
An XCAST Multicast Implementation for the OverSim Simulator

Mario Kolberg
University of Stirling

Stirling, United Kingdom

John Buford
Avaya Labs Research

Basking Ridge, New Jersey, USA

Abstract
The development of hybrid multicast simulation models is
required for analyzing proposed hybrid multicast
architectures such as those from the IRTF Scalable
Adaptive Multicastw Research Group. However most
network layer simulators don't scale to the number of nodes
needed for analyzing large overlays, and most overlay
simulators don't have multicast routing models needed for
analyzing hybrid approaches. In this work we have
extended the OverSim simulator and INET framework
which run on OMNET++ to include a multi-destination
multicast routing protocol (XCAST). This paper describes
our implementation experience.

1. Introduction
Multicast is important for communications applications

such as small group video conferencing and IPTV [1]. In
hybrid multicast schemes, native multicast islands are
interconnected using tunnels [2] or overlays [3][4][5][6][7].
A hybrid protocol has been defined [9][10] which is based
on integrating AMT (Automatic Multicast Tunnel)
tunneling mechanism for native multicast (NM) [10] with
overlay multicast (OM) protocol mechanisms.

The development of hybrid multicast simulation models
is required for analyzing these types of hybrid multicast
architectures. However most network layer simulators don't
scale to the number of nodes needed for analyzing large
overlays, and most overlay simulators don't have multicast
routing models needed for analyzing hybrid approaches.
The goal of this work is to create a simulation environment
for hybrid multicast which includes native multicast and
overlay multcast mechanisms. The specific additions
needed for simulating the SAM architecture are AMT,
XCAST, and IGMP.

In this work we have extended the OverSim simulator
and INET framework which run on OMNET++ to include a
multi-destination multicast routing protocol (XCAST). This
paper focuses describes our implementation experience.

The specific results are:
− Addition of the XCAST protocol to the INET

framework
− Integration of XCAST messaging into the overlay

routing layer used in OverSim.
− Design considerations for adding AMT protocol

support to INET

The next section gives a brief overview of OverSim,
OMNET++, and the INET framework. Section 3
summarizes XCAST, presents the XCAST implementation
in OverSim, and provides preliminary evaluation. Section
4 discusses AMT support in INET, and section 5 concludes
the paper.

2. OverSim
OverSim [14] has been developed by the Institute of
Telematics at the University of Karlsruhe. It is built on top
of the OMNeT++ network simulator [15][16][17] and
features a large number of implemented overlay protocols.
The INET framework implements the common Internet
protocols. Hence OverSim is part of a simulator suite. The
other main members of this suite, OMNeT++, INET, and
ReaSE are introduced below.

OverSim includes the overlay simulation with a number of
P2P overlay algorithms implemented. Amongst others,
OverSim contains models for Chord, Pastry, Koorde,
Kademlia and Bamboo. Simulations with 100.000 nodes
have been reported. With this OverSim reaches reasonable
overlay sizes. A further advantage of OverSim is that it also
models of overlay multicast approaches exists. For
instance, Scribe has been implemented on the Pastry model.
Furthermore, OverSim offers an Application Programming
Interface to implement further overlay multicast
approaches. On the downside, Omnet++ contains only a
partial implementation of Host Group Multicasting (IGMP
is not included) and there are no multidestination multicast
implementations, such as XCAST, available.

2.1 OMNeT++
OMNeT++ is a very modular simulation environment. At
the most basic level, OMNeT++ defines modules which
communicate using message passing. Modules are defined
using the NED definition language. Specifically the
modules external interfaces, such as gates and parameters
are defined in the NED file. The behavior of modules is
then directly implemented in C++ (simple module), but
modules can also be created using other modules
(compound modules). Such aggregated modules can be
used to define the behavior of complex network
components, such as routers or a standard host. Modules
are interconnected by incoming and outgoing gates that
specify channels. Modules exchange messages via gates

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and channels. Channels can possess certain bandwidth and
delay characteristics.
Furthermore, OMNeT includes a message generator which
uses a basic message definition to automatically generate
the corresponding C++ code which can be extended if
required.
In terms of a standard OMNeT simulation, at least two
components are required. Omnet.ini contains global
parameters and simulation options, such as which module
starts the simulation and which modules execute
application behavior. NED files include the definition of
the network to be simulated and the modules used.
Typically, each module is defined in a separate NED file
specifying its gates, parameters and submodules. The top-
most-level NED file contains the simulated network
referencing modules and specifying their interconnections.

