

Towards Personalised Home Care Systems

Feng Wang and Kenneth J. Turner

In:
Proceedings of the 1st international conference on PErvasive
Technologies Related to Assistive Environments
2008, Athens, Greece July 16 - 18, 2008

ACM International Conference Proceeding Series; 2008, Vol. 282,
Article Number: 44

http://doi.acm.org/10.1145/1389586.1389639

© ACM, 2008. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ACM International Conference Proceeding Series; Vol.
282, Article number: 44. http://doi.acm.org/10.1145/1389586.1389639

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Feng Wang and Kenneth J. Turner. Towards Personalised Home Care Systems.
In Ilias Maglogiannis, editor, Proc. 1st International Conference on
Pervasive Technologies related to Assistive Environments,
pages L2.1-L2.7, Association for Computing Machinery, New York, USA, July 2008.

Towards Personalised Home Care Systems
Feng Wang

Computing Science and Mathematics
University Of Stirling

Stirling, FK9 4LA
Scotland

+44 1786 467428

fw@cs.stir.ac.uk

Kenneth J. Turner
Computing Science and Mathematics

University Of Stirling
Stirling, FK9 4LA

Scotland
+44 1786 467423

kjt@cs.stir.ac.uk

ABSTRACT
Home care is increasingly seen as a promising alternative to
traditional care services. Programming home care systems remains
a significant challenge considering the potentially large scale of
deployment, the differences between individual care needs, and
the progressive nature of ageing. In this paper, we present
ongoing work on programming home care systems to support
personalisation, adaptability over time, and dependability. A
policy-based approach is used to build such systems. We present
the technical details of our approach, including a policy language
for home care and the corresponding system architecture. Policy
examples are used to illustrate how the approach supports
personalisation of home care services.

Categories and Subject Descriptors
D.1 [Programming Techniques]; C.2.4 [Computer Systems
Organization]: Computer-Communication Networks -
Distributed Systems

General Terms
Management, Design

Keywords
home care, policy-based management, personalisation, pervasive
computing

1. INTRODUCTION
The growing number of older people is creating more pressure on
the resources of existing care services. Increasingly, providing
care at home is seen as a promising alternative to traditional
healthcare solutions. By making use of sensors, home networks
and communications, older people can be helped to prolong
independent living in their own homes. Remaining in a familiar
environment while being cared for improves their quality of life.
Their families and informal carers can also be relieved of worry as
to whether those in care are well.

The authors are part of a multi-partner team working on the
MATCH project (Mobilising Advanced Technologies for Care at
Home, www.match-project.org.uk). Through discussion with our
social care partners, healthcare practitioners, and other researchers
in this area, we have identified the following requirements for
home care systems.

Personalisation Each user has unique circumstances and needs.
Users vary in their health. For example, older people are prone to
diseases such as hypertension, diabetes and Alzheimer’s. They
may also suffer from functional disabilities such as impaired
mobility, falls and memory loss. Users also vary in their personal
wishes, including lifestyle and privacy preferences. The
combination of these factors varies from person to person. As a
result, potential risks can be different for each user receiving care
at home. This entails different needs for support and monitoring,
as well as requirements for home care products and services.

Customisation Since home care systems may be deployed on a
large scale, personalisation should not have to be undertaken by
specially trained system integrators and developers. Rather, care
professionals should also be able to personalise the system as they
have the best knowledge of the care situation.

Adaptation Ageing is a progressive process. As time goes by,
new symptoms may appear and existing symptoms may further
develop. Home care systems must therefore support easy
modification to existing care services, as well as deployment of
new services to tackle these changes. Both hardware and software
changes may be required.

Dependability Since home care systems directly affect health,
welfare and safety, care services must operate in a predictable and
dependable way. In general, dependability may involve both
hardware and software, though this paper focuses mainly on
software aspects. A care service must not exhibit undesirable
behaviour, and there should not be interference among care
services.

Many research prototypes of home care systems have been created
in an ad hoc way and require specialised programming. The
prototypes are usually built to demonstrate the usefulness of some
approach or as vehicle to explore research issues. The systems are
often hand-crafted and manually customised to the needs of
individual scenarios. Such solutions can therefore be costly to
change. Furthermore, as home care services run as individual
applications, conflicts may occur (e.g. two services might wish to
control heating levels differently).

