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Abstract

The ACCENT project (Advanced Component Control Enhancing Network Technologies) developed a practical
and comprehensive policy system for call control/Internet telephony. The policy system has subsequently been
extended for management of sensor networks/wind farms and of home care/telecare.

This report focuses on APPEL (Adaptable and Programmable Policy Environment and Language). It provides
an overview of the language, and presents the language in XML schema form. The core language has been
instantiated for call control, for sensor networks, and for home care. Sample goals and policies of different kinds
are provided to illustrate these applications.

Changes in Version 2
Relative to the version of November 2003, this Technical Report has been substantially revised as follows:

• The policy language schema has been presented first in generic form (section 2). It has been significantly
simplified but also extended as described below. The policy language description has been substantially
revised to match the new version of the language.

• The policy language has then been instantiated for the call control domain (section 3.1). The description of
triggers, conditions and actions is now much more precise. These elements have been significantly revised
as described below.

• The example call control policies have been revised to match the new definition of the language (section 3.2).

Changes in Version 3
Relative to version 2 of APPEL, the policy language has been updated in a large number of ways:

• elements are now listed in logical order

• groups have been created for actions, conditions, policy rules, triggers such that a simple or compound
element can be used (e.g. one action or actions containing combinations)

• by convention (i.e. not in the schema) a string may contain substrings preceded by ‘?’ (meaning a template
value to be made actual at definition time) or all in capitals (meaning a policy variable to be instantiated at
run-time)

• action name:

– extracted as a simple type, i.e. no longer a sub-element of action

– removed connect, forward, handle calls, interrupt, make call, make call to, speak to, transfer

– add media(medium)→ add medium(medium), block call→ reject call(reason),
publish availability(addresses,subject)→ note availability(subject)

– added add party(address), confirm bandwidth, fork to(address), log event(message),
note presence(subject), play clip(URL), reject bandwidth(limit), remove medium(medium),
send message(URL,message)

• actions:

– now an action, actions, or combinations of actions

– added an else operator to mean conditional choice of actions immediately after conditions, or an or if
there are none
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• acts: removed for simplicity

• alwaysnever modality→ relevance

• compop→ operator

– for strings, ‘v1 lt v2’ should mean v1 is a strict substring of v2, etc.

• conditions: now a condition, conditions, or combinations of conditions

• conds: removed for simplicity

• operator:

– earlier and later removed for simplicity and generality (use between, gt, etc. for times)

– in→ between, notin→ not between (use eq, ne)

• param→ parameter

• parameter:

– removed busy, call, caller id, forward target

– callcontent→ call content, calltype→ call type, media→ medium

– added active content, bandwidth, capability set, date, destination address, network type, priority,
signalling address, source address, traffic load

• policy:

– appliesTo→ applies to

– added profile, valid from, valid to attributes

– lastchanged→ changed, and moved from policydoc to policy

• policydoc→ policy document

• policyrule→ policy rule

• policyrules→o policy rules

– guarded choice→ guarded, now with a nested not following condition

– unguarded choice→ unguarded

• polrules: removed for simplicity

• preference opi modality→ preference

– removed obligation, permission, interdiction, authorisation

– prefer to→ prefer, want not→ do not want, wish not→ do not wish

– used underscores instead of spaces in names

• trigger name:

– extracted as a simple type, i.e. no longer a sub-element of trigger

– removed busy, busy incoming, busy outgoing, call, call incoming, call outgoing

– call attempt→ call, incoming/outgoing prefix→ incoming/ outgoing as suffix

– moved event from condition to trigger

– added absent(address), available(address), bandwidth request, present(address),
unavailable(address)
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• triggers:

– changed infix or to prefix form

– added and combination

• value:

– a time should now have a colon, i.e. HH:MM:SS

– a list can be a single element or comma-separated values, i.e. not a value in brackets

• variable: added as an alternative to i, with attributes applies to, id, owner, value

Changes in Version 4
Relative to version 3 of APPEL, the following changes have been made:

• actions:

– added add caller(method), with parameter conference, hold, monitor, release or wait

– added remove party(address)

– callee removed as parameter established by event

• relevance: removed

• variable: prefix for variable values changed to ‘:’

Changes in Version 5
Relative to version 4 of APPEL, the following changes have been made:

• xsd:token used in place of xsd:string where it might be convenient to split element contents across lines

• action:

– add caller(method) added

– forward to(Address) action described

– renamed log call as log event, which now takes a message rather than URL as parameter

– reject call(reason) parameter extended in meaning

• operator:

– between and not between renamed in and out

• parameter:

– day added

– priority now defined as a positive real

– use of operators with parameters made explicit

• policy:

– certain characters forbidden in policy identifiers

• preference:

– do not want, do not wish, want, wish removed
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• resolution:

– resolution policies added

– resolution associated triggers, conditions and actions defined

– resolution policy examples added

• trigger:

– connect, disconnect, no answer (and their variants) now permit a send message action

• variable:

– certain characters forbidden in variable identifiers

– variables no longer substituted inside applies to

– multiple variables may be substituted in a string by beginning and ending each variable with ‘:’

– the changed attribute has been added

Changes in Version 6
Relative to the version of June 2005, this Technical Report has incorporated only small editorial revisions have
been made.

Changes in Version 7
Relative to version 6 of APPEL, the policy language has been extended as follows to support timing, state, and the
new application domains of sensor networks and home care.

• Chapter 1 now contains a combined introduction to the original ACCENT context and to APPEL.

• Section 2.1 explains how the APPEL schemas have been refactored into three levels to make them more
modular. Most of chapter 2 describes the core level. Sections 2.13 and 2.14 describe how the core language
is extended by regular policies and resolution policies respectively.

• Section 2.3 now clarifies that policies may refer to entities as well as people.

• Section 2.6 now uses a trigger argument type for trigger arguments. A trigger name is now the union of
core, policy and domain definitions. The following changes have also been made:

– A trigger may now have attributes arg1..5; this is to accommodate sensor network policies, where up
to five arguments may be given. The use of this is illustrated in section 4.4.1.

– The trigger timer expiry(identifier) has been added. The use of this is illustrated in section 3.2.9.

• Section 2.7 now defines a parameter name as the union of core, policy and domain definitions. The fol-
lowing changes have also been made:

– A condition now takes two operands (a parameter or a value), so that all parameter and value combi-
nations can be compared.

– Epoch parameters have been removed from call control and defined as core parameters: date, day and
time.

– Days of the week are now numbered from 1 (Monday) to 7 (Sunday) so that time conditions on
weekdays and weekends can be more readily defined.

• Section 2.8 now defines an action name as the union of core, policy and domain definitions. The following
changes have also been made:

– An action may now have attributes arg1..5; this is to accommodate sensor network policies, where up
to five arguments may be given. The use of this is illustrated in section 4.2.3.
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– Internal actions have been removed from call control and defined as core actions: log event(message)
and send message(URL,message).

– Actions on variables set variable(identifier,expression) and unset variable(identifier) have been added.
The use of these is illustrated in section 3.2.8.

– Actions on timers start timer(identifier,period), restart timer(identifier) and stop timer(identifier)
have been added. The use of these is illustrated in sections 3.2.9 and 3.4.7.

• Section 2.9 now clarifies where variables may be used.

• Section 2.10 now allows expressions with various operators and functions. The use of these is illustrated in
sections 3.2.8, 3.4.8 and 4.4.2. White space in variable names is now disallowed.

• Section 2.11 adds the ability to have policy timers, and to have policies triggered by time conditions. The
use of these is illustrated in sections 3.2.9 and 3.2.10.

• Section 2.12 adds the ability to store past triggers and actions automatically, and to check this history in
policy conditions. The use of this is illustrated in section 3.2.11.

• Section 2.14 now binds preference0..9 and variable0..9 in resolution policies. This is to accommodate
sensor network policies, where a resolution may have two triggers with up to five arguments each. The use
of this is illustrated in, for example, section 3.4.

• The report has been restructured so that each application domain is now described in one chapter, currently
chapter 3 for call control, chapter 4 for sensor networks, and chapter 5 for home care networks.

Changes in Version 8
Relative to the version of December 2007, this Technical Report has been revised as follows:

• All XML has now been reformatted.

• Times are now given as HH:MM:SS throughout.

• Chapter 1 has been renamed ‘Introduction’. Chapter 6 has been added to give some brief conclusions.

• Section 2.3 introduces new effect and supports goal attributes that support goal refinement.

• Section 2.7 now disallows the use of in/out when comparing a value and a parameter. In the case of a value
preference0..9 or variable0..9, a ‘:’ prefix is now suggested (and has been used throughout).

• Section 2.10 now allows use of the ‘%’ operator on numbers. The division operator ‘/’ has now been defined
explicitly for integer and floating point operands. The interpretation of a string as a floating point number
has been specified. It is explicitly stated that a quoted string will never be interpreted as a number.

• Section 2.14.3 now refers to actions in general rather than to just call actions.

• Section 2.15 introduces prototype policies. Corresponding examples have been introduced for call control
(section 3.5), sensor networks (section 4.5) and home care (section 5.5).

• Section 2.16 introduces goals. Corresponding examples have been introduced for call control (section 3.6),
sensor networks (section 4.6) and home care (section 5.6).

• Section 3.1.2 now contains a common definition of trigger, condition and action parameters.

• Section 3.1.5 introduces a new disconnect action to clear the current call.

• Section 3.4.6 now contains the correct XML for the caller-medium conflict example.

• Sections 4.1.2 and 5.1.2 now define more specific values for triggers and actions in the home care and sensor
network domains.

• The sensor network examples in section 4.2 and 4.4 have been updated.

• The home care examples in section 5.2 and 5.4 have been updated.
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Chapter 1

Introduction

1.1 ACCENT Overview
The ACCENT project (Advanced Component Control Enhancing Network Technologies, http://www.cs.stir.ac.uk/
accent) developed a practical and comprehensive policy system for call control/Internet telephony. The policy
system has subsequently been extended for management of sensor networks/wind farms on the PROSEN project
(Proactive Control of Sensor Networks, http://www.prosen.org.uk). The policy system has also been extended for
management of home care/telecare on the MATCH project (Mobilising Advanced Technologies for Care at Home,
http://www.match-project.org.uk).

Other policy description languages exist, and were investigated during the work on APPEL1 (Adaptable and
Programmable Policy Environment and Language, the ‘A’ originally referring to the ACCENT project). An exam-
ple of a well-supported and popular policy language for access control and system configuration is Ponder [5], but
there are many other approaches (e.g. [1, 6]). However, these other languages have not been found to be suitable
for the kinds of domains considered here [7].

This document focuses on the APPEL policy language, and elaborates what is in [7]. The following sections
provide an overview of the language, discuss concepts for various kinds of policies, and discuss syntax and seman-
tics by reference to the XML schemas. In subsequent chapters, the use of APPEL in various application domains
is described and illustrated.

[7, 8, 11] give some general background to the ACCENT project. There are technical reports describing the
ACCENT Policy Server [9] and the APPEL Policy Wizard [10]. Ontologies for the policy wizard are discussed in
[2, 3, 4].

1.2 APPEL Overview
The APPEL policy language is defined by an XML grammar that appears in chapter 2. XML has been chosen due
to its good support with respect to tools and parsers. Also, it is the common standard for interchange of structured
data in distributed systems.

When APPEL was designed, it was hoped that a good language design could rule out many of the possible pol-
icy conflicts. However, it is likely that no policy language can be designed to avoid conflicts while still remaining
sufficiently expressive. Features (in the sense of call control) are different in a number of ways from policies, e.g.
policies are more abstract, higher level, declarative and user-oriented. Policies should also be written by lay end
users and not domain experts (as one might be expected with traditional features).

Another major aspect considered when designing the language was that it should be usable and useful to a
number of users, ranging from lay end users to system administrators to domain experts. The language is as
expressive as deemed necessary to fulfil the requirements of the most knowledgeable users (with respect to the
application domain), while the complexity is hidden behind suitable interfaces for the less knowledgeable users.
User-friendly wizards have been designed for formulating policies [10]. These allow lay users to specify policies
by choosing predefined templates and customising them. A subset of natural language is used rather than XML.
However, more knowledgeable users can work with XML directly.

1The name derives from the French ‘appel’ meaning a call.

1

http://www.cs.stir.ac.uk/accent
http://www.cs.stir.ac.uk/accent
http://www.prosen.org.uk
http://www.match-project.org.uk


Although APPEL was originally aimed at call control, it was designed to be extensible. Indeed, it has now
been used for policy-based management of sensor networks and of home care. The policy language splits the
issues in a relatively clean way. The core of the language is domain-independent, i.e. the structure of policies and
policy rules as well as their combinations. The body of a policy rule defines triggers, conditions and actions. The
general concepts here are domain-independent, though the specific names used in these elements are defined for
each domain.
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Chapter 2

Core Language

2.1 Language Introduction
The syntax of ACCENT is defined by an XML schema. The semantics is given by the implementation of the
PolicyEvaluate class (see [9]).

A policy grammar is defined using standard XML Schema notation. XML schemas have the same purpose
as XML DTDs, namely specifying what is syntactically legal for a document adhering to the schema. They can
be used for validation purposes. XML schemas allow for richer data types than XML DTDs. The XML schema
notation uses nesting to embed elements in each other. The keyword ref following an element tag shows that
the specific element is defined at another place (in this case, to locations within the same schema). xsd:sequence
indicates that all embedded elements must occur (in the specified order) and xsd:choice indicates that one of the
listed elements has to be chosen. However, these restrictions can be modified by use=required and by allowing
elements to have a cardinality specified by minOccurs and maxOccurs. In the graphical representations (from
XMLSpy), sequences are denoted by a line with several dots,and choice by what looks like a switch.

Schemas for APPEL are defined in a modular fashion at three levels as illustrated in figure 2.1:

Core: The core level defines the framework that applies to all domains. This includes universal triggers, condition
parameters and actions.

Policy: The policy level extends the core level in two directions: for regular policies and for resolution policies.
This mainly adds further triggers, condition parameters and actions, while remaining domain-independent.

Domain: The domain level extends the policy level for specific application domains. This adds further triggers,
condition parameters and actions for particular domains. Examples of application domains are call control,
sensor networks and home care.

Extensions for
Call Control

(appel_regular_call)

Extensions for
Regular Policies
(appel_regular)

Extensions for
Call Control

(appel_resolution_call)

Extensions for
Resolution Policies
(appel_resolution)

Policy Core
(appel)

Extensions for
XXX

(appel_regular_xxx)

Extensions for
XXX

(appel_resolution_xxx)

Figure 2.1: Schema Levels
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Figure 2.2: Policy Document

The schemas shown in figure 2.1 are available from www.cs.stir.ac.uk/schemas.
This chapter describes the structure of the core and policy schemas. Chapters 3, 4 and 5 respectively describe

the application of the policy language for call control/Internet telephony, sensor network/wind farm management,
and home care/telecare management.

2.2 Policy Document
A policy document (see figure 2.2) is the highest level at which one or more goals, regular policies, prototype
policies, resolution policies and policy variables may be defined.

<xsd:element name=′′policy document′′>
<xsd:complexType>

<xsd:choice maxOccurs=′′unbounded′′>
<xsd:element ref=′′goal′′/>
<xsd:element ref=′′policy′′/>
<xsd:element ref=′′prototype′′/>
<xsd:element ref=′′resolution′′/>
<xsd:element ref=′′variable′′/>

</xsd:choice>
</xsd:complexType>

</xsd:element>

2.3 Policy
A policy is the main object of interest in the policy description language. A policy has a number of attributes:
owner gives the address of the person or entity that the policy belongs to, while applies to gives the address of the
person, entity or group that the policy applies to. The term ‘entity’ is used here to refer to any system component
such as a device or an application.

Normally the owner and applies to attributes are the same. However in an enterprise, this might not be so: a
policy might have been created (and be owned) by a system administrator, but apply to one or more people in the
enterprise.

In general, applies to refers to a domain. It can be one person or entity, one domain, or a list of users, entities
and domains. It can also refer to a domain symbolically by citing its variable name (see section 2.9). The following
examples illustrate the idea:

4
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ken@cs.stir.ac.uk: means ‘ken’ as a particular user

@cs.stir.ac.uk: means anyone in the Stirling Computing Science department

@stir.ac.uk: means anyone in Stirling University

ken@cs.stir.ac.uk,lynne@comp.lancs.ac.uk,@accent.org.uk: means users ‘ken’ or ‘lynne’ or anyone in the
accent.org.uk domain

@: means everyone (though the current version of the policy server stops at the top-level domain: @domain)

Each policy has an id to identify it uniquely for each owner. An identifier must not contain the characters ‘?’,
‘/’, ‘[’ or ‘]’. A policy identifier may contain embedded spaces, and may also contain non-Latin characters (i.e.
from the Unicode character set). The changed attribute indicates when a policy was last altered. (A date/time
in XML format has the form of a date YYYY-MM-DD, the letter ‘T’ (for time), and then a time HH:MM:SS.)
Selection of a policy is subject to the following rules:

• Each policy can be enabled or not, determining whether the system should consider the policy.

• Policies can be optionally associated with a profile. This is simply an identifier that groups policies, e.g.
those for ‘at the office’ or those for ‘at home’. A policy with an empty profile is always applicable, while
one with a non-empty profile must match the user’s current profile.

• The validity of a policy can be specified by a starting date and time (valid from) and a finishing date and
time (valid to). Either or both of the start and finish values may be given; the values are inclusive.

The effect attribute is optionally used to define the abstract effects of a policy. This is mainly for use with pro-
totype policies, and is described in section 2.15. However because regular policies can be derived from prototype
policies, the attribute is also permitted for regular policies.

The supports goal attribute is optionally used to state the goals to which a policy contributes. Again, this is a
result of goal refinement and is used to distinguish ordinary policies from those created by instantiating prototype
policies. This attribute is a comma-separated list of goal identifiers (white space being irrelevant).

