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Abstract: Fatty acids (FA) have been applied as indicators of the influence of coastal sea-cage fish 20 
farming on wild fish communities in several recent scientific publications. Due to the relatively 21 
high conservation of FA composition throughout the food web, they are useful for characterizing 22 
trophic relationships. The increasing utilization of vegetable or alternative animal oils in the 23 
production of aquafeeds results in cultivated fish exhibiting higher levels of terrestrial FA in their 24 
tissues. As previously reported, wild fish ubiquitously aggregate around fish farms as a 25 
consequence of the introduction of new habitat and the easy availability of food - fish farms act as 26 
enhanced Fish Attraction Devices (FADs). The influence of food pellets on the composition of wild 27 
fish has been detected in recent studies on salmon, sea bass and sea bream aquaculture, showing 28 
increased levels of linoleic acid (18:2n-6) and low n-3/n-6 ratio as clear indicators of the 29 
consumption of food pellets from the farms. The potential ecological and physiological effects on 30 
wild fish are presently unknown. In this article, guidelines are proposed for the investigation and 31 
use of terrestrial FAs to track the effects of coastal aquaculture on wild fish communities and local 32 
fisheries as well as the benefits or limitations of this technique. 33 
 34 
Keywords: Fish farms, Impact, FADs, Trophic Marker, Biomarker, Vegetable Oils, Marine 35 
Resources, Management, Fish assemblages. 36 
 37 
 38 
1. Introduction: use of formulated feed with increasing terrestrial-vegetables ingredients. 39 

 40 

Most farmed marine fish are carnivorous species such as, among others, Atlantic salmon (Salmo 41 

salar), gilthead sea-bream (Sparus aurata), European sea bass (Dicentrarchus labrax) or Japanese 42 

amberjack (Seriola quinqueradiata) that require marine ingredients in their feed in order to achieve 43 

optimal growth rate and health status. However, there are many reasons why the aquaculture 44 
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industry has been researching alternatives to fishmeal (FM) and fish oil (FO) since these products 45 

are both increasingly difficult to obtain and their costs have increased considerably. One of the 46 

main reasons is the status of traditional fisheries. Captures of wild fish have remained stable since 47 

the 80’s despite technical improvements, indicating that fish stocks are being exploited at their 48 

maximum levels (FAO 2009). Although improvements to feed-grade fisheries exploitation have 49 

been reached (Welch et al. 2010), it appears that these fisheries still need to make important 50 

progress in terms of correct labelling – regarding both captured species and origin – which may 51 

compromise the sustainability of this marine resource (Deutsch et al. 2007). In addition, due to 52 

increasing demand, not only by the aquaculture industry, but also by terrestrial animal farming, the 53 

prices of feed grade marine fishery resources have risen; FM increased in price from US $694 to US 54 

$1379 per tonne between 2005 and 2006 and FO prices from US $894 to US $1700 between 2007 55 

and 2008 (Tacon and Metian 2008). Industry access to feed-grade fisheries may be decreased due to 56 

global warming, world agreements to reduce poverty and to increase food security and 57 

sustainability, along with ethical issues (De Silva et al. 2010). As a consequence, aquaculture 58 

industry may prefer to rely on more stable and reliable land-based plant production rather than the 59 

highly fluctuating marine resources.  60 

 61 

This scenario has driven research into alternatives to FM and FO for formulating aquaculture feeds. 62 

Much research has focussed on determining the optimal proportions for the substitution of FM and 63 

FO by plant products without compromising fish growth and health status (Turchini et al. 2009, 64 

2010). However, vegetable oils (VO), like soybean, rapeseed, linseed or palm oils are rich in 65 

saturated acids like palmitic (16:0) or stearic acid (18:0), monounsaturated fatty acids like oleic acid 66 

(18:1n-9), and polyunsaturated fatty acids (PUFA), especially linoleic acid (18:2n-6) and α-67 

linolenic acid (18:3n-3), but lack the long-chain PUFA (LC-PUFA), eicosapentaenoic acid (20:5n-68 

3, EPA) and docosahexaenoic acid (22:6n-3, DHA), characteristic of FO (e.g. Turchini et al., 2010). 69 

