
Kenneth J. Turner. Specifying and Realising Interactive Voice Services. In
Harmut Koenig, Monica Heiner and Adam Wolisz, editors, Proc. Formal
Techniques for Networked and Distributed Systems (FORTE XVI),
Lecture Notes in Computer Science 2767, 15-30, copyright
Springer-Verlag, Berlin, September 2003.

Specifying and Realising Interactive Voice Services

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
Emailkjt@cs.stir.ac.uk

Abstract. VoiceXML (Voice Extended Markup Language) has become a major
force in interactive voice services. However current approaches to creating Voice-
XML services are rather low-level. Graphical representations of VoiceXML are
close to the textual form of the language, and do not give a high-level description
of a service. CRESS(Chisel Representation Employing Systematic Specification)
can be used to give a more abstract, language-independent view of interactive
voice services. CRESSis automatically compiled into VoiceXML for implemen-
tation, and into LOTOS(Language Of Temporal Ordering Specification) or SDL
(Specification and Description Language) for automated analysis. The paper ex-
plains how CRESSis translated into VoiceXML and LOTOS.

1 Introduction

1.1 Motivation

This paper explains how to represent, specify and analyse IVR (Interactive Voice Re-
sponse) services. VoiceXML (Voice Extended Markup Language [13]) is typically used
to implement automated telephone enquiry systems. VoiceXML is much more accept-
able to users than the early generation of touch-tone systems. Specifically, VoiceXML
allows users to do what they expect in a telephone call: talk and listen. VoiceXML can
be linked to databases, telephone networks and web servers.As a result, VoiceXML
is very useful for those who cannot directly access such information. A user on the
move, for example, is likely to have a mobile telephone but limited web access. A par-
tially sighted or physically handicapped user could find web-based services difficult or
impossible to use. Many households still do not have web access.

Being an application of XML, VoiceXML is textual in form. However several com-
mercial packages (e.g. Covigo Studio, Nuance V-Builder, Voxeo Designer) provide a
graphical representation. Some of these reflect the hierarchical structure of VoiceXML,
while others emphasise the relationship among VoiceXML elements. These packages
are (not surprisingly) very close to VoiceXML and do not givea clear overview of in-
teractive voice services. In the author’s opinion, existing graphical formats are ‘window
dressing’ that do little to clarify the structure and flow of VoiceXML scripts. It is easy,
even common, to write VoiceXML scripts whose flow of control is obscure and hard
to follow. Indeed, VoiceXML can suffer from the ‘spaghetti code’ (tangled logic) that
structured programming was devised to avoid. VoiceXML adopts a pragmatic and pro-
grammatic approach. There is no way to formally check or analyse a VoiceXML script.

In telephony, services are often composed from self-contained features. A feature
is an additional function that is triggered automatically (e.g. call forwarding or call

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

screening). Because a feature is triggered and not explicitly called, it readily adds sup-
plementary capabilities. The value of features has been amply demonstrated in the IN
(Intelligent Network). VoiceXML does not have features (though it has subdialogues).
In fact, VoiceXML does not directly recognise the concept ofa service. It is therefore
be useful to enhance VoiceXML with mechanisms for services and features.

The author’s approach to defining and analysing services is agraphical notation
called CRESS(Chisel Representation Employing Systematic Specification). CRESSwas
initially based on the industrial Chisel notation developed by BellCore [1]. However,
CRESShas considerably advanced from its beginnings. The aim of using CRESSwith
VoiceXML is to define key aspects of interactive voice services. The advantages of
CRESSover using VoiceXML directly are:

– VoiceXML is very close to implementation. However CRESSservices are repre-
sented at a more abstract level, making it easier to grasp their essence. For the same
reason CRESS diagrams can be translated into a number of target languages, of
which VoiceXML is just one.

– There is no formal definition of VoiceXML. Some concepts in VoiceXML are only
vaguely described (e.g. event handling) and some are definedloosely (e.g. the se-
mantics of expressions and variables). As a result, it is impossible to say for certain
what certain VoiceXML constructs mean. At times the author has had to resort a
commercial VoiceXML implementation to discover what some constructs might
mean. Even then, the commercial solution has been seen to behave implausibly.
Through translation to a formal language, CRESS contributes to a more precise
understanding of VoiceXML.

– A large VoiceXML application typically has many documents with many parts. It
can be difficult to check whether the application is self-consistent, e.g. will not loop
indefinitely or end prematurely. VoiceXML development in practice uses manual
debugging. CRESSgives the immediate benefit of translation to a formal language:
LOTOS (Language of Temporal Ordering Specification) and SDL (Specification
and Description Language). The resulting specification canbe rigorously analysed.

1.2 Relationship to Other Work

Several graphical representations have been used to describe communications services.
SDL is the main formal language used in communications. Although it has a graphical
form, SDL is a general-purpose language that was not designed particularly to represent
communications services. MSCs (Message Sequence Charts) are higher-level and more
straightforward in their representation of services. UCMs(Use Case Maps [2]) have
been used to describe communications services graphically. However none of these ap-
proaches is domain-specific, and they cannot be translated into a range of languages.
In comparison to CRESS, SDL for example does not have specialised support for a
domain like interactive voice services. As a result the equivalent SDL specification is
larger and more complex. The only formal analysis possible is whatever SDL offers
(mainly state space exploration). With CRESSan SDL-based analysis remains possi-
ble, different kinds of analysis can be achieved through LOTOS, and VoiceXML scripts
can be obtained automaticallyfrom the same diagrams. See for example [4, 9] for a
comparison of CRESSand SDL descriptions of SIP (Session Initiation Protocol).