Regular policies have the following structure:
<xsd:element name=′′policy′′>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=′′preference′′ minOccurs=′′0′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′effect′′ type=′′xsd:string′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′profile′′ type=′′xsd:string′′/>
<xsd:attribute name=′′supports goal′′ type=′′xsd:string′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

Resolution policies differ from regular policies in having no effect attribute (used for prototype policies), no
preference attribute (no recursive resolution), no profile attribute (not relevant), and no supports goal attribute
(used only for derived policies):

<xsd:element name=′′resolution′′>
<xsd:complexType>

<xsd:sequence>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
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<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

Prototype policies differ from regular policies in having a mandatory effect attribute (used to derive policies),
and in having no supports goal attribute (used only for derived policies):

<xsd:element name=′′prototype′′>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=′′preference′′ minOccurs=′′0′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′effect′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′profile′′ type=′′xsd:string′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

2.4 Policy Modality
A policy may contain a modality in the form of a preference. This modality is principally for use by the conflict
resolution engine. The optional preference of a policy states how strongly the policy definer feels about it. Omit-
ting the preference means that the policy definer is neutral about this. From strongly positive to strongly negative,
the ordering is must, should, prefer, empty, prefer not, should not, must not.

<xsd:element name=′′preference′′>
<xsd:simpleType>

<xsd:restriction base=′′xsd:string′′>
<xsd:enumeration value=′′must′′/>
<xsd:enumeration value=′′must not′′/>
<xsd:enumeration value=′′prefer′′/>
<xsd:enumeration value=′′prefer not′′/>
<xsd:enumeration value=′′should′′/>
<xsd:enumeration value=′′should not′′/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

2.5 Policy Rules
A policy rule group (see figure 2.2) is either a single policy rule or a composite of subsidiary policy rules.

<xsd:group name=′′policy rule group′′>
<xsd:choice>

<xsd:element ref=′′policy rule′′/>
<xsd:element ref=′′policy rules′′/>

</xsd:choice>
</xsd:group>
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Figure 2.3: Policy Rules

A composite list of policy rules (see figure 2.3) is normally used when an operator governs these rules. How-
ever groups with just one rule may be nested within each other if desired.

Pairs of policy rules may be combined by guarded choice, unguarded choice, parallel application or sequence.
More complex constructions can be obtained by nesting policy rules.

<xsd:element name=′′policy rules′′>
<xsd:complexType>

<xsd:choice>
<xsd:group ref=′′policy rule group′′/>
<xsd:sequence>

<xsd:choice>
<xsd:element name=′′guarded′′/>
<xsd:element name=′′parallel′′/>
<xsd:element name=′′sequential′′/>
<xsd:element name=′′unguarded′′/>
</xsd:choice>
<xsd:group ref=′′policy rule group′′/>
<xsd:group ref=′′policy rule group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

Policy rules can optionally be combined in pairs with a number of operators:

guarded: When two policy rules are joined by the guarded choice operator, the execution engine will first evaluate
the nested condition. If the guard evaluates to ‘true’, the first of the two rules will be applied, otherwise
the second. Clearly once the guard has been evaluated it is necessary to decide whether the individual rule
is applicable and whether there is no conflict that prohibits enforcement. Once a guarded choice has been
made, it is not undone even if the resulting rule is not followed.

<xsd:element name=′′guarded′′>
<xsd:complexType>

<xsd:sequence>
<xsd:group ref=′′condition group′′/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

unguarded: Unguarded choice provides more flexibility, as both parts will be tested for applicability. If only
one of the two policy rules is applicable, this will be chosen. If both are applicable, the system can choose
one at random; the current policy server implementation will select the first rule. The conflict resolution
mechanism might still inhibit one or both branches, reducing the system’s choice.

7



Figure 2.4: Policy Rule

sequential: With sequentially composed policy rules, the rules are enforced in the specified order. That is we
traverse the structure, determining whether the first rule is applicable. If so we apply the first rule, otherwise
we check the second rule. Note that the second rule will only be checked if the first rule is not applicable.

parallel: Parallel composition of two rules allows for a user to express an indifference with respect to the order of
two rules. Both rules are enforced, but the order in which this is done is not important. An example would
be a rule that leads to the attempt to add a video channel and the logging of the fact that this is attempted:
we would allow the system to resolve the order of the two actions.

A policy rule (see figure 2.4) defines a trigger and a condition that need to hold in order to lead to an action
being applied. Triggers are external events such as a call arriving or someone becoming available. Conditions
depend on information derived from the triggering event, such as the caller or the subject of an event. A policy
rule may omit a trigger, i.e. act as a goal. A policy may also omit a condition, i.e. not depend on information
established by a trigger. However, an action always needs to be specified.

<xsd:element name=′′policy rule′′>
<xsd:complexType>

<xsd:sequence>
<xsd:group ref=′′trigger group′′ minOccurs=′′0′′/>
<xsd:group ref=′′condition group′′ minOccurs=′′0′′/>
<xsd:group ref=′′action group′′/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

2.6 Triggers
A trigger group (see figure 2.4) is either a single trigger or a composite of subsidiary triggers.

<xsd:group name=′′trigger group′′>
<xsd:choice>

<xsd:element ref=′′trigger′′/>
<xsd:element ref=′′triggers′′/>

</xsd:choice>
</xsd:group>

A composite list of triggers (see figure 2.5) is normally used when an operator governs these triggers. However
groups with just one trigger may be nested within each other if desired.

One or more triggers might enable a policy. The and and or combinations require both or either of the triggers
to be active. If the combination of actual trigger events permits the policy rule, then its condition is considered.
Goals (which have no triggers) are always implicitly activated. A conflict resolution engine might decide that a
policy, despite having been triggered and satisfying the conditions, might not be applicable as it causes conflicts
with more desirable policies.
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Figure 2.5: Triggers

<xsd:element name=′′triggers′′>
<xsd:complexType>

<xsd:choice>
<xsd:group ref=′′trigger group′′/>
<xsd:sequence>

<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′or′′/>

</xsd:choice>
<xsd:group ref=′′trigger group′′/>
<xsd:group ref=′′trigger group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

A trigger has a name and optional arguments. The policy language does not statically enforce a match between
a trigger and its arguments. Conventionally, a trigger is named trigger(arg1), trigger(arg1,arg2) and the like. To
be correct, the corresponding arguments must be given.

<xsd:element name=′′trigger′′>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base=′′trigger name′′>

<xsd:attribute name=′′arg1′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg2′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg3′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg4′′ type=′′trigger argument′′/>
<xsd:attribute name=′′arg5′′ type=′′trigger argument′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

At core level, trigger arguments are unrestricted strings:

<xsd:simpleType name=′′trigger argument′′>
<xsd:restriction base=′′xsd:string′′/>

</xsd:simpleType>

Trigger names are defined for the three levels in figure 2.1. At core level, these are unrestricted tokens; the
policy and domain levels redefine these trigger names as required. Triggers that are generated by the policy system
itself are considered to be internal.

<xsd:simpleType name=′′trigger name′′>
<xsd:union memberTypes=′′trigger core trigger domain trigger policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′trigger core′′>

9



Figure 2.6: Conditions

<xsd:restriction base=′′xsd:token′′/>
</xsd:simpleType>

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

2.7 Conditions
A condition group (see figure 2.4) is either a single condition or a composite of subsidiary conditions.

<xsd:group name=′′condition group′′>
<xsd:choice>

<xsd:element ref=′′condition′′/>
<xsd:element ref=′′conditions′′/>

</xsd:choice>
</xsd:group>

A composite list of conditions (see figure 2.6) is normally used when an operator governs these conditions.
However groups with just one condition may be nested within each other if desired.

Conditions may be combined with the usual boolean and, or and not operators.
<xsd:element name=′′conditions′′>

<xsd:complexType>
<xsd:choice>

<xsd:group ref=′′condition group′′/>
<xsd:sequence>

<xsd:element name=′′not′′/>
<xsd:group ref=′′condition group′′/>

</xsd:sequence>
<xsd:sequence>

<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′or′′/>

</xsd:choice>
<xsd:group ref=′′condition group′′/>
<xsd:group ref=′′condition group′′/>

</xsd:sequence>
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</xsd:choice>
</xsd:complexType>

</xsd:element>
A condition has a first operand, an operator (that performs the check), and a second operand. An operand is

either a parameter (a named value established by a trigger) or a value (a literal or an expression). It is possible to
add further parameters by adding new environment classes to the policy server [9].

All four combinations of parameter and value are permitted syntactically, but special considerations apply:

parameter-parameter: This combination is meaningful only for resolution policies. A parameter must be one
of preference0 to preference9 or variable0 to variable9.

parameter-value, value-parameter: The name of the parameter determines the nature of the condition that is
checked. For example, a day parameter is checked as day number against an integer value.

value-value: In this case, there is no parameter to determine the nature of the condition. If a value is enclosed in
single quotes it is treated as a string, otherwise as an expression (see section 2.10). The result of evaluating
an expression is treated as a number or as a string depending on whether it has the format of a floating-point
number.

The names preference0..9 and variable0..9 are treated specially in that the ’:’ prefix that would normally
indicate a variable is implied can therefore omitted. In the context of a value, it may be preferable to use the ’:’
prefix to make it clear that a variable is being used.

<xsd:element name=′′condition′′>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=′′operand′′/>
<xsd:element ref=′′operator′′/>
<xsd:element ref=′′operand′′/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name=′′operand′′>
<xsd:complexType>

<xsd:choice>
<xsd:element ref=′′parameter′′/>
<xsd:element ref=′′value′′/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
Parameter names are defined for the three levels in figure 2.1. At core level, these are unrestricted tokens

though certain history functions may be used (see section 2.12). The policy and domain levels redefine these
parameter names as required.

<xsd:element name=′′parameter′′ type=′′parameter name′′/>

<xsd:simpleType name=′′parameter name′′>
<xsd:union memberTypes=′′parameter core parameter domain parameter policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter core′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>
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The operators that compare parameter values are fixed in the language. The meaning of the operators differs
depending on the arguments they are applied to. The policy server has a flexible approach that allows parameter
classes to be defined as part of the environment package (see [9]). For example, the standard operators have
different meanings for address (e.g. caller) and epoch (e.g. date) values.

Operators are fixed in the language, though their interpretation varies according to context:

• The eq, ge, gt, le, lt, ne operators are equivalent to =, ≥, >, ≤, <, 6=. (In)equality has the obvious meaning.
A comparison between a pair of values in numeric formats is numeric. If one or both values are not numeric,
a string comparison (i.e. character ordering) is used. Thus 13 gt 1 is true (numeric comparison) but 13 gt ′1′

is false (string comparison).

• The in and out operators are provided to check for inclusion or exclusion. For string values and certain
parameters, in/out has the meaning of ‘a substring of’/‘not a substring of’. For other parameters, in/out
has the meaning of ‘among the values in a list’/‘not among the values in a list’. These operators are not
supported when the comparison is between a value and a parameter.

<xsd:element name=′′operator′′>
<xsd:simpleType>

<xsd:restriction base=′′xsd:token′′>
<xsd:enumeration value=′′eq′′/>
<xsd:enumeration value=′′ge′′/>
<xsd:enumeration value=′′gt′′/>
<xsd:enumeration value=′′in′′/>
<xsd:enumeration value=′′le′′/>
<xsd:enumeration value=′′lt′′/>
<xsd:enumeration value=′′ne′′/>
<xsd:enumeration value=′′out′′/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

A value is just a (possibly empty) string:

<xsd:element name=′′value′′ type=′′xsd:token′′/>

A list of values may be given, separated by commas without following spaces (e.g. ‘09:00:00,12:00:00’ for a
pair of times, or ‘bob@acme.com,colin@acme.com,donald@acme.com’ for a list of callers). In the case of date,
day or time, a value may also be a range separated by ‘..’ (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-02-10).
Value names can contain policy variables (see section 2.9).

2.8 Actions
An action group (see figure 2.4) is either a single action or a composite of subsidiary actions.

<xsd:group name=′′action group′′>
<xsd:choice>

<xsd:element ref=′′action′′/>
<xsd:element ref=′′actions′′/>

</xsd:choice>
</xsd:group>

A composite list of actions (see figure 2.7) is normally used when an operator governs these actions. However
groups with just one action may be nested within each other if desired.

<xsd:element name=′′actions′′>
<xsd:complexType>

<xsd:choice>
<xsd:group ref=′′action group′′/>
<xsd:sequence>

<xsd:choice>
<xsd:element name=′′and′′/>
<xsd:element name=′′andthen′′/>
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Figure 2.7: Actions

<xsd:element name=′′else′′/>
<xsd:element name=′′or′′/>
<xsd:element name=′′orelse′′/>

</xsd:choice>
<xsd:group ref=′′action group′′/>
<xsd:group ref=′′action group′′/>

</xsd:sequence>
</xsd:choice>

</xsd:complexType>
</xsd:element>

Operators can be used to define the order in which pairs of actions are applied.

and: This specifies that the policy should lead to the execution of both actions in either order. The current policy
server implementation will execute the actions in the order given. However this is arbitrary, and indeed the
actions could be executed in parallel. The conflict resolution engine can make use of the flexibility provided
by this. However it must rearrange the order prior to execution by the policy server.

andthen: This is a stronger version of and, since the first action must precede the second in any execution. This
means that the conflict resolution engine cannot rearrange the order. This might lead to a conflict resolvable
only by not executing any of the specified actions.

or: This specifies that either one of the actions should be taken. The current policy server implementation will
always execute the first action. Again, the conflict resolution engine could rearrange the order if the first
action is not suitable. As for and, any reordering must occur before execution by the policy server.

orelse: This is the or operator with a prescribed order. It means that a user feels more strongly about the first
action specified. However, or else implies a choice so the conflict resolution engine can decide to reverse
the order.

else: If there is a condition and else is at the top level of actions, this has the effect of a conventional if...else. If
the condition is true then the first action is chosen, otherwise the second action is chosen.

If there is no condition or else does not appear at the top level, else behaves like or. Note that this allows a
single choice at the top level of a policy; multiple else operators cannot be used in a switch-like fashion.

An action has a name and optional arguments. The policy language does not statically enforce a match between
an action and its arguments. Conventionally, an action is named action(arg1), action(arg1,arg2) and the like. To
be correct, the corresponding arguments must be given. Action arguments can refer to policy variables (see
section 2.9).
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<xsd:element name=′′action′′>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base=′′action name′′>

<xsd:attribute name=′′arg1′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg2′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg3′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg4′′ type=′′xsd:string′′/>
<xsd:attribute name=′′arg5′′ type=′′xsd:string′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

Action names are defined for the three levels in figure 2.1. At core level, universal action names are given.
Action names at policy and domain level are unrestricted tokens; these may be redefined as required. Actions that
are executed by the policy system itself are considered to be internal.

<xsd:simpleType name=′′action name′′>
<xsd:union memberTypes=′′action core action domain action policy′′/>

</xsd:simpleType>

<xsd:simpleType name=′′action core′′>
<xsd:restriction base=′′xsd:token′′>

<xsd:enumeration value=′′log event(arg1)′′/>
<xsd:enumeration value=′′restart timer(arg1)′′/>
<xsd:enumeration value=′′send message(arg1,arg2)′′/>
<xsd:enumeration value=′′set variable(arg1,arg2)′′/>
<xsd:enumeration value=′′start timer(arg1,arg2)′′/>
<xsd:enumeration value=′′stop timer(arg1)′′/>
<xsd:enumeration value=′′unset variable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=′′action policy′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′xsd:token′′/>

</xsd:simpleType>

Core actions have parameters as follows:

• an identifier parameter (see section 2.9).

• a URL parameter (one prefixed by ‘file:’, ‘ftp:’, ‘http:’, ‘sip:’, etc.).

Core actions are as follows, all of them internal:

log event(message): This logs the date, time and message. A single line (ended with ‘\n’) is appended to an
event log for the user whose policy invokes this action. Call information may be interpolated into the
message if available, e.g. ‘starting call from :caller: to :callee’. This would result in a log entry such as:

2005-03-07 17:53:52 starting call from grace@cs.stir.ac.uk to ken@cs.stir.ac.uk

typically in a file such as ken@cs.stir.ac.uk.log.

restart timer(identifier): This immediately restarts a timer with the specified identifier for its original period. If
a timer with this identifier is not already active, the action is ignored. See section 2.11 for more details.

send message(URL,message): This sends a message. The first argument is the address of the destination . The
second argument is a message in a form that depends on the means of transmission. The form of the address
dictates how the message is sent (e.g. ‘mailto:bob@acme.com’ or just ‘bob@acme.com’ would send an
email message as a text string; ‘tel:123456@gateway.com’ might speak a message defined by the URL of a
pre-recorded audio file).
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set variable(identifier,expression): This sets a variable with the specified identifier to the specified expression.
An identifier-value binding is created if the variable did not exist previously, or the binding is updated if it
did. See section 2.9 for more details.

start timer(identifier,period): This immediately starts a timer with the specified identifier for the specified pe-
riod (format HH:MM:SS). If a timer with this identifier is already active, the action is ignored. See sec-
tion 2.11 for more details.

stop timer(identifier): This immediately stops a timer with the specified identifier. If a timer with this identifier
is not already active, the action is ignored. See section 2.11 for more details.

unset variable(identifier): This removes a variable with the specified identifier. If the variable did not exist
previously, the action is ignored. See section 2.9 for more details.

2.9 Variables
A policy variable is just a name for a value. By convention, variables may be named in upper case. Policy variables
can be defined by a policy document, can be defined implicitly when an external trigger occurs (see section 2.12),
and can be defined by a policy action (see section 2.8).

The top-level definition of a variable deliberately resembles that of a policy. Each variable has an id to identify
it uniquely for each owner. An identifier must not begin with a digit, must not contain white space, and must
not contain the characters ‘?’, ‘/’, ‘[’, ‘]’, ‘:’ or ‘,’. The identifier ‘*’ is reserved for internal use (to mean all
identifiers). An identifier may contain non-Latin characters (i.e. from the Unicode character set).

The value of a variable is what it stands for. As there is only ever one instance of a variable, assigning a new
value overwrites the previous one. Variables may hold boolean, numeric (integer, floating point) or string values.
Variables are dynamically typed as in scripting languages, i.e. they may hold different kinds of values at different
times.

The owner of a variable is the address of the person or entity that defined the variable. Normally this will
be the same as the applies to attribute, but it could be different if one user (typically an administrator) defines
variables that apply to others (typically ordinary users). As an example, an administrator could define the variable
holidays that lists public holidays for everyone in the current year. The changed attribute is as for policies.

Within certain policy elements, variable names can appear individually, in ranges or in lists. The value of
a variable is substituted when a policy is executed, not when it is defined. Variable names can be used in the
following cases:

• a trigger arg attribute

• a condition parameters

• an action arg attribute

• an expression

• as the first argument of set variable and unset variable.

When used in an expression, the name of a variable is prefixed by ‘:’ to obtain its value. If necessary (particularly
when a variable appears inside a larger string), a variable name may be terminated by ‘:’. Since variables may
appear in a range or list, a variable name is also terminated by ‘.’ and ‘,’.