Other aternative lipid sources are also being investigated including terrestrial animal fats or 70 

alternative marine oils (e.g zooplankton) but these resources also have limitations, having only very 71 

low levels of n-3 LC-PUFA or by having very limited and insufficient production, respectively, to 72 

satisfy current industry requirements (Bureau and Meeker 2010, Olsen et al. 2010). Despite the lack 73 

of n-3 LC-PUFA, VO have been the replacement of choice for FO due to considerations of 74 

availability and sustainablility and so considerable research efforts and investments have been 75 

applied in this field. Consequently, significant advances in the substitution of fish products by plant 76 

proteins and VO have been achieved (Turchini et al., 2009, 2010).  77 

 78 

The replacement of FO with alternative oils such as VO in aquafeeds can cause alterations in the 79 
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fish physiology, including immunological status of cultivated fish. These effects are extensively 80 

studied and can be controlled under laboratory or cage condition in order to achieve the maximum 81 

levels of substitution without compromising fish performance (Turchini et al. 2009, 2010, Montero 82 

and Izquierdo 2010). However, use of alternative ingredients in aquaculture is prompting further 83 

questions about their effects on the environment. Some studies have appeared highlighting that FA 84 

compositions of sediments (Colombo et al. 1997), wild fish populations (Skog et al. 2003, 85 

Fernandez-Jover et al. 2007, 2009, 2011) and other associated fauna like shrimps (Olsen et al. 2009) 86 

can be altered as a consequence of food pellets that are not consumed by the cultured fish and are 87 

lost from the cages. Therefore, terrestrial FAs have been proposed as biomarkers of the influence 88 

and the impact of aquaculture on wild fish populations (Skog et al. 2003, Fernandez-Jover et al. 89 

2007).  90 

 91 

Wild fish aggregations around coastal sea-cage farms may reach high numbers and biomass 92 

(Dempster et al. 2002, 2009) and changes in the FA profile of this fauna have been detected for 93 

both adult and juvenile fish (Skog et al. 2003, Fernandez-Jover et al. 2007, 2009). This work 94 

presents the current status and knowledge of the effect of FA of terrestrial origin on wild fish 95 

communities focusing on future research efforts and monitoring guidelines for using FA as 96 

biomarkers and also considering the potential effects on fish biology.  97 

 98 

2. Effects of lost food pellets on wild fish FA signature. 99 

 100 

Fish are attracted towards floating objects, both moored and drifted. These objects, which may be 101 

natural (like logs, floating seaweed, jellyfish…) or artificial (docks, jetties, oil platforms, fishing 102 

gears…), are known as Fish Aggregation Devices (FADs) and have been traditionally used as 103 

methods for enhancing fisheries captures (Kojima 1956, Fonteneau et al. 2000, Dempster 2004). 104 

Fish farms also act as FADs (Carss 1990, Bjordal & Skar 1992, Dempster et al. 2002). Large 105 

numbers of species, estimated to be more than 160 worldwide (Sanchez-Jerez et al. 2011), have 106 

been recorded aggregating around floating cages of different farmed fish species including, among 107 

others, salmon, sea bass, sea bream, bluefin tuna and groupers. However, far from acting as 108 

traditional FADs, coastal cages function as enhanced aggregating devices principally due to 109 

availability of food in the form of lost food pellets that are not consumed by the farmed fish 110 

(Dempster et al. 2002, Tuya et al. 2006).  111 

 112 

Most of these aggregated wild fish actively consume the lost particulate organic matter (POM), 113 

principally in the form of uneaten food pellets and faeces that fall from the cages. For most of the 114 
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studied aggregating species, it has been demonstrated that they change their diet while resident 115 

around farms (Fernandez-Jover et al. 2007, 2008, Dempster et al. 2009) and help to reduce the 116 

impact on the benthic system. Thus, wild fish feeding around fish farms reduce the total waste that 117 

reaches the environment by 40–80% (Vita et al. 2004, Felsing et al. 2005). Consequently, as wild 118 

fish substitute their natural diet by an elevated proportion of food pellets, it was hypothesised that 119 

they may present alterations in their FA profiles in a similar way as happens to cultured species.  120 

