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How wrong can you be? The implications of incorrect utility function specification 

for welfare measurement in choice experiments 

 

 

Abstract 

 

Despite the vital role of the utility function in welfare measurement, the implications of 

working with incorrect utility specifications have been largely neglected in the choice 

experiments literature. This paper addresses the importance of specification with a 

special emphasis on the effects of mistaken assumptions about the marginal utility of 

income. Monte Carlo experiments were conducted using different functional forms of 

utility to generate simulated choices. Multi-Nomial Logit and Mixed Logit models were 

then estimated on these choices under correct and incorrect assumptions about the true, 

underlying utility function. Estimated willingness to pay measures from these choice 

modelling results are then compared with the equivalent measures directly calculated 

from the true utility specifications. Results show that for the parameter values and 

functional forms considered, a continuous-quadratic or a discrete-linear attribute 

specification is a good option regardless of the true effects the attribute has on utility. 

We also find that mistaken assumptions about preferences over costs magnify attribute 

mis-specification effects. 

 

Keywords: utility specification, attributes, welfare measurement, accuracy, efficiency, 

choice experiments, Monte Carlo analysis. 

 

JEL classification: C51, D69, C99, C15. 
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1. Introduction 

Since the early 1990’s, Choice Experiments (CE) have been increasingly used in the 

field of environmental valuation. One of their most important advantages is their ability 

to estimate willingness-to-pay (WTP) for changes in the attributes of an environmental 

good. In this context, decisions the researcher makes concerning the way in which these 

attributes are assumed to be related to utility are important. Decisions on how attributes 

enter the utility function involve which attributes to include, their nature (continuous or 

discrete) and the number of levels which attributes can take [1].  

 

Given that attribute specification within the utility function assumed for a representative 

individual determines both the econometric approach taken to estimating choice models 

and the experimental design from which estimation proceeds, decisions over how to 

model the effects of changes in biodiversity, or air quality, or noise on utility may well 

have a significant impact on the accuracy and precision of marginal WTP estimates, and 

on the estimates of Compensating Surplus (CS) which can be derived from these. 

Decisions concerning the effects attributes have on utility are thus likely to be 

important, and an interesting question concerns the extent to which researchers produce 

inaccurate (biased) welfare measures by mistaken assumptions over the nature of the 

underlying utility function. Surprisingly, this question has not been addressed in the 

choice modelling literature. 

 

Given that choice modellers must make decisions about the nature and the number of 

levels of attributes in a context of uncertain knowledge about the true preferences of 

individuals, this raises the question of the implications of working with incorrect utility 

specifications. As is well known, the parameter of the Cost attribute, usually interpreted 
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as the negative of the marginal utility of income, plays a key role in welfare 

measurement. Specification issues related to the Cost variable include decisions over 

whether to assume a constant parameter or not.
1
 Problems related to the assumption of a 

non-constant Cost parameter
2
 have led many researchers to assume it be a constant 

when specifying the utility function [2]. However, this is unlikely to be true in all cases 

[3]. Assuming as homogeneous a parameter that is likely to be heterogeneous could 

have important implications for welfare estimates. In this context, examining the 

sensitivity of attribute mis-specification effects should include mistaking assumptions 

about how the Cost parameter varies across individuals.  

 

The objective of this paper is therefore to investigate the consequences of utility mis-

specification for CE estimates of welfare change, with a special emphasis on the effects 

of mistaken assumptions about the marginal utility of income. To do this, Monte Carlo 

(MC) experiments have been conducted where different attribute specifications and 

assumptions for both the Cost and an environmental quality parameter – that is, 

different functional forms of utility – have been used to generate simulated choices. 

Multi-Nomial Logit (MNL) and Mixed Logit (MXL) models have been estimated on 

these simulated choices under correct and incorrect assumptions about the true, 

underlying utility function (clearly, such tests are not available using real data, since the 

researcher cannot know the true form of utility). Inferred values for WTP from 

simulated choice data have then been compared with true WTP values obtained directly 

from the underlying utility specifications. This procedure has been repeated 1,000 times 

to examine the robustness of results.  

                                                 
1
 The Cost variable tends to enter the utility function as a continuous attribute in most CEs reported in the 

environmental economics literature.  

 
2
 These problems include calculating implicit prices as a ratio of two distributions. 
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The structure of the rest of this paper is as follows. The next section provides a review 

of the environmental valuation literature which has used Monte Carlo methods to assess 

specification, design and estimation issues. Section 3 discusses the methodology used 

and the data employed for the experiments. Results on attribute mis-specification, using 

one environmental attribute as an example, are reported in section 4. In section 5, the 

sensitivity of welfare measures to mistaken assumptions about the marginal utility of 

income is analysed. We also consider the implications of assuming constant error 

variances when this is not true. Next, a section on the errors in WTP involved from 

incorrectly assuming that the true, underlying utility function is additive is presented. 

Conclusions are drawn in section 7.  

 

2. Utility specification issues in the environmental valuation literature 

Despite the central role of utility function specification in welfare measurement, interest 

in choice modelling has thus far been restricted to the analysis of the impacts of 

alternative experimental designs under different utility specifications. Indeed, 

surprisingly little attention has been paid to utility specification issues in research on 

other valuation approaches based on random utility models, such as recreation demand 

models and dichotomous choice contingent valuation.   

 

Recognition of the need for analyzing the accuracy of welfare estimates [4; 5] led 

researchers to investigate issues such as the specification of the recreation demand 

function in travel costs (TC) models, and  WTP elicitation in the contingent valuation 

(CV) approach. These early studies were largely concerned with the factors affecting 

welfare measurement in revealed preference methods and dealt with the effects of 

different approaches to TC modelling. Thus, Kling [6] looks at the impacts on WTP 



 6 

estimates for quality changes in the Chesapeake Bay from the use of four different 

recreation demand models. Parameters from recreation surveys are combined with a 

utility function to simulate a TC data set to which the four alternative approaches are 

applied. Kling [6] finds that all approaches underestimate the true mean welfare change. 

A related paper is Kling [7], who again uses MC analysis to compare three different true 

utility specifications with alternative functional forms for the demand function in TC 

models. The paper shows that rather simple specifications for TC models can actually 

yield relatively small errors in welfare estimation.  

 

Issues of functional form choice in TC models are also central to papers by Adamowicz 

et al [8] and Kling [9]. The former article looks at effects on the variance of welfare 

estimates, comparing linear, semilog, log-log and restricted Box-Cox forms, and finds 

that impacts on both variance and mean can be substantial. In the latter paper, Kling [9] 

focuses on the magnitude of errors in WTP estimates from incorrect choice of 

functional form and finds that the choice of functional form is less important for small 

than big price changes. A related area of concern is decisions over appropriate nesting 

structures in multiple site recreation demand models. Kling & Thomson [10] show that 

parameter estimates depend on both nesting structure and estimation method (sequential 

or Full Information Maximum Likelihood), whilst Herriges & Kling [11] report the sign 

and size of bias from inappropriate nesting structures and analyze the ability of 

conventional goodness-of-fit tests to identify the best model.  

 

Concerns about the accuracy and precision of welfare estimates can also be found in 

CV. Thus, Kling [12] uses MC analysis to investigate the advantages of combining TC 

and CV data in terms of the bias and precision of welfare measures, and Alberini [13] 
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analyzes, by undertaking MC experiments, the gains from using a  double-bounded 

discrete choice model in the CV context, relative to a bivariate probit model and finds 

the double-bounded approach produces gains in terms of lower bias and greater 

precision. Scarpa & Bateman [14] also use MC methods to analyse the design of follow-

up questions in multiple-bounded question formats, and to investigate the efficiency 

gains from asking such follow-up questions, whereas Park et al [15] investigate the 

effects of functional form on WTP estimates within a discrete choice set-up. 

 

Turning specifically to specification issues in CEs, many studies using simulation have 

been focused on the effects of different experimental design strategies. Thus, Ferrini & 

Scarpa [16] use MC analysis to compare simple, shifted (orthogonal) designs with D-

efficient designs and cast light on both the use of prior information in undertaking 

experimental design, and the issue of whether the nature of the actual data generating 

process is consistent with that assumed by the analyst in choosing their econometric 

approach. Scarpa & Rose [17] also analyze the performance of different design 

strategies, undertaken under the assumption that a prior belief on the range of values for 

the utility parameters can plausibly be defined, with a focus on efficiency of WTP 

estimates from a MNL model. Carlsson & Martinsson [18]  use MC analysis to compare 

three kinds of experimental design (orthogonal, cyclical and D-optimal) in terms of bias 

and mean squared error for three different true utility functions. In a similar vein is a 

paper by Lusk & Norwood [19] who also use MC experiments to compare the effects of 

specifying utility as a continuous function of attributes, with a step-wise specification, 

in terms of the implications of alternative experimental designs. Their main finding is 

that true and estimated WTP are insignificantly different for all experimental designs 
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considered, and that higher sample sizes always improve the fit of actual and estimated 

WTP.  

 

A conclusion reached from this review is that the question of how important the 

specification of the utility function is for welfare measurement in CEs has received little 

attention. Given the key role of utility specification in welfare calculation, efforts need 

to be made to fulfil this gap. Indeed, some authors have argued that addressing the 

effects of misspecifying the underlying utility function – for example, using a linear 

form when true utility is non-linear – is an important area for future research [19].  