Proprietary, off-the-shelf telecare products (for example,
http://www.tunstall.co.uk) typically have similar limitations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PETRA 2008, July 15-19,2008, Athens, Greece.
Copyright 2008 ACM XXXXXXXXX…$5.00.

Perhaps for this reason, domestic health monitoring and home
automation are still not widely deployed. Functionality is usually
fixed in special-purpose devices. Data from these devices may not
be accessed easily, and the devices may interwork only with
others from the same company. The experience of our
professional care partners is that adjustments to commercial
telecare products are often required.

We have adopted a policy-based (i.e. rule-based) approach for
home care to address these issues. Many home care services are
reactive applications. Typically, an action is taken when some
event happens (e.g. when someone falls or calls for help). A
policy-based home care system captures this by specifying the
behaviour of a system through policies (i.e. rules). A typical
policy in our home care systems consists of an event, a condition
and an action (a style known as ECA). When some event happens
and the specified condition holds, some action is taken.

By separating service logic from program code, we can modify the
behaviour of a home care system without changing its
programming. This facilitates configuration and evolution. In our
previous work [1], we created a lab prototype and successfully
demonstrated a policy-based system using data from a variety of
home sensors. Sensor data is used to support a variety of services
for home care and home automation. We have since then formally
defined the policy language and have implemented this in a
policy-based care system. To address compatibility of services, we
have also started work on detecting and resolving conflicts among
care services [8]. The present paper focuses on the personalisation
of care systems.

Section 2 discusses personalisation issues for home care. Section
3 describes the design of a system to support personalisation,
section 4 illustrates the approach, and section 5 discusses the
implementation. Section 6 reviews related work on this topic.
Section 7 reviews the work and describes our future plans.

2. PERSONALISATION ISSUES
A home care system consists of both the technical systems
deployed in the home and the external providers of home care. At
home, care services react to situations detected by sensors. If
necessary, they send appropriate notifications to care centre staff.
If required, the system can also monitor the patient’s activities of
daily living. Lifestyle changes can be inferred from such
monitoring, perhaps triggering a review of the care plan. This may
lead care staff to change the care services deployed in the home.

Due to differences in individual needs, personalisation needs to
reflect a number of factors. Differing health conditions may
require different sensors and care services. For example, chronic
heart disease might require services for ECG and cardiovascular
monitoring, while dementia might require services for reminders
and night-wandering.

Care services may also need to reflect personal preferences such
as heating, lighting or audio levels. These may have fixed values,
or may vary according to the context (e.g. activity, location or
time). Thus, the preferred lighting level may depend on whether
the user is watching TV or reading.

Other personal preferences may be expressed in terms of
constraints over resources available in the environment. For

example, the user might wish to refer to a nearby display or to a
display with large text. These are examples of context-aware
service discovery. The user typically does not have knowledge of
the available devices and does not care about the technical details.
The user simply needs devices that satisfy certain expectations.

The next section describes a policy-based home care system that
supports programming and personalisation of home care delivery
through sensors and actuators.

3. POLICY-BASED HOME CARE
In our approach, the behaviour of a care system (i.e. how it reacts
to the home and to the user) is specified by policy rules. A home
care service is a rule-based application described by policies. We
have defined a specialised policy language for this purpose.

Home care policies are defined in policy documents which
conform to an XML schema. A policy document can contain
policy variables, regular policies and resolution policies. Only
regular policies and policy variables are discussed here.
Resolution policies are a kind of meta-policy that state how to
detect and resolve conflicts among regular policies. More details
of the policy language can be found in [11].

3.1 Regular Policy

3.1.1 Policy Structure
A policy contains a set of policy rules that apply to certain
subjects. From the functional point of view, there are two major
types of regular policies: authorisation policies and obligation
policies. An authorisation policy indicates that a subject is
authorised to invoke an action upon some target object. An
obligation policy specifies that a subject is obliged to take an
action upon a target. A policy has a set of attributes that include:

• applies_to identifies the entities to which a policy applies. An
email-like address is used for entities. In general, a policy
applies to a set: one user or entity, one domain, or a list of
users, entities and domains. It can also refer to a domain
symbolically by citing its variable name. This attribute
determines which policy documents are retrieved at run-time.