 121 

2.1  FAs profile of adult fish 122 

 123 

Initially, Skog et al. (2003) found that wild saithe (Pollachius virens) feeding around a salmon farm 124 

in a Norwegian fjord had similar FA profiles to the food pellets used at the farm, with increased 125 

levels of linoleic and α-linolenic acids as well as a comparatively low n-3/n-6 PUFA ratio, which 126 

reflected that in pellets (Figure 1). Norwegian fishermen have traditionally argued that salmon 127 

farms were affecting the behavior and taste of wild saithe (Carss 1990) and controversy still exists 128 

(e.g. Skog et al. 2003, Dempster et al. 2011).  129 

 130 

Along with saithe, the FA profiles of cod (Gadus morhua) around fish farms in Norway have also 131 

been studied (Fernandez-Jover et al. 2011). This study supported the results found by Skog et al. 132 

(2003) due to higher levels of linoleic acid (Figure 1) found in farm-aggregated individuals of both 133 

species, therefore, this FA appears as a strong indicator of food pellets in the diet. This study also 134 

analyzed the profiles of livers of associated cod and saithe, showing that the influence of VO was 135 

more marked in this tissue than in fish muscle. In this way, significant differences were found for 136 

oleic acid due to higher levels in farm-associated cod and significantly decreased levels of DHA 137 

(22:6n-3), total LC-PUFA (PUFA with chain lengths of twenty or more carbons) and n-3/n-6 PUFA 138 

ratio. In the case of saithe, in addition to increased levels of linoleic acid in muscle and liver of 139 

aggregated fish, a lower n-3/n-6 PUFA ratio was also detected. In addition, the total amount of n-6 140 

PUFA was significantly higher in farm-associated fish. These results were consistent between two 141 

localities along the Norwegian coast.  142 

 143 

Similarly, Fernandez-Jover et al. (2007) highlighted that farm-aggregated Mediterranean horse 144 

mackerel (Trachurus mediterraneus) drastically changed their feeding behaviour while resident 145 

around farms, since food pellets averaged 90% of total stomach contents while their non-aggregated 146 

counterparts mainly consumed juvenile fish, crustaceans and cephalopods. This was clearly 147 

reflected in the FA profile of the fish muscle; which showed significantly increased levels of 148 

linoleic and oleic acids and decreased DHA in farm-associated fish (Figure 1). Similar results were 149 
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obtained with Mediterranean bogue (Boops boops); muscle samples taken from individuals of this 150 

species captured closely associated or near farms presented higher percentages of linoleic, α-151 

linolenic, oleic and palmitoleic (16:1n-7) acids than samples taken many kilometers from the 152 

nearest farm. In contrast, values of DHA, arachidonic acid (ARA; 20:4n-6) and n-3/n-6 PUFA ratio 153 
were lower in fish sampled near fish farms (Arechavala-Lopez et al. 2010a). Those changes have 154 
been also found in liver, gill, gonad, adipose tissue and brain of B. boops (Martínez-Rubio 155 
unpublished data). Due to the key role of brain in the regulation of the physiological functions, its 156 
chemical composition is relatively constant and more resistant to the influence of external factors 157 
than other organs (Odutuga 1977). Therefore, modifications found in brain highlight the importance 158 
of this dietary change, proving that the presence of aquafeeds in the diet is not occasional, and the 159 
magnitude of this change opens the question of what could be the extent of the effect on fish health 160 
and performance.  161 

 162 

2.2  FA profile of juvenile fish 163 

 164 

The role of coastal sea-cage fish farms as habitat for the settlement of fish in early developmental 165 

stages or juveniles and its influence on their FA composition in the Mediterranean has also been 166 

described. The FA profile of farm-associated juvenile fish is, as happens with adult fish, perceptibly 167 

altered (Fernandez-Jover et al. 2009). Again, high levels of linoleic acid and, in this particular case, 168 

decreased levels of ARA, are the main changes in the FA profiles of the juvenile mugilid Liza 169 

aurata and the juvenile sparid Oblada melanura, two common species of the Mediterranean that 170 

usually settle on shallow rocky shores or seagrass meadows. The staple diet of juvenile fish, 171 

zooplankton, also showed a modified FA profile. Therefore, it is still not completely clear if the 172 

altered FA signature of juvenile fish is a consequence of them feeding on zooplankton, or the direct 173 

consumption of fine particulate food pellets, or both. 174 

 175 

Currently, the potential consequences of altered FA composition on the development, health status 176 

and reproduction of aggregated adult and juvenile fish species remain unknown. On one hand, these 177 

species are consuming a high energy diet, providing higher lipid and energetic reserves that could 178 

be used, for instance, for the development of the gonads. As evidence of this, aggregated 179 

individuals usually present a higher corporal condition index than their not-aggregated counterparts 180 