 

3. Designing MC experiments to examine the importance of attribute specification 

3.1 The experimental design 

The attribute data employed to create the experimental design used in this paper come 

from a CE study on recreational beach use in Santa Ponça Bay, a small Mallorcan 

tourism area.
3
 We consider three non-monetary, environmental attributes ( 1X , 2X  and 

3X ) and a cost attribute ( 4X ) varying at 3 levels each.
4
 The design has been generated 

under a D-efficiency criterion. As explained by Lusk & Norwood [19], D-efficiency is a 

common measure of design efficiency representing a function of the geometric mean of 

the eigen values of   1
'


XX . It is formally given by   AXXN 11'1100  , where X is 

the matrix of attributes used in the design, N is the number of observations in a design 

                                                 
3
 For a detailed description of the attributes and their levels, see [20]. 

 
4
 Two variations on the levels of 1X have also been considered to examine the effects of changing the 

number of levels: the first one with 2 levels and the second one with 5 levels. However, 2 levels only 

serve to identify a unique utility jump. Thus, the resulting attribute values have been the same under all 

the assumed attribute specifications regardless of the true effects 1X  has on utility. On the other hand, 

assigning 5 levels to 1X  –a rather seldom practice in the literature– has led to similar results as those 

derived from assigning 3 levels. For all these reasons, these results on varying attribute levels have not 

been reported in the paper. 
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and A is the number of attribute x levels in the design. The design has also been 

generated allowing for main effects (ME) only. According to Louviere et al. [21], this 

kind of design typically explains about 70-90% of the variance in choice. The final 

design consisted of 36 pairs of attribute combinations. These have been then blocked 

into different versions each of 6 choice sets of 2 alternatives plus a business-as-usual 

(BAU) option. The main features of the design are shown in Table 1.
5
   

 

3.2 Underlying utility functions and true welfare measures 

At the first stage of the MC analysis, three different generic utility functions with the 

same explanatory variables ( 1X , 2X , 3X  and 4X ) and known parameters have been 

specified. The effects of utility function mis-specification are examined for the 

attribute 1X , which represented a measure of water quality in the CE. Thus, for a 

scenario in which 1X  has a true linear effect, a linear specification has been employed 

(Equation 1). To consider non-linear effects two different specifications have been used: 

a quadratic form (Equation 2); and a step-wise function (Equation 3) where the marginal 

utility of 1X  takes three constant values between 0 and 2c .
6
  

 

jijjjjji XXXXU   43211         (1)  

                                                 
5
 A number of 36 pair combinations has been the result from application of a SAS. Given the BAU levels 

have been considered constant across the choice sets, only pair combinations have been optimized when 

creating the design. The BAU alternative has been added to the generated choice sets after the 

optimization process. However, the BAU levels (except €0 level for the Cost attribute) have not been for 

the exclusive use of the BAU option. Therefore, they have also been employed to generate the optimized 

pair combinations, this leading to a 3
4 
experimental design for each of the two alternatives. 

 
6
 These utility function specifications are the most widely used in the literature when specifying an 

estimation model. In this context, if we consider researchers expect their utility specifications to fit well 

the data, it seems reasonable to use them to generate choices. Note that a utility specification matching 

Equation (3) for estimation purposes is given by a utility function where 1jX  is codified as discrete by 

creating two dummy variables. Thus, if we want to identify the utility changes 1  and 2  with respect to 

when 21 cX j  , the utility specification would be as follows: 

 

    jijjjjjji XXXcXccXU   4322112111 11  
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jijjjjjji XXXXXU   432

2

1211
     (2) 

      jijjjjjjji XXXcXcXccXU   4322132112111  (3)  

where jiU is the indirect utility of alternative j for individual i, 1 , 2 , 3 ,  ,  ,   

are the known parameters of the attributes (  is the marginal utility of income), 1c  and 

2c  are the critical attribute values delimiting the three steps of the step-wise marginal 

utility of 1X  and ji is the error term associated with alternative j and individual i.  

 

Following Hanemann [22], the true CS value of 1X , defined as the WTP for a change in 

the attribute from the BAU scenario, has been calculated for the linear, quadratic and 

step-wise utility specifications as shown in Equations (4), (5) and (6): 

 

  
01 111

1
XXCS  


        (4) 

    2

1

2

12111 0101

1
XXXXCS  


      (5)         

 zyCS 



1

; y, z=1, 2, 3       (6)         

 

where 
11X  and

01X are the policy-on and policy-off levels of 1X , respectively, and y and 

z represent one of the three ranges of the three-stepwise function and depend on the 

values of 1c  and 2c . 

 

Table 2 shows the true utility specifications, the known parameters, the critical values 

1c  and 2c  for the step-wise function and the true WTP values for a hypothetical change 
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in 1X  from the BAU level (a value of 6, as shown in Table 1) to a situation in which it 

takes the level 2, indicating a reduction in pollution. As seen in Table 2, two different 

quadratic specifications have been considered. These show two different degrees of 

non-linearity when 1X  has true quadratic effects on utility: a low degree (quadratic 1) 

and a high degree (quadratic 2). Using these two quadratic specifications will allow an 

examination of whether the intensity of true non-linearities has some influence on bias 

in the estimated attribute values. 

 

3.3 MC experiments and estimated welfare measures 

At the second stage of the analysis, MC experiments have been undertaken to estimate 

the CS value of the change in 
1X and compare it with the true value. Therefore, choices 

have been simulated for each type of true utility specification (linear, quadratic 1, 

quadratic 2 and step-wise). The utility of each alternative for each choice occasion has 

been calculated by combining the known parameters of the utility function with the 

attribute levels and an error term. These error terms have been generated from a type I 

extreme value distribution and a unique error has been randomly drawn not only for 

each alternative but also for each observation in the sample.
7
  

 

This procedure generated 4 sets of simulated choices (one for each type of true utility 

function specification or data generating process). For each choice task, the simulated 

choice has been assigned to that alternative in the choice set providing the highest utility 

level. In the simulation, 600 individuals have been considered. Given each individual 

faces 6 choice tasks, 3,600 (600x6) observations have been created by this process for 

                                                 
7
 In an initial analysis, we tested the effects of changing the relative contribution of the error terms to total 

utility on the accuracy of welfare measures, but found that “small”, “large” and “very large” error 

percentages gave rather similar accuracies for welfare measures. So, the main analysis in this new version 

of the paper uses just one error proportion– “small”. 
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each of the 4 data generating processes (DGP). Using these simulated samples, MNL 

models have then been estimated which encompass the range of true utility function 

specifications: that is, we estimate linear, quadratic and step-wise in 
1X MNL models.  

 

Taking into account the types of true attribute specification (linear, quadratic 1, 

quadratic 2, stepwise) and attribute specification in the estimation model (continuous-

linear, continuous-quadratic and discrete (step-wise)-linear), we have 12 different MC 

experiments (4x3). The CS value for the same change in 
1X has been estimated for each 

MC experiment following Equations (4), (5) and (6) according to the attribute 

specification assumed in the model. This process has been repeated 1,000 times, leading 

to a distribution of 1,000 estimated WTP values for the change in 
1X for each MC 

experiment. From each distribution, the mean WTP value of 
1X has been calculated as 

the average of the sum of the values obtained in each MC experiment over these 1,000 

repetitions.  

 

The importance of attribute specification has been examined by quantifying the errors in 

the estimated CS. To do this, bias and mean squared error (MSE) have been calculated. 

As shown in Equations (7) and (8), bias is defined as the average over 1,000 repetitions 

of the difference between the estimated and the true WTP for 
1X . The MSE represents 

the average over 1,000 repetitions of the square of the bias and gives an idea of the 

variance of the estimates.
8
  

 

                                                 
8
 Note that )var(2 eCSBiasMSE  , where the variance is defined as the spread of the estimates about 

the mean of the estimates. 
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 







 



R

r

te

r CSCS
R

BIAS
1

1
               (7) 

  







 



R

r

te

r CSCS
R

MSE
1

21
               (8) 

where R is the number of repetitions of each MC experiment, e

rCS  is the estimated CS in 

repetition r and CS
t
 is the true CS. 

 

Relative bias, defined as the ratio between our measure of bias and the true marginal 

value of 1X , has also been calculated to make comparable results from all the MC 

experiments. In what follows, we focus on relative bias as the measure of error in 

welfare estimation.
9
 

  

4. Results: mis-specifying how an environmental attribute affects utility.  

The results of relative bias in the estimated WTP value of 
1X for each MC experiment 

are presented in Table 3. As stated above, these values refer to a hypothetical change in 

1X from the BAU level of 61 X  to a level of 21 X . Relative bias measures are 

shown in terms of the true utility specification (linear, quadratic 1, quadratic 2, 

stepwise) and the specification assumed in the estimation model (continuous-linear, 

continuous-quadratic and discrete-linear) used in the simulations. We focus discussion 

on results where the assumed attribute specification does not match the true one.  

 

As shown in Table 3, relative biases are highest when 1X  has true non-linear effects but 

a linear specification is assumed by the researcher. This is especially so when the 

                                                 
9
 In the interest of brevity, only results of relative bias are reported in the paper. Values for bias and MSE 

for all the MC experiments are provided in the Appendix. 
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attribute has true quadratic effects with a marked degree of non-linearity (i.e. quadratic 

2). In contrast, when 1X  has true linear effects and a quadratic or a discrete 

specification is erroneously assumed, relative biases are practically zero. That relative 

biases resulting from attribute misspecification increase when 1X  has true non-linear 

effects is not surprising as the linear specification is a particular case of the quadratic. 

