
1

Flexible and Configurable Verification Policies
with Omnibus

THOMAS WILSON, SAVI MAHARAJ, ROBERT G. CLARK

Department of Computing Science and Mathematics, University of Stirling,
Stirling, Scotland

{twi,sma,rgc}@cs.stir.ac.uk

The three main assertion-based verification approaches are: Run-time Assertion Checking (RAC),

Extended Static Checking (ESC) and Full Formal Verification (FFV). Each approach offers a

different balance between rigour and ease of use, making them appropriate in different situations.

Our goal is to explore the use of these approaches together in a flexible way, enabling an

application to be broken down into parts with different reliability requirements and different

verification approaches used in each part. We explain the benefits of using the approaches

together, present a set of guidelines to avoid potential conflicts and give an overview of how the

Omnibus IDE provides support for the full range of assertion-based verification approaches

within a single tool.

1. Introduction

There are three assertion-based techniques for the integrated specification,

implementation and verification of Object-Oriented software: Run-time Assertion

Checking (RAC) [12], Extended Static Checking (ESC) [10] and Full Formal

Verification (FFV) [4]. RAC and ESC are lightweight approaches which accept

programs annotated with lightweight specifications that describe some key

properties, but do not attempt to be complete in any sense. In RAC, the

lightweight assertion annotations are converted into run-time checks and the

application is then tested to uncover assertion failures. The key contribution of

RAC to the testing process is the ability to detect errors close to their source,

easing analysis and correction. In ESC, the consistency between code and

assertion annotations is checked statically allowing errors to be detected without

testing. The process depends on the presence of a powerful fully-automated

theorem prover such as Simplify [5]. ESC is neither sound nor complete, aiming

simply to detect assertion violations and a range of common run-time errors. FFV

provides support for traditional, heavyweight assertion-based verification. The

approach requires the production of heavyweight specifications (also known as

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Stirling Online Research Repository

https://core.ac.uk/display/9050335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Behavioural Interface Specifications) for all components being verified and a

range of code annotations such as loop invariants. Again, the code is statically

analysed and verification is performed with the use of either a fully-automated or

interactive theorem prover.

Traditionally, support for these approaches has been developed by separate teams,

yielding separate tools often targeting separate languages. The Java Modelling

Language (JML) [9] has provided a common language for a range of lightweight

and heavyweight assertion-based verification tools but those tools are still

developed and used separately. Even comparative case studies from the JML

group have used the tools independently rather than in an integrated fashion [8].

Other tools such as Spec# [1] and PerfectDeveloper [4] combine aspects of RAC

and FFV but until now there has been no tool supporting the full range of

approaches in an integrated fashion.

Such a tool is desirable since the different assertion-based verification approaches

provide different balances between rigour and ease of use, matching the different

balances between reliability requirements and development resources in different

parts of a software development project. The approaches also have neatly

complementing strengths and weaknesses. The lightweight RAC and ESC

approaches allow reliability to be improved without requiring prohibitive

investments in time and effort, but ESC breaks down somewhat in the presence of

external components and RAC requires the use of testing to uncover failures. In

contrast, FFV is capable of sufficiently describing and statically verifying external

components but its costs cannot typically be justified unless the component is

going to be reused in different projects or reliability is critical.

We are interested in allowing the approaches to be used together in an integrated

fashion within different parts of the same project. We will show, using an

example, how using the approaches together is helpful for verification, identify

some key challenges in using the approaches together and present sets of

guidelines to assist the user in selecting the right approach for each section of the

project and avoiding conflicts between the approaches. We will also outline a

range of ways in which the approaches can be configured, from simply adjusting

the range of checks that are performed to strategies for handling constructs that

cannot be converted to efficient run-time checks or cannot be handled by the

corresponding theorem prover.

3

We have developed a new Object-Oriented language called Omnibus [16,18,19]

designed to be superficially quite similar to Java but easier to reason about

formally. The main simplification made by the language is the use of value

semantics by default for objects. The language is supported by the Omnibus

Integrated Development Environment (IDE) which includes file and project

management facilities, a type checker, a documentation generator, a Java code

generator incorporating support for dynamic assertion checks, a unit testing

framework and a static verifier which supports interactive and automatic

verification.

The examples in this paper are presented in the Omnibus language but the ideas

we discuss could be equally well applied to approaches based on other languages

such as JML. We also used ESC/Java2 [3] to test Java equivalents of the Omnibus

ESC examples.

The Omnibus IDE allows developers to define verification policies and assign

different policies to each file in a project. The built-in policies are RAC, ESC and

FFV along with a number of variations, but the user can easily customize or

extend these to create a verification framework to meet their exact needs. The

code generator and static verifier modules then use these settings to guide them.

Section 2 gives a brief overview of the Omnibus language. Section 3 explains why

and how the different assertion-based verification approaches can be used

together. Section 4 discusses some problems that arise in combining the

approaches and gives guidelines to help to avoid these problems. Section 5

presents recommendations on how to choose a verification policy for an

application. Section 6 discusses some useful ways in which the Omnibus IDE

allows the verification approaches to be configured. Section 7 presents a brief

overview of the Verification Policy Manager tool. Section 8 discusses related

work and Section 9 presents some conclusions and future work.

2. The Omnibus Language

Omnibus is a new Object-Oriented language designed to be amenable to formal

analysis [16]. It is superficially similar to Java, using similar concepts of

packages, classes, methods, expressions, statements etc, but incorporates a

behavioural interface specification language and uses value semantics for objects.

4

The use of value semantics by default removes the need for developers to use a

range of complex annotations to marshal the complexities of reference semantics.

An Omnibus application consists of a set of class definitions. Each class contains

a range of methods for manipulating instances of the class. There are three main

types of method declaration: constructors, functions and operations. Constructors

allow objects to be created, functions allow objects to be queried without side-

effects and operations allow objects to be updated. The declaration of a method

starts with a keyword identifying the type of method. Constructors are class

methods whereas functions and operations are object methods.

In Omnibus, all objects are immutable with the system creating new objects

behind the scenes as needed to preserve value semantics. This is hidden from the

programmers who are allowed to think in terms of updating objects. There is a

single equality operator which represents deep equality. In deep equality, two

objects are equal if they are instances of the same class and all the corresponding

elements of their abstract state are (recursively) equal.

Behaviour specifications: The behaviour of methods can be described using

behaviour specifications which are constructed from requires, changes and

ensures clauses which give pre-conditions, frame conditions and post-

conditions, respectively. A subset of the functions in the class is taken to represent

the abstract state of the class. These functions are called model functions, and are

similar in concept to the base functions of Eiffel [12]. They are declared with the

model modifier and do not have post-conditions. The behaviour of the other

methods (the remaining functions along with the constructors and operations) is

then defined in terms of them. When specifying operations, the changes clause

should be used to describe which model functions have their values changed and

the ensures clause should be used to describe how they are changed.

Method calls can be used within specifications and other assertions but where they

are used, the pre-conditions of the called methods must be respected. This will be

checked at run-time in RAC, as in all RAC tools, but also by our static ESC and

FFV approaches to ensure a consistent handling of these methods. This addresses

a key problem raised by Chalin [2] where, in the static verification approaches

associated with JML, the pre-conditions of method calls in specifications were not

checked.