OMNeT++ includes a graphical development and
simulation environment which supports countless features
for debugging, running simulations, and visualizing
simulation results. The GUI supports visualizing networks,
nodes and messages, and allows for message and variable
inspection inside these OMNeT++ components. For larger
networks, and more complex simulations, OMNeT also
features a command line simulation environment which
allows to dedicate more computing resources to the
simulation.

2.2 INET Framework
INET is an open source communications networks
simulation package for OMNeT++. INET is used to
simulate networks based on the IP protocol stack,
specifically whose which use the MAC, IP and transport
layers of the stack. INET provides implementations of
protocols in these layers . as such INET, includes
implementations for UDP, TCP, IP, IPv6, SCTP, Ethernet,
PPP, IEEE 802.11, MPLS, and OSPF. Underlying is a
simulation of IP queuing in nodes. INET supports static
routing using network configurators, alternatively routing
protocol implementations can also be used. Besides the
communication protocols, INET defines the nodes which
communicate using these protocols.
In the INET framework, protocols are represented as
modules (NED file for interfaces plus behavior
implementation). The NED language is then further used to
combine these protocol modules to form network
components, such as hosts, routers and switches. However,
there are also special modules which do not implement any
protocol. Common examples are RoutingTable, and
FlatNetworkConfigurator. The former stores data (an IP
routing table, whereas the latter assigns IP addresses to
network nodes and sets up routing.
Protocol headers and messages are defined in msg files
which are automatically translated into C++ code.
If a higher layer protocol wants to send a packet over a
lower layer protocol, the higher layer protocol sends the
message object (representing the packet) to the lower layer
protocol. The lower layer protocol will encapsulate this
message object and send it on. At the receiving side the

reverse process will occur. The lower layer protocol will
receive the encapsulated message object, remove the lower
layer information and then pass the message object to the
higher layer.
Associated information with a packet is transmitted as
control info. Control info can be some connection identifier
used by an application layer protocol when sending data
over a transport protocol. In turn, when a transport protocol
sends data over IP, an IP address is required. Control info is
extra information which is attached to the message object
(packets). Control info contains information for the next
protocol layer and is not actually sent over the network to
other components – just used for communicating down the
stack.

2.3 ReaSE
ReaSE (Realistic Simulation Environments) [22] is a
standalone tool which generates networks and simulation
environments for the OMNeT++ simulator. It uses the
INET framework as a base. ReaSE can generate network
topologies, including different administrative domains (AS
level – autonomous systems) and router level, as well as
traffic patterns and attack traffic. For the AS level
topologies, ReaSE uses the positive feedback preference
model, which generates random topologies with power-law
distributed node degree. At router level the topologies
generated contain few meshed core nodes with a low node
degree which forward aggregated traffic of a high number
of gateway nodes with a high node degree. Finally edge
nodes have a node degree of 1 and connect host systems to
the network. This means that the link bandwidth increases
from edge to core, whereas the connectivity decreases.

ReaSE works together well with OMNeT++ and INET.
In fact ReaSE includes and extension to the INET
framework to support hierarchical addressing and routing
as well as self similar background traffic. ReaSE further
includes a graphical user interface which allows for easy
configuration of the topology and traffic parameters.

ReaSE generates NED files which are used as inputs for
OMNeT++ simulations. The nodes in the NED files are
represented by either the module Router or the module
StandardHost depending on the topology. Other types of
nodes, such as gateways and core routers are represented by
assigning different bandwidths to the links, that is core-core
and core-gateway channels. The actual size of the topology,
i.e. the number of routers and the link bandwidth can be
configured before topology generation.