Indeed, estimation results show that the quadratic model fits choice data from a true 

linear model well, yielding an insignificant squared parameter. In this context, and 

taking into account that preferences are in practice unknown, opting for a discrete or a 

quadratic attribute specification in estimation seems to be a good strategy when the 

researcher does not know the true underlying utility function.
10

  

 

To analyze the sensitivity of results to the magnitude of welfare change, the MC 

experiments have been repeated considering a smaller attribute change than that used 

above. The analysis was repeated for a hypothetical change in 1X  from the BAU level 

(6, see Table 1) to a level of 4, rather than 2. Results show that for this smaller welfare 

change, attribute mis-specification when 1X  has true non-linear effects leads to less 

precise estimates than in the case for a bigger change in the attribute level. Again, when 

the attribute has true quadratic effects with a high degree of non-linearity the value of 

relative bias increases substantially when linear models are used. It seems then more 

risky to erroneously assume a linear specification when the welfare change considered 

is smaller. These results reinforce the idea that, in a context of uncertain preferences, the 

use of a quadratic or a discrete attribute specification is the best option.  

 

                                                 
10

 In particular, if the environmental attribute is quantitative, opting for a quadratic specification would 

probably lead to a better preference representation.  
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5. Mistaken assumptions about the Cost parameter 

The sensitivity of attribute mis-specification effects to mistaken assumptions about the 

marginal utility of income ( ) has been examined under the hypothesis that this 

parameter varies across individuals. In this context, for each true attribute specification 

(linear, quadratic 1, quadratic 2, step-wise, as used in the previous section), choices 

have been simulated. This has led to 4 sets of 600 simulated individuals. The utility of 

each alternative in each choice occasion has been calculated by combining the attribute 

levels with the known parameters of Table 2 except that of  .
11

 Heterogeneity of the 

marginal utility of income has been incorporated under the assumption that the Cost 

parameter is lognormally-distributed with a mean of 0.8 and a variance of 0.2.
12

  

 

To assess attribute mis-specification effects under mistaken assumptions about the 

marginal utility of income, two erroneous assumptions an analyst might make about the 

Cost parameter have been considered. First, we consider what happens when the analyst 

makes the assumption of homogeneity in  , when this is not true. Second, we consider 

the effects of assumptions concerning the distribution for  , where again the analyst 

“gets it wrong”. As Balcombe et al. [3] note, there is considerable variation in the 

empirical literature about what distributional assumptions are made in MXL models. 

Empirically, this has been done by applying firstly a MNL model (reflecting a mistaken 

assumption that there is no variation in   across respondents) and secondly a MXL 

model to the simulated choices. In the latter case, a triangular distribution has been 

                                                 
11

 To avoid problems related to the calculation of WTP values from the ratio of two distributions, the 

known parameters for the attributes other than Cost have been kept constant for all the simulated 

individuals. In other words, only heterogeneity in the true Cost parameter has been considered. 

 
12

 The authors are aware that this is one of the many ways to incorporate heterogeneity into the marginal 

utility of income when it randomly varies across individuals. Indeed, although it is not surprising that 

people value income differently at the margin, there is no certainty about the true distribution of the Cost 

parameter.  
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assigned to   -this represents the analyst making the wrong distributional assumption.
13

 

In each estimation model, 
1X has been codified as continuous-linear, continuous-

quadratic and discrete-linear to match equations (1), (2) and (3), respectively.  

 

The results obtained by “incorrectly” applying the MNL and MXL models to the 4 sets 

of simulated choices have been compared with those derived from a correct application 

of the MXL model (i.e. where the analyst correctly assumes a lognormal distribution for 

  to match the underlying DGP). Thus, three assumptions about   have been 

considered: one correct and two erroneous. Across the possible types of true attribute 

specifications, assumed attribute specification and assumption about the Cost parameter 

there are 36 different MC experiments (4x3x3). The CS of a change in 
1X from a level 

of 6 to a level of 2 has been estimated for each experiment following Equations (4), (5) 

and (6). Again, this process has been repeated 1,000 times leading to a distribution of 

1,000 estimated WTP values for 
1X for each MC experiment. From each distribution, 

the WTP value of 
1X has been calculated as the average of the sum of the values 

obtained in each MC experiment over 1,000 repetitions.
14

  

 

The results of relative bias in the estimated value of the change in 
1X for each of these 

MC experiments are presented in Table 4. Recall that these represent a hypothetical 

change in 
1X from the BAU level of 6 (Table 1) to a level of 2. As seen in Table 4, 

                                                 
13

 Like the lognormal distribution, the triangular distribution can be constrained to have the same sign for 

the parameter of interest. This is why it can also be assigned to a random Cost parameter when the 

lognormal distribution is not assumed. Given that the Matlab code by Kenneth Train to estimate the MXL 

model has been used in this paper, the triangular distribution for the Cost parameter has been defined as 

follows:  ~Triangular (µ+σt) where t is triangular between -1 and 1, and µ and σ are estimated.  

 
14

 Like for the calculation of the simulated value of 1X , the estimated value for each MC experiment 

when the MXL model is applied has been obtained by averaging the sum of the individual marginal 

values over all the individuals of the sample.  
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when the heterogeneity in the marginal utility of income is correctly captured by the 

researcher (third column), attribute misspecification always leads to higher relative 

biases. This is especially true when a linear specification is assumed in a context in 

which 
1X  has true non-linear effects. In this case, the higher the non-linearity of the 

true quadratic effects, the less accurate the researcher’s estimates.  

 

Looking at the results from erroneously assuming that the Cost parameter is constant 

across respondents (fourth column), it is easy to see that decisions about attribute 

specification gain importance for welfare measurement. Indeed, all relative biases 

increase in magnitude in comparison with those of the third column. This indicates that 

mistakes over the presence of preference heterogeneity for costs magnify mistakes over 

functional form, in some cases by a factor of 3.5. Results show that, in general, WTP 

errors due to attribute misspecification are again higher when the attribute has true non-

linear effects. It is then generally worse to erroneously assume a linear specification 

than to erroneously assume a quadratic or a discrete one. Again, this is especially 

marked when 
1X has a true “quadratic 2” specification.  

 

Finally, allowing for preference heterogeneity but with an incorrect distribution (fifth 

column) does not always lead to higher relative biases than those of the third column. In 

particular, this is so when 
1X has true quadratic effects and a linear specification is 

assumed. It would seem that mistaking the distribution of the Cost parameter partly 

compensates for the effects of attribute mis-specification in this case. Note that under an 

erroneous distributional assumption about  , codifying 
1X as continuous-linear is 
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always advantageous when it has true non-linear effects. Likewise, attribute 

misspecification under true, linear effects seems to be a non-relevant issue. 

 

By looking at results of Table 4, the importance of working under incorrect assumptions 

about the marginal utility of income is easily seen. In this sense, assuming this 

parameter to be constant when it actually varies across individuals is more critical than 

mistaking its distribution. Indeed, despite not always leading to higher relative biases, it 

makes attribute mis-specification a non-trivial issue in all cases.  

 

The sensitivity of results on cost preference heterogeneity to the magnitude of the 

welfare change has also been examined. Again, the MC experiments have been repeated 

considering a hypothetical change in 1X  from the BAU level of 6 to a level of 4: that is, 

for a smaller change in environmental quality. In contrast to a high welfare change, 

values of relative bias show that mistaking the distribution of the Cost parameter makes 

relevant attribute mis-specification effects in all the cases. Indeed, it always leads to less 

precise estimates when   is assigned a triangular distribution. On the other side, 

erroneously assuming constant the Cost parameter only makes attribute misspecification 

a non-trivial issue when 1X  has true, quadratic effects. Additionally, relative biases 

derived from a mis-specified 1X  increase with respect to a high welfare change in most 

of cases. This is especially so when it has true quadratic 2 effects, this reinforcing the 

appropriateness of opting for quadratic or discrete specifications. Therefore, results for a 

small welfare change show that working under incorrect assumptions about the 

marginal utility of income leads to higher attribute mis-specification effects in most of 

cases. In other words, the consequences of attribute mis-specification where preferences 
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are heterogeneous seem to depend on the size of environmental quality change being 

valued. 

 

5.1 Overlooking scale heterogeneity in the Cost parameter 

In CEs, preference heterogeneity is commonly understood on the basis of MXL models. 

When the Cost parameter is that assumed to be heterogeneous, MXL assumptions imply 

the existence of a mean Cost attribute weight in the population. It is assumed each 

person-specific marginal utility of income represents the mean attribute weight plus the 

person-specific deviation from that mean. However, heterogeneity in   could also be 

driven by scale heterogeneity. Indeed, some authors argue that true error variances are 

likely to be non-constant, thus explaining heterogeneity in attribute preferences [23].  

 

The sensitivity of attribute mis-specification effects to mistaken assumptions about the 

marginal utility of income should then be analyzed under the hypothesis that the true 

heterogeneity in   is also driven by a non-constant scale of the error.
15

 To do this, four 

sets of choices have been simulated following the DGP steps from section 5 but 

considering variation in the Cost parameter across individuals in the terms described in 

[23] for Generalized Multinomial Logit (G-MNL) models. That is, heterogeneity in   

has been considered as being caused by both scale heterogeneity (lognormally-

distributed with 1 mean and 0.9 standard deviation) and lognormally-distributed mean 

heterogeneity (as described in section 5, with 0.8 mean and 0.2 standard deviation, 

independent of the variation induced by scale).
16

  

                                                 
15

 The authors are grateful to an anonymous reviewer who suggested testing for this. 