(Skog et al. 2003, Fernandez-Jover et al. 2007, Dempster et al. 2009, 2011). However, the 181 

biologically active FA for fish are the LC-PUFA, DHA (22:6n-3), EPA (20:5n-3) and ARA (20:4n-182 

6), and marine fish cannot endogenously synthesize these LC-PUFA from the short chain PUFA α-183 

linolenic (18:3n-3) and linoleic (18:2n-6) acids and so they require LC-PUFA for optimal growth, 184 

health status, reproductive behaviour and successful larval development (Tocher 2010). It has been 185 
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estimated that, in the SW Mediterranean, at least 20 different fish species settle at coastal farms 186 

(Fernandez-Jover et al. 2009) and LC-PUFA may be key factors in order to obtain high fecundity, 187 

egg quality, fertilization and hatching success (Pavlov et al. 2004). Spawners of cultured species are 188 

feed with a diet which differs to that of fish reared for human consumption, which optimizes the 189 

requirements for reproduction in terms of gonad development, egg quality and larval survival. 190 

According to Van Der Kraak et al. (1998), ARA and other PUFAs are important regulators of 191 

steroid biosynthesis in fish. There are clear indications of the importance of n-3 LC-PUFA in larval 192 

development (Brown and Hart 2010) and eggs are generally considered to be of better quality if 193 

they present a higher content of total n-3 LC-PUFA, including enhanced levels of both DHA and 194 

EPA (Brooks et al. 1997). Wild fauna aggregated around farms mainly are adult fish of spawning 195 

size (Dempster et al. 2002) and their dietary requirements for optimal reproduction have never been 196 

studied. Changes in the FA profile of wild fish may have unkown effects on spawning, egg quality 197 

or larval survival.   198 

 199 

3. FA as trophic markers of aquaculture influence on wild fish communities.  200 

 201 

Fatty acids have often been used as dietary markers (Iverson et al. 2004). A trophic marker is a 202 

compound whose origin can be easily and unequivocally identified, that is inert and does not harm 203 

the organisms, is metabolically stable and not selectively processed, and transfers from one trophic 204 

level to the next in both a quantitative and qualitative manner (Dalsgaard et al. 2003). Although FA 205 

are not inert compounds, they accumulate over time and represent an integration of dietary intake 206 

over days, weeks, or months, depending on the organism and its energy intake and storage rates 207 

(Iverson, 2009). Many studies have inferred food web relationships from FA profiles with clear 208 

results (e.g. Graeve et al. 1994, Scott et al. 1999). Therefore, FAs have also been proposed as 209 

markers of aquaculture influence due to the change of the FA composition of associated fauna like 210 

sea-urchins (Cook et al. 2000, Barberá et al. 2011), mussels (Gao et al. 2006), shrimps (Olsen et al. 211 

2009), fish (Skog et al. 2003; Fernandez-Jover et al. 2007) and also in sediment (Samuelsen et al. 212 

1988; Henderson et al. 1997). Olsen et al. (2009) considered that only linoleic and α-linolenic acids 213 

can be used as clear aquafeed markers in shrimp (Pandalus borealis).  214 

 215 

In addition, wild fish with FA profiles modified by aquafeeds are forming an important component 216 

of the catch of artisanal fisheries in SW Mediterranean, reaching local markets, as evidenced by 217 

Arechavala-Lopez et al. (2010a). Artisanal fishers approach the cages due to the increased 218 

vulnerability of aggregated species (Akyol and Ertosluk 2010). Wild bogue aggregated at fish farms 219 

and those non-aggregated but captured within the same bay from trammel-nets presented modified 220 
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FA profiles. The FA composition of individuals captured by artisanal fishing gears were always 221 

more similar to farm aggregated than to control samples. To improve the capacity of differentiating 222 

fish origin, FA profile can be use along with other techniques, like body morphology (Fleming et al. 223 