• preference states how strongly the policy definer feels about
it, and represents the modality of the policy. This attribute can
be used to resolve policy conflicts.

• enabled indicates whether a policy can be selected for
execution.

• changed indicates when the policy was modified.

Policy rules can be combined in various ways, e.g. subject to
some condition, tried in sequence, or executed in parallel. Each
policy rule consists of three parts: a trigger, a condition and an
action.

3.1.2 Trigger
To handle events from sensors, a device_in trigger is used with up
to five arguments:

• message_type for the kind of trigger

• entity_type for the kind of entity originating a trigger

• entity_instance for the entity instance originating a trigger

• message_period for the relevant time period

• parameter_values for parameters associated with a trigger.

Some care services may need to react to the situation where time
has elapsed since a sensor fired an event (e.g. five minutes after a
door was opened). There is therefore a timer_expiry trigger for
sensor-initiated timers. Such triggers are set up by the policy
action set_timer. As discussed later, time constraints may also be
defined in the condition part of a policy.

3.1.3 Condition
A simple condition consists of a parameter, an operator and a
value. Conditions can be combined using logical and, or and not
operators. Conditions can refer to variables; this includes
environment variables such as the parameters set up by a trigger.
The comparison operators are gt, ge, eq, ne, le, lt, in (inclusion)
and out (exclusion). These are interpreted according to the context
(e.g. numerical, textual or date comparison).

If a policy does not have a trigger but has a time-based condition,
an internal timer is automatically set up by the policy server.
Time-based conditions can refer to day, date and time.

3.1.4 Action
To invoke actuators, a device_out action is used with up to five
arguments. These five arguments have the same names as the
parameters of the device_in trigger, but have different meanings:

• message_type for the kind of action

• entity_type for the kind of entity to perform the action

• entity_instance for the entity instance to perform the action

• message_period for the relevant time period

• parameter_values for parameters associated with the action.

There are also internal actions such as:

• set_variable(name,expression) and unset_variable(name) to
change a variable dynamically when a policy is executed

• start_timer(name,period) and stop_timer(name) for an explicit
timer.

3.1.5 Policy Variable
A policy variable can be defined in a policy document and used in
policy rules. The top-level definition of a variable deliberately
resembles that of a regular policy. Each variable has an id to
identify it uniquely for each owner. The value of a variable is
what it stands for. As there is only ever one instance of a variable
that belongs to the same owner, assigning a new value overwrites
the previous one. Variables may hold boolean, numeric or string
values. Variables are dynamically typed as in scripting languages,
i.e. they may hold different kinds of values at different times. The
owner of a variable identifies the user or the entity that defined
the variable. Normally this will be the same as the applies_to
attribute, but it could be different if one user (typically an

administrator) defines variables that apply to others (typically
ordinary users). As an example, an administrator could define the
variable holidays that listed public holidays for everyone in the
current year. Policy variables with the same name but with
different owners can co-exist.

As an example, the following policy variable is defined by user
Jim for the house where he lives.

<variable id="bath_temperature"
 owner="jim@homes.org.uk"
 applies_to="@house5.homes.org.uk"
 value="25" changed="2008-03-23T23:50:10"/>

Within certain policy elements, variable names can appear in
ranges or in lists. The value of a variable is substituted when a
policy is executed, not when it is defined. Variable names can be
used in the following cases:

• the arg argument of a trigger or an action

• a condition parameter

• an expression

• as the first argument of set_variable and unset_variable.

3.2 Home Care System Architecture
Figure 1 shows an overview of the home care system.

Home Care Server

Policy Wizard

Sensors installed in the home detect the user’s activity or
hazardous situations. Commercial products already support these
basic requirements, such as fall sensors, movement sensors, and
bed occupancy sensors. A widening range of sensors is anticipated
in the future. Sensor inputs feed into the home care server, which
reacts to the detected situations. Some triggers arise from explicit
user input. For example, a pull-cord switch in the bathroom might
cause an alarm to be raised in the care centre. Users might also
take advantage of accessible interfaces such as touch screens or
speech communication. Besides triggers from inside the user’s
home, remote commands from care staff can also be used to
trigger actions.