 
16

 G-MNL models are presented as nested structures combining both the MXL model and the scale-

heterogeneity model [23]. According to this, the true Cost parameter can be written 

as
*)( iiiii   , where the random variable i  captures scale heterogeneity and 

*
i captures 
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The assessment of attribute mis-specification effects under mistaken assumptions about 

the marginal utility of income has been focused on two types of erroneous assumptions. 

First, as in section 5, the assumption of homogeneity in  . Again, this has been 

empirically done by applying MNL models to the simulated choices. Second, an 

erroneous assumption about the source of heterogeneity in  , where the analyst 

overlooks scale heterogeneity. Here, MXL models have been applied by assigning both 

a lognormal and a triangular distribution to the Cost parameter to test for potential 

effects of distributional assumptions. Given MXL models assume the idiosyncratic error 

is independent and identically distributed extreme value, these models could be flawed 

in such cases leading to important implications for welfare measurement. In each 

estimation model, 1X  has again been codified as continuous-linear, continuous-

quadratic and discrete-linear to match Equations (1), (2) and (3), respectively. The true 

and assumed attribute specifications and the mistaken assumptions about   have led to 

36 different MC experiments (4x3x3), from which the CS of a high and a small change 

in 1X has been calculated (as in previous sections). 

 

Table 5 shows the relative biases in the estimated value of the high change in 1X  under 

each mistaken assumption about  . 

 

When comparing these values with those from Table 4, one observes that decisions 

about attribute specification gain importance for welfare measurement.
17

 Indeed, all 

                                                                                                                                               
residual taste heterogeneity. For the purpose of our paper, we have considered the standard deviation of 

*
i  is proportional to i , that is, we have worked on the G-MNL-II model introduced in [23] (i.e. 0 ).  

 
17

 By comparing Tables 4 and 5, we examine the performance of MNL and MXL model applications to 

choices simulated under DGPs only differing from the source of heterogeneity in the Cost parameter. 

Thus, we compare values from third and fourth columns in Table 5 with those from fourth and third 

columns in Table 4, respectively, and those from fifth columns in both tables. 
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relative biases increase in magnitude in most of cases when the analyst mis-specifies the 

attribute. However, only under the erroneous assumptions of homogeneity in   (third 

column) and a lognormal-distributed   (fourth column) attribute mis-specification 

becomes a non-trivial issue. In these cases, errors in WTP from attribute mis-

specification are higher when 1X  has true, non-linear effects, this indicating again that 

quadratic and discrete specifications seem to be a good option when the researcher is 

uncertain.
18

  

 

Relative biases show that the loss of accuracy is especially marked when applying a 

MXL model under the assumption of a triangular distribution for the Cost parameter, 

followed by erroneously assuming it be a constant.
19

 Interestingly, comparisons of these 

values with those from Table 4 show that the lowest increases in relative biases occur 

under the application of a MXL model assuming a lognormally-distributed Cost 

parameter. This suggests that the relevance of mistaking the source of heterogeneity 

depends on the distributional assumptions for the Cost parameter. Indeed, under a 

scenario of scale heterogeneity in  , assuming constant error variances (i.e. 

erroneously applying MXL models) is less critical when the distribution assigned to   

matches that of the heterogeneity in   independent of the variation induced by scale.  

Although a smaller welfare change leads in general to less accurate estimates, especially 

under the erroneous assumptions of homogeneity in   and a lognormal-distributed  , 

                                                 
18

 Note that only assuming a quadratic specification under true, linear effects makes attribute mis-

specification a relevant issue when assigning a triangular distribution to the Cost parameter (fifth 

column). 

 
19

 Results of MSE show a very high impact on the variance of the estimated welfare measures for these 

cases. 
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only in few cases attribute mis-specification becomes a non-trivial issue.
20

 Thus, the 

accuracy losses related to a smaller welfare change seem to be compensated by the 

gains in terms of a less relevance of attribute specification. 

 

6. A note on mistaken additive assumptions about the true utility functional form 

Assuming a utility function which is additive in its attributes is common practice in 

CEs.
21

 Our MC analysis has thus revolved around the implications for welfare 

measurement of erroneous assumptions about the true effects attributes have on utility 

on the basis of additive specifications. In this sense, we have opted for quadratic and 

step-wise functional forms to simulate choices from DGPs following non-linear 

attribute specifications. However, non-linear effects on utility can also be derived from 

non-additive attribute relationships. As true preferences are unknown, this raises the 

question of what the WTP errors from making the common additive assumptions would 

be if individuals used non-additive strategies to make choices.
22

 To shed light on this, 

we have repeated the analysis from previous sections using true, non-additive utility 

functions.
23

  

 

                                                 
20

 This happens under true, quadratic effects and estimation through a MXL model assuming a 

lognormally-distributed Cost parameter, and under true, linear effects and the assumption of a triangular-

distributed Cost parameter when specifying 1X  in a quadratic way.  

 
21

 This explains our focus on additive utility specifications both to simulate choices and to specify the 

estimation models in the MC experiments as well as our use of a ME only experimental design.  

 
22

 Note that under DGPs following non-additive attribute specifications, linear, quadratic and discrete 

functional forms represent mistaken additive utility assumptions.  

 
23

 The authors are grateful to an anonymous reviewer who asked for testing for this. He argued that 

restricting the analysis within the belief system of additive utility specifications could be somehow 

limiting as individuals could also use non-additive strategies to make choices. 
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In this sense, we have simulated choices under a utility specification where 1X  depicts a 

Cobb-Douglas relationship with 2X , the remaining attributes ( 3X  and 4X ) entering in 

an additive, linear way, as shown by Equation 9: 

 

jijjjjji XXXXU    

43

1

21
        (9)  

     

 

Table 6 shows the known parameters used and the true WTP values for the high change 

in 1X  from the BAU level (6) to a level of 2, at each level of 2X .  

 

As seen, two types of Cobb-Douglas utility functions have been considered to test for 

the effects on WTP bias from mistaken additive attribute specifications of different 

values for  (i.e. different contributions to utility of 1X  at each level of 2X , regardless 

of the value of  ).
24

 Based on these known parameters and Equation (9), choices have 

been simulated according to the DGP steps described in previous sections and all the 

MC experiments repeated
25

. 

 

                                                 
24

 Technically,  determines the slope of the indifference curves for 1X  and 2X . With 1X  in Y axis and 

2X  in X axis, when 1X  and 2X  are goods lower values of  imply the indifference curves are flatter 

and hence individuals are willing to give up less quantity of 1X  for one additional unit of 2X . This 

means the part-worth utility of 1X  is higher for lower values of   at each level of 1X , increasing with 

the level of 2X . However, note that  is negative, indicating 1X  and 2X act as bads, thus depicting a 

part-worth disutility from their Cobb-Douglas relationship. In this case, a lower value of   implies a 

higher (lower) part-worth disutility (utility) of 1X  at each level of 1X , increasing (decreasing) with the 

level of 2X . Note that by using these values for  , we move away from common two-way attribute 

interactions considered sometimes in CEs. Additionally, note that the true value of the change in 1X  is 

higher under a Cobb-Douglas 1 utility function at each level of 2X . Indeed, given this function is steeper, 

it implies a higher variation of disutility between two given levels of 1X  and, hence, a higher WTP for a 

change in the attribute. 

 
25

 The analyses leading to Tables 3, 4 and 5 have been repeated under these true, non-additive utility 

functions. Note that the value 0.8 for the Cost parameter represents the mean of a lognormal distribution 

when it varies across individuals in the terms described in sections 5 and 5.1. Relative bias, bias and MSE 

for each MC experiment are reported in the Appendix at each level of 2X , both for a high and small 

welfare change in 1X . 
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The analysis of the effects from mistaken additive utility assumptions when true 

preferences on cost are homogeneous shows that the level of 2X  is critical in 

determining the WTP errors. Despite this, the estimates are less accurate under a true 

Cobb-Douglas 2 utility specification at each level of 2X . Results also show a better 

performance of the linear specification in most cases, although the quadratic and 

discrete ones seems to be the best option for a smaller welfare change. Comparison of 

relative biases from mistaken additive assumptions under DGPs based on both additive 

and non-additive utility functional forms leads to an interesting conclusion. It shows 

that erroneously assuming linear, quadratic and discrete specifications does not 

necessarily imply less accurate estimates if the DGP follows a non-additive scheme. 

Indeed, cases can be found where erroneously assuming an additive attribute 

specification gives a lower WTP bias under a true, Cobb-Douglas utility functional 

form. The role of   and 2X  is then critical in determining the relevance of mistaken 

additive assumptions. In other words, it is the type of non-additive relationship between 

attributes and not the simple fact that the true, utility function is non-additive which 

counts. 

 

This conclusion above can also be drawn from the analysis of the sensitivity of the 

effects from mistaken additive specifications to mistaken assumptions about the 

marginal utility of income. In contrast, the quadratic and discrete specifications seem to 

be better for a higher welfare change. Similarly as in previous sections, when the true 

Cost parameter is lognormally-distributed, the mistaken assumptions of homogeneity 

and distribution magnify the WTP errors derived from mistakenly considering additive 

specifications. In this sense, the level of 2X  is critical in determining which mistaken 

assumption about the marginal utility of income leads to less accurate estimates. 
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Likewise, erroneous assumptions about the Cost parameter when it is also driven by 

scale heterogeneity also make higher WTP bias. In addition, results from this analysis 

show again that the relevance of mistaking the source of heterogeneity in the Cost 

parameter (i.e. assuming constant error variances) depends on distributional 

assumptions. In other words, overlooking scale heterogeneity in the Cost parameter 

seems to be not so critical when the distributional assumption of deterministic effects 

matches that of the underlying true heterogeneity, independent of scale-induced 

variation. 