Apart from policy variables, environment variables defined by the system (e.g. callee, caller, date, day, time,
trigger, user) may also be substituted in arguments. An environment-defined variable is used in preference to a
user-defined variable of the same name.

<xsd:element name=′′variable′′>
<xsd:complexType>

<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>

<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′value′′ type=′′xsd:string′′/>
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</xsd:complexType>
</xsd:element>

2.10 Expressions
Expression may be used in the following cases:

• as a value

• as the second argument of set variable

Variable names inside an expression are replaced by their current values, e.g.:

<trigger arg1=′′:delay:′′>no answer(arg1)</trigger>

<condition>
<parameter>caller</parameter>
<operator>in</operator>
<value>:family,:friends,:relatives</value>

</condition>

<action arg1=′′:boss′′ arg2=′′I was at :place: when :caller: called at :time, :date′′>
send message(arg1,arg2)

</action>

A policy may set a variable to an expression by calling the action set variable(identifier,expression). On first
creation, such a variable is given the owner and applies to values of the policy that executes this action. The
expression may be a literal value, the name of a variable, or a general expression:

• boolean: literals are true and false; operators are and, or, not, eq, ne, lt, le, gt, ge.

• numeric: literals are (signed) numbers (floating point and integer values); operators are ‘+’ (unary, binary),
‘−’ (unary, binary), ‘*’, ‘/’, ‘%’ (modulus). Integer division yields an integer (e.g. ‘3/5’ is 0). Division of
other numbers yields a floating point number (e.g. ‘3.0/5.0’ is 0.6).

• string: literals are characters in single quotes (using ′′ for a single quote inside a string) String functions are:

indexOf(given string,search string) returning -1 for not found or ≥ 0 for found

join(separator,string,...) returning the strings joined by the given separator (possibly empty)

length(string) returning 0 for empty

substr(string,start,count) with 0 as the start position

In addition, a comma-separated string may be treated as an indexed list of sub-strings. If a sub-string needs
to contain a comma, it must be given in square brackets; sub-strings may not be nested. Suppose dates
holds the string ‘2007,Sep,[13,21,30]’. Then :dates[0] is the string ‘2007’, :dates[1] is the string ‘Sep’,
and :dates[2] is the string ‘[13,21,30]’. If the string index is out of range (negative, or beyond the end of
the string), the indexed value is an empty string. Thus if day holds ‘Monday’ then :day[0] is the string
‘Monday’ and :day[1] is the empty string. An indexed string element may be used only as a value, and may
not be assigned to (e.g. set variable(:dates[1],Oct) is not allowed).

• variable value: the name of the variable prefixed with ‘:’.

Expressions are parsed left-to-right, with operators having identical precedence. Expressions may there-
fore need parentheses to disambiguate them. For example, ‘3+4*5’ is parsed as ‘(3+4)*5’ and must be written
‘3+(4*5)’ for the conventional interpretation.

If a variable is used without having been given a value, it is interpreted according to context: false (boolean),
0 (integer), or empty (string). The associated operator or function determines how the value of a variable is
interpreted:
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• boolean: false, 0 and ′ ′ are interpreted as false; all other values are interpreted as true.

• integer: the leftmost valid integer value is used, e.g. X is interpreted as 0, 42X is interpreted as 42.

• floating point: the leftmost valid double value is used, e.g. 0.1X is interpreted as 0.1, 42.4X is interpreted as
42.4.

• string: all values are permissible as strings. A quoted value such as ′123′ will be interpreted as a string and
not as a number.

Here are examples of variable assignment and use:

set variable(text,′test string′)
set variable(substituted,′substitution of a :text variable value′)
set variable(hasVowel,indexOf(:substituted,′aeiou′) ne -1)
set variable(validLength,(5 le length(:text)) and (length(:text) lt 15))

A policy may remove a variable binding with the action unset variable(identifier), causing any future use of
the variable to act as if undefined.

2.11 Timers
Policies may make use of interval (count-down) timers. Each timer has an identifier that must be different from the
identifiers used by variables. There is only ever one instance of a timer. A timer becomes active when it is started,
and ceases to exist when it counts down to zero. At this point, an expiry event occurs for the timer identifier. An
active timer may be restarted or stopped.

The policy server keeps track of all active timers. Each timer is associated with its identifier, its starting time
and period, and with the owner and profile of the defining policy. If the policy server shuts down (accidentally or
deliberately), on a restart it checks the status of all timers. Timers that would have expired in the meantime are
discarded. All other timers are treated as if time had passed normally.

In addition to explicit timers, policies with time conditions imply internal timer triggers. Policies like this are
said to be time-based. They must have a non-negative preference (must, should, prefer, empty), no triggers, and
only epoch conditions (date, day, time). When such a policy is defined, the policy server infers the time intervals
during which the policy may be executed. An internal trigger at the start of each time interval causes such policies
to be considered for execution. The associated owner and profile of such a trigger are determined by the defining
policy. Whether a policy actually executes depends on its period of validity and on whether its condition holds.
Timer resolution is presumed to be one second. However, due to scheduling constraints in the policy server, a
timer trigger may not be processed to this level of accuracy.

When a policy is added to the policy store or is enabled, it is checked whether an internal timer should be
created for it. Conversely, such a timer is removed when a policy is disabled or deleted.

In deciding whether to trigger a time-based policy, the policy server assumes that all time conditions can be
met. As an example, suppose a policy condition requires the time to be 12:15:00 or 12:30:00. The policy server
will infer that these are important times when the policy should be triggered; on both occasions the policy will
execute. However, suppose the policy condition requires the time to be 12:15:00 and 12:30:00. Although the
policy server will again trigger the policy at these times, the condition cannot in fact hold. To avoid the policy
server having to make a full determination of timing considerations, it just determines a set of simple trigger times
that should be used.

A time-based policy may specify a number of discrete epoch values with the eq and in operators, and epoch
ranges with the in operator. Such a policy may not use other operators on epochs (ne, lt, le, gt, ge, out). In addition,
a time condition may use only the and and or operators (i.e. not is disallowed). The reason for these restrictions
is to ensure that all epoch ranges are well defined. A date or day parameter implies a triggering hour of 00:00:00,
and eligibility for execution at any hour of that day.

As well as being triggered at the start of each time interval, a time-based policy must considered for execution
whenever any external trigger occurs for the same owner. The time condition (and other factors) will determine
whether the policy is actually executed. A time condition may lead to a policy being triggered multiple times (e.g.
day eq 3 or hour eq 12:00:00). Care must be taken to ensure to ensure that repeated execution is appropriate.

Here are examples of time conditions in informal notation (rather than XML). Triggering refers to when
an internal trigger occurs, eligibility refers to when an external trigger occurs. Although the policy wizard allows
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short forms for times and dates (e.g. 23, 23:15, 2007, 2007-02), the policy wizard converts these to full HH:MM:SS
and YYYY-MM-DD format (e.g. 23:00:00, 23:15:00, 2007-01-01, 2007-02-01).

• time eq 12:15:30 – triggered at 12:15:30 each day; eligible at 12:15:30 on any day.

• time in 09:00:00,11:00:00 – triggered at 09:00:00 and 11:00:00 each day; eligible at 09:00:00 and 11:00:00
on any day.

• time in 23:00:00..08:00:00,20:00:00 – triggered at 23:00:00 and 20:00:00 each day; eligible from 23:00:00
to 08:00:00 and at 20:00:00 on any day.

• time eq 07:00:00 or time in 16:30:45,21:15:45 – triggered at 07:00:00, 16:30:45 and 21:15:45 each day;
eligible at 07:00:00, 16:30:45 and 21:15:45 on any day.

• time eq 09:15:00 or time eq 11:30:00 – triggered at 09:15:00 and 11:30:00 each day; eligible at 09:15:00
and 11:30:00 on any day.

• time eq 09:15:00 and time eq 11:30:00 – triggered at 09:15:00 and 11:30:00 each day, though the condition
can never hold; never eligible, as the condition is always false.

• (date in 2006-12-01..2007-03-31) or (day eq 1) – triggered at 00:00:00 on 1st December 2006, and at
00:00:00 every Monday; eligible at any hour from 1st December 2006 to 31st March 2007, and at any hour
on a Monday.

• (date in 2006-12-01..2007-03-31) and (day eq 1) – triggered at 00:00:00 on 1st December 2006 (no effect
as this was not a Monday), and at 00:00:00 every Monday (effective on 4th December 2006, ..., 26th March
2007); eligible at any hour on any Monday from 1st December 2006 to 31st March 2007 (i.e. 4th December
2006, ..., 26th March 2007).

• (date eq 2006-12-15) or ((day eq 1) and (time eq 16:17:18)) – triggered at 00:00:00 on 15th December
2006, at 00:00:00 every Monday, and at 16:17:18 every day (the latter two combining to be effective at
16:17:18 on Mondays); eligible at any hour on 15th December 2006, and at 16:17:18 on Mondays.

2.12 History

2.12.1 Trigger History
External triggers are automatically recorded by the policy server as they are received (and prior to trigger process-
ing). This includes the time the trigger occurred, the trigger name, and the trigger parameters. Such triggers are
held individually in the policy store as trigger variables. The policy server periodically eliminates trigger variables
that are older than a period specified as a server parameter.

All such variables are named trigger. Their owner and applies to values are ‘system’. Their changed value is
an XML date-time for when the trigger was received by the policy system. The value of such a trigger variable is
a copy of the trigger and its parameters.

Suppose a device in trigger carries as parameters the message type temperature value, the entity name ‘gear-
box’, the entity instance ‘turbine23’, the reporting period ‘15’, and a list of temperatures since the last reading:
minimum 12.3◦C, average 14.5◦C, and maximum 19.2◦C. The value of the recorded history variable will be:

device in(temperature value,gearbox,turbine23,15,[12.3,14.5,19.2])

The collection of stored trigger values constitutes a history that can be checked in a policy condition. This
may use the following functions in a condition parameter:

trigger count(trigger,period): This counts the number of matching triggers in the state history for the given
period. The trigger has the same form as a policy trigger, except that an empty trigger parameter may be
used to mean that any value is acceptable. For convenience, trailing empty parameters are omitted entirely.
The period is either a non-negative integer n (during the last n minutes) or a time in HH:MM:SS format
(since this time). An absolute time reference spans a maximum of 24 hours, e.g. if the time is currently
12:00:00 then 11:00:00 means ‘since 11AM today’ and 13:00:00 means ‘since 1PM yesterday’.
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Here are some examples of policy conditions that check the trigger history. These assume the same temperature
trigger example as above.

• trigger count(device in(),15) – the number of device inputs during the past 15 minutes.

• trigger count(device in(temperature value),09:00:00) – the number of temperature readings since 9AM.

• trigger count(device in(temperature value,gearbox,turbine23),30) – the number of gearbox temperature
readings for identifier ‘turbine23’ during the past 30 minutes.

• trigger count(device in(temperature value,,,20),22:30:00) – the number of temperature readings for a pe-
riod of 20 minutes since 10.30PM.

• trigger count(device in(temperature value,,turbine23,,[11.1]),15) – the number of temperature readings
for identifier ‘turbine23’ and minimum value 11.1◦C during the past 15 minutes.

• trigger count(device in(,,,,[,,28]),00:00:00) – the number of inputs from any device with a third parameter
value of 28 since midnight (this would mean a maximum of 28◦C for a temperature reading).

2.12.2 Action History
Policy actions are automatically recorded by the policy server as they are issued (subsequent to conflict resolution).
This includes the time the action occurred, the action name, and the action parameters. Such actions are held
individually in the policy store as action variables. The policy server periodically eliminates action variables that
are older than a period specified as a server parameter.

All such variables are named action. Their owner and applies to values are ‘system’. Their changed value is
an XML date-time for when the action was issued by the policy system. The value of such an action variable is a
copy of the action and its parameters.

Suppose a device out action carries as parameters the message type set rule, the entity name ‘anemometer’,
the entity instance ‘3’, the action period ‘20’, and the action parameters ‘wind speed,15,alert operator’. The
value of the recorded history variable will be:

device out(set rule,anemometer,3,20,wind speed,15,alert operator)

The collection of stored action values constitutes a history that can be checked in a policy condition. This may
use the following functions in a condition parameter:

action count(action,period): This counts the number of matching actions in the state history for the given period.
The action has the same form as a policy action, except that an empty action parameter may be used to mean
that any value is acceptable. This function is very similar to trigger count and is not illustrated here.

2.13 Extensions for Regular Policies

2.13.1 Triggers
Regular policies have triggers as follows:

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′trigger policy′′>

<xsd:enumeration value=′′timer expiry(arg1)′′/>
</xsd:restriction>

</xsd:simpleType>

Regular policy triggers are as follows, all of them internal:

timer expiry(identifier): This occurs when a timer with the specified identifier has counted down to zero (see
section 2.9. See section 2.11 for more details.
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Category Parameter Operator
epoch date, day, time eq, in (time-based policy)

eq, ne, lt, le, gt, ge, in, out (other policy)

Figure 2.8: Epoch Parameter Operators

2.13.2 Conditions
Regular policies have condition parameters as follows:

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′parameter policy′′>

<xsd:enumeration value=′′date′′/>
<xsd:enumeration value=′′day′′/>
<xsd:enumeration value=′′time′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy conditions have parameters as follows:

date: This means a date (format YYYY-MM-DD).

day: This means a day of the week (numbered from 1 as Monday to 7 as Sunday).

time: This means the current moment (format HH:MM:SS).

The operators permitted for each parameter are listed in figure 2.8. Some special rules for values are as follows:

• All parameters can be compared with a single value.

• An epoch value may also be a range of the form start..finish.

• For the epoch category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

2.14 Extensions for Resolution Policies

2.14.1 Triggers
Resolution policies have triggers as follows, all of them internal. Since resolution policies are triggered by regular
actions, the resolution triggers are identical to the core actions in section 2.8.

<xsd:simpleType name=′′trigger policy′′>
<xsd:restriction base=′′trigger policy′′>

<xsd:enumeration value=′′log event(arg1)′′/>
<xsd:enumeration value=′′restart timer(arg1)′′/>
<xsd:enumeration value=′′send message(arg1,arg2)′′/>
<xsd:enumeration value=′′set variable(arg1,arg2)′′/>
<xsd:enumeration value=′′start timer(arg1,arg2)′′/>
<xsd:enumeration value=′′stop timer(arg1)′′/>
<xsd:enumeration value=′′unset variable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Resolution policies have restricted trigger arguments. variable0 to variable9 are explicitly bound to the ac-
tual arguments of resolution triggers. preference0 to preference9 are implicitly bound to the preferences of the
corresponding policies that triggered a resolution. Preferences are numbered from 0 in the same order as triggers
appear in a resolution policies. For example, preference0 will be assigned the preference associated with the first
resolution trigger (i.e. the preference associated with this action), and preference1 to that of the second resolution
trigger.
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<xsd:simpleType name=′′trigger argument′′>
<xsd:restriction base=′′trigger argument′′>

<xsd:pattern value=′′variable[0-9]′′/>
</xsd:restriction>

</xsd:simpleType>

2.14.2 Conditions
Resolution policies have condition parameters as follows. These are the values that are bound by resolution
triggers.

<xsd:simpleType name=′′parameter policy′′>
<xsd:restriction base=′′parameter policy′′>

<xsd:pattern value=′′preference[0-9]′′/>
<xsd:pattern value=′′variable[0-9]′′/>

</xsd:restriction>
</xsd:simpleType>

Resolution operators are the standard ones, but interpreted for preference and variable values:

• If the first operator argument is preference0 to preference9, the parameter and value are converted from
preference names to numerical values. Preference names are numerically ranked as +3 for must, +2 for
should, +1 for prefer, 0 for empty, -1 for prefer not, -2 for should not, -3 for must not. The operators eq,
ne, lt, le, gt and ge then perform a numerical comparison. The in and out operators should be read as ‘in
keeping with’ and ‘out of keeping with’, i.e. similar and opposite respectively.

Positive and negative preference values are considered to be opposites. A zero value is similar to a positive
or a negative value. Thus must is similar to should or empty (operator in), and is opposite to should not or
must not (operator out). Similarly must not is similar to should not or empty (operator in), and is opposite
to should or must (operator out).

• If the first operator argument is variable0 to variable9, the eq and ne operators may be used. The in and out
operators are used with a text string to mean ‘includes’ and ‘excludes’. That is, the value is checked to be a
substring or not of the parameter.

2.14.3 Actions
Resolution policies have actions as follows that are added to the core ones defined in section 2.8. The following
are generic resolution actions that apply in any domain, all of them internal.

<xsd:simpleType name=′′action policy′′>
<xsd:restriction base=′′action policy′′>

<xsd:enumeration value=′′apply default′′/>
<xsd:enumeration value=′′apply inferior′′/>
<xsd:enumeration value=′′apply negative′′/>
<xsd:enumeration value=′′apply newer′′/>
<xsd:enumeration value=′′apply older′′/>
<xsd:enumeration value=′′apply one′′/>
<xsd:enumeration value=′′apply positive′′/>
<xsd:enumeration value=′′apply stronger′′/>
<xsd:enumeration value=′′apply superior′′/>
<xsd:enumeration value=′′apply weaker′′/>

</xsd:restriction>
</xsd:simpleType>

Although conflicting actions are handled pairwise, a list of conflicting actions may be under consideration so
the effect is to make a choice from an arbitrarily long list. A fundamental principle is that resolution selects just
one of the conflicting actions. It is up to the policy server to make sure this happens, even if it requires making an
arbitrary choice when resolution does not yield a unique result.