5

The Omnibus language supports the use of lightweight behaviour specifications

for RAC and ESC and heavyweight behaviour specifications for FFV. There is no

formally quantifiable difference between lightweight and heavyweight

specifications. The difference is in the mindset of the writer. When writing a

heavyweight specification the developer should attempt to describe the interface

of the component as completely as possible with the assertion language. This will

typically involve the use of quantifiers and recursion. When using lightweight

specifications, practical concerns must be kept at the forefront of the developer’s

thinking in order to keep run-time checking overheads down or theorem proving

difficulty within the scope of automated proving. This will require constructs such

as quantifiers and recursion to be used sparingly. The completeness of post-

conditions and frame-conditions can be compromised but, even in lightweight

specifications, the pre-conditions should be described as completely as possible so

that it is always possible to identify when a method call is invalid.

Requirements specifications: The requirements of a class are specified using

initially, invariant, and constraint assertions. The initially

assertions should hold over all freshly constructed objects, invariant assertions

should hold over objects whenever they are accessible by code in other classes

and constraint assertions should hold across any operation calls.

Implementations: The implementation of the class is defined in terms of method

implementations that manipulate the values of the private attributes. Each of the

model functions must be described at the private level in terms of the attributes.

Loops can be annotated with loop invariant assertions.

Libraries: Like JML, Omnibus hides mathematical abstractions like sequences

and sets behind a façade of library classes. Users interact with these classes

through methods just like any other class, and do not need to learn additional

mathematical notation to manipulate them. For example, the arrays, lists and

comparators in our main example are all expressed as Omnibus classes.

3. Combining assertion-based verification
approaches

In this section we show why it is useful to use the approaches together in an

integrated fashion. We start by selecting one approach, ESC, and discuss some of

6

the reasons why it has been relatively well received. We then illustrate a key flaw

in the approach and show how the other approaches help address it.

3.1 Strengths of ESC

The ESC approach provides a push-button technique to statically detect a range of

possible run-time errors and violations of lightweight specifications. It provides

better error coverage than conventional type checking, and allows problems to be

uncovered earlier in the software development cycle than RAC when they are

cheaper to correct, without the need to use testing. Furthermore, it requires

considerably less effort to use than FFV.

ESC tools feel like type checkers to use, producing type checker-like error

messages that developers are generally more receptive to than traditional formal

methods. The approach uses lightweight interface specifications that allow design

decisions to be documented and warns of inconsistencies between these

annotations and the code. While appearing like type checkers to the user, the

implementations of ESC tools have more in common with traditional formal

verification tools, utilizing fully automated theorem provers behind the scenes.

The approach is neither sound (so it can miss errors) nor complete (so it can report

spurious warnings) but is relatively easy to use, fast and powerful. ESC has been

relatively well received [10] and appears to hold great promise.

3.2 A Problem with ESC

There is, however, a critical problem with ESC: the lightweight specifications

developed while using ESC to check a particular class may not be sufficient as a

basis for later static modular checking of classes that use this class. In this section

we will illustrate this problem by presenting an example, showing how the ESC

approach is used to the point where it breaks down, show the facilities ESC

provides for coping with this situation and then investigate how RAC and FFV

handle the problem.

When applying ESC to a particular class, the process typically starts by taking an

unannotated or partially annotated piece of code and using an ESC tool to check

for errors. This will usually yield a number of warnings indicating a combination

of bugs in the code and incompleteness in the specifications of the current class or

a class it uses. The user will then enter into a cycle of correcting code and adding

7

annotations to address the issues raised until the tool processes the class without

warnings.

Consider the following Omnibus example adapted from the classic example

presented in the founding paper on ESC/Java [7]. It represents a Bag class which

is constructed from a List of elements of which the minimums can subsequently

be removed, in turn, using the extractMin operation. Comparisons are carried

out using a passed Comparator object. An Array is used to store the elements,

with the first size positions in the array arr containing the elements currently in

the Bag. The constructor copies all the elements from the passed List into the

Array and sets size to the size of the passed List. The extractMin operation

calculates the index and value of the minimum element and then copies the last

element in the Array to that index, reduces the size by one and returns the

minimum element. We will add annotations later as needed to respond to errors

reported by our ESC tool.

 1: public class Bag[Element] {
 2: private attribute arr:Array[Element]
 3: private attribute size:integer
 4: private attribute comparer:Comparator[Element]
 5:
 6: public constructor containing
 7: (input:List[Element],
 8: comp:Comparator[Element]) {
 9: comparer := comp;
10: size := input.size();
11: arr := Array[Element].ofSize(size);
12: var i:integer := 0;
13: foreach (e:Element in input) {
14: arr.assign(i, e);
15: i := i + 1;
16: }
17: }
18:
19: public operation extractMin(out min:Element) {
20: var minIndex:integer := 0;
21: min := arr.access(0);
22: for (i:integer := 1 to size-1) {
23: if (comparer.compare(arr.access(i),
24: min).isBefore()) {
25: minIndex := i;
26: min := arr.access(i);
27: }
28: }
29: size := size - 1;
30: arr.assign(minIndex, arr.access(size));
31: }
32: }

8

Applying ESC to this example using our Omnibus IDE verification tool yields the

following warnings:

Bag.obs:21: Unable to verify public requires clause of the
access function declared in omni.lang.Array at line 6
Bag.obs:21: Unable to verify 'arr.access(0)' is not null
Bag.obs:23: Unable to verify public requires clause of the
access function declared in omni.lang.Array at line 6
Bag.obs:23: Unable to verify 'arr.access(i)' is not null
Bag.obs:30: Unable to verify public requires clause of the
access function declared in omni.lang.Array at line 6

These warnings expose undocumented design decisions. For example, the first of

the errors at line 23 warns that i may not be a valid index of the arr array. We

know from the loop condition that to reach these lines i must be less than or equal

to size-1 but there is no known connection between size and arr.length()

and so we cannot tell whether i < arr.length(). The reader may argue that

the implementation of the constructor together with the implementation of the

extractMin operation should be sufficient to deduce this but our ESC tool uses

modular checking of methods. When reasoning about the extractMin operation,

it can reason about the other methods in the class using only their specifications.

The developers of the ESC/Java tool adopt the same position since modular

checking is essential if the approach is to scale [7].

In order to get the Omnibus ESC tool to accept the Bag class we need to add the

following invariants to formalize the intended relationship between size and

arr, and a pre-condition that the Bag must be non-empty before extractMin

can be used. The invariants must be established by the end of the body of the

containing constructor, can be assumed at the start of the extractMin

operation and must be re-established by the end of the body of extractMin. To

describe the pre-condition of extractMin we need to make the size of the Bag

publicly accessible by introducing a new public function to return it.

private invariant size >= 0 && size <= arr.length()
private invariant forall (i:integer := 0 to size-1):
 arr.access(i) != null
public model function size():integer
 private returns size
public operation extractMin(out min:Element)
 requires size() > 0

These alterations permit the code to pass the checks performed by our ESC tool

and so the user can move on to another class. Consider the IntegerSorter class

shown below which uses an instance of the Bag class to sort a List of integers. It

9

starts by constructing a Bag from the passed List and an initially empty List

named sortedInts into which the sorted values will be put. It then repeatedly

extracts the minimum from the Bag, adds it to the List until the Bag is empty at

which point it returns the sortedInts. The function contains an ensures clause

asserting that the sortedInts list is of the same size as the input list.

