
Considering Complex Search Techniques in DHTs
under Churn

Jamie Furness, Mario Kolberg
Dept. of Computing Science and Mathematics, University of Stirling

{jrf,mko}@cs.stir.ac.uk

Abstract—Traditionally complex queries have been performed
over unstructured P2P networks by means of flooding, which
is inherently inefficient due to the large number of redundant
messages generated. While Distributed Hash Tables (DHTs) can
provide very efficient look-up operations, they traditionally do
not provide any methods for complex queries. By exploiting the
structure inherent in DHTs we can perform complex querying
over structured P2P networks by means of efficiently broadcast-
ing the search query. This allows every node in the network to
process the query locally, and hence is as powerful and flexible as
flooding in unstructured networks, but without the inefficiency
of redundant messages.

While there have been various approaches proposed for
broadcasting search queries over DHTs, the focus has not been
on validation under churn. Comparing blind search methods for
DHTs though simulation we see that churn, in particular nodes
leaving the network, has a large impact on query success rate.
In this paper we present novel results comparing blind search
over Chord and Pastry while under varying levels of churn. We
further consider how different data replication strategies can be
used to enhance the query success rate.

I. INTRODUCTION

The ability to perform complex queries is one of the most
important features in many of the P2P networks actually
deployed.

While structured P2P networks can provide very efficient
look-up operations via a Distributed Hash Table (DHT), they
traditionally do not provide any methods for complex queries.
This can be attributed to the use of consistent hashing,
which causes data to be distributed uniformly over the entire
network; since consistent hashing does not preserve locality
it is only possible to perform exact look-ups. This means
in a simple DHT it is not possible to perform wild-card or
full-text searching, limiting their application in the real world.
Unstructured networks usually implement complex queries by
a form of flooding or random walks, however flooding is
inherently inefficient due to the large number of redundant
messages [3], and random walks are slow with no guarantee
of actually finding the data even if it exists. Making use of the
structure inherent in DHTs we can perform complex querying
over structured networks by means of efficiently broadcasting
the search query. This allows every node in the network to
process the query locally, removing the restrictions placed on
the complexity of queries. We refer to this method of searching
within a DHT as blind search.

Churn, the act of nodes arriving and departing from a
network, is an important issue which should not be ignored

when validating algorithms in P2P networks. In many types
of P2P overlay it is not uncommon for routing tables to be
slightly out-of-date due to churn; if an algorithm is only tested
with fully up-to-date routing tables then there is no indication
as to how it would actually perform in the real world. We note
that there are existing methods for blind search in structured
P2P networks [9], [14], [10], [15], [19], [20], [21], [22], [11],
[6], but with very little, or in most cases no validation under
churn. In this paper we aim to investigate the difference in
performance of blind search over Chord and Pastry, when
subjected to various levels of churn.

In sections II and III we discuss what is meant by the terms
complex query and blind search. Related work is discussed
in section IV. In section V we describe the general approach
for blind search in Chord [17] and Pastry [16]. In sections
VI and VII we explain the aim of our investigation and the
parameters used. In section VIII we present novel simulation
results validating and comparing these methods under varying
levels of churn, and investigate how data replication strategies
can enhance the query success rate. In section IX we draw
conclusions from the results obtained, and speculate on how
they may be used in the future to produce a method specifically
aimed at high churn environments.

It is important to note that throughout the paper we refer
to the message success rate as the percentage of messages
successfully received during broadcasting. The query success
rate refers to the percentage of search queries in which the
requested data was found at least once. When the replication
rate is one, in other words there is no redundancy, these should
be similar, however with a higher replication rate the query
success rate is expected to be higher.

II. WHAT ARE COMPLEX QUERIES?

Complex query is a vague term which is often used to
describe any form of search query more complex than an exact
match [7]. In this paper we refer to the ability to support all
such types of queries as support for complex queries. In this
section we discuss different types of queries which are often
referred to as complex. For completeness we start with the
basic exact match.

A. Exact Match

Due to the hash-table nature of a DHT, the only form of
search query supported without some form of extension is the
exact match. All DHTs support, either directly or indirectly,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9050289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a hash-table interface providing the methods put(key, value)
and get(key). Given the key corresponding to a service, a
DHT can guarantee the return of results, usually within a
specific number of hops, if any such results exist. In many
cases such limited support for search is not sufficient and
clearly does not support complex queries, which has resulted in
many proposed systems which build support for more complex
queries on top of the exact match facility.

