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Abstract

We investigate the effect of a positive population inflow of individuals
from an external source on the dynamical behaviour of certain physisologi-
cally structured population models. We treat a size-structured model with
constant inflow and nonlinear birth rate and an age-structured model with
nonlinear (density dependent) inflow and linear birth rate. Analogously
to the inherent net reproduction rate we introduce a net growth rate and
discuss how this net growth rate can be related to our stability/instability
conditions.
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1. Introduction

The following (first) nonlinear McKendrick-type age-structured model was
introduced by Gurtin and MacCamy in [15].

pt(a, t) + pa(a, t) + µ(a, P (t))p(a, t) = 0,

p(0, t) =
∫ ∞

0

β(a, P (t))p(a, t)da,

p(a, 0) =: p0(a), P (t) =
∫ ∞

0

p(a, t)da. (1.1)
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Here the function p = p(a, t) denotes the density of individuals of age a at time
t, thus, P (t) is the total population quantity at time t. β and µ denote the
fertility and mortality rates of individuals, respectively, and both of these vital
rates depend on both age a and on the total population size P (t).

Following the lead of [21, 22] we studied recently the linearized dynam-
ical behaviour of (1.1) (in the case of a finite maximal age m) and sev-
eral other McKendrick-type age and size-structured population models (see
[9, 10, 11, 12, 13]). After the initial steps in [9, 10], we, with T. Hagen, ap-
plied semigroup techniques to characterize the linearized dynamical behaviour
of initially small perturbations of steady states via roots of an associated char-
acteristic equation. The analytical results (see [21] or [22] for similar semigroup
results in the context of other models), most importantly the positivity of the
governing linear semigroup, and the special form of the characteristic function,
which was first deduced in a different form than in [15] for example in the case
of the age-structured model (1.1) in [14], made it possible to derive biologically
meaningful conditions in terms of the net reproduction function for the stability
(resp. instability) of stationary solutions. All of our stability/instability condi-
tions were intuitively clear and naturally interpretable and were mainly given
in terms of the inherent net reproduction function.

Each of the structured population models discussed in [9, 10, 11, 12, 13] (see
the well-known monographs on structured population dynamics [5, 7, 16, 19, 22]
and the more recent related papers [3, 4, 6], as well for further reference) de-
scribe the dynamics of a population living in a closed territory. Thus, the density
of newborns (zero or minimal size individuals in the case of size-structured mod-
els) is determined by the fertility rate of sexually mature individuals. Since there
is no migration, the dynamical behaviour of these type of systems is determined
by the fertility, mortality and growth rates which are the main ingredients of
these models and the density dependence of these vital rates makes these models
nonlinear ones.

One can introduce a positive population inflow C of newborns in the bound-
ary condition of (1.1), which represents an inflow of newborns (or minimal
size individuals for size-structured models) from an external source. Then, be-
side the vital rates, this inflow can be naturally accounted for the dynamical
behaviour of the system, as we will see later. There are several biological mo-
tivations for having a population inflow of newborns from an external source.
A natural example for such an inflow is the case of migratory fish populations
that lie eggs and then move on. Later on the newly hatched fish join a different
fish population. Another example underscoring the relevance of this model is
the case of fisheries where replenishment of newborn fish is practiced. In fact,
models with population inflow have been studied intensively – we just mention
the works of [1], [2] and [18] and the references therein where various aspects
of related size-structured models were discussed. Recently, in [13] we addressed
linear stability questions of a juvenile-adult size-structured model and we dis-
covered and discussed very briefly the stabilizing effects of a positive constant
population inflow in the case of density independent mortality and growth rates.

The goal of the present paper is to study rigorously, as far as we know for
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the first time in the literature of structured population dynamics, the stabilizing
effect of a population inflow in two different important cases of structured pop-
ulation models. First we will treat a linearized size-structured model (treated
in [12] in the case of zero inflow) with nonlinear birth rate and constant inflow.
In particular, the introduction of the positive constant inflow C will allow us to
relax our stability conditions given in Th.5.7 in [12]. Then, we will introduce a
nonlinear age-structured population model and investigate the effects of a non-
linear (density dependent) inflow on the dynamical behaviour of a this model.
As an application of Th.5.7 in [17] we will establish the Principle of Linearized
Stability for this new age-structured model. We will consider a linear birth rate
to highlight the effect of the inflow on the linearized dynamical behaviour of the
system but our results can be readily extended to more general cases of vital
rates. We will omit some of the technical details, which form a significant part
of our analysis, but they are rather straightforward based on [12, 13], and we
don’t consider them to be important to understand the new phenomena pre-
sented in this paper. Motivated by our new stability results for the age and
size-structured models with inflow at the end of the paper we introduce the net
growth rate function and formulate a very general conjecture.