2

As noted earlier, there are a number of commercial tools for VoiceXML. These offer
more complete VoiceXML coverage than CRESS, and provide proprietary extensions
for commercial deployment. However they are focused on VoiceXML only, and do not
offer any kind of formal analysis. Their (graphical) representations are too close to
VoiceXML for abstract service descriptions that are comprehensible to non-specialists.

Although CRESS has origins in communications services, it is not tied to these.
CRESShas plug-in domains that define the service vocabulary in a separate and modular
fashion. CRESShas already been proven with services for the IN (Intelligent Network)
[8] and SIP (Session Initiation Protocol) [9, 11]. The work reported in the present paper
shows how CRESScan be used with VoiceXML.

CRESSis a front-end for defining and formalising services. CRESSis neutral with
respect to the target language. The translation of CRESS into LOTOS or SDL gives
formal meaning to services defined in CRESS. This formalisation provides access to
any analytic technique using these languages. Among these,the author’s own approach
[7] is one of several. For implementation, CRESScan also be compiled as appropriate
into SIP CGI (Common Gateway Interface, realised in Perl), partly into SIP CPL (Call
Processing Language), and also into VoiceXML.

A key issue in telephony is feature interaction [3] – independently designed features
can interfere with each other. This issue is well known from traditional telephony and
the IN, but also arises with SIP services. The feature interaction literature is too large to
review here; see, for example, the proceedings of FIW (Feature Interaction Workshop).
Although VoiceXML does not recognise the concept of serviceor feature, it has been
shown that feature interactions can also arise with VoiceXML [11].

1.3 Overview of The Paper

The new contribution made by this paper is the application ofCRESSto IVR services.
The paper discusses how IVR services and features can be described in CRESS, and
explains how they are translated into VoiceXML and LOTOS. CRESScan also be trans-
lated into SDL, as outlined in [10]. As background, section 2summarises the CRESS

graphical notation insofar as it applies to interactive voice services. Examples of CRESS

diagrams appear later, and CRESSis further discussed in [8, 9, 11]. Section 3 introduces
VoiceXML and its representation in CRESS. It will be seen how CRESSdiagrams for
interactive voice services are translated into VoiceXML. Section 4 discusses how the
same diagrams are translated into LOTOS. This allows a variety of formal analyses to
be carried out of a service before it is developed and deployed using VoiceXML.

2 The CRESS Notation

At first sight, it might seem that CRESSis just another way of drawing state diagrams.
However it differs in a number of important respects. State is intentionally implicit
in CRESS because this allows more abstract descriptions to be given.Arcs between
states may be guarded by event conditions as well as value conditions. Perhaps most
importantly, CRESShas explicit support for defining and composing features. CRESS

also has plug-in vocabularies that adapt it for different application domains. These allow
CRESSdiagrams to be thoroughly checked for syntactic and static semantic correctness.

3

2.1 Diagram Elements

Ultimately, CRESSdeals with a single diagram. However it is convenient to construct
diagrams from smaller pieces. A multi-page diagram, for example, is linked through
connectors. More usefully, features are defined in separatediagrams that are automati-
cally included by either cut-and-paste or by triggering. A CRESSdiagram is a directed,
possibly cyclic graph. If the graph is cyclic, it may not be possible to determine the ini-
tial node uniquely. In such a case, an explicitStart node is given. Comments may take
several forms: text between parallel lines, hyperlinks to files, and audio commentary.

Nodes in a diagram (shown as ovals) contain events and their parameters (e.g.Sub-
mit order.jsp′′weight product′′). A node is identified by a number followed optionally
by a symbol to indicate its kind. For example, the first node ofa template feature is
marked ‘+’ if it is appended to the triggering node, or ‘–’ if it is prefixed. Events may be
signals (input or output messages) or actions (like programming language statements).
A NoEvent (or empty) node can be used to connect other nodes. An event may be
followed by assignments separated by ‘/’ (e.g./ timeout<− 2).

The arcs between nodes may be labelled by guards. These may beeither value con-
ditions (imposing a restriction on the behaviour) or event conditions (that are activated
by dynamic occurrence of an event). Event handlers are distinguished by their names
(e.g.NoInput , triggered when the user does not respond to a VoiceXML prompt).

A CRESSdiagram may contain a rule box (a rounded rectangle) that defines general
rules and configuration information. A rule box typically declares the types of diagram
variables (e.g.Uses Valueproduct, weight). A rule box may define configuration infor-
mation like parent diagrams, chosen features and translator options. Rule boxes have
yet other uses [8, 9, 11] that are not so applicable to interactive voice services.

The main CRESS diagram defines the root behaviour. Although this may be the
only diagram, CRESSsupports feature diagrams that modify the root diagram (or other
features). A spliced (plug-in) feature is inserted into a root diagram by cut-and-paste.
The feature indicates how it is linked into the original diagram by giving the insertion
point and how it flows back into the root diagram. This style offeature is appropriate
for a one-off change to the original diagram.