 1: public class IntegerSorter {
 2: public static function sort
 3: (ints:List[Integer])
 4: :List[Integer]
 5: ensures result.size() = ints.size() {
 6: var b:Bag[Integer]
 7: := Bag[Integer].containing(ints,
 8: DefaultIntegerComparator.init());
 9: var sortedInts:List[Integer]
10: := List[Integer].empty();
11: while (b.size() > 0) {
12: var m:integer;
13: b.extractMin(out m);
14: sortedInts.add(m);
15: }
16: return sortedInts;
17: }
18: }

Applying ESC to this example yields the following warning:

IntegerSorter.obs:16: Unable to verify public ensures
clause of sort function declared at line 5 holds at return
statement

The tool is unable to deduce that the size of the returned List is equal to the size

of the passed List. This is because the specification of the Bag class does not

explain how the containing constructor and extractMin operation alter the

size of the Bag. Once again, this is a product of the fact that, in the modular

checking process, methods can only reason about other methods using their

specifications.

We have now hit the problem: the lightweight specification we developed through

verification of the Bag class is insufficient as a basis for the modular checking of

our new class IntegerSorter.

In ESC there are two techniques we can use to cope with this eventuality:

1. iteratively increase the detail of the original specification or

2. use assumption constructs.

Iteratively increasing the detail of the original specification: The first and most

obvious approach is to return to our Bag specification and add to the specification

10

the details the tool needs to verify the new class. In this case, we simply need to

describe how the containing constructor and extractMin operation change

the size of the Bag. This is made easier by the fact that we have already defined

a public size function. Hence we can alter the headers of containing and

extractMin in our Bag class to be:

public constructor containing(input:List[Element],
 comp:Comparator[Element])
 ensures size() = input.size()

public operation extractMin(out min:Element)
 requires size() > 0
 ensures size() = old size() - 1

With these additional annotations, the ESC tool is able to successfully deduce that

the sizes of the input and returned lists in the IntegerSorter.sort method are

equal.

While this has solved the original problem, there is still a host of related problems

lying in wait. The problem was triggered by the ensures clause of the

IntegerSorter.sort method which stated that the sizes of the source List

and the sorted List should be equal. Of course, we might want to more

completely characterize this method. For example, the entries in the result should

be ordered and result should be a permutation of the input. If we wanted to

include such things in the ensures clause of IntegerSorter.sort then we

would need to further augment the Bag specification to describe how the contents

are manipulated and how the values returned relate to them.

This approach assumes that the users of the tool are developing the classes being

analysed themselves or at least have access to the original source code in order to

deduce and add assertion annotations. However, this may not always be the case.

Realistic applications are made up of code written specifically for the application

being developed, components reused from built-in libraries and possibly

components produced by third-party component vendors. If the specifications of

the external components (i.e. the components developed by others) are insufficient

as a basis for the modular checking then iteratively increasing the detail of the

specification in this way is not an option.

A variation of this technique could be used for external components where

specifications are provided “out-of-band” i.e. separately from the component [1].

So whereas the client may not have access to the inner details of the external

11

component, they do have read/write access to the specification of the component.

However, without access to the original code, they have no way of determining

the subtleties of exactly how the implementation handles different circumstances

and no way of checking their best guesses.

Use of assumption constructs: The other major technique which we can use to

get around this problem in ESC is to make use of assumption constructs. One such

assumption construct is the assume statement which permits the user to give an

assertion to be added to the system’s current knowledge without further

justification. So, for example, when we found that the specification of the Bag

class was insufficient to verify that the sizes of the input List and sorted List

are equal, we could simply have added an assume statement to say that they

should be. Such a statement could be placed just before the return statement and

would appear as follows:

15a: assume sortedInts.size() = ints.size();

This would then enable the system to deduce the truth of the ensures clause at

the end of the method.

The problem with assumption constructs is obvious: they are, as their name

implies, assumptions without formal justification within the system. They are

unsound and allow the user to circumnavigate the entire checking process.

However, they do allow the user to suppress spurious warnings and can be used in

conjunction with external components as well as pieces of code written by the

developers themselves. Furthermore, while there is no basis for the assumptions

within the system, the user can base them upon informal information such as the

names of the class and methods, associated interface documentation and domain

information. They can then include descriptions of informal justification as

comments within the code. We will also see how they can be used in conjunction

with RAC.

3.3 Plugging the gaps in ESC with RAC and FFV

Let us now consider how the other approaches can help address this problem.

Incorporating RAC: RAC is another approach that we can use to verify the

correctness of an application relative to lightweight specifications. We can take

our Bag and IntegerSorter classes with their specifications, generate an

implementation incorporating run-time assertion checks and then test it to detect

12

failures. The key advantage of RAC in tackling this problem is that while in ESC

the specification of a class forms the sole basis for verification of its use in classes

that use it, in RAC the implementation can be used to check properties that were

not described by the specification. Taking our example, the incompleteness of the

lightweight specification of the Bag class would not cause a problem for the

verification of the IntegerSorter class using RAC. This is because although

the specification does not explicitly describe how the size changes, the

implementation does and that is what is used to check assertions in RAC. Another

way of looking at this is that RAC never gives a warning unless there is a run-time

error or a violation of an assertion, whereas ESC also reports warnings if the

specifications are insufficient to perform modular static checking. So RAC

doesn’t suffer from this crucial limitation although it has its own limitations (like

the need to be associated with a testing strategy in order to detect assertion

failures) that prevent it being an ideal replacement.

We have seen how assumption constructs are a useful way to provide additional

information about components although they had no formal basis within the ESC

system and so could be used to circumnavigate the verification process. However,

while the assumption constructs cannot be verified statically, they can be

converted into RAC checks. Thus ESC can be used to check everything except the

assumption constructs and RAC used to check the assumption constructs. This can

be applied to our IntegerSorter example, the class being verified by the ESC

tool, assuming that the assume statement holds, something that can then be

verified by testing the application with its generated RAC run-time checks. This

technique is used by the Spec# tool [1].

Incorporating FFV: Up until this point, we have considered only lightweight

specifications and approaches. However, an obvious solution to the problem of

lightweight specifications not providing sufficient information is to write more

descriptive heavyweight specifications. By using these together with FFV, we can

get around the problem, since a heavyweight specification can be sufficiently

informative to provide a basis for static modular checking. However, FFV is too

costly to form an ideal complete replacement for ESC.

Let us for the moment restrict our attention to reusable components, i.e.

components that have been written by another developer, whose source code we

have no access to and whose specification we have read-only access to. There has

13

been a wide range of work on reusable software components. To safely reuse

components from external sources we need two things:

1. specifications that sufficiently describe the interface of the component

[11], and

2. sufficient basis to trust that the hidden implementation satisfies the

specification [13].

The problem is that ESC does not completely address either of these issues.