 

7. Conclusions  

When choice experimenters set out to value changes in environmental goods, they need 

to make assumptions about the utility function of people whose preferences they are 

trying to estimate. Researchers need to do this both with regard to constructing an 

experimental design and with regard to choice model estimation (these issues are of 

course closely linked with each other). However, it has been unclear to date how much 

bias can be introduced to welfare estimation by making the wrong assumptions: wrong 

assumptions on functional form, and wrong assumptions on preference heterogeneity. 

By applying MC analysis, this paper has investigated the importance of the specification 

of environmental attributes in the utility function for estimating their marginal value. 

Moreover, given that the Cost parameter plays a key role in welfare measurement, we 

have also investigated the sensitivity of attribute mis-specification effects to mistaking 

assumptions about the existence of heterogeneity in preferences towards cost, the 

distribution of preferences, and the source of heterogeneity. Results show that attribute 

mis-specification leads to mistakes in welfare estimates, especially in a context in which 

the attribute has true non-linear effects, both additive and non-additive. In this sense, the 
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type of non-linearity is critical in determining the magnitude of bias. Indeed, the higher 

the true quadratic effects or the lower the value of  , the greater the potential bias in 

welfare measurement from mis-specification. 

 

Mistaken assumptions about the Cost parameter can amplify environmental attribute 

mis-specification effects. This seems to be mainly so for assuming a constant parameter 

on cost, rather than getting the distribution wrong, although results are sensitive to size 

of the environmental changes being valued. When the Cost parameter is also driven by 

scale heterogeneity, distributional assumptions when applying a MXL model determine 

if erroneously assuming homogeneity is more critical than mistaking the source of 

heterogeneity (i.e. assuming constant error variances). Interestingly, results show that 

not accounting for scale heterogeneity is not so relevant when the distribution assigned 

to the Cost parameter matches that of its heterogeneity, independent of the scale-

induced variation. 

 

Taking all results together, it would seem as though opting for quadratic or step-wise 

utility functions leads to the lowest overall degree of relative bias, compared to linear 

forms. Robustness to this is given by fact that additive attribute specifications do not 

necessarily lead to less accurate estimates if individuals use non-additive strategies to 

make choices. Yet linear utility functions are very common in choice models reported in 

the literature to date.  

 

These results, however, are subject to the data employed in these MC experiments. That 

is, our conclusions are possibly specific to the experimental design, true utility attribute 

specifications, known parameters, error structures, and attribute specifications assumed 
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in our models, and the assumptions about the marginal utility of income considered 

here. Although this suggests results may not be generalizable to all cases, the 

experimental design and methods of analysis employed here as “exemplars” are hardly 

un-common. Indeed, continuous and discrete non-monetary attributes with 3 levels and 

main effects only designs are features that can be found in many CE studies reported in 

the literature. Additionally, the analysis of the effects derived from erroneously 

assuming constant a Cost parameter that actually varies across individuals is an 

interesting result. It provides evidence of the magnitude of bias that can result when 

models are specified, as traditionally done, under the assumption of a constant marginal 

utility of income. 

 

In a context in which utility specification issues have been largely overlooked in stated 

preference studies, this paper is only a first step on the long path to fill this gap. 

Although our results seem promising, it would be interesting to analyze the sensitivity 

of findings to different values of the known parameters. Likewise, the results for 

alternative attribute specifications, consideration of more than one non-monetary 

attributes varying across utility specifications, and experimental designs constructed on 

different efficiency criteria or allowing for interaction effects remain to be tested. 

Further research on these issues could help to examine the robustness of the conclusions 

drawn here. This will contribute to testing issues that, although being at the core of 

discrete choice studies, have been largely ignored in the literature to date. 
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Table 1. Features of the experimental design 

 

Experimental design 

factors Design 

Attribute levels 

X1 2  4  6
*
 

X2 3  6  8
*
 

X3 0.3  1
*
  2 

X4 3  10.5  24  (0
*
) 

Alternatives 2+BAU 

Choice sets per individual 6 

Blocks 6 

Block replications 100 

Total observations
a
  3,600 

 
*
Starred numbers correspond to the levels for the BAU 

option. 
a
Total observations are the number of choice sets x the 

number of blocks x the number of block replications. 
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Table 2. True utility specifications and true CS 

 

Parameters Linear Quadratic 1 Quadratic 2 3-Stepwise 

1  -2.1 -2 -5.5 -4.5 

2   0.1 0.5 -9 

3     -13 

  -0.7 -0.7 -0.7 -0.7 

  0.4 0.4 0.4 0.4 

  -0.8 -0.8 -0.8 -0.8 

1c     3 

2c     5 

True value of 

the change in X1 
10.5 6 7.5 10.6 
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Table 3. Relative bias in the estimated value of a hypothetical 

change in X1 (over 1,000 repetitions) 

 

True utility  

specification 

Assumed utility 

specification Relative bias 

Linear 

Linear -0.0002 

Quadratic -0.0003 

Discrete -0.0003 

Quadratic 1 

Linear -0.0245 

Quadratic -0.0001 

Discrete -0.0001 

Quadratic 2 

Linear -0.0674 

Quadratic 0.0002 

Discrete 0.0002 

3-Stepwise 

Linear -0.0119 

Quadratic -0.0008 

Discrete -0.0008 
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Table 4. Relative bias in the estimated value of a change in X1 under each assumption 

about   when the true Cost parameter is lognormally-distributed   

(over 1,000 repetitions) 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal  Constant Triangular  

Linear 

Linear -0.0148 -0.0570 0.1133 

Quadratic -0.0170 -0.0604 0.1134 

Discrete -0.0170 -0.0604 0.1135 

Quadratic 1 

Linear -0.0394 -0.0655 0.0259 

Quadratic -0.0148 -0.0474 0.0580 

Discrete -0.0148 -0.0474 0.0580 

Quadratic 2 

Linear -0.0868 -0.1104 -0.0297 

Quadratic -0.0134 -0.0590 0.0487 

Discrete -0.0134 -0.0590 0.0487 

3-Stepwise 

Linear -0.0297 -0.0677 0.0846 

Quadratic -0.0178 -0.0610 0.1142 

Discrete -0.0178 -0.0610 0.1153 
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Table 5. Relative bias in the estimated value of a change in X1 under each 

assumption about   when the true Cost parameter presents scale heterogeneity  

(over 1,000 repetitions) 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant 

Mistaken heterogeneity source 

Lognormal  Triangular  

Linear 

Linear -0.4943 -0.0380 -0.4470 

Quadratic -0.4941 -0.0390 -2.6501 

Discrete -0.4941 -0.0390 0.0628 

Quadratic 1 

Linear -0.5028 -0.0759 -0.7775 

Quadratic -0.4876 -0.0536 -1.1724 

Discrete -0.4876 -0.0536 -0.8075 

Quadratic 2 

Linear -0.4978 -0.0700 -0.6105 

Quadratic -0.4753 -0.0512 -0.7724 

Discrete -0.4753 -0.0512 1.0816 

 

3-Stepwise 

Linear -0.4961 -0.0431 -0.6343 

Quadratic -0.4934 -0.0377 -1.0623 

Discrete -0.4934 -0.0377 -0.9978 
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Table 6. True, non-additive utility specifications and true CS 

 

Parameter values Cobb-Douglas 1 Cobb-Douglas 2 

  -2.1 -2.1 

  0.4 0.4 

  -0.8 -0.8 
  0.8 0.2 

True value 

of the 

change in 

X1 

X2=8 9.76 3.91 

X2=6 9.21 3.11 

X2=3 
8.02 1.78 
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APPENDIX TO PAPER 

 
 

Bias in the estimated value of a hypothetical change in 

X1 from the BAU level (6) to a level of 2  

(over 1,000 repetitions) 

 

 

True utility  

specification 

Assumed utility 

specification 

 

Bias 

Linear 

Linear -0.0025 

Quadratic -0.0034 

Discrete -0.0034 

Quadratic 1 

Linear -0.1467 

Quadratic -0.0005 

Discrete -0.0005 

Quadratic 2 

Linear -0.5059 

Quadratic 0.0016 

Discrete 0.0016 

 

3-Stepwise 

Linear -0.1269 

Quadratic -0.0081 

Discrete -0.0081 

 

 
 

MSE in the estimated value of a hypothetical 

change in X1 from the BAU level (6) to a level of 2  

(over 1,000 repetitions) 

 

 

True utility  

specification 

Assumed utility 

specification 

 

MSE 

Linear 

Linear 0.0291 

Quadratic 0.0316 

Discrete 0.0316 

Quadratic 1 

Linear 0.0363 

Quadratic 0.0167 

Discrete 0.0167 

Quadratic 2 

Linear 0.2727 

Quadratic 0.0175 

Discrete 0.0175 

 

3-Stepwise 

Linear 0.0448 

Quadratic 0.0318 

Discrete 0.0318 
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Relative bias in the estimated value of a 

hypothetical change in X1 from the BAU level (6) 

to a level of 4 (over 1,000 repetitions) 

