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Abstract

In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its
attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally
body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering
body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer
generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able
to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with
WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study.
The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in
addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the
caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms
in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered
individuals.
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Introduction

In perceptual terms, the human body is an evolutionarily

important, complex 3D shape. It potentially conveys a wide range

of information, including information important for human mate

selection. Behavioural studies have shown that both male and

female observers are consistent and reliable in their ratings of the

attractiveness of female bodies [1,2]. It is likely that the perception of

attractive bodies is linked to the reward systems in the brain. Several

studies have shown that processing pleasant pictures differs from

neutral pictures by activation in regions including the anterior

cingulate, left precuneus, right and left insula, right inferior frontal

gyrus, and left caudate nucleus [3–5]. Additionally, when observers

judge facial attractiveness functional imaging shows an activation of

the medial orbitofrontal cortex, left anterior frontal cortex, left

frontal-temporal junction, nucleus accumbens, right caudate

nucleus, and visual cortex [6–8]. This pattern of activation is likely

to reflect the positive reward properties of faces. The role of the

orbitofrontal cortex and the striatum in processing reward-based

stimuli has been extensively documented [6,9] and it is likely that an

observer’s preference for an attractive face is mediated by its reward

value. We therefore hypothesized the attractiveness preferences for

bodies would activate the same reward systems.

The two features of the body most frequently used to explain

attractiveness judgments are overall body fat, indexed by the body

mass index (BMI) (e.g. [1,10,11]) and the specific distribution of fat

deposition on the lower body, indexed by the ratio of waist

circumference to hip circumference — the waist-to-hip ratio (WHR)

(e.g. [12,13]. The role of BMI in attractiveness judgements is

particularly important, as it is an over-estimation of body mass that

systematically shifts the ideal body size of eating disordered women

towards a lower body weight (i.e. they see themselves as bigger than

they are, which produces a dissatisfaction with their body size), which

in turn drives their restrictive dietary behaviour (e.g. [14–16]).

Under normal circumstances, BMI and WHR co-vary in

Caucasian populations [17]. For example, the Health Survey for

England [18], which includes directly obtained measurements

from 1808 Caucasian women of reproductive age (16–45) ranging

in BMI from around 15–45, shows a correlation between BMI and

WHR of 0.45. That BMI and WHR and other related physical

variables are correlated is not surprising. As a body adds fat, the

circumference of the waist and hips also increases; BMI is strongly

correlated with both waist circumference (Pearson Correlation,

r = 0.87, p,0.0001) and the hip circumference (r = 0.90,

p,0.0001). WHR is also correlated with weight (r = 0.40,

p,0.0001) and to a lesser extent height (r = 0.12, p,0.0001)

[18]. For studies of attractiveness, the correlation between features

such as BMI and WHR raises the problem of collinearity amongst

explanatory variables, and raises the question of whether WHR or

BMI is the primary cue used in attractiveness judgements.

In an attempt to avoid this problem, a recent fMRI study used

before and after photographs of the lower torsos (from the bottom

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27255

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9050145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the ribcage to half way down the thigh) of 7 women who had

undergone a cosmetic surgical procedure [19]. The surgery

involved moving adipose tissue from the stomach to the hips and

thighs, and it is reported that this changed WHR but made no

statistically significant change to BMI. These images appeared to

activate regions which are associated with neural reward mecha-

nisms (such as the anterior cingulate cortex and nucleus

accumbens). It was suggested that the changing WHR of these

images modulated the activity in the reward systems, but by

contrast, changing BMI had no effect. However, this study had two

serious flaws. Firstly, there were potential problems with the images.

The photographs were not standardised and vary in viewing angle

(varying between a profile view and a view-point behind the body)

and illumination in the before and after conditions, so although the

women in these pictures are suggested not to vary significantly in

BMI in the before and after surgery pictures, they may appear to alter

in their BMI. Moreover, both behavioural and eye-movement

studies suggest that the degree of stomach depth (i.e. the degree to

which the stomach protrudes) is used as a key cue to judge BMI

[10,20,21]. This surgical intervention, which artificially alters this

part of the body, may lead observers to perceive a difference in BMI

in the before and after condition. This is important because, the

observers have only the visual image to go on, and if the image

appears to vary in BMI (even if there is no significant change in the

BMI of participants in the photographs) then the observers will react

to the images as though they do alter in BMI. Thus, the apparent

BMI and WHR of the pictures may co-vary and it is not clear

whether the reported changes in neural activity were due to changes

in WHR, apparent BMI or some mixture of the two. Secondly, it

appears that no correction factor was applied to the BOLD activity

reported in their paper, to compensate for multiple statistical testing

in the analysis. Such an analysis is not without precedent. A number

of published studies have also not used corrections factors, but from

a purely statistical standpoint, without such correction factors

BOLD activations cannot be said to be statistically significant [22].

It is possible to construct a set of artificial female bodies using

four independent descriptors of shape derived from a principal

components analysis (PCA) of real body shape [1]. The body mass

of these bodies can be quantified using the perimeter-to-area ratio

(PAR) [21,23]. The PCA allows a separation of the different

components of body size and shape, and allows the construction of

sets of bodies which vary in BMI but not in WHR, and in WHR

but not BMI. We combined the behavioural rating of these images

with an fMRI study to determine whether changing BMI or WHR

does modulate activity in the reward areas of the brain and to

establish a foundation for studies on patients with disordered

perception of body size and shape, such as patients with Anorexia

and Bulimia Nervosa.

