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Abstract:     

Enzymes that lengthen the carbon chain of polyunsaturated fatty acids are key to the biosynthesis of the 

highly unsaturated fatty acids, arachidonic, eicosapentaenoic and docosahexaenoic acids from linoleic 

and α-linolenic acids. A Mortierella alpina cDNA polyunsaturated fatty acid elongase sequence 

identified mammalian, amphibian, zebrafish and insect expressed sequence tags (ESTs) in GenBank.  

Consensus primers were designed in conserved motifs and used to isolate full length cDNA from livers 

of several fish species by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded 

putative open reading frames (ORFs) of 288-294 amino acids that were highly conserved among the 

fish species.  Heterologous expression in yeast, Saccharomyces cerevisiae, demonstrated that all of the 

ORFs encoded elongases with the ability to lengthen polyunsaturated fatty acid substrates with chain 

lengths from C18 to C22 and also monounsaturated fatty acids, but not saturated fatty acids. There were 

differences in the functional competence of the elongases from different fish species.  Most of the fish 

elongases showed a pattern of activity towards different fatty acid substrates in the rank order C18 > C20 

>C22, although the tilapia and turbot elongases had similar activity towards 18:4n-3 and 20:5n-3. The 

fish elongases generally showed greater activity or similar activities with n-3 than with n-6 

homologues, with the exception of the cod enzyme which was more active towards n-6 fatty acids. 
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1. Introduction 

 
Dietary long chain polyunsaturated fatty acids (PUFA), and highly unsaturated fatty acids (HUFA), are 

crucial to the nutritional health, physiology and reproductivity of higher vertebrates (Burr, 1981; 

Simopoulos, 2000).  HUFA have a well-known, essential role as components of structural 

phospholipids of cell membranes. Docosahexaenoic (DHA; 22:6n-3) and arachidonic (AA; 20:4n-6) 

acids are particularly required for proper neural development and function (Lauritzen et al., 2001), and 

metabolites of AA and eicosapentaenoic acid (EPA; 20:5n-3), such as leukotrienes and prostaglandins, 

have a wide range of signalling functions (Lands, 1993).  Diseases arising from HUFA deficiency are 

well documented in many species (Nugent, 2004; Graham et al., 2004).  In fish there are degenerative 

lesions in the viscera, erosions of fins and gills, and poor adaptation to low temperature (March, 1993). 

         As with all vertebrates, PUFA are essential components of the diet in fish, but qualitative and 

quantitative requirements vary with species (Sargent et al., 1995, 2002). In salmonids, dietary α-

linolenic acid (18:3n-3) and linoleic acids (18:2n-6) alone are sufficient for optimal growth.  In Nile 

tilapia (Oreochromis nilotica), both 18:2n-6 and AA are better growth promoters than are 18:3n-3 and 

EPA (Sargent et al., 1995, 2002). In marine fish, the dietary requirement is for HUFA rather than 

shorter chain PUFA.  For example, turbot (Psetta maxima), grow optimally on EPA and DHA, but not 

18:3n-3 (Sargent et al., 1995, 2002).  Differences in the capacity of fish species to thrive on diets 

containing only the C18 PUFA, 18:2n-6 and 18:3n-3, or to require dietary HUFA appear to be 

evolutionarily related to the nature of the fatty acid profiles present in their respective diets.  Thus, 

fresh water fish such as tilapia whose vegetarian diet generally lacks HUFA, convert 18:2n-6 and 

18:3n-3 to HUFA more efficiently than do marine species such as turbot whose predominantly 

carnivorous (largely piscivorous) diet is rich in HUFA (Sargent et al., 2002; Tocher 2003).   

         In vertebrates, biosynthesis of HUFA can proceed by sequential desaturation and elongation of 

18:2n-6 and 18:3n-3.  Synthesis of AA is achieved by a Δ6 desaturation of 18:2n-6 to produce γ-

linolenic acid (18:3n-6) that is elongated to dihomo-γ-linolenic acid (20:3n-6) and finally desaturated at 

the Δ5 position to produce AA (Fig.1) (Cook, 1996). The pathway for EPA synthesis from 18:3n-3 is 

essentially similar, but DHA synthesis requires two further elongation steps, a second Δ6 desaturation 

and a chain shortening step (Fig.1) (Sprecher, 2000).    Experimental evidence suggests that the 

dependence of marine fish on dietary HUFA is caused by deficiency in the activity of one or more of 

the key enzymes, Δ5 and Δ6 fatty acid desaturases, and fatty acid elongases, required for HUFA 

biosynthesis (Sargent et al., 2002; Tocher, 2003). In vivo studies, using [1-14C]18:3n-3 supplied to the 

fish either in force-fed pellets or injected intraperitoneally, consistently showed the superiority of 

freshwater species over marine species in the biosynthesis of 14C-EPA and 14C-DHA (Owen et al., 
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1975; Mourente and Tocher, 1993a,b, 1994).   In vitro studies indicated major impairments in the 

HUFA synthetic pathway of cell lines from marine fish species, turbot (TF) and gilthead sea bream 

(SAF-1) in comparison to those of cell lines from salmonids (Ghioni et al., 1999; Tocher and Ghioni, 

1999).  

          There are potentially profound implications of these differences in terms of animal nutrition, 

aquaculture and human health.  Fish are the only major dietary source for humans of n-3HUFA and, 

with declining fisheries, farmed fish constitute an increasing proportion of the fish in the human diet 

(Tidwell and Allan, 2002).  However, the current high use of fish oils, derived from feed grade marine 

fisheries, in aquaculture feeds is not sustainable, and will constrain continuing growth of aquaculture 

activities (Barlow, 2000). The only sustainable alternative to fish oils are vegetable oils which are rich 

in C18 PUFA but devoid of the n-3HUFA abundant in fish oils (Sargent et al., 2002). Therefore, there is 

currently considerable interest in the HUFA biosynthetic pathway in fish to determine the effectiveness 

with which vegetable oils can be utilized by cultured fish species (Sargent et al., 2002).  