It is often preferable to use a template (macro) feature thatis triggered by some
event in the root diagram. The triggering event is given in the first node of the feature.
Feature execution stops on reaching aFinish (or empty) node. At this point, behaviour
resumes from the triggering node in the original diagram. A template feature is statically
instantiated using the parameters of the triggering event.The instantiated feature may
be appended, prefixed or substituted for the triggering node.

2.2 Automated Support

CRESSusually relies on a domain-specific infrastructure. For example, IVR services
often require a speech synthesiser and a speech recogniser that cooperate with the main
application. Such a framework is specified using the same target language as the one to
which diagrams are compiled (e.g. LOTOS, SDL, VoiceXML). Although the framework
is specific to a domain and a target language, it is independent of the particular services

4

or features deployed. The framework includes macro calls that activate the CRESSpre-
processor. This automatically generates configuration-specific information such as the
translated diagrams and feature-dependent data types.

The CRESStoolset has the form of a conventional compiler but is unusual in some
respects. For portability it is written in Perl, comprisingabout 13,000 lines of code. The
CRESStoolset consists of five main tools. Including test scenarios, there are about 600
supporting files for all domains and target languages. Internally the CRESStoolset con-
sists of a preprocessor (that instantiates the specification framework), a lexical analyser
(that deals with various diagram formats), a parser (that performs syntactic analysis),
and several code generators (e.g. for LOTOS, SDL and VoiceXML). Although it might
have been desirable to use a parser generator (e.g. Antlr), parsing is only a small part
of what CRESShas to do. A traditional compiler deals with textual languages. CRESS,
however, deals with a graphical language. This creates interesting challenges, e.g. com-
piling cyclic rather than hierarchical constructs.

3 Interactive Voice Services in VoiceXML

3.1 Introduction to VoiceXML

VoiceXML [13] derives from earlier work on scripting languages for interactive voice
services. VoiceXML is a mixture of the declarative and the imperative, the event-driven
and the sequential. VoiceXML is a large language embedded inan even larger frame-
work. For example, VoiceXML includes ECMASCRIPT (JavaScript). It also supports
complex grammars for speech synthesis and speech recognition. VoiceXML is inte-
grated with other technologies such as database access and web servers.

VoiceXML lacks the telephony concept of a feature as behaviour that may be trig-
gered by some condition. The nearest equivalent in VoiceXMLis a subdialogue (re-
sembling a subroutine). Subdialogues are executed in an independent interpreter con-
text, making it difficult to share certain information. In VoiceXML, at best some code
can beexplicitly invoked as a ‘feature’; automatic feature invocation is notsupported.
Triggered features have proven their worth in telephony andare supported by CRESS.

The VoiceXML caller completes fields in forms (or menus) by speaking in response
to prompts. Each field is associated with a variable that is set to the user’s input. Voice-
XML applications are often written as a number of documents containing a number of
forms, each containing a number of fields. This is the most natural form of modularity
in VoiceXML. However this can easily hide the flow between theforms and fields.

TTS (Text-To-Speech) may be used to speak messages. Text maybe marked up
to indicate how certain words are pronounced, and generallyto define the speech pat-
tern. However TTS is only approximation of natural speech, so VoiceXML allows pre-
recorded voice to be used in preference.

Speech recognition is used to extract digital data from userinput. This is guided by a
speech grammar, for which there are several standards. Numeric inputs (including menu
choices and yes/no) can also be provided using DTMF (Dual Tone Multi-Frequency),
i.e. dialling digits on a touch-tone telephone. CRESSsupports the standard VoiceXML
grammars:Boolean(optionally defining DTMF digits for yes/no),Currency, Date,

5

Digits (optionally defining expected length, or minimum/maximum lengths),Number,
Phone(with optional extension) andTime(12/24 hour clock).

Some VoiceXML actions may be governed by a count or a condition on when the
action is permitted. For example a different prompt may be given on the third input
attempt, or a field may be selected only when some condition istrue. Actions may have
optional parameters (e.g. a sound file or fetch timeout) thatare relevant to a VoiceXML
platform but not directly useful for CRESS. Although these may appear in a CRESS

diagram, they are used only when translating into VoiceXML.For other target languages
these optional parameters are ignored.

The types supported by CRESSare domain-specific. For VoiceXML there is just a
single type,Value, since the underlying ECMASCRIPThas dynamic types. Actual values
can be booleans, numbers or strings. In addition there arenull andundefinedvalues.

VoiceXML supports a fairly complex hierarchical event model. Event handlers may
be defined at four levels: platform, application, form, field. Platform handlers pro-
vide fall-back support, though they are rarely useful. Application handlers oversee all
forms in an application. Form handlers allow their fields to share common event han-
dling. Finally, fields usually define handlers for events of specific interest. A script may
<throw> an event, transferring control a matching handler. Standard events include:

Cancel, Exit, Help: the user asked to cancel processing, to exit, or to get guidance

Catch: deals with a list of events

Error: a run-time error occurred

Filled, NoInput, NoMatch: the user spoke correct input, nothing, or invalid input.