3. XCAST and Multi-destination Routing
Multi-destination routing is not a new concept, in fact it
was devised during the early stage of multicast design [19].
However, as it is not capable of supporting large multicast
groups it did not attract large attention initially. Recently it
has been recognized as a technology which offers
scalability with respect to numbers of multicast groups.
Multi-destination routing hence has its strength in
supporting a large number of small groups.

The basic approach of multi-destination routing is quite
simple: rather than sending a number of unicast messages
to multiple destinations, a single message is sent which
includes all the destination addresses. Multi-destination
enabled routers make a routing decision on each of these
addresses, and if addresses result in different routing
decision, the message is duplicated and the corresponding
subset of addresses is attached to the messages. Once a
message only contains a single address, normal unicast
behavior is resumed.

In Figure 1 this concept is illustrated: Node A is sending
a message to Nodes B, C, D and E using multi-destination
routing, hence the message originating at node A includes 4
addresses. At the first router, the routing decision for all 4
destination is identical, hence the message stays as one
including all 4 destination. At the next router, a split occurs
and hence the message is duplicated. One message is now
sent towards nodes B and C (including two addresses) and
a second message is sent towards nodes D and E (also
including two addresses). These messages stay intact until
the final router before the nodes where a final split occurs
into 4 unicast messages. The number on the links indicates
the number of addresses in the message (and the number of
unicast messages which would be required).

4 4

11

2
2

2

2

2

1

1

Originating Node

Router (Split)

Router (no split)

Destination Node

Internal Link

Edge Link

4-way XCAST Message

A

B

C

DE

Figure 1: Sending an XCAST message to four
destinations.

Another advantage of multi-destination routing is that it
does not require state in the routers. The group information
is part of the message. The routers check the routing path
for each address, very much the same as for unicast
messages. Hence in terms of routing decisions, multi-
destination routing and unicast exhibit similar performance.
However, clearly multi-destination routing cuts down the
number of identical messages sent over a link.

XCAST (explicit multicast) is an IP protocol
implementing multi-destination routing [20]. He and
Ammar have analyzed the performance of XCAST [21].

3.1 The XCAST Implementation in Omnet++
An XCAST implementation in OMNeT++ impacts heavily
on the INET framework. XCAST principally works at the
IP layer. However, as XCAST is a protocol used by the
sender nodes and network nodes, OMNeT++ applications,
transport layer protocols (UDP), and the IP layer, as well as
the corresponding nodes need to be adapted.

The implementation changes the INET framework in
that a number of classes have been derived and augmented
with XCAST specific behavior. Hence only behavior and
code which had to be adapted actually changed. This allows
for a realatively straightforward integration of XCAST in
OMNeT++/INET simulations.

For an XCAST message to be sent, the application needs
to specify multiple destination addresses for this message.
Taking the UDP Application which is part of the INET
framework as an example, the destination addresses are
specified in the omnet.ini as a parameter. The default
behavior is that one of the specified addresses is selected at
random and the message is sent to this destination. For
XCAST we have developed a new application which
changes this behavior in that the message is sent to all
destination addresses using an XCAST message. The
destinations are part of the UDP control info data structure.
Hence the UDP control info was amended to be able to
specify multiple destination addresses. Furthermore, the
protocol implementation of UDP had to be altered to cope
with multiple destination addresses. This included both, the
NED definition and the C++ behavior implementation.
Clearly, having multiple destination addresses in the
message also affect the UDP datagram.

UDP then passes the UDP datagram down to the IP
layer, and with it the IP control info. Again the IP control
info data structure and also the IP datagram were amended
to include multiple destination addresses. The IP
implementation also has to make the routing decision on all
destination addresses for a message. To achieve this, the
routing function was amended to look at all destination
addresses and decide if the packet needs to be duplicated.
This is the case if the routing decision for addresses differs,
that is messages to different addresses are routed down a
different path. The routing function will create a duplicate
message if required, and attach the corresponding
destination addresses. The IP packets are then sent. No
changes were required at any lower layer protocols.

As the message traverses the network, the message will
be duplicated and fewer addresses will be attached until the
message reverts back to a unicast IP/UDP message.

In order to support this protocol behavior, key nodes in
the network such as Router and StandardHost also had to
be adapted. New versions of these components which
support XCAST versions of the IP and UDP protocols were
created.