2. A size-structured model with constant inflow

In this section we consider the following size-structured model, treated pre-
viously in [12] in the case of C = 0, with a constant inflow C of newborns.

pt(s, t) + (γ(s, P (t))p(s, t))s + µ(s, P (t))p(s, t) = 0 s ∈ [0,m], t > 0,

p(0, t) = C +
∫ m

0

β(s, P (t))p(s, t)ds t > 0,

p(s, 0) =: p0(s) s ∈ [0,m],

P (t) =
∫ m

0

p(s, t)ds. (2.1)

We make the following general assumptions on the vital rate functions:

µ, β ∈ C1([0,m]× [0,∞)), β ≥ 0, C ≥ 0, (2.2)

γ ∈ C2([0,m]× [0,∞)), γ > 0. (2.3)

These assumptions suffice to make the analysis of the linearized problem work.
They are, however, generally not strong enough to prove global existence results
for the nonlinear problem. In addition, for practical purposes several other
biologically relevant assumptions (such as µ > 0) will have to be imposed on
these functions.

Model (2.1) is usually considered in the literature (see e.g. [2]) with a
boundary condition in the form

γ(0, P (t))p(0, t) = c(t) +
∫ m

0

β(s, P (t))p(s, t)ds. (2.4)
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We prefer working with the boundary condition in form of (2.1)2 (i.e. the
second equation of (2.1)) because this (equivalent) boundary condition yields
major simplifications in the mathematical analysis of model (2.1).

In fact, one can incorporate the growth rate γ(0, P (t)) in the left of equation
(2.4) in the right hand side of (2.1)2 before introducing the inflow C in (2.1)2,
i.e. the inflow is introduced in the form of a density (rather than a rate) of
minimal size individuals coming from an external source.

Well-posedeness of a more general size-structured model (equipped with the
usual boundary condition (2.4)) was proved in [18] under some additional
assumptions on the vital rates.

In [12], we determined the linearized system of (2.1) in the case of C = 0 by
introducing a perturbation w(s, t) = w = p− p∗ for a given positive stationary
solution p∗ = p∗(s). It is easy to see that the linearization of (2.1) around
a positive stationary solution p∗ yields the same linearized system, namely we
arrive at

wt(s, t) + γ(s, P∗)ws(s, t) + (γs(s, P∗) + µ(s, P∗)) w(s, t)

+ (γsP (s, P∗) p∗(s) + µP (s, P∗) p∗(s) + γP (s, P∗) p∗′(s)) W (t) = 0, (2.5)

w(0, t) =
∫ m

0

(
β(s, P∗) +

∫ m

0

βP (α, P∗) p∗(α) dα
)
w(s, t) ds, (2.6)

where we have set

W (t) :=
∫ m

0

w(s, t) ds and P∗ =
∫ m

0

p∗(s)ds. (2.7)

Eqs. (2.5)–(2.6) are accompanied by the initial condition

w(s, 0) = w0(s), s ∈ [0,m]. (2.8)

In order to determine the eigenvalues of the linearized operator one replaces
w(s, t) by W (s)eλt in the linearized problem (2.5), (2.6). Then one may arrive
at an ODE for W , which can be easily solved. Then a 2-dimensional homoge-
neous system for W (0) and W =

∫ m

0
W (s)ds is obtained, and the characteristic

equation assumes the form (see [12]):

1 = K(λ) = A12(λ) +A21(λ)(A12(λ)− 1) +A11(λ)A22(λ), (2.9)

where we defined
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A11(λ) :=
∫ m

0

F (λ, µ, γ, s) ds, (2.10)

A12(λ) :=
∫ m

0

β(s, P∗)F (λ, µ, γ, s) ds, (2.11)