A resolution action is either specific (applicable in some domain) or generic (making a choice among the
conflicting actions). Generic resolution actions are as follows:
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apply default: Although this action can be called explicitly, it is mainly intended for internal use by the policy
server when resolution does not select just one of the conflicting actions. The default resolution is first to
call apply stronger. If this does not yield a unique action, apply newer is called. If this still does not yield
a unique action, apply one is called.

apply inferior: This chooses the action associated with the inferior domain. For example, an action specified
by kjt@cs.stir.ac.uk will be chosen in preference to an action for bob@stir.ac.uk. The notion of ‘inferior’
is that the higher-level domain is a suffix of the lower-level domain (dividing the domain into parts at ‘.’).
If the domains are identical or incomparable (e.g. the second party is lb@comp.lancs.ac.uk), this resolution
will not eliminate either action.

apply negative: This chooses the action associated with the more negative preference. If the preferences are
identical, this resolution will not eliminate either action.

apply newer: This chooses the action associated with the more recently defined policy. If the timestamps are
identical, this resolution will not eliminate either action.

apply older: This is the opposite of apply newer.

apply one: This arbitrarily chooses one of the actions. (The current implementation of the policy server in fact
chooses the first action in the list.)

apply positive: This is the opposite of apply negative.

apply stronger: This chooses the action associated with the stronger preference (disregarding the sign of the
preference). For example, must not will be selected over should. If the preferences are exact opposites,
the more positive preference is selected. For example, should will be selected over should not. If the
preferences are identical, this resolution will not eliminate either action.

apply superior: This is the opposite of apply inferior.

apply weaker: This is the opposite of apply stronger, except that the more negative preference is selected in the
case of exact opposites.

2.15 Extensions for Prototype Policies
Prototype policies are used to realise goals (see section 2.16). Prototype policies have almost the same structure
as regular policies, except that the effect attribute is mandatory, and the supports goal attribute does not apply.
Triggers, conditions and actions are otherwise common to regular and prototype policies.

The effect attribute is used to define the abstract effects of a prototype policy. An effect is a comma-separated
list of effect elements (white space being irrelevant). Each effect element has the form: variable operator expres-
sion (e.g. duration += 10):

variable: The system managed by policies is presumed to have a number of state (‘environment’) variables.
(These are different from policy variables that are substituted in the body of a policy.) A controlled variable
is one that the policy system can affect (e.g. the length of a call). An uncontrolled variable is one that the
policy system cannot affect (e.g. the time of day). A derived variable is one that is defined in terms of the
others (usually controlled and uncontrolled variables).

operator: The basic effect operators are ‘=’ (set variable), ‘+=’ (augment variable) and ‘-=’ (diminish variable).
In the special case that simultaneously enabled policies are not allowed to affect the same variable, the ‘+∼’
and ‘-∼’ variants are used to mean an exclusive change.

expression: A basic expression is just a literal numeric value. However, an effect can be parameterised by one
parameter – a variable prefixed with ‘$’ (e.g. duration += $length). Such a parameter is given an opti-
mal value during goal refinement, and can be used in the actions (only) of the policy. An effect parameter
can be combined using a single binary operator (‘+’, ‘-’, ‘*’, ‘/’) with a literal numeric value (e.g. dura-
tion += 2*$length).
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2.16 Extensions for Goals
Goals are similar to regular policies, but with certain changes and restrictions. Because goals are persistent, they
have no trigger. Although a goal can have conditions, the absence of a trigger means that only generic conditions
can be used (i.e. those described in section 2.13.2). A goal has a single action that maximises or minimises a goal
named by its identifier.

The attributes of a goal are similar to those of regular policies, but omitting effect (used only to derive policies),
profile (not relevant), and supports goal (used only for derived policies) .

<xsd:element name=′′goal′′>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=′′policy rule′′>

<xsd:complexType>
<xsd:sequence>

<xsd:group ref=′′condition group′′ minOccurs=′′0′′/>
<xsd:element name=′′action′′>

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base=′′action goal′′>
<xsd:attribute name=′′arg1′′ type=′′xsd:string′′/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=′′applies to′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′changed′′ type=′′xsd:dateTime′′ use=′′required′′/>
<xsd:attribute name=′′enabled′′ type=′′xsd:boolean′′ use=′′required′′/>
<xsd:attribute name=′′id′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′owner′′ type=′′xsd:string′′ use=′′required′′/>
<xsd:attribute name=′′valid from′′ type=′′xsd:dateTime′′/>
<xsd:attribute name=′′valid to′′ type=′′xsd:dateTime′′/>

</xsd:complexType>
</xsd:element>

A goal maximises or minimises a goal measure. This is a numerical quantity defined by a formula in the
domain ontology (i.e. outside the policy language). The formula is an arbitrary calculation using the state variables
discussed in section 2.15. However for practicality, goal measures are usually linear weighted sums. For example,
a goal might aim to minimise the goal measure interruption time. This might be defined in terms of the controlled
variables call received (number of calls received today) and call duration (length of current call in seconds). The
ontology definition of this measure might be:

0.02 * call received * call duration

The scaling factor of 0.02 here is chosen so that all goal measures have similar values for typical values of the
state variables. Indeed, the choice of scaling factors can be automated on this basis.

Typically, multiple goals have to be satisfied; these often conflict with each other. Goal measures are therefore
combined in an overall evaluation function. This can be an arbitrary formula, but is usually a linear weighted sum.
Goal measures to be maximised have a positive sign, while those to be minimised have a negative sign. Goals
may be weighted, though analysis of various domains has shown that a weight of 1.0 is usually satisfactory. The
overall evaluation function is defined by an ontology (i.e. outside the policy language). An example might be:

-call cost weight * call cost +
-call interruption weight * interruption time +
+call multimedia weight * multimedia use +
+call network weight * network use;
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Chapter 3

Call Control

3.1 Regular Policies for Call Control

3.1.1 Introduction
This section is specific to regular policies for call control, as it discusses the triggers, conditions and actions that
are used in this domain. The policy server employs a terminology mapping between information in the underlying
communications system and information in the policy system [9]. If the policy language were used in a context
different from call control, it would be these elements that were adapted.

For call control, regular policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is shown in figure 3.1. Core triggers (section 2.6), condition parameters (section 2.7)
and actions (section 2.8) are also applicable. Certain elements (marked ‡) apply to only some communications
layers. The combination rules are as follows:

• Triggers may be combined with and or or. Internal triggers (marked † in figure 3.1) may be combined with
any other triggers. At most one external trigger (no † in figure 3.1) may appear underneath an and.

• Triggers establish environment variables that are used as condition parameters. If a combination of triggers
is provided, and establishes the union of the environment variables, while or establishes their intersection.

• The environment variables established by one of the connect or no answer triggers depend on the underly-
ing communications layer.

• Triggers allow certain actions to occur. If a combination of triggers is provided, and allows the union of the
actions, while or allows their intersection.

3.1.2 Common Parameters and Environment Variables
Regular policy conditions can use the following parameters: date, day and time (section 2.13.2). Regular policies
for call control can also use a common set of parameters within triggers, conditions and actions. These parameters
are outlined below together with examples of their use:

address: This identifies a user through an email-like address (e.g. ken@cs.stir.ac.uk).

Address: This identifies a user through an email-like address or a telephone-like number (e.g. 1235678, 94723*,
441786467423).

3.1.3 Triggers
Regular policies for call control have triggers as follows. These are added to the regular policy triggers in sec-
tion 2.13.1. Where triggers also exist in outgoing and incoming forms, the plain form means both situations.
‘Outgoing’ means that a user governed by the policy server has initiated something. ‘Incoming’ means that a
user governed by the policy server has to respond to something. Normally these correspond to ‘local request’ and
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Trigger Parameters Established Actions Permitted
internal† note availability, note presence,

send message
absent† log event, note presence,

send message
available† topic (empty if availability variable

is ‘true’)
connect to, log event,
note availability, send message

bandwidth request‡ bandwidth‡, callee, caller, medium,
network type

confirm bandwidth‡,
reject bandwidth‡

connect,
connect incoming,
connect outgoing,
no answer,
no answer incoming,
no answer outgoing

active content‡, bandwidth‡,
call content, call type, callee,
caller, capability, capability set‡,
cost, destination address‡, device,
location, medium, network type,
priority, quality, role,
signalling address‡,
source address‡, topic,
traffic load‡

add caller‡, add medium,
add party, fork to, forward to,
log event, note availability,
note presence, play clip,
reject call, remove medium,
remove party, send message

disconnect,
disconnect incoming,
disconnect outgoing

callee, caller, medium,
network type

log event, note availability,
note presence, play clip,
send message

event caller, network type, topic note availability, note presence,
send message

present† location (empty if presence
variable is ‘true’)

connect to, log event,
note presence, send message

register,
register incoming,
register outgoing

caller, network type note presence, reject call

timer expiry† log event, note presence,
send message

unavailable† log event, note availability,
send message

† internal trigger that may be combined with any other
‡ available with only certain communications systems

Figure 3.1: Relationship between Triggers, Conditions and Actions
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‘remote request’ respectively. However if both users are governed by the same policy server, ‘outgoing’ refers to
the initiator and ‘incoming’ refers to the responder.

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′absent(arg1)′′/>
<xsd:enumeration value=′′available(arg1)′′/>
<xsd:enumeration value=′′bandwidth request′′/>
<xsd:enumeration value=′′connect′′/>
<xsd:enumeration value=′′connect incoming′′/>
<xsd:enumeration value=′′connect outgoing′′/>
<xsd:enumeration value=′′disconnect′′/>
<xsd:enumeration value=′′disconnect incoming′′/>
<xsd:enumeration value=′′disconnect outgoing′′/>
<xsd:enumeration value=′′event′′/>
<xsd:enumeration value=′′no answer(arg1)′′/>
<xsd:enumeration value=′′no answer incoming(arg1)′′/>
<xsd:enumeration value=′′no answer outgoing(arg1)′′/>
<xsd:enumeration value=′′present(arg1)′′/>
<xsd:enumeration value=′′register′′/>
<xsd:enumeration value=′′register incoming′′/>
<xsd:enumeration value=′′register outgoing′′/>
<xsd:enumeration value=′′unavailable(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for call control are as follows:

absent(address): This is triggered when the presence variable for the specified address becomes ‘false’. An
empty address means the user to whom the policy applies.

available(address): This is triggered when the availability variable for the specified address becomes something
other than ‘false’. The value ‘true’ means generally available for an unspecified topic, while a string value
defines a specific topic. An empty address means the user to whom the policy applies. If multiple available
triggers appear in the same policy rule, it is undefined which topic value is set.

bandwidth request: This occurs if the policy server is informed of a bandwidth request (by an H.323 gate-
keeper).

connect, connect incoming, connect outgoing: These occur if the policy server is informed by the communi-
cations layer of a request to establish a connection.

disconnect, disconnect incoming, disconnect outgoing: These occur if the policy server is informed by the
communications layer of a request to break an established connection.

event: This is a catch-all for any event provided by an agency external to the policy system. For example a
security system might generate an event due to a security violation.

no answer(period), no answer incoming(period), no answer outgoing(period): These occur if the policy
server is informed by the communications layer that a connection attempt has been not been answered
within some period. The argument is the timeout period (measured in seconds).

present(address): This is triggered when the presence variable for the specified address becomes something
other than ‘false’. The value ‘true’ means generally present in an unspecified location, while a string value
defines a specific location. An empty address means the user to whom the policy applies. If multiple present
triggers appear in the same policy rule, it is undefined which location value is set.

register, register incoming, register outgoing: These occur if the policy server is informed by the communi-
cations layer of a request to register with the communications system.

unavailable(address): This is triggered when the availability variable for the specified address becomes ‘false’.
An empty address means the user to whom the policy applies.
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3.1.4 Conditions
Regular policies for call control have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>

<xsd:enumeration value=′′active content′′/>
<xsd:enumeration value=′′bandwidth′′/>
<xsd:enumeration value=′′call content′′/>
<xsd:enumeration value=′′call type′′/>
<xsd:enumeration value=′′callee′′/>
<xsd:enumeration value=′′caller′′/>
<xsd:enumeration value=′′capability′′/>
<xsd:enumeration value=′′capability set′′/>
<xsd:enumeration value=′′cost′′/>
<xsd:enumeration value=′′destination address′′/>
<xsd:enumeration value=′′device′′/>
<xsd:enumeration value=′′location′′/>
<xsd:enumeration value=′′medium′′/>
<xsd:enumeration value=′′moment′′/>
<xsd:enumeration value=′′network type′′/>
<xsd:enumeration value=′′priority′′/>
<xsd:enumeration value=′′quality′′/>
<xsd:enumeration value=′′role′′/>
<xsd:enumeration value=′′signalling address′′/>
<xsd:enumeration value=′′source address′′/>
<xsd:enumeration value=′′topic′′/>
<xsd:enumeration value=′′traffic load′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy condition parameters for call control are as follows:

active content: This means the active media content. It is defined only for H.323.

bandwidth: This is the requested bandwidth as a positive real (measured in Kbps). It is currently defined only
for H.323.

call content: This is the content of a call (e.g. ‘Beatles Album’, ‘Shrek video’). This is an open-ended string that
will be defined only if the caller provides it.

call type: This is the type of a call (e.g. ‘emergency’, ‘long-distance’). This is an open-ended string that will be
defined only if the caller provides it.

callee: This is the responder to a call, identified by address.

caller: This is the initiator of a call or an event, identified by address.

capability: This is the capability of the caller to engage in a call (e.g. ‘short discussion only’, ‘English speaker’).
This is an open-ended string that will be defined only if the caller provides it.

capability set: This is the set of technical functions supported by the caller’s equipment. It is defined only for
H.323.

cost: This is the cost per minute of a call as a positive real. The unit of currency is arbitrary, but must be known
to the caller or the callee. This value will be defined only if the communications layer provides it.

destination address: This is the destination system, identified by domain name or IP address (e.g. gw.acme.com
or 192.168.0.1). It is defined only for H.323.

device: This is the device being used for a call (e.g. ‘cell phone’, ‘PDA’). This is an open-ended string that will
be defined only if the caller provides it.
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Category Parameter Operator
address callee, caller, caller id, destination address,

signalling address, source address
eq, ne, in, out

amount bandwidth, cost, priority, traffic load eq, ne, lt, le, gt, ge
description active content, call content, call type,

capability, capability set, device, event, location,
medium, network type, quality, role, topic

eq, ne, in, out

Figure 3.2: Address, Amount and Description Parameter Operators

location: This is the location of the caller (e.g. ‘downtown’, ‘Stirling’). This is an open-ended string that will be
defined only if the caller provides it.

medium: This is the medium being used for the call. The permissible value is a list of ‘audio’, ‘video’, ‘white-
board’. This is typically provided by the communications layer.

network type: This is the type of the underlying communications layer (e.g. ‘H.323’, ‘7000’ (Mitel 7000 ICS),
‘SIP’). This is an open-ended string defined by the specific communications layer.

priority: This is the priority assigned to a call as a positive real. Priorities conventionally range from 1 (lowest)
to 9 (highest), but no particular values are enforced. This value will be defined only if the caller provides it.

quality: This is the quality of service expected of a call (e.g. ‘loss rate below 1%’, ‘response time below 20ms’).
This is an open-ended string that will be defined only if the communications layer provides it.

role: This is the role assumed by the caller (e.g. ‘boss’, ‘spouse’). This is an open-ended string that will be
defined only if the caller provides it.

signalling address: This is the signalling system, identified by domain name or IP address (e.g. gw.acme.com
or 192.168.0.1). It is defined only for H.323.

source address: This is the source system, identified by domain name or IP address (e.g. gw.acme.com or
192.168.0.1). It is defined only for H.323.

topic: This is the subject of a call or an event (e.g. ‘project budget’ or ‘intruder alert’). This is an open-ended
string that will be defined only if the caller or event system provides it.

traffic load: This is the current traffic load as a positive real (measured in Kbps). It is defined only for H.323.

The operators permitted for each parameter are listed in figure 3.2; the use of other operators will yield a result,
but this may not be useful. Some special rules for values are as follows:

• For the address category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the description category, in and out are used with a text string to mean ‘includes’ and ‘excludes’. That
is, the value is checked to be a substring or not of the parameter.

3.1.5 Actions
Regular policies for call control have actions as follows. These are added to the regular policy actions in sec-
tion 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not,
an action argument can be omitted to mean any argument value. This allows an easy way to state policies like
‘emergency calls must not be forwarded’ using forward to without a specific destination argument.
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<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth(arg1)′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy actions for call control are as follows:

add caller(method): This adds a new caller to an existing call using the specified method. The action is ignored
if the callee is not in an existing call. The argument is the method for adding the caller: conference (con-
ference in new caller), hold (other party held, new caller connected), monitor (new caller listens to current
call), release (other party disconnected, new caller connected) or wait (new caller not connected until call
clears). The effect is to modify the current call. Suppose A calls B while B is talking to C. A might be
conferenced into the call, C might be held and A connected to B, A might silently monitor the call from B
to C, C might be disconnected and A connected to B, or A might be connected to B only after the call from
B to C clears.

add medium(medium): This adds a new medium to the call (or ignores the request if the medium is already
in use). The argument is the medium name; see the medium parameter in section 3.1.4 for the permissible
values. For example, video might be added to an audio call.

add party(Address): This adds a new party to the call (or ignores the request if the party is already in the call).
The argument is the callee address. The effect is to bring about a conference call. For example when A calls
B, then B might add C to the call.

confirm bandwidth: This confirms that the requested bandwidth has been allocated. It applies to H.323 only.

connect to(Address): This initiates a new and independent call. The caller is the user executing the policy; the
argument is the callee address.

disconnect: This forcibly disconnects the current call (if any).

fork to(Address): This adds an alternative leg to the call. The argument is a caller address (if this is an outgoing
call) or a callee address (if this is an incoming call). The effect is that both the current call leg and the
alternative call leg are tried in order to reach the party. Whether these are tried in sequence or in parallel
depends on the underlying communications layer. However only one can be successful in completing the
call.

forward to(Address): This changes the destination of the call. The argument is the new callee address, as if
this had been chosen explicitly by the caller. The forwarding address might identify a program (e.g. an
auto-attendant or a voicemail inbox) rather than a person.

note availability(topic): This updates the availability variable for the user whose policy is being executed. The
argument is just a topic as a string; see the available parameter in section 3.1.3 for the permissible values.

note presence(location): This updates the presence variable for the user whose policy is being executed. The
argument is a location as a string; see the present parameter in section 3.1.3 for the permissible values.
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play clip(URL): This plays the specified media clip to the caller (e.g. a recorded audio message or a video
clip). The argument may be the audio data (raw binary encoded in ‘base 64’ format) or a URL (e.g.
‘file:/tmp/message.wav’ or ‘http://www.acme.com/hello.avi’).

reject call(reason): This rejects a call, i.e. prevents it from completing. This is used to refuse an incoming call
or to abandon an outgoing call. In this context, a call means a call attempt or a registration attempt. The
argument is an open-ended string providing a reason for the rejection (e.g. ‘too busy currently’). An empty
string may be used, perhaps because the precise reason for rejection should not be given. The interpretation
of the argument depends on the communications layer. It might be sent as text in a response (e.g. SIP),
might be spoken (using Text-To-Speech), or might identify an auto-attendant extension number to speak a
message (e.g. Mitel 7000).

reject bandwidth(limit): This reports the requested bandwidth has not been allocated. The argument is the
bandwidth limit that has been exceeded. It applies to H.323 only.

remove medium(medium): This removes a medium from the call (or ignores the request if the medium is not
already in use). The argument is the medium name; see the medium parameter in section 3.1.4 for the
permissible values. For example, video might be removed from a videoconference call.

remove party(Address): This removes a conference party from the call (or ignores the request if the party is not
already in the call or is the sole other party). The argument is the party address. The effect is to prevent a
conference call. For example when A conferences in B and then calls C, then B might remove C from the
call before accepting the call from A.

