
Electronic Notes in Theoretical Computer Science 43 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume43.html 23 pages

The N-Body Problem in LOTOS

Kenneth J. Turner

Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA
UK

Abstract

It is shown how the classical n-body problem in mechanics can be generalised and for-
malised in LOTOS. A number of variants are produced by instantiation of the specification
framework. These include Newton’s cradle, gas motion, the ‘game of life’, an orrery, a
space game, an air traffic simulation and a sailing race. It is shown how these are derived
from the generic framework using a configuration tool. The resulting LOTOS specifications
are simulated automatically to graphically animate the system behaviour.

1 Introduction

The n-body problem is a classical one in mechanics. It considers the motion of a
number of masses under gravitational attraction. For two bodies there is an analyti-
cal solution. For three or more bodies there is no analytical solution and methods of
approximation or simulation must be used. In this paper, the problem is interpreted
broadly as the interactions in space over time of a number of interacting elements.
The problem is then modelled in LOTOS (Language Of Temporal Ordering Specifi-
cation [5]) and simulated to obtain the dynamic behaviour as a graphical animation.
The reader should briefly preview figure 2 to get a feel for the problem variants to
be discussed.

This kind of application takes LOTOS well outside its original domain of pro-
tocol specification and analysis. The motivations for exploring the n-body problem
in LOTOS are:
• The problem offers a significant challenge for LOTOS, stretching its ‘envelope’

and evaluating its applicability in a completely new area.
• As will be seen, LOTOS can be used to provide a generic formulation. This

allows a surprising number of variations on the basic problem to be captured by
the same specification framework.

1 Email: kjt@cs.stir.ac.uk

c©2001 Published by Elsevier Science B. V.

113

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Turner

• A number of the variants to be described have standard approaches, e.g. La-
grangian mechanics for the n-body problem or Maxwell-Boltzmann theory for
gas motion. However these are treated as separate theories in physics. LOTOS

supports a common approach to all the variations.
• As a specification language, LOTOS has formal notions such as equivalence,

model-checking and proof. The problem and its variants in physics also have
formal models such as Newton’s equations of motion or statistical mechanics.
However the LOTOS approach is very different, and offers different kinds of anal-
yses. For example, the air traffic model given later might be shown (in principle)
to avoid aircraft collisions. It should be said, however, that this is an aspiration
of the approach; so far, only simulations have been undertaken.

• The n-body problem and its variants offer an entertaining change from the some-
times dry topics studied by formal methods. The author confesses that a signifi-
cant motivation was simply having fun with the approach!
LOTOS has been used successfully in a number of non-protocol areas. These

include aviation [3], computer-integrated manufacturing [8], embedded systems
[1], graphics standards [9], hardware [6], medical devices [11], neural networks
[4], and visualisation [12]. (Many more references could be given.) As far as the
author knows, the n-body problem is quite different from any previous application
of LOTOS. The only similar work is [13] that can generate graphical animations
(the dining philosophers eating).

Section 2 presents the problem framework, showing how the original n-body
problem can be interpreted in a more general way. A number of variants are illus-
trated. The LOTOS specification framework to encompass these is then explained.
Tool support for simulation is discussed in section 3. Section 4 gives some insight
into the variants of the general problem. This is illustrated in sections 5 and 6 for
the n-body and Brownian motion problems.

2 The Problem in General

2.1 Problem Framework

The system under study consists of a number of interacting elements. In deference
to the original problem, the term ‘body’ is used although its interpretation is quite
wide. The bodies interact in a problem-dependent way. For example:
• In the n-body problem, interaction is by mutual gravitational attraction. The

bodies are considered to ‘communicate’ their position via the medium of the
ether. Although a physicist would find this an odd interpretation, it is nonetheless
legitimate.

• In a two-dimensional cellular automaton (Conway’s ‘game of life’), neighbour-
ing cells interact by exchanging information on their occupancy. Again this can
be considered a form of communication.

• In the air traffic model, aircraft interact by communicating their position. This is
a more conventional means of communication using radar.