Methods

Ethics Statement
Ethical approval was given for this study from the Aston University

Human Sciences Ethical Committee and was conducted in

accordance with the guidance given in The Declaration of Helsinki

[24]. Participants received information about the study including its

purpose, explaining what their participation would involve and

explaining their right not to participate and to withdraw from the

study at any time. Each participant gave their written consent to

participation before the study they took part in commenced.

Participants
12 Participants were recruited from the student and staff

population at Aston University (6 were male and 6 were female).

Each participant was screened for their safety and health

according to a protocol approved by Aston University Human

Sciences Ethical Committee 24 Hrs before attending, and again

immediately prior to, their scanning session. Before the fMRI scan,

participants were shown the stimulus sequence running and used

the button response to practice rating one or two images on a

computer screen outside the scanner room. They were instructed

to provide their initial reaction and reassured that the images were

computer generated images and not photographs of real women

who could potentially be upset by the ratings.

Behavioural Methods
During the experiment participants viewed grey scale images of

artificial female figures presented via a back projector onto a

screen mounted at the end of the MR scanner. The stimuli

(N = 40) were generated from a principal components analysis of

images of real figures [1], and an accurate estimate of the BMI of

the bodies can be calculated using PAR [23]. This estimate is

referred to as BMIPAR. In this study, BMIPAR varied from 20.9 to

23.3 (limits that are well within the normal BMI range of 18.5–

24.9). We varied the WHR range from 0.65 to 0.77. Examples of

two figures and the effect of varying PAR are shown in figure 1A.

Figure 1. Female Body Shape Stimuli and experimental design.
A): Sample images ranged from a low value of PAR (left) to a high value
(right). There were 40 such images with different PAR values spanning a
range corresponding to the full range of body shapes typical of the
normal BMI range for young female adults. B): The stimulus sequence:
Fixation cross (1, 2 or 3s); Body image appears with empty rating bar;
after 2s of body attractiveness assessment the rating bar started to fill in
red alerting participant to the approaching reporting phase; 200ms
later the fill colour changed to green after which a rating of
attractiveness could be made by pressing a response button, short
green segments signalling low attractiveness ratings, and long green
segments signalling high attractiveness ratings, the green bar filled
completely in 2s; 7s after first appearing the stimulus offset to a blank
screen followed by a random delay before the next trial started,
indicated by fixation re-appearance. Total trial durations were, 16, 18 or
20 s.
doi:10.1371/journal.pone.0027255.g001
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Procedure
Refer to figure 1B showing the stimulus sequence. In an event-

related design, the body images were displayed for 7 seconds,

appearing after a fixation cross of variable duration (1–3 seconds).

The rating phase started 2 seconds after the appearance of the

stimulus body image with the appearance of an animated scale

bar at the bottom of the screen. The scale bar started filling with

red from the left hand end of the bar to alert the participants to

prepare to deliver their attractiveness rating. Then 200 ms later,

the scale bar started to fill with green, indicating that a response

could be made. Participants pressed the response button when

the proportion of green filling matched their attractiveness rating,

and the bar stopped filling. If the bar was allowed to completely

fill with green it took about 2 seconds, representing the most

Figure 2. Participant attractiveness ratings: correlation with BMI and WHR. A)Plot of average attractiveness ratings against the BMIPAR of
the bodies in the photographs. B)Plot of average attractiveness ratings against the WHR of the bodies in the photographs.
doi:10.1371/journal.pone.0027255.g002
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attractive response rating. At the end of the 7 second stimulus

display time, the screen was blanked to black. The blank inter-

stimulus interval (ISI) continued until the fixation cross appeared

again to cue the next trial. The length of the ISI varied between 6

and 12 s.

FMRI Methods
All MRI images were collected using a 3-Tesla Siemens

Magentom Trio MRI Scanner at Aston University. T2* weighted

gradient echo sequences were acquired with the following

parameters: TR = 3000ms, TE = 60ms, 64x64 matrix of 3x3mm

in plane resolution, 44 slices of 3mm thickness per whole brain

volume. 241 volumes were collected in a total experiment run-

time of about 12 minutes. In addition, an anatomical volume was

acquired using MP-RAGE inversion recovery sequence with

GRAPPA, 256 x256 matrix, 1x1x1 mm voxels and 176

slices.

Analysis
FMRI images were analyzed using SPM2 (The Wellcome Trust

Centre for Neuroimaging http://www.fil.ion.ucl.ac.uk/spm/).

The images were realigned, normalised to the MNI template

brain and smoothed to 8mm FWHM. The following events of

interest were modelled with the canonical haemodynamic

response function (HRF) for each participant for the first level

analysis: fixation onset, body image onset (BODY), and the scale

bar onset (JUDGE). Covariates of interest included in the model

design were the participant rating (RATING), the body image

BMI index (BMIpar) and the body image WHR index (WHR). The

main focus of the analyses were the separate regressions of the

BOLD activation associated with the BODY event and the body

image shape (BMIPAR), body image waist-to-hip ratio (WHR), and

participant attractiveness ratings (RATING). The statistical

contrast images (T statistic images) for each participant were then

entered into the second level group analysis. For the fMRI results

Table 1. Negative regression of BODY and BMIPAR.

