
 1

Cognitive Psychology.    July 2005 
 

Robust representations for face recognition: the power of averages 
 

A. Mike Burton (1), Rob Jenkins (1), Peter J.B. Hancock (2) & David White (1). 
 

1. University of Glasgow, UK 
2. University of Stirling, UK 

 
Address correspondence to: 
 
Mike Burton 
Department of Psychology 
University of Glasgow 
Glasgow G12 8QQ 
UK 
 
mike@psy.gla.ac.uk 
 
Acknowledgement:  This work was supported by an ESRC Grant (R000238357) to Mike 
Burton and Vicki Bruce, an ESRC Grant (R000230437) to Mike Burton & Rob Jenkins, 
and a British Academy Postdoctoral Fellowship to Rob Jenkins.  We are grateful to 
Geoffrey Loftus, Alice O’Toole & Tom Busey for helpful comments on a previous 
version.  
 
Abstract 
 

We are able to recognise familiar faces easily across large variations in image quality, 
though our ability to match unfamiliar faces is strikingly poor.  Here we ask how the 
representation of a face changes as we become familiar with it.  We use a simple image-
averaging technique to derive abstract representations of known faces.  Using Principal 
Components Analysis, we show that computational systems based on these averages 
consistently outperform systems based on collections of instances. Furthermore, the 
quality of the average improves as more images are used to derive it. These simulations 
are carried out with famous faces, over which we had no control of superficial image 
characteristics. We then present data from three experiments demonstrating that image 
averaging can also improve recognition by human observers. Finally, we describe how 
PCA on image averages appears to preserve identity-specific face information, while 
eliminating non-diagnostic pictorial information. We therefore suggest that this is a good 
candidate for a robust face representation. 
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Robust representations for face recognition: the power of averages 
 
Introduction 
 
Human face recognition is often assumed to be generally accurate, but in recent years it 
has become clear that performance is in fact radically different for familiar and 
unfamiliar faces. To illustrate this key contrast, consider the ‘line-up’ displays in Figure 
1, reproduced from Bruce, Henderson, Greenwood, Hancock, Burton, & Miller (1999). 
Bruce et al.’s line-up task represents a best-case scenario for identifying images captured 
on CCTV. For each display, observers are asked to decide whether or not the target face 
at the top (a still from a high quality video recording) is present in the line-up below 
(high quality studio photographs), and if it is, to point out the match. This seemingly 
straightforward task turns out to be surprisingly difficult when the faces are unfamiliar 
(see Figure 1). Bruce et al. (1999) reported error rates of 30% for those arrays in which a 
target is present (with subjects claiming no match on roughly 20% of occasions, and 
choosing the wrong face on roughly 10%).  For arrays in which the target was absent, 
subjects incorrectly chose a match on roughly 30% of occasions, despite being fully 
informed that targets would be absent in half the arrays. 
    
These results are particularly striking, since the viewing conditions were optimized in a 
way that could never be met in a real video security system. All images were of good 
quality, in very similar poses, and under good quality lighting conditions.  Furthermore, 
all images were taken on the same day, eliminating minor differences in hairstyle, weight 
and health that cause faces to change in appearance, even when the person is not trying to 
disguise their identity.  Bruce et al conclude that the use of CCTV security systems for 
matching identity is likely to be limited by human perception, just as much as it is limited 
by technical issues of image quality. This conclusion is consistent with earlier research by 
Kemp, Towell & Pike (1997) showing that retail assistants find it very difficult to match 
shoppers to their photo IDs, when the shoppers are unknown to them.  
 
By contrast, the same matching task becomes trivial when familiar faces are used. In fact, 
this basic contrast runs much deeper. Even though unfamiliar face recognition can often 
be defeated by this superficial image change (i.e., a change in source camera only), 
familiar face recognition can survive all manner of profound changes in image, including 
changes produced by speech, emotional expression, facial hair, make-up, aging, diverse 
lighting conditions and different characteristics of the camera. Some of these changes are 
captured in Figure 3a, which shows ten different pictures of the same person. Considering 
the huge variation among these images, it is difficult to see what they could possibly 
share that signals the same identity. Nevertheless, familiar face recognition is highly 
accurate and robust, even when the quality of the image is severely degraded (e.g., 
Harmon,  1973; Sergent, 1986; Burton, Wilson, Cowan, & Bruce, 1999). 
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Figure 1a: The person shown at the top may or may not be one of the ten below. 
Subjects’ task is to decide if he is present, and if so, which is he.   (Reproduced from 
Bruce et al, 1999).  Answer given in Appendix.   
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Figure 1b: The person shown at the top may or may not be one of the ten below. 
Subjects’ task is to decide if he is present, and if so, which is he.   (Reproduced from 
Bruce et al, 1999). Answer given in Appendix. 
 
 
 
This contrast between familiar and unfamiliar face recognition is particularly intriguing 
given that it must also apply to individual faces over time; every familiar face was 
unfamiliar when first encountered, and so has presumably undergone a shift from being 
poorly recognized then to being well recognized now. Here we ask what could drive this 
shift. To date, the common approach has been to posit a gradual shift towards a more 
efficient matching strategy over the course of familiarization.  For example, it is thought 
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that the internal features of a face come to dominate recognition, as the person becomes 
more familiar. So, for unfamiliar faces, matches appear to be based on overall face shape, 
and hair, whereas for familiar faces, matching seems to rely on eyes, noses and mouths 
(e.g., Ellis, Shepherd & Davies, 1979; Young, Hay, McWeeny, Flude, & Ellis, 1985; 
O’Donnell & Bruce, 2001; Bonner, Burton & Bruce, 2003).  In this paper we develop an 
alternative proposal that does not involve an explicit shift in strategy, but focuses instead 
on exposure-driven refinement of the stored representations against which incoming 
images are matched.  
 
Exposure is clearly an important factor in strengthening familiarity, as the faces that are 
most familiar to us are the ones that we have seen the most. But what might increased 
exposure provide that could lead to better recognition?  To attempt to address this 
question here, we develop the notion put forward by Bruce (1994) of “stability from 
variation”, i.e. that the very variable nature of the stimuli (e.g. Fig 3a) allows the 
perceiver to distil a powerful representation which incorporates those aspects of the 
stimulus which are pertinent to the task at hand, while discarding the non-diagnostic 
variability inherent in any particular set of instances.  
 
Consider two broad approaches to visual representation, one based on storage of 
individual images, and the other based on storage of a single abstract representation, 
distilled over many images. A system which stores all encounters with a particular face 
will improve with increased exposure because it will accumulate more possible matches: 
the more images one stores of Tony Blair, the more likely it is that an incoming image of 
Tony Blair will find a good match.  In an abstractive system, recognition improves 
because each new instance refines the quality of the representation, and the canonical 
representation of a face comes to incorporate, somehow, that which is constant across all 
the many variations of the face (“stability from variation”, Bruce, 1994). 
 