         We have previously reported the cloning and functional characteristics of desaturase and elongase 

enzymes in the model fresh water species zebrafish (Danio rerio)  (Hastings et al., 2001; Agaba et al., 

2004). Zebrafish elongase when expressed in yeast (Saccharomyces cerevisiae) lengthens all the key 

intermediates including 18:4n-3, EPA and 22:5n-3 required for the biosynthesis of DHA.  This 

property is consistent with the fact that zebrafish can grow well on diets rich in vegetable oils lacking 

DHA, and whose hepatocytes have been shown to produce labelled DHA from [1-14C]18:3n-3 (Tocher 

et al., 2001).  A PUFA elongase with similar activity to the zebrafish elongase has also been cloned 

from Atlantic salmon (Salmo salar) (Hastings et al., 2004).  Here we extend the study of fish elongases 

to cover five fish species, spanning four Orders. Two species, Nile tilapia (Oreochromis niloticus, 

Perciformes) and African catfish (Clarius gariepinus, Siluriformes), inhabit freshwater systems and can 

thrive well on vegetable oil diets, and three are marine species, cod (Gadus morhua, Gadiformes), 

gilthead seabream (Sparus aurata, Perciformes); and turbot (Pleuronectiformes) that cannot thrive on 

diets lacking HUFA.  Thus, we report the cloning and functional characterisation of the cDNAs of 

PUFA elongases from species that span the range of dietary HUFA dependency observed among fish. 

 

2. Materials and methods 

 
2.1 Cloning of fish putative elongase cDNAs 

 

Fish elongase cDNAs were isolated by PCR amplication of cDNA derived from liver total RNA of 

African catfish, Nile tilapia, turbot, gilthead seabream and Atlantic cod prepared using TRIzol® 
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reagent (GibcoBRL, NY, U.S.A.). 5’ and 3’ Rapid Amplification of cDNA Ends (RACE) was achieved 

with the SMARTTM RACE cDNA amplification kit (Clontech, NJ, U.S.A).  For initial cDNA isolation 

degenerate primers were designed based on conserved motifs in the putative elongase expressed 

sequence tag (EST) sequences of Mortierella alpina (AF206662), Homo sapiens ELOVL5 

(AF231981), Mus musculus (AF170908), Xenopus laevis (BG813561), Danio rerio (AF532782, 

BF157708) and Drosophila melanogaster (AI113483).  The forward primers UniElo1A (C CTG TGG 

TGG TAY TAY TT) and UniElo1AA (GAR TTY ATG GAC ACN TTC TTC TT) targeted the 

conserved regions VLWWYYF and EFMDTFFF, respectively and the reverse primer UniElo1B (YTG 

NGT RTA YTT YTT CCA CCA) targeted the conserved region WWKK. Following isolation of cDNA 

fragments flanked by UniElo1AA and UniElo1B, specific primers for use in 5’RACE and 3’ RACE 

PCR were designed.  All PCR products were cloned in pBlueScript SKII+ vector (Stratagene, La Jolla, 

CA, USA) and sequenced using dye terminator chemistry in a Perkin Elmer ABI-377 DNA sequencer 

with associated software following the manufacturer’s protocols (Perkin Elmer, Applied Biosystems). 

The full-length sequences were assembled and translated to the conceptual amino acid sequences. 

Deduced amino acid sequences were aligned using ClustalX and sequence phylogenies were predicted 

using the Neighbour Joining method of Saitou and Nei (1987). Confidence in the resulting 

phylogenetic tree branch topology was measured by bootstrapping the data through 1000 iterations. 

 
2.2 Functional characterisation of fish elongase ORFs by heterologous expression in yeast, 

Saccharomyces cerevisiae 

 

Functional characterisation of the genes was by expression of the open reading frames (ORFs) of the 

putative fatty acid elongase sequences in S. cerevisiae.  Primers were designed for amplification of the 

ORFs of each fish elongase from the corresponding cDNA template (Table 1). These primers carried 

restriction sites to enable cloning into the episomal yeast expression vector pYX222 (R & D Systems 

Europe Ltd., Abingdon, Oxon, U.K.). Thus, the forward primers contain the Kozak translation 

initiation sequence (boldface) and an EcoRI site (underlined).  The reverse primers flank or contain the 

termination codon and have an XhoI site. After PCR using high fidelity DNA polymerase mix (Roche 

Diagnostics Ltd., Lewes, East Sussex, U.K.), the DNA fragments were restricted with EcoRI and XhoI 

and ligated into similarly treated pYX222 plasmid, which was then used to transform TOP10F’ E.coli 

competent cells (Invitrogen Ltd, Paisley, UK) as described previously (Hastings et al., 2001).  

Recombinant plasmids were prepared from at least six independent E.coli colonies and, after sequence 

confirmation, were used to transform bakers’ yeast (S. cerevisiae strain INVSc1). Yeast transformed 

with non-recombinant pYX222 plasmid was used as control.  Transformation of the yeast with the 

recombinant plasmids, and yeast culture were performed as described in detail previously (Hastings et 
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al., 2001).  Briefly, recombinant yeast was grown in S. cerevisiae minimal medium-histidine(SCMM-his) 

supplemented with the following PUFA substrates; stearidonic acid (18:4n-3), γ-linolenic acid (18:3n-

6), EPA (20:5n-3), AA (20:4n-6), docosapentaenoic acid (22:5n-3) and docosatetraenoic acid (22:4n-

6). Yeast cells were harvested, washed and dried, and total lipid extracted with ice-cold 

chloroform/methanol (2:1, v/v) essentially according to Folch et al. (1957).  Fatty acid methyl esters 

(FAME) were prepared by acid-catalysed transesterification (Christie, 1982), and FAME extracted, 

purified by thin layer chromatography, and analysed by gas chromatography (GC) all as described 

previously (Hastings et al., 2001).  The proportion of substrate fatty acid converted to the longer chain 

fatty acid product was calculated from the gas chromatograms as 100 × [product area/(product area + 

substrate area)].  Unequivocal confirmation of fatty acid products was performed by GC-mass 

spectrometry of the picolinyl derivatives as described in detail previously (Hastings et al., 2001).  