However, FFV can. The heavyweight specifications produced for FFV provide a

way of sufficiently describing the interface of a component and its associated

verification approach provides a basis for trusting a hidden implementation. Also,

while the costs of FFV cannot typically be justified for entire applications, the

economies of scale make it a more attractive proposition for reusable components.

So suppose the Bag class was developed by a third-party component vendor. They

could use FFV to fully specify and verify their component, giving a specification

with all the information needed to check the IntegerSorter class. An outline of

a heavyweight specification of the Bag class is given below:

public class Bag[Element] {
 private attribute arr:Array[Element]
 private attribute size:integer
 private attribute comparer:Comparator[Element]
 ...
 public model function contents():List[Element]
 private returns arr.range(0,size).toList()

 public model function comparer():Comparator[Element]
 private returns comparer

 public function size():integer
 returns contents().size()

 public constructor containing
 (input:List[Element],
 comp:Comparator[Element])
 ensures contents() = input,
 comparer() = comp
 { ... }

 public operation extractMin(out min:Element)
 requires size() > 0
 changes contents
 ensures old contents().contains(min),
 forall (e:Element in old contents()):
 comparer()
 .compare(min, e).isBeforeOrSame(),
 forall (e:Element in old contents()):
 if e = min then

14

 contents().countOf(e)
 = old contents().countOf(e)– 1
 else
 contents().countOf(e)
 = old contents().countOf(e)
 { ... }
}

If we are verifying the IntegerSorter class using FFV then the tool can use

this heavyweight specification to reason about the Bag class. However, the ESC

tool is not able to effectively reason about it because of its use of the recursive

countOf method. We will look at how we can ESC-check the IntegerSorter

class using this specification in the next section.

4. Challenges in using the approaches together

There are a number of problems that can arise when using the approaches

together. These occur when, in using a particular approach to verify a class, we

have to reason about the use of a class that was verified using a different

approach. In this section we present some guidelines for avoiding conflicts

between the approaches. We have included “unverified” as a classification of

verification since the application may contain classes that are not verified with

any of the approaches and interactions with such classes may be particularly

troublesome.

Note that we consider the problems from the point of view of a class using

another class, where the usage is strictly directed. For example, the

IntegerSorter class uses the Bag class, but the Bag class does not use the

IntegerSorter class, so we only consider the problems caused by the

incompatibilities of the two specifications from the point of view of the

IntegerSorter class. Of course, it may be possible to have bi-directional usage

links and where these occur we treat them as two separate usage links.

4.1 RAC- and ESC-compatibility

A key problem with combining the different assertion-based verification

approaches is that not all specifications can be converted to efficient run-time

checks and handled by the automated provers used by ESC. We refer to these

properties as RAC- and ESC-compatibility, respectively.

15

RAC-compatibility is the more straightforward to define. Certain specification

constructs like quantifiers and recursion can cause problems for run-time assertion

checkers. We can check quantifiers at run-time if their variables are restricted to

enumerable ranges but, even if we do this, it may not be practical for efficiency

reasons. Care must also be taken with recursion so as to avoid non-termination (a

potential source of unsoundness in our approach) and situations where evaluation

of the assertion describing the intended behaviour of the method is as costly as the

execution of the method itself. To ensure RAC-compatibility the developer must

ensure that all specifications that need to be checked at run-time can be converted

into efficient checks. In the next section we will see that we must consider RAC-

compatibility even when we are using one of the other approaches to verify a

component.

The Omnibus tool is able to check whether assertions are executable by ensuring

they don’t use certain constructs like quantifiers without enumerable ranges. The

efficiency aspect is trickier. Test harnesses can be used to help assess the

efficiency but what is acceptable will be dependent on the context. Run-time

overheads may prevent the use of assertion checks in certain final products, but

they may still be useful in pre-release testing.

ESC-compatibility is more complex to define. Firstly, certain constructs like

recursion typically cannot be handled by automated provers and so are not ESC-

compatible. However, automated provers can run into problems even when using

specifications that do not use such features. Although quantifiers can usually be

handled, complicated combinations will often defeat them. Every prover will have

things that it can handle well and, as a consequence of undecidability of the

problem, must also have things that it handles poorly. A possible approach is to

define ESC-compatibility relative to the specific theorem proving capabilities of

the ESC tool being used. To determine whether a specification is ESC-compatible

for a particular tool, we must experiment with that tool, and the Omnibus IDE

supports the definition of test harnesses which can be used to carry out this

experimentation. A problem with this definition of ESC-compatibility is that it is

implementation dependent, which will become more of an issue as the community

moves towards interchangeable provers.

16

4.2 Guidelines for avoiding conflicts when using the
approaches together

We have developed a set of guidelines to help developers avoid conflicts between

the approaches. The automated checking of these guidelines is discussed in

section 7.

1. All pre-conditions should be expressed in terms that are compatible with

all of the approaches. Incompatible pre-conditions should be rewritten

using new functions. Test harnesses can be used to help check RAC- and

ESC-compatibility.

2. All classes should include run-time checks of their pre-conditions unless it

is absolutely clear that unverified or RAC-verified code will never directly

use them.

3. All heavyweight specifications that cannot be handled by ESC should

provide lightweight ESC-compatible substitutes via redundant

specifications. ESC-compatibility should be checked using test harnesses.

4. The system should be structured so that ESC-verified classes never have to

directly reason about unverified classes and FFV-verified classes never

have to directly reason about unverified, RAC-verified or ESC-verified

classes.

Guideline 1 says that all pre-conditions should be written to be compatible with

all of the approaches. As was discussed earlier, to establish this we must ensure

that they are RAC- and ESC-compatible. To do this the developer should attempt

to write the pre-conditions in a suitable form e.g. avoiding the use of recursion

and providing enumerable ranges for quantified variables wherever possible,

allowing them to be converted into run-time checks. However, to sufficiently

describe the pre-condition of a method, it may be necessary to use assertions that

cannot be handled by these approaches.

As a somewhat artificial example, consider the following extract of a Set class

verified using FFV. The public specifications are described in terms of the

contains and size public model functions which are implemented using a

private List attribute named contents. We ensure that contents contains no

duplicates by using an invariant so that we can calculate the size of the Set by

taking the size of the contents List and do not need to remove any duplicates

17

first. We define a unionOfDisjoints operation to calculate the union of the set

with another set. The pre-condition of the unionOfDisjoints operation is

expressed in terms of the contains model function using a quantifier without an

enumerable range and thus the system cannot automatically generate an

appropriate run-time check to guard this method. We may wish to write a

quantifier to iterate over the contents attribute that is used to implement the

contains model function but we cannot refer to this private attribute in the

public specification of unionOfDisjoints.

public class Set[Element] {
 private attribute contents:List[Element]

 private invariant "No duplicates in contents":
 !(exists (i:integer := 0 to contents.size()-1,
 j:integer := 0 to contents.size()-1):
 i != j
 && contents.elementAt(i)
 = contents.elementAt(j))

 public model function contains(e:Element):boolean
 private returns contents.contains(e)

 public model function size():integer
 private returns contents.size()

 ...

 public operation unionOfDisjoints(s2:Set[Element])
 requires "Sets must be disjoint":
 forall (e:Element):
 !(this.contains(e) && s2.contains(e))
 changes contains
 ensures

 contains(e) = old contains(e) || s2.contains(e),
 size() = old size() + s2.size()

}

We can combat this problem by re-writing pre-conditions involving unconstrained

quantifiers using separate new functions that are described using a method with

the troublesome assertion in its post-condition and an implementation defining

how to implement the check. This solves the problem of RAC-compatibility since

the dynamic checks will use the implementation of the new function to check the

pre-condition whereas the static approach can use the post-condition of the new

function described using the unexecutable assertion. What we have exploited here

is that RAC only requires that the pre-conditions and the implementations of

called classes can be executed.