Many psychological models of familiar person recognition include the notion of an 
abstract representation of faces.  Bruce and Young’s  (1986) influential framework 
incorporates putative Face Recognition Units (FRUs) which respond to any  recognizable 
view of a known person. Such units were intended as analogous to logogens (Morton, 
1969), and were present in many precursors of the Bruce & Young model (e.g. Hay & 
Young, 1982; Ellis, 1986), as well as descendents of it (Brédart, Valentine, Calder & 
Gassi, 1995; Burton, Bruce & Johnston, 1990;  Burton, Bruce & Hancock, 1999;  Hanley, 
1995, Young & Bruce, 1991).   These units have been recruited in explanations of a very 
wide range of phenomena, for example patterns of priming (Ellis, Young & Flude, 1990; 
Ellis, Flude, Young & Burton, 1996; Schweinberger, 1996; Young, Hellawell & de Haan, 
1988), cross modal person recognition (Hanley & Turner, 2000; Schweinberger, Herholz 
& Stief, 1997) and certain characteristics of prosopagnosia (Burton, Young, Bruce, 
Johnston & Ellis, 1991; de Haan, Young & Newcombe, 1987; Young & Burton, 1999).  
However, despite the theoretical utility of this construct, all the papers cited above remain 
silent about how it might actually be implemented.  How might it be possible to build a 
representation which becomes active on presentation of any recognizable view of a 
person?  For many researchers, and particularly for vision scientists and engineers 
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wishing to build useful face recognition systems, this question represents the entire 
problem of face recognition.  
 

 
Figure 2:  Average images of 50 celebrities.  Each image is constructed from 20 different 
photographs (see text for details of procedure).  Names of people depicted are given in 
the Appendix.  
 
 
In this paper, we offer one way in which a simple abstractionist system could be 
implemented for face recognition. The representations we develop are based on simple 
“averages” of face images.  Figure 2 shows images of 50 celebrities, which have been 
formed from 20 different photographs of each person.  The procedure for generating 
these images is described later, but the important point in this preview is to note that the 
original photographs from which they were formed are very highly variable (as in Figure 
3a). We will show how an architecture based on “average” images performs well in an 
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artificial face-recognition system, and present some evidence that human observers find 
these abstract representations particularly easy to process.  
 
Throughout, we will contrast abstract representations such as those shown in figure 2, 
with the constituent images which were used to build them. It is not, of course, our 
intention to assert that face recognition must be abstractionist.  In particular, since the 
representation we offer has some characteristics of a prototype, we are keen to avoid any 
claims that prototype models of face recognition are inherently superior to exemplar 
systems.  We doubt that such an assertion is ever possible, and it is certainly not from the 
data we present.  However, we will illustrate that one particular way of implementing a 
prototype system offers a promising approach to the problem, which has various 
attractive properties for understanding a range of phenomena. 
 

Automatic face recognition 
 
Automatic face recognition is a topic which currently attracts a great deal of attention.  
However, it is a difficult problem to solve across a realistic variation in images.  In the 
DARPA-sponsored FERET evaluation of face recognition systems (Phillips, Moon, Rizvi 
& Rauss, 2000), several algorithms performed well when matching two images of a face, 
taken in the same sitting, with the same camera, but varied expression.  For example, 
recognition rates of 95% are reported for analyses based on Principal Components 
Analysis (Moghaddam, Nastar & Pentland, 1997;  and see below) and on wavelet-based 
systems (Wiskott, Fellous, Kruger & von der Malsburg, 1997).  However, performance 
was much poorer for images taken on the same day, but with a different camera (80% in 
the best case, and only 60% in the second; Phillips et al, 1997). Across all systems tested, 
none scored higher than 60% when matching images taken a year apart. In a more recent 
test of modern commercial systems (FERET FRVT2002; Philips, Grother, Michales, 
Blackburn, Tabassi & Bone, 2002), the best available systems scored only 73% on a 
recognition test using a real-world database of images, even though these were consistent 
in quality, and taken in known lighting conditions.  Although results from studies with 
consistent illumination and capture conditions are often promising, generalization to 
realistic levels of image variation has not been reported.  In  a recent authoritative survey 
of available automatic systems, Zhao, Chellappa, Phillips & Rosenfield (2003) write 
“recognition of face images acquired in an outdoor environment with changes in 
illumination and/or pose remains a largely unsolved problem …. Current systems are still 
far away from the capability of the human perception system” (ibid., p. 399).  
 
In the work presented below, we have deliberately chosen to study the difficult problem 
of face recognition across naturally varying images.  The stimuli we have used are 
images of famous people, gathered from the internet (i.e. those celebrities represented in 
Figure 2).  We have no control over the lighting of the original images, nor of other 
superficial characteristics such as the contrast, perspective, resolution or focal length of 
the cameras used to take them.  A sample, for a single individual, is shown in Figure 3a.  
Observers in our experiments (such as those reported later) have little difficulty in 
identifying any of these individual images as being Tony Blair.  Nevertheless, it is 



 8

difficult when seeing them all together, to imagine what it is that each of these images 
has in common to allow easy recognition. 
 
The approach we have taken is to apply Principal Components Analysis to this problem. 
PCA of images has become a popular technique in understanding face processing, both 
for engineering, and psychological applications.  Originally conceived for use in face 
recognition (Kirby & Sirovich, 1990; Turk & Pentland, 1991; Valentin, Abdi & O’Toole, 
1994; Burton, Bruce & Hancock, 1999), it has also been used to model face similarity 
effects (Hancock, Bruce & Burton, 1996), the “other race effect” (O’Toole, 
Deffenbecher, Valentin & Abdi, 1994; Furl, Phillips & O’Toole, 2002) and analysis of 
facial expression (Calder et al, 2001; Cottrell, Branson & Calder, 2002; Dailey et al, 
2002). The basic methodology is as follows. A training set of images is subjected to PCA, 
generating a relatively small number of eigenvectors (“eigenfaces” in this literature).  The 
original images are then re-coded in the space of the eigenfaces, giving each image a 
unique set of coefficients, which act as its signature.  Finally, new test images are 
projected onto the same eigenfaces, and the resultant coefficients are compared to those 
of each face in the training set, with a hit occurring when the closest match is with the 
correct identity. 
 
One limitation of the standard PCA approach is that there is often only a single image 
stored for each identity known to the system.  Furthermore,  early reports in the literature 
generally used images from the same source to serve as target and test faces (e.g. same 
lighting conditions, same camera etc.).  This is important, because superficial image 
characteristics tend to dominate the match, and if these are varied, the system can easily 
become insensitive to matches of person identity.  In the studies reported below, we have 
used many images of each known person, against which to match an incoming 
(previously “unseen”) image. We have built systems based (i) on exemplars, in which 
eigenfaces are derived from several individual instances of each face, and (ii) on 
averages, in which eigenfaces are derived from a simple image mean of each of the 
instances of a face.  
  
Image averaging is possible, because prior to PCA, we morph all faces to a standard 
shape, as illustrated later in figure 8.  This is performed in a graphics program by over-
laying an image of a face with a grid.  The points in the grid are positioned over key 
points (e.g. corners of the mouth, of the eyes etc) for the particular image under study.  
The face is then deformed (morphed) to a standard shape, which will be used for all faces 
in the study. In this way, the same part of each image will contain the mouth, the eyes, 
and so forth.  The resultant images are called “shape-free” in the literature. This 
technique is due to Craw (1995; Craw & Cameron, 1991), and has been shown to 
improve PCA considerably (Burton, Miller, Bruce, Hancock, & Henderson, 2001). 
Similar manipulations which allow separate treatment of the shape and image intensity 
(“texture”) of faces, have been developed for a variety of image-processing techniques 
(e.g., Beymer, 1995; Vetter & Troje, 1995) and this separate treatment has become a 
common practice.  Examples of the shape-free versions of raw face images are shown in 
Figure 3b, and an average of these is shown in Figure 3c. The technique of averaging 
together shape-free images of the same person as a way of producing their face prototype 
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was first introduced by Benson & Perrett (1993).  Here we show that such averages can 
provide an efficient device for robust face recognition.   
 