A21(λ) :=
∫ m

0

F (λ, µ, γ, s)
∫ s

0

F−1(λ, µ, γ, r)G(µ, γ, r)drds (2.12)

A22(λ) :=
∫ m

0

βP (s, P∗)p∗(s)ds

−
∫ m

0

β(s, P∗)F (λ, µ, γ, s)
∫ s

0

F−1(λ, µ, γ, r)G(µ, γ, r)drds, (2.13)

whith

F (λ, µ, γ, s) := exp
{
−

∫ s

0

λ+ γs(r, P∗) + µ(r, P∗)
γ(r, P∗)

dr

}
, (2.14)

G(µ, γ, r) :=
p∗(r)(γsP (r, P∗) + µP (r, P∗)) + p′∗(r)γP (r, P∗)

γ(r, P∗)
. (2.15)

We recall the following result from [12]:

Lemma 2.1 Let p∗ be a non-trivial, stationary solution corresponding to the
population quantity P∗. Then the function K defined in Eq. (2.9) has the fol-
lowing properties

K(0) = P∗R
′(P∗) +R(P∗) and lim

λ→∞
K(λ) = 0, (2.16)

the limit being taken in R.

Here

R(P ) =
∫ m

0

γ(0, P )
β(s, P )
γ(s, P )

exp
{
−

∫ s

0

µ(r, P )
γ(r, P )

dr

}
ds,

is the inherent net reproduction rate. A careful analysis of the characteristic
equation (2.9) allowed us to prove the following results:

Theorem 2.2 The non-trivial, stationary solution p∗ with corresponding pop-
ulation quantity P∗ is linearly unstable if R′(P∗) > 0.

Theorem 2.3 Let p∗ be a non-trivial, stationary solution with corresponding
population quantity P∗. Suppose that for 0 ≤ s ≤ m

G(µ, γ, s) ≤ 0, (2.17)

β(s, P∗) +
∫ m

0

βP (α, P∗) p∗(α) dα ≥ 0, (2.18)∫ m

0

p∗(s)
∫ s

0

G(µ, γ, α) dα ds ≥ −1. (2.19)

Then p∗ is linearly asymptotically stable if and only if R′(P∗) < 0.
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Conditions (2.17), (2.18) ensure that the linearized system (2.5), (2.6) is gov-
erned by a positive semigroup, and the proof of Th.2.3 was based on Lemma
2.1 and we showed that in the case of (2.17), (2.18), (2.19) the characteristic
function is monotone non-increasing for λ ≥ 0.
Since in the case of model (2.1) we may arrive at the same linearized system
(2.5), (2.6) as in the case of C = 0 Lemma 2.1 holds true for a positive stationary
solution p∗ of (2.1).
Now, in the case of C > 0 we have:

A12(0) =
∫ m

0

β(s, P∗)F (0, µ, γ, s)ds = R(P∗) = 1− C

p∗(0)
. (2.20)

Making use of the previous results we can relax our stability criterionR′(P∗) <
0 in the case of model (2.1) and formulate the following:

Theorem 2.4 Let p∗ be a positive stationary solution of (2.1) with correspond-
ing population quantity P∗. Moreover assume that (2.17), (2.18), (2.19) hold.
Then, the positive stationary solution p∗ is linearly asymptotically stable if

p∗(0)P∗R′(P∗) < C. (2.21)

Proof. In the case of (2.17), (2.18) the linearized system (2.5), (2.6) is
governed by a positive semigroup (see Th.3.3 in [12]). Thus, it is enough to
show that (2.9) doesn’t admit a solution λ ≥ 0. To this end, we note that,
if (2.17), (2.18) and (2.19) hold, then K(λ) can be shown monotone non-
increasing for λ ≥ 0 (see the proof of Th.5.7 in [12]). Taking into account
(2.20) and applying Lemma 2.1 we obtain the result.

Remark 2.5 Th.2.4 shows that in case of a positive inflow we can have stabil-
ity even in the case R′(P∗) > 0, if the inflow C is large enough. That is we can
have stability even in the case when for sufficiently close P , P > P∗ the inherent
net reproduction rate is greater than its critical value at which stationary solu-
tions occur. This is quite remarkable on its own right and it might contradict
our intuition for the first sight.