The actions taken by the home care server include controlling
home appliances. Actions can also invoke software applications
such as a reminder service, a text message service, or an email
service.

Figure 1. Overview of Home Care System

The behaviour of the home care system is specified using policies.
Inside the system, the policy store holds policies as XML
documents. However, the home care system must support non-
technical users. The policy wizard is therefore vital as an easy-to-
use way of viewing, creating, modifying and deleting policies.
One interface supported by the wizard allows policies to be
formulated and edited using stylised natural language. This
interface is web-based, partly because this is now familiar to many
users, and partly because policies can then be edited remotely.
However, a textual web interface may not be suitable for all users.
Other approaches being evaluated include a speech-based
interface and one using digital pen and paper.

A screenshot of the web-based policy wizard is shown in Figure 2.

The architecture of the home care server is shown in Figure 3.

Context Manager

Policy Server

Device Registry Configuration Manager

OSGi

Java

Operating System

The home care server is built on top of the OSGi platform (Open
Services Gateway initiative, www.osgi.org). It consists of the
following components:

Policy Server On receiving a trigger (e.g. from a sensor), this
retrieves relevant policies from the policy store and checks the
triggers and conditions of the policy rules. If triggers have

occurred and the conditions hold, the corresponding action is put
into a list of potential actions. If there is only one action in the
list, then this is performed. If there are multiple actions, the policy
server checks for and resolves conflicts before initiating the
actions. More details about the policy server can be found in [1].

Context Manager When the policy server reacts to a trigger, it
also needs to refer to the status of the home care environment (e.g.
whether a cooker is on) and the status of the user (e.g. their
location). The context manager is responsible for monitoring
triggers from sensors and for maintaining the current state of the
system.

Device Registry The device registry contains details of currently
available sensors and actuators. When sensors and actuators join
the system, they register with the system. This can be done
manually, but more desirably can be automatically registered
through messages to the device registry, as in the Atlas platform
[12] or in UPnP (www.upnp.org). When sensors and actuators are
removed, they are likewise removed from the registry. The device
registry provides a query interface to search for devices. Given a
set of conditions, the registry can return a list of devices that
satisfy the required conditions.

Configuration Manager The configuration manager acts as a
broker between the policy server and the device registry. As
mentioned in section 2, some care services may refer to resources
that are dynamically bound. The configuration manager takes
conditions from the policy server and queries the device registry
as to devices that satisfy the conditions. This helps to keep the
policy rules stable, and saves the care service developer from
having to track device status.

4. SUPPORTING PERSONALISATION
A policy-based approach is used for building care services. Apart
from hardware deployment, adding or removing a new care
service just means adding or removing policy rules. The system
allows a different set of policy rules to be created for each user to
support their individual care needs. Compared to a program-based
approach, the policy wizard is a much more accessible interface
for defining how the home care system should react.

For the same care service deployed by different people, the policy
language also supports individual customisation. The following
section uses policy examples that illustrate how to support
personalisation of care services as discussed in section 2.

4.1 Fixed Preferences
Some preferences are represented as constant values. A policy
variable definition can specify such preferences. An example of
defining preferred bath temperature was given in section 3.1.5.

The following example shows a policy that starts heating bath
water at 20:00 every day until it reaches the required temperature.
Instead of an external trigger, this example uses a time-based
trigger in the condition part of the policy. When this policy is
defined, the policy server sets a timer to trigger daily at 8PM.
Trigger or action arguments are specified as attributes of the
corresponding XML elements. Policy variables are referenced by
prefixing their name with ‘:’.

Figure 2. The Web-Based Policy Wizard

Figure 3. Architecture of The Home Care System

<policy owner=”jim@homes.org.uk”
 applies_to="@house5.homes.org.uk"
 id="Prepare bath water" enabled="true"
 changed="2008-03-15T11:12:03">
 < policy_rule>
 < condition>
 < parameter>time</ parameter>
 < operator>eq</ operator>
 < value>20:00:00</ value>
 </ condition>
 < action arg1="on" arg2=":water_heater"
 arg5="temperature=:bath_temperature">
 device_out(arg1,arg2,,,arg5)
 </ action>
 </ policy_rule>
</ policy>

The bath_temperature policy variable and the policy rule above
are specified separately, and may be defined at different times.
Since both apply to the same house (house5.homes.org.uk), they
will be retrieved and used together.

