
Stephan Reiff-Marganiec and Kenneth J. Turner. A Policy Architecture for
Enhancing and Controlling Features. In Daniel Amyot and Luigi Logrippo,
editors, Proc. Feature Interactions in Telecommunication Networks VII,
239-246, IOS Press, Amsterdam, June 2003.

A Policy Architecture for Enhancing and
Controlling Features

Stephan Reiff-Marganiec and Kenneth J. Turner
Department of Computing Science and Mathematics

University of Stirling, FK9 4LA Stirling, Scotland, UK
{srm,kjt}@cs.stir.ac.uk

Abstract. Features provide extensions to a basic service, but in new systems users re-
quire much greater flexibility oriented towards their needs. Traditional features do not
easily allow for this. We propose policies as the features of the future. Policies can be de-
fined by the end-user, and allow for the use of rich context information when controlling
calls. This paper introduces an architecture for policy definition and call control by poli-
cies. We discuss the operation of systems based on such an architecture. An important
aspect of the architecture is integral feature interaction handling.

1 Motivation

Telecommunications has a central role in daily life, be it private or within the enterprise. We
have left behind times when two users were simply connected for a verbal communication
and now encounter a trend towards merging different communications technologies such as
video conferencing, email, Voice over IP as well as new technologies like home automation and
device control. This is combined with a move to greater mobility, e.g. wireless communications,
mobile telephony and ad hoc networking. Services such as conference calling and voice mail
have been added to help deal with situations beyond simple telephony.

Currently such services only support communication, that is they allow the user to simplify
and more closely integrate telecommunications in their activities. In the future services will
make use of the merged technologies on any device. We believe that services then will enable
communications by allowing the user to achieve particular goals.

Increasing numbers of mobile users with multiple communication devices lead to a situation
where users are always reachable. However, users might not always wish to be disturbed, or at
least not for everyone or for any type of enquiry. Future services need to provide support for
users to control their availability.

Availability will be highly dependent on the context of the user. Services must, amongst
others, take into account where users are, what devices they currently use and who they might
be with, as well as simple concepts such as time of day.

We conclude that the end-user must have a central place in communications systems. Ser-
vices must be highly customizable by lay end-users, as only the individual is aware of his
requirements. It might even be desirable for end-users to define their own services. However,
any customization or service development must be simple and intuitive to suit lay users.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 S. Reiff-Marganiec and K. J. Turner

We discuss the advantages of policies over features, and define an architecture in which
policies can be used to control calls. The operation of a system based on such an architecture is
discussed. We will find that policies do not remove the feature interaction problem, but provide
different angles on possible solutions. Interaction detection and resolution mechanisms will
form an essential part of the proposed system. The system is user oriented and addresses the
fact that future call control needs to enable individuals to achieve their goals.

2 Background

Policies and Services. Policies are defined as information which can be used to modify the
behaviour of a system [6]. Considerable interest has been aroused by policies in the context of
multimedia and distributed systems. Policies have also been applied to express the enterprise
viewpoint [10] of ODP (Open Distributed Processing) and agent based systems [1].

In telecommunications systems, customized functionality for the user is traditionally achie-
ved by providing services, i.e. capabilities offered on top of a basic service. Services are sup-
plied by the network provider and thus do not offer completely customized functionality. Con-
sider a call forwarding service: the user chooses whether the service is available or not, and
which number the call gets forwarded to. There is no possibility for the user to forward only
some calls or to treat certain calls differently, e.g. forward private calls to the mobile and oth-
ers to a voicemail facility. It is exactly the flexibility, adaptability and end-user definition of
policies that makes them an ideal candidate technology for services of the future.

Policies and Feature Interaction. One might hope that policies remove the feature inter-
action problem, simply by being higher-level. The policy community has recognised that there
are issues, referred to as policy conflict, but has not considered any general solutions, assuming
that this is not a crucial problem.

On the one hand, policies are defined by end-users, so policies will be larger in number and
more diverse than features. Also, the lay nature of the user adds to the problem. On the other
hand, policies can contain preferences. The context can also provide priorities usable to resolve
conflicts in conjunction with richer protocols of new communications architectures.

3 The Policy Architecture

We propose a three layer architecture consisting of (1) the communications layer, (2) the policy
layer and (3) the user interface layer. A three-tier architecture is used in completely different
ways for other applications. However, a three-tier policy architecture emerges naturally.

When we consider existing call control architectures, similar architectures have been in use
some time. For example, in the IN the three layers are given by the SSP (Service Switching
Point), SCP (Service Control Point) and SCE (Service Creation Environment). Similarly in a
SIP environment the layers are provided by the SIP proxies, CPL or CGI scripts and tools for
creation of such scripts.