B. Keyword Search

If exact match look up is not sufficiently powerful,
DHTs can be extended to support keyword-based queries.
Keyword-based search provides the ability to associate mul-
tiple keywords with a single document.

C. Range Queries

Range queries are a type of query which look for any
document, possibly indexed by keywords, which lies within
a given range. For example, a user may wish to find available
services within a certain price range.

D. Wild-card Search

The term wild-card search is used to describe a search in
which part of the search term is unknown. Note that wild-card
search is related to range queries, but not exactly the same.
For example, assuming keywords were restricted to a . . . z,
the wild-card search for “acm*” can be converted to a range
query for everything between “acm” and “acn”. However other
forms, such as “*acm”, “a*m”, or “*acm*” are difficult to map
to a range query [12].

E. Full-text Search

Full text search refers to a technique for examining all words
in all documents, to try match the search term supplied by the
user. While this type of search may initially sound similar
to the keyword search, keyword search solutions assume a
limited number of keywords and do not scale well above a
certain limit.

F. Semantic Search

Semantic search is a content-based search, in which queries
are expressed in natural language instead of keywords. The
goal in semantic search is to use semantics, the meaning of
words, to return results which are relevant to the search terms,
without simply matching keywords.

G. Regular Expressions

Although not often mentioned, in some circumstances it
may be desirable to have the ability to search for data using
regular expressions.

III. WHAT IS BLIND SEARCH?

The term blind search is used to describe a search operation
in which no information about the search space is known,
other than to distinguish the goal state from all others. In
other words, as a query traverses through the network it
has either reached the goal or not, there is no concept of
distance to the goal as with regular operations in a DHT.
Blind search can be thought of as the structured equivalent
to flooding, providing all the flexibility of flooding, without
the downside of redundant messages. Blind search can be used
over structured P2P networks to provide support for complex
queries. A survey of blind search techniques is provided by
Furness and Kolberg [8].

IV. RELATED WORK

While there appears to be no work on the comparison of
blind search methods under churn, some of the approaches
mentioned in section I have independently undergone minimal
testing.

Using simulations with a pastry network of size 10,000
and average session times of {5, 15, 30, 60, 120, 600} minutes,
Castro et al. [4] show that the message success rate for
broadcasting over Pastry starts to drop dramatically when the
average session time drops below 30 minutes - however their
paper focuses on comparing a modified version of Pastry
known as HetroPastry against the unstructured overlay Gia,
rather than against other structured networks.

Merz and Gorunova [15] suggest a broadcast solution which
combines efficient broadcast with an epidemic communication
algorithm. They compare the message success rate of an
efficient broadcast algorithm over Chord against their com-
bination of an efficient broadcast algorithm and epidemic
communication algorithm, when under churn.

Recursive Partitioning Search (RPS) [22] over Pastry is
simulated under churn, and compared against the effect of
churn on flooding and random-walk. It is found that churn
has a fairly low impact on flooding, though a high impact on
random-walk. Data was replicated using a Zipf-like popularity
distribution, with the replication ratio ranging from 10% to
0.01% of nodes. Due to the data replication, RPS is found
to have limited dependence on churn, with a query success
rate of 99% even if 15% of peers are temporarily out of the
network.

V. BLIND SEARCH METHODS

Both Chord and Pastry assume a circular identifier space
of size N , in which each node maintain pointers to a list of
successors and a routing table.

In Chord the routing table is a set of nodes, known as
fingers, chosen at logarithmically increasing distance around
the ring, the ith entry in the table at node n contains the
identity of the first node that succeeds n by at least 2i−1

(i ≥ 1). In Pastry the routing table is set of rows, with all
the entries at row r referring to nodes whose identifier shares
the current node’s identifier in the first r digits, but whose
(r + 1)th digit does not match that of the current node.



Figure 1. Dissemination of an example broadcast message using efficient
broadcast in a Chord network, where N is a node and L is the limit parameter.

In the efficient broadcast algorithms nodes send the broad-
cast to each node in their routing table, giving it a limit
parameter. In the case of Chord this limit is the identifier of
the next finger, and is used to restrict the forwarding space
of the receiving node to (n, limit), as shown in figure 1. In
Pastry the limit is the routing table row number, and restricts
the forwarding space of the receiving node to rows greater
than the limit. When a node receives a broadcast message it
forwards it to all nodes in its routing table within the given
forwarding space.