Cl Sx K cPu FDR T EqZ X Y Z H Structure BA

1 1 194 0 0.007 10.39 5.03 245.58 268.35 25.67 L Middle Occipital Gyrus BA 37

1 2 (194) 0.007 9.6 4.87 248.51 274.97 4.46 L Middle Occipital Gyrus BA 19

1 3 (194) 0.014 7.72 4.44 231.92 286.5 6.35 L Middle Occipital Gyrus BA 18

2 4 59 0 0.007 10.25 5 43.1 4.04 29.71 R Inferior Frontal Gyrus BA 9

2 5 (59) 0.021 6.24 4 40.24 22.06 34.49 R Precentral Gyrus BA 6

2 6 (59) 0.022 5.91 3.89 31.95 1.04 31.94 R Precentral Gyrus BA 6

2 15 30 0 0.014 7.01 4.24 40.46 29.73 26.7 R Middle Frontal Gyrus BA 9

3 7 83 0 0.007 9.83 4.92 28.86 239.64 44.25 NG

3 8 (83) 0.014 7.65 4.42 31.7 244.72 38.41 R Inferior Parietal Lobule BA 40

3 9 (83) 0.026 5.69 3.81 42.75 236.92 44.74 R Inferior Parietal Lobule BA 40

4 10 89 0 0.007 9.56 4.86 26.13 211.94 49.53 R Precentral Gyrus BA 6

4 11 (89) 0.016 6.65 4.13 28.73 210.47 63.23 R Precentral Gyrus BA 6

5 12 91 0 0.013 7.79 4.45 40.68 259.11 216.85 RCb Declive *

5 13 (91) 0.014 6.91 4.21 48.86 265.78 26.53 R Middle Occipital Gyrus BA 37

5 14 (91) 0.017 6.52 4.09 37.73 274.11 27.51 R Inferior Occipital Gyrus BA 19

5 19 8 0.032 0.024 5.81 3.85 24 267.4 217.92 RCb Declive *

5 20 14 0.007 0.024 5.78 3.84 26.35 287.06 9.99 R Middle Occipital Gyrus BA 19

5 27 9 0.025 0.041 4.68 3.4 48.68 267.09 6.85 R Middle Temporal Gyrus BA 37

5 28 (9) 0.043 4.58 3.36 37.57 269.83 6.41 R Middle Occipital Gyrus BA 19

6 16 43 0 0.014 6.98 4.23 26.12 266.79 33.52 R Precuneus BA 7

6 17 (43) 0.038 4.93 3.51 26.13 277.71 29.79 R Cuneus BA 7

6 26 24 0.001 0.032 5.25 3.64 20.39 268.07 46.82 R Precuneus BA 7

7 18 33 0 0.021 6.14 3.97 12.92 9.6 2.7 R Caudate Caudate Head

7 24 36 0 0.031 5.33 3.67 214.87 9.48 4.92 L Lentiform Nucleus Putamen

7 25 (36) 0.033 5.19 3.62 217.83 5.4 18 L Caudate Caudate Body

8 21 27 0 0.025 5.71 3.82 224.02 265.05 46.35 L Superior Parietal Lobule BA 7

8 22 (27) 0.043 4.6 3.37 221.11 266.81 35.43 L Precuneus BA 7

9 23 12 0.011 0.026 5.67 3.8 223.9 26.62 54.59 L Sub-Gyral BA 6

The locations of activations reported in the table (columns X, Y, Z in mm) were transformed using the procedure of Lancaster et al. 2007 from those reported from the
SPM2 software to obtain more accurate reference to Talairach and Tourneaux atlas co-ordinates (Talairach and Tounoux, 1988). The columns left to right are: Cl - the
cluster index produced by the hclust algorithm; Sx - the sequence index produced by the SPM2 analysis and for reference to the dendrogram of figure 3; K - the cluster
extent associated with activations, in voxels; cPu - the uncorrected cluster level type 1 error rate; FDR –false discovery rate corrected for multiple comparisons; T- t-
values of the activations; EqZ - equivalent Z scores; X, Y, Z; H – Hemisphere or subcortical region; Structure –brain anatomical label reported by the Talairach Deamon
java client [27] (NG = No Grey; RCb – right cerebellum); BA – Brodmann area (* = not in the cortex). The two sets of coordinates underlined and italicised are the Left
and Right hemispheric activations that we identified in this study that were similarly located to other reports of an extra-striate body area.
NB 9 clusters vs. 8 were chosen as this divides the precentral cluster from IPL.
doi:10.1371/journal.pone.0027255.t001
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the statistical threshold for detection of a significant response

across the group of participants was set at a false discovery rate

(FDR) of (p,0.05) corrected for the whole brain volume, and

additionally the minimum size of cluster(k) accepted was typically

K . = 8 for an uncorrected cluster significance cPu,0.05.

Results

Behavioural Results
The behavioural results (Figure 2) show a negative correlation of

attractiveness ratings with BMIPAR (r = 20.84, P,0.0001).

However, there was no significant correlation of attractiveness

with WHR (r = 20.07, p = 0.666).

Negative Regression of BMIPAR with Body Event
Table 1 shows the results of a negative regression of the BOLD

signal associated with the BODY event and the BMIPAR values. The

locations of activations reported in the table (columns X, Y, Z in

mm) were transformed from those reported from the SPM2

software using the procedure of [25] to obtain more accurate

reference to Talairach and Tourneaux atlas co-ordinates [26].

Anatomical identification was obtained by submitting the trans-

formed co-ordinates to the Talairach Daemon Java client [27]. The

X,Y & Z co-ordinates were additionally clustered using hierarchical

k-means clustering in R using a minimum variance distance

measure (procedure hlust( ), http://www.r-project.org/), and the

resulting tree cut to yield 9 clusters, shown in table 1 in column Cl

and labelled 1 to 9 . This gives broadly the same clustering as

provided by SPM2, but provides some additional structuring of the

activations. Within the clusters the ordering of the activations was

retained as in the original SPM output. Column Sx in table 1

provides an ordered index to allow readers to re-sort the table into

the original ordering from SPM2 if required (Figure 3a).