18

For example, in the Set class we could introduce an isDisjointTo function

and define the pre-condition of the unionOfDisjoints operation in terms of it.

The system will then be able to convert the pre-condition of the

unionOfDisjoints operation into a run-time check, using the implementation

of the isDisjointTo function. Run-time checks do not need to be generated for

the post-conditions in the Set class since the verification of the Set class using

FFV will prove these, provided that the pre-conditions hold at the start of the

method (which the run-time checks ensure). The FFV verification of the Set class

can still reason about the pre-condition of the unionOfDisjoints operation in

terms of the unconstrained quantifier which now appears in the post-condition of

the isDisjointTo function. Furthermore, the FFV verification of the Set class

will require the developer to prove that the isDisjointTo function satisfies its

post-condition, ensuring that the developer has implemented the check properly.

 public operation unionOfDisjoints(s2:Set[Element])
 requires "Sets must be disjoint":
 this.isDisjointTo(s2)
 changes contains
 ensures

 contains(e) = old contains(e) || s2.contains(e),
 size() = old size() + s2.size()

 { ... }

public function isDisjointTo(s2:Set[Element]):boolean
 ensures result <==>
 (forall (e:Element):
 !(this.contains(e)
 && s2.contains(e)))
 {
 // Check all elements in 'this' are not in 's2'
 foreach (e:Element in contents) {
 if (s2.contains(e)) {
 return false;
 }
 }
 // Check all elements in 's2' are not in 'this'
 foreach (e:Element in s2.contents) {
 if (contains(e)) {
 return false;
 }
 }
 return true;
 }

This approach can also be used to ensure ESC-compatiblity when used in

conjunction with guideline 3. A new function can be introduced to move a non

ESC-compatible assertion from the pre-condition of the original method to the

19

post-condition of a new method where redundant specifications can be used to

provide a partial, ESC-compatible description of the method. Additional

assumptions about the value of the method can then be easily formulated in the

client code as appropriate.

Guideline 2 says that all classes should, in general, include dynamic checks of

their pre-conditions because, while calls made from statically verified code should

satisfy the pre-conditions, calls from RAC-verified or unverified code may not.

Hence, ESC- and FFV-verified classes that were verified under the assumption

that their pre-conditions are always respected, may have that assumption broken.

This may lead to a run-time error or assertion failure being generated within the

execution of the statically verified class, even though the cause of the error was

the silent violation of the pre-condition by the calling class, and not a fault in the

implementation of the statically verified class. To guard against this we must

ensure that any methods called by unverified or RAC-verified classes must have

their pre-conditions checked at run-time so that invalid calls of these methods can

be identified and reported correctly to the user. If, however, the class being

considered is for use only within this system and all the classes that use the class

have been statically checked then, for efficiency reasons, the checks can be

omitted.

Guideline 3 says that non ESC-compatible heavyweight ensures clauses should

have lightweight ESC-compatible redundant specifications. Redundant

specifications are generally used to express properties that should follow from the

standard specification. Our idea is that if the post-condition of a method in a FFV-

verified class cannot be handled by ESC, then a redundant specification is

provided giving a lightweight specification that should follow from the original

specification but does not have to be complete in any sense. For example, while

the heavyweight Bag specification in Section 3.3 provides all the information

necessary to verify our IntegerSorter class, its use of the recursive countOf

method means the ESC tool cannot effectively deduce that the size of the Bag is

decreased by one in the extractMin method. We can provide this information in

a form accessible to the ESC tool via a lightweight redundant specification like

the one shown below.

public operation extractMin(out min:Element)
 requires size() > 0
 changes contents

20

ensures ...
which ensures size() = old size() - 1

In this case, we discovered that the heavyweight Bag specification from section

3.3 was not ESC-compatible when we attempted to verify the IntegerSorter

class using ESC. Alternatively we could have written special test harnesses within

the Bag class to check its ESC-compatibility.

Now, if we are using FFV to verify the use of a class that was verified using FFV

then we would use its original heavyweight specification and, if we are using ESC

to verify the use of a class that was verified using FFV, we would use its

lightweight redundant specification. Of course, the lightweight redundant

specifications suffer from the same incompleteness problems as any other

lightweight specifications. Normally, when using ESC, the lightweight

specification and the code is all we have and if we don’t have access to the code

then we have to use assumption constructs based on informal domain knowledge

or interface documentation. However, in this situation the developer can refer to

the heavyweight specification in order to determine if assumption constructs are

valid. These justifications could be informally documented in comments within

the code or formally verified with FFV.

In our experience, the majority of methods can be written to be ESC-compatible

and, for those that cannot, redundant specifications are generally easy to write and

are useful to verify some desired properties of the specification.

Guideline 4 describes some combinations of approaches that should be avoided.

If the entire application has been developed by a single person then it is always

possible to structure the application so that these combinations are avoided. We

can achieve this by either increasing the level of verification used for the client

class or decreasing the level of verification for the supplier class. For example, it

is not allowable to use FFV to verify the IntegerSorter along with ESC for the

Bag class but we can either increase the verification of the Bag class to FFV or

decrease the verification of the IntegerSorter class to ESC. The situation may

be complicated by the relationships with other classes in the system. For example,

there may be another class in the system that uses Bag and is also verified using

FFV in which case we should probably increase the verification of Bag to FFV

rather than decrease the verification of IntegerSorter to ESC. In the extremes

we will be forced to increase the verification level of the entire application to be

21

FFV or decrease it to RAC/ESC but, in general, it will be possible to have

intermediate levels of verification. We will discuss this further in section 5.2.

While we can always follow guideline 4 if we have developed all the classes in

the application ourselves, applications will usually make some use of external

components either from built-in libraries or component vendors. These pose a

problem since we cannot change their level of verification to fit the verification

levels of the other classes in our application. Let us suppose that the Bag class is

an external component. If it was verified using ESC then we are constrained to

use ESC/RAC to verify the IntegerSorter class. However, if it was verified

using FFV then, assuming guidelines 1, 2 and 3 are followed, we are free to use

any one of RAC, ESC or FFV to verify our IntegerSorter class. We view this

as a sufficient justification to favour the use of FFV for reusable components

wherever possible [17].

The following table enumerates the allowable calling relationships between

classes verified using the different approaches along with the corresponding

constraints. This table is read as follows. Suppose, for example, that we wish to

work out whether, when verifying the IntegerSorter class using ESC, we can

use a version of the Bag class verified using FFV. To do this, we look up the ESC

row and FFV column and find we can, providing that non ESC-compatible post-

conditions have lightweight redundant specification substitutes.