1994, Grigorakis et al. 2002), condition indexes (Fernandez-Jover et al. 2007), trace elements 224 

(Yildiz 2008, Adey et al. 2009, Percin et al. 2011), stable isotopes (Serrano et al. 2007) or genetic 225 

methods (Danielsdottir et al. 1997). Fatty acid signature, however, presents advantages with respect 226 

to other techniques, since it can give a picture on the scale of impact of farming on the environment 227 

but also nutritional information (such as fat content or n-3/n-6 ratio) which can aid correct labeling 228 

of fish products (Standal et al. 2008, Jacquet et al. 2010).  229 

 230 

The amount of linoleic acid or the n-3/n-6 PUFA ratio may provide strong signals for measuring the 231 

influence of fish farming on the local fish communities. However, there is not a single or a small 232 

pool of FAs which can be exclusively labeled as ‘food pellets originated’. For instance, linoleic acid 233 

is also found in natural marine food but at low levels. Therefore, several studies have applied a 234 

multivariate approach in order to improve the power of the analysis to discriminate the origin of 235 

fish or the impact of VO on wild fish. Thus, Standal et al. (2008) applied linear discriminant 236 

analysis (LDA) based on the scores of a previous principal component analysis (PCA) of liver oils 237 

to differentiate reared and wild cod. Results revealed that LDA correctly grouped cod liver oils 238 

depending on their wild or cultured origin (97 to 100% of individuals correctly grouped). Similarly, 239 

Fernandez-Jover et al. (2011), applied LDA analysis to differentiate cod and saithe depending on 240 

their farm-aggregated or non-aggregated origin. The analysis correctly classified 88.5% and 96.7% 241 

respectively of cod muscle and liver. In the case of saithe, the analysis correctly differentiated 242 

85.7% of saithe muscle and 96.7% of saithe liver. Non-correctly classified fish tissues may be due 243 

to new arrivals, variation of the different tissues reflecting the diet, natural variability that decreases 244 

statistical power, or even technique limitations.  245 

 246 

Based on published studies, a pool of other different multivariate techniques can be applied for 247 

obtaining discrimination of fish individuals according to their origin. These techniques may be 248 

multidimensional scaling -MDS- (Fernandez-Jover et al. 2007), PCA (Skog et al. 2003, Fernandez-249 

Jover et al. 2011), multivariate analysis of variance –MANOVA- (Fernandez-Jover et al. 2007, 250 

2009) or analysis of similarity ANOSIM (Hughes et al. 2005). Nonetheless, a univariate technique 251 

may be initially used in order to detect which individual FAs may act as ‘key-FA’ for 252 

discriminating the different fish and to avoid ‘noise-FA’ which will not aid to discrimination. 253 

Moreover, FA signature analysis can be combined with other techniques, such as stable isotope 254 

analysis, in order to improve the capacity of detecting fish farm influence and differentiating fish 255 
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origin as has been already applied in other fields (Cook et al. 2004; Kharlamenko et al. 2008). 256 

However, despite some clear field results, before giving specific guidelines for using FA as trophic 257 

markers in fish, several doubts require to be resolved. 258 

 259 

4. Present knowledge gaps.  260 

 261 

Further research using controlled experiments in the laboratory is necessary in order to better assess 262 

the incorporation rates of these FA in different species. The retention time of these FAs in fish 263 

tissues must also be analyzed if FAs are to be considered as potential biomarkers of the influence of 264 

fish farms on juvenile fish. A key issue is to quantify the minimum residence time of wild fish 265 

around the cages, and therefore, the minimum period and quantity of consumption of food pellets 266 

that enables detection of significant changes in the FA composition of fish tissues. Aggregated fish 267 

undertake seasonal migrations and, therefore, many species are not resident around the farms 268 

throughout the year (Valle et al. 2006, Fernandez-Jover et al. 2008). It has been estimated that 3 to 4 269 

months is sufficient time to provoke a substantial change in the FA composition of Mediterranean 270 

horse mackerel, which was reflected in a strong increment of linoleic and diminished levels of DHA 271 

and the n-3/n-6 PUFA ratio (Fernandez-Jover et al. 2007). It is also known that wild cod and saithe 272 

may move among different fish farms within the same area, as has been studied in Norway (Uglem 273 

et al. 2008, 2009) and the Mediterranean with mugilids (Arechavala-Lopez et al. 2010b), thus 274 

increasing the duration of food pellet consumption. All of these variables have to be taken into 275 

account along with seasonal and spatial variation of FA (Fernandez-Jover et al. 2007, Tzikas et al. 276 