Figure 3. Negative Regression of BMIPAR with BOLD. A)Cluster dendrogram for (X,Y,Z) peak BOLD activations sites for the negative regression
of BMIPAR with BOLD signal intensity based on a linear distance measure computed on the (Talairach transformed) co-ordinates of significant peaks of
BOLD activation. Dendrograms in the following figures were computed this way too. B)Negative regression of BMIPAR on BOLD intensity. Activations
are superimposed on the Colin27 template supplied with SPM2 courtesy of the Montreal Neurological Institute. Cross hairs located at [245, 269, 26]
(untransformed MNI co-ordinates) show the putative location of the EBA in the left hemisphere; there is a corresponding activation in the right
hemisphere. C)Bilateral caudate activation is visible at the cross hair position [215, +12, 23] (untransformed MNI co-ordinates) and the
corresponding position in the right hemisphere. D)A superiorly positioned slice selection shows frontal eye fields and bilateral posterior parietal
activity. Crosshair location [+30, 23 ,+56] untransformed coordinates.
doi:10.1371/journal.pone.0027255.g003
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Cluster 7 of table 1 shows regions of the caudate and lenticulate

nucleus bilaterally where BOLD signal increased with decreasing

BMIPAR. Lower BMIPAR values indicate slimmer body shapes and

these were rated as more attractive by our participants, so

increasing attractiveness, indexed by BMIpar, increases activity

within the caudate and lenticulate nuclei.

There was also extensive activation of visual cortical regions

within the occipital lobe, but of chief interest to us are the two

regions underlined and italicised in table 1: clusters 1(Sx = 1) and

5(Sx = 13). These were the largest clusters of activation observed;

they were located in the middle occipital gyrus. The crosshairs in

figure 3B are centred at the largest activation (245.6, 268.4,

25.7), identified in table 1 as cluster 1(Sx = 1); we believe this is

the left hemispheric location of the extrastriate body area (EBA),

BA37 (cf.[28,29]). Its companion activation visible in the right

hemisphere (cluster 5(Sx = 12)) was located just below the cortical

surface but the activated region extends into the cortex and the

second cluster sub-peak 5(Sx = 13) lies in the region of the EBA in

the right occipital lobe (48.9, 265.8, 26.5), BA 37. The balance of

the other brain activity revealed with this analysis reflects extensive

visual activations in the occipital lobe – Clusters 1 & 5, BA 18 & 19

– and the occipito-parietal cortex – clusters 3, 6, & 8 BA40 & BA7.

Frontal regions, possibly the frontal eye fields, are also engaged in

the task (Figure 3D, axial slice, and cluster 2, 4 & 9, BA6- also

compare this image with figure 6 from[30]) all of which may

reflect the relatively high level visual judgement and visuo-motor

planning needed to perform the task. The results show that brain

regions responsive to body-shape and size can be modulated by

artificially produced body-shaped stimuli with varying BMIPAR.

Positive Regression of BMIPAR with Body
The results of a positive regression of BODY and BMIPAR

values are shown in table 2. The analysis was as for the negative

BOLD regression with BMIPAR and again the k-means clustering

tree of the corrected X,Y & Z co-ordinates (figure 4a) was cut to

yield 9 clusters; these are shown in column Cl of table 2 , labelled

1–9. The preponderance of BOLD activity observed was in or

near the posterior cingulate gyrus of the right hemisphere

(figure 4B). The largest region activated (Table 2, Cl = 1,Sx = 1–

3) had an extended volume of activation engulfing the para-

hippocampal gyrus and the posterior caudate. Cluster 4 (Sx = 8,

13, 16) seems to be a companion activation to this in the left

hemisphere. Anterior cingulate activation was also evident, cluster

2 showing the close association between the left and right cortices;

one location in this group was reported within the superior frontal

gyrus (Cl = 2, Sx = 22, BA9). Visual association areas within the

occipito- temporal route were activated too, Clusters 5, 7, 8 & 9

predominantly being reported as BA 18, 19, 20, 21, & 22; bilateral

anterior temporal lobe activation within the medial temporal gyrus

is shown in Figure 4C. A single relatively strong activation was

seen in the superior frontal gyrus (cluster 6, Sx = 12, [221.0, 13.5,

51.1] Talairach transformed coordinates; figure not shown),

suggesting the engagement of the frontal eye fields as observed

with the previous contrast.

Table 2. Positive regression of BODY and BMIPAR (otherwise as in table 1).