Moreover, if we assume that γ ≡ 1, that is (2.1) is an age-structured model,
then the stability condition (2.21) can be written as

P 2
∗R

′(P∗) < CE, (2.22)

where
E :=

∫ m

0

π(a, P∗)da =
∫ m

0

e−
∫ a
0 µ(r,P∗)drda

is the expected lifetime of newborns.

3. An age-structured model with nonlinear inflow and linear birth
rate
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In this section we introduce an age-structured McKendrick-type model with
linear birth rate and with a nonlinear inflow of newborns. Namely, we consider
the following model:

pt(a, t) + pa(a, t) + µ(a, P (t))p(a, t) = 0 a ∈ [0,m], t > 0,

p(0, t) = C(P (t)) +
∫ m

0

β(a)p(a, t)da t > 0,

p(a, 0) =: p0(a) a ∈ [0,m],

P (t) =
∫ m

0

p(a, t)da, (3.1)

where we make the assumptions

µ ∈ C2([0,m]× [0,∞)), 0 ≤ β ≤ B <∞, 0 < C ∈ C2([0,∞)). (3.2)

Note that, in the case of C ≡ 0 (3.1) reduces to the classical Gurtin-MacCamy
model (1.1) with finite maximal age m (and density independent fertility β). As
far as we know, this special kind of model was never considered in the literature
before, because the inflow is usually introduced in the form of C = C(t), since it
is due to an external source and therefore it is assumed to be independent of the
standing population. Real world problems may arise, when a density dependent
inflow is more realistic. For example when one would like to use (3.1) to model a
fish population at a fishery, when the quantity of fish to be replenished depends
on the actual population size. Our mathematical motivation to study a density
dependent inflow is to see the effects of the nonlinear inflow on the dynamical
behaviour of the system.

When we solve (3.1) for a positive stationary solution p∗ we arrive at the
following equations:

p∗(a) = p∗(0)e−
∫ a
0 µ(r,P∗)dr = p∗(0)π(a, P∗),

p∗(0) = C(P∗) +
∫ m

0

β(a)p∗(a)da = C(P∗) + p∗(0)
∫ m

0

β(a)π(a, P∗)da. (3.3)

Thus, for given vital rates β, µ and inflow rate C the function p∗ is a positive
stationary solution of (3.1) if it is determined by

p∗(a) =
P∗π(a, P∗)∫ m

0
π(a, P∗)da

,

with the positive total population quantity P∗ =
∫ m

0
p∗(a)da, which satisfies the

equation

1 =
C(P∗)

∫ m

0
π(a, P∗)da
P∗

+R(P∗), (3.4)

where
R(P∗) =

∫ m

0

β(a)π(a, P∗)da,
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is the well-known inherent net reproduction rate. Note that R(P∗) < 1 since
C is positive, thus system (3.1) admits stationary solutions at lower (than 1)
levels of the net reproduction rate.

Next, for a given positive stationary solution p∗ we would like to determine
the linearized system of (3.1). The linearization procedure is quite straight-
forward, (we omit here the details and refer to [12] and [13], where such a
linearization procedure was carried out for similar structured models), and we
may arrive at the following linear system:

wt(a, t) + wa(a, t) + µ(a, P∗)w(a, t) +W (t)p∗(a)µP (a, P∗) = 0,

w(0, t) =
∫ m

0

(C ′(P∗) + β(a))w(a, t)da,

W (t) =
∫ m

0

w(a, t)da. (3.5)

Applying the same methods as in [12] we can readily show, in the similar way
as in Th.2.1 and Th.3.1 of [12], that the linearized problem (3.5) is governed
by a C0 semigroup which is eventually compact. In fact, (3.5) is a simple
boundary perturbation of a special case (γ ≡ 1) of system (2.3)-(2.4) in [12].
Thus, problem (3.5) is well-posed, and the spectrum of the linearized operator
consists of eigenvalues of finite multiplicity only, which can be determined via
zeros of a characteristic function, see [12],[13],[8],[20] for more details.