Although VoiceXML does not considerFilled to be an event, it behaves like one.
Besides standard events, programmer-defined events may be constructed from several
parts (e.g.login.failure.password). Normally this would be caught by a handler for the
same name. But if there is nothing to match, a handler forlogin.failure (or failing that
login) may deal with the event. If no handler matches, the application terminates.

Events are also implicitly associated with a prompt count. Each time a field is en-
tered, its prompt count is incremented. This may be used varythe response to an event.
In fact this is more complex than it seems. Suppose event handlers are defined for counts
1 (the default), 2 and 4. The first is activated on count 1, the second on counts 2 or 3, and
the last on count 4 or higher. A condition may also be imposed on an event handler being
activated. This is relevant if several handlers could otherwise apply. VoiceXML does not
define what happens if conditions overlap – in fact the behaviour is non-deterministic.

3.2 CRESS for VoiceXML

In principle, VoiceXML has elements at platform, application, form and field levels.
VoiceXML can also be split over a number of documents. However a VoiceXML ap-
plication can be defined as a single document with a single form, and this is how it is
regarded in CRESS; in fact, application and form level are the same in CRESS. Fields
can be defined as separate sections or pages of a CRESSdiagram, using connectors to
join them. For a large application this is convenient and more modular. However for a
small application it is sufficient to represent the form as a single integrated whole. In

6

addition, splitting fields makes the flow between them less obvious. For these reasons,
fields are deliberately not prominent in CRESS.

CRESS is not a literal graphical rendering of VoiceXML structure.This would be
pointless since most commercial tools for VoiceXML do this anyway. The flow of con-
trol in CRESScan be more visible; in VoiceXML it can be hard to determine. The flow is
sometimes implicit (e.g. transitioning to the next field on completion of the current one)
and sometimes buried (e.g. an embedded<goto>). CRESSsupports cyclic behaviour
as loops in a diagram; these have to be coded indirectly in VoiceXML.

CRESSexpects to have a definition of root behaviour as the core of a service. In
VoiceXML, an application root document serves a similar purpose but is very restric-
tive. It may contain only variables, event handlers and elementary definitions that are
common to the documents of a VoiceXML application.

It is not feasible for CRESS to support the entirety of VoiceXML, ECMASCRIPT,
speech synthesis markup, speech grammars, database accessand web access. Instead,
CRESSconcentrates on the essential aspects of VoiceXML control.Limited support is
provided for ECMASCRIPT – specifically for numerical, string and logical expressions.

The following summarises the main elements of CRESS for interactive voice ser-
vices. Unless stated, the VoiceXML equivalent is very similar (e.g.Audio in CRESS

corresponds to<audio> in VoiceXML). Strings and lists are given in double quotes
(e.g.′′Please place your order′′, ′′weight product′′). Substrings can be given inside a list
using single quotes. Variables, grammars, etc. are withoutquotes in CRESS. VoiceXML
actions sometimes allow literals or expressions as alternative parameters (e.g. a literal
or computed event name may be thrown); CRESSalways uses an expression.

Audio messagespeaks a message. Variable values in this or any text string may be
interpolated in CRESS, using$variable to include the value of a variable. Some
names are special, e.g.$enumerateis used to include the options of the current field.
The VoiceXML equivalents of these are<value> and<enumerate> respectively.

Clear [variables] resets the prompt count, and undefines all (or the named) variables.

Exit leaves the application.

Option variable prompt options [condition]defines a<field>, issues a<prompt>,
analyses the input using<option> values, and sets the field variable from this. An
optional condition can be imposed on entry to the field.

Prompt message [count] [condition]issues an audio prompt. The prompt may be sub-
ject to a count and/or a condition.

Reprompt restarts the current form. The first unfilled field is entered,usually causing
the most recent prompt to be re-issued.

Requestvariable prompt grammar [condition]behaves likeOption, but defines ac-
ceptable input using a grammar rather than a list of specific options.

Retry restarts the current form, re-inputting the most recent field. This is a common
requirement that is surprisingly missing from VoiceXML. Itundefines the current
field variable, and issues a<reprompt>.

Subdialog[ue]URI variables send the variable values to a URI (either another Voice-
XML script or a web server executable script). In general, this may return a new
VoiceXML script dynamically. This is not a problem when CRESS is interpreted

7

by VoiceXML. However for translation to other languages (e.g. LOTOS or SDL),
it is not possible to handle dynamically created VoiceXML. Instead, limited sup-
port is provided for external scripts that perform a computation (e.g. interrogate a
database) and return results. CRESSprovides a web adaptor written in C that links
to the target language.

Submit URI variables sends the variable values to a web server URI (usually an ex-
ecutable script). Often the server just absorbs the results(e.g. writes them to a
database). As for subdialogues, the server may return VoiceXML created on-the-
fly. This cannot be handled except when VoiceXML is the targetlanguage. The
CRESSapproach handles the commonest cases of server scripts thatproduce no
result (Submit) and scripts that compute some results (Subdialogue).

Throw event passes an event to the closest matching handler.