Can use classes verified using
Approach

None RAC ESC FFV

Unverified Y Y Y1 Y1

RAC Y Y Y1 Y1

ESC N2 Y3,4 Y4 Y5

FFV N6 N6 N6 Y

Constraints:

1. Providing that pre-conditions are dynamically checked and don’t contain

non RAC-compatible constructs like unconstrained quantifiers.

2. Unless all calls of the methods of this class are guarded by appropriate

assume and assert statements. This will be cumbersome unless the number

of calls is small.

22

3. Providing that the specifications are ESC-compatible.

4. Using assumption constructs or, if the class is not an external component,

iterative strengthening of specifications to handle incompleteness

problems.

5. Providing non ESC-compatible post-conditions have lightweight

redundant specification substitutes.

6. Unless the FFV approach is weakened to allow assumptions (as discussed

in section 6) and all calls of the methods of this class are guarded by

appropriate assume and assert statements. This will be cumbersome unless

the number of calls is small.

5. Recommendations for when to use the different
approaches

The preceding section described the ways in which it is possible to use the

approaches together. It described which combinations are invalid and the

constraints that the combinations of the other approaches must satisfy in order to

be valid. However, for realistic systems, there will still be multiple ways in which

the system could be divided up into sections where different approaches are used.

While there are no definite rules on how to select a particular verification

approach for each section, and part of the point of our work is to give the

developer flexibility to make such choices themselves, we have developed some

general guidelines to assist the developer. Developers must also be conscious of

the consequences of their choices of verification approaches for the different

classes in their application and we also discuss this.

5.1 General guidelines

When to use ESC: Our opinion is that ESC, together with dynamic checking of

assume statements, is the best approach for the majority of classes. We

recommend the use of ESC unless the class being verified falls into one of the

categories described below.

When to use RAC instead of ESC: ESC requires considerable up-front effort in

order to provide the tool with enough annotations to perform static modular

checking. Even if a system has no bugs, the ESC tool will keep reporting

warnings until the developer has provided sufficient assertion annotations. If this

23

up-front investment is not practically possible then RAC can be used instead. In

RAC, the verification effort is carried out in the traditional testing phase.

When to use FFV instead of ESC: There are two main situations where a

developer might prefer FFV to ESC: (1) to verify critical classes and (2) to verify

reusable components. If the cost of an error in the class is very high then the

developer may decide that the additional error coverage provided by FFV, albeit

at a considerable cost, make it the most desirable approach. If RAC or ESC is

used to verify a reusable component then the specifications will likely be

lightweight and relatively incomplete. This will hamper clients using ESC to

verify classes that use the component. There may be properties of the component

that are needed to verify the client’s class that are not expressed in the lightweight

specification. Assumption constructs will have to be used to address this because

the source of an external component is not available to be iteratively strengthened.

This will involve extra work and complicates the use of the components. As a

result, if RAC or ESC is used to verify a reusable component then it may be better

to dynamically check usage of the component using RAC rather than using ESC

since clients using RAC do not need to provide additional assumption constructs

when using components with lightweight specifications.

When to use none of the approaches: We strongly recommend that at the very

least developers use lightweight specifications to document key design decisions

and RAC to report when they are violated. This involves modest additional effort

but can greatly assist in debugging and provides a springboard to the use of static

approaches.

5.2 Structuring the verification of an application

The decisions on what verification approaches to use for each class in an

application cannot be taken in isolation. The verification approach we use to

verify a class will have repercussions for the classes that use it. The main hard

requirement is that we cannot use FFV to verify a class unless we have used FFV

to verify all the classes that it uses. We should also look to avoid using unverified

classes in ESC verified classes. So, when we use anything other than FFV to

verify a class, we are restricting the verification of the classes that use it to not be

FFV and when we do not use any of the approaches we make it difficult to use

ESC. Thus it is clear, the interactions between the verification approaches for the

24

classes in the application are focussed around the uses relationships and so it may

be useful to produce a diagramatic overview of an application and its uses

relationships. We can do this by breaking the application into horizontal levels

where the classes in each level may be used by those in levels above but not by

those below. The bottom level will be the built-in libraries which necessarily do

not use any classes from the application or components from third-party

component vendors. Above this will be levels for third-party components which

may use the built-in libraries but not the classes in the application. Similar levels

should be identified within the application itself. For example, in a Model-View-

Controller (MVC) application, the model classes would be below the views and

controllers. Figure 1 shows an example of how the verification of an MVC

application might be structured. This kind of structuring mechanism is also

consistent with Rushby’s concept of a “safety kernel” [15]. The Model in our

MVC diagram could be interpreted as a “safety kernel” because of its rigorous

verification with FFV.

As was discussed earlier, a software developer has no control over which

verification approach was used for library components and third-party

components (shown below the dashed line in the figure). The limits this imposes

on the other classes are clearly visible in the diagram above. For example, if

3rd_party_component_1 was verified with RAC instead of FFV, then the

View_1: ESC View_2: RAC View_3: FFV Controller: ESC

Model: FFV

3rd_party_component_1: FFV

Library_component_1: FFV

3rd_party_component_2: FFV

Library_component_2: FFV

Figure 1: structuring the verification of an MVC application

25

developer would not be permitted to use FFV for verifying the Model and

View_3. In order to provide the developer with as much flexibility as possible in

configuring the verification of their application, we therefore recommend that

FFV should be used for all third-party components and library components [17].

6. Configuring assertion-based verification
approaches

In this section we will discuss some ways in which the dynamic and static

checking can be configured. Dynamic checking corresponds to RAC while static

checking encompasses ESC and FFV.

6.1 Configuring dynamic checking

There are a number of ways in which the dynamic checking process, whereby

assertion annotations are converted into run-time checks, can be customized. The

most basic customization is the range of checks to perform. The developer may

decide that they only want to dynamically check certain types of assertions. The

case discussed earlier where only assume statements are checked dynamically is

a good example. Another example would be reducing the number of checks in

order to decrease the time overhead.

It may also be useful to customize the information contained in the assertion

failure reports. There is a trade-off between the level of information in the failure

messages and run-time efficiency of the compiled executable. By default, the user

may want to include just basic information like a description of the failure, the

relevant source code and a stack trace. However, if the information in these

messages is not sufficient to pinpoint the exact circumstances of a failure then

they may prefer to generate more comprehensive error reports including current

parameter, attribute and local variable values at the point of failure and detailed

information on the execution path (e.g. how many times was each loop executed).

There are a number of constructs in the Omnibus assertion language which are not

always convertible into efficient run-time checks (e.g. quantifiers) and others that

are never convertible into run-time checks (e.g. iterate assertions which are

beyond the scope of this paper). Some quantifier expressions can be converted

into run-time checks, e.g. those using only variable declarations associated with a

26

range of integer values, but those without such restrictions cannot be. Even those

that can be converted into run-time checks will likely be expensive to check. The

developer may want the system to either ignore (i.e. treat as ‘true’) or prohibit (i.e.

generate a type checking error if found) quantifiers that cannot be dynamically

checked and may want to ignore or translate quantifiers that can be dynamically

checked.

6.2 Configuring static checking

Omnibus provides support for both the ESC and FFV static verification

approaches. These are distinct approaches with different aims but the underlying

processes they use are strikingly similar. They are both used in conjunction with a

theorem prover and start by translating the specifications of the classes and

methods used in the application into the logic of the corresponding prover and

then generate a range of Verification Conditions (VCs) over these specifications

which should be valid if the program is free of the class of errors being checked.