For testing purposes, a numbe of sample networks were
generated using the ReaSE tool. Clearly, ReaSE generates
networks using the standard modules, rather than the
XCAST versions. However, amending generated NED files
is straightforward: changing the #include files to the

appropriate XCAST versions, and a simple find-replace of
all routers and StandardHost to the XCAST versions
(RouterXCast, StandardHostXCast). No changes are
required to any parameters to these modules in the NED
file.

In the omnet.ini file also only very minor changes are
required. The udpAppType for a module supporting
XCAST needs to be changed to UDPAppXCast, and the
destination addresses can then be specified in the
destAddresses parameter.

3.2 Sample Output from the Simulation
Simulations using the XCAST modules need to be able to
report on the performance gain achieved using XCAST. So
far only a basic reporting of simulation performance values
has been implemented. Whenever a message is sent at the
IP layer, a vector output is generated reporting the number
of destination addresses within this message. Using this the
reduction in duplicate messages sent can be calculated.

Using the data-analyzer built-in with the OMNeT++
IDE, the values can be inspected and plotted. A sample
result is shown in Figure 2 below.

In future versions further evaluation metrics will be
included, such as bandwidth savings.

0
0.5

1
1.5

2
2.5

3
3.5

Edge2 Edge3 GW1 Host4 Host5 Host6 Host7 Host8 Host9 Host10

XCAST-Factor

Figure 2: Plot of simulation output using the XCAST
module.

4. Adding AMT to INET Framework
In order to evaluate the hybrid multicast framework
described in [9][10], INET must also implement AMT [11]
and IGMP (Internet Group Management Protocol). Here we
briefly summarize the requirements and changes needed.

AMT components are either a gateway or a router. The
AMT GW can be implemented in either a host or a router.
There are six message types in the protocol. The messaging
is shown in Figure 3. The first two messages represent the
advertisement and discovery exchange by which a gateway
discovers a router. The next three messages are the
handshake by which the GW and router set up a
connection. Thereafter, multicast data can be sent
encapsulated in AMT IP Multicast Data messages.

The AMT discovery mechanism requires anycast
addressing support. Anycast addressing is not currently
supported in INET. Further, the routing layer does not
have BGP routing mechanism. All AMT messages are UDP
packets.

We propose three AMT modules are needed: AMT-GW,
AMT-Router, and AMTApp. The AMT-GW module
implements both the six message types to the AMT-Router.
It also acts as an IGMP proxy on the local network. The
AMT-App module is needed for endpoint multicast apps
running on the same host as the GW to participate in an
AMT connection. The AMT-Router module supports the
ATM router side of the messaging to the GW, and connects
to other multicast-enabled routers.

Figure 3: Example AMT message sequence

5. Conclusions and Further Work
This paper presents preliminary work towards simulating
and evaluating a new type of hybrid multicast protocols. As
a first step we have implemented the XCAST protocol in
the OverSim/Omnet++/INET simulator environment. Due
to a simple interface, this new component can easily be
integrated with other existing simulations. As next steps we
plan to extend the performance metric reporting facility and
to integrate this the XCAST component with OverSim and
Application Layer Multicast approaches. In addition, AMT
support should be added as described in section 4.

6. References
[1] J. Buford, M. Kolberg. Hybrid Overlay Multicast Simulation

and Evaluation. IEEE CCNC 2009 (short paper). Jan. 2009.
[2] B. Zhang, S. Jamin, and L. Zhang. Universal IP multicast

delivery. In Proc. of the Int'l Workshop on Networked Group
Communication (NGC), Oct. 2002

[3] X. Jin, H.-S. Tang, S.-H. Chan and K.-L. Cheng,
Deployment Issues in Scalable Island Multicast for Peer-to-
Peer Streaming," IEEE Multimedia Magazine, vol. 16, issue
1, pp. 72-80, Jan.-Mar. 2009.

[4] X. Jin, K.-L. Cheng, and S.-H. Chan, Scalable Island
Multicast for Peer-to-Peer Streaming, Hindawi Journal of
Advances in Multimedia special issue on Multimedia
Networking, vol. 2007, Article ID 78913, 2007.