3.3 Sample Interactive Voice Services

To illustrate the notation, Figure 1 shows the CRESS root diagram for a VoiceXML
application. This is for the hypothetical Charities Bank that allows telephone donations
to charity. This service invites the caller to name thecharity (UNICEF, WWF, Red
Cross) and the requiredamountin US dollars. These items are then submitted to the
donation.jspscript. If the user asks for help or says nothing following a prompt, an
explanation is given and the user is re-prompted. VoiceXML reads a currency amount
as a string whose first three characters give the currency code (e.g.′′USD′′). In case the
user says another currency (e.g. pounds sterling), the useris re-prompted if the stated
currency is not US dollars.Retry in node 7 is used to clear the value entered foramount,
otherwise the field will be ignored on the re-prompt because it has already been filled.

Suppose that Charities Bank has a range of applications besides the donation appli-
cation in Figure 1. There might, for example, be separate applications to enquire about
what charities are supported, or to request a tax relief statement. It would be desir-
able to ensure a consistent VoiceXML treatment of all these applications: there should
be the same default handling of events and a common introduction. It would also be
worthwhile to request confirmation before anything is submitted to a web server. There
is therefore a case for common features. For brevity severalfeatures are omitted here,
such as ones to request an account number and a PIN.

Figure 2 is a feature that defines an introductory environment for all bank applica-
tions. The feature is placed just after theStart node in the root diagram (implicit before
Figure 1 node 1). Welcome messages are spoken before executing application-specific
code. Common handlers are defined for various events. Although an application is likely
to deal withNoInput andNoMatch on a per-field basis, figure 2 ensures that after three
such failures the user is disconnected. Figure 2 also definesgeneral VoiceXML proper-
ties: here the timeout for no input is set to two seconds (timeout<− 2).

Figure 3 defines a confirmation feature that asks the user to proceed before submit-
ting information to a web server. This feature is not specificto Charities Bank, and is
usable in a number of applications. The feature is triggeredby a Submit action, be-
ing executed just before it. On user confirmation, executioncontinues with submission;
otherwise, the current fields are cleared and the user is re-prompted.

8

1 Audio "Please

make your donation"

2 Option charity

"Which charity?"

"UNICEF WWF ’Red Cross’"

8 Audio "Choose

from $enumerate"

9 Reprompt

Catch "Help NoInput"

3 Request amount

"How many dollars?"

Currency

6 Audio "Choose an

amount in US dollars"

7 Retry

4 Audio "You donated

$amount to $charity"

Filled

ElseSubString(amount,0,3) =

"USD"

Filled

Uses Value charity, amount

5 Submit donation.jsp

"charity amount"

Catch "Help NoInput"

Fig. 1. CRESSRoot Diagram (Donate) for Charity Donation Application

7 Audio "Not

recognised - try again"

8 Reprompt

6 Audio "Sorry - too

many attempts"

5 Audio "Thank you

for calling - goodbye"

4 Audio "Sorry - an

internal error occurred"

NoMatch

Catch "NoInput

NoMatch" 3
Error

Exit

2 Audio "Welcome

to Charities Bank"

1+ Start

/ timeout <- 2

Finish

3 Audio "Say Help

or Exit at any time"

Fig. 2. CRESSFeature Diagram (Intro) to introduce Charities Bank Applications

9

2 Request confirm

"Do you wish to proceed?"

Boolean

Filled

5 Audio "Please

say Yes or No"

6 Reprompt

Catch "Help NoInput NoMatch"

3 Clear

Else

Uses Value confirm 1- Submit U V

Finish

confirm

4 Reprompt

U URL

V Variables

Fig. 3. CRESSFeature Diagram (Confirm) for Confirmation

Most of the translation from CRESSto VoiceXML is straightforward. One compli-
cation that arises is how to deal with loops in diagrams and nodes that can be reached
along more than one path. It might seem obvious to use a VoiceXML <goto>. Unfortu-
nately this may branch only to a document, form or field; it is not possible to move to an
arbitrary node. As a result, it is necessary to branch using an event. (A<throw> acts as
a computed<goto> anyway.) The revisited node is then translated as an event handler.
Most CRESSoperators have equivalents in VoiceXML, but a few likeAfter (remove a
prefix from a string) andIn (set membership) are defined using ECMASCRIPT.

To give an idea of how CRESStranslates interactive voice services into VoiceXML,
the following shows some of the translation for figure 1 as modified by the features
in figures 2 and 3. As shown, the CRESS translator automatically generates extensive
comments that link the code to the diagrams. The CRESSRequestin figure 1 node 3
becomes a VoiceXML field that fills in theamountas a currency. The user is prompted
to enter a donation in dollars. If the user asks for help or does not say anything, an
event handler catches this and moves to figure 1 node 6. If US dollars are specified,
the donation is announced to the user. Execution then continues with theconfirmfield;
Confirm.1is instance 1 of theConfirmtemplate.
<field name=′amount′ type=′currency′> <!−− Donate 3 field′amount′ −−>