Cl Sx K cPu FDR T EqZ Punc X Y Z H Structure BA

1 1 81 0 0.019 9.47 4.84 0 12.65 241.75 8.64 R Posterior Cingulate BA 29

1 2 (81) 0.02 6.73 4.15 0 18.27 244.05 3.12 R Parahippocampal Gyrus BA 30

1 3 (81) 0.028 5.67 3.8 0 20.91 242.32 14.13 R Caudate Caudate Tail

2 4 45 0 0.019 9.22 4.79 0 7.53 43.69 0.44 R Anterior Cingulate BA 32

2 5 (45) 0.026 5.94 3.9 0 13.02 35.02 2.41 R Anterior Cingulate *

2 6 (45) 0.033 5.24 3.64 0 4.75 27.2 23.88 R Anterior Cingulate BA 24

2 14 11 0.015 0.021 6.61 4.12 0 26.44 23.94 1.03 L Caudate Caudate Head

2 15 (11) 0.041 4.74 3.43 0 211.94 29.82 21.21 L Anterior Cingulate BA 24

2 22 13 0.009 0.029 5.52 3.74 0 212.17 47.29 22.06 L Superior Frontal Gyrus BA 9

3 7 353 0 0.019 8.98 4.74 0 27.17 244.52 37.77 L Cingulate Gyrus BA 31

3 9 (353) 0.019 7.55 4.39 0 4.1 259.78 20.3 R Precuneus BA 23

4 8 (353) 0.019 8.39 4.6 0 220.72 250.22 9.98 L Posterior Cingulate BA 30

4 13 18 0.003 0.019 7.31 4.33 0 220.36 233.9 212.79 LCb Culmen *

4 16 7 0.044 0.024 6.08 3.95 0 229.09 239.52 16.26 L Insula BA 13

5 10 69 0 0.019 8.6 4.65 0 248.07 211.39 211.13 L Sub2Gyral BA 21

5 11 (69) 0.02 7.06 4.25 0 245.21 25.3 215.91 L Middle Temporal Gyrus BA 21

6 12 29 0 0.019 7.87 4.48 0 221.01 13.46 51.14 L Superior Frontal Gyrus BA 6

7 17 40 0 0.027 5.81 3.85 0 3.99 277.07 24.07 R Cuneus BA 18

7 18 (40) 0.043 4.66 3.39 0 21.69 286.21 31.21 L Cuneus BA 19

8 19 41 0 0.029 5.59 3.77 0 51.8 212.44 24.13 R Superior Temporal Gyrus BA 22

8 20 (41) 0.039 4.85 3.47 0 43.62 28.55 214.71 R Sub-Gyral BA 21

8 21 (41) 0.049 4.36 3.25 0.001 46.38 216.95 215.46 R Sub-Gyral BA 20

9 23 21 0.001 0.035 5.08 3.57 0 259.57 244.43 9.87 L Superior Temporal Gyrus BA 22

9 24 13 0.009 0.042 4.69 3.41 0 243.26 271.76 29.18 L Angular Gyrus BA 39

doi:10.1371/journal.pone.0027255.t002
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Positive Regression of WHR with Body
No activations reached the predetermined criteria for detection

(false discovery rate p(FRD),0.05, cluster extent K.6,

cPu,0.05), or when the FDR criterion was reduced to P,.1 ;

no figure is provided. Based on uncorrected cluster statistics alone

(cPu,0.05), three areas of activation were suggestive of underlying

brain activity. The largest region was in the inferior parietal lobule

of the left hemisphere ( (237.86, 249, 47.45), BA 40, and

(240.65, 240.07, 51.14), BA 40) with a small corresponding

region in the right hemisphere (39.79, 241.01, 57.82; BA

40).

Negative Regression of WHR with Body
A negative regression of WHR with BOLD signal found no

region that met the false discovery rate and cluster level statistical

criteria for detection. One activation was observed that met the

cluster level criterion (cluster extent .7, p,.05) in the right

superior temporal gyrus (242, 12.1, 57.0; BA22, cluster equivalent

K = 10, p = 0.02); no figure is provided. This is suggestive of high

order visual processing of WHR-specific information within the

temporal lobe, but the evidence is inconclusive.

Contrast between Judge and Body
The level of BOLD response was compared in a simple main

effects contrast between JUDGE and BODY. The body-shaped

pictures were visible in both periods. The k-means clustering tree

of the corrected X,Y & Z co-ordinates (figure 4a) was cut to yield

10 clusters. The results are dominated by visually activated regions

shown in tables 3 and 4 as clusters Cl 1 & 3 (left hemisphere) Cl 2

(RH). In the frontal lobe there were some small regions within

BA6 with significantly increased BOLD activity during the BODY

interval compared to the JUDGE interval (Cluster 5); again we

infer these were associated with activity in the frontal eye fields.

In addition to the general visual cortical activation, medial

cortical and sub-cortical structures also showed significantly

increased BOLD signal during the BODY interval. Clusters 4 &

6 are a group of BOLD activation loci identified by the clustering

algorithm on the anterior midline. These clusters are dominated

by cingulate cortex activation but they also include the underlying

midbrain structures nearby: the caudate nucleus, the lentiform

nucleus and the putamen, hinting that these brain regions form a

network involved in this task. Figure 5 B shows the bilateral BOLD

activation in the caudate nucleus; the cross-hairs are located at the

Figure 4. Positive Regression of BMIPAR with BOLD. A)Cluster dendrogram for (X,Y,Z) peak BOLD activations sites for the positive regression of
BMIPAR with BOLD signal intensity. B)Bilateral cingulate gyrus activation. The cross hair was positioned between the two posterior cingulate gyrus
activations at [23, 248, 9] so both can be seen. Crosshair location in untransformed MNI co-ordinates. C)Bilateral anterior temporal lobe activation
within the medial temporal gyrus (BA21). The cross hair was positioned at [251, 212, 29] untransformed MNI coordinates, table 2 Cl5(Sx = 10).
doi:10.1371/journal.pone.0027255.g004
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Table 3. Simple Effects contrast JUDGE –BODY.