114

Turner

From a LOTOS viewpoint, the system is therefore modelled as a collection of
communicating processes (one per body). The ‘ether’ that permits communication
is a common gate. This permits broadcast communication, i.e. information made
available by one body (say, its position) becomes known to all other bodies. For a
number of the problem variants this is exactly what is needed. For some variants,
only information from neighbouring bodies is relevant. The bodies therefore act on
information from only nearby bodies. For example:
• For Newton’s cradle, only the immediate neighbours of a ball are relevant.
• In the game of life, the destiny of each cell depends only its eight immediate

neighbours (orthogonally and diagonally).
• In the sailing race, the rules for resolving conflict apply only when the bodies

(yachts, buoys) are within two boat-lengths of each other.
The system is considered to be closed, i.e. to be free from external influences. In

LOTOS terms, all communication between bodies is therefore internal (i.e. the Ether
gate is hidden). In most applications, the bodies act deterministically according to
their attributes and the states of other bodies. Some applications, however, permit
non-deterministic behaviour:
• In Brownian motion, the particles are subject to collisions with gas molecules.

The latter are not modelled, only their effect in causing the particles to move
randomly.

• In the space game, space-ships randomly change their heading and launch mis-
siles.

• In the sailing race, the wind randomly changes direction and strength.
For most of the problem variants, the number of bodies is fixed in advance.

However, for generality the LOTOS formulation permits bodies to become inactive
or to be (re-)activated as the system evolves. This is relevant to the space game, for
example, since the space-ships may fire missiles (thus creating new bodies).

Bodies have attributes. For consistency each body has a fixed set of attributes,
although bodies use these variously in different problem variants. Figure 1 sum-
marises the use of the following attributes in various applications:

Identity: An identity is simply a body identifier – an integer from 0 upwards.

Kind: The kind of a body identifies it as a mass, a gas molecule, an automaton
cell, etc.

Rating: This is a catch-all numerical attribute used for additional information. For
example, it gives the mass of a planet or the speed rating of a yacht.

Size: This is used when drawing bodies, but is also relevant to the behaviour of
some variants (e.g. the sailing model). It defines the diameter of a planet, for
example, or the length of a yacht.

Position, Velocity: These are vectors of arbitrary length, although only one, two
and three dimensions apply to the applications studied here.

Heading, Path: These also use vectors. Heading may differ from velocity since,
for example, a space-ship or a yacht may point in a different direction to that in
which it is currently travelling. Bodies in some problem variants aim to follow

115

Turner

Problem Kind Rating Size Pos. Vel. Head. Path

N-Body Mass mass diameter (x,y) (x,y) - -

Pendulum Weight suspension diameter θ ω - -

Newton’s Cradle Ball suspension diameter θ ω - -

Brownian Motion Particle - diameter (x,y) (x,y) - -

Gas Motion Molecule mass diameter (x,y) (x,y) - -

Game of Life Cell occupancy width (x,y) - - -

Space Game Missile mass diameter (x,y) (x,y) - -

Spaceship mass length (x,y) (x,y) (x,y) -

Star mass length (x,y) - - -

Orrery Earth, etc. mass diameter (x,y) (x,y) - -

Air Traffic Aircraft speed length (x,y,z) (x,y,z) - waypoints

Waypoint - diameter (x,y,z) - - -

Sailing Race Mark - diameter (x,y) - - -

Yacht handicap length (x,y) (x,y) (x,y) marks

Wind max. speed arrow (x,y) (x,y) - -

Fig. 1. Particular Examples of the N-Body Problem

a certain path as a list of vectors. A yacht sails a race as a succession of buoys
(called ‘marks’) to be rounded, and an aircraft follows a flight plan that is a list
of waypoints to be passed.

Figure 2 suggests how bodies are represented graphically in the different prob-
lem variants considered in this paper. The graphical depiction is, of course, outside
the LOTOS behaviour simulation. However, it is derived directly from the simu-
lation behaviour. Each step in the system evolution produces a new system state.
This is provided to a drawing program that creates the graphical display based on
the attributes of each body.

The appearance of a body is not determined directly by the LOTOS specifica-
tion, although various attributes affect the drawing. For example the size, position
and heading of a yacht determine how its hull is drawn. The position of the sail is
determined by the yacht’s heading and the point from which the wind is blowing.
In the air traffic application, the position and flight level of an aircraft are derived
from the simulation. In a number of the problem variants, the body identifier can
be used by the drawing program to label the body, e.g. the name of a planet or the
call-sign of an aircraft.

2.2 Specification Framework

The approach performs a kind of discrete event simulation. System behaviour ad-
vances in steps, during each of which the state of all bodies is made known. All

116

Turner

N-Body Pendulum

Orrery

Gas MotionBrownian MotionNewton’s Cradle

Game of Life Space Game

Air Traffic

A

B
C

1
2

Sailing Race

BA142
250 UK438

290

BM602
330

1
2

3

1 2

3

Sun

Mercury

Venus

Earth

Mars

Fig. 2. Particular Examples of the N-Body Problem

bodies update then their state, based on their own state and that of other relevant
bodies. The next step in system evolution then begins.