<prompt>How many dollars?</prompt> <!−− Donate 3 prompt−−>

<catchevent=′help noinput′> <!−− catch event−−>

<throw event=′donation.6′/> <!−− Donate 6 (again)−−>

</catch> <!−− end catch−−>

<filled> <!−− filled event−−>

<if cond=′amount.substring(0,3) = =′′USD′′ ′
> <!−− check SubString =′′USD′′

−−>

<audio> <!−− Donate 4 audio−−>

You donated<value expr=′amount′/> to <value expr=′charity′/>
</audio>

10

<goto nextitem=′confirm.1′/> <!−− to Confirm.1 2−−>

<else/> <!−− else after SubString =′′USD′′
−−>

<throw event=′donation.6′/> <!−− Donate 6 (again)−−>

</if> <!−− end check SubString =′′USD′′
−−>

</filled> <!−− end filled−−>

</field> <!−− end field−−>

As noted earlier, figure 1 node 6 must be translated in an eventhandler because
there are two paths to it. It provides audio help to the user. The CRESSRetry undefines
theamountfield (if necessary, forcing re-entry to the field) and re-prompts the user.
<catch event=′donation.6′> <!−− Donate 6−−>

<audio>Choose an amount in US dollars</audio> <!−− Donate 6 audio−−>

<assignname=′amount′ expr=′undefined′/> <!−− Donate 7 undefine′amount′ −−>

<reprompt/> <!−− Donate 7 to form top−−>

</catch> <!−− end catch−−>

4 Interactive Voice Services in LOTOS

In comparison to the translation of CRESSdiagrams into VoiceXML, the translation
into LOTOS is extremely tricky. In addition, a very substantial specification framework
is required. This is fixed and predefined, being completed with types and behaviour
specific to the diagrams being translated. The complexity ofthe translation should be
no surprise since much of a VoiceXML interpreter has to be represented in LOTOS.

4.1 Inputs, Outputs and Actions

Normally each node is translated directly into LOTOS behaviour. However if there is
more than one path to a node, this node and the following ones are translated as a
LOTOS process. The branches to the node then become calls of this process. Since
an event handler may be entered repeatedly, a node followingan event guard is also
translated as a process.

The CRESSparser optimises diagrams before they are passed to a code generator.
For exampleNoEventnodes are removed where possible, andElsebranches are moved
to the end of the guard list. However it is not possible to remove aNoEvent node in
some circumstances (e.g. in a loop or between guards, see figure 1 before nodes 4 and
6). A NoEventmay thus not need translation or may be translated as a process.

Inputs and outputs are reasonably straightforward to translate. It is necessary to
distinguish them because inputs may accept new values, while outputs must use only
defined values. In fact the CRESStranslator performs a data-flow analysis to determine
this. If an input variable is known at a certain point, it is preceded by ‘!’ in the LOTOS

translation; if an input variable is unknown, it is precededby ‘?’.
CRESSnodes may also be VoiceXML actions that do not simply input oroutput and

so are classed separately. Actions are domain-specific, so their translation into LOTOS

also depends on the domain. For most actions, the translation is not too complex. The
main exceptions are fields (Menu, Option, Request) and events (Throw).

Each field is translated to a LOTOS process. If a VoiceXML field has already been
filled in (its field variable is defined), behaviour continueswith the next field. CRESS

11

must therefore statically build a map of which field follows which. Since VoiceXML is
linear but CRESSdiagrams are two-dimensional, it may not be clear what the next field
is. By convention, fields are ordered by node number within each diagram. A field is
entered if its field variable is undefined and its condition issatisfied. The prompt count
is incremented at this point.

Input recognition is performed by a predefinedRecogniserprocess that deals with
all the standard VoiceXML grammars. This is much simpler than speech recognition,
but is still complex (in a language like LOTOS). The LOTOS recogniser does not have
to handle the variations that occur in speech. For example a currency amount might be
spoken as ‘one hundred and ten dollars’ or ‘a hundred ten bucks’. The LOTOS recog-
niser also accepts the DTMF equivalent of ‘speech’ input. The recogniser deals with
events likeCancel, Exit , Help andNoInput . Once recognition is complete, the recog-
niser synchronises with the application on the resulting event. ForFilled, the input value
is also supplied. The field process then throws the event it received, causing behaviour
to continue with the corresponding event handler. Althoughthis might seem a complex
solution, it is exactly what VoiceXML does. It is also essential because the same event
may be handled differently according to the current prompt count and condition. For
example,NoInput may be handled at field level (figure 1 nodes 6 and 8) or at form
level (figure 2 node 6).

4.2 Expressions and Expression Guards

Interactive voice services expect to use speech synthesis and speech recognition. It is
not, of course, meaningful to use speech with LOTOS. Instead, speech is simulated using
text messages. Synthesis is little more than string processing, but recognition requires
substantial machinery for parsing text input according to the standard grammars. The
LOTOSspecification framework includes about 900 lines of intricate data types. These
are complex partly because LOTOSlacks built-in support for types like characters, num-
bers and strings. However, the recogniser also requires VoiceXML-specific data types.

ECMASCRIPT numerical, string and logical operators are supported by equivalent
LOTOS operators. The dynamic types of VoiceXML create a problem for translation
since LOTOS is strongly typed. All variables and values are therefore translated to a
singleValuetype in LOTOS that is interpreted according to the specific value. Assign-
ment is made using a LOTOSLet statement. As well as the declared diagram variables,
there are two implicit ones:vxoptions(the current<option> values) andvxprompt(the
current prompt counter). All these variables are parameters of the generated processes.