A detailed explanation of efficient broadcast for Chord is
presented by El-Ansary et al. [6], who assumed the algorithm
would perform similarly to the underlying DHT when under
churn - as we explain in section VIII-A this is not the case.
The efficient broadcast algorithm is presented by Castro et al.
[5] for Pastry.

VI. AIMS

In this paper we aim to compare the performance of the
efficient broadcast search algorithms over Chord and Pastry
when subjected to various levels of churn, and investigate the
underlying causes of any differences found.

While it is suggested that broadcast over Pastry performs
better than Chord [22], we wanted to determine why there
is a difference and if there are extra costs associated with
increased performance. We also feel that the simulations done
by Vishnevsky et al. [22] in which data replication depended
on the documents popularity is more representative of the data
placement found in unstructured networks. We look at differ-
ent types of replication strategies commonly implemented in
structured overlays and compare their effect on performance
under churn.

VII. NETWORK SETUP

Using the OverSim peer-to-peer network simulation frame-
work [1] for OMNeT++, we ran two sets of simulations, with
network sizes of 1,000 nodes and 10,000 nodes. To simulate
churn the network was filled, thereafter nodes would join and
leave based on times drawn from a Weibull distribution, as
recommended by Stutzbach and Rejaie [18]. In the 1,000 node
network the lifetime mean ranged from 100 seconds to 10,000
seconds. In the 10,000 node network the lifetime mean ranged
from 100 seconds to 6,000 seconds.

Data was distributed randomly among the nodes, such that
each node would have on average 2 data items, plus any
replica. The replication rate was varied from 1 (no redundancy)
to 32.

Once the network reached its target size we initiated 20
searches sequentially, each from a random node and for a
random data item known to be currently within the network.
If the data item queried was found at least once the search
was considered a success.

In the Chord network we used parameters: N = 8, S = 1,
and D = {120, 10}, where N is the number of successors, S
is the stabilise delay, and D is the finger table maintenance
delay in seconds.

In the Pastry network we used parameters: L = 16, M = 0,
and B = 4, where L is the leaf set size, M is the neighbour
set size, and B is the number of bits per digit.

VIII. RESULTS

A. General Observations

To broadcast over a network efficiently requires building a
broadcast tree. In both of the methods studied this is done
on-demand using only information from the structure of the
underlying DHT. This means that it is important for the DHT
to be as up-to-date as possible to prevent a broken broadcast
tree being constructed, causing less than perfect success rate.
For example in figure 1, imagine node 4 had already left the
network - none of its children would receive the broadcast and
half of the network would go uncovered. We note that there
are two types of node failure to consider:

1) When a node leaves the network the routing tables may
become out-of-date for a period of time. If a node tries to
send a message to a node which has already left the net-
work, it will result in failure. A solution to this category
of failures would be to implement an acknowledgement
and timeout, allowing for message retransmission upon
failure. Since the network should self-repair the message
would be successfully delivered eventually. However
while this would increase the success rate, it would also
double the number of messages required, and increase
search latency. Additionally when the nodes routing
tables self-repair the new finger chosen may be in a
partition that has already received the message, and
retransmission would result in duplicates. While the
amount of duplicates would probably be minimal and
a small price to pay for higher message success rate, in
the interest of a fair comparison we did not implement
this addition.

2) If a node fails during the broadcast it may have received
the message, but not yet forwarded it to all of it’s
children within the delegated section.

B. Algorithm Validation

1) Efficient Broadcast: As found by El-Ansary et al. [6],
the efficient broadcast algorithm over Chord generated zero
redundant messages and exactly N−1 messages were required
to cover a network of size N . We found that in some cases



Figure 2. Bandwidth usage for broadcast in Chord and Pastry, 1,000 nodes.

a node that joined after the broadcast had started managed to
receive a message. This is because by the time the broadcast
had propagated down the tree, the new node had been added to
it’s predecessors routing table. We felt this wasn’t a problem,
in a search context the more nodes reached the better.

2) Pastry’s Broadcast Mechanism: Our simulations over
Pastry also generated zero redundant messages, however did
not always reach 100% of the nodes within the network.
This is because it is possible for rows in the Pastry routing
table to have gaps. According to the algorithm proposed by
Castro et al. [5], upon finding a gap the message should be
routed to the middle of the section missing from the routing
table. However this addition adds complexity and results in
redundant messages being generated. In the interest of a fair
comparison we did not implement this addition.