  

2.3 Materials 

 

Docosapentaenoic (22:5n-3) and docosatetraenoic (22:4n-6) acids (both > 98-99% pure) were 

purchased from Cayman Chemical Co., Ann Arbor, U.S.A.  Stearidonic (18:4n-3), γ-linolenic (18:3n-

6), EPA (20:5n-3) and AA (20:4n-6) acids (all >99% pure), BHT, 1,1’-carbonyldiimidazole, 2,2-

dimethoxypropane, fatty acid-free BSA, galactose, 3-(hydroxymethyl)pyridine, nitrogen base, 

raffinose, tergitol NP-40 and uracil dropout medium were obtained from Sigma Chemical Co. Ltd., 

Dorset, UK.   TLC (20 x 20 cm x 0.25 mm) plates precoated with silica gel 60 (without fluorescent 

indicator) were purchased from Merck, Darmstadt, Germany.  All solvents were HPLC grade and were 

from Rathburn Chemicals, Peebleshire, U.K. 

 

3. Results 

   

3.1. Sequence analyses 

 

A search of the public EST database identified sequences from several species including mammalian 

(AF231981, AF170908), avian (XM_426505), amphibian (BG813561), fish (AF532782, BF157708) 

and insect (AJ871925) that were related to the M. alpina PUFA elongase cDNA (AF206662).  By 

taking advantage of highly conserved motifs in the amino acid sequences, full-length elongase 

transcripts were isolated for each of the target fish species with ORFs of 885, 882, 885, 885 and 867 

base pairs for African catfish, Nile tilapia, gilthead sea bream, turbot and cod, respectively. The 

predicted elongase polypeptides consist of 288 – 294 amino acid residues, and include characteristic 
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features of microsomal fatty acid elongases, including a single histidine box redox centre motif 

(HXXHH), a canonical ER retention signal (carboxyl-terminal dilysine targeting signal), and multiple 

transmembrane regions (Fig.2).  The KXXEXXDT. QXXFLHXYHH (which contains the histidine 

box), NXXXHXXNYXYY and TXXQXXQ motifs are highly conserved in all PUFA elongases cloned 

to date (Meyer et al., 2004).  The translated amino acid sequences of the elongase cDNAs cloned from 

the five fish species here, along with our previously cloned zebrafish and salmon sequences, are very 

similar to each other and share at least 61% sequence identity with the human elongase ELOVL5 

(Table 2), with most of the sequence variation (insertions and substitutions) residing in the C-terminal 

region of the polypeptide (Fig. 2). Phylogenetic analysis by neighbour-joining comparing all the 

putative elongase sequences cloned from fish, along with a range (not exhaustive) of elongases from 

mammals, bird, insect, fungus and nematode, clustered all the fish sequences together and showed they 

were most similar to the mammalian (human/rodent) ELOVL5/elovl5 (rat rELO2) and ELOVL2/elovl2 

(mouse Ssc2) elongase sequences (Fig.3).  

 

3.2. Functional characterisation 

 
      The fish putative elongase cDNAs were functionally characterized by determining the fatty acid 

profiles of transformed S. cerevisiae containing either the pYX222 vector alone or the vector 

containing the fish elongase cDNA inserts, grown in the presence of a variety of possible fatty acid 

substrates including 18:4n-3 and 18:3n-6 (C18-20), 20:5n-3 and 20:4n-6 (C20-22) and 22:5n-3 and 22:4n-6 

(C22-24) (see Fig.1).  The fatty acid composition of the yeast transformed with the pYX222 vector alone 

showed the four main fatty acids normally found in S. cerevisiae, namely 16:0, 16:1n-7, 18:0 and 

18:1n-9, together with whichever exogenous substrate fatty acid was added, consistent with S. 

cerevisiae not possessing PUFA elongase activity.  With all the fish putative fatty acid elongase 

cDNAs investigated, the most prominent additional peaks were generally observed in the profile of 

transformed yeast grown in the presence of the C18 substrates, 18:4n-3 and 18:3n-6 (Figs. 4-7; Table 3).  

GC traces showing the fatty acid compositions of the yeast transformed with the pYX222 vector 

containing the putative fatty acid elongase cDNA inserts grown in the presence of 18:4n-3 are shown in 

Fig. 4. In addition to the major endogenous fatty acids (16:0, 16:1n-7, 18:0 and 18:1n-9, peaks 1-4), 

and the exogenously added substrate fatty acid (18:4n-3, peak 6) the traces show a major additional 

peak (peak 9) (Fig.4). Based on GC retention time and confirmed by GC-MS, the additional peak 

associated with the presence of the fish elongase cDNAs was identified as 20:4n-3, corresponding to 

the elongation product of 18:4n-3 (Fig.4).  Other additional peaks were also noted including 22:4n-3 

(peak 10), 18:1n-7 (peak 5) and 20:1n-9 and 20:1n-7 (peaks 7 and 8, respectively) (Fig.4). The fatty 
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acid compositions of transformed yeast grown in the presence of 20:5n-3 are shown in Fig. 5.  In 

addition to the endogenous yeast fatty acids and the exogenously added substrate fatty acid (20:5n-3, 

peak 11) the traces show a major additional peak (peak 12) confirmed by GC retention time and GC-

MS as 22:5n-3, the elongation product of 20:5n-3. When transformed yeast were grown in the presence 

of 22:5n-3 (peak 12), an additional peak (peak 13) was observed that was confirmed by GC-MS to be 

24:5n-3, as illustrated in Fig.6.  Although there were differences in the substrate specificities of the fish 

elongases, most showed a pattern of activity towards different fatty acid substrates in the rank order C18 

> C20 >C22 (Table 3).  However, the tilapia and turbot elongases showed similar activity towards 18:4n-

3 and 20:5n-3 (Table 3).  The elongase cDNA products tended to be more active towards the n-3 

substrate or show similar activity with n-3 and n-6 substrates, with the exception of the cod elongase, 

which was more active towards the n-6 fatty acid homologues (Fig.7; Table 3).    