3.2 Example Regular Policies for Call Control
The following call control policies illustrate what can be done with the language. They should provide an insight
in the use of the policy language for real examples. The examples are chosen such that they highlight the main
aspects of the language and still appear realistic, rather than being contrived.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a call control policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>
...

</policy document>

3.2.1 Forward if Busy
Forward to bob@cs.stir.ac.uk if there is an incoming connection to ken@cs.stir.ac.uk while this user is busy. The
empty argument for unavailable means the current user is unavailable, i.e. busy.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Forward if busy′′ enabled=′′true′′ changed=′′2004-08-02T11:20:05′′>
<policy rule>

<triggers>
<and/>
<trigger>connect incoming</trigger>
<trigger arg1=′′′′>unavailable(arg1)</trigger>

</triggers>
<action arg1=′′bob@cs.stir.ac.uk′′>forward to(arg1)</action>

</policy rule>
</policy>
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3.2.2 Forward Incoming Calls to Grace
This policy specifies that incoming connections for ken@cs.stir.ac.uk should be forwarded to grace@cs.stir.ac.uk
during the dates 24th December 2004 to 5th January 2005 inclusive.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Forward Incoming to Grace′′ enabled=′′true′′

valid from=′′2004-12-24T00:00:00′′ valid to=′′2005-01-05T23:59:00′′

changed=′′2004-08-12T11:33:00′′>
<preference>should</preference>
<policy rule>

<trigger>connect incoming</trigger>
<action arg1=′′grace@cs.stir.ac.uk′′>forward to(arg1)</action>

</policy rule>
</policy>

3.2.3 Never forward to Mary
This policy applies to everyone in the cs.stir.ac.uk domain. It says that calls from anyone or by ken@cs.stir.ac.uk
must not be forwarded to mary@plc.co.uk.

<policy owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Never forward to Mary′′ enabled=′′true′′ changed=′′2004-08-12T11:43:00′′>
<preference>must not</preference>
<policy rule>

<trigger>connect</trigger>
<conditions>

<or/>
<condition>

<parameter>caller</parameter>
<operator>eq</operator>
<value>@</value>

</condition>
<condition>

<parameter>callee</parameter>
<operator>eq</operator>
<value>ken@cs.stir.ac.uk</value>

</condition>
</conditions>
<action arg1=′′mary@plc.co.uk′′>forward to(arg1)</action>

</policy rule>
</policy>

3.2.4 Never forward Emergency Calls
This policy specifies that emergency calls must not be forwarded. This policy applies to @cs.stir.ac.uk, i.e. anyone
in this domain. Note also that the forwarding address (arg1) is irrelevant and is omitted.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Never forward Emergency Calls′′ enabled=′′true′′

changed=′′2004-08-12T11:46:00′′>
<preference>must not</preference>
<policy rule>

<trigger>connect</trigger>
<condition>

<parameter>call type</parameter>
<operator>eq</operator>
<value>emergency</value>

</condition>
<action arg1=′′′′>forward to(arg1)</action>

</policy rule>
</policy>
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3.2.5 Voicemail on Busy or No Answer
This policy states that incoming calls should be forwarded to my voicemail when I am busy or don’t answer within
5 rings. This policy has two combinations of trigger events but does not specify any conditions.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Voicemail on Busy or No Answer′′ enabled=′′true′′

changed=′′2004-08-02T11:19:00′′>
<policy rule>

<triggers>
<or/>
<trigger arg1=′′′′>unavailable(arg1)</trigger>
<trigger arg1=′′5′′>no answer incoming(arg1)</trigger>

</triggers>
<action arg1=′′http://voicemail.co.uk/∼ken′′>forward to(arg1)</action>

</policy rule>
</policy>

3.2.6 Available for Java
This policy states that lecturers (domain @lecturers.cs.stir.ac.uk) are available for discussions about Java. Note
that this policy has no triggers and no conditions, i.e. it is executed immediately on definition.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′@lecturers.cs.stir.ac.uk′′

id=′′Available for Java′′ enabled=′′true′′

changed=′′2004-07-28T23:18:00′′>
<policy rule>

<action arg1=′′Java′′>note availability(arg1)</action>
</policy rule>

</policy>

3.2.7 Complex Busy and No Answer Handling
The next example is deliberately complex. It defines variables for use in the policy, though these might be defined
separately rather than statically. By convention, policy variables could be named in upper case (as is common in
programming languages for macros).

Acme jo@acme.com or bob@acme.com

home 01786 832 999, reached via a PSTN gateway (prefix 9)

hours 9AM to 5PM

mobile 0778 012 3456, reached via a PSTN gateway (prefix 9)

office 7423, reached via a PSTN gateway (prefix 9, then a short dialling code)

voicemail 2004*, the format for the voicemail inbox of extension 2004

This policy uses sequential and parallel policies to do the following:
when I am busy

and
when there is a call

do forward the call to voicemail

failing that

when an incoming call is not answered after 5 seconds
if the caller is not Acme

and
if the caller is not tom@uni.edu
do forward the call to home
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else
do forward the call to office

or else
do forward the call to mobile

simultaneously

when there is a call
if the call type is business

and
if the hour is between hours
do log an office hours call

else
do log an out of hours call

A period for the validity of this policy is set: from 24th February 2007 4PM to 4th March 2007 4PM. It will
not be triggered outside this period.

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>

<variable id=′′Acme′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′jo@acme.com,bob@acme.com′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′home′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′9901786832999′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′hours′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′09:00:00..17:00:00′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′mobile′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′9907780123456′′ changed=′′2007-02-23T23:50:00′′/>

<variable id=′′office′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′97423′′ changed=′′202007-02-23T23:50:00′′/>

<variable id=′′voicemail′′ owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

value=′′7423*′′ changed=′′2007-02-23T23:50:00′′/>

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Busy, No Answer, Log′′ enabled=′′true′′

valid from=′′2007-02-24T16:00:00′′ valid to=′′2007-03-04T16:00:00′′

changed=′′2007-02-23T23:50:00′′>
<policy rules>

<sequential/>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′′′>unavailable(arg1)</trigger>
<trigger>connect</trigger>

</triggers>
<action arg1=′′:voicemail′′>forward to(arg1)</action>

</policy rule>
<policy rules>

<parallel/>
<policy rule>

<trigger arg1=′′5′′>no answer incoming(arg1)</trigger>
<conditions>

<and/>
<condition>

<parameter>caller</parameter>
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<operator>ne</operator>
<value>:Acme</value>

</condition>
<condition>

<parameter>caller</parameter>
<operator>ne</operator>
<value>tom@uni.edu</value>

</condition>
</conditions>
<actions>

<else/>
<action arg1=′′:home′′>forward to(arg1)</action>
<actions>

<orelse/>
<action arg1=′′:office′′>forward to(arg1)</action>
<action arg1=′′:mobile′′>forward to(arg1)</action>

</actions>
</actions>

</policy rule>
<policy rules>

<policy rule>
<trigger>connect</trigger>
<conditions>

<and/>
<condition>

<parameter>call type</parameter>
<operator>eq</operator>
<value>business</value>

</condition>
<condition>

<parameter>time</parameter>
<operator>in</operator>
<value>:hours</value>

</condition>
</conditions>
<actions>

<else/>
<action arg1=′′office hours call′′>log event(arg1)</action>
<action arg1=′′out of hours call′′>log event(arg1)</action>

</actions>
</policy rule>

</policy rules>
</policy rules>

</policy rules>
</policy>

</policy document>

3.2.8 Talking Status
Suppose that bob@cs.stir.ac.uk wishes to note he is talking whenever a connection is made. The first rule below
sets the talking variable to true when a call connects. The second rule unsets this variable on disconnection.

<policy owner=′′bob@cs.stir.ac.uk′′ applies to=′′bob@cs.stir.ac.uk′′

id=′′Talking status′′ enabled=′′true′′ changed=′′2007-02-23T23:18:10′′>
<policy rules>

<sequential/>
<policy rule>

<trigger>connect</trigger>
<action arg1=′′talking′′ arg2=′′true′′>set variable(arg1,arg2)</action>

</policy rule>
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<policy rule>
<trigger>disconnect</trigger>
<action arg1=′′talking′′>unset variable(arg1)</action>

</policy rule>
</policy rules>

</policy>

3.2.9 Call Timer
Suppose that ken@cs.stir.ac.uk likes to log calls that exceed 10 minutes. The first rule below states than on
connection a duration timer is started for 10 minutes. The second rule states that on disconnection this timer is
stopped. The third rule says that if the duration timer expires, a lengthy call from the caller is logged.

<policy owner=′′ken@cs.stir.ac.uk′′ applies to=′′ken@cs.stir.ac.uk′′

id=′′Lengthy call timer′′ enabled=′′true′′ changed=′′2007-02-23T23:08:41′′>
<policy rules>

<sequential/>
<policy rule>

<trigger>connect</trigger>
<action arg1=′′duration′′ arg2=′′00:10:00′′>start timer(arg1,arg2)</action>

</policy rule>
<policy rules>

<sequential/>
<policy rule>

<trigger>disconnect</trigger>
<action arg1=′′duration′′>stop timer(arg1)</action>

</policy rule>
<policy rule>

<trigger arg1=′′duration′′>timer expiry(arg1)</trigger>
<action arg1=′′Lengthy call from :caller′′>log event(arg1)</action>

</policy rule>
</policy rules>

</policy rules>
</policy>

3.2.10 Working Period Log
Suppose that don@cs.stir.ac.uk has working hours from 9AM to 5PM every day. At 9AM he wishes to log that
he has started work. If an external trigger occurs (e.g. a connection), he wishes to log that he was working at
this point. This policy does not log the end of the working hours at 5PM, but could be extended to do so with an
additional policy rule that is triggered at this point.

Note that the following policy rule has no external trigger. It is initially triggered at 9AM to log the start of
work. If any external trigger for the user occurs between 9AM and 5PM, this rule is eligible and logs that the user
was working at this time.

<policy owner=′′don@cs.stir.ac.uk′′ applies to=′′don@cs.stir.ac.uk′′

id=′′Working period log′′ enabled=′′true′′ changed=′′2007-02-23T23:21:59′′>
<policy rule>

<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>09:00:00..17:00:00</value>

</condition>
<action arg1=′′Working at :time on :date′′>log event(arg1)</action>

</policy rule>
</policy>
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3.2.11 Polite Availability Check
Suppose that kjt@cs.stir.ac.uk prefers not to disturb bob@cs.stir.ac.uk unless it appears he is not very busy. If Bob
announces his availability, Ken’s policy checks how many times Bob has done this in the past two hours. If it is
more than twice, then Bob is probably not having a busy day. In this case, a message is sent to Bob asking if Ken
can drop by for a chat.

<policy owner=′′kjt@cs.stir.ac.uk′′ applies to=′′kjt@cs.stir.ac.uk′′

id=′′Polite availability check′′ enabled=′′true′′ changed=′′2007-03-06T13:42:25′′>
<policy rule>

<trigger arg1=′′bob@cs.stir.ac.uk′′>available(arg1)</trigger>
<condition>

<parameter>count(available(bob@cs.stir.ac.uk),00:02:00)</parameter>
<operator>gt</operator>
<value>2</value>

</condition>
<action arg1=′′bob@cs.stir.ac.uk′′ arg2=′′Can I drop by for a chat?′′>

send message(arg1,arg2)
</action>

</policy rule>
</policy>

3.3 Resolution Policies for Call Control

3.3.1 Introduction
This section is specific to resolution policies for call control, as it discusses the triggers, conditions and actions
that are used in this domain.

For call control, resolution policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is much simpler than for regular policies. Any action may be associated with a trigger.
The actual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger
has bound them).

3.3.2 Triggers
Resolution policies for call control have triggers as follows. These are added to the resolution policy triggers in
section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution policy
triggers are identical to regular policy actions for call control (see section 3.1.5).

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth(arg1)′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>
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3.3.3 Conditions
Resolution policies for call control have the same condition parameters as resolution policies in section 2.14.2.

3.3.4 Actions
Resolution policies for call control have actions as follows. These are added to the resolution policy actions in
section 2.14.3 and to the core actions in section 2.8.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′add caller(arg1)′′/>
<xsd:enumeration value=′′add medium(arg1)′′/>
<xsd:enumeration value=′′add party(arg1)′′/>
<xsd:enumeration value=′′apply callee′′/>
<xsd:enumeration value=′′apply caller′′/>
<xsd:enumeration value=′′confirm bandwidth′′/>
<xsd:enumeration value=′′connect to(arg1)′′/>
<xsd:enumeration value=′′fork to(arg1)′′/>
<xsd:enumeration value=′′forward to(arg1)′′/>
<xsd:enumeration value=′′note availability(arg1)′′/>
<xsd:enumeration value=′′note presence(arg1)′′/>
<xsd:enumeration value=′′play clip(arg1)′′/>
<xsd:enumeration value=′′reject call(arg1)′′/>
<xsd:enumeration value=′′reject bandwidth(arg1)′′/>
<xsd:enumeration value=′′remove medium(arg1)′′/>
<xsd:enumeration value=′′remove party(arg1)′′/>

</xsd:restriction>
</xsd:simpleType>

Most of these actions are those of regular policies for call control in section 3.1.5. However, the following
actions are additional for resolution:

apply callee: This chooses the callee’s call action.

apply caller: This chooses the caller’s call action.

3.4 Example Resolution Policies for Call Control
The following call conflict policies illustrate what can be done with the language. They should provide an insight
in the use of the policy language for real examples. The examples are chosen such that they highlight the main
aspects of the language and still appear realistic, rather than being contrived.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a call conflict policy in the following form:
<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution call.xsd′′>
...

</policy document>
A resolution policy typically contains two triggers, each of which defines explicitly a variable and implicitly a

preference. In general, there are four cases to be considered by a resolution depending on whether the variables are
equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In some cases it is
sufficient to check for the equal/similar combination; the other combinations are handled by default. In other cases,
the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all four combinations
may need individual treatment. Since the else operator can be used with only two alternative actions, multiple
resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. Resolution policies may have triggers with no or two arguments,
so there may not be exactly two variable values. Resolution policies may also have more than two triggers.
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3.4.1 Call Fork-Fork Conflict – Generic Resolution
Virtually any call control action may conflict with itself if its arguments are the same and the preferences of each
party are opposite. As an example, suppose one party wishes to fork the call to an alternative address (e.g. to try
a home number in addition to the dialled office number). Suppose the other party does not wish to fork the call
to this address (e.g. because the callee must be called only in the office). The following detects this conflict, and
resolves it by choosing the stronger of the two preferences.

This resolution explicitly deals with only the equal/opposite case. The equal/similar case is not explicitly
handled; ‘must fork to address A’ and ‘should fork to address A’, for example, will result in forking to A since
one of the two equivalent actions will be selected by default. The unequal/opposite case is not explicitly handled;
‘must fork to address A’ and ‘should not fork to address B’, for example, will result in forking to only A since
actions with negative preferences are not performed. The unequal/similar case is not explicitly handled; ‘must
fork to address A’ and ‘should fork to address B’, for example, will result in forking to both A and B since both
actions are compatible.

<resolution id=′′Call fork-fork conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′>fork to(arg1)</trigger>
<trigger arg1=′′variable1′′>fork to(arg1)</trigger>

</triggers>
<conditions>
<and/>
<condition>

<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>out</operator>
<value>:preference1</value>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for pairs of add caller, add party, add medium, etc.

3.4.2 Call Forward-Forward Conflict – Generic Resolution
Call forwarding is another example of a call control action conflicting with itself. However, the resolution is
more complex. There is conflict if the forwarding addresses are the same and the preferences are opposite
(equal/opposite case), or if the forwarding addresses differ and the preferences are similar (unequal/similar case)
The resolution given here is to apply the caller’s preference. The equal/similar and unequal/opposite cases are
handled by default much as described in section 3.4.1.

<resolution id=′′Call forward-forward conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′>forward to(arg1)</trigger>
<trigger arg1=′′variable1′′>forward to(arg1)</trigger>

</triggers>
<conditions>
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<or/>
<conditions>
<and/>
<condition>

<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>out</operator>
<value>:preference1</value>

</condition>
</conditions>
<conditions>

<and/>
<condition>

<parameter>variable0</parameter>
<operator>ne</operator>
<parameter>variable1</parameter>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>

</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for pairs of note availability, note presence, reject call, etc.

3.4.3 Medium Add-Remove Conflict – Generic Resolution
A number of call control actions are inverses of each other, and are an obvious source of conflict. For example, a
conflict arises if one party wishes to add some medium to the call while the other party wishes to remove this. The
following checks if the medium in question is the same for both actions, and whether the associated preferences
are similar. If so, it selects the weaker preference.

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must add medium M’ and ‘should not remove medium M’, for example, will result in adding M since
actions with negative preferences are not performed. The unequal cases are handled by default much as described
in section 3.4.1.

<resolution id=′′Medium add-remove conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′>add medium(arg1)</trigger>
<trigger arg1=′′variable1′′>remove medium(arg1)</trigger>

</triggers>
<conditions>

<and/>
<condition>

<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
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<condition>
<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for add party vs. remove party, confirm bandwidth vs. reject bandwidth,
etc.

3.4.4 Call Fork-Reject Conflict – Generic Resolution
Sometimes, conflicting actions are not simple inverses. For example, a conflict arises if one party wishes to fork
the call while the other wishes to reject it. Only the preferences of the parties are relevant to resolution: if they are
similar, the superior party’s action is selected by the following:

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must fork to address A’ and ‘should not reject call for reason R’, for example, will result in forking to
A since actions with negative preferences are not performed. The unequal cases are irrelevant since the variable
values need not be checked.