However our proposed architecture (Figure 1) differs in several key aspects, from similar
existing architectures (e.g. the IN or SIP). Some of these aspects are:

• The Policy Servers can negotiate goals or solutions to detected problems.

• The User Interface Layer provides end-users with a mechanism to define functionality.

• The User Interface Layer and the Policy Servers make use of context information.



A Policy Architecture for Enhancing and Controlling Features 3

�
�

��� ��� ��� 	 � 
����
����� ������� ������� �� � ! "�# $ % & "

')(+* ,�-�.�/

02143�3�57698 :�;�<=8 1>6?A@�;�B9C9D

E�F�G9HJI KLMG9H�N)O�PQGSR9O�T�GH

UQV�W�X Y�Z\[2]^9_9]9^\`�a�Z9]9^

b>c d�e d�f g c hij=k

l�m+n o p q9r�s m+t u

v�w+x y z {9|)} ~ � } ~ ����� � � ���� � � � � ���+� � � ���� � � � �

���+� � � �9�+� �+� �

� �4¡9¢ £9¤9¢

Figure 1: Overview of the Proposed Architecture

• The Policy Server layer is independent of the underlying call architecture.

The architecture makes the underlying communications network transparent to the higher
layers. It enables end-user configurability and provides communication between policy servers
which can be used for interaction handling. We will briefl y discuss the details of each layer.

The Communications Layer. This represents the chosen call architecture. For this paper,
we assume a general structure consisting of end-devices and a number of switching points.
We impose two crucial requirements on the communications layer. (1) The policy servers must
be provided with any message that arrives at a switching point; routing is suspended until
the policy server has dealt with the message. (2) A mapping of low level messages of the
communications layer into more abstract policy events must defined. Our investigations have
shown that these are realistic assumption.

The Policy Server Layer. This contains a number of policy servers that interact with the
underlying call architecture. It also contains a number of policy stores (database or tuple space
servers) where policies are maintained by the policy servers as required. We assume that several
policy servers might share a policy store, and also that each policy server might control more
than one switching point or apply to more than one end device. The policy servers interact with
the user interfaces in the policy creation process discussed in section 4. They also interact with
the communications layer where policies are enforced; discussed in detail in section 5. The
policy servers have access to up-to-date information about the user’s context details which are
used to infl uence call functionality.

The User Interface Layer. This allows users to create new policies and deploy these in the
network. A number of interfaces can be expected here. We would assume the normal user to
use a web-based interface for most functions. For mobile users, voice controlled interfaces are
more appropriate. A voice interface is essential for disabled or partially sighted users. Both web
and voice interfaces should guide the user in an intuitive way, preferably in natural language
or in a graphical fashion. We also envision libraries of policies that users can simply adapt to
their requirements and combine to obtain the functionality required, in a similar way that for
example clip-art libraries are common today. System-oriented administrative interfaces exist



4 S. Reiff-Marganiec and K. J. Turner

for system administrators to manage more complex functionality.

4 Defining Policies

Policies should provide the end-user with capabilities to get the most out of their communica-
tions systems. End-users usually use their communications devices in a social or commercial
context that imposes further policies. For example an employee is often subject to company
policies. Hence policies will be defined at different domain levels (users, groups, companies,
social clubs, customer premises, etc.) by differently skilled users. Any policy definition process
needs to take this into account.

A Policy Description Language. In previous work [9] we have introduced initial ideas for
a policy description language (PDL) to express call control policies. Here we present detail
relevant for this paper. We have analysed a set of more than 100 policies before defining this
language. Further, any traditional feature can also be expressed. The policy definition language
is defined as an XML schema and hence policies will be stored as XML.

Complex policies are combinations of policy rules. There are a number of ways in which
simple rules can be combined: sequencing, parallel composition (simultaneous application of
rules), guarded and unguarded choice (conditional choice of one rule or indifference as to which
rule is applied). Each policy is uniquely identified by an id and can be activated or deactivated.
Also, each policy states who it applies to; this can be the person who defined the policy or
everyone within a certain domain. This mechanism allows policies to be defined at different
levels, e.g. individual, group and enterprise.

Policy rules provide a means to express simple facts about what a user wishes to happen
with her communications. Each policy rule is composed of a modalities block, an action block,
a condition block and and an trigger event block. All parts but the actions part are optional.