C. Bandwidth Consumption

Comparing the Chord and Pastry overlays (figure 2) the
most obvious difference is the number of messages sent, and
hence bandwidth consumed. During our 1,000 node simulation
the average number of sent messages/sec per node in the
Chord networks with a maintenance delay of 120 seconds and
10 seconds was 9.3 and 19.5 respectively, using an average
bandwidth consumption of 702 bytes/sec per node and 1.31
kilobytes/sec per node. In the Pastry network the average
number of messages/sec per node was 181.6, using an average
bandwidth consumption of 15.83 kilobytes/sec per node. In
terms of bandwidth consumption this is between 12 and 23
times as much! However it is important to note that this is
only an average, taken with lifetime mean ranging from 100
seconds to 10,000 seconds. At low churn rates the difference
is much lower, for example with a lifetime mean of 10,000
seconds Chord was sending 8.6 messages/sec (664 bytes/sec)
per node with a maintenance delay of 120 seconds, and 18.1
messages/sec (1.23 kilobytes/sec) per node with a maintenance
delay of 10 seconds, and Pastry 22.1 messages/sec (1.95
kilobytes/sec) per node. While bandwidth consumption is still
around 1.5 to 3 times higher with Pastry, this is nowhere near
the differences seen at higher churn rates. The results from the
10,000 node simulation were similar.

As can be seen in figure 2 Chord uses an almost constant
amount of bandwidth, the churn rate has no effect. This is
to be expected due to Chords use of periodic maintenance to
keep its routing table up-to-date. However as the churn level
increases, the amount of bandwidth required by Pastry also
increases rather dramatically. This is to be expected due to
its use of reactive maintenance for the whole routing table.

Figure 3. Average message success rate in Chord and Pastry, 1,000 nodes.

In many cases where either the churn rate is expected to
be high or the bandwidth available is low, or both such as
in mobile handsets, this high bandwidth requirement may
disqualify Pastry immediately.

We should note that the bandwidth used here was the av-
erage from all simulation runs, including replica maintenance
and query traffic.

D. Message Success Rate

When we start to look at the message success rate however,
in figure 3 we see the benefit of keeping a more up-to-
date routing table. In the 1,000 node network with Chord
(D = 120s) we see an average message success rate of
71.3%, ranging from 10.2% (with a lifetime mean of 100
seconds) to 97.8% (lifetime mean of 10,000 seconds). When
the maintenance delay in Chord is reduced to 10 seconds we
see an average message success rate of 91.1%, ranging from
51.3% to 99.6%. With Pastry the average message success rate
is 84.6%, ranging from 39.4% to 98.8%. While both networks
converge towards a message success rate of 100% as lifetime
mean increases, the interesting point is how they compare
under high churn.

E. Search Delay

Comparing the average hop count on received search quer-
ies, we find that Pastry comes out ahead. In the 1,000 node
networks Chord had an average hop count of 4.77, while Pastry
had an average hop count of 2.66. In the 10,000 node network
this increased to 6.12 for Chord and 3.40 for Pastry. This can
be explained by Pastry’s larger routing table, which results in
a wider and shallower broadcast tree than that in Chord.

F. Data Replication

One easy way we can improve our query success rate is by
optimising our data replication strategy.

1) Neighbour Replication: Neighbour replication is the
term used to describe various different replication strategies,
such as successor replication and leaf-set replication, in which
data is replicated at neighbours of the original node, as
can be seen in Figure 4. Neighbour replication is used by
both Chord and Pastry, as when a node leaves the network
the responsibility falls to its successor in Chord or nearest
neighbour in Pastry, replica of any required data will already
be in the right place.

However when considering search, neighbour replication is
not a good choice. When we lose a branch of the broadcast
tree we tend to lose multiple close together nodes, so ideally



Figure 4. Placement of replica in the neighbour replication strategy.

Figure 5. Placement of replica in the symmetric replication strategy.

we want replicas to be spread more evenly throughout the
network, as is achieved using multi-publication replication.

A separate simulation ran with a 1,000 node Chord network
showed that using 8 times replication only increased the
average query success rate by 6%.

2) Multi-publication Replication: Multi-publication replic-
ation is different from neighbour replication in that the data is
published at multiple keys within the network, each of which
is of equal importance. There are three main strategies for
implementing multi-publication replication:

• Multiple hash functions - To generate R unique keys R
different hash functions are used. How replica are spread
will depend on the hashing functions chosen.

• Correlated hashing - To generate R unique keys the
numbers r = 0 . . . R are prepended to the original
key before hashing. Assuming consistent hashing, replica
should be spread evenly throughout the network.