Defining a preference value separately can help in reuse of
preference definitions. Policies that refer to a preference variable
can share one definition. In addition, different users can have
different values for a variable without worrying about
interference.

4.2 Conditional Preferences
The home care system also supports conditional preferences
through policy variables. These are specified in the conditions of
policy rules. In the action part of a policy, different preference
values may be defined by using the internal policy action
set_variable. The variable value can be a literal or a general
expression. In both cases, other variables can be referenced.

The following policy example demonstrates how to define
conditional preferences using policies. In this example, the user
wants to set the TV volume differently depending upon the time
of day. The range of the TV volume is from 1 (lowest) to 10
(highest).

The first policy rule shows that the user prefers a louder TV
volume during daily activities (9AM to 11PM):

<policy_rule>
 < condition>
 < parameter>time</ parameter>
 < operator>in</ operator>
 < value>09:00:00..23:00:00</ value>
 </ condition>
 < action arg1="tv_volume" arg2="8">
 set_variable(arg1,arg2)
 </ action>
</ policy_rule>

The second policy rule shows that the user wants to keep a lower
volume at night so as not to disturb other people’s sleep.

<policy_rule>
 < condition>
 < parameter>time</ parameter>
 < operator>in</ operator>
 < value>23:00:00..09:00:00</ value>
 </ condition>

 < action arg1="tv_volume" arg2="3">
 set_variable(arg1,arg2)
 </ action>
</ policy_rule>

The tv_volume variable can then be used to adjust the volume of a
TV in another policy. At run-time, all related policies are
retrieved together and then executed.

4.3 Resource Preferences
Some care services may define constraints on resources available
in the environment. For example, the user might want to display a
message somewhere in the same room. This is an example of a
context-aware service. Without proper support, it would be
necessary to discover all the displays in the house before selecting
a nearby one. This could require tedious configuration data (or
policy rules in our case). Over time, home devices may be
replaced and therefore require manual reconfiguration.

In our home care system, policy variables are used to address this
issue. Instead of specifying a particular device in policies,
constraints on the choice of device are defined in a device
variable. At run-time, the policy server passes these constraints to
the configuration manager to make a particular choice. The
configuration manager finds a suitable device by querying the
device registry.

In the following example, the policy variable nearby_display is
specified for showing messages. The value of this variable
contains constraints on the resource: the device function must be a
display, and its location must be the same room as the user. The
user’s current location is stored in another variable user_place. In
this example, the location is determined at the granularity of
rooms.

<variable id="nearby_display"
owner="jim@homes.org.uk"
applies_to="@house5.homes.org.uk"
value="func=display,location=:user_place"
changed="2007-02-23T23:50:00"/>

The following example shows the policy rule for a location-aware
message display application. During the day (9AM to 9PM), an
SMS message received on the user’s mobile telephone is shown
on a display in the same room as the user. The message text is
extracted from the parameter_values argument of the trigger
received from the mobile telephone.

<policy_rule>
 < trigger arg1="sms_in" arg2=”mobile”>
 device_in(arg1,arg2)
 </ trigger>
 < condition>
 < parameter>time</ parameter>
 < operator>in</ operator>
 < value>09:00:00..21:00:00</ value>
 </ condition>
 < action arg1="display"
 arg2=":nearby_display"
 arg5=”content=:parameter_values”>
 device_out(arg1,arg2,,,arg5)
 </ action>
</ policy_rule>

At run-time, the policy server replaces the nearby_display
variable with its value before the policy gets executed. Since the
value of this variable is a set of conditions, the policy server
consults the configuration manager to get the specific device or
service that satisfies these conditions.

By introducing a configuration manager, the home care system
can now support dynamic resource binding. This hides
uninteresting low-level aspects from the care service developer.