 
Figure 3: Ten images of Tony Blair.  Figure 3a (top block) shows original images.  Figure 
3b (second block) shows the results of morphing each of these images to a standard 
shape.  Figure 3c (bottom) shows the image-average of these shape-standardized images.  



 10

 
 
Study 1: PCA performance using instances and averages 
  
Images: Ten photographic images of 50 celebrities’ faces were gathered from the 
internet. Each picture showed a roughly full-face front-view, and was from a different 
source (i.e. we did not use images which had apparently been taken in the same 
photographic session). The resulting pool of images was thus highly variable in terms of 
superficial photographic characteristics, and captured a range of facial expressions (see, 
for example, Figure 3a). The use of celebrities is convenient for two reasons: first it is 
possible to find many different images of each person, and second we planned to use 
these for recognition by human subjects in later studies. The identities used are shown in 
Figure 2 (and identified in the Appendix).   
 
Each of the images was rendered in gray-scale and morphed to a common shape using an 
in-house program based on bi-linear interpolation (see e.g., Gonzalez & Woods, 2002). 
Key points in the morphing grid were set manually, using a graphics program to align a 
standard grid to a set of facial points (eye corners, face outline, etc). Images were then 
subject to automatic histogram equalization. 
 
Method 
In separate simulations, PCA was performed on 1, 3, 6 or 9 images of each person.  In 
instance-based systems, these images were coded separately, while in average-based 
systems, a single image average was computed from the same pictures.  In each case, one 
set of images was reserved for use as a test set, so that recognition rates for novel images 
of the 50 faces could be assessed as a function of previous exposure to different images 
of the faces 
 
Instance based systems   
Instance-based systems were built by performing  PCA on 1, 3, 6 or 9 images of each 
face, i.e. on 50, 150, 300 or 450 images in total.  In each case, 50 eigenfaces were 
generated, and all training images were projected onto these. Test set images (50, in all 
cases) were then projected onto the same eigenfaces. Nearest neighbour matches were 
generated using a Mahalanobis metric, in which all dimensions are normalized prior to 
computing distances (Craw, 1985, see discussion). The system is regarded as having 
made a correct identification if the test image most closely matches one of the target 
images of the same person.   A second measure of performance was also taken, based on 
summed similarity (Nosofsky, 1988, 1991, see below). Summed Mahalanobis distances 
were calculated between the test face and all instances of target individuals.  The system 
is regarded as having made a correct identification if the test face has the smallest 
summed distance to target images of the same person.   
 
For each of the 1-, 3-, and 6-exemplar versions, three different simulations were run, 
using different learning sets.   Single exemplar versions were constructed using images 1, 
4 and 7. For the three 3-exemplar versions, we used subsets 1-3, 4-6 and 7-9, while for 
the three 6-exemplar versions we used the complements of these. For the 9 exemplar 
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version, a single simulation was run using images 1-9.  Image 10 was used as a test image 
throughout.  
 
Image-average systems   
Image-averages were formed by taking the arithmetic means (at each pixel) of  3, 6 or 9 
images.  Image average sets were constructed from the same images as in each of the 
exemplar sets above (i.e. there were three 3-image average simulations, three 6-image 
average simulations, and a single 9-image average simulation). 50 eigenfaces were 
generated from each set of averages. Nearest neighbour matches were carried out in the 
same way as for exemplar systems, with a hit being recorded when the test image most 
closely matched the average  image of the correct person.  In this case (one target image 
per person), the summed similarity method is equivalent to nearest neighbour, and so 
only a single set of matching data was generated for average-based systems.   
 
Results and Discussion 
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Figure 4: Mean hit rates (%) for systems derived using different numbers of images, for 
both instance-based and average-based simulations.    
 



 12

Figure 4 shows hit rates for the different systems. Several points are worthy of note.  
First, the simplest system, using a single training image, performs relatively poorly.  PCA 
systems are rarely reported in which illumination and capture conditions vary widely 
from training to test sets, which is presumably why the technique has not typically been 
used with famous faces. Here we have not only variable, but highly  variable images 
contributing to the analysis. Chance hit rate is 2% here, and so performance of 13%, 
given the huge variation in superficial image characteristics, is possibly better than one 
might expect.  Performance is partly due to the level of standardization of images.  The 
shape-free morphing, plus histogram equalization, brings the images more closely into 
alignment than the originals.  The use of a Mahalanobis distance match is also very 
important. Under this technique, all dimensions (i.e. principal components) are 
standardized to have the same variance, prior to Euclidean matching. The technique has 
been used commonly in PCA research, and has been shown significantly to improve 
performance, especially when the image source is not held constant across instances 
(Yambor, Draper & Beveridge, 2002; Burton et al, 2001).  The net result is that early 
components, which capture the largest variance, no longer dominate the match.  This is 
important for images with highly variable superficial characteristics, since these tend to 
be captured in the early components, but are not diagnostic of identity. [FOOTNOTE 1] 
 
The second point of note is that the image-average systems consistently outperform the 
instance-based versions, even though the same test images were used across all systems. 
In every case, it pays to average the training images together rather than to store them 
separately. Even though instance-based systems provide more target images against 
which test faces can be matched, performance is better with a single average. Equally 
important, it seems that the average itself improves as more images contribute to it. So, 
averaging across nine images per person (40%) is better than averaging across six images 
(33%), which is again better than using a 3-image average (25%). 
 
These results appear to show that a system based on prototype abstraction (cf. Posner & 
Keele, 1968), out-performs a system based on storage of instances. This is a complex 
domain of real images, in which the variance is not under the control of the experimenter, 
and yet the results are systematic in favouring one technique over the other.  Of course, 
this is a very complex issue in cognition, and many authors have demonstrated that 
systems based on exemplars can behave in prototype-like ways.  The focus of this paper 
is not to try to distinguish between prototype and exemplar models in general. However, 
we should note that the prototype advantage demonstrated here is not a trivial 
consequence of the similarity metric used. Proponents of exemplar models point out that 
nearest-neighbour matches are particularly susceptible to noise in individual exemplars, 
and propose the use of summed-similarity metrics instead (Nosofsky, 1988, 1991).  In 
fact, in this study, summed similarity over instances performed consistently worst of all.  
 
This advantage for averages is perhaps surprising, since the target representation is not 
even a real image of the person it depicts. It lacks some of the characteristics of a real 
image, taking on a rather soft-focus quality (a point also noted by Benson & Perrett, 
1993).  It seems then, that a successful match does not rely on fine surface characteristics 
such as wrinkles, or details of complexion.  This may turn out to be an important 
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component of the prototype advantage.  Although images of people certainly do contain a 
lot of information about superficial fine-scale aspects of the face, if these are not 
diagnostic of identity, a match without them is likely to improve performance. This 
notion is, in fact, consistent with research on spatial scale in face recognition, which 
suggests that identity tends to be carried at  low spatial scales  (Bachmann, 1991; Harmon 
& Julesz, 1973; though see Schyns & Oliva, 1997, for an argument that extraction of 
information from different spatial scales is more flexible when the task is to identify a 
specific image of a face). 
 
We now appear to have a promising representational technique for matching these highly 
unconstrained images of faces.  We have established that a system based on simple 
averages provides a reasonable level of performance under the conditions tested here. 
However, although the performance of this PCA system is surprisingly good compared to 
chance, it still leaves plenty of room for improvement.  In the next study, we set out to 
establish whether averages built on larger numbers of images would perform any better.  
We also ask whether it is possible to observe an advantage for averages built of more 
images within the context of a mixed-level memory, i.e. a situation in which the system 
knows some identities very well, and others less well. 
 