 
 

4. Discussion  

 
Here we report the cloning and functional characterisation of several cDNAs derived from genes that 

are responsible for the chain elongation of PUFA in a range of freshwater and marine teleost fish 

species.  The cDNAs encode proteins that are very similar to mammalian PUFA elongases, and have all 

the main structural characteristics possessed by elongases derived from other systems.  These include 

the so-called histidine box (HXXHH), the canonical C-terminal endoplasmic reticulum (ER) retention 

signal, several predicted transmembrane domains and other highly conserved motifs (Meyer et al., 

2004). There is remarkable conservation of the predicted amino acid sequences of the fish species, and 

indeed among all the vertebrates.  The phylogenetic sequence analyses grouped the fish elongases into 

basically four clusters largely as expected based on the four main groups of modern teleosts identified 

in classical phylogeny with the clusters being catfish and zebrafish (Ostariophysi; siluriformes and 

cypriniformes), cod (Paracanthopterygii; gadiformes), trout and salmon (Salmoniformes; salmonidae), 

and tilapia, sea bream and turbot (Acanthopterygii; perciformes/chichlids and pleuronectiformes) 

(Nelson, 1994).  A similar phylogenetic grouping was observed previously when the sequences of fatty 

acid desaturases from a similar range of teleosts were analysed (Zheng et al., 2004a).  It was 

noteworthy that the fish PUFA elongases clustered most closely with the mammalian ELOVL5/elovl5 

and ELOVL2/elovl2 elongases that have been functionally characterised and shown to be PUFA 

elongases.  They were more distant from other mammalian elongases, such as rat rELO1 (also known 

as rat Elovl6).  The latter has been shown to be predominantly a 16:0 to 18:0 elongase (Inagaki et al., 

2002) that clustered with a chicken elongase (also with elovl6 homology), and human ELOVL4 and 
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mouse Ssc1 elongases that are not functionally characterised, but which are presumed to be involved in 

sphingolipid metabolism and the synthesis of very long chain fatty acids such as 26:0 (Lagali et al., 

2003; Tvrdik et al., 2000).  

       Studies over the last few years have shown that there is a large family of fatty acid elongases, 

which can be perhaps broadly classified into two main groups.  Elongases with activities predominantly 

towards saturated (and possibly monounsaturated) fatty acids and either closely linked to fatty acid 

synthesis (C12 - C16) or sphingolipid synthesis (C22 - C26), and elongases with activity predominantly 

towards PUFA with chain lengths in the C18 - C22 range. Functional characterisation by heterologous 

expression in S. cerevisiae showed that all the fish cDNAs were predominantly PUFA elongases with 

highest activity towards C18 fatty acids, but also with high activity towards C20 fatty acids and, in most 

cases, activity towards C22 fatty acids. The relatively loose substrate specificity of the fish elongases 

was highlighted by the presence of 22:4n-3 in the fatty acid profiles of S. cerevisiae when transformed 

with the catfish, tilapia, sea bream and turbot ORFs and grown in the presence of 18:4n-3, showing 

further elongation of 20:4n-3 produced by elongation of the exogenously added 18:4n-3.  Some 24:5n-

3 was also produced in yeast transformed with elongases from these species when incubated with EPA 

(data not shown), as previously observed with zebrafish and salmon elongases (Agaba et al., 2004; 

Hastings et al., 2004).   Recently, an elongase was cloned from rainbow trout (Oncorhynchus mykiss) 

and shown, along with elongases from an amphibian (Xenopus laevis) and the sea squirt (Ciona 

intestinalis), to accept both C18 and C20 PUFA substrates (Meyer et al., 2004). 

      Previously, it was shown that PUFA elongases from human (ELOVL5) and rat (rELO1/elovl5) 

were highly active towards C18 PUFA, but also showed significant activity towards 20:5n-3 and 20:4n-

6 (Leonard et al., 2000: Inagaki et al., 2002).  In contrast, the elongases of the filamentous fungus M. 

alpina (GLELO) and the nematode C. elegans were highly active towards C18 PUFA, but showed 

virtually no activity towards C20 PUFA, consistent with these organisms not containing any significant 

level of C22 fatty acids (Parker-Barnes et al., 2000; Beaudoin et al., 2000). Two further mammalian 

elongases, from human (ELOVL2) and mouse (elovl2/Ssc2), have been shown to possess the ability to 

elongate 22:5n-3 and 22:4n-6 to 24:5n-3 and 24:4n-6, respectively  (Leonard et al., 2002).  The mouse 

elovl2 clone was also able to elongate C18 and C20 PUFA, whereas the human ELOVL2 clone was only 

active towards C20 and C22 PUFA (Leonard et al., 2002).  Thus both mammals and fish have the ability 

to elongate C20 and C22 PUFA in addition to C18 PUFA.  Humans may require two enzymes for all 

these elongations whereas mouse and fish appear to require only one.  However, the existence of more 

than one PUFA elongase in human suggests that other elongases with differing substrate specificities 

may yet be isolated in fish.  
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    That fish, like mammals, can chain elongate C18, C20 and C22 PUFA is significant in terms of HUFA 

synthesis. Direct synthesis of DHA from 22:5n-3, as has been described in the marine 

microheterotroph, Thraustochytrium sp (Qui et al., 2001), requires desaturation of PUFA at the Δ4 

position, but this activity has not been demonstrated in any vertebrate system (Tocher et al., 1998; 

Tocher, 2003). Alternatively, synthesis of DHA in rat liver was shown by Sprecher and co-workers to 

proceeded via C24 PUFA intermediates through a pathway requiring two sequential elongations of 

20:5n-3 to produce 24:5n-3, which is then desaturated to 24:6n-3 before being chain shortened to 

22:6n-3 (Sprecher, 2000). Thus, 24:5n-3 is an important intermediate in the biosynthesis of DHA in 

mammals, and so the ability of fish PUFA elongases to produce 24:5n-3 through the elongation of EPA 

or 22:5n-3 is consistent with this pathway for DHA synthesis also operating in fish. Biochemical 

studies have also supported the hypothesis that DHA synthesis proceeds via C24 intermediates in fish, at 

least in trout (Buzzi et al., 1997).  