<resolution id=′′Call fork-reject conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′>fork to(arg1)</trigger>
<trigger arg1=′′variable1′′>reject call(arg1)</trigger>

</triggers>
<condition>

<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
<action>apply stronger</action>

</policy rule>
</resolution>

Similar resolutions could be defined for fork to vs. forward to, forward to vs. reject call, etc.

3.4.5 Bandwidth Confirm-Reject Conflict – Specific Resolution
This example is a straightforward conflict: one party wishes to confirm the requested bandwidth, while the other
wishes to reject the request. The resolution this time is specific: the bandwidth request is confirmed, and the
conflict is noted in the confirmer’s event log. This resolution explicitly deals with only the equal/similar case.
Other cases are handled by default much as described in section 3.4.1.

<resolution id=′′Bandwidth confirm-reject conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger>confirm bandwidth</trigger>
<trigger arg1=′′variable1′′>reject bandwidth(arg1)</trigger>

</triggers>
<condition>

<parameter>preference0</parameter>
<operator>in</operator>
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<value>:preference1</value>
</condition>
<actions>

<and/>
<action>confirm bandwidth</action>
<action arg1=′′Overruled bandwidth conflict of :caller: and callee′′>

log event(arg1)
</action>

</actions>
</policy rule>

</resolution>

3.4.6 Caller-Medium Add-Add – Specific Resolution
Suppose that one party wishes to add video to the call, while the other wishes include a third party in the call
(add caller). This might be considered undesirable, since the third party would be able to view the call parties
and their workplaces. The resolution is to allow both actions, but to conference in bob@cs.stir.ac.uk to oversee
the call (add party). Note that the triggers and actions are all of different types. This resolution explicitly deals
with only the equal/similar case. Other cases are handled by default much as described in section 3.4.1.

<resolution id=′′Caller-Medium add-add conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′>add caller(arg1)</trigger>
<trigger arg1=′′variable1′′>add medium(arg1)</trigger>

</triggers>
<conditions>

<and/>
<condition>
<parameter>variable1</parameter>
<operator>eq</operator>
<value>video</value>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<actions>

<and/>
<actions>

<and/>
<action arg1=′′variable0′′>add caller(arg1)</action>
<action arg1=′′variable1′′>add medium(arg1)</action>

</actions>
<action arg1=′′bob@cs.stir.ac.uk′′>add party(arg1)</action>

</actions>
</policy rule>

</resolution>

3.4.7 Timer Start-Stop Conflict – Specific Resolution
Timer actions can give rise to conflicts. The following checks if the timer identifier is the same for both actions,
and whether the associated preferences are similar. If so, it chooses to start the timer identified by variable0.

This resolution explicitly deals with only the equal/similar case. The equal/opposite case is not explicitly
handled; ‘must start timer T’ and ‘should not stop timer T’, for example, will result in timer T being started. The
unequal cases are handled by default much as described in section 3.4.1.
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<resolution id=′′Timer start-stop conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2008-07-10T20:40:00′′>
<policy rule>

<triggers>
<and/>

<trigger arg1=′′variable0′′ arg2=′′variable2′′>start timer(arg1,arg2)</trigger>
<trigger arg1=′′variable1′′>stop timer(arg1)</trigger>
</triggers>
<conditions>

<and/>
<condition>

<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>in</operator>
<value>:preference1</value>

</condition>
</conditions>
<action arg1=′′:variable0′′ arg2=′′:variable2′′>start timer(arg1,arg2)</action>

</policy rule>
</resolution>

Similar resolutions could be defined for start timer vs. start timer, start timer vs. restart timer, etc.

3.4.8 Variable Set-Set Conflict – Specific Resolution
Setting variables can give rise to conflicts. The following checks if the variable identifier is the same for both ac-
tions, but the values being assigned are different. If so it logs the situation and performs no assignment, otherwise
it performs both assignments (even if the same variable is involved in both cases).

This resolution explicitly deals with the equal and unequal cases. Note that no preferences are taken into
account as an assignment conflict is considered to be a fundamental problem.

<resolution id=′′Variable set-set conflict′′

owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′ enabled=′′true′′

changed=′′2007-12-13T20:40:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′

arg2=′′variable2′′>set variable(arg1,arg2)</trigger>
<trigger arg1=′′variable1′′

arg2=′′variable3′′>set variable(arg1,arg2)</trigger>
</triggers>
<conditions>

<and/>
<condition>

<parameter>variable0</parameter>
<operator>eq</operator>
<parameter>variable1</parameter>

</condition>
<condition>

<parameter>variable2</parameter>
<operator>ne</operator>
<parameter>variable3</parameter>

</condition>
</conditions>
<actions>
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<else/>
<action arg1=′′Incompatible assignment to :variable0′′>log event(arg1)</action>
<actions>

<and/>
<action arg1=′′:variable0′′ arg2=′′:variable2′′>

set variable(arg1,arg2)
</action>
<action arg1=′′:variable1′′ arg2=′′:variable3′′>

set variable(arg1,arg2)
</action>

</actions>
</actions>

</policy rule>
</resolution>

Similar resolutions could be defined for set variable vs. unset variable, and unset variable vs. unset variable.

3.5 Prototype Policies for Call Control
An XML wrapper is required for a call control prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular call.xsd′′>
...

</policy document>

Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.
As an example of a prototype policy, the following aims to limit call duration. The call length is determined

by a parameter ($duration) that is optimised during goal refinement. The policy has three sequential rules that
are tried in order until the one with a matching trigger is found. When a call is connected, a call timer is started.
When the call is disconnected, this timer is stopped. If the timer expires, the call is forcibly disconnected.

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′call duration = $duration′′ id=′′Parameterised call duration′′

enabled=′′true′′ changed=′′2009-01-03T17:18:00′′>
<policy rules>

<sequential/>
<policy rule>

<trigger>connect</trigger>
<action arg1=′′call timer′′ arg2=′′$duration′′>

start timer(arg1,arg2)
</action>

</policy rule>
<policy rules>

<sequential/>
<policy rule>

<trigger>disconnect</trigger>
<action arg1=′′call timer′′>stop timer(arg1)</action>

</policy rule>
<policy rule>

<trigger arg1=′′call timer′′>timer expiry(arg1)</trigger>
<action>disconnect</action>

</policy rule>
</policy rules>

</policy rules>
</prototype>

The abstract effect of this policy on controlled variables is to limit the call duration to the optimal value of the
$duration parameter.
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3.6 Goals for Call Control
An XML wrapper is required for a call control goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel.xsd′′>
...

</policy document>

As an example of a goal for call control, the following applies only when the day is Monday to Friday:

<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Maximise multimedia use′′ enabled=′′true′′ changed=′′2009-01-03T17:18:00′′>
<policy rule>

<condition>
<parameter>day</parameter>
<operator>in</operator>
<value>1..5</value>

</condition>
<action arg1=′′multimedia use′′>maximise(arg1)</action>

</policy rule>
</goal>

This goal aims to maximise multimedia use. This is a goal measure that is defined separately in terms of various
controlled variables:

0.03×call bandwidth×call quality
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Chapter 4

Sensor Networks

4.1 Regular Policies for Sensor Networks

4.1.1 Introduction
This section describes regular policies for the domain of sensor networks. It discusses the triggers, conditions and
actions used to specialise the language for this field. The policy server employs a terminology mapping between
information in the underlying sensor network and information in the policy system.

For sensor networks, regular policies are extended with domain-specific triggers, conditions and actions. The
relationship among these is shown in figure 4.1. Core triggers (section 2.6), condition parameters (section 2.7)
and actions (section 2.8) are also applicable. The combination rules are as follows:

• Triggers may be combined with and or or. Internal triggers (marked † in figure 3.1) may be combined with
any other triggers. At most one external trigger (no † in figure 4.1) may appear underneath an and.

• Triggers establish environment variables that are used as condition parameters. If a combination of triggers
is provided, and establishes the union of the environment variables, while or establishes their intersection.

• Triggers allow certain actions to occur. If a combination of triggers is provided, and allows the union of the
actions, while or allows their intersection.

Trigger Parameters Established Actions Permitted
internal† device out, log event, restart timer,

send message, set variable, start timer,
stop timer, unset variable

device in entity name,
entity instance,
message period,
message type,
parameter values

device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

timer expiry† timer instance device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

† internal trigger that may be combined with any other

Figure 4.1: Relationship between Sensor Network Triggers, Conditions and Actions

4.1.2 Common Parameters and Environment Variables
Regular policies for sensor networks use a common set of parameters within triggers, conditions and actions.
These parameters are outlined below together with examples of their use.
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message type: This identifies the type of trigger or action. The value will vary depending on the particular
entity name. Example trigger types might be generator overspeed, minimum temperature and opera-
tor input. Example action names might be set rule and set threshold for a sensor node, and restart agent
or stop agents for a policy agent. This parameter is mandatory.

entity name: This identifies an external entity that may have policies associated with it. Example entity names
might be operator console, policy agent, sensor node and turbine. An entity name may be unnecessary
if it is implied by the message type, e.g. operator input or output implies use of the default console. If this
parameter is omitted, its default is an empty string.

entity instance: This identifies a particular instance of entity name. For example, a turbine instance might be
turbine number B43, while a policy agent instance might be temperature anomaly agent. It is possible not
all entities will have instances, such as an operator console. If this parameter is omitted, its default is an
empty string.

message period: The time period to which a trigger or action refers. The period is either a non-negative integer
n (during the last n minutes for a trigger, in n minutes for an action) or a time in HH:MM:SS format (since
this time for a trigger, at this time for an action). Due to transmission and processing delays, this time period
is unlikely to be respected exactly. An absolute time reference spans a maximum of 24 hours. Suppose the
time is currently 12:00:00. For a trigger, 11:00:00 means ‘since 11AM today’ and 13:00:00 means ‘since
1PM yesterday’. For an action, 11:00:00 means ‘at 11AM tomorrow’ and 13:00:00 means ‘at 1PM today’.
If this parameter is omitted, its default is ‘just occurred’ for a trigger and ‘now’ for an action.

parameter values: This is an open-ended string that may be a single value like ‘configuration success’ or a
comma-separated list of values like ‘14,20,28’. It may also include sub-strings in square brackets, such as
‘40,B34,[wind speed,15,alert operator]’. If this parameter is omitted, its default is an empty list of values.

As far as the policy server is concerned, these parameters are simply uninterpreted strings whose meaning is given
only by the external system. The configuration, addressing and parameters of sensor networks are outside the
scope of the policy system.

The policy system establishes environment variables on the occurrence of each trigger. The parameters above
double as environment variables. This is a flexible approach, allowing each parameter to appear explicitly in a
trigger or action, as well as being defined implicitly as an environment variable. Environment variables may also
be used to output parameter values literally in an action, such as inserting the entity instance of a turbine in a
warning message to an operator console. The example policies in sections 4.2.2 and 4.2.3 demonstrate the use of
environment variables.

4.1.3 Triggers
Regular policies for sensor networks have triggers as follows. (The somewhat lengthy definition simply says that
a mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy triggers in
section 2.13.1.

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,arg2)′′/>
<xsd:enumeration value=′′device in(arg1)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4)′′/>
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<xsd:enumeration value=′′device in(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for sensor networks are structured as follows:

device in(type,entity,instance,period,parameters): This arises from any external device. Only the type is manda-
tory; section 4.1.2 explains these values.

Trigger arguments are simply uninterpreted strings. Once more definite examples in this new domain have been
determined, trigger arguments may be made more constrained.

4.1.4 Conditions
Regular policies for sensor networks have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>

<xsd:enumeration value=′′entity instance′′/>
<xsd:enumeration value=′′entity name′′/>
<xsd:enumeration value=′′message period′′/>
<xsd:enumeration value=′′message type′′/>
<xsd:enumeration value=′′parameter values′′/>

</xsd:restriction>
</xsd:simpleType>

A detailed explanation of each parameter is given in section 4.1.2. The operators permitted for each parameter
are listed in figure 4.2; the use of other operators will yield a result, but this may not be useful. Some special rules
for values are as follows:

• For the identifier category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the value category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

In the case of date, day or time, a value may also be a range (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-
02-10).

In the case of parameter values, a comma-separated list is given in brackets. A list index is given in
brackets, e.g. parameter values[2] refers to the third element in the list. For convenience with single
values, omitting the index implies an index of 0 (so parameter values means parameter values[0]).

The semantics of the condition operator depend on the types of its operands. Suppose the operator is gt is used
with parameter operand parameter values[2] and value operand ‘12’. If the parameter operand is ‘20’ (i.e. is in
numerical format), the condition will be treated as numerical comparison. If the parameter operand is ‘on’ (i.e. a
string), the condition will be treated as string comparison.

Category Parameter Operator
identifier entity name, entity instance, message type eq, ne, in, out
value message period, parameter values eq, ne, in, out, gt, ge, lt, le

Figure 4.2: Identifier and Value Parameter Operators

4.1.5 Actions
Regular policies for sensor networks have actions as follows. (The somewhat lengthy definition simply says that
a mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy actions in
section 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not, an
action argument can be omitted to mean any argument value.
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<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy actions for sensor networks are structured as follows:

device out(type,entity,instance,period,parameters): This controls or configures an entity external to the policy
system. Only the type is mandatory; section 4.1.2 explains these values.

Action arguments are simply uninterpreted strings. Once more definite examples in this new domain have been
determined, action arguments may be made more constrained.

4.2 Example Regular Policies for Sensor Networks
The following sensor network policies illustrate the capabilities of the language. They should provide insight into
the policy language for real examples in this domain. Examples include policies to configure the sensor network
and to control aspects of an agent-based diagnostic system. Policies interact with the sensor network and also with
a human operator via a console interface.

Each example policy is introduced briefly by its natural language meaning. This introduction also draws
attention to some details of the policy language where appropriate.

An XML wrapper is required for a sensor network policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular sensor.xsd′′>
...

</policy document>

4.2.1 High Wind Alert
The following policy applies to domain 3.wind farm.com, i.e. wind farm 3. It alerts the operator if the average
speed from any anemometer is reported to be above 20m/s for at least one hour. No entity name or instance is
given in the action because operator messages are for the default console. In general there may be several trigger
parameters, but just a single value (the wind speed) is used here. Note that this policy deals with a single wind
speed report. To deal with multiple reports, the trigger history would need to be checked.

<policy owner=′′admin′′ applies to=′′@3.wind farm.com′′

id=′′High wind alert′′ enabled=′′true′′ changed=′′2007-09-25T10:20:59′′>
<policy rule>

<trigger arg1=′′average speed′′ arg2=′′anemometer′′>
device in(arg1,arg2)
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</trigger>
<conditions>

<and/>
<condition>

<parameter>message period</parameter>
<operator>ge</operator>
<value>60</value>

</condition>
<condition>

<parameter>parameter values</parameter>
<operator>gt</operator>
<value>20</value>

</condition>
</conditions>
<action arg1=′′operator output′′ arg5=′′Persistent high wind speed′′>

device out(arg1,,,,arg5)
</action>

</policy rule>
</policy>

4.2.2 Low Battery Alert
The following policy applies to the myers hill.org domain. It deals with a low battery warning from any sensor
node, logging the event and sending a message to 07779-432-020. Note the use of environment variables in the
actions.

<policy owner=′′admin′′ applies to=′′@myers hill.org′′

id=′′Low battery alert′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>

<trigger arg1=′′low battery′′ arg2=′′sensor node′′>
device in(arg1,arg2)

</trigger>
<actions>

<and/>
<action arg1=′′Low battery at sensor :entity instance′′>

log event(arg1)
</action>
<action arg1=′′sms:07779-432-020′′

arg2=′′Low battery warning from :entity name/:entity instance′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>
</policy>

4.2.3 Sensor Wake-up
The following policy assumes that a sensor causes a ‘hello’ event when it goes online. This information is
reported to operator console 3. The sensor is then configured to immediately store a rule with parameters
‘wind speed,15,alert operator’.

<policy owner=′′admin′′ applies to=′′@15.wind farm′′

id=′′Sensor wake-up′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>

<trigger arg1=′′sensor hello′′>device in(arg1)</trigger>
<actions>

<and/>
<action arg1=′′operator output′′ arg2=′′operator console′′ arg3=′′3′′

arg5=′′Sensor :entity instance is now online′′>
device out(arg1,arg2,arg3,,arg5)

</action>
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<action arg1=′′set rule′′ arg2=′′:entity name′′ arg3=′′:entity instance′′

arg5=′′[wind speed,15,alert operator]′′>
device out(arg1,arg2,arg3,,arg5)

</action>
</actions>

</policy rule>
</policy>

4.2.4 Reset All Agents
The following policy resets all agents in the external agent system at 9AM every Monday. Note that there is no
explicit trigger, only an implicit time trigger.

<policy owner=′′admin′′ applies to=′′@blacklaw.scotland.uk′′

id=′′Reset all agents′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>
<conditions>

<and/>
<condition>

<parameter>day</parameter>
<operator>eq</operator>
<value>1</value>

</condition>
<condition>

<parameter>time</parameter>
<operator>eq</operator>
<value>09:00:00</value>

</condition>
</conditions>
<action arg1=′′reset agents′′ arg2=′′agent system′′>

device out(arg1,arg2)
</action>

</policy rule>
</policy>

4.2.5 Retrain Power Agent
The following policy is triggered by input from the default operator console, asking that the power curve agent be
retrained. It asks the external agent system to retrain this agent in ten minutes using value 30.

<policy owner=′′admin′′ applies to=′′@air.co.uk′′

id=′′Retrain power agent′′ enabled=′′true′′ changed=′′2009-05-01T22:20:59′′>
<policy rule>

<trigger arg1=′′operator input′′ arg5=′′retrain power curve′′>
device in(arg1,,,,arg5)

</trigger>
<action arg1=′′retrain agent′′ arg2=′′agent system′′ arg3=′′power curve′′

arg4=′′10′′ arg5=′′30′′>
device out(arg1,arg2,arg3,arg4,arg5)

</action>
</policy rule>

</policy>

4.3 Resolution Policies for Sensor Networks

4.3.1 Introduction
This section is specific to resolution policies for sensor networks. It discusses the triggers, conditions and actions
that are used in this domain.
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Resolution policies are extended with domain-specific triggers, conditions and actions. The relationship
among these is much simpler than for regular policies. Any action may be associated with a trigger. The ac-
tual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger has
bound them).