We consider a number of modalities such as obligation, permission and interdiction. ‘Never’
and ‘always’ are further simple modalities. Preferences, e.g. wish or must, are highly relevant
for call control policies and are considered as fuzzy modalities. Finally a class of temporal
modalities, containing items like ‘in the future’, ‘periodically’ or ‘now’, is defined. Interactions
can occur within each of these modality groups, but modalities can also be used by confl ict
resolution approaches to identify which policy should be given precedence.

The action block simply contains one or more instructions to be executed when the policy
is applied. These instructions are typically actions as provided by the target system. In a call
processing system, they can be actions such as “forward call”, “originate call” or “contact”.
Note that at this level we are concerned with abstract actions which are mapped by the policy
server to messages in the underlying communications layer.

A trigger event block describes when the policy should be applied: if it exists the policy
should only be considered when the specified trigger occurs. The omission of a trigger block
means that the rule is always to be considered, and we would refer to such a rule as goal.

Conditions restrict the applicability of a policy rule further. Typical conditions are equalities
or inequalities on parameters associated with the call. There is a large set of these parameters,
and others can be readily added. Examples are: caller (a user), call content (email, video, lan-
guage), media (fixed, mobile, high speed), call type (emergency, long distance, intra-company),
cost (of the call) or topic (project x, weekend plans). Other conditions are based on the con-
text and attributes of users such as location (my office, at customer site), identity, role) (Mary,
service representative) , and capabilities (Java expert, German speaker).



A Policy Architecture for Enhancing and Controlling Features 5

As it is impractical to require the user to provide the relevant information when establishing
a call, most of the required information will be inferred from the context. For example, roles
may be defined in a company organisation chart, the location can be established from the user’s
diary or mobile home location register. Or better, “ mobile devices have the promise to provide
context-sensing capabilities. They will know their location – often a critical indicator to the
user’s tasks.” [4]. So for example, if you are in your boss’s office, it is probably an important
meeting and you do not wish to be disturbed.

User Interfaces. The presented language is quite expressive. However, we do not expect the
end user to define policies directly in the policy description language. This would be unrealistic,
as we expect lay users to be able to define their policies. We have developed a simple wizard
that aids the user in creating and handling policies. The current interface is web-based, so users
can access it from anywhere, with voice based interfaces being considered. A typical end-user
can create new policies or edit, (de)activate and delete existing policies.

The whole process takes place in natural language and the gaps are filled by selecting values
from the context (e.g. time from clocks and users or domains from hierarchies). Furthermore,
the approach is language-independent so that in principle the user can work in his native lan-
guage. Once a policy is finished, the user submits the policy to the policy server.

Upload of Policies. A policy server provides an interface via a TCP/IP socket to receive
changes to policies (with appropriate authorisation). The user interface layer connects to this
socket to submit the gathered information and to receive any feedback on success or failure
through this connection. In the absence of the feature interaction problem, the policy store is
updated to refl ect the new policy. However, as confl icts are rather likely, a consistency check is
performed on the set of policies applicable to the user before updating policies.

Interactions. An architecture that does not give rise for confl icts appears to be possible only
at the cost of reducing the expressiveness of the policy language to trivial levels. We introduce
a guided design process that automatically checks policies for the presence of confl ict and
presents any detected problems to the user, together with suggested resolutions.

When a policy is uploaded, it is checked against other policies from the same user, but also
against policies that the user might be subject to (e.g. due to her role in the enterprise). Here
we check for static interactions, i.e. those that are inherent to the policies. This suggests the
use of offl ine detection methods and filtering techniques. Any inconsistencies detected need
to be reported to the user. The resolution mechanism is either a redesign of the policy base or
provisioning of information to guide online approaches.

Some methods considered most appropriate for the policy context are Anise [12] (pre-
defined or user-defined operators allow to build progressively more complex features while
avoiding certain forms of interaction) and Zave and Jackson’s [14] Pipe and Filter approach.
Also, Dahl and Najm [3] (occurrence of common gates in two processes) and Thomas [11]
(guarded choices), where the occurrence of non-determinism highlights the potential for inter-
actions are suitable. Note that these methods are applied at policy definition time, so execution
times are less of an issue (as long as they stay within reason).

In fact we are not restricted to static interactions: we can also detect the potential for con-
fl ict. That is, we can filter cases where an interaction might occur depending on contextual data.
A suitable approach might be derived from the work of Kolberg et al. [5].