    The human elongase (ELOVL5) and rat elongase (rELO1) both also elongated monounsaturated 

fatty acids in addition to C18 and C20 PUFA (Leonard et al., 2000; Inagaki et al., 2002).  The 

observation of 18:1n-7, and 20:1n-9 and 20:1n-7, in the fatty acid composition of S. cerevisiae 

transformed with the fish elongase ORFs in the present study indicates elongation of 16:1n-7, and also 

of 18:1n-9 and 18:1n-7, respectively.  Therefore, these fish elongases were also able to elongate 

monounsaturated fatty acids in addition to PUFA, as previously demonstrated with the zebrafish and 

salmon elongases (Agaba et al., 2004; Hastings et al., 2004). The zebrafish elongase was also able to 

elongate saturated fatty acids as evidenced by the increased 18:0/16:0 ratio in transformed yeast (Agaba 

et al., 2004).  However, this was not observed with the salmon elongase (Hastings et al., 2004), and 

there was no evidence that any of the fish elongases in the present study were able to elongate saturated 

fatty acids. Neither the mouse elovl2 or human ELOVL2 clones were able to elongate saturated or 

monounsaturated fatty acids (Leonard et al., 2002).  A plant (moss, Physcomitrella patens) PUFA 

elongase was cloned and characterised, and shown to be highly specific for Δ6-desaturated C18 PUFA 

(18:4n-3 and 18:3n-6) and possessed no activity towards saturated and monounsaturated fatty acids 

(Zank et al., 2002).  Very recently, two types of elongase were cloned and characterised from the algae, 

Ostreococcus tauri and Thalassiosira pseudonana, which were specific for either Δ6-C18 PUFA or for 

Δ5-C20 PUFA, particularily EPA (Meyer et al., 2004).  

         The pattern of activity shown by the elongases from catfish and sea bream were very similar to 

those of the previously published zebrafish and salmon elongases (Agaba et al., 2004; Hastings et al., 

2004).  Tilapia was slightly unusual in that the activity towards 20:5n-3 was equal to that towards 

18:4n-3 and it had the highest activity towards 20:4n-6.  Interestingly, the warm water species 

(zebrafish, catfish, tilapia and sea bream) all displayed higher activities towards the n-6 fatty acids than 
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the colder water species (salmon, turbot and cod). Turbot elongase was less active towards C18 

substrates compared to almost all the other elongases.  Specifically, the ability of the turbot to elongate 

18:4n-3 was substantially less than that of the salmon elongase, whereas its ability to elongate 20:5n-3 

was similar to that of the salmon elongase, which is consistent with earlier biochemical studies in cell 

lines (Ghioni et al., 1999). Only the elongase from cod was less active than that from turbot.  Thus it 

may be that low elongase activity may be implicated in the poor ability of these marine species to 

synthesise n-3HUFA.  The sea bream elongase on the other hand was as active as the elongases of 

freshwater fish, again consistent with biochemical studies in cell lines which showed that the defect in 

the HUFA synthesis pathway in SAF-1 (sea bream fin) cells was due to low Δ5 desaturase activity and 

not low elongase activity (Tocher and Ghioni, 1999).  There were no obvious amino acid sequence 

differences between the fish species to indicate the differences in fatty acid elongation activity that 

were observed by heterologous expression.  It was noteworthy, however, that the Kozak sequence for 

the turbot elongase was atypical, having a C three nucleotides 5’ of the ATG translation initiation 

codon (see Table 1) that may affect translation efficiency.  However, substituting the C with an A did 

not affect the pattern of activity of the turbot elongase in heterologous expression although activity may 

be slightly enhanced (49% [A] v. 35% [C] conversion of 18:4n-3 to 20:4n-3 and 39.3% [A] v. 30.3% 

[C] conversion of 20:5n-3 to 22:5n-3) (results not shown). 

         The study of fatty acid elongases in fish is particularly relevant at the present time with the 

increasing use of vegetable oils, rich in C18 PUFA, as replacements for n-3HUFA-rich fish oils in 

aquaculture (Sargent et al., 2002). Fatty acid compositions of fish fed vegetable oils are characterised 

by increased levels of C18 PUFA and decreased levels of n-3HUFA, compromising their nutritional 

value to the human consumer (Bell et al., 2001, 2002; Izquierdo et al., 2003; Regost et al., 2003).  

Therefore, there is an urgent need to optimise the ability of fish to utilise C18 PUFA and produce 

HUFA. Although fatty acid desaturases, such as Δ6 desaturase, are known to be crucial in HUFA 

synthesis, there is increasing awareness that elongases may also be points of regulation in the pathway.  

For instance, biochemical studies suggested that the biosynthesis of 20:4n-6 from 18:2n-6 in M. alpina 

may be rate-limited by the activity of the C18-20 elongase (Wynne and Ratledge, 2000). Recently, the 

production of AA in M. alpina was increased by metabolic engineering through the construction of a 

strain overexpressing the elongase (GLELO) gene (Takeno et al., 2005).  Low C18-20 elongase activity 

had previously been observed in a turbot cell line in comparison to an Atlantic salmon cell line, 

suggesting it may be implicated in the inability of some marine fish to thrive on diets devoid of n-

3HUFA (Ghioni et al., 1999).  More recently, nutritional regulation of the expression of a PUFA 

elongase gene was reported in Atlantic salmon, with increased expression in fish fed diets in which fish 

oil was replaced by linseed oil (Zheng et al., 2004b).  Gene expression of the short chain fatty acid 
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elongase in mice was shown to be regulated by sterol regulatory element binding protein-1 (SREBP-1) 

(Moon et al., 2001; Matsuzaka et al., 2002). Defects in very long chain fatty acid elongase activity have 

been reported in mutant (quaking and jimpy) mice (Suneja et al., 1991), and have been implicated in 

human disease such as Stargardt macular degeneration (Lagali et al., 2003; Karan et al., 2004).  These 

latter examples highlight the serious consequences that deficiencies in fatty acid elongation in general 

can have.  