5. IMPLEMENTATION
The policy server has been implemented on top of the OSGi
platform to support the policy language described in this paper.
Knopflerfish (www.knopflerfish.org) has been used as the
implementation of OSGi 4. Communication between the policy
server, sensors and actuators is supported by an event service
(EventAdmin), provided by the OSGi platform. Wireless sensors
from Visonic (www.visonic.com) are used to detect conditions
such as movement, flooding, smoke, bed occupancy or door
opening. A standard wireless receiver has been interfaced to a PC
using a USB adapter. An OSGi bundle was written to read the
wireless sensor inputs. For output, OSGi bundles have been
written to control X10 appliances (on, off and dim actions), to
control UPnP alarm devices, to interface with SIP (Session
Initiation Protocol, used for Internet telephony), and to send
text messages for mobile telephones. More details about the
policy system implementation can be found in [1].

The context manager is currently implemented as an OSGi bundle
that stores location as policy variables in the policy store on
receiving updates from the sensors. The configuration manager is
another bundle that currently provides a query-based interface.
We plan to add a notification-based interface to inform care
services of changes in devices. The device registry is currently
implemented using XSet [17], which supports a query interface to
an in-memory XML database. The attributes of a sensor or an
actuator are specified as name-value pairs in a XML document.
Adding devices to the device registry or removing them is
currently simulated by adding/removing the XML documents.
However, work is under way to integrate the configuration
manager with a semantics-enhanced service discovery bundle
from one of our colleagues.

The web-based policy wizard is driven by ontologies that contain
domain knowledge about home care. The result is a highly
flexible user interface, easily adaptable to reflect new
applications. For example, the policy system also supports call
control in telephony and the management of sensor networks.
Existing techniques are being adapted to detect conflicts among
home care actions.

6. RELATED WORK
Policy-based management has been applied in a number of areas,
including the management of networks and distributed systems
[14, 15] and system configuration [16]. However the target users
of most policy systems are IT professionals who can be expected
to have specialised technical knowledge.

Pervasive (or ubiquitous) computing has attracted considerable
research and industrial interest (e.g. [2, 3]). Many approaches to

pervasive computing require specialised expertise for
customisation or upgrading. Pervasive computing techniques have
been applied in clinical settings (e.g. [5, 6]). Although there has
been limited research on pervasive computing for care at home,
some projects (e.g. [7]) are investigating transmission of medical
data back to a care centre.

The Gator project [4, 12] has investigated how to program a
pervasive computing space. A key goal is plug-and-play for
sensors and nodes. The Gator platform treats sensors and
actuators as service objects, and provides an integrated
development environment to program these. Plug-and-play could
be very useful in our own approach, and may be implemented in
future. However, the Gator philosophy is aimed at programmers,
unlike our approach which is designed for the less technically
minded. In addition, the Gator work does not consider dynamic
aspects of the environment at run-time.

The Millennium Homes project [9] investigated multimodal
interaction issues to support independent living of older people in
their own homes. This work also identified issues with
coordinating multiple care services.

[10] proposes a framework to integrate smart home technology
with current care practices, focused on temporal reasoning and
spatial reasoning.

Preference concepts have traditionally been applied in economics
and decision making. Increasingly they have been applied to many
other areas. In ubiquitous computing, a personal coordination
server has been proposed to filter out nearby devices for mobile
users according to their preferences [13].

7. CONCLUSION AND FUTURE WORK
We have described our ongoing work on programming home care
systems using a policy-based approach. This supports
personalisation and allows easy changes to care services,
including adaptation over time. By providing user-friendly tools
such as the policy wizard, we have also made the system more
accessible to a wider audience – not limited just to developers.
We have created the ability to detect and resolve conflicts among
care policies, thereby contributing to more predictable and
dependable behaviour.

There are a few issues that require further investigation. Easy
definition of policy rules may become a concern when more care
services are deployed at home. Defining a small set of policy rules
in stylised natural language may be acceptable. However as home
care systems are more widely deployed, users may find specifying
policy rules too tedious. We are looking at techniques to reduce
this burden. A promising idea is that of goal refinement, which
automatically generates low-level policy rules from a set of high-
level intentions.

We also plan to investigate security and privacy aspects of
policies in home care systems. Secure definition of policies is
already supported in the policy wizard. Management policies will
be defined to allow control of services and access to data. It will
be crucial to manage what data may be used for what purposes.
This includes whether data may be exported out of the home, and
how it may be analysed. Health and lifestyle data must obviously
be kept confidential, and be processed in an authorised manner by
identified individuals.