The most immediately apparent difference is that ESC uses relatively lightweight

specifications whereas FFV requires relatively heavyweight specifications. ESC

also makes a range of compromises in soundness in order to make the approach

easier to use. Loops are analysed by unraveling them a finite number of times,

instead of requiring loop invariants and proving them inductively. Assumption

constructs are permitted to help tackle the incompleteness of the lightweight

specifications and automated prover. ESC always uses an automated prover

whereas FFV can use either automated or interactive provers. Finally, ESC is a

code-centric approach where all verification involves analysis of code, whereas in

FFV it is possible to analyse the consistency of specifications independent of any

implementation.

As with dynamic checking, the most basic customization is the range of checks

that should be performed. The user may want to statically check only certain kinds

of assertions. They may also want to verify requirements such as invariants in

different ways. Either the behaviour specifications should imply them (our FFV

approach) or the implementation should (the ESC approach).

The next most fundamental way in which static checking can be configured is in

the choice of theorem prover. Currently our system supports the use of the fully

automated Simplify prover [5] and the interactive PVS prover [14]. Which prover

27

is appropriate is dependent on the skills of the available users and the complexity

of the required proof. The selection of the prover has repercussions for other

customizations, mainly the handling of certain heavyweight constructs that the

PVS prover can handle but which Simplify can’t.

The other major configurable options are concerned with the soundness of the

process. Firstly, users can specify whether loops are required to have loop

invariants provided. If the approach is to be sound then it must. In this case, a type

checking error will be generated if a loop without an invariant is found.

Otherwise, if a loop invariant is not provided, the loop will be analysed by

unraveling it up to a finite number of times that can be configured by the user

(defaulting to 1). Secondly, users can specify whether assumption constructs are

permitted. If the approach is to be sound it should not permit these.

As with dynamic checking, a number of constructs from the assertion language

may cause problems and so it may be useful to specify special handling for them.

Recursion can cause the Simplify prover to either enter into an infinite loop or

crash and can be difficult to manage even in the PVS prover. As such, the user

may want to disallow its use in assertions, use redundant specifications in its place

or ignore it.

6.3 Creating new approaches

Through this configuration process, we can create new approaches that combine

aspects of the traditional approaches. For example, we could develop different

configurations for: (i) FFV, but with the loop unraveling technique from ESC to

avoid the need for loop invariants; (ii) ESC and FFV with and without dynamic

pre-condition checks; (iii) ESC with and without assume statements dynamically

checked; (iv) RAC with different levels of failure reports.

7. Verification Policy Manager

The Omnibus Integrated Development Environment (IDE) supports static

verification using fully-automated and interactive theorem provers and the

generation of bytecode implementations with assertion checks. Thus, it can be

used to support RAC, ESC and FFV.

The tool manages these facilities through the concept of verification policies. A

verification policy defines precisely how to manage the verification of the

28

assertion-annotations in a class. This consists of whether to use dynamic and/or

static checking, what checks to generate, the theorem prover to use and various

other configuration options. RAC, ESC and FFV are the initial verification

policies but the user is also free to combine aspects of the different approaches to

create new policies. The policies form a hierarchy with each policy being based

on another policy with possibly some changes.

There are three main tools that allow the developer to use policies within

Omnibus: the Policy Manager, the Policy Editor and the Policy Selector. The

Policy Manager provides a high-level tool for managing verification policies. It

displays all the policies currently loaded into the system and provides options to

delete them, extend them to create new policies and edit them. Creation and

editing of policies is achieved through the Policy Editor, a dialog allowing the

developer to completely configure a particular policy. Finally, when a project is

opened, a window is loaded allowing, among other things, the verification policy

to use when verifying each file in the project to be specified. A screenshot

showing these tools is shown.

We are also developing Policy Analyser and Policy Integration Checker tools to

assist in the proper definition and use of verification policies. The purpose of our

Policy Analyser tool is to ensure that the policies which users define describe the

29

verification process they desire. It will do this by checking how a policy uses

static and dynamic checks together and displaying a summary advising of things

such as: the soundness of the policy, how it interacts with other policies and its

dependence on testing for the verification of the assertion annotations.

For example, a policy defining the conventional ‘ESC’ approach would be

deemed unsound because of its allowance of assumption constructs and the use of

the loop unraveling technique, the user would be warned that because the pre-

conditions of methods are not dynamically checked that they may be violated by

callers, and no dependence on testing would be reported. If the policy was

adjusted to require loop invariants for all loops and dynamically check assumption

constructs and pre-conditions then the policy would be deemed sound, but with a

dependence on testing to check the assumption constructs.

We are also developing a Policy Integration Checker tool, which will check the

structuring of the verification of a project for compliance with the guidelines of

Section 4.3. Guidelines 2 and 4 are concerned with the policy settings of a project

and the uses relationships between the classes in the project. The policy settings

for each file in a project can be retrieved from the Policy Selector and the uses

relationships can be calculated during the type checking of the project.

Compliance with guideline 2 within a project can be checked by ensuring that

policies used for statically verified files have the ‘Generate run-time pre-condition

checks’ setting enabled unless they are only called from other classes in the

project that are statically verified. Compliance with guideline 4 can be similarly

checked by examining the uses relationships and policy settings.

The above approach checks the guidelines in a non-modular fashion within the

closed environment of the enclosing project. However, the classes in a project

may be reused in other projects in a way which violates guideline 2 and, in our

system, the burden is on the supplier of the component to build in those checks.

Run-time pre-condition checks should be generated if a class may be reused

within some other project by classes that are RAC-verified or unverified, even if

there are no such classes that use it in the current project. To widen the checking

to include checks for reuse across projects it would be useful to have some

mechanism for differentiating classes that are intended for reuse by other projects

from classes not intended to be reused. The system could then check for

30

compliance with guideline 2 in the presence of reuse by checking that all classes

intended for reuse also have their pre-conditions checked at run-time.

Guideline 4 does not suffer from the same problem since, as described in section

5.2, in that guideline the burden is on the user of an external component to

structure the verification of their classes around the verification approach used for

the component.

The other main challenge in checking the guidelines is the need for an assessment

of the RAC- and ESC-compatibility of assertions in the checking of guidelines 1

and 3. Guideline 1 states that all pre-conditions should be RAC- and ESC-

compatible and guideline 3 states that post-conditions should have lightweight

substitutes if they are not ESC-compatible. As we discussed in section 4.1, RAC-

and ESC-compatibility are difficult to define in terms of simple, checkable rules.

We can, however, provide limited automated checking by ensuring the absence of

certain constructs, like recursion and quantifiers without enumerated ranges,

which are not RAC-/ESC-compatible. Developers can check RAC-/ESC-

compatibility more rigorously through the independent use of test harnesses to

check the efficiency of RAC-checks and the ability of the ESC-prover to verify

properties of the specifications. However, the concepts are unavoidably context-

dependent and, using our definition, impossible to assess statically in a modular

fashion, taking account of all possible usage contexts.

8. Related Work

Earlier publications from the JML group hinted at using the approaches together.