Consistency could be checked at the user’s device rather than the policy server. However,
performing the check in the policy server has the major advantage that in addition to the user’s
policies, those from the same domain are accessible and can be considered. Furthermore, the



6 S. Reiff-Marganiec and K. J. Turner

¥�¦ §+¨ ©�ª «�¬� ® ¯�°±=²�³ ´ ²�³=µ ¶�·�¸ ¹ º�»¼M½�¾ ¿�½�¾)À Á=Â Ã+Ä�Å4Æ

Ç4È�É�Ê

Ë4Ì�Í

Î�Ï Ð�Ñ�Ï Ò)Ó�ÓÔ Õ�Ö Ð
×ØØ ÙÚØ Û ÙÜÝÚ

Þ>ß�à á+â ã
ä ã+å)æ+ç è é+ç è æ ä

ê>ë�ì�í

î�ï ð�ñ�ï ò)ó�óô õ�ö ð

÷>ø�ù�ú ú

û)ü ý�þ�ü ÿ����
� ��� ý

��� �	� 
 ��
�	

������
��������� � ��� � ���

�������

���� �! !

"�# $�%&# '�(�(
) *�+ $

,
-

.

/

0
1

2

3
4

5
6

Figure 2: Policy Enforcement Process

user side of the implementation is kept light-weight, which is important for less powerful end-
devices such as mobile phones or PDAs.

5 The Call Process

In the previous section we have discussed how users can define and upload their policies to the
policy server. Now, we discuss how policies are enforced to achieve the goals they describe.

Applying Policies to a Call. When attempting to setup a call from A to B, A’s end device
will generate a message that is sent via a number of switching points to B’s end device. As-
suming that policy servers are associated with switching points, every switching point along
the call path can sent the message to the policy server. Routing is suspended until the policy
server allows continuation. In SIP, we can intercept, modify, fork and block messages by using
SIP CGI.

The policy server processes any messages that it receives in a four stages: (1) all policies
applicable to the source or target of the message are retrieved. (2) The policies are filtered,
removing those where the trigger event does not match the received event and those where
additional conditions are not satisfied by the current context. (3) The remaining policies are
analysed for confl ict and these are resolved. (4) The outgoing message(s) are produced. If there
are no applicable policies, the outgoing message is simply the incoming message. If one or
more policies apply, the required changes are made to the original message. Alternatively, new
or additional messages can be created. The example in Figure 2 shows “ progress info” messages
that are generated by the policy server. Also, if a policy requires forking of a call (e.g. “ always
include my boss in calls to lawyers” ) the respective messages to setup the extra call leg need to
be created.

Routing is resumed as normal, with the next switching point again forwarding the message
to a policy server for the application of policies. Figure 2 shows an example of this process
for a call between two parties where policies are enforced in one direction. Note that the figure
shows two message exchanges between the policy servers, labelled pre- and post-negotiation.

More Interactions. While a call is actually taking place more interactions can arise, either
forced by context information or between policies of the different parties involved. Any de-



A Policy Architecture for Enhancing and Controlling Features 7

tection mechanism incorporated in the enforcement part of the policy server needs to be able
to detect and resolve such confl icts. The introduction of policy support must also not create
unreasonable delays in call setups. However, if users are aware that complex steps are needed
to resolve sophisticated policies, they should learn to live with the delays – and probably are
happy to do so when the outcome is productive for them. It is for this reason that intermediate
information messages are produced by the policy application process.

Online and hybrid feature interaction approaches are a possible solution. We believe that
in a policy context the available information is sufficient to resolve confl icts. The underlying
architecture provides protocols that are rich enough to facilitate exchange of a wide range of
information. There are essentially two classes of run-time approaches. One is based around the
idea of negotiating agents, the other around a (central) feature manager.

The feature manager in [7] detects interactions by recognising that different features are
activated and wish to control the call. The resolution mechanism for this approach [8] is based
on general rules describing desired and undesired behaviour. In negotiation approaches, fea-
tures communicate with each other to achieve their respective goals [13]. Buhr et al. [2] use a
blackboard technique for the negotiation, thus introducing a central entity.

Feature manager approaches lend themselves to the policy architecture, as their main re-
quirement is that the feature manager is located in the call path. This is naturally the case with
policy servers. However, feature manager approaches so far have suffered from a lack of in-
formation to resolve interactions (though some progress has been reported in [8]). Negotiation
approaches can fill this gap. Their current handicap is the sophisticated exchange of informa-
tion required; however this is addressed by allowing communication channels between policy
servers. We foresee a combination of the two techniques to exploit their individual benefits.

Two forms of negotiation are practical in the policy architecture: pre- and post-negotiation.
In the former case, the policy server contacts the policy server at the remote end and negotiates
call setup details to explore a mutually acceptable call setup. The communications layer is then
instructed to setup the call accordingly. In post-negotiation, the policies are applied while the
call is being setup, thus potentially leading to unrecoverable problems.