      In summary, full-length cDNAs for PUFA elongases were isolated from livers of several fish 

species. The amplified cDNA encoded ORFs of 288-294 amino acids whose sequences were highly 

conserved among the fish species.  Heterologous expression in yeast, S. cerevisiae, demonstrated that 

the ORFs encoded elongases with the ability to lengthen PUFA with chain lengths from C18 to C22 and 

monounsaturated fatty acids, but not saturated fatty acids.  Although there were no obvious amino acid 

sequence differences, there were differences in the functional competences of the elongases from 

different fish species that may contribute to the differing abilities of the species in terms of HUFA 

synthesis.  
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Legends to Figures. 

 

Fig.1. Pathways of highly unsaturated fatty acid (HUFA) biosynthesis from the C18 polyunsaturated 

fatty acids (PUFA), 18:3n-3 and 18:2n-6.  Solid lines represent steps that have been shown to occur in 

fish.  Dotted lines represent steps that have not been directly demonstrated in fish.   Δ6, Δ5 and Δ4, 

fatty acid desaturases; Elo, fatty acid elongases; Short, peroxisomal chain shortening. 

 

Fig.2. Comparison of the deduced amino acid sequence of fatty acyl elongases from catfish, tilapia, 

turbot, seabream and cod with that of elongases from zebrafish, salmon and human ELOVL5. Identical 

residues are shaded black and similar residues are shaded grey.  Identity/similarity shading was based 

on the BLOSUM62 matrix and the cut off for shading was 75%. Motifs highly conserved among fatty 

acid elongases from a wide range of organisms are boxed. Transmembrane regions (not indicated) were 

predicted from a hydropathy plot taking peaks with scores > 1.6 using a scan window size of 18 (Kyte 

and Doolittle, 1982). 

 

Fig.3. Phylogenetic tree comparing amino acid sequences of elongases from catfish, tilapia, turbot, 

seabream and cod with those of elongases from other fish species (zebrafish and salmon), mammals 

(human, mouse and rat), bird (chicken, Gallus gallus) amphibian (Xenopus laevis), insect (Drosophila 

melanogaster), fungus (M. alpina), nematode (C.elegans) and plant (moss, Physcomitrella patens).  

The tree was constructed using the N-J method using CLUSTALX and NJPLOT (Saitou and Nei, 1987).  

The horizontal branch length is proportional to the amino acid substitution rate per site.  The numbers 

represent the frequencies with which the tree topology presented here was replicated after 1000 

bootstrap iterations. 

 

Fig.4. Identification of fatty acid elongation products in transgenic yeast (S. cerevisiae) grown in the 

presence of 18:4n-3.  Fatty acids were extracted from yeast transformed with pYX222 vector without 

insert (A) or containing the putative fatty acid elongase cDNA inserts from catfish (B), tilapia (C), 

seabream (D), turbot (E) and cod (F).  The first four peaks in each panel are the main endogenous fatty 

acids of S. cerevisiae, namely 16:0 (1), 16:1n-7 (2), 18:0 (3) and 18:1n-9 (4), and peak 6 is the 

exogenously added substrate fatty acid, 18:4n-3.  The main additional peaks in panels B-F  represent 

elongated products of 18:4n-3, specifically 20:4n-3 (9) and 22:4n-3 (10).  Further additional peaks 

observed were 18:1n-7 (5), 20:1n-9 (7) and 20:1n-7 (8). Vertical axis, FID response; horizontal axis, 

retention time. 
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Fig.5. Identification of fatty acid elongation products in transgenic yeast (S. cerevisiae) grown in the 

presence of 20:5n-3.  Fatty acids were extracted from yeast transformed with pYX222 vector without 

insert (A) or containing the putative fatty acid elongase cDNA inserts from catfish (B), tilapia (C), 

seabream (D), turbot (E) and cod (F).  Peaks 1-5, 7 and 8 are as described in the legend to Fig.4. Peak 

11 is the exogenously added substrate fatty acid, 20:5n-3, and the main additional peak in panels B-F  

represents 22:5n-3 (12) the elongated product of 20:5n-3. Vertical axis, FID response; horizontal axis, 

retention time. 

 

Fig.6. Identification of fatty acid elongation products in transgenic yeast (S. cerevisiae) grown in the 

presence of 22:5n-3.  Fatty acids were extracted from yeast transformed with pYX222 vector without 

insert (A) or containing the putative fatty acid elongase cDNA inserts from catfish (B) and seabream 

(C).  Peaks 1-5, 7, 8 and 12 are as described in the legend to Fig.5. and the additional peak in panels B 

and C  represent 24:5n-3 (13) the elongated product of 22:5n-3. Vertical axis, FID response; horizontal 

axis, retention time. 

 

Fig.7. Identification of fatty acid elongation products in transgenic yeast (S. cerevisiae) grown in the 

presence of n-6 fatty acids.  Fatty acids were extracted from yeast transformed with pYX222 vector 

without insert (A and C) or containing the putative fatty acid elongase cDNA insert from cod (B and 

D).  Peaks 1-5 and 7 are as described in the legend to Fig.4.  Peak 14 in panels A and B  represents 

18:3n-6, while peak 16 in panels C and D represents 20:4n-6 (14), the exogenously added substrate 

fatty acids. The additional peak in panels B and D are 20:3n-6 (15)  and 22:4n-6 (17), the respective 

elongated products of 18:3n-6 and 20:4n-6. Vertical axis, FID response; horizontal axis, retention time. 
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Table 1. Forward (sense)  and reverse (antisense) primers used for 
heterologous expression

Species Direction Code Primer sequence

Catfish Sense CatEloxA 5’ aagaattcaaaatggaaatctttaaccacag 3’
Antisense CatEloxB 5’ cataactcgagaatgtacaggtcctcagtcgcc 3’