Expression guards are straightforward to translate. The only complication is that a
VoiceXML Valuemust be translated to a LOTOSBool. The convenience syntaxElse in
CRESSis handled by accumulating all other expression guards and negating them. It is
possible to give only specific guard expressions withoutElse. In this case, a translator
option can be set to deal with guards that leave gaps (e.g. ‘n > 0’ and ‘n < 0’).

4.3 Events and Event Guards

Event handling is very complex to translate. As explained insection 3.1, events may be
handled at multiple levels, using multi-part event names, subject to a prompt count and

12

a boolean condition. In addition, a VoiceXML platform provides default handlers for
all standard events. In the generated LOTOS, platform handlers are defined for these in
processesEvent 1, etc.

The generated LOTOS also defines processEvent 0 as the main event dispatcher,
called whenever an event is thrown. The CRESS translator statically builds a table of
contexts and events. A context value is either 0 (i.e. application/form level) or> 0
(meaning a field number). All the events that may occur in a context are extracted from
the CRESSdescription. It would be simplest if the destination of a thrown event name
could be determined statically. Unfortunately this is not possible because the thrown
event can be computed dynamically as an expression (e.g.′′login.failure.′′ + cause).
The CRESStranslator generates event dispatcher code that respects the priority of Voice-
XML event handling: longer event prefixes and higher prompt counts take precedence.

To give an idea of how this is done, here is an extract from the event dispatcher
for field 2 (figure 1 node 3). For brevity, process gates and parameters are omitted
below.Donateis the main application (figure 1),Intro 1 is the first instantiation of the
introduction feature (figure 2). Node numbers are appended to these labels, withNone
and a count for aNoInput node.
[field Eq 2] > (* field Donate 3? *)

(
[Match(event,Cancel)]> Event 1 (* Cancel? *)

[Match(event,Error)]> Intro 1 4 (* Error? *)

[Match(event,Filled)]> Donate None 0 (* Filled? *)

[Match(event,Help)]> Donate 6 (* Help? *)

[Match(event,NoInput) And (vxprompt Ge 3)]> Intro 1 6 (* NoInput 3? *)

[Not(Match(event,NoInput) And (vxprompt Ge 3))]> (* Else *)
(

[Match(event,NoInput)]> Donate 6 (* NoInput? *)

[Match(event,NoMatch) And (vxprompt Ge 3)]> Intro 1 6 (* NoMatch 3? *)

[Not(Match(event,NoMatch) And (vxprompt Ge 3))]> (* Else *)
(

[Match(event,NoMatch)]> Intro 1 7 (* NoMatch? *)

[Match(event,Xit)]> Intro 1 5 (* Exit? *)
)

)
)

4.4 CRESSTranslation to L OTOS

To give an idea of how CRESStranslates interactive voice services into LOTOS, the code
below was generated for the VoiceXML example in section 3.3.

13

The following is an extract from the body of processDonate 3 (figure 1 node 3).
Behaviour continues to the next field (Confirmnode 2) if the field variable (amount)
is undefined. Otherwise the options list is emptied (node 3 defines aRequestnot an
Option), and the prompt count is incremented. The prompt and grammar are sent to
the recogniser. Its response synchronises with the VoiceXML application, causing an
event to be handled by the event dispatcher (Event 0). The prompt count is then reset.
For readability, string values are shown below in conventional form, though LOTOS

requires an awkward syntax using ‘+’ for character concatenation.

[(amount Ne Undefined)Of Bool] > (* ignore field? *)
Confirm 1 2 (* to Confirm.1 2 *)

[(amount Eq Undefined)Of Bool] > (* enter field? *)
(

Let vxoptions:Text =<>, vxprompt:Nat = vxprompt + 1In (* update locals *)
Recogniser !request !′′How many dollars?′′ !CurrencyOf Grammar;(* request field *)
(

Recogniser !Filled ?amount:Value; (* filled event *)
(

Let vxprompt:Nat = 0In (* reset prompt count *)
Event 0 (* dispatch event *)

)

Recogniser ?event:Event; (* other event *)
Event 0 (* dispatch event *)

)
)

The following is an extract from the body of processDonate6 (figure 1 node 6).
The field variable (amount) is undefined, and field processing restarts from the top of
the form (processDonate 2).

User !Audio !′′Choose an amount in dollars′′; (* Donate 6 *)
(

Let amount:Value = UndefinedIn (* update local *)
Donate 2 (* Donate retry 7 *)

)

Once a translation to LOTOShas been obtained, the interesting work can begin. The
author has used both TOPO and CADP with the resulting LOTOS. The specification can
be simulated, though this is not very useful since CRESSmight as well be translated to
VoiceXML and executed as normal. Where the LOTOStranslation comes into its own is
the formal analysis. Below are examples of what LOTOScan be used for, but VoiceXML
cannot. Although there is insufficient space here to say more, the referenced papers can
be consulted for additional detail.

– The specification can be formally analysed to detect deadlocks, livelocks, unreach-
able states and unspecified receptions. For example, it is easy to write VoiceXML
scripts that loop indefinitely. Figure 1 suffers from this; the reader is challenged to
detect the problem! Without extensive and time-consuming testing, this can be hard
to find with VoiceXML.