Cl Sx K cPu FDR T EqZ Punc X Y Z H Structure BA

1 1 506 0 0.002 11.23 5.17 0 229.11 289.05 3.46 L Middle Occipital Gyrus BA 18

1 2 (506) 0.002 8.67 4.67 0 245.6 276.73 26.47 L Middle Occipital Gyrus BA 19

1 3 (506) 0.002 7.95 4.5 0 237.28 279.57 26.59 L Inferior Occipital Gyrus BA 19

2 4 1676 0 0.002 10.6 5.06 0 29.16 286.81 7.36 R Middle Occipital Gyrus BA 18

2 5 (1676) 0.002 10.26 5 0 31.92 278.71 10.87 R Middle Occipital Gyrus BA 19

2 6 (1676) 0.002 9.5 4.85 0 43.2 263.74 1.67 R Inferior Temporal Gyrus *

3 7 599 0 0.002 9.28 4.8 0 240.71 237.8 56.76 L Inferior Parietal Lobule BA 40

3 8 (599) 0.002 8.85 4.71 0 251.64 225.51 46.93 L Postcentral Gyrus BA 2

3 9 (599) 0.002 8.05 4.52 0 237.91 226.63 57.87 L Precentral Gyrus BA 4

3 24 82 0 0.003 7.04 4.25 0 223.98 264.78 43.68 L Superior Parietal Lobule BA 7

3 25 (82) 0.009 5.24 3.64 0 218.56 260.27 55.01 L Precuneus BA 7

4 10 332 0 0.002 8.06 4.52 0 24.33 25.67 44.21 L Cingulate Gyrus BA 24

4 11 (332) 0.003 7.17 4.29 0 1.42 17.7 35.71 R Cingulate Gyrus BA 32

4 12 (332) 0.003 6.62 4.12 0 1.29 5.74 42.68 R Cingulate Gyrus BA 24

5 13 78 0 0.002 7.8 4.46 0 28.73 210.47 63.23 R Precentral Gyrus BA 6

5 14 (78) 0.031 3.79 2.97 0.001 31.68 211.97 49.62 R Precentral Gyrus BA 6

5 21 100 0 0.002 7.56 4.39 0 27.47 213.86 70.4 L Medial Frontal Gyrus BA 6

5 22 (100) 0.005 6.06 3.94 0 0.9 210.85 68.13 L Medial Frontal Gyrus BA 6

5 23 (100) 0.016 4.5 3.32 0 9.11 217.26 75.76 NG

Contrast between JUDGE and BODY (otherwise as in table 1).
doi:10.1371/journal.pone.0027255.t003

Table 4. Simple Effects contrast JUDGE –BODY.

Cl Sx K cPu FDR T EqZ Punc X Y Z H Structure BA

6 15 75 0 0.002 7.8 4.46 0 9.94 22.87 14.98 R Caudate Caudate Body

6 16 (75) 0.009 5.17 3.61 0 9.92 211.25 14.19 R Thalamus Ant. Nucleus

6 17 (75) 0.023 4.14 3.15 0.001 1.63 28.15 11.64 R Thalamus *

6 28 23 0.016 0.003 6.65 4.13 0 223.08 2.19 26.72 L Lentiform Nucleus Putamen

6 33 49 0.001 0.009 5.15 3.6 0 212.32 28.61 16.77 L Thalamus *

6 34 (49) 0.011 4.95 3.52 0 212.19 0.56 9.53 L Lentiform Nucleus Putamen

7 18 144 0 0.002 7.62 4.41 0 239.85 12.41 4.78 L Insula BA 13

7 19 (144) 0.004 6.31 4.02 0 248.17 4.33 1.17 L Superior Temporal Gyrus BA 22

7 20 (144) 0.019 4.32 3.23 0.001 239.94 27.42 5.6 L Insula BA 13

7 32 38 0.003 0.007 5.43 3.71 0 245.71 225.46 17.31 L Insula BA 41

8 26 111 0 0.003 6.98 4.23 0 37.92 12.27 3.38 R Insula *

8 27 (111) 0.007 5.52 3.75 0 46.23 6.63 2.99 R Insula BA 13

8 29 171 0 0.004 6.46 4.07 0 37.58 1.53 26.68 R Precentral Gyrus BA 6

8 30 (171) 0.008 5.28 3.65 0 46.05 2.53 16.11 R Insula BA 13

8 31 (171) 0.022 4.19 3.17 0.001 45.73 0.18 40.2 R Middle Frontal Gyrus BA 6

8 35 17 0.034 0.009 5.15 3.6 0 54.11 221.44 30.19 R Postcentral Gyrus BA 2

9 36 7 0.154 0.016 4.5 3.32 0 231.71 46.61 29.78 L Superior Frontal Gyrus BA 9

9 39 10 0.093 0.029 3.86 3.01 0.001 240.18 34.69 36.61 L Middle Frontal Gyrus BA 9

10 37 22 0.018 0.019 4.31 3.23 0.001 40.33 31.48 37.67 R Middle Frontal Gyrus BA 9

10 38 19 0.026 0.024 4.05 3.1 0.001 34.91 43.47 30.61 R Middle Frontal Gyrus BA 9

Contrast between JUDGE and BODY (otherwise as in table 1).
doi:10.1371/journal.pone.0027255.t004
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right caudate activation ([9.9, 22.9, 15.0] Corrected coordinates,

Cl 6, Sx = 15). Furthermore, bilateral activation of the insula

cortex was detected (Cl = 7 & 8). These regions are the bilateral

anterior lateral BOLD activations shown in figure 5 C axial and

tangential sections.

Negative Regression of Body on Participant Rating
When participant rating was modelled with a negative

regression on the BOLD response BODY only one region met

the statistical criteria, a cluster within the cingulate gyrus BA24 (

[215.4, 22.8, 44.3] corrected coordinates, Sx = 1, no figure is

provided) (see table 5). If the false discovery criterion is relaxed so

that activations with p(FDR) ,0.1 then several small regions of

parietal lobe activations may be inferred within BA7, BA40, BA2.