Tilapia Sense OniEloxA 5’ aagaattcaagctacggtgaaaaatggagacc 3’
Antisense OniEloxB 5’ cataactcgagtctcaaatgtcaatccaccc 3’

Turbot Sense TurbEloxA 5’ aagaattcaagcttggaactttctggtgacaaatg 3’
Antisense TurbEloxB 5’ aactcgagcaaatgtcaatccaccctcagc 3’

Sea bream Sense SauEloxA 5’ aaagaattcaaagggtgaaagatggagacc 3’
Antisense SauEloxB 5’ ataactcgagacagtgagaatggggtgacg 3’

Cod Sense CodeloxA 5’ taagaattcggtgaaaaatggagccattcaatca 3’
Antisense CodEloxB 5’ ataactcgagtgtacatcaatccaccctcagc 3’

The forward primers contain the Kozak translation initiation sequence (boldface)
and an EcoRI site (underlined).  The reverse primers flank or contain the 
termination codon and have a XhoI site (underlined).
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Table 2. Identity matrix showing the results of a pair-wise comparison between the identities of the 
amino acid sequences of the fish and human fatty acid elongases.

Catfish Tilapia Salmon Turbot Seabream Cod Human

Zebrafish 76.6 69.6 75.0 72.3 74.4 73.9 67.8
Catfish - 68.0 74.6 73.0 73.0 79.4 67.5
Tilapia - - 75.0 77.2 79.3 71.1 61.2
Salmon - - - 80.7 81.4 75.0 67.8
Turbot - - - - 86.0 75.5 65.2
Seabream - - - - - 77.2 68.2
Cod - - - - - - 65.5

Data are percentages of amino acid residues that are identical. 



 21 

 

Table 3. Functional characterisation of fish fatty acyl elongase cDNAs

n-3 n-6 n-3 n-6 n-3 n-6 n-3 n-6 n-3 n-6 n-3 n-6 n-3 n-6

C18-20 85.4 70.7 87.5 78.3 82.6 71.2 71.8 42.1 34.6 36.6 85.9 84.3 7.4 15.7
C20-22 49.4 25.6 48.1 40.8 86.6 61.8 38.9 22.6 30.3 18.1 66.8 43.9 0.8 1.5
C22-24 4.9 0.5 2.8 0.9 1.0 tr 0.7 0.3 0.6 0.6 4.7 0.8 nd nd

Results are presented as percentage of substrate fatty acid converted to elongated product.

Fatty acid substrates were; C18-20 , 18:4n-3 and 18:3n-6; C20-22 , 20:5n-3 and 20:4n-6; C22-24 , 22:5n-3 and 22:4n-6. 

nd, not detected; tr, trace (< 0.05%).

Turbot CodZebrafish Catfish Tilapia Salmon Sea bream
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Zebrafish METFSHRVNS YIDSWMGPRD LRVTGWFLLD DYIPTFIFTV MYLLIVWMGP 50
Catfish MEIFNHRLNN YIDSWMGPRD PRVRGWLLLD NYPPTLAFTI MYLMIVWMGP 50
Tilapia METFNHKLNA YIDSWMGPRD QRVRGMLLLD NYPPTFALTV MYLLIVWMGP 50
Salmon METFNYKLNM YIDSWMGPRD ERVQGWLLLD NYPPTFALTV MYLLIVWLGP 50
Turbot METFNHKLNT YIDSWMGPRD QRVRGWLLLD NYPPTFALTV MYLLIVWMGP 50
Sea bream METFNHKLNV YFETWMGPRD QRVRGWLLLD NYPPTFALTV MYLLIVWMGP 50
Cod MEPFNHRLNI YIESWMGPRD QRVKGWLLLD NYPPTLALSL AYLLILWLGP 50
HumanELOVL5 MEHFDASLST YFKALLGPRD TRVKGWFLLD NYIPTFICSV IYLLIVWLGP 50

60 70 80 90 100
.. .. | .. .. | . . .. |. . .. | . .. . |. .. . | .. . .| . .. .| .. .. | .. . .|

Zebrafish KYMKNRQAYS CRALLVPYNL CLTLLSLYMF YELVMSVYQG GYNFFCQNTH 100
Catfish KYMRNRQPFS CRGILVLYNL ALTFLSFYMF YELVAGVRQG GYNFFCQDTH 100

Tilapia KYMKHRQPYS CRAVMVFYNL GLTLLSFYMF YELVSAAWHG GYNFYCQNTH 100
Salmon KYMRHRQPVS CRGLLLVYNL GLTILSFYMF YEMVSAVWHG DYNFYCQDTH 100
Turbot KYMKNRQPYS CRGLLVVYNL GLTLLSFYMF YELLTAVWHG DYNFYCQDTH 100
Sea bream KYMKHRQPYS CRGLLVLYNL GLTLLSFYMF YELVTAVWYG GYNFYCQDTH 100
Cod KFMRDRKPLS CRPLLVAYNL VLTVLSFYMF YELVAAVRSG GYDFYCQDTH 100

HumanELOVL5 KYMRNKQPFS CRGILVVYNL GLTLLSLYMF CELVTGVWEG KYNFFCQGTR 100

110 120 130 140 150
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Zebrafish SGGDADNRMM NVLWWYYFSK LIEFMDTFFF ILRKNNHQIT FLHVYHHATM 150
Catfish SGGEADNRII HVLWWYYFSK LIEFMDTFFF IMRKNNHQIT FLHVYHHSTM 150
Tilapia SAEEADIKVI NVLWWYYFSK LIEFMDTFFF ILRKNNHQIT FLHLYHHASM 150
Salmon SAGETDTKII NVLWWYYFSK LIEFMDTFFF ILRKNNHQIT FLHIYHHASM 150
Turbot SVPEVDNKII NALWWYYFSK LIEFMDTFFF ILRKNFHQIT FLHIYHHASM 150