• Symmetric replication - To generate R unique keys, first
the hash h is calculated, then the keys are defined as
(h+(r ∗ N

R ))%N where r = 0 . . . R and N is the size of
the key space. Using this formula, replica will be spread
perfectly evenly throughout the network. An example of
replica placement when using symmetric replication can
be seen in Figure 5.

Multi-publication replication has the advantage that replicas
should be spread evenly throughout the network, assuming
uniform hashing. It also has the advantage that any node
can calculate the keys for all replica, allowing the issuing
of parallel look-ups, or even use heuristics to query the
“closest” replica. For our simulations we decided to implement
symmetric replication, but assuming uniform hashing all 3
strategies should perform similarly.

Figure 6. Effect of symmetric replication on query success rate in Chord
(D = 120s), 1,000 nodes.

Figure 7. Effect of symmetric replication on query success rate in Chord
(D = 10s), 1,000 nodes.

In figure 6 we can see how the query success rate increases
the higher the replication rate. However in a 1,000 node Chord
network with a maintenance delay of 120 seconds, even a
replication rate of 16 gives a low query success rate of around
45% under high churn (100 seconds lifetime mean).

Comparing this with a 1,000 node Chord network with the
maintenance delay is set to 10 seconds, in figure 7 we see
that a lower maintenance delay does indeed improve query
success rate. In fact now a replication rate of 16 is enough
to give 100% query success rate, even under high churn (100
seconds lifetime mean).

Similarly, in figure 8 we can see that in a 1,000 node Pastry
network it is possible to achieve 100% query success rate using
around 16 replica, even under high churn (100 seconds lifetime
mean).

Comparing the average query success rate over the differ-
ent set ups we can see the importance of keeping routing
tables as accurate as possible. We can also see that with
enough replication in the network the effects of churn can
be counteracted, however it is important to note that as the
network size increases, the number of replica has to increase
to compensate. We obviously need to remember that adding
replicas is not free, requiring storage on the nodes as well
as extra maintenance traffic. Ktari et al. found that multi-
publication replication requires much more bandwidth during
maintenance [13], and our simulations mirrored this.

Figure 8. Effect of symmetric replication on query success rate in Pastry,
1,000 nodes.



IX. CONCLUSIONS

By simulating search via broadcast under churn over Chord
and Pastry we clearly see the benefit of having the routing table
kept as up-to-date as possible. When Chord’s maintenance
delay is turned appropriately for the level of churn in the net-
work its message success rate can match, or even surpass, that
of Pastry. When augmented with reasonable data replication
we see it is possible to achieve a query success rate of nearly
100%, even under very high churn levels.

However it is obvious that the huge amounts of bandwidth
required by Pastry will disqualify its use in many circum-
stances.

In section VIII-A we noted that simply using acknow-
ledgement messages and resending if no acknowledgement
is received would increase the message success rate, at the
cost of a roughly twofold increase in messages sent. From
the results in section VIII-C we can see that implementing
this in Chord would probably be beneficial and still result
in reasonable bandwidth usage. In future work it would be
interesting to implement both this addition to Chord, and the
addition to Pastry mentioned in section VIII-B2 and compare
the results with the standard algorithms tested here.

In future work we aim to look at adapting the efficient
broadcast algorithm for use for the variable-hop overlay
Chameleon [2], which aims at keeping routing tables for high
bandwidth nodes at 99% accuracy, using a more efficient
maintenance algorithm.

We noted that having a larger routing table allows construc-
tion of a wider and shallower broadcast tree, resulting in lower
hop counts and hence faster searches. In a Chameleon based
overlay it would be possible to allow nodes to dynamically
decide how many of their available fingers to forward the
search to based on their available bandwidth, resulting in
a heterogeneous network where high bandwidth availability
equates to lower hop count and hence faster searches.

Chameleon does not specify the type of replication to be
used. When using purely neighbour replication we see little,
if any, benefit to blind search - however it is the default replic-
ation strategy used by most DHTs because it is advantageous
during regular look-ups. On the other hand, using purely
symmetric replication shows a large improvement during blind
search, but does not have the advantages during regular look-
ups that neighbour replication does; it also costs more in terms
of complexity and bandwidth to restore failed replicas. We
propose that using a combination of both strategies would
provide the benefits from both approaches, and benefit both
regular look-ups and blind searches.

REFERENCES

[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A Flexible Overlay
Network Simulation Framework. In IEEE Global Internet Symposium,
2007, pages 79 – 84. IEEE, 2007.