In general, conflicting situations may arise due to the preference attributes of policies being opposite, or due
to the effects of policy actions clashing. As described in section 4.1.5, policies for sensor networks have only
one domain-specific action. Resolutions for this domain therefore deal with modality (preference) conflicts and
parameter conflicts for this action.

4.3.2 Triggers
Resolution policies for sensor networks have triggers as follows. These are added to the resolution policy triggers
in section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution
policy triggers are identical to regular policy actions for sensor networks (see section 4.1.5).

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

4.3.3 Conditions
Resolution policies for sensor networks have the same condition parameters as resolution policies in section 2.14.2.

4.3.4 Actions
Resolution policies for sensor networks have actions as follows. These are added to the resolution policy actions
in section 2.14.3 and to the core actions in section 2.8.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
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<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

These actions are those of regular policies for sensor networks in section 4.1.5. A number of goal-related or
domain-specific resolution actions will be considered in future, based on further policy attributes such as cost,
efficiency or time. These properties could help determine the action which best meets some goal. Once more
definite examples in this new domain have been determined, generic resolution actions may be extended.

4.4 Example Resolution Policies for Sensor Networks
The following sensor network conflict policies demonstrate the capabilities of the language. They should provide
an insight into the use of the policy language for real examples of handling conflicts in this domain.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a sensor network conflict policy in the following form:

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution sensor.xsd′′>
...

</policy document>

A resolution policy typically contains two triggers, each of which binds explicit variable values and implicit
preference values. In general, there are four cases to be considered by a resolution depending on whether the
variables are equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In
some cases it is sufficient to check for the equal/similar combination; the other combinations are handled by
default. In other cases, the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all
four combinations may need individual treatment. Since the else operator can be used with only two alternative
actions, multiple resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. For example, each trigger of a resolution policy may have up to
five parameters, and more than two triggers may be present in a resolution policy.

Policy conflicts in sensor networks can occur between the parameters of device out actions. Examples of
generic and specific resolutions for this type of conflict are given in sections 4.4.1 and 4.4.2. Conflicts may also
occur indirectly when actions cannot be performed simultaneously, due to limitations of the underlying hardware.
Section 4.4.3 gives an example of this type of conflict.

4.4.1 Action Parameter Conflict – Generic Resolution
The following resolution policy checks whether the action type, entity, instance and parameters are identical for
both actions. If the preferences are opposite, the action with the stronger preference is selected. To avoid a tedious
list of conditions on each individual action parameter, they are compared as a single string (the variable values
being interpolated into this).

Virtually any device out action may conflict with itself if its arguments are similar and the preferences of each
policy are opposite. The following example detects this conflict, and resolves it by choosing the stronger of the
two preferences.

This resolution explicitly deals with only the equal/opposite case. The equal/similar and unequal cases are
handled by default.

<resolution owner=′′admin′′ applies to=′′@turbine.org′′

id=′′Action parameter conflict - generic resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:20:59′′>
<policy rule>

<triggers>
<and/>
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<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg5=′′variable8′′>
device out(arg1,arg2,arg3,,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg5=′′variable9′′>
device out(arg1,arg2,arg3,,arg5)

</trigger>
</triggers>
<conditions>

<and/>
<condition>

<value>′:variable0,:variable2,:variable4,:variable8′</value>
<operator>eq</operator>
<value>′:variable1,:variable3,variable5,:variable9′</value>

</condition>
<condition>

<parameter>preference0</parameter>
<operator>out</operator>
<parameter>preference1</parameter>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

The same instance and period are important. If the periods for applying the actions is different, then they may not
conflict. Even if both actions concern the same entity, there may be no conflict if the instance differs.

In the example above, the policy with the stronger preference was selected. Other generic actions could
include applying the weaker policy, the newer/older policy (based on definition date), or the policy belonging to
the inferior/superior domain.

4.4.2 Action Parameter Conflict – Specific Resolution
The following resolution policy checks whether the action type, entity, instance and first parameter are identical
for both actions. If so, an operator is alerted to the conflict. Note the use of ‘[0]’ to select the first parameter.

<resolution owner=′′admin′′ applies to=′′@5.windy.us′′

id=′′Action parameter conflict - specific resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:20:59′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<condition>

<value>′:variable0,:variable2,:variable4,:variable8[0]′</value>
<operator>eq</operator>
<value>′:variable1,:variable3,:variable5,,:variable9[0]′</value>

</condition>
<action arg1=′′operator output′′

arg5=′′Conflicting values for entity :variable2 instance :variable4′′>
device out(arg1,,,,arg5)

</action>
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</policy rule>
</resolution>

Other resolutions could be defined such as a generic action, logging an event, or choosing one value.

4.4.3 Resource Conflict – Generic Resolution
The following resolution policy checks if one action is get log and the other is sensor check. If the action entity,
instance and period are identical for both actions, the action with the stronger preference is applied.

This conflict is an example of two actions that cannot be performed simultaneously due to limitations of
the underlying sensor network hardware. For example, there may be constraints on processing power, memory,
electrical power and link bandwidth. Although not detectable using analysis of policies alone, resolutions could
be written to handle potential conflicts with some knowledge of the abstract resources need to perform actions.

<resolution owner=′′admin′′ applies to=′′@3.wind farm′′

id=′′Resource conflict - generic resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:20:59′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′>
device out(arg1,arg2,arg3,arg4)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′>
device out(arg1,arg2,arg3,arg4)

</trigger>
</triggers>
<conditions>

<and/>
<conditions>

<or/>
<conditions>

<and/>
<condition>

<value>variable0</value>
<operator>eq</operator>
<value>′get log′</value>

</condition>
<condition>

<value>variable1</value>
<operator>eq</operator>
<value>′sensor check′</value>

</condition>
</conditions>
<conditions>

<and/>
<condition>

<value>variable0</value>
<operator>eq</operator>
<value>′sensor check′</value>

</condition>
<condition>

<value>variable1</value>
<operator>eq</operator>
<value>′get log′</value>

</condition>
</conditions>

</conditions>
<condition>

54



<value>′:variable2,:variable4,:variable6′</value>
<operator>eq</operator>
<value>′:variable3,:variable5,:variable7′</value>

</condition>
</conditions>
<action>apply newer</action>

</policy rule>
</resolution>

4.5 Prototype Policies for Sensor Networks
An XML wrapper is required for a call control prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular sensor.xsd′′>
...

</policy document>

Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.
As an example of a prototype policy, the following aims to deal with a higher than normal frequency of

vibration in a turbine blade. If this exceeds 20Hz, the turbine yaw angle is set to zero (i.e. the turbine is pointed
directly into the wind) and the yaw brake is turned on (so that the turbine head cannot rotate about a vertical axis).

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′turbine yaw angle = 0, turbine yaw status = 1′′

id=′′Cancel yaw on high blade vibration′′ enabled=′′true′′

changed=′′2009-03-25T21:20:59′′>
<policy rule>

<trigger arg1=′′blade vibration frequency′′ arg2=′′turbine′′>
device in(arg1,arg2)

</trigger>
<condition>

<parameter>message values</parameter>
<operator>ge</operator>
<value>20</value>

</condition>
<actions>

<and/>
<action arg1=′′set parameter′′ arg2=′′turbine′′ arg5=′′[yaw angle,0]′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′set parameter′′ arg2=′′turbine′′ arg5=′′[yaw brake,on]′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</prototype>

The abstract effect of this policy on controlled variables is to set the yaw angle to 0 and the yaw brake status to 1
(i.e. on).

4.6 Goals for Sensor Networks
An XML wrapper is required for a sensor network goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel.xsd′′>
...

</policy document>

As an example of a goal for sensor networks, the following always applies:
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<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Minimise component damage′′ enabled=′′true′′ changed=′′2009-03-25T22:44:59′′>
<policy rule>

<action arg1=′′turbine damage′′>minimise(arg1)</action>
</policy rule>

</goal>

This goal aims to minimise turbine damage. This is a goal measure that is defined separately in terms of various
controlled variables:

0.4×(
+turbine blade amplitude +turbine blade pitch
+turbine blade frequency +turbine cable twists
+turbine nacelle amplitude +turbine nacelle frequency
+turbine rotor speed
-turbine brake lining -turbine rotor status
-turbine yaw angle -turbine yaw status

)
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Chapter 5

Home Care

5.1 Regular Policies for Home Care

5.1.1 Introduction
This section describes regular policies for the domain of home care. It discusses the triggers, conditions and
actions used to specialise the language for this field.

For home care, regular policies are extended with domain-specific triggers, conditions and actions. The rela-
tionship among these is shown in figure 5.1. Core triggers (section 2.6), condition parameters (section 2.7) and
actions (section 2.8) are also applicable. The combination rules are as follows:

• Internal triggers (marked † in figure 5.1) may be combined with any other triggers. Currently in home care
at most one external trigger (no † in figure 5.1) is allowed.

Trigger Parameters Established Actions Permitted
internal† device out, log event, restart timer,

send message, set variable, start timer,
stop timer, unset variable

device in entity name,
entity instance,
message period,
message type,
parameter values

device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

timer expiry† timer instance device out, log event, restart timer,
send message, set variable, start timer,
stop timer, unset variable

† internal trigger that may be combined with any other

Figure 5.1: Relationship between Home Care Triggers, Conditions and Actions

5.1.2 Common Parameters and Environment Variables
Regular policy conditions can use the following parameters: date, day and time (section 2.13.2). Regular policies
for home care can also use a common set of parameters within triggers, conditions and actions. These parameters
are outlined below together with examples of their use.

message type: This identifies the type of trigger or action. The value will vary depending on the particular
entity name. Example trigger types might be door status, window status and room movement. Example
action names might be off and on for a home appliance. This parameter is mandatory.
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entity name: This identifies an external entity that may have policies associated with it. Example entity names
might be logging service, door and window. An entity name may be unnecessary if it is implied by the
message type. If this parameter is omitted, its default is an empty string.

entity instance: This identifies a particular instance of an entity name. For example, an instance of entity door
might be the identifier front, while an instance of a window might be bedroom 1. It is possible not all
entities will have instances, such as a logging service for sensor data. If this parameter is omitted, its default
is an empty string.

message period: The time period to which a trigger or action refers. The period is either a non-negative integer
n (during the last n minutes for a trigger, in n minutes for an action) or a time in HH:MM:SS format (since
this time for a trigger, at this time for an action). Due to transmission and processing delays, this time period
is unlikely to be respected exactly. An absolute time reference spans a maximum of 24 hours. Suppose the
time is currently 12:00:00. For a trigger, 11:00:00 means ‘since 11AM today’ and 13:00:00 means ‘since
1PM yesterday’. For an action, 11:00:00 means ‘at 11AM tomorrow’ and 13:00:00 means ‘at 1PM today’.
If this parameter is omitted, its default is ‘just occurred’ for a trigger and ‘now’ for an action.

parameter values: This is an open-ended string that may be a single value like ‘log success’ or a comma-
separated list of values like ‘[20,30]’. To specify the parameters for an action, each value in the list may
be name-value pair, such as period=01:00:00. The parameter list may also include sub-strings in brackets,
such as [motion,01/12/2007,12/12/2007],40. If this parameter is omitted, its default is an empty list of
values.

As far as the policy server is concerned, these parameters are simply uninterpreted strings whose meaning is given
only by the external system. The following are concrete examples of what might be written:

X10: X10 (http://www.x10community.com) is a standard for controlling appliances connected to the electrical
mains. X10 is mostly used for output (turning appliances on and off) though it can also be used to set an
intermediate value (e.g. to dim a light). Some X10 input devices also exist (e.g. movement sensors). Param-
eters for an X10 device are as follows: message type is ‘on’ or ‘off’; entity name is ‘X10’; entity instance
is ‘<house code><unit code>’ (e.g. ‘B3’); parameter values may carry an integer value (e.g. a dimming
level 0..31 for devices that support this).

UPnP: UPnP (Universal Plug and Play, http://www.upnp.org) is a standard for controlling devices connected via
a home network. UPnP is not (yet) common, but is intended for things like audio-visual devices (e.g. DVD
players, TVs, surveillance cameras). Parameters for a UPnP device are as follows: message type is a string
meaningful to the device (e.g. ‘play’, ‘change channel’ or ‘view’); entity name is UPnP; entity instance
is a user-friendly identifier for the device (e.g. ‘DVD’, ‘TV’, ‘exterior camera’); parameter values may be
set to a comma-separated list of values meaningful to that device in the form ‘key=value’ (e.g. ‘track=5’,
‘channel=BBC1’, ‘pan=20’).

For a particular home, there may be other classes of devices such as ‘Jini’ (a distributed device architecture),
‘Tunstall’(telecare devices) or ‘Visonic’ (wireless devices). The configuration, addressing and parameters of home
care devices are outside the scope of the policy system.

The policy system establishes environment variables on the occurrence of each trigger. The parameters above
double as environment variables. This is a flexible approach, allowing each parameter to appear explicitly in a
trigger or action, as well as being defined implicitly as an environment variable. Environment variables may also
be used to output parameter values literally in an action, such as inserting the entity instance of a sensor in a
warning message to care centre staff. The example policies in sections 5.2.2 and 5.2.3 demonstrate the use of
environment variables.

5.1.3 Triggers
Regular policies for home care have triggers as follows. (The somewhat lengthy definition simply says that a
mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy triggers in
section 2.13.1.
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<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,arg2)′′/>
<xsd:enumeration value=′′device in(arg1)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,arg3)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device in(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy triggers for home care are structured as follows:

device in(type,entity,instance,period,parameters): This arises from any external device. Only the type is manda-
tory; section 5.1.2 explains these values.

5.1.4 Conditions
Regular policies for home care have condition parameters as follows:

<xsd:simpleType name=′′parameter domain′′>
<xsd:restriction base=′′parameter domain′′>

<xsd:enumeration value=′′entity instance′′/>
<xsd:enumeration value=′′entity name′′/>
<xsd:enumeration value=′′message type′′/>
<xsd:enumeration value=′′parameter values′′/>
<xsd:enumeration value=′′message period′′/>

</xsd:restriction>
</xsd:simpleType>

A detailed explanation of each parameter is given in section 5.1.2. The operators permitted for each parameter
are listed in figure 5.2; the use of other operators will yield a result, but this may not be useful. Some special rules
for values are as follows:

• For the identifier category, in and out are used with a comma-separated list of values to mean ‘among’ and
‘not among’. That is, the parameter is checked for presence or absence in a list of values.

• For the value category, in and out are used with a comma-separated list of values to mean ‘among’ and ‘not
among’. That is, the parameter is checked for presence or absence in a list of values.

In the case of date, day or time, a value may also be a range (e.g. 09:00:00..12:00:00 or 2005-02-03..2005-
02-10).

In the case of parameter values, a comma-separated list is given in brackets. A list index is given in
brackets, e.g. parameter values[2] refers to the third element in the list. For convenience with single
values, omitting the index implies an index of 0 (so parameter values means parameter values[0]).

The semantics of the condition operator depend on the types of its operands. Suppose the operator is gt is used
with parameter operand parameter values[2] and value operand ‘12’. If the parameter operand is ‘20’ (i.e. is in
numerical format), the condition will be treated as numerical comparison. If the parameter operand is ‘on’ (i.e. a
string), the condition will be treated as string comparison.
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5.1.5 Actions
Regular policies for home care have actions as follows. (The somewhat lengthy definition simply says that a
mandatory arg1 is followed by optional trailing arguments.) These are added to the regular policy actions in
section 2.8. Actions are requests to the underlying communications layer. If the policy preference is must not, an
action argument can be omitted to mean any argument value.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Regular policy actions for home care are structured as follows:

device out(type,entity,instance,period,parameters): This controls or configures an entity external to the policy
system. Only the type is mandatory; section 5.1.2 explains these values.

5.2 Example Regular Policies for Home Care
The following home care policies illustrate the capabilities of the language. They should provide insight into the
policy language for real examples in this domain. They demonstrate the possibilities of supporting old people in
their everyday life through ICT (Information and Communications Technologies) to promote their independent
living. Examples include policies to support users in medical care, home assistance, safety, communication and
entertainment. Home care systems make use of situations detected by ‘sensors’ (including software components
such as a reminder service), and interact with the user by controlling ‘actuators’ (including software components
such as a speech synthesiser).

Each example policy is introduced briefly by its natural language meaning. This introduction also draws
attention to some details of the policy language where appropriate.

An XML wrapper is required for a home care policy in the following form:
<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

</policy document>

Category Parameter Operator
identifier entity name, entity instance, message type eq, ne, in, out
value message period, parameter values eq, ne, in, out, gt, ge, lt, le

Figure 5.2: Common Parameter Operators
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5.2.1 Night Wandering Reminder
Older people, especially those with dementia, are prone to waking in the middle of the night and leaving the
house. The following policy advises the user to return to bed using synthesised speech (say, of a family member).
It applies to domain house3.match-project.org.uk, i.e. house 3 in the trial area of the MATCH project.

When the front door is opened, if the time is 11PM–7AM and the main bed is unoccupied, the message ‘It is
night time – go back to bed’ is synthesised on the hallway loudspeaker. To avoid having to hard-code the policy for
the entity instance corresponding to the front door, the policy variable front is used instead. Similarly, main bed
is a policy variable that identifies the main bed occupancy sensor. These will be defined separately for the house
(whether manually through the policy wizard or automatically through a configuration system). The trigger input
carries a single value ‘open’. The message period is omitted for both the trigger (i.e. ‘trigger just occurred’) and
the action (i.e. ‘perform action now’).

<policy owner=′′admin′′ applies to=′′@house3.match-project.org.uk′′

id=′′Night wandering reminder′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rule>

<trigger arg1=′′status′′ arg2=′′door′′ arg3=′′:front′′ arg5=′′open′′>
device in(arg1,arg2,arg3,,arg5)

</trigger>
<conditions>

<and/>
<condition>

<parameter>time</parameter>
<operator>in</operator>
<value>23:00:00..07:00:00</value>

</condition>
<condition>

<parameter>:main bed</parameter>
<operator>eq</operator>
<value>′unoccupied′</value>

</condition>
</conditions>
<action arg1=′′speak′′ arg2=′′loudspeaker′′

arg3=′′:hallway′′ arg5=′′It is night time - go back to bed′′>
device out(arg1,arg2,arg3,,arg5)

</action>
</policy rule>

</policy>

5.2.2 Water Heating Control
The following policy deals with control of domestic water heating. Water heating is initiated at night to make
use of off-peak electricity. Since the need for hot water is limited, this policy requests water heating only twice
per week. At 11PM every day, the current day number is checked. On Wednesdays (day 3) and Saturdays
(day 6), water heating is turned on (policy variable immerser) and an email message is sent to the householder
(tom@house4.stirling.com) to report this. On other days, water heating is turned off (it may already have been
off) and the householder is notified.