Sea bream SAQDVDNKII NVLWWYYFSK LIEFMDTFFF ILRKNNHQIT FLHIYHHASM 150
Cod SDDETDNKII HVLWWYYFSK LIEFMDTFFF ILRKNNHQIT FLHIYHHASM 150
HumanELOVL5 TAGESDMKII RVLWWYYFSK LIEFMDTFFF ILRKNNHQIT VLHVYHHASM 150
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Zebrafish LNIWWFVMNW VPCGHSYFGA TFNSFIHVLM YSYYGLSAVP ALRPYLWWKK 200
Catfish LNIWWFVMNW VPCGHSYFGA TFNSFIHVLM YSYYGLSAIP AIRPYLWWKK 200
Tilapia LNIWWFVMNW IPCGHSYFGA SLNSFIHVVM YSYYGLSAIP AIRPYLWWKK 200
Salmon LNIWWFVMNW VPCGHSYFGA SLNSFIHVLM YSYYGLSAVP ALRPYLWWKK 200
Turbot LNIWWFVMNS IPCGHSYFGA SLNSFVHVAM YSYYGLSAIP AIRPYLWWKR 200
Sea bream LNIWWVVMNW VPCGHSYFGA SLNSFVHVVM YSYYGLSAIP AMRPYLWWKK 200
Cod PNIWWFVMNW VPCGHSYFGA ALNSLIHVLM YSYYGLSAVP ALRPYLWWKK 200
HumanELOVL5 LNIWWFVMNW VPCGHSYFGA TLNSFIHVLM YSYYGLSSVP SMRPYLWWKK 200
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Zebrafish YITQGQLVQF VLTMFQTSCA VVWPCGFPMG WLYFQISYMV TLILLFSNFY 250
Catfish YITQGQLIQF VLTMIQTSCA VVWPCGFPKG WLYFQISYMI TLIIFFSNFY 250
Tilapia YITQLQLIQF FLTVTQTTLA VIWPCGFPIG WLYFQISYMF TLIILFMNFY 250
Salmon YITQGQLIQF FLTMSQTICA VIWPCGFPRG WLYFQIFYVV TLIALFSNFY 250

Turbot YITQLQLIQF FLTMSQTMCA VIWPCDFPRG WLYFQISYVV TLIILFSNFY 250
Sea bream YITQFQLIQF FLTMSQTIFA VIWPCGFPDG WLYFQIGYMV TLIFLFSNFY 250
Cod YITQGQLIQF FMTMTQTLCA LAWPCNFPRG WVWFQIGYLV TLIILFTNFY 250
HumanELOVL5 YITQGQLLQF VLTIIQTSCG VIWPCTFPLG WLYFQIGYMI SLIALFTNFY 250

260 270 280 290
.. .. | .. .. | . . .. |. . .. | . .. . |. .. . | .. . .| . .. .| .. .. | .. . .

Zebrafish IQTYKKRSGS RKS----DYP N---GSVNGH TNGVMSSEK- IKHRKARAD 291
Catfish KQTYKKRGDA LKS----DHR HNAVKSVNGH SNGTTHKET- VKQRKPRGD 294

Tilapia IQTY-KKSGS QRK----HPQ NSSLLSTNGH ANGTPSTDF- TAPKKLRVD 293
Salmon IQTYKKHLVS QKKE---CHQ NGSVASLNGH VNGVTPTET- ITHRKVRGD 295
Turbot IQTYKKHNAT LQK----QHP NGSAVSRNGH SNGTPSAEH- MAHKKLRVD 294
Sea bream MQTYNKHSAS LRK----EHQ NGSPLSTNGH ANGTPSMEH- AAHKKLRVD 294
Cod IQTYKKQKVS LKN------- -GS--STNGH ANGVSHVEH- SLHKKLRVD 288
HumanELOVL5 IQTYNKKGAS RRKDHLKDHQ NGSMAAVNGH TNSFSPLENN VKPRKLRKD 299
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Tilapia METFNHKLNA YIDSWMGPRD QRVRGMLLLD NYPPTFALTV MYLLIVWMGP 50
Salmon METFNYKLNM YIDSWMGPRD ERVQGWLLLD NYPPTFALTV MYLLIVWLGP 50
Turbot METFNHKLNT YIDSWMGPRD QRVRGWLLLD NYPPTFALTV MYLLIVWMGP 50
Sea bream METFNHKLNV YFETWMGPRD QRVRGWLLLD NYPPTFALTV MYLLIVWMGP 50
Cod MEPFNHRLNI YIESWMGPRD QRVKGWLLLD NYPPTLALSL AYLLILWLGP 50
HumanELOVL5 MEHFDASLST YFKALLGPRD TRVKGWFLLD NYIPTFICSV IYLLIVWLGP 50
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Tilapia KYMKHRQPYS CRAVMVFYNL GLTLLSFYMF YELVSAAWHG GYNFYCQNTH 100
Salmon KYMRHRQPVS CRGLLLVYNL GLTILSFYMF YEMVSAVWHG DYNFYCQDTH 100
Turbot KYMKNRQPYS CRGLLVVYNL GLTLLSFYMF YELLTAVWHG DYNFYCQDTH 100
Sea bream KYMKHRQPYS CRGLLVLYNL GLTLLSFYMF YELVTAVWYG GYNFYCQDTH 100
Cod KFMRDRKPLS CRPLLVAYNL VLTVLSFYMF YELVAAVRSG GYDFYCQDTH 100
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Sea bream LNIWWVVMNW VPCGHSYFGA SLNSFVHVVM YSYYGLSAIP AMRPYLWWKK 200
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Turbot YITQLQLIQF FLTMSQTMCA VIWPCDFPRG WLYFQISYVV TLIILFSNFY 250
Sea bream YITQFQLIQF FLTMSQTIFA VIWPCGFPDG WLYFQIGYMV TLIFLFSNFY 250
Cod YITQGQLIQF FMTMTQTLCA LAWPCNFPRG WVWFQIGYLV TLIILFTNFY 250
HumanELOVL5 YITQGQLLQF VLTIIQTSCG VIWPCTFPLG WLYFQIGYMI SLIALFTNFY 250
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Fig.3.  
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