[2] A. Brown, M. Kolberg, and J. Buford. Chameleon: An adaptable 2-
tier variable hop overlay. In CCNC’09: Proceedings of the 6th IEEE
Conference on Consumer Communications and Networking Conference,
pages 770 – 775. IEEE Press, 2009.

[3] M. Castro, M. Costa, and A. Rowstron. Should we build gnutella on
a structured overlay? SIGCOMM Computer Communication Review,
34(1):131 – 136, 2004.

[4] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about
structured and unstructured overlays. In NSDI’05: Proceedings of
the 2nd conference on Symposium on Networked Systems Design &
Implementation, pages 85 – 98. USENIX Association, 2005.

[5] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman. An Evaluation of Scalable Application-
level Multicast Built Using Peer-to-Peer Overlays. In INFOCOM 2003:
Proceedings of the 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies, volume 2, pages 1510 – 1520. IEEE,
2003.

[6] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient Broadcast
in Structured P2P Networks. pages 304 – 314. Springer-Verlag, 2003.

[7] J. Furness and M. Kolberg. Wide Area P2P Service Discovery Mech-
anisms using Complex Queries. unpublished.

[8] J. Furness and M. Kolberg. A Survey of Blind Search Techniques in
Structured P2P Networks. In PGNet 2010: Proceedings of The 11th
Annual PostGraduate Symposium on The Convergence of Telecommu-
nications, Networking and Broadcasting, pages 313 – 318, 2010.

[9] A. Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash
Tables. PhD thesis, The Royal Institute of Technology (KTH), 2006.

[10] A. Ghodsi, L. O. Alima, S. El-ansary, P. Brand, and S. Haridi. Self-
Correcting Broadcast in Distributed Hash Tables. In Proceedings of the
15th International Conference on Parallel and Distributed Computing
and Systems, 2003.

[11] K. Huang and D. Zhang. A Partition-Based Broadcast Algorithm
over DHT for Large-Scale Computing Infrastructures. In GPC ’09:
Proceedings of the 4th International Conference on Advances in Grid
and Pervasive Computing, pages 422 – 433. Springer-Verlag, 2009.

[12] Y.-J. Joung and L.-W. Yang. Wildcard Search in Structured Peer-to-Peer
Networks. IEEE Transactions on Knowledge and Data Engineering,
19(11):1524 – 1540, 2007.

[13] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod. Performance Evaluation
of Replication Strategies in DHTs Under Churn. In MUM ’07: Pro-
ceedings of the 6th International conference on Mobile and Ubiquitous
Multimedia, pages 90 – 97. ACM, 2007.

[14] W. Li, S. Chen, P. Zhou, X. Li, and Y. Li. An Efficient Broadcast
Algorithm in Distributed Hash Table Under Churn. In WiCom 2007:
International Conference on Wireless Communications, Networking and
Mobile Computing, pages 1929 – 1932, 2007.

[15] P. Merz and K. Gorunova. Efficient Broadcast in P2P Grids. In
Proceedings of the Fifth IEEE International Symposium on Cluster
Computing and the Grid, pages 237 – 242, 2005.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Middleware
2001: Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329–350, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. pages 149 – 160. ACM, 2001.

[18] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer
Networks. In IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on Internet Measurement, pages 189 – 202. ACM, 2006.

[19] D. Talia and P. Trunfio. Dynamic Querying in Structured Peer-to-Peer
Networks. In DSOM ’08: Proceedings of the 19th IFIP/IEEE interna-
tional workshop on Distributed Systems: Operations and Management,
pages 28 – 41. Springer-Verlag, 2008.

[20] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and A. D. Gelman.
Scalable Blind Search and Broadcasting in Peer-to-Peer Networks. In
P2P ’06: Proceedings of the Sixth IEEE International Conference on
Peer-to-Peer Computing, pages 259 – 266. IEEE Computer Society,
2006.

[21] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and A. D. Gelman.
Tag Routing for Efficient Blind Search in Peer-to-Peer Networks. In
ISCC ’06: Proceedings of the 11th IEEE Symposium on Computers and
Communications, pages 409 – 416. IEEE Computer Society, 2006.

[22] V. Vishnevsky, A. Safonov, M. Yakimov, E. Shim, and A. D. Gelman.
Scalable Blind Search and Broadcasting over Distributed Hash Tables.
Computer Communications, 31(2):292 – 303, 2008.