 
 

True utility  

specification 

Assumed utility 

specification 

Relative 

bias 

Linear 

Linear -0.0002 

Quadratic -0.0004 

Discrete -0.0004 

Quadratic 1 

Linear 0.1707 

Quadratic -0.0009 

Discrete -0.0009 

Quadratic 2 

Linear 1.7977 

Quadratic -0.0017 

Discrete -0.0017 

 

3-Stepwise 

Linear 0.0498 

Quadratic 0.0003 

Discrete 0.0003 

 

 

 

Bias in the estimated value of a hypothetical change 

in X1 from the BAU level (6) to a level of 4  

(over 1,000 repetitions) 

 
 

True utility  

specification 

Assumed utility 

specification 

Bias 

Linear 

Linear -0.0012 

Quadratic -0.0021 

Discrete -0.0021 

Quadratic 1 

Linear 0.4266 

Quadratic -0.0022 

Discrete -0.0022 

Quadratic 2 

Linear 2.2471 

Quadratic -0.0021 

Discrete -0.0021 

 

3-Stepwise 

Linear 0.2490 

Quadratic 0.0016 

Discrete 0.0016 
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MSE in the estimated value of a hypothetical 

change in X1 from the BAU level (6) to a level 

of 4 (over 1,000 repetitions) 

 
 

True utility  

specification 

Assumed utility 

specification 

MSE 

Linear 

Linear 0.0073 

Quadratic 0.0178 

Discrete 0.0178 

Quadratic 1 

Linear 0.1857 

Quadratic 0.0147 

Discrete 0.0147 

Quadratic 2 

Linear 5.0535 

Quadratic 0.0197 

Discrete 00197 

 

3-Stepwise 

Linear 0.0692 

Quadratic 0.0181 

Discrete 0.0181 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter is 

lognormally-distributed  (over 1,000 repetitions) 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
  Constant

b
 Triangular

a
  

Linear 

Linear -0.2079 -0.8003 1.5917 

Quadratic -0.2394 -0.8482 1.5929 

Discrete -0.2395 -0.8481 1.5943 

Quadratic 1 

Linear -0.3162 -0.5260 0.2077 

Quadratic -0.1191 -0.3808 0.4658 

Discrete -0.1191 -0.3808 0.4658 

Quadratic 2 

Linear -0.8709 -1.1083 -0.2981 

Quadratic -0.1347 -0.5917 0.4886 

Discrete -0.1347 -0.5916 0.4886 

 

3-Stepwise 

Linear -0.4228 -0.9628 1.2025 

Quadratic -0.2533 -0.8667 1.6228 

Discrete -0.2533 -0.8666 1.6392 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 
 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter is 

lognormally-distributed (over 1,000 repetitions) 

 
 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
  Constant

b
 Triangular

a
  

Linear 

Linear 0.0959 0.6812 6.2945 

Quadratic 0.1143 0.7613 31.7297 

Discrete 0.1144 0.7613 31.5773 

Quadratic 1 

Linear 0.1280 0.3015 0.1174 

Quadratic 0.0458 0.1716 0.2933 

Discrete 0.0458 0.1716 0.2933 

Quadratic 2 

Linear 0.7892 1.2547 0.1756 

Quadratic 0.0551 0.3817 0.3309 

Discrete 0.0551 0.3816 0.3309 

 

3-Stepwise 

Linear 0.2338 0.9697 19.9077 

Quadratic 0.1245 0.7964 30.0161 

Discrete 0.1245 0.7964 35.2770 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of  4 under each assumption about   when the true Cost 

parameter is lognormally-distributed  (over 1,000 repetitions) 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
  Constant

b
 Triangular

a
  

Linear 

Linear -0.0148 -0.0570 0.1133 

Quadratic -0.0085 -0.0423 0.1245 

Discrete -0.0085 -0.0423 0.1246 

Quadratic 1 

Linear 0.1527 0.1214 0.2310 

Quadratic -0.0121 -0.0953 0.0157 

Discrete -0.0121 -0.0953 0.0157 

Quadratic 2 

Linear 1.7396 1.6687 1.9109 

Quadratic -0.0120 -0.3936 -0.0390 

Discrete -0.0119 -0.3935 -0.0390 

 

3-Stepwise 

Linear 0.0309 -0.0095 0.1524 

Quadratic -0.0081 -0.0431 0.1254 

Discrete -0.0081 -0.0431 0.1265 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under each assumption about   when the true Cost parameter is 

lognormally-distributed  (over 1,000 repetitions) 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
  Constant

b
 Triangular

a
  

Linear 

Linear -0.1039 -0.4002 0.7959 

Quadratic -0.0598 -0.2971 0.8746 

Discrete -0.0598 -0.2971 0.8753 

Quadratic 1 

Linear 0.5109 0.4060 0.7729 

Quadratic -0.0404 -0.3189 0.0524 

Discrete -0.0404 -0.3189 0.0524 

Quadratic 2 

Linear 2.9096 2.7909 3.1960 

Quadratic -0.0200 -0.6582 -0.0652 

Discrete -0.0119 -0.6582 -0.0652 

 

3-Stepwise 

Linear 0.2067 -0.0633 1.0194 

Quadratic -0.0542 -0.2880 0.8386 

Discrete -0.0541 -0.2881 0.8464 

 
a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 



 41 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of  4 under each assumption about   when the true Cost parameter is 

lognormally-distributed (over 1,000 repetitions) 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
  Constant

b
 Triangular

a
  

Linear 

Linear 0.0240 0.1703 1.5736 

Quadratic 0.0345 0.1159 8.8220 

Discrete 0.0345 0.1159 8.7641 

Quadratic 1 

Linear 0.2680 0.1711 0.6159 

Quadratic 0.0266 0.1333 0.0398 

Discrete 0.0266 0.1333 0.0398 

Quadratic 2 

Linear 8.4733 7.7957 10.2360 

Quadratic 0.0353 0.4765 0.0441 

Discrete 0.0353 0.4764 0.0441 

 

3-Stepwise 

Linear 0.0565 0.0147 5.6546 

Quadratic 0.0339 0.1118 6.8939 

Discrete 0.0339 0.1118 8.0835 

 
a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of  2 under each assumption about   when the true Cost parameter  

presents scale heterogeneity (over 1,000 repetitions) 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
  Triangular

a
  

Linear 

Linear -19.2057 -1.4768 -17.3696 

Quadratic -19.1984 -1.5167 -102.9669 

Discrete -19.1984 -1.5164 2.4399 

Quadratic 1 

Linear -11.1626 -1.6853 -17.2622 

Quadratic -10.8263 -1.1885 -26.0303 

Discrete -10.8263 -1.1891 -17.9273 

Quadratic 2 

Linear -13.8144 -1.9416 -16.9421 

Quadratic -13.1914 -1.4222 -21.4376 

Discrete -13.1913 -1.4223 30.0175 

 

3-Stepwise 

Linear -19.5031 -1.6941 -24.9399 

Quadratic -19.3969 -1.4838 -41.7674 

Discrete -19.3969 -1.4832 -39.2300 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of  2 under each assumption about   when the true Cost parameter  

presents scale heterogeneity (over 1,000 repetitions) 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
  Triangular

a
  

Linear 

Linear 368.965 5.141 165705.648 

Quadratic 368.688 5.288 4635943.747. 

Discrete 368.687 5.289 593152.422 

Quadratic 1 

Linear 124.675 3.739 7246.187 

Quadratic 117.283 2.329 67190.985 

Discrete 117.283 2.330 15305.266 

Quadratic 2 

Linear 190.920 5.077 353936.979 

Quadratic 174.090 3.218 10402.740 

Discrete 174.090 3.218 3180365.102 

 

3-Stepwise 

Linear 380.475 5.809 98446.925 

Quadratic 376.342 5.180 21156.974 

Discrete 376.342 5.178 185120.038 

 
a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 under each assumption about   when the true Cost 

parameter presents scale heterogeneity (over 1,000 repetitions) 

 
 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
  Triangular

a
  

Linear 

Linear -0.4943 -0.0380 -0.4470 

Quadratic -0.4968 -0.0312 -2.7142 

Discrete -0.4968 -0.0312 0.0977 

Quadratic 1 

Linear -0.4033 0.1089 -0.7330 

Quadratic -0.6297 -0.0524 -1.1745 

Discrete -0.6297 -0.0524 -0.7989 

Quadratic 2 

Linear 0.5067 1.7901 0.1686 

Quadratic -1.0613 -0.0533 -0.7468 

Discrete -1.0613 -0.0533 1.2315 

 

3-Stepwise 

Linear -0.4646 0.0167 -0.6115 

Quadratic -0.5011 -0.0299 -1.0587 

Discrete -0.5011 -0.0299 -1.0029 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under each assumption about   when the true Cost parameter  

presents scale heterogeneity (over 1,000 repetitions) 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
  Triangular

a
  

Linear 

Linear -9.6028 -0.7384 -8.6848 

Quadratic -9.6514 -0.6068 -52.7292 

Discrete -9.6514 -0.6064 1.8978 

Quadratic 1 

Linear -3.7311 1.0075 -6.7809 

Quadratic -5.8251 -0.4843 -10.8649 

Discrete -5.8251 -0.4846 -7.3904 

Quadratic 2 

Linear 2.3437 8.2801 0.7799 

Quadratic -4.9089 -0.2466 -3.4541 

Discrete -4.9089 -0.2466 5.6965 

 