Moreover, based on Sect.3 of [12] (see Sect.3 in [21] for similar analysis, as
well) it is straightforward that the linearized system (3.5) is governed by a
positive semigroup if the following conditions hold:

µP (a, P∗) ≤ 0 and C ′(P∗) + β(a) ≥ 0 for a ∈ [0,m]. (3.6)

The positivity of the governing linear semigroup is the key when addressing
stability questions because it allows to restrict ourselves to real calculus when
determining the leading zero of the characteristic function.

To determine the eigenvalues of the linearized operator we follow the stan-
dard approach and substitute

w(a, t) = W (a)eλt, (3.7)

into the linearized system (3.5). Then we may arrive at the following equations

W ′(a) +W (a) (λ+ µ(a, P∗)) +Wp∗(a)µP (a, P∗) = 0,

W (0) = WC ′(P∗) +
∫ m

0

β(a)W (a)da,

W =
∫ m

0

W (a)da. (3.8)

The solution of (3.8) is obtained easily as

W (a) = e−λaπ(a, P∗)
(
W (0)−W

∫ a

0

eλr

π(r, P∗)
p∗(r)µP (r, P∗)dr

)
. (3.9)
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Next we substitute the solution (3.9) into the boundary condition (3.8)2 and
we integrate (3.9) from 0 to m. Then we may arrive at a 2-dimensional ho-
mogeneous system for W (0) and W . Thus, the linearized system (3.5) admits
solutions of the form (3.7) if the determinant of this homogeneous linear system
is zero, that is when λ satisfies the following characteristic equation:

1 = K(λ) =
∫ m

0

e−λaβ(a)π(a, P∗)da

×
(

1 +
∫ m

0

e−λap∗(a)
∫ a

0

eλrµP (r, P∗)drda
)

−
∫ m

0

e−λap∗(a)
∫ a

0

eλrµP (r, P∗)drda

+
∫ m

0

e−λaπ(a, P∗)da
(
C ′(P∗)−

∫ m

0

e−λaβ(a)p∗(a)
∫ a

0

eλrµP (r, P∗)drda
)
.

(3.10)

Theorem 3.1 The positive stationary solution p∗ with total population P∗ is
linearly asymptotically stable if

µP (., P∗) ≤ 0, 0 ≤ C ′(P∗) < (1− k)
C(P∗)
P∗

− kB, where k ∈ (0, 1),

and
∫ m

0

p∗(a)
∫ a

0

(−µP (r, P∗))drda < k <
C(P∗)/P∗

C(P∗)/P∗ +B
holds. (3.11)

Proof. Note that, all of the positivity criterions (3.6) are satisfied by (3.11),
thus it is enough to show that there is no non-negative (real) solution of (3.10).
First we show that K(λ) is monotone non-increasing for λ ≥ 0.

K ′(λ) =
∫ m

0

ae−λaβ(a)π(a, P∗)da
(∫ m

0

p∗(a)
∫ a

0

e−λ(a−r)(−µP (r, P∗))drda− 1
)

+
∫ m

0

p∗(a)
∫ a

0

(a− r)e−λ(a−r)(−µP (r, P∗))drda
(∫ m

0

e−λaβ(a)π(a, P∗)da− 1
)

− C ′(P∗)
∫ m

0

ae−λaπ(a, P∗)da

−
∫ m

0

ae−λaπ(a, P∗)da
∫ m

0

β(a)p∗(a)
∫ a

0

e−λ(a−r)(−µP (r, P∗))drda

−
∫ m

0

e−λaπ(a, P∗)da
∫ m

0

β(a)p∗(a)
∫ a

0

(a− r)e−λ(a−r)(−µP (r, P∗))drda.

It is easy to see that all of the five terms on the right hand side of the previous
equation are non-positive for λ ≥ 0 if (3.11) holds, thus K(λ)′ ≤ 0 for λ ≥ 0.
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Secondly, it follows from the definition of R(P∗) and from (3.11) that∫ m

0

β(a)π(a, P∗)da
(

1 +
∫ m

0

p∗(a)
∫ a

0

µP (r, P∗)drda
)

−
∫ m

0

p∗(a)
∫ a

0

µP (r, P∗)drda < R(P∗)(1− k) + k.