In [8], Jacobs et al. proposed using ESC to guide the selective application of FFV.

The idea is to first apply ESC to the entire project verifying much of it, and then

to use interactive FFV to attempt to verify the remainder. In [3], Cok and Kiniry

discussed how beneficial they thought it would be to have an integration of tools

that support JML, but as of yet there is no tool support for this.

Other tools have combined static and dynamic checking to some extent. Spec# [1]

uses a combination of static and dynamic techniques to verify its assertion

annotations. They exploit the fact that constructs that are difficult to check

statically are often relatively easy to check dynamically and vice versa. Their

approach, however, uses a combination of static and dynamic checking to support

their single form of verification whereas we offer a range of verification

31

approaches of varying rigour. Other tools like PerfectDeveloper [4] include

provisions to generate RAC pre-condition checks to ensure that the assumptions

on which the proofs of correctness are made are not violated by calls made from

unverified code.

9. Conclusions and future work

We started this paper by presenting the case for using the approaches together. We

selected ESC, which we consider to be the most promising approach, as our

starting point. It provides better coverage than conventional type checking, allows

errors to be detected earlier in the software development lifecycle than RAC and

requires considerably less effort to use than FFV. We then demonstrated a

situation where ESC breaks down and showed how the use of RAC and FFV can

assist in that situation. Next we highlighted some key challenges in using the

approaches together and put forward a set of guidelines to help users of our tool

avoid them. These guidelines incorporated an explanation of how pre-conditions

containing constructs such as unconstrained quantifiers can be dynamically

checked and the presentation of a technique we have developed to use redundant

specifications to provide lightweight substitutes for specifications containing non

ESC-compatible constructs. We then described a number of useful ways in which

the approaches themselves could be configured. In the final sections we outlined

the support our tool offers for the use of these approaches together and explained

that currently ours is the only system that provides such tool support.

The project is continuing on a number of fronts. Work on the language is

currently focusing on the addition of support for reference semantics in a

structured manner that is amenable to modular verification. Our existing language

is built around value semantics. We have found that this is extremely good for the

specification of modelling types (as is used in JML) but can lead to poor

modularity in larger applications, requiring that objects are organised in trees.

Reference semantics can support better modularity but requires some form of

ownership mechanism (e.g. [6]) in order to be verifiable in a modular manner.

Unfortunately ownership mechanisms work by imposing a structure like that from

value semantics and so are vulnerable to the same structuring problems. While

noting recent advances in this area [6], we see the problem of developing a

32

modular but flexible ownership mechansim for reference semantics as an

important open research challenge.

Work on the IDE is currently focused on the Verification Tracker tool which can

be used to view the details and status of the verification of a project. The tool

tracks the testing of the generated run-time checks and gives details of the

generated VCs together with information on whether they have been

automatically or interactively proved. We are also investigating the use of

different theorem provers.

We have developed a number of small and medium-sized case studies using

Omnibus. The next step for the ideas presented in this paper is to develop larger

case studies to explore how they operate in a commercial setting.

When using different verification approaches together it is important to ensure

that the approaches use consistent interpretations of the language. This has been

an issue in the JML community where tools have been developed by different

groups who have made different choices about certain semantic issues [2]. All the

Omnibus tools are developed by our group and we have made every effort to

ensure the consistency of the interpretation of the language for our static and

dynamic verification tools. This consistency has not, however, been formally

demonstrated. Similarly, we have not yet formally demonstrated the soundness of

our guidelines.

A theme in our work is the provision of a spectrum of tools to support verification

at different levels of rigour, depending on the reliability requirements of the

project and the skills of the developers. We believe most software developers

need push-button verification tools, while component vendors should use full

formal verification to fully describe their component and provide certification of

the correctness of the hidden implementation. This idea is discussed in more detail

in [17].

We are also working on a range of facilities to support software component reuse.

These include support for the generation of comprehensive interface

documentation from specifications, a framework for the certification of

components and integrated support for the location and distribution of

components.

33

Acknowledgements: We are grateful for the valuable feedback from the

anonymous reviewers and the attendees and organisers of the SEFM 2005

conference.

References

1. M. Barnett, K.R.M. Leino, W. Schulte – “The Spec# programming system: An overview”,

Proceedings of CASSIS 2004, Springer LNCS 3362, 2004.

2. P Chalin – “Logical Foundations of Program Assertions: What do Practitioners Want?”,

Proceedings of SEFM 2005, IEEE Computer Society, 2004.

3. D.R. Cok, J.R. Kiniry – “ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building

and using ESC/Java2”, NIII technical report R0413, 2004.

4. D. Crocker – “Safe Object-Oriented Software: the Verified Design-by-Contract paradigm”, Procs.

of the 12th Safety-Critical Systems Symposium, Springer-Verlag, 2004.

5. D. Detlefs, G. Nelson, J.B. Saxe – “Simplify: A theorem prover for program checking”, Technical

Report HPL-2003-148, HP Labs, 2003.

6. W. Dietl, P. Müller – “Universes: Lightweight ownership for JML”, Journal of Object Technology

(JOT), 4(8), 2005.

7. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R.Stata – “Extended static

checking for Java”, Proceedings of PLDI 2002, ACM SIGPLAN Notices 37(5), 2002.

8. B. Jacobs, C. Marché, N. Rauch – “Formal verification of a commercial smart card applet with

multiple tools”, Proceedings of AMAST 2004, Springer LNCS 3116, 2004.

9. G.T. Leavens, A.L. Baker, C. Ruby – “Preliminary Design of JML: A Behavioral Interface

Specification Language for Java”, Dept. of Computer Science, Iowa State University, TR #98-06p,

2003.

10. K.R.M. Leino – “Extended Static Checking: A Ten-Year Perspective”, Informatics—10 Years

Back, 10 Years Ahead, Springer LNCS 2000, 2001.

11. B. Meyer – “Contracts for components”, Software Development Magazine, July 2000.

12. B. Meyer – “Eiffel: The Language”, ISBN 0132479257, Prentice Hall, 2000.

13. B. Meyer – “On to components”, IEEE Computer, January 1999.

14. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M.K. Srivas – “PVS: Combining Specification, Proof

Checking, and Model Checking”, Proceedings of CAV 1996, Springer LNCS 1102, 1996.

15. J. Rushby – “Kernels for safety? ”, Safe and Secure Computing Systems, Blackwell. Scientific

Publications, 1989.

16. T. Wilson – Omnibus home page. Available at http://www.cs.stir.ac.uk/omnibus/, 2007.

17. T. Wilson, S. Maharaj, R.G. Clark – “Push-button tools for software developers, full formal

verification for component vendors”, Technical Report CSM-167, Dept. of Computing Science and

Mathematics, University of Stirling, 2006

18. T. Wilson, S. Maharaj, R.G. Clark – “Omnibus: a clean language and supporting tool for

integrating different assertion-based verification techniques ”, Proceedings of the Workshop on

Rigorous Engineering of Fault Tolerant Systems (REFT), 2005

19. T. Wilson, S. Maharaj, R.G. Clark - “Omnibus Verification Policies: a flexible, configurable

approach to assertion-based software verification”, Proceedings of SEFM 2005, IEEE Computer

Society, 2005.