[5] X. Jin, K.-L. Cheng, and S.-H. Chan, SIM: Scalable Island
Multicast for Peer-to-Peer Media Streaming, in Proceedings
IEEE International Conference on Multimedia Expo (ICME),
pp. 913-916, Toronto, Canada, 9-12 July 2006.

[6] M. Waehlisch, T. Schmidt. Multicast routing in structured
overlays and hybrid network. in: Handbook of Peer-to-Peer
Networking. (eds. S. Shen, H. Yu, J. Buford, M. Akon).
Springer-Verlag. Forthcoming.

[7] M. Wählisch, T. C. Schmidt, G. Wittenburg. A Generalized
Group Communication Network Stack and its Application to
Hybrid Multicast, In: Proceedings of the 28th IEEE
INFOCOM. Student Workshop, IEEE Press, April 2009.

[8] J. Buford, S. Kadadi. SAM Problem Statement. Dec’ 06.
Internet Draft draft-irtf-sam-problem-statement-01.txt, work
in progress.

[9] J. Buford. Hybrid Overlay Multicast Framework. IRTF SAM
RG. draft-irtf-sam-hybrid-overlay-framework-02. March’08,
Work in Progress.

[10] J. Buford. SAM Overlay Protocol. IRTF SAM RG. draft-irtf-
sam-overlay-protocol-00.txt, Feb 2008. Work in progress.

[11] D. Thaler, M. Talwar, A. Aggarwal, L. Vicisano, T. Pusateri.
Automatic IP Multicast Without Explicit Tunnels (AMT).
Internet Draft draft-ietf-mboned-auto-multicast-09, Work in
progress. June 2008.

[12] J. Buford, A. Brown, M. Kolberg. Exploiting Parallelism in
the Design of Peer-to-Peer Overlays. J. Computer
Communications. Special Issue on Foundations of Peer-to-
Peer Computing Vol 31/3, Feb. 2008, pp 452-463.

[13] SSF-NET: http://www.ssfnet.org/homePage.html
[14] I. Baumgart, B. Heep, S. Krause. OverSim: A Flexible

Overlay Network Simulation Framework, Proceedings of
10th IEEE Global Internet Symposium (GI '07) in
conjunction with IEEE INFOCOM 2007, Anchorage, AK,
USA, May 2007.

[15] A. Varga. Omnet++ community site.
http://www.omnetpp.org

[16] A. Varga. The OMNeT++ Discrete Event Simulation
System. Proceedings of the European Simulation
Multiconference (6 June 2001), pp. 319-324.

[17] A. Varga, R. Hornig. An Overview of the OMNeT++
Simulation Environment. Proceedings of SIMUTools 2008:
1st International Conference on Simulation Tools and
Techniques ICST, Marseille, France, Mar 2008.

[18] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM SIGMETRICS, June
2000.

[19] L. Aguilar, Datagram Routing for Internet Multicasting,
Sigcomm 84, March 1984.

[20] R. Boivie, N. Feldman , Y. Imai , W. Livens , D. Ooms, O.
Paridaens, Explicit Multicast (Xcast) Basic Specification,
draft-ooms-xcast-basic-spec-11.txt, Work in Progress. Jan.
2007.

[21] Q. He, M. Ammar. Dynamic Host-Group/Multi-Destination
Routing for Multicast Sessions. J. of Telecommunication
Systems, vol. 28, pp. 409-433, 2005.

[22] T. Gamer, M. Scharf. Realistic Simulation Environments for
IP-based Networks. Proceedings of 1st International
Workshop on OMNeT++ (Hosted by SIMUTools '08: 1st
International Conference on Simulation Tools and
Techniques), ICST, Marseille, France, Mar 2008.

http://www.omnetpp.org/

	Introduction
	OverSim
	OMNeT++
	INET Framework
	ReaSE

	XCAST and Multi-destination Routing
	The XCAST Implementation in Omnet++
	Sample Output from the Simulation

	Adding AMT to INET Framework
	Conclusions and Further Work
	References