3-Stepwise 

Linear -8.5952 0.3093 -11.3136 

Quadratic -9.2704 -0.5537 -19.5887 

Discrete -9.2704 -0.5533 -18.5557 

 
a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 under each assumption about   when the true Cost parameter  

presents scale heterogeneity (over 1,000 repetitions) 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
  Triangular

a
  

Linear 

Linear 92.241 1.285 41426.412 

Quadratic 93.227 1.241 1258587.256 

Discrete 93.227 1.241 158128.883 

Quadratic 1 

Linear 13.939 1.240 1783.032 

Quadratic 34.021 0.507 12239.674 

Discrete 34.022 0.507 2816.109 

Quadratic 2 

Linear 5.514 68.887 88413.094 

Quadratic 24.224 0.299 262.178 

Discrete 24.224 0.299 102677.237 

 

3-Stepwise 

Linear 73.903 0.831 24584.229 

Quadratic 86.020 1.103 4977.505 

Discrete 86.021 1.103 44091.296 
 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a change in X1 from the BAU level (6) to a 

level of 2 under true, non-additive utility specifications (over 1,000 repetitions) 
 

 

True utility 

specification 

Assumed utility 

specification 

Relative bias 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear -0.0731 -0.0182 0.1278 

Quadratic -0.0752 -0.0205 0.1252 

Discrete -0.0752 -0.0205 0.1252 

Cobb-Douglas 2 

Linear -0.1271 0.0988 0.9131 

Quadratic -0.1196 0.1082 0.9294 

Discrete -0.1196 0.1082 0.9295 

 

 

 

Bias in the estimated value of a change in X1 from the BAU level (6) to a level of 2 

under true, non-additive utility specifications (over 1,000 repetitions) 

 
 

True utility 

specification 

Assumed utility 

specification 

Bias 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear -0.7128 -0.1673 1.0249 

Quadratic -0.7340 -0.1885 1.0037 

Discrete -0.7340 -0.1885 1.0037 

Cobb-Douglas 2 

Linear -0.4972 0.3068 1.6293 

Quadratic -0.4679 0.3361 1.6585 

Discrete -0.4679 0.3361 1.6585 

 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under true, non-additive utility specifications (over 1,000 repetitions) 

 

 

True utility 

specification 

Assumed utility 

specification 

MSE 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear 0.5275 0.0475 1.0698 

Quadratic 0.5593 0.0561 1.0279 

Discrete 0.5592 0.0561 1.0280 

Cobb-Douglas 2 

Linear 0.2591 0.1061 2.6665 

Quadratic 0.2312 0.1252 2.7629 

Discrete 0.2312 0.1252 2.7630 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 under true, non-additive utility specifications  

(over 1,000 repetitions) 

 

 

True utility 

specification 

Assumed utility 

specification 

Relative bias 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear -0.0217 0.0363 0.1904 

Quadratic -0.0041 0.0548 0.2117 

Discrete -0.0041 0.0548 0.2117 

Cobb-Douglas 2 

Linear 0.1053 0.3913 1.4224 

Quadratic -0.0463 0.2004 1.0901 

Discrete -0.0464 0.2004 1.0901 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under true, non-additive utility specifications (over 1,000 repetitions) 

 

True utility 

specification 

Assumed utility 

specification 

Bias 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear -0.1002 0.1582 0.7230 

Quadratic -0.0191 0.2393 0.8041 

Discrete -0.0191 0.2393 0.8041 

Cobb-Douglas 2 

Linear 0.1626 0.4800 1.0022 

Quadratic -0.0716 0.2459 0.7681 

Discrete -0.0716 0.2459 0.7681 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 under true, non-additive utility specifications (over 1,000 repetitions) 

 

True utility 

specification 

Assumed utility 

specification 

MSE 

X2=8 X2=6 X2=3 

Cobb-Douglas 1 

Linear 0.0149 0.0299 0.5276 

Quadratic 0.0171 0.0740 0.6633 

Discrete 0.0171 0.0740 0.6633 

Cobb-Douglas 2 

Linear 0.0294 0.2334 1.0074 

Quadratic 0.0236 0.0790 0.6085 

Discrete 0.0237 0.0790 0.6085 
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Relative bias in the estimated value of a of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 under each assumption about   when the true Cost parameter 

is lognormally-distributed and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

 

 

True utility 

specification 

Assumed 

utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -0.0788 -0.1005 -0.0261 

Quadratic -0.0750 -0.1032 -0.0182 

Discrete -0.0750 -0.1032 -0.0182 

Cobb-Douglas 2 

Linear -0.1144 -0.2763 -0.0386 

Quadratic -0.1054 -0.2576 0.0321 

Discrete -0.1054 -0.2576 0.0310 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter is 

lognormally-distributed and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -1.0280 -1.3112 -0.3409 

Quadratic -0.9790 -1.3466 -0.2370 

Discrete -0.9793 -1.3466 -0.2370 

Cobb-Douglas 2 

Linear -0.5987 -1.4457 -0.2022 

Quadratic -0.5517 -1.3479 0.1679 

Discrete -0.5516 -1.3478 0.1624 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 1.0974 1.7571 0.2212 

Quadratic 1.0008 1.8532 0.1650 

Discrete 1.0014 1.8533 0.1650 

Cobb-Douglas 2 

Linear 0.3797 2.1208 139.5348 

Quadratic 0.3270 1.8486 6.8542 

Discrete 0.3269 1.8485 7.4081 

 
*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 when the true Cost parameter is lognormally-distributed and 

the true utility specification is non-additive (over 1,000 repetitions)
*
 

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -0.0277 -0.0506 0.0279 

Quadratic -0.0449 -0.0356 -0.0096 

Discrete -0.0449 -0.0356 -0.0096 

Cobb-Douglas 2 

Linear 0.1214 -0.0836 0.2173 

Quadratic -0.0548 -0.4990 0.1033 

Discrete -0.0548 -0.4990 0.1022 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 
 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -0.1712 -0.3127 0.1724 

Quadratic -0.2777 -0.2201 -0.0594 

Discrete -0.2778 -0.2201 -0.0593 

Cobb-Douglas 2 

Linear 0.2507 -0.1727 0.4490 

Quadratic -0.1132 -1.0311 0.2135 

Discrete -0.1132 -1.0310 0.2113 

 
*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
*
 

 
 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.0395 0.1073 0.0560 

Quadratic 0.1036 0.0774 0.0476 

Discrete 0.1037 0.0774 0.0476 

Cobb-Douglas 2 

Linear 0.0682 0.0376 35.0751 

Quadratic 0.0449 1.0953 1.2251 

Discrete 0.0449 1.0952 1.3163 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 when the true Cost parameter is lognormally-distributed and 

the true utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -0.0242 -0.0472 0.0316 

Quadratic -0.0202 -0.0501 0.0440 

Discrete -0.0202 -0.0501 0.0400 

Cobb-Douglas 2 

Linear 0.1148 -0.0890 0.2102 

Quadratic 0.1261 -0.0655 0.2992 

Discrete 0.1261 -0.0655 0.2978 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 2 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 
 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear -0.2982 -0.5813 0.3889 

Quadratic -0.2492 -0.6108 0.4928 

Discrete -0.2495 -0.6108 0.4928 

Cobb-Douglas 2 

Linear 0.4770 -0.3699 0.8736 

Quadratic 0.5241 -0.2721 1.2436 

Discrete 0.5241 -0.2721 1.2381 
 

*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 
 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.1296 0.3759 0.2562 

Quadratic 0.1044 0.4203 0.3516 

Discrete 0.1045 0.4203 0.3517 

Cobb-Douglas 2 

Linear 0.2488 0.1677 140.2571 

Quadratic 0.2973 0.1059 8.3726 

Discrete 0.2973 0.1059 8.9147 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 when the true Cost parameter is lognormally-distributed and 

the true utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.0299 0.0057 0.0888 

Quadratic 0.0117 0.0215 0.0491 

Discrete 0.0116 0.0215 0.0491 

Cobb-Douglas 2 

Linear 0.4115 0.1536 0.5323 

Quadratic 0.1898 -0.3694 0.3889 

Discrete 0.1898 -0.3693 0.3875 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.1746 0.0330 0.5181 

Quadratic 0.0681 0.1257 0.2864 

Discrete 0.0680 0.1257 0.2864 

Cobb-Douglas 2 

Linear 0.6755 0.2521 0.8738 

Quadratic 0.3116 -0.6063 0.6383 

Discrete 0.3116 -0.6063 0.6361 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.0406 0.0106 0.2947 

Quadratic 0.0312 0.0448 0.1261 

Discrete 0.0312 0.0448 0.1261 

Cobb-Douglas 2 

Linear 0.4617 0.0713 35.6370 

Quadratic 0.1292 0.3998 1.5869 

Discrete 0.1292 0.3997 1.6763 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 when the true Cost parameter is lognormally-distributed and 

the true utility specification is non-additive (over 1,000 repetitions)
*

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.1209 0.0945 0.1849 

Quadratic 0.1255 0.0912 0.1946 

Discrete 0.1254 0.0912 0.1946 

Cobb-Douglas 2 

Linear 0.9409 0.5862 1.1070 

Quadratic 0.9606 0.6271 1.2620 

Discrete 0.9606 0.6271 1.2597 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 2 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 1.2970 1.0139 1.9841 