Using Hölder’s inequality∥∥∥∥β(a)p∗(a)
∫ a

0

(−µP (r, P∗))dr
∥∥∥∥

L1(0,m)

≤ ‖β(a)‖L∞(0,m)

∥∥∥∥p∗(a) ∫ a

0

(−µP (r, P∗))dr
∥∥∥∥

L1(0,m)

we have∫ m

0

π(a, P∗)da
(
C ′(P∗)−

∫ m

0

β(a)p∗(a)
∫ a

0

µP (r, P∗)drda
)
≤ P∗
p∗(0)

(C ′(P∗)+kB),

and making use of p∗(0) = C(P∗)
1−R(P∗)

and the condition

C ′(P∗) < (1− k)
C(P∗)
P∗

− kB,

we have K(0) < 1, and the result follows.

Remark 3.2 Notice that, if there is no inflow, that is C ≡ 0, and moreover
µP (., P∗) < 0 holds (which implies R′(P∗) > 0 in the present case) then every
positive stationary solution p∗ is unstable by Th.2.2. On the other hand, now
we can have stability even in the case of R′(P∗) > 0 and C ′(P∗) > 0, as well.

4. Principle of linearized stability for model (3.1)

In the remarkable paper [17] the author proved the Principle of Linearized
Stability (which establishes the rigorous link between the dynamical behaviour
of a linearized system and the original nonlinear system) for a very general
nonlinear evolution equation of the form

d

dt
u(t) +Au(t) = 0, t ≥ 0,

where A is a quasi-m-accretive operator. He applied his result to the following
very general nonlinear age-structured problem:

ut(a, t) + ua(a, t) = G(u(t, .))(a), t ≥ 0, a ≥ 0,
u(0, t) = F (u(t, .)), t ≥ 0, (4.1)

where F and G are some continuously Frèchet differentable operators.
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When, for given C, β and µ, we define:

K : L1(0,m) → [0,∞) by Kφ =
∫ m

0

φ(a)da,

and F : L1(0,m) → R, G : L1(0,m) → L1(0,m)

as F (φ) = C(Kφ) +
∫ m

0

β(a)φ(a)da, φ ∈ L1(0,m),

and G(φ)(a) = −µ(a,Kφ)φ(a), a.e. 0 < a ≤ m, φ ∈ L1(0,m), (4.2)

model (3.1) can be cast in the form of (4.1).
Then, if C ∈ C2(R) and β ∈ L∞([0,m]) (i.e. β is bounded) the above defined

F is shown to be continuously Frèchet differentiable in the following sense (see
Sect. 5 in [17]).

For any φ ∈ L1(0,m), there exists an operator DF (φ) ∈ L(L1,R) such that

F (φ+ h) = F (φ) +DF (φ)h+ oF (h), h ∈ L1(0,m),

where oF : L1(0,m) → R, |oF (h)| ≤ bF (r)||h||L1 for ||h||L1 ≤ r, and bF :
[0,∞) → [0,∞) is a continuous increasing function satisfying bF (0) = 0, and
there exists an increasing function dF (r) : [0,∞) → [0,∞) such that

||DF (φ)−DF (ψ)||L(L1;R) ≤ dF (r)||φ− ψ||L1 ,

for ||φ||L1 ≤ r and ||ψ||L1 ≤ r, where ||.||L(L1;R) stands for the usual operator
norm.

Now C can be written as

C(x+ h) = C(x) + hC ′(x) + h2

∫ m

0

(1− θ)C ′′(x+ θh)dθ.

Then
DF (φ)h = C ′(Kφ)Kh+

∫ m

0

β(a)h(a)da,

and

oF (h) = (Kh)2
∫ 1

0

(1− θ)C ′′(Kφ+ θKh)dθ.

It is easy to see that DF (φ) : L1(0,m) → R is bounded and linear. If we let

bF (r) = max
ξ∈[0,||φ||L1+r]

|C ′′(ξ)| r,

then bF is continuous, increasing, bF (0) = 0 and

oF (h) ≤ bF (r) ||h||L1 .