Study 2: PCA performance as a function of level of familiarity  
 
Most automatic face recognition systems aim to optimize recognition performance on all 
known faces.  However, the human case is clearly more diverse: we know some faces 
very well indeed, but others much less well. Furthermore, the level of our familiarity with 
a face is known to predict certain perceptual tasks: simply, the more familiar we are with 
a face, the more fluent is our processing of it (e.g., Clutterbuck & Johnston, 2002). In the 
following simulation, we attempt to capture this by building a system based on averages, 
but in which some averages are constructed from a large number of images, and others 
are built from fewer images 
 
Method 
 
For this study, a larger pool of 1000 images was used. This pool comprised 20 images of 
each of the 50 celebrities used in Study 1, all gathered from the internet, and taken in 
capture conditions over which we had no control.  All images were morphed to the same 
standard shape, and pre-processed as in Study 1. Identity averages were now generated 
by taking the average across 3, 6, 9 or 19 images of each person, with the 20th image 
(selected at random) used as a test image for all versions of the system. 
 
Following a similar procedure to Study 1, we performed PCA on 50 images, in which 
each image corresponded to an identity of one of the known individuals. For ten of these 
people, the image was a specific instance. The remaining images comprised ten averages 
constructed from each of 3, 6, 9, and 19 images.  The resulting set therefore comprised 50 
known identities, with “familiarity” varying from ten people encountered as an individual 
instance, to ten people coded as an average of 19 encounters.  50 eigenfaces were 
generated, and these were used to code learning images and a novel test set (image 20 for 
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each identity) which had not been used in constructing the averages.  As  in Study 1, a 
Mahalanobis distance metric was used in a nearest-neighbour match.  This procedure was 
repeated 5 times, with level of familiarity rotated around identities.  So, across the whole 
study, each identity was coded at each level of familiarity. 
 
Results and Discussion 
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Figure 5 : Hit rate (% recognition) as a function of the number of images constituting 
each average representation.  
 
 
Figure 5 shows the hit rate as a function of the number of images contributing to the 
average. There is clear improvement in hits as more images of each face are averaged 
together.  Indeed there is a simple monotonic improvement in performance as the images 
contributing to each average increases.  This seems to capture well the advantage for 
familiarity: the more encounters one has had with a person (coded here as the more 
images which contribute to the stored representation) the better is one’s performance in 
recognizing a new image. This system is also beginning to perform at promising levels of 
performance for automatic recognition.  Given the very variable input set, and 
unconstrained image capture conditions, a level of performance of 75% (for the 19-image 
averages) is encouraging.  This performance is clearly not yet at a stage where it could be 
used practically for forensic identification or security purposes.  However, the novel 
approach taken here, and the relatively poor performance of existing systems, suggests 
that this is an approach worth pursuing for applications-based as well as theoretical 
approaches to face recognition 
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Interim Summary 
 
Taken together, these results seem to suggest that an abstractive system based on simple 
image averaging  offers a useful way of thinking about face recognition.  The very 
simplicity of the system is appealing: an arithmetic mean is perhaps the most obvious 
way to combine a set of examples, and it is therefore perhaps surprising that the system 
does so well. However, despite its simplicity, the averaging approach has a number of 
very appealing characteristics, which we will mention briefly here, before going on to 
examine human performance on these images. 
 
One significant advantage of the averaging approach is that it appears to eliminate many 
of the surface characteristics of any specific image of a face.  Each of the images in 
Figure 3a is the result of interactions between the face itself, the lighting conditions and 
the camera characteristics.  Identifying the person therefore presents a very difficult 
problem, since a viewer who does not know the person does not know which visual 
properties are inherent to the person, which to the lighting and so forth.  The image 
average, on the other hand, is not subject to this problem, since variations which are not 
characteristic of the person’s identity are simply averaged-away.  To see the most simple 
example of this, consider the fact that several of the images in Figure 3a are illuminated 
by  noticeably directional lighting. When averaged together, this disappears, since it is 
not diagnostic of the person’s identity.  In fact, when coding knowledge of Tony Blair, 
one would almost certainly not want to incorporate lighting direction into one’s visual 
representation of him, and the averaging process will automatically eliminate this.  Note 
that this is an unintelligent strategy: there is no attempt to model the world of light, skin 
reflectance and camera properties.  Some previous attempts to solve the automatic 
recognition problem have adopted this approach, but it is a very difficult problem to 
solve.  The averaging process achieves the same aim, with a very simple technique. 
 
In addition to the attractive nature of the representation itself, this technique seems to 
offer some promise in understanding the problem of face learning.  Given the very 
marked differences between our ability with familiar and unfamiliar faces, this has been 
seen as a problem of processing shift.   However, the averaging  approach incorporates 
this shift naturally.  Whether dealing with very familiar or less familiar faces, one is 
essentially matching incoming images to stored representations.  What changes during 
the course of familiarization is that the stored representation becomes progressively 
refined.  This refinement is not a progressive approximation to a particular likeness of a 
face, but a progressive elimination of all image properties which are not diagnostic of 
identity. In the early stages, when one is unfamiliar with a face, the viewer is forced into 
an image-matching strategy, because it is impossible to know which characteristics of a 
particular image are key to the identity of the person, and which are properties of the 
viewing and capture conditions.  Indeed, subjects solving problems such as those in 
Figure 1, do seem to make simple image matches. In later stages, when robust averages 
have formed, the resulting representation captures information only relevant to identity, 
not to transient and superficial image properties. 
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We are arguing then, that the simple image average is a useful way to conceptualise 
stored representations of faces.  The simulations above seem to suggest that the 
representation has some attractive properties, which we would want to incorporate into a 
model of human recognition.  In the next section we will examine human perception of 
these images, and ask how they compare to perception of the constituent images which 
are used to build them. 
 

Human face recognition 
 
Our approach in this part of the paper is to investigate the human recognition of average 
faces.   If these averages are, indeed, a good candidate for understanding our 
representations of familiar faces, then they should be well-recognised by observers.  In 
order to test this, we use the same database of celebrities which was described in the 
sections above.  For computer recognition, this was a convenient set, simply because it is 
possible to obtain many different images of famous people, taken across a large range of 
viewing conditions.  In this part of the study, we exploit the fact that observers will know 
many of these people.  
  

 
 
Figure 6:  Some examples of averages, each formed from twenty shape-free instances. 
The top row shows shape-free images (used in simulations and in study 3.  The bottom 
row shows these same images morphed to the average shape for that individual (used in 
studies 4 and 5).   Names of people depicted are given in the appendix.  
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Figure 3b shows the effect of the shape-free manipulation on a particular famous face.  It 
appears to us that some of these shape-free images preserve the person’s identity rather 
well, and others less so.  However, our informal observation is that the average of this 
person’s shape-free images (e.g. Fig 3c) captures his identity well, consistent with 
Benson & Perrett’s (1993) proposal.  The top row of Figure 6 shows some further 
examples of average images.  In these cases, averages were formed from all 20 images 
for each identity which were collected for Study 2.  
 
At first, the fact that these images seem (to some extent) to preserve people’s identity 
may seem surprising, because the shape to which they have been morphed is a simple 
face-shape template that retains none of the idiosyncratic characteristics of the originals. 
Later, we will consider the effects of putting shape back into the images (as in the bottom 
row of Figure 6), but in our first study of human perception, we will examine the simple 
shape-free averages.  In particular, we ask whether the averaging technique does lead to 
more recognizable images, as more individual photos are used in their construction.  
 