Quadratic 1.3460 0.9784 2.0880 

Discrete 1.3457 0.9784 2.0880 

Cobb-Douglas 2 

Linear 2.2465 1.3995 2.6430 

Quadratic 2.2935 1.4973 3.0131 

Discrete 2.2935 1.4973 3.0075 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
*

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 1.7229 1.0659 4.0416 

Quadratic 1.8540 0.9971 4.4685 

Discrete 1.8532 0.9971 4.4685 

Cobb-Douglas 2 

Linear 5.0678 1.9895 146.4794 

Quadratic 5.2828 2.2738 15.9045 

Discrete 5.2829 2.2739 16.4269 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 when the true Cost parameter is lognormally-distributed and 

the true utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.1831 0.1552 0.2506 

Quadratic 0.1621 0.1734 0.2051 

Discrete 0.1621 0.1734 0.2051 

Cobb-Douglas 2 

Linear 1.4576 1.0085 1.6679 

Quadratic 1.0716 0.0980 1.4181 

Discrete 1.0716 0.0981 1.4158 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
* 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.9303 0.7887 1.2738 

Quadratic 0.8238 0.8814 1.0421 

Discrete 0.8237 0.8814 1.0421 

Cobb-Douglas 2 

Linear 1.3742 0.9507 1.5725 

Quadratic 1.0103 0.0924 1.3370 

Discrete 1.0103 0.0924 1.3347 
 

*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 when the true Cost parameter is lognormally-distributed and the true 

utility specification is non-additive (over 1,000 repetitions)
*

 

 

 

True utility 

specification 

 

Assumed utility 

specification 

Correct 

assumption 

 

‘Mistaken assumptions’ 

Lognormal
a
 Constant

b
 Triangular

a
  

Cobb-Douglas 1 

Linear 0.8756 0.6316 1.6489 

Quadratic 0.7051 0.8058 1.1300 

Discrete 0.7050 0.8058 1.1301 

Cobb-Douglas 2 

Linear 1.8938 0.9117 37.3462 

Quadratic 1.0527 0.0407 2.9670 

Discrete 1.0528 0.0407 3.0533 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.4722 -0.0865 -0.6127 

Quadratic -0.4688 -0.0790 -0.6706 

Discrete -0.4688 -0.0790 -0.9674 

Cobb-Douglas 2 

Linear -0.7725 -0.1098 -0.7988 

Quadratic -0.7484 -0.0952 -0.7428 

Discrete -0.7484 -0.0952 -0.4184 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 2 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive 

(over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -17.0461 -3.1221 -22.1160 

Quadratic -16.9214 -2.8534 -24.2089 

Discrete -16.9214 -2.8534 -34.9233 

Cobb-Douglas 2 

Linear -11.1796 -1.5884 -11.5593 

Quadratic -10.8309 -1.3782 -10.7497 

Discrete -10.8308 -1.3774 -6.0553 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive 

(over 1,000 repetitions)
* 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 290.675 11.747 29820.553 

Quadratic 286.437 10.222 52803.643 

Discrete 286.437 10.222 7894.947 

Cobb-Douglas 2 

Linear 125.048 3.100 2011.415 

Quadratic 117.377 2.501 823.753 

Discrete 117.376 2.499 3224.095 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.4429 -0.0358 -0.5912 

Quadratic -0.4974 -0.0786 -0.6450 

Discrete -0.4974 -0.0786 -0.9634 

Cobb-Douglas 2 

Linear -0.7120 0.1272 -0.7452 

Quadratic -1.0322 -0.1363 -0.7595 

Discrete -1.0322 -0.1361 -0.4341 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -7.5749 -0.6129 -10.1098 

Quadratic -8.5055 -1.3448 -11.0297 

Discrete -8.5055 -1.3447 -16.4744 

Cobb-Douglas 2 

Linear -4.0685 0.7272 -4.2583 

Quadratic -5.8985 -0.7786 -4.3404 

Discrete -5.8985 -0.7780 -2.4807 

 
*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 
 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 57.405 0.875 7435.068 

Quadratic 72.431 2.363 13664.030 

Discrete 72.431 2.362 1904.534 

Cobb-Douglas 2 

Linear 16.569 0.673 487.583 

Quadratic 34.849 0.975 118.267 

Discrete 34.849 0.974 382.930 
 

*
Results for X2=8 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.4410 -0.0324 -0.5897 

Quadratic -0.4373 -0.0245 -0.6511 

Discrete -0.4373 -0.0245 -0.9655 

Cobb-Douglas 2 

Linear -0.7137 0.1206 -0.7467 

Quadratic -0.6833 0.1389 -0.6763 

Discrete -0.6833 0.1390 -0.2679 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 2 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -15.0278 -1.1037 -20.0977 

Quadratic -14.9030 -0.8351 -22.1905 

Discrete -14.9030 -0.8351 -32.9049 

Cobb-Douglas 2 

Linear -8.2045 1.3867 -8.5843 

Quadratic -7.8558 1.5969 -7.7746 

Discrete -7.8558 1.5977 -3.0802 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 225.938 3.218 29735.351 

Quadratic 222.204 2.777 52709.992 

Discrete 222.204 2.777 7758.046 

Cobb-Douglas 2 

Linear 67.379 2.500 1951.486 

Quadratic 61.782 3.152 768.642 

Discrete 61.782 3.154 3192.474 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.4100 -0.0213 -0.5670 

Quadratic -0.4676 -0.0241 -0.6239 

Discrete -0.4676 -0.0241 -0.9612 

Cobb-Douglas 2 

Linear -0.6374 0.4190 -0.6793 

Quadratic -1.0406 0.0873 -0.6973 

Discrete -1.0405 0.0874 -0.2877 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -6.6187 0.3433 -9.1537 

Quadratic -7.5493 -0.3887 -10.0735 

Discrete -7.5494 -0.3885 -15.5182 

Cobb-Douglas 2 

Linear -2.8937 1.9019 -3.0835 

Quadratic -4.7237 0.3962 -3.1656 

Discrete -4.7237 0.3968 -1.3059 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
*
 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 43.834 0.618 7416.648 

Quadratic 57.080 0.705 13643.852 

Discrete 57.080 0.705 1873.944 

Cobb-Douglas 2 

Linear 8.390 3.762 478.958 

Quadratic 22.371 0.525 109.450 

Discrete 22.371 0.526 377.298 

 
*
Results for X2=6 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 2 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.3578 0.1115 -0.5287 

Quadratic -0.3536 0.1206 -0.5993 

Discrete -0.3536 0.1206 -0.9604 

Cobb-Douglas 2 

Linear -0.5015 0.9511 -0.5590 

Quadratic -0.4486 0.9829 -0.4363 

Discrete -0.4486 0.9831 0.2746 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 2 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
*
 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -10.6161 3.3079 -15.6860 

Quadratic -10.4914 3.5766 -17.7789 

Discrete -10.4914 3.5766 -28.4933 

Cobb-Douglas 2 

Linear -3.3111 6.2802 -3.6908 

Quadratic -2.9624 6.4903 -2.8812 

Discrete -2.9623 6.4912 1.8132 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 2 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
*
 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 112.806 12.982 29577.486 

Quadratic 110.173 14.872 52533.661 

Discrete 110.173 14.872 7487.178 

Cobb-Douglas 2 

Linear 11.028 40.017 1891.419 

Quadratic 8.844 42.726 716.498 

Discrete 8.844 42.737 3172.820 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

 

Relative bias in the estimated value of a hypothetical change in X1 from the BAU 

level (6) to a level of 4 under each assumption about   when the true Cost 

parameter presents scale heterogeneity and the true utility specification is non-

additive (over 1,000 repetitions)
* 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -0.3222 0.1731 -0.5026 

Quadratic -0.3884 0.1210 -0.5680 

Discrete -0.3884 0.1211 -0.9554 

Cobb-Douglas 2 

Linear -0.3687 1.4706 -0.4415 

Quadratic -1.0706 0.8930 -0.4730 

Discrete -1.0706 0.8933 0.2402 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 
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Bias in the estimated value of a hypothetical change in X1 from the BAU level (6) to 

a level of 4 under each assumption about   when the true Cost parameter presents 

scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 

 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear -4.5288 2.4332 -7.0637 

Quadratic -5.4594 1.7013 -7.9836 

Discrete -5.4594 1.7014 -13.4283 

Cobb-Douglas 2 

Linear -0.9614 3.8342 -1.1513 

Quadratic -2.7914 2.3285 -1.2333 

Discrete -2.7914 2.3291 0.6263 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 

 

 

MSE in the estimated value of a hypothetical change in X1 from the BAU level (6) 

to a level of 4 under each assumption about   when the true Cost parameter 

presents scale heterogeneity and the true utility specification is non-additive  

(over 1,000 repetitions)
* 

 
 

True utility 

specification 

Assumed utility 

specification 

 

Constant
b
 

Mistaken heterogeneity source 

Lognormal
a
 Triangular

a
 

Cobb-Douglas 1 

Linear 20.536 6.421 7382.755 

Quadratic 29.892 3.448 13606.113 

Discrete 29.893 3.449 1813.447 

Cobb-Douglas 2 

Linear 0.941 14.846 470.775 

Quadratic 7.849 5.790 100.950 

Discrete 7.849 5.793 373.079 

 
*
Results for X2=3 

a
 Heterogeneity in   is modelled through a MXL model 

b
   is erroneously considered constant, so a MNL model is estimated 

 