14

– Tests can be automatically generated from the specification. For example, the au-
thor has developed PCL (Parameter Constraint Language [12]) to allow practical
tests to be created from data-intensive specifications (such as interactive voice ser-
vices). If the specification has finite behaviour, exhaustive tests can be generated
that traverse all paths. If the specification has infinite behaviour, tests must be gen-
erated as Chinese Postman tours of the specification’s suspension automaton [6].
The tests form a useful (regression) test suite for live testing of an IVR service. In
this context, the tests can act as scripts for human users or can be fed into a speech
synthesiser acting as an automated caller.

– Desirable properties of the service can be formulated in ACTL or XTL, e.g. as done
in [5]. For example these might include ‘a bank account must not be debited without
the correct PIN’ (safety), ‘a call must end with a goodbye message’ (liveness), or
‘the same prompt must not be issued more than three times’ (freedom from loops).
The CADP model checker can verify such properties against the generated LOTOS.

– Feature interactions can be checked [11]. For example, a feature that introduces
extra choices in a menu can interfere with current use of DTMFdigits to select
from the menu. A feature may introduce an event handler that overrides the form
event handler, resulting in different behaviour. An interaction can also arise if two
features change a variable in inconsistent ways.

5 Conclusion

It has been shown that CRESScan represent interactive voice services. It has been seen
how CRESS descriptions can be translated into VoiceXML and into LOTOS. CRESS

combines the benefits of an accessible graphical notation, automated implementation
of a VoiceXML application, and formal analysis of problems in a service description.
CRESSis thus valuable as an aid to developing interactive voice services.

The plug-in architecture of CRESShas now been demonstrated in three different
domains: conventional telephony (IN), Internet telephony(SIP), and interactive voice
(VoiceXML). Although these are all examples of voice services, the approach is generic
and should be relevant to non-voice applications such as webservices. For example, it
is hoped in future to apply CRESSto WSDL (Web Services Description Language).

References

1. A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and D.F. Swayne. SCF3/Sculptor
with Chisel: Requirements engineering for communicationsservices. In K. Kimbler and
W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications andSoftware Sys-
tems, pages 45–63. IOS Press, Amsterdam, Netherlands, Sept. 1998.

2. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, J. Sincennes, B. Stepien, and
T. Ware. Feature description and feature interaction analysis with use case maps and LOTOS.
In M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Interactions in Telecommu-
nications and Software Systems, pages 274–289, Amsterdam, Netherlands, May 2000. IOS
Press.

15

3. E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K.Schnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyond.IEEE Communications Magazine, pages
64–69, Mar. 1993.

4. K. Y. Chan and G. von Bochmann. Methods for designing SIP services in SDL with fewer
feature interactions. In D. Amyot and L. Logrippo, editors,Proc. 7th. Feature Interactions
in Telecommunications and Software Systems, pages 59–76, Amsterdam, Netherlands, June
2003. IOS Press.

5. Ji He and K. J. Turner. Specification and verification of synchronous hardware using LOTOS.
In J. Wu, S. T. Chanson, and Q. Gao, editors,Proc. Formal Methods for Protocol Engineering
and Distributed Systems (FORTE XII/PSTV XIX), pages 295–312, London, UK, Oct. 1999.
Kluwer Academic Publishers.

6. J. Tretmans. Conformance testing with labelled transition systems: Implementation relations
and test generation.Computer Networks, 29:25–59, 1996.

7. K. J. Turner. Validating architectural feature descriptions using LOTOS. In K. Kimbler
and W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications andSoftware
Systems, pages 247–261, Amsterdam, Netherlands, Sept. 1998. IOS Press.

8. K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions in Telecommunications andSoftware Systems, pages
241–256, Amsterdam, Netherlands, May 2000. IOS Press.

9. K. J. Turner. Modelling SIP services using CRESS. In D. A. Peled and M. Y. Vardi, editors,
Proc. Formal Techniques for Networked and Distributed Systems (FORTE XV), number 2529
in Lecture Notes in Computer Science, pages 162–177. Springer-Verlag, Berlin, Germany,
Nov. 2002.

10. K. J. Turner. Formalising graphical service descriptions using SDL. In R. Reed, editor,SDL
User Forum 03, Lecture Notes in Computer Science, Berlin, Germany, July 2003. Springer-
Verlag.

11. K. J. Turner. Representing new voice services and their features. In D. Amyot and L. Lo-
grippo, editors,Proc. 7th. Feature Interactions in Telecommunications andSoftware Systems,
pages 123–140, Amsterdam, Netherlands, June 2003. IOS Press.

12. K. J. Turner and Qian Bing. Protocol techniques for testing radiotherapy accelerators. In
D. A. Peled and M. Y. Vardi, editors,Proc. Formal Techniques for Networked and Distributed
Systems (FORTE XV), number 2529 in Lecture Notes in Computer Science, pages 81–96.
Springer-Verlag, Berlin, Germany, Nov. 2002.

13. VoiceXML Forum.Voice eXtensible Markup Language. VoiceXML Version 1.0. VoiceXML
Forum, Mar. 2000.

16