There is no explicit trigger in this example. Instead, a time trigger is inferred from the time condition. The
water heater is presumed to be controlled by the X10 commands activate and deactivate.

<policy owner=′′admin′′ applies to=′′@house4.stirling.com′′

id=′′Water heating control′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rules>

<sequential/>
<policy rule>

<conditions>
<and/>
<condition>
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<parameter>time</parameter>
<operator>eq</operator>
<value>23:00:00</value>

</condition>
<condition>

<parameter>day % 3</parameter>
<operator>eq</operator>
<value>0</value>

</condition>
</conditions>
<actions>

<and/>
<action arg1=′′activate′′ arg2=′′X10′′ arg3=′′:immerser′′>

device out(arg1,arg2,arg3)
</action>
<action arg1=′′tom@house4.stirling.com′′

arg2=′′Immerser turned on at :time :date′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>
<policy rule>

<conditions>
<and/>
<condition>

<parameter>time</parameter>
<operator>eq</operator>
<value>23:00:00</value>

</condition>
<condition>

<parameter>day % 3</parameter>
<operator>ne</operator>
<value>0</value>

</condition>
</conditions>
<actions>

<and/>
<action arg1=′′deactivate′′ arg2=′′X10′′ arg3=′′:immerser′′>

device out(arg1,arg2,arg3)
</action>
<action arg1=′′tom@house4.stirling.com′′

arg2=′′Immerser turned off at :time :date′′>
send message(arg1,arg2)

</action>
</actions>

</policy rule>
</policy rules>

</policy>

5.2.3 Log Activities
Logging everyday activity can be valuable to determine long-term trends. However, the nature of the logging
should vary according to the circumstances and preferences of the individual. The following policy receives
a logging request that specifies two lists of sensors: those whose logging should be activated (trigger parame-
ter values[0], action arg5), and those whose logging should be deactivated (trigger parameter values[1], action
arg5). These values are obtained implicitly from the trigger through the parameter values environment variable.

<policy owner=′′admin′′ applies to=′′@raploch.org.uk′′

id=′′Log activities′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rule>
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<trigger arg1=′′logging request′′>device in(arg1)</trigger>
<actions>

<and/>
<action arg1=′′activate′′ arg2=′′logger′′ arg5=′′:parameter values[0]′′>

device out(arg1,arg2,,,arg5)
</action>
<action arg1=′′deactivate′′ arg2=′′logger′′ arg5=′′:parameter values[1]′′>

device out(arg1,arg2,,,arg5)
</action>

</actions>
</policy rule>

</policy>

5.2.4 Night Security Alarm
The following policy activates an alarm and a camera (policy variables alarm and camera) for 20 minutes if there
is movement in the hallway or lounge (policy variables hallway and lounge) between midnight and 6AM. Both
the alarm and the camera are controlled via UPnP.

<policy owner=′′feng@stirling.org.uk′′

applies to=′′@house4.cornton.stirling.org.uk′′

id=′′Night security alarm′′ enabled=′′true′′ changed=′′2009-05-01T22:12:00′′>
<policy rule>

<triggers>
<or/>
<trigger arg1=′′movement′′ arg2=′′motion sensor′′ arg3=′′:hallway′′>

device in(arg1,arg2,arg3)
</trigger>
<trigger arg1=′′movement′′ arg2=′′motion sensor′′ arg3=′′:lounge′′>

device in(arg1,arg2,arg3)
</trigger>

</triggers>
<condition>

<parameter>time</parameter>
<operator>in</operator>
<value>00:00:00..06:00:00</value>

</condition>
<actions>

<and/>
<action arg1=′′activate′′ arg2=′′UPnP′′ arg3=′′:alarm′′ arg5=′′period=20′′>

device out(arg1,arg2,arg3,,arg5)
</action>
<action arg1=′′activate′′ arg2=′′UPnP′′ arg3=′′:camera′′ arg5=′′period=20′′>

device out(arg1,arg2,arg3,,arg5)
</action>

</actions>
</policy rule>

</policy>

5.2.5 Record TV Programme
Home care policies can assist the user in social communication and entertainment. It is presumed that a TV
scheduler service can request that a programme be recorded. The first parameter of the request (trigger param-
eter values[0], action arg4) specifies the delay before the recording should begin. The second parameter of the
request (trigger parameter values[1], action arg5) specifies the length of the recording. Recording is performed
on a video cassette recorder (policy variable VCR).

<policy owner=′′gavin@cornton.com′′ applies to=′′@flat2.cornton.com′′

id=′′Record TV programme′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
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<policy rule>
<trigger arg1=′′record request′′ arg2=′′tv scheduler′′>

device in(arg1,arg2)
</trigger>
<action arg1=′′activate′′ arg2=′′UPnP′′ arg3=′′:VCR′′

arg4=′′:parameter values[0]′′ arg5=′′period=:parameter values[1]′′>
device out(arg1,arg2,arg3,arg4,arg5)

</action>
</policy rule>

</policy>

5.3 Resolution Policies for Home Care

5.3.1 Introduction
This section is specific to resolution policies for home care. It discusses the triggers, conditions and actions that
are used in this domain.

Resolution policies are extended with domain-specific triggers, conditions and actions. The relationship
among these is much simpler than for regular policies. Any action may be associated with a trigger. The ac-
tual parameters of these actions must be literal values, or the values of variable0 to variable9 (if a trigger has
bound them).

In general, conflicting situations may arise due to the preference attributes of policies being opposite, or due to
the effects of policy actions clashing. As described in section 5.1.5, policies for home care have only one domain-
specific action. Resolutions for this domain therefore deal with modality (preference) conflicts and parameter
conflicts for this action.

5.3.2 Triggers
Resolution policies for home care have triggers as follows. These are added to the resolution policy triggers in
section 2.14.1 and to the core triggers in section 2.6. Since resolutions are triggered by actions, resolution policy
triggers are identical to regular policy actions for home care (see section 5.1.5).

<xsd:simpleType name=′′trigger domain′′>
<xsd:restriction base=′′trigger domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

5.3.3 Conditions
Resolution policies for home care have the same condition parameters as resolution policies in section 2.14.2.
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5.3.4 Actions
Resolution policies for home care have actions as follows. These are added to the resolution policy actions in
section 2.14.3 and to the core actions in section 2.8. These actions are those of regular policies for home care in
section 5.1.5.

<xsd:simpleType name=′′action domain′′>
<xsd:restriction base=′′action domain′′>

<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,arg2)′′/>
<xsd:enumeration value=′′device out(arg1)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,arg3)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,arg4)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,,,arg5)′′/>
<xsd:enumeration value=′′device out(arg1,arg2,arg3,,arg5)′′/>

</xsd:restriction>
</xsd:simpleType>

Further issues to investigate in home care conflicts include the following:

Conflicts of Multiple Stakeholders: In home care, multiple stakeholders are involved such as care centre staff,
medical professionals, social workers, relatives, and the end users themselves. These will belong to different
groups. The conflicts of multiple stakeholders need to be addressed in the home care systems. However, it
is not yet clear whether the detection and resolution of these conflicts should be handled inside the policy
system or not. If conflicts need to be addressed inside the policy system, detecting policy conflicts among
multiple stakeholders is not much different from detecting other types of conflicts. However, resolving
policy conflicts of multiple stakeholders remains an issue as there is no hierarchy among them.

Dependency among Situations: Raw sensor data can be used to infer high-level situations that trigger policies.
Different high-level situations may be inferred from the same sensor data (e.g. the door being reported open
might indicate normal or forced entry). How to detect and resolve conflicts of policies with interdependent
situations needs to be investigated.

Conflicts among Time-Based Policies: Unlike triggers from sensors, time-based triggers are handled implicitly
by the policy server or explicitly in policies. How to detect conflicts of policies with time-based triggers
will also be considered in the future.

Addressing these issues requires a better understanding of home care systems. Once more definite examples
in this new domain have been determined, generic resolution actions may be extended and more examples of
resolution policies may be given.

5.4 Example Resolution Policies for Home Care
The following home care conflict policies demonstrate the capabilities of the language. They should provide an
insight into the use of the policy language for real examples of handling conflicts in this domain.

Each example is introduced briefly by its natural language meaning. This introduction also draws attention to
some details of the policy language where appropriate.

An XML wrapper is required for a home care policy in the following form:
<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′
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xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel resolution home.xsd′′>
...

</policy document>

A resolution policy typically contains two triggers, each of which binds explicit variable values and implicit
preference values. In general, there are four cases to be considered by a resolution depending on whether the
variables are equal/unequal and whether the preferences are similar/opposite. This can often be simplified. In
some cases it is sufficient to check for the equal/similar combination; the other combinations are handled by
default. In other cases, the equal/opposite and unequal/similar combinations may be handled. In unusual cases, all
four combinations may need individual treatment. Since the else operator can be used with only two alternative
actions, multiple resolutions may therefore be required for the same trigger combination.

There are other variations on the basic case. For example, each trigger of a resolution policy may have up to
five parameters, and more than two triggers may be present in a resolution policy. Policy conflicts in home care
can be modality conflicts. They can also be one form of goal conflict, which occurs between the parameters of
device out actions. An example of modality conflict is given in section 5.4.1. Examples of generic and specific
resolutions for conflicts among device out parameters are given in sections 5.4.2 and 5.4.3. For generic resolution,
the outcome is chosen from the set of conflicting actions. For specific resolution, any regular policy action can be
specified as the outcome, and is not limited to the set of conflicting actions.

5.4.1 Messaging Conflict – Generic Resolution
The following example assumes a user has several policies regarding display of messages. In one policy, the
user asks that messages be displayed on the TV. In another policy, the user states that this should not happen
at inconvenient times (e.g. when family members are likely to be watching TV). Specifying these situations in
several policies instead of one provides more flexibility, but can lead to conflict.

The following resolution policy checks for the same action (e.g. display message), the same device (e.g. TV),
and the same delay before displaying a message (e.g. 30 minutes). If the entity, instance and period are identical
for both actions, but the preferences are opposite, the action with the stronger preference is applied. Other generic
actions could include applying the weaker policy, the newer/older policy (based on definition date), or the policy
belonging to the inferior/superior domain.

The same instance and period are important. Even if both actions concern the same entity, there may be no
conflict if the instance differs. If the periods for applying the actions are different, then they may not conflict. This
policy is limited in that it allows both messages to be displayed even if the periods differ by a small amount.

To avoid a tedious list of conditions on each individual action parameter, they are compared as a single list.

<resolution owner=′′admin′′ applies to=′′@sheltered.pendreich.gov.uk′′

id=′′Messaging conflict - generic resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2= ′′variable2′′ arg3=′′variable5′′

arg4=′′variable7′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<conditions>

<and/>
<condition>

<value>′:variable0,:variable2,:variable4′</value>
<operator>eq</operator>
<value>′:variable1,:variable3,:variable5′</value>

</condition>
<condition>
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<parameter>preference0</parameter>
<operator>out</operator>
<value>:preference1</value>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>

5.4.2 Action Parameter Conflict – Generic Resolution
Home care systems can make use of speech synthesis to interact with the user. A speech synthesiser must not
speak two different sentences at the same time. For two speak actions, the following resolution policy checks
whether the action type, entity, instance and period are identical but the parameters (i.e. speech content) differ. If
the preference values are different, the action with the stronger preference is selected.

The following resolution policy deals with only the case of unequal parameters and different preferences.
Other cases will be handled by default, or may be defined in a more complex resolution policy.

<resolution owner=′′julia@stir.ac.uk′′ applies to=′′@chalet9.campus.stir.ac.uk′′

id=′′Action parameter conflict - generic resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′ arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′ arg5=′′variable9′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
</triggers>
<conditions>

<and/>
<conditions>

<and/>
<condition>

<value>′:variable0,:variable2,:variable4,:variable6′</value>
<operator>eq</operator>
<value>′:variable1,:variable3,:variable5,:variable7′</value>

</condition>
<condition>

<value>:variable8</value>
<operator>ne</operator>
<value>:variable9</value>

</condition>
</conditions>
<condition>

<parameter>preference0</parameter>
<operator>ne</operator>
<parameter>preference1</parameter>

</condition>
</conditions>
<action>apply stronger</action>

</policy rule>
</resolution>
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5.4.3 Action Parameter Conflict – Specific Resolution
Like the example in section 5.4.1, the following deals with display of messages on a TV. It is assumed that only
one message can be displayed at a time. There will be conflict if two actions try to display different messages at
the same time.

The following resolution policy checks whether the two message requests are identical in terms of action type,
entity and instance, and message period. If they are, but the message content differs, the resolution is to call
the schedule display service to manage the message display. This is provided with two message parameters: the
message and the preference for displaying it (which affects the priority of the display).

<resolution owner=′′warden@glasgow.org′′ applies to=′′@maryhill.glasgow.org′′

id=′′Action parameter conflict - specific resolution′′ enabled=′′true′′

changed=′′2009-05-01T22:12:00′′>
<policy rule>

<triggers>
<and/>
<trigger arg1=′′variable0′′ arg2=′′variable2′′ arg3=′′variable4′′

arg4=′′variable6′′ arg5=′′variable8′′>
device out(arg1,arg2,arg3,arg4,arg5)

</trigger>
<trigger arg1=′′variable1′′ arg2=′′variable3′′ arg3=′′variable5′′

arg4=′′variable7′′ arg5=′′variable9′′>
device out(display text,TV,arg3,arg4,arg5)

</trigger>
</triggers>
<conditions>

<and/>
<condition>

<value>′:variable0,:variable2,:variable4,:variable6′</value>
<operator>eq</operator>
<value>′:variable1,:variable3,:variable5,:variable7′</value>

</condition>
<condition>

<value>:variable8</value>
<operator>ne</operator>
<value>:variable9</value>

</condition>
</conditions>
<actions>

<and/>
<action arg1=′′schedule display′′ arg2=′′:variable2′′ arg3=′′:variable4′′

arg4=′′:variable6′′ arg5=′′:variable8,:preference0′′>
device out(arg1,arg2,arg3,arg4,arg5)

</action>
<action arg1=′′schedule display′′ arg2=′′:variable3′′ arg3=′′:variable5′′

arg4=′′:variable7′′ arg5=′′:variable9,:preference1′′>
device out(arg1,arg2,arg3,arg4,arg5)

</action>
</actions>

</policy rule>
</resolution>

5.5 Prototype Policies for Home Care
An XML wrapper is required for a home care prototype policy in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

</policy document>
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Because a prototype policy is instantiated as a regular policy, the relevant schema is that of the latter.
As an example of a prototype policy, the following aims to cool the household naturally. Suppose the indoor

temperature exceeds 30◦C and the outdoor temperature is below 25◦C. The central heating and the air conditioning
are turned off (in case they are on). Selected windows are then opened for one hour to give natural cooling. To
avoid having to give specific addresses for these devices, they are identified indirectly through policy variables
that are set to the actual addresses.

<prototype owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

effect=′′home indoor -= 4, home security -= 3, home pollen += 1.5, home air += 1′′

id=′′Cool house naturally′′ enabled=′′true′′

changed=′′2009-01-16T17:45:00′′>
<policy rule>

<trigger arg1=′′temperature in′′>device in(arg1)</trigger>
<conditions>

<and/>
<condition>

<parameter>:indoor temperature</parameter>
<operator>gt</operator>
<value>30</value>

</condition>
<condition>

<parameter>:outdoor temperature</parameter>
<operator>lt</operator>
<value>25</value>

</condition>
</conditions>
<actions>

<and/>
<action arg1=′′off′′ arg2=′′X10′′ arg3=′′:central heating′′>

device out(arg1,arg2,arg3)
</action>
<actions>

<and/>
<action arg1=′′off′′ arg2=′′X10′′ arg3=′′:air conditioning′′>

device out(arg1,arg2,arg3,,arg5)
</action>
<action arg1=′′open′′ arg2=′′X10′′ arg3=′′:windows′′ arg5=′′01:00:00′′>

device out(arg1,arg2,arg3,,arg5)
</action>

</actions>
</actions>

</policy rule>
</prototype>

The abstract effect of this policy on controlled variables is to decrease the indoor temperature by 4◦C, to decrease
security by 3 , to increase home pollen levels by 1.5, and to improve home air quality by 1 (the latter three factors
on a scale from 0 to 10).

5.6 Goals for Home Care
An XML wrapper is required for a home care goal in the following form:

<policy document xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′>
...

</policy document>

As an example of a goal for home care, the following applies between 11PM and 7AM:

<goal owner=′′admin@cs.stir.ac.uk′′ applies to=′′@cs.stir.ac.uk′′

id=′′Minimise housing disturbance′′ enabled=′′true′′

changed=′′2009-01-16T17:45:00′′>
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<policy rule>
<condition>

<parameter>time</parameter>
<operator>in</operator>
<value>23:00:00..07:00:00</value>

</condition>
<action arg1=′′housing disturbance′′>minimise(arg1)</action>

</policy rule>
</goal>

This goal aims to minimise housing disturbance. This is a goal measure that is defined separately in terms of
various controlled variables:

1.0×threshold(home volume,70) + 1.0×home night
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Chapter 6

Conclusion

The concepts, syntax and semantics of APPEL have been seen. Regular policies deal with management of the
system under control. Resolution policies deal with conflicts among the actions of regular policies. Prototype
policies are special templates that are used to realise goals. Goals are supported by determining and instantiating
the prototype polices that optimise goal measures. To allow for multiple goals, measures are combined into an
overall evaluation function. Policy variables are named values that can be substituted into policies.

APPEL comprises a core language, plus extensions for regular and resolution policies in each domain. The
language is defined through a collection of XML schemas. Ontologies supplement the schemas by specifying
generic and domain-specific terms.

Although originally designed for call control, APPEL is intended to be a general-purpose language. Use
in new domains is achieved by adding extension schemas and ontologies. The generality of the approach has
been demonstrated through applications in call control/Internet telephony, sensor network/wind farm management,
and home care/telecare management. It is therefore believed that APPEL is of general applicability. Further
developments are anticipated in new domains.

The core language is believed to be stable, though some improvements can be expected in the area of goals
and goal refinement. The language and its application are well supported by a set of advanced tools such as the
policy server, policy wizard, conflict filter, and ontology server.
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