2007) to clearly discriminate fish farm influence.  277 

 278 

The biology and metabolism of lipids for each considered species may also be a source of variation 279 

since mobilization of the different FA may differ depending on fish species and tissue. For instance, 280 

the lipid content of the muscle of gadoids is very low, around 0.5%, with phospholipids as the 281 

major lipid class (Dos Santos et al. 1993, Jobling et al. 2008), thus indicating the predominantly 282 

structural role of fatty acid composition in this tissue, which generally presents a more conservative 283 

profile than other tissues like liver. Gadoids liver has a high lipid content consisting of 284 

triacylglycerols, with an energetic role, in which FA oxidation is a more dynamic process (Falch et 285 

al. 2006). Therefore, fish muscle may present a more conservative profile and may provide a clearer 286 

record of the fish diet during a longer period of time. The generally accepted idea is that the FA 287 

composition of fish tissues reflects, in a highly conservative form, the FA profile of the diet. 288 

However, some fish have the capacity, to a certain extent, to metabolize some important FAs. 289 

Nonetheless, marine fish are well supplied with EFAs in their natural diet and de novo biosynthesis 290 
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of LC-PUFA, as mentioned before, is likely to be suppressed in marine carnivorous (Tocher 2003) 291 

and some herbivorous like Liza aurata (Mourente and Tocher 1993, Sargent et al. 2002) which is an 292 

important species composing wild fish aggregations around Mediterranean farms (Fernandez-Jover 293 

et al. 2008)..  294 

 295 

5. Conclusion and guidelines.  296 

 297 

Strong evidence exists that FA signatures are modified in fish tissues when they aggregate around 298 

sea cages. The most suitable candidates for detecting this influence appear to be increased levels of 299 

linoleic acid along with decreased levels of DHA and the n-3/n-6 PUFA ratio. A multivariate 300 

approach should be also applied in order to obtain powerful and conclusive results when using FAs 301 

as biomarkers. It is also necessary to know in detail the ‘natural’ FA profiles of the analyzed species 302 

of wild fish as well as the spatial and temporal variability of their lipid composition. Parallel to the 303 

development of aquafeeds with alternative ingredients, research is also needed on the effects on 304 

wild communities in terms of health status or reproductive potential. This gap in knowledge on the 305 

effects on fish performance makes the precautionary principle of great value in this case and adds a 306 

further argument for the optimization of the use of food pellets in order to reduce organic wastes 307 

and to avoid economical losses and the effects on water quality, benthos and associated 308 

communities. The increased use of alternative oils in the formulated diets is posing new questions 309 

since it is possible that, while solving one problem, new issues are being opened. However, efforts 310 

to improve the efficiency of aquafeeds rich in VO are increasing and studies on new species are 311 

focusing mainly on carnivorous fish. Consequently, it is crucial to increase our knowledge on the 312 

degree of impact provoked by the FA composition of aquafeeds on the overall ecosystem.  313 

 314 
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Figure 1. Literature review of fatty acid profiles of different fish species. Graphs show mean ± 322 
standard error of non-associated, control fish (black bars) and farm-associated wild fish (grey bars). 323 
Sources are Arechavala-Lopez et al. 2010a  bogue (Boops boops):. Fernandez-Jover et al. 2011: cod 324 
(Gadus morhua) muscle, cod liver, saithe (Pollachius virens) muscle (a) and saithe liver. Skog et al. 325 
2003: saithe muscle (b). Fernandez-Jover et al. 2007: Trachurus mediterraneus muscle. Fernandez-326 
Jover et al. 2009; juveniles of Liza aurata and Oblada melanura. Data from Fernandez-Jover et al. 327 
2011 are pooled from two different localities. Data from Skog et al. 2003 considers as control fish 328 
wild saithe from the fjord with no farming activity.  329 
 330 
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