6 Conclusion and Further Work

Evaluation. We have considered how policies can be used in the context of call control, es-
pecially how they can be seen as the next generation of features. The policy architecture allows
calls to be controlled by policies. Each policy might make use of the context of a user. This
allows context-oriented call routing, but goes far beyond routing by allowing for availability
and presence of users to be expressed. Therefore, we can achieve truly non-intrusive commu-
nications that enable users to achieve their goals. Policies can be easily defined and changed by
the end-user via a number of interfaces (e.g. Web or voice interfaces).

We have suggested some offl ine feature interaction techniques for policies to be checked
for consistency when they are designed. They can be applied to new policies as well as to ex-
isting ones within the same domain. However, calls will eventually cross domains; then online
techniques to detect and resolve any confl icts will be required.

Future Work. A prototype environment to create and enforce policies has been developed
on top of a SIP architecture. Thus the proposed architecture has been implemented. The meth-
ods for detecting and resolving policy confl ict identified in this paper need to be implemented
in the prototype such that empirical data on their suitability can be gathered. These methods



8 S. Reiff-Marganiec and K. J. Turner

require some more formal understanding of the policy language as well as the communications
layers to be used (the mapping of low-level messages to policy events).

In the future we would like to test the upper layers on top of other communications layers.
For example H.323 and PBX are planned. Further development of additional user interfaces
should strengthen the prototype. Another research area is the automatic gathering of context
details, which is interesting in itself but beyond the scope of our work.

Acknowledgements

This work has been supported by EPSRC (Engineering and Physical Sciences Research Council) under
grant GR/R31263 and Mitel Networks. We thank all people who contributed to the discussion of policies
in the context of call control. Particular thanks are due to Tom Gray, Evan Magill and Mario Kolberg.

References

[1] M. Barbuceanu, T. Gray, and S. Mankovski. How to make your agents fulfil their obligations. Proceedings
of the 3rd Int Conf on the Practical Applications of Agents and Multi-Agent Systems, 1998.

[2] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski. Feature-interaction visual-
ization and resolution in an agent environment. In K. Kimbler and L. G. Bouma, editors, Feature Interaction
in Telecommunications Networks V, pages 135–149. IOS Press (Amsterdam), 1998.

[3] O. C. Dahl and E. Najm. Specification and detection of IN service interference using LOTOS. Proc. Formal
Description Techniques VI, pages 53–70, 1994.

[4] A. Fano and A. Gersham. The future of business services in the age of ubiquitous computing. Communica-
tions of the ACM, 45(12):83–87, 2002.

[5] M. Kolberg and E. H. Magill. A pragmatic approach to service interaction filtering between call control
services. Computer Networks, 38(5):591–602, 2002.

[6] E. Lupu and M. Sloman. Confl icts in policy based distributed systems management. IEEE Transactions on
Software Engineering, 25(6), November/December 1999.

[7] D. Marples and E. H. Magill. The use of rollback to prevent incorrect operation of features in intelligent
network based systems. In K. Kimbler and L. G. Bouma, editors, Feature Interaction in Telecommunications
Networks V, pages 115–134. IOS Press (Amsterdam), 1998.

[8] S. Reiff-Marganiec. Runtime Resolution of Feature Interactions in Evolving Telecommunications Systems.
PhD thesis, University of Glasgow, Department of Computer Science, Glasgow (UK), May 2002.

[9] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced communications services. In
D. Peled and M. Vardi, editors, Formal Techniques for Networked and Distributed Systems (FORTE 2002),
pages 130–145. Springer Verlag, November 2002.

[10] M. W. A. Steen and J. Derrick. Formalising ODP Enterprise Policies. In 3rd International Enterprise
Distributed Object Computing Conference. IEEE Publishing, September 1999.

[11] M. Thomas. Modelling and analysing user views of telecommunications services. In P. Dini, R. Boutaba,
and L. Logrippo, editors, Feature Interaction in Telecommunications Networks IV, pages 168–182. IOS Press
(Amsterdam), 1997.

[12] K. J. Turner. Realising architectural feature descriptions using LOTOS. Networks and Distributed Systems,
12(2):145–187, 2000.

[13] H. Velthuijsen. Distributed artificial intelligence for runtime feature interaction resolution. Computer,
26(8):48–55, 1993.

[14] P. Zave and M. Jackson. New feature interactions in mobile and multimedia telecommunication services.
In M. Calder and E. Magill, editors, Feature Interaction in Telecommunications and Software Systems VI,
pages 51–66. IOS Press (Amsterdam), 2000.