Study 3:  Name verification to shape-free image averages 
 
This study followed a name-verification procedure. Subjects were shown the name of a 
celebrity, followed by an image-average, which could be constructed from three, six or 
nine individual images. We measured their errors and reaction times to make this 
decision.  The images were those of 24 of the celebrities used in Study 1.  For that study, 
we constructed three 3-image averages,  three 6-image averages, and a single 9-image 
average.   These same images were used in the current experiment.    
 
Method 
Trials consisted of a celebrity’s name presented at the center of the screen for 1500 msec, 
followed by a celebrity’s face for 200 msec. Twelve volunteer subjects used speeded 
button-press responses (yes/no) to indicate whether or not the face matched the identity 
of the preceding name.  On positive trials (50%), the face did match the name, and on 
negative trials (50%), a mismatch was presented.. 
 
Each subject carried out 3 blocks of 48 trials. In each block, they saw all 24 celebrities 
twice, once in a true trial and once in a false trial. The order of the entire sequence was 
independently randomized for each subject. Within a block, 8 faces comprised 3-image 
averages, 8 comprised 6-image averages, and the remaining 8 were 9-image averages.  
The n-averages were rotated around blocks, such that across the experiment, each 
celebrity was presented equally often as a 3-, 6- and 9-image average.  The particular 3-
image and 6-image averages used were held constant for each subject, but rotated about 
subjects, such that across the experiment each 3-image and 6-image average was used 
equally often.  
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Results and Discussion 
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Figure 7:  Mean correct verification RTs for averages constructed from 3, 6 or 9 
contributing images (Study 3).  Error bars are within subjects confidence intervals 
(Loftus & Masson, 1994).  
 
Mean reaction time data for correct responses are shown in Figure 7.  The pattern 
indicates that the number of images used to construct the average predicts recognition 
time. The 9-image averages are recognized fastest (732 msec), the 6-image averages (756 
msec) more slowly, and the 3-image averages slowest (782 msec).  (This pattern was 
confirmed by ANOVA, F(2, 22) = 6.8; p < 0.01).  There was no systematic change in 
error rates across conditions (means: 18%, 22%, and 21% for the 3-, 6- and 9-image 
averages respectively, F < 1). 
 
This pattern of results indicates that the averaging process provides a successively better 
image for recognition, as more and more individual photos are combined.  Even though 
the shape of the images is held constant, and is not diagnostic of identity, the average (or 
template) of a particular person appears to improve with increasing sample size.  This 
appears to provide a human experimental replication of studies 1 and 2, where a similar 
improvement was observed for artificial recognition. However, one difference is that we 



 19

have not presented a single shape-free image to subjects in the current experiment.  This 
is partly because our observations of shape-free singleton faces, such as those in Figure 
2b, do not seem to be highly recognizable.  Note that the averages used in this experiment 
were recognised quite accurately, and so it is possible that eliminating shape-cues to 
identity has a particularly detrimental effect on individual instances of faces.  Indeed, 
research using 3d models has suggested that recognition of identity relies on both texture 
and surface shape (O’Toole, Vetter & Blanz, 1999).  In the next experiments we therefore 
consider the role of shape in human perception of averages.  
 
 
Average shapes and average textures 
 
While the pattern of data presented so far is encouraging for the averaging proposal, we 
are left with the problem that the image-averages we have used are devoid of informative 
(individuating) shape. Some previous studies of artificial face recognition have analysed 
shape and texture information independently (e.g, Calder et al, 2001; Hancock, et al, 
1996).  In these cases, using PCA,  the texture information has been found to dominate 
recognition of identity.  Furthermore, some studies of human face recognition have 
shown it to be highly tolerant of certain manipulations of the shape.  For example, Hole, 
George, Eaves & Rasek (2002) demonstrated that familiar face recognition was 
completely unaffected by distorting the aspect ratio of photographs by up to 2:1, vertical 
to horizontal.  On the other hand, research on the caricature effect suggests that 
manipulations of shape which emphasise idiosyncratic characteristics can improve 
identification (e.g., Rhodes, 1996).  (Though note that these effects are most convincingly 
demonstrated when images are degraded or presented in a way which makes them 
difficult to recognise, such as using line drawings or brief presentations, e.g., Rhodes, 
Brennan & Carey, 1987; Lee, Byatt & Rhodes, 2000).  
 
Despite situations in which shape appears not to dominate the recognition of identity, it is 
implausible that shape is simply ignored in human perception of faces. In the remaining 
part of this section on human recognition, we develop averages which incorporate both 
texture and shape information specific to each individual. We examine whether such 
averages can be recognized as well as individual images of the same person.  
 
Figure 8 shows a diagrammatic representation of the shape-free procedure.  In the first 
instance, a grid is dropped onto an image of a face.  This is manipulated so that key 
points are identified in the image (corners of the mouth, of the eyes, and so forth). The 
image is then mapped onto a standard grid shape, using a morphing procedure.  This 
delivers a shape-free face.  However, the procedure also delivers the shape of the original 
face too, in the sense of identifying where the key points lay.  In this way, Figure 8 
demonstrates how the process of morphing to an average shape is a technique for 
separating two source of information in an image, the texture and the shape.  
 



 20

 
Figure 8: decomposition of a face image into shape and texture components 
 
 
In studies 1 to 3, we have formed image averages by taking the mean of shape-free faces.  
However, it is also possible to derive the average shape of these images, simply by taking 
the mean xy positions for each grid point in the original image. It is therefore possible to 
derive an average shape for a set of images, as well as an average texture map.  In the 
following experiments we use an average for each identity which is derived from both its 
average texture, and its average shape.  This is computed by morphing the average 
texture for an individual, to that same person’s average shape.  
 
The bottom row of Figure 6 shows some example identity-averages constructed in this 
way. Some of the averages have been changed in quite a profound way (for example the 
first one) while others are changed less dramatically. All the faces in Figure 2 were 
constructed in this way, and our intuition is that ease of recognition is increased by 
comparison to shape-free images. To test this, we ran two further experiments, in which 
the identity-averages were compared directly to specific instances of faces.  
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Study 4:  Name verification to identity-averages  
 
In this experiment we use the same name-verification procedure as in Study 3.  Following 
a name cue, a face appears, and this may be a specific image, or an identity average,  as 
described above.  Specific images were cropped to exclude background, and to give them 
an  angular outer contour, as with the averages.  
 
Method 
16 volunteer subjects were recruited, all of whom reported normal, or corrected to normal 
vision. Each subject was presented with all fifty famous identities in each condition (as 
an average and as an instance).  With fifty matched trials and fifty mismatched trials per 
condition, the experiment consisted of 200 trials in total, lasting approximately 15 
minutes (including rest periods).  
 
Trials consisted of a celebrity’s name presented at the center of the screen for 1500 msec, 
followed by a celebrity’s face for 200 msec. Subjects used speeded button-press 
responses (yes/no) to indicate whether or not the face matched the identity of the 
preceding name.  On positive trials (50%), the face did match the name, and on negative 
trials (50%), a mismatch was presented. Order of stimulus presentation was randomized 
individually for each subject.  
 
Results and Discussion 
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Figure 9: Mean RTs (Figure 9a) and Errors (Figure 9b) for study 4. Error bars are within 
subjects confidence intervals (Loftus & Masson, 1994), using pooled error variance 
(Loftus, 2004).  
 