Furthermore, we have

||DF (φ)−DF (ψ)||L(L1;R) ≤ dF (r)||φ− ψ||L1 ,
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if ||φ||L1 ≤ r, ||ψ||L1 ≤ r with

dF (r) = max
ξ∈[0,r]

|C ′′(ξ)|,

which is continuous and increasing.
For the Frèchet differentiability of G (in the similar sense as in the case of

F above), suppose that µ ∈ L∞((0,m) × R) and the mapping ξ 7→ µ(a, ξ) is a
C2-function for a.e. a ∈ (0,m) and its first and second order partial derivatives
with respect to ξ denoted by µ′(a, ξ) and µ′′(a, ξ), respectively, are bounded on
(0,m)× R. Then G can be shown to be continuously Frèchet differentiable. In
particular, we have

[DG(φ)h][(a) = −µ′(a,Kφ)φ(a)Kh− µ(a,Kφ)h(a),

and

[oG(h)](a) = −µ′(a,Kφ)h(a)Kh−(Kh)2(φ(a)+h(a))
∫ 1

0

(1−θ)µ′′(a,Kφ+θKh)dθ.

It is shown DG(φ) : L1(0,m) → L1(0,m), bounded linear and

||oG(h)||L1 ≤ bG(r)||h||L1 ,

if ||h||L1 ≤ r with
bG(r) = r (||µ′||L∞ + ||µ′′||L∞),

which is continuous, increasing and bG(0) = 0. Finally, with

dG(r) = ||µ′||L∞ + r ||µ′′||L∞ ,

which is continuous and increasing, we have

||DG(φ)−DG(ψ)||L(L1;L1) ≤ dG(r)||φ− ψ||L1 ,

if ||φ||L1 ≤ r, ||ψ||L1 ≤ r, where ||.||L(L1;L1) = sup
||h||L1≤1

||.h||L1 , is the usual

operator norm again.
Thus, if C ∈ C2(R) and β is bounded, then, as showed above, F and G

defined in (4.2) are continuously Frèchet differentiable in the sense as in Sect. 5
in [17] thus, Th.5.7 in [17] applies for model (3.1). That is, p∗ is an asymptoti-
cally stable positive equilibrium of the nonlinear system (3.1) if the conditions
of (3.11) of Th.3.1 are satisfied.

5. Heuristic remarks regarding the stability of structured population
models and the net growth rate
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We found in [12] that in case of the size-structured model (2.1) (with no
inflow taking place, i.e. C = 0) the inherent net reproduction function has to
be defined as

R(P ) =
∫ m

0

β(s, P ) exp
{
−

∫ s

0

γs(r, P ) + µ(r, P )
γ(r, P )

dr

}
ds (5.1)

and it plays a key role in the stability analysis of this basic size-strucutred
model.

In particular, positive equilibrium (or stationary) solutions of the model are
in a one-to-one correspondence with positive solutions of equation

R(P ) = 1, (5.2)

that is if P∗ ∈ R+ is such that R(P∗) = 1 then

p∗(s) =
P∗ exp

{
−

∫ s

0
γs(r,P )+µ(r,P )

γ(r,P ) dr
}

∫ m

0
exp

{
−

∫ s

0
γs(r,P )+µ(r,P )

γ(r,P ) dr
} (5.3)

determines a stationary solution of the model uniquely.
Regarding the stability of stationary solutions of the basic size-structured

system we were able to prove thatR′(P∗) > 0 implies instability of the stationary
solution p∗, in general (Th.2.2). Moreover, in the case when the linarized system
is governed by a positive semigroup we were able to prove, under some minor
additional assumption, that the stationary solution p∗ with corresponding total
population P∗ is linearly asymptotically stable if and only if R′(P∗) < 0 (Th.2.3).
We claim that the condition

R′(P∗) < 0 (5.4)

implies asymptotic stability of the stationary solution p∗ in general in case of
the basic size-structured model treated in [12]. Note that, a similar condition
characterizes the local asymptotic stability of the trivial steady state, namely
p∗ ≡ 0 is stable if R(0) < 1 and unstable if R(0) > 1 (see e.g. Prop.3.3 in [16]).

Although at the moment we are not able to prove this claim all of the numer-
ical simulations carried out with the use of the hier-community program, which
is available for free download at http://www.ucs.louisiana.edu/~asa5773/,
developed by Prof. Azmy S. Ackleh and his two former students Joel Der-
ouen and Shuhua Hu at the Department of Mathematics of the University of
Louisiana at Lafayette, support our claim.