The LOTOS specification contains a Step process that synchronises the be-
haviour of all bodies. An Ether event is broadcast to all bodies, requesting them
to update their state and broadcast this to other bodies. Since all processes syn-
chronise at the Ether gate, all events are shared. The processes thus proceed in
lock-step. Each body process contains a list of states for other bodies as well as its
own state; LOTOS does not support the notion of a global state.

The LOTOS specification framework contains most of what is needed to simu-
late a variant of the n-body problem. Certain ‘holes’ are left in the specification for
completion by a particular application:

any bodies: contains parallel instances of body processes, with initial values for
their attributes.

117

Turner

any control: is used in a few applications (e.g. the space game or the game of life)
that require overall control of bodies. It defines a process rather than a type so
that non-deterministic behaviour can be described. It may create new bodies in
parallel with existing ones (e.g. missiles in the space game, or new cells in the
‘game of life’).

any params: gives any specification parameters or constants.

any update: defines how to update the state of a body using information about
the states of other bodies. This is the heart of the specification, and the part
that varies most among problem variants. All the applications define a StateNext
function:

StateNext : State, States > States

that updates the state for a body using its own state and that of other relevant
(e.g. nearby) bodies.

The outline specification framework is as follows. The equations defining types
have been omitted for brevity, as have the closing keywords for declarations. The
specification uses booleans and strings from the library. Convenient conditional op-
erations are defined for the booleans. Although natural numbers are available from
the library, their Succ notation is inconvenient. They are therefore implemented by
the external C type int. Some common constants and operations are introduced for
the naturals; None is used for an undefined natural. Real numbers are implemented
by the external C type double. This is particularly necessary since a specification of
real numbers would be extremely complex in LOTOS. Some common constants 2

and operations are introduced for the reals. Since LOTOS does not have a built-in
syntax for numbers, they are given as modified identifiers (e.g. 3 14, M1 2, 5E3
for 3.14, -1.2, 5 × 103).

The implementation of naturals and reals is given as a parallel description
using GLAD (General Language for Annotating Data) that is part of the TOPO
toolset [7]. There is a comparable approach for using external types in CADP
(Cæsar/Aldébaran Development Package [2]).

SpecificationAnyBody : NoExit (* overall specification *)
Library Boolean, String Endlib (* boolean, string *)
Type BoolOps Is Path, States (* boolean operations *)

Opns (* operations for booleans *)
If : Bool, Kind, Kind > Kind (* conditional for kind *)
If : Bool, Nat, Nat > Nat (* conditional for natural *)
If : Bool, State, State > State (* conditional for state *)
If : Bool, States, States > States (* conditional for states *)
If : Bool, Path, Path > Path (* conditional for path *)

Type Nat Is Boolean (* natural number – external *)
Sorts Nat (* sort name for natural *)
Opns (* operations for natural *)

2 The definition of Random is somewhat naughty since it has the signature of a constant but is
implemented by a random function.

118

Turner

0, 1, 2, 3, None : > Nat (* 0, 1, 2, 3, undefined *)
Succ : Nat > Nat (* successor *)

+ , − , * , ˆ : Nat, Nat > Nat (* add/sub/mul/exp *)
Eq , Ne , Lt , Le , Ge , Gt : (* ==/!=/</<=/>=/> *)
Nat, Nat > Bool

Type Real Is Boolean (* real number – external *)
Sorts Real (* sort name for real *)
Opns (* operations for real *)

M1, 0, 0 5, 1, 2, Random : > Real
(* -1.0/0.0/0.5/1.0/2.0/0.0..1.0 *)

+ , − , * , / , ˆ : Real, Real > Real
(* add/sub/mul/div/exp *)

Sin, Cos : Real > Real (* sin/cos *)
Square, Cube, Sqrt : Real > Real (* square/cube/square root *)
Abs : Real > Real (* absolute *)

Lt , Le , Eq , Ne , Ge , Gt : (* </<=/==/!=/>=/> *)
Real, Real > Bool

Animation is presented using one of three drawing modes: Label (body shape
plus label), Shape (body shape only) and Trail (trace of a body’s position). The kind
of a body is simply an enumerated type that covers all the problem variants. Adding
a new kind of body requires a simple extension to the Kind type, plus adding new
code to the C support library for drawing the body.