Figure 9 shows mean RT (9a) and error rates (9b) by condition.  These data show that 
image averages are recognized faster than individual images.  There is an effect of cue 
validity, as is usually the case in this procedure, but the important point to note is that 
both valid and invalid cues gave rise to the same advantage for averages over instances.   
(This pattern is confirmed by ANOVA showing reliable effects of instance/average, 
F(1,15) = 6.7, and valid/invalid, F(1,15) = 24.4, with no interaction, F < 1).  Data for 
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errors is less clear, with the advantage for averages emerging only in the valid cue 
condition.  (ANOVA confirms only a simple main effect of instance/average for valid 
trials, F(1,15) = 20.3, p < 0.05).  
 
This seems to be quite compelling support for the notion that image averages  are a good 
match to subjects’ representations of familiar faces. Indeed, it is perhaps surprising that 
any representation can out-perform a specific instance of a face.   However, one should 
note that subjects are viewing these images under unusual conditions.  The name 
verification procedure used here employs a fast presentation rate, and subjects only see 
the images for 200ms.  In the final experiment, we show the images to subjects under 
more normal viewing arrangements, and simply ask them to identify each person.  
 
Study 5:  Recognition of identity averages 
 
Method 
 
Previous testing revealed 10 identities from our set of 50 who were not well known to 
participants (INSERT FOOTNOTE 2).  These 10 identities were removed from the set. 
For each of the remaining 40 faces, we used the same identity averages as used in Study 4 
(derived from the average shape and average texture of 20 images of each individual). 
Two sets of instances (A and B) were chosen at random, such that each contained a single 
example of each individual. These sets of instances were compared (across subjects) in 
order to ensure that particular example photographs could not influence the overall results 
unduly (for example if one of the instances turns out to be a poor likeness of the person).  
 
52 volunteer subjects were presented with 40 printed famous face images in a random 
order and were asked to identify each face by providing either the person’s name (e.g. 
“Bill Clinton”) or an individuating piece of semantic information (e.g. “the former 
president of the U.S.A.”). Half of the faces were presented as identity instances and half 
as identity averages, so that each subject encountered each face in only one of these 
formats. Furthermore, half the subjects saw instances from set A, and half from set B. 
Presentation format and identity were counterbalanced across subjects so that over the 
course of the whole experiment, each face was presented as an average or an exemplar an 
equal number of times. Subjects were under no time constraints and were given as long as 
they wanted to complete the task. 
 
Results and Discussion 
 
Mean hit rates were 77% for instances and 81% for identity averages. These hit rates 
were, coincidentally,  identical for instance set A and instance set B, and so no 2x2 
analysis was necessary.  A related means t test confirmed that identity averages were 
recognised reliably more often than instances (t=3.57;  p < 0.01).  
 
We have now demonstrated that the human perception of identity-averages is rather 
good. Using two different techniques, we have shown that identity averages can be 
preferred to individual images, even when these have been used in construction of the 
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average.   We should, however, note that these results are on average results.  That is to 
say, that identity-averages are on average better than individual images on average.   It 
seems from looking at arrays of images of the same face (such as Figure 3a) that some 
individual images are simply better images of the person, in the sense of being more 
recognizable than others.  The concept of a good or bad likeness in a photograph is 
commonplace in portraiture.  It is possible, then, that some of the individual images we 
have used are better representations of the person than others.  (We chose these at random 
from the 1000 images in our database, and not to be particularly good or bad likenesses).  
Note that the concept of a bad-likeness is only possible for an instance.  The average, by 
comparison, can never be a bad likeness since it incorporates a large range of images.  It 
is therefore perhaps unsurprising that, under these circumstances, a properly constructed 
average face can be a better representation than a randomly chosen instance.  Of course, 
there may also be specific images which make particularly good recognition cues (for 
example well-known or iconic images of famous individuals), and so one cannot claim 
from this data that an average will always out-perform a specific instance.  Nevertheless, 
we propose that this very simple representation, built using the simplest form of 
abstraction conceivable, seems to have the properties required of a robust representation 
for handling variability in input. In the final study, we return to further consideration of 
how this power may be exerting itself, using computer simulations to illustrate the issues.  
  

Understanding the power of image averages 
 
We have so far demonstrated that a very simple prototype system, based on image 
averaging, offers a promising representation for face recognition.  A PCA-based system 
performs well with these averages, and appears to develop increasing expertise with 
increasing exposure (or number of prior encounters) with a face.  Furthermore, there is 
some preliminary evidence that these image averages are perceived relatively accurately 
by human observers, particularly when shape is built-in to the averaging process.  We 
now turn to an analysis of what might be underlying this effect, focusing particularly on 
the PCA system.  
 
 
 
 
Study 6: Computational analysis of averaging 
Why should storing an average face for each target perform better than several 
exemplars?  Our explanation centers on the idea that averaging face images tends to 
remove artifacts due to difference in lighting, superficial image and camera 
characteristics, expression and small variations in pose, while consolidating information 
that is diagnostic of identity.  (In what follows, we will group these non-identity 
variations under the general term ‘lighting’ for convenience.) To make this hypothesis 
explicit and to test whether it might account for the improvement seen, we now present a 
simulation based on an idealized “face space”. In this model, face images are held to exist 
in some multidimensional space.  Some of the variations that we see are due to real 
differences between faces.  Others are due to factors such as lighting and pose.  The 
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problem that plagues recognition of faces is that the changes of the latter tend to 
outweigh the former, at least at the pixel level, so different faces seen under the same 
lighting can look more similar than the same face under different lighting.  We model this 
with two sets of Gaussian random variables.  The first set models the genuine differences 
between faces.  The variance of these variables is relatively low but the average value for 
a given person will be non-zero, i.e. they will occupy a specific location in the “face 
space”.  The second set of variables models the variations due to artifacts such as 
lighting.  These therefore have a relatively high variance, but a mean of zero, where zero 
means “average” lighting, whatever that might be.   
 

 
Figure 10.  The space of face images is here represented by two dimensions, one 
capturing lighting and other extraneous changes, the other real differences in the 
appearance of faces.  Two faces, A and B are shown, located on the origin of the lighting 
axis but separated in face space.  Each face is represented by five face images, 1-5, which 
vary strongly on the lighting dimension and somewhat on the face space dimension (a 
face’s natural variation over time).  The averages of the exemplars are relatively near to 
the ‘true’ location of each face. 
 
 
Figure 10 illustrates this idea in two dimensions, one for lighting and one for face space. 
Figure 10 represents a number of exemplar face images, which vary strongly on the 
lighting dimension, and their averages, which are closer to the origin.  In the diagram, it 
can be seen that a simple exemplar model would fail for face B1, since it is nearer to A1 
than any of the other B exemplars.  However, it is nearer the B average than the A 
average. The diagram assumes Euclidean space: use of Mahalanobis distance, as in the 
work with real faces in the simulations above, will change the scales but not the 
interpretation. 
 
The results of applying PCA to this model will depend strongly on whether averaging is 
carried out first.  Without averaging, most of the variance lies along the lighting 
dimensions, so that is what PCA will pull out.  The early components will code mainly 
lighting changes, irrelevant to identification.  With averaging, much of the variance due 



 25

to lighting is eliminated and the PCA will be left with the face space dimensions, which 
are the ones that are interesting for recognition. 
 