On the same basis minor activations of medial frontal gyrus (27.2,

214.6, 48.7; BA6) and precentral gyrus (48.9, 3.3, 8.12; BA44) can

be seen. These activations are perhaps related to visuo-motor

activity. Of more interest, one small region (23 voxels extent,

Sx = 7) of activation in the insula cortex was observed under the

relaxed statistical criteria ([4.08, 245.8, 223.4], corrected

coordinates, Sx = 9). As the insula is known to be involved in

emotional processing of negatively valenced stimuli then the

reduced BOLD activation with increasing participant rating is

weak evidence that this region is responding preferentially to

negatively valenced stimuli. There were no regions that showed a

positive regression of RATING on BODY.

Discussion

Our behavioural results suggest that BMIPAR is closely correlated

with attractiveness judgments and that WHR is not. This is

consistent with previous behavioural and eye-movement studies

which suggest that the primary predictor of attractiveness

judgements for a female body is BMI, and that other physical

features, such as WHR, have a much weaker effect on these

judgements (e.g. [1,10,21]). Consistent with these behavioural

results, our imaging results show that altering the apparent overall

body mass of the bodies (as indexed by the BMIPAR) modulates

activity in both the higher visual areas and in neural areas which

form part of the brain reward system including the caudate nucleus.

Figure 5. T-Contrast of BOLD signal between the intervals JUDGE and BODY. A)Cluster dendrogram for (X,Y,Z) peak BOLD activations sites
for the contrast between the period of participant response (JUDGE) and participant body evaluation (BODY). B)Bilateral visual cortical activations in
posterior parietal and lateral occipital regions. Bilateral activation in and around the caudate nucleus is present at the position of the cross hairs: [+12,
0,+12] untransformed MNI co-ordinates. C)At a lower plane, bilateral activation foci are present in the insula cortex. Cross hairs: [+42, +15, 23]
untransformed MNI co-ordinates.
doi:10.1371/journal.pone.0027255.g005
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Caudate activation has been observed with a range of rewards

including cocaine [31], nicotine [32], money [33], and feedback on

performance on behavioural tasks [34]. By comparison, modulation

of the WHR produced no significant change in BOLD activity.

In this study we used both male and female participants,

whereas the Platek & Singh study used just male participants.

However, previous studies have shown extremely high correlations

(correlations greater than 0.95) between the ratings of male and

female participants in attractiveness ratings of female bodies (e.g.

[2,35–38]). This is a degree of correlation no different than the

correlation between two groups of the same gender (i.e. males

versus males or females versus females), strongly suggesting that

both genders assess female bodies in the same way. This is

predicted by mate selection theory which postulates that

individuals will not only be able to judge the attractiveness of

members of the opposite sex, but also will know their own

attractiveness relative to other members of the same sex (e.g.,

[39]). This information allows an individual to concentrate on

potential partners of the same attractiveness as themselves, thus

avoiding both unsuccessful courtship of a more attractive partner

(potentially wasteful in time and resources) and accepting a less

attractive partner (with a potentially negative impact on future

reproductive success). Thus, both male and female observers

should assess the bodies in the same way.

The fMRI results show that the appraisal of body shape involves

a complex network of brain regions, with aspects of the task related

to visual shape processing generally activating posterior regions;

activation of the extra-striate body area (EBA) was seen, but not

the fusiform body area (FBA). The EBA is believed to sensitive to

body parts and the FBA to the whole body [40], forming part of a

system which has been suggested to be analogous to the face

recognition system [41]. As the stimuli used here did not include

the whole body (see figure 1), but were centred on the torso, it is

possible that they were not the optimal stimuli for the FBA.

Studies which have looked at judgements of attractiveness using

either photographs of bodies (e.g.,[2,35,37,42–45]), video clips of

bodies (e.g.[20,37]) or laser scanned 3D bodies (e.g. [11,46]) have

found that BMI is the primary predictor of attractiveness and

health judgements by both male and female observers. Addition-

ally in an eye-movement study, Cornelissen et al. [10] asked

people to rate images for BMI, WHR and attractiveness. The

areas of the body fixated when judging BMI were also fixated

when estimating attractiveness, suggesting an assessment of BMI is

part of the judgements made when rating attractiveness. The areas

fixated when estimating WHR were not included in the areas

fixated when estimating attractiveness, suggesting WHR is not

directly assessed in attractiveness judgements. The importance of

BMI is not only true of western populations, but seems to apply

cross-culturally (e.g. [43,47–49]). The importance of BMI in

attractiveness judgments makes sense in an evolutionary context as

it provides a reliable cue to female health (e.g. [50,51]) and

reproductive potential (e.g. [52–55]). However, this is not to say

that WHR plays no role in attractiveness judgements. Several

studies which have tried to separate out the relative importance of

different physical features in predicting attractiveness judgements

have found a weak role for WHR (e.g. [1,37]). Additionally,

several studies have explored which physical variables in their

female participants predict their ratings of male faces and found

significant correlations between WHR and their choices ([56–58]).

This may imply that WHR may be linked to the female

participant’s estimate of their own attractiveness. Thus, it is quite

possible that using images of female bodies with a much wider

range of WHR, it would have been possible to find a correlation

between this feature and our participants’ attractiveness judge-

ments and a corresponding activation of brain reward mecha-

nisms. However, given the weaker predictive power of WHR for

attractiveness judgements, it would be consistent to expect a

correspondingly weaker activation of the brain’s reward centres

with modulating WHR even over a wide range of shapes.