Computer simulations also indicate, that if we slightly modify the vital rates
in the way that the value R′(P∗) (for a certain stationary population size P∗)
increases but remains negative (obviously we will have different stationary so-
lutions i.e. different solutions of (5.2)) then we experience that the speed of
the convergence to the stationary solution decreases and we need to require a
higher number of time steps in the simulation, as well. On the other hand,
R′(P∗) << 0 indicates faster convergence and larger basin of attraction, too.
These phenomena indicate also that there should be a relation between not just
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the sign of R′(P∗) but also between the magnitude of R′(P∗) and the magnitude
of the spectral bound of the linearized operator, as well.

In [2] the authors proved that the dynamics of the basic size-structured
system is in fact determined at the total population level (see Th.8 in [2]).
Let us assume for a moment that the dynamics of the total population can be
characterized by an ODE of the form

d

dt
P = N(P ), (5.5)

with some ”smooth enough” function N . Then we can rewrite (5.5) in the form

d

dt
P = (R(P )− 1)

N(P )
R(P )− 1)

=: M(P )(R(P )− 1), (5.6)

as long as we can assure that M defined in (5.6) is bounded over R+. Now if
we linearize the right hand side of (5.6) around P∗ we arrive at

(R(P∗)−1)M(P∗)+[(R(P∗)− 1)M ′(P∗) +R′(P∗)M(P )] [P −P∗]+h.o.t. (5.7)

It should be intuitively clear that M ≥ 0 since the total population is increasing
if R > 1 and it is decreasing if R < 1 thus sign(N(P )) = sign(R(P )− 1). The
first two terms on the right hand side of (5.7) equal zero, thus the sign of R′(P∗)
determines the local asymptotic stability of the stationary solution P∗ since the
higher order terms may be omitted.

At the moment we are unable to give a rigorous proof for our claim, but
the main idea can be illustrated in more detail in case of the following simple
example. In the case of age independent vital rates (and infinite maximal age
m), i.e.

β(s, P ) := β(P ) > 0, µ(s, P ) = µ(P ) > 0, γ(s, P ) ≡ 1, s ∈ [0,∞) (5.8)

with some positive and bounded functions β and µ it can be readily shown that
equation (5.5) takes the form

d

dt
P = β(P )P − µ(P )P

and

R(P ) =
β(P )
µ(P )

,

that is (5.6) takes the form

d

dt
P = (R(P )− 1)Pµ(P ),

i.e. the total population is increasing if and only if R(P ) > 1 and the positive
stationary solution p∗ wich corresponds to the total population P∗ is asymptot-
ically stable if R′(P∗) < 0.
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One may notice that the conditions in (3.11) imply surprisingly thatR′(P∗) ≥
0, i.e. it looks like that our claim proves to be false in case of model (3.1) and
in general in case of models with inflow. Matter of fact this is not the case,
we just need to look at the ”right” function i.e. we just need to introduce the
concept of the net growth rate. In case of model (3.1) we define the net growth
rate R̃ as follows:

R̃(P ) :=
C(P )

∫ m

0
π(a, P )da
P

+R(P ), (5.9)

where R(P ) is the inherent net reproduction rate as in (5.1). Our motivation is
clear: solutions of equation R̃(P ) = 1 are in a one-to-one correspondence with
positive stationary solutions of model (3.1).

We claim that for a given positive stationary solution p∗ with total popula-
tion size P∗ condition R̃(P∗) > 0 implies instability while R̃(P∗) < 0 implies the
local asymptotic stability of the stationary solution p∗.

Let us finally consider the special case of age-independent vital rates and
density dependent inflow with infinite life span, (i.e. a ∈ [0,∞))

β = β(P ) > 0, µ = µ(P ) > 0, C = C(P ) > 0. (5.10)

Then the dynamics at the total population level can be described as

d

dt
P = C(P ) + P (β(P )− µ(P )), (5.11)

which can be cast in the form

d

dt
P = (R̃(P )− 1)Pµ(P ). (5.12)
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[21] J. Prüß, Stability analysis for equilibria in age-specific population dynam-
ics, Nonlin. Anal. TMA 7 (1983), 1291–1313.

[22] G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Mar-
cel Dekker, New York, (1985).