To assess how much effect this might have in practice, the following simulation was run.  
We assume 10 lighting and 10 face dimensions (entirely arbitrary figures that do not 
affect the form of the results).  We simulate a situation in which there are fifty faces, each 
located at zero on the lighting dimensions and at a normally distributed random location 
in the face dimensions (standard deviation (sd) of the Gaussian distribution is 1).  For 
each face, 10 simulated face images are generated, by adding a Gaussian random 
variable, sd=0.5, to each of the face dimensions and one of varying sd to each of the 
lighting dimensions.  The lighting sd was varied between 0.3 and 1.5 to test the effect of 
this parameter.  Within this model therefore, each canonical face is represented by a point 
at a random location in 10 dimensional face space and zero on the lighting axes, and 
individual face images are points somewhere in the 20 dimensional space of face and 
lighting components. 
 
To test recognition, one example “face image” for each “face” was set aside to act as a 
probe.  PCA was then run on the other 9 x 50 face images.  We took the top 10 principal 
components as the basis set and transformed the 50 probe face images into this reduced 
space.  (The effects of varying the number of components used will be discussed below).  
For each probe face the nearest neighbouring image, within the PC space, was identified, 
by Mahalanobis distance.  This is the equivalent of the exemplar approach.  To simulate 
the averaging approach, we first averaged the 9 exemplar face images for each face, to 
give 50 averages in the 20 dimensional model space.  These averages were subjected to a 
new PCA.  Each probe face image was then rendered into the new PC space and the 
nearest average face located, again by Mahalanobis distance.    This whole process was 
repeated for each of the 10 different images for each face and then rerun a total of 10 
times with new random face locations, to improve the regularity of the results. 
 

 
Figure 11: average hit rates for the average and exemplar methods, varying the amount of 
lighting noise. 
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Figure 11 shows the results of the simulation.  As the sd of the lighting components 
increases, the average hit rate of the exemplar method rapidly falls.  The increasing 
variability makes it more unlikely that the nearest other face image will be from the same 
face as the probe.  Worse, the PCA will be affected by the variation in the lighting 
dimensions and code them preferentially, excluding the important face dimensions from 
the top 10 components.  When the images are averaged before the PCA, the performance 
holds up much better.  The amount of the improvement may initially seem surprising, 
since the probe images still carry all their lighting variation, and might therefore be 
expected to be a long way from the averages.  However, this is where the gain of using 
PCA becomes apparent.  Since the PCA was run on the averaged face images, the 
variance of the lighting dimensions was reduced.  PCA therefore picks up the face 
dimensions and is simply not very sensitive to the variation in the lighting dimensions of 
a given exemplar used as a probe.  Matching within the PCA space largely ignores the 
extraneous variations, leading to the big improvement in performance.  The amount of 
improvement depends on the noise level, but it is evident that the model can account for 
the improvement seen with the real face images. 
 
The improvement is also dependent on the number of components used.  Here we used 
10, which conveniently matches the number of face dimensions in the simulation.  Use of 
fewer components reduces performance somewhat across the board, since useful 
information is thrown away.  However, using too many has a strong effect on the 
averaged result, since these later components will code the lighting dimensions.  Adding 
them in only increases the probability of false matches. We therefore anticipate that use 
of this simulation technique, linked to PCA on real averaged images, offers a potential 
source of information about the real dimensionality of face space. If future systems, 
based on realistically sized populations of face images, can achieve human levels of 
recognition accuracy, this will provide information about the number of dimensions 
needed to code faces within this simple linear scheme.  
 
 

General Discussion 
 
The work described here shows that a particular artificial face recognition system, based 
on PCA of image intensities, performs well with a very simple representation, derived 
from picture averages.  The system is tested on a range of images, which are much more 
heterogeneous than normally used in reports of automatic recognition systems (Phillips et 
al, 2000; Zhao et al, 2003). Using this realistic range of superficial image characteristics, 
not normally noticeable until one sees them all together, as in Figure 3, there is 
immediate advantage for storing an average of learning images, over storing them all 
individually.  Furthermore, better (more recognizable) averages are built from larger 
numbers of exposures.  PCA has been proposed as a model of some aspects of human 
face processing (e.g., O’Toole et al, 1994; Burton et al, 1999) and the advantage it shows 
when using an abstract representation appears to offer potential for understanding human 
face recognition.  
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When one’s task is to establish the identity of a face, superficial image cues such as 
contrast, illumination, lighting direction etc,  must somehow be filtered out. However, an 
attempt to do this in a principled way, systematically accounting for each independently, 
and filtering accordingly, is a very difficult task. Instead, a simple image average 
automatically yields a face which is not subject to too great an influence from any of 
these factors, and we have simulated this above.  Furthermore, as the average is taken 
from a larger and larger sample, the estimate of the “true mean” improves.  
 
This simple proposal is attractive because it has potential to address a number of 
important issues in face recognition.  First, it automatically provides an account of face 
learning. If face recognition can be understood as matching an image to a stored 
representation, then matching two images of an unfamiliar face will essentially be an 
image-matching (rather than a face-matching) task. Bruce et al, (1999, 2001) and 
Hancock et al (2000) suggest that this is exactly the strategy used in unfamiliar face 
matching, in contrast to a more abstractive approach in which some canonical knowledge 
of face variation is recruited.   In order to become an expert with a familiar face, and be 
able to recognise it over an increasing range of visual conditions, one simply needs to 
improve one’s representation.  Under this scheme,  matching familiar faces is the same 
process as matching unfamiliar faces. The huge difference in one’s facility to do this 
arises simply because of a much better target against which to match familiar faces. 
Notice that this proposal is not inconsistent with previous work suggesting that internal 
features become more important for recognizing a face as it becomes more familiar (Ellis 
et al, 1979; Young et al, 1985).  If, over a range of exemplars, it is the internal features 
which remain constant, while external features such as hairstyle change, then it is the 
internal features which will be preserved automatically by the averaging process.  
 
This proposal also allows a way of capturing the difficulty of recognizing people over a 
very large range of circumstances, including changes through life.  Viewers of a certain 
age, tested in psychology laboratories, have no difficulty recognizing a photograph of 
Paul McCartney taken any time between 1960 and 2005.  Photographs of McCartney at 
20 look very different from photographs at 60 years old, and yet people recognise each 
with ease.  One might anticipate that this could only be achieved by storing separate 
representations of McCartney, one for each age.  However, this simple image averaging 
technique preserves precisely those aspects of a face’s identity which remain constant 
over the range of images which constitute it.  The technique eliminates not only 
superficial properties due to light and photographic equipment, but also properties due to 
age, mood, health, and so forth.  Notice that the resulting average of McCartney need not 
necessarily look like a photograph of McCartney.  To be sure, it will be free of wrinkles, 
detailed complexion, and many of the other properties of images (see Figure 2).  
However, it need only act as a McCartney filter to be effective.  So, it need only be more 
like any input image of McCartney, than is any of the other stored averages, in order to 
work as an effective and efficient representation.  
 
This proposal appears to have a number of characteristics which render it a potentially 
interesting form of representation for understanding face recognition. Building on a line 
of theorizing using putative Face Recognition Units (Bruce & Young, 1986), we have 
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offered one way of implementing such units.   Figure 2 provides a way to visualise this 
proposal for a set of known faces.  In offering it, we certainly do not wish to preclude 
future instance-based systems. We have not, of course, tested the whole range of possible 
exemplar-based formulations, and it is possible that a future system will hold just as 
much promise as the one presented in this paper.  However, we hope that we have 
demonstrated that this particular prototype-based formulation, derived from a very simple 
averaging technique, offers considerable potential for future research addressing a wide 
range of face recognition problems.   
 