And at present, policies dictate individual actions or simple
combinations of these. For some services it may be desirable to
execute complex patterns of actions, in a style similar to workflow
modelling. For example, a multimodal reminder service may
require a complex set of interactions with the user. One question
is whether a complex service should be treated as a whole, or
whether the internal flow of a service should be visible. The latter
may offer configurability, but can ordinary users handle the
complexity? We are investigating the possibilities for integrating
workflow-style programming with the policy-based approach.

ACKNOWLEDGMENTS
This research was carried out within the MATCH project funded by
Scottish Funding Council under grant HR04016. The authors are
grateful for the advice of their collaborators on this project, and
also on the PROSEN project (Proactive Condition Monitoring of
Sensor Networks).

REFERENCES
[1] F. Wang, L. S. Docherty, K. J. Turner, M. Kolberg and E. H.

Magill. Service and policies for care at home, Proc. 1st Int.
Conf. on Pervasive Computing Technologies for Healthcare,
pp. 7.1–7.10, IEEE Press, Nov 2006.

[2] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell and K. Nahrstedt. A middleware infrastructure to
enable active spaces, Pervasive Computing, 1(4):74–83,
Oct.–Dec 2002.

[3] D. Garlan, D. Siewiorek, A. Smailagic and P. Steenkiste.
Project Aura: Toward distraction-free pervasive computing,
Pervasive Computing, 1(2):22–31, Apr.–Jun. 2002.

[4] A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah
and E. Jansen. Gator Tech Smart House: A programmable
pervasive space, Computer, 38(3):50–60, March 2005.

[5] J. E. Bardram. Applications of context aware computing in
hospital work – examples and design principles, Proc. ACM
SAC '04, Nicosia, Cyprus, Mar. 2004.

[6] M. Drugge, J. Hallberg, P. Parnes, and K.Synnes. Wearable
systems in nursing home care: prototyping experience,
Pervasive Computing, 5(1):86–91, Jan.–Mar. 2006.

[7] J. E. Bardram. The personal medical unit – a ubiquitous
computing infrastructure for personal pervasive healthcare.
In T. Adlam, H. Wactlar, and I. Korhonen, eds., Proc. 3rd
Ubiquitous Computing for Pervasive Healthcare
Applications, Nottingham, UK, Sep. 2004.

[8] F. Wang and K. J. Turner, Policy conflicts in home care
systems, in L. du Bousquet and J.-L. Richier, eds., Proc. 9th
Int. Conf. on Feature Interactions in Software and
Communication Systems, IOS Press, Amsterdam, Sep. 2007.

[9] M. Perry, A. Dowdall, L. Lines and K. Hone. Multimodal
and ubiquitous computing systems: Supporting contextual
interaction for older users in the home. Trans. on IT in Bio-
medicine, 8(3):258–270, 2004.

[10] J. C. Augusto. Towards personalization of services and an
integrated service model for smart homes applied to elderly,
Proc. Int. Conf. on Smart Homes and Health Telematics, pp.
151-158, Sherbrooke, Canada, Jul. 2005.

[11] K. J. Turner et al. APPEL: An Adaptable and Programmable
Policy Environment and Language, Technical Report CSM-
161, Computing Science and Mathematics, University of
Stirling, Dec. 2007.

[12] J. King, R. Bose, H. Yang, S. Pickles and A. Helal. Atlas – A
service-oriented sensor platform, Proc. 1st Int. Workshop on
Practical Issues in Building Sensor Network Applications,
Tampa, Florida, Nov. 2006.

[13] T. Nakajima. Personal coordination server: A system
infrastructure for designing pleasurable experience, Proc. Int.
Conf. on Pervasive Services, 2005.

[14] J. Lobo, R. Bhatia and S. Jaqvi. A policy description
language, Proc. American Association for Artificial
Intelligence, Orlando, Florida, Jul. 1999.

[15] N. Damianou, N. Dulay, E. Lupu and M. Sloman. Ponder: A
language specifying security and management policies for
distributed systems, Technical Report, Imperial College,
London, 2000.

[16] M. Burgess. A site configuration engine, USENIX
Computing Systems, 8(3):309–337, 1995.

[17] Ben Y. Zhao. The XSet XML search engine and XBench
XML query benchmark, Master's thesis, University of
California, Berkeley, May 2000.