Our behavioural results show a significant correlation between

the BMIpar of the bodies in our images and their attractiveness

ratings by our observers. Our results also show a significant

correlation between BMIpar and activation of part of the brain

reward areas in our observers brains, but they do not show a

correlation between the ratings of attractiveness and BOLD

activation of brain reward areas unless we relax our correction

factors for multiple comparisons in the analysis (like [19]). This

may be because the simple activation of the reward centres then

has to be filtered through more complex cognitive decision making

mechanisms to generate a rating response, which may weaken a

simple 1 to 1 mapping of reward reaction to rating response so that

it only meets a lower level of significance. It may also be that any

variance in the ratings will act to reduce the detectability of the

relationship between ratings and brain activation. Although

images with a particular BMIPAR value may always produce the

same BOLD activation, the corresponding behavioural rating of

the image over the course of these presentations will fluctuate

around a mean value. If this fluctuation is relatively high, then it

Table 5. Negative regression of BODY and RATING.

Cl Sx K cPu p(FDR) T EqZ X Y Z H Structure BA

1 1 29 0 0.05 8.56 4.64 215.43 22.82 44.29 L Cingulate Gyrus BA 24

1 2 32 0 0.09 7.35 4.34 27.2 214.56 48.72 L Medial Frontal Gyrus BA 6

2 4 13 0.005 0.09 7.06 4.25 48.93 3.3 8.12 R Precentral Gyrus BA 44

2 5 34 0 0.09 7.03 4.24 53.96 225.28 40.63 R Postcentral Gyrus BA 2

2 6 0.09 6.23 4 56.95 220.93 24.88 R Inferior Parietal Lobule BA 40

3 7 23 0 0.09 6.5 4.08 245.81 223.45 25.6 L Insula BA 13

4 9 73 0 0.09 6.43 4.06 221.31 251.87 55.76 L Sub-Gyral BA 7

4 10 0.09 6.22 3.99 224.2 252.64 63.74 L Superior Parietal Lobule BA 7

5 12 14 0.004 0.09 6.26 4.01 9.23 252.03 56.26 R Precuneus BA 7

Negative regression of BODY and RATING (otherwise as in table 1). No activations were obtained above threshold with the FDR p,.05 statistical criterion. The statistics
shown are for an uncorrected voxel threshold P,.001 and cluster extent .7. Activations with uncorrected cluster probability cPu ..05 were removed. Missing elements
in column Sx reflect activations that failed the cluster statistical criterion. There were no activations for the positive regression.
doi:10.1371/journal.pone.0027255.t005
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becomes harder to model the relationship between the brain’s

response and the ratings even though the BOLD response itself is

reliably linked to the image.

Our experimental results show that increasing apparent body

mass, indexed by BMIPAR, is strongly related to decreased BOLD

response within the caudate nucleus bilaterally. Other mid-brain

nuclei similarly modulated but to a lesser degree are the putamen

and the anterior thalamic nucleus. The contrast between JUDGE

and BODY showed BOLD activation was decreased in these

midbrain structures, and within the insula cortex bilaterally

(Figure 4B & C), during body shape appraisal (BODY) with

respect to the later rating period (JUDGE). An increasing BMI has

consistently been correlated with decreasing attractiveness ratings

for female bodies (e.g. [1,2]). The decrease in activation in caudate

nucleus in response to decreasing preference is consistent with the

results which have suggested reduced activity in the caudate

nucleus with negative reward in a decision making task [59] and

reduced activity in the caudate nucleus in response to aesthetically

less pleasing representational and abstract paintings [5,60].

Additionally, there is reduced activity in caudate nucleus in

depressed patients relative to normal controls [61,62]. One feature

of depression is a decrease in the ability to experience pleasure and

reward (anhedonia). A comorbidity between depression and

Anorexia Nervosa (AN) has long been established, indeed part of

the diagnostic criteria of AN is a disturbed body image [63]. The

reduced activity in the caudate nucleus might be implicated in the

impaired ability to accurately evaluate an attractive and healthy

body (perceptions of attractiveness and health are very highly

correlated) which has been demonstrated in the Anorexic

observers [14,15]. Activation within the lentiform nucleus and

the anterior thalamus was also seen and this may point to this

group of related sub-cortical nuclei being involved in processing

body-shape judgements.

Our results suggest that BMI modulates reward mechanisms in

the brain and we infer that this may have important implications

for judgements of ideal body size in eating disordered individuals.

Controlling body size through restricting diet, often augmented by

excessive exercise and/or purging and vomiting, is a central

feature of Anorexia Nervosa (e.g.[64,65]). Sufferers are constantly

checking their body size in the mirror and their weight on the

scales. Behavioural studies have shown Anorexic observers prefer a

significantly lower ideal body size for both their own, and other

women’s bodies [14,15] and the progressive activation of the

brain’s reward mechanisms as BMI decreases shown in our study

provides a potential mechanism by which this activity is rewarded

and reinforced.

Further work will be needed to conclusively demonstrate that

the caudate is important in judgements related to body size and

shape, and whether there is a more extensive sub-cortical network

of brain regions within which the caudate participates. This

suggests that a further investigation to study individual variability

with a focus on this sub-cortical network as region of interest

would be a fruitful avenue for future research. Beyond this we look

towards studies that seek to determine whether differences in

activity in the nuclei around the caudate head play a role in the

development of eating disorders.
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