Concluding remarks 
 
Although we have offered an outline solution to the problem of face representation, there 
are clearly very many issues outstanding.  In this final section we discuss some of these 
in the hope that we can be as clear as possible in articulating what is and is not claimed 
for this proposal.    
 
1. Who decides which faces are averaged together?  
The proposal we offer here relies on a supervised learning technique. When a new image 
of Tony Blair is perceived, it is necessary to know who it is, in order to incorporate it into 
the average of the correct person. It is clear that there are very many occasions in which 
person recognition is not only based on identification  of a face, and one has support from 
many other sources in order to make the identification (for example, voice, clothing and 
social context).  Furthermore, in social interaction (or simple observation), one is given 
very many examples of how that person’s face may appear, moment by moment, across 
changes due to head position, expression and speech.  Under all these circumstances there 
is very strong top-down support for deciding which representation to update with a new 
instance.  Of course, there will be occasions on which these supporting structures are 
absent, for example if one were to see a familiar person in an unexpected place.  Under 
these circumstances, we would expect the system sometimes to make a mistake.  
However, note that this is exactly the situation in which human perceivers make 
mistakes.  The clear prediction from our proposal is that these mistakes would be more 
common for less-well known individuals than for people who are very well known to the 
system, and who have the more robust representations coded.  This seems to be a rather 
uncontentious prediction to make.  
 
2. Is a single full-face template all that is needed for familiar face recognition? 
Although we have only provided studies of full-face images, there is good evidence that 
this is insufficient for a robust representation of familiar people.  For example, it has been 
known for many years that certain views (and particularly 3/4 views) seem to be 
particularly well recognised, by comparison to full face or profile views, though this 
effect is moderated by familiarity and learning conditions (e.g., Bruce, Valentine & 
Baddeley 1987; Logie, Baddeley & Woodhead, 1987; Liu & Chaudhuri, 2002). However, 
evidence from a range of sources suggests that effects of view dependence need not 
necessarily arise from a generalisable (“rotatable”) representation.  Instead, a small 
number of canonical views (for example full face, three quarter and profile) can be used 
to generalize to other intermediate views without significant decrement in recognition 
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performance (see e.g., Hill, Schyns & Akamatsu, 1997; Perrett et al, 1985, 1998 ; 
Logothetis, Pauls & Poggio, 1995).  This position is consistent with the averaging 
proposal outlined here.  In order to store a fully robust representation of a known face, it 
seems likely that one will have to store, separately,  averages of that person’s full face, 
3/4 view, and profile.  However, the means by which this is achieved could be the same 
as those outlined above, without loss of generalization.  We are therefore not proposing 
that full face is a sufficient representation for face recognition, but that a small number of 
discrete viewpoints will be necessary to generalize the proposal.  
 
 
3. The grid shape is manipulated by hand, should this be automatic? 
In the studies described here, all key points for grid placement were found by hand. In 
one sense this detracts from the claim that this proposal may be useful in automatic face 
recognition.  However, our averaging proposal relies on face standardization, and the 
mechanism for achieving a standard shape must work reliably in order for averages to be 
useful.  The proposal therefore requires that there is some analogue of standardization in 
human face perception. This seems to be a reasonable notion, though we have not offered 
a mechanism for achieving it.  In fact, it seems likely that any standardization mechanism 
acts independently of identification processes. Certainly, subjects who fail in tasks such 
as shown in Figure 1, have no difficulty in locating the key features of the face, as 
required for grid placement. While it would be possible to automate the standardization 
process using any one of a number of computer-vision techniques (e.g. techniques related 
to those proposed by Blanz & Vetter, 1999), such a mechanism would be independent of 
the current specific proposal.  Furthermore, any such system would inevitably introduce 
further errors. We have therefore chosen to present a system uncontaminated by such 
errors, while acknowledging that this extra component would be needed for any future 
practical deployment of the scheme.  
 
4.  What are the relative contributions of shape and texture to identification? 
The results of our artificial face recognition studies, as well as previous  reports in the 
literature (e.g., Burton et al, 2001,  Calder et al, 2001), show that PCA performs quite 
well with shape-free images.  However, this does not mean that shape is unimportant in 
recognising faces.  Note that in the shape-free versions of faces, information about shape 
is nonetheless present. So, for example, the pattern of pixel intensities for a shape-free 
chin, will be different depending on whether the original was a big or a small chin.   
Since the PCA is not tuned to any particular face-shape (i.e. the shape we choose is 
essentially arbitrary for the computer analysis) this extra information is available for use 
in the performance.   However, as we have shown in the studies above, human 
recognition of averages is rather good with shape included.  It would therefore be 
worthwhile topic of future study to ask how these two sources of variation combine.  
O’Toole et al (1999) have studied combination of 3d shape and texture information, 
finding both to be important for identification, however comparable studies do not yet 
exist for 2d stimuli.  Our initial observations are that shape provides good support for 
face recognition in this situation, but is not a dominant cue.  Raw grid information, such 
as shown in figure 8, is never recognizable.  We have also tried to morph average face 
textures to an individual’s shape, and again this never results in recognizable faces.   
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However, we should note that we have chosen to use a very simple grid.  It is possible 
that future research, using a grid with more fine-scale resolution, would pick up 
independent effects of shape on face recognition.    This will be a topic for future 
research.  
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Footnotes 
 
Footnote 1:  We have repeated this study using a Euclidean metric. Consistent with the 
literature, we found that Mahalanobis distance matches were better than Euclidean 
matches in every version of the system. Since a system based on Euclidean matching is 
not a serious candidate for this type of recognition problem, we have therefore not 
presented data on this manipulation, though it is available from the authors on request.   
 
 
Footnote 2: The appendix lists all 50 celebrities in our database, and averages of these 
people are shown in Figure 2. Although all are famous, some are better known by certain 
age groups than others. The student sample for study 6 was not familiar with some of the 
older celebrities.  
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Appendix:  People depicted in figures 
 
Figure 1: in line-up 1a, the target is number 3; in line-up 1b the target is not present.  

 

Figure 2: From top left in rows: Al Pacino, Bill Clinton, Brad Pitt, Cameron Diaz, 

Catherine Z Jones, Cher, Cherie Blair, Clint Eastwood, David Beckham, David Bowie, 

Elvis Presley, Ewan McGregor, George Bush, Geri Halliwell, Gwyneth Paltrow, Harrison 

Ford, Jack Nicholson, Jennifer Anniston, Jennifer Lopez, John Travolta, Julia Roberts, 

Keanu Reaves, Kevin Spacey, Kylie Minogue, Leo di Caprio, Liz Hurley, Madonna, 

Margaret Thatcher, Marilyn Monroe, Meg Ryan, Mel Gibson, Michael J Fox, Michelle 

Pfeiffer, Natalie Portman, Nicholas Cage, Paul McCartney, Princess Diana, Russell 

Crowe, Sarah J Parker, Sarah M Gellar, Sean Connery, Sharon Stone, Susan Sarandon, 

Sylvester Stallone, Tom Cruise, Tony Blair, Uma Thurman, Victoria Beckham, Vinnie 

Jones, Winona Ryder.   (Note that celebrities were chosen as being famous to a British 

audience.)  

 

Figure 6: From left to right: John Travolta, Susan Sarandon, Sylvester Stallone, Leo di 

Caprio  
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