experimental short day photoperiod 

regimes (LD10:14) used in the current study. At all other times fish were exposed to 

continuous light (LD24:0). 
 

Start date End date

8 week/May photoperiod 18th May 16th July

12 week/May photoperiod 18th May 14th August

8 week/June photoperiod 21st June 14th August

12 week/June photoperiod 21st June 12th September

Experimental regime
LD10:14 photoperiod regime
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Table 2. Population structure at the conclusion of an experiment in which Atlantic 

salmon parr were exposed to different short day photoperiods (LD10:14) in an 

otherwise continuous light (LD24:0) regime. The population structure was based on 

the external appearance of 150 non-tagged individuals per treatment. Refer to 

Materials and Methods for details of cohort nomenclature. Different lettering denotes 

statistical differences (P<0.05). Capital lettering denotes between cohort differences 

within a treatment. Lower case lettering denotes between treatment differences, 

within a cohort. 

 

8 week/May 
photoperiod

12 week/May 
photoperiod

8 week/June 
photoperiod

12 week/June 
photoperiod

Silvered fish (0+) 4.1% Aa 3.7% Aa 7.5% Aa 30.2% Ab

Immature parr (1+) 67.6% Ba 61.9% Ba 65.3% Ba 34.5% Ab

Mature parr (1+) 12.8% ACab 20.9% Ca 12.9% Aab 4.3%  Bb

Small parr (2+) 15.5% Cab 13.4% Ca 14.3% Aa 30.9% Ab

 

 

 

 

 
 

  

 

 

 