Type Mode Is Nat (* drawing mode *)
Opns (* operations for mode *)

Label, Shape, Trail : > Nat (* drawing modes *)
Type Kind Is Nat (* kind of bodies *)

Sorts Kind (* sort name for kind *)
Opns (* operations for kind *)

Aircraft, Ball, Cell, Earth, Mark, Mars, Mass, Mercury, Missile,
Molecule, Moon, Particle, Ship, Star, Sun, Venus, Waypoint,
Weight, Wind, Yacht, None : > Kind

Ord : Kind > Nat (* ordinal number for kind *)
Eq , Ne : Kind, Kind > Bool (* (in)equality of kind *)

A number of variants on lists are required. These are instantiations of the library
string type. The ‘+’ operation for element concatenation is highly overloaded in
the library and is renamed ‘&’. Basic lists are extended with some convenient
operations.

Type List Is String RenamedBy (* string as list *)
OpnNames& For + (* element prefix/append *)

Type ListOps Is Nat, List (* list operations *)
Opns (* operations for lists *)

IsIn : Element, String > Bool (* element is in string? *)
NotIn : Element, String > Bool (* element is not in string? *)

119

Turner

1st, 2nd, 3rd : String > Element (* first/second/third values *)
Nth : Nat, String > Element (* nth string element (0, ...) *)
Tail : String > String (* all but first value *)

Nearly all the problem variants require vectors, so these are created as lists of
reals with obvious operations. A path is a list of vectors.

Type Vec Is ListOps (* vector as number list *)
ActualizedBy Real, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

Real For Element (* real as element type *)
Vec For String (* vector sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
Vec For String (* element to vector *)

Type VecOps Is Nat, Vec (* vector operations *)
Opns (* operations for vectors *)

+ , − , * , / : Vec, Vec > Vec
(* vector-vector add/sub/mul/div *)

+ , − , * , / : Real, Vec > Vec
(* scalar-vector add/sub/mul/div *)

Mag, SumSquares : Vec > Real (* magnitude/sum of squares *)
Type Path Is ListOps (* path as vector list *)
ActualizedBy Vec, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

Vec For Element (* vector as element type *)
Path For String (* path sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
Path For String (* element to path *)

A state is simply a record-like structure containing the attributes given earlier.
A list of states and an operation to update a state are then defined. NoState is in-
troduced as the undefined state. The reference to any params includes any specifi-
cation parameters (such as masses or diameters) that are generated for the problem
variant. The reference to any update includes the problem-defined update proce-
dure.

Type State Is Nat, Kind, Real, Vec, Path (* body state *)
Sorts State (* sort name for state *)
Opns (* operations for state *)

State : Nat, Kind, Real, Real, (* id/kind/rating/size *)
Vec, Vec, Vec, Path > State (* position/velocity/heading/path *)

Id : State > Nat (* identifier *)
Kind : State > Kind (* kind *)
Rate : State > Real (* rating *)
Size : State > Real (* size *)

120

Turner

Pos, Vel, Head : State > Vec (* position/velocity/heading *)
Path : State > Path (* path *)
NoState : > State (* undefined state *)
Eq , Ne : State, State > Bool (* (in)equality for states *)

Type States Is ListOps (* states as state list *)
ActualizedBy State, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

State For Element (* state as element type *)
States For String (* state list sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
States For String (* element to state list *)

Type StatesOps Is BoolOps, VecOps (* state list operations *)
Opns (* operations for state list *)

StateUpdate : State, States > States (* modify state for body *)
any params (* parameters/constants *)
any update (* update procedure *)

The overall specification behaviour is that of the Bodies process synchronised
with the Step control process. All bodies broadcast their state via the Ether gate.
Each body may also communicate individually with step control via the Control
gate. This is used to assign each body a unique identifier when it starts up.

Behaviour (* overall behaviour *)
Hide Ether, Control In (* communication internal *)

Bodies [Ether, Control] (* bodies *)
|| (* synchronised with *)

Step [Ether, Control] (* start and run simulation *)
(0 of Nat, 0 of Nat, 0 of Nat, 0 of Real)

Where (* subsidiary definitions *)

The bodies are initialised using the problem-defined any bodies. This instanti-
ates the Body process for each body in parallel. The parameters are the attributes
for bodies given earlier. In the few problem variants that require it, any bodies also
includes any control for overall body control.

ProcessBodies [Ether, Control] : NoExit : (* create bodies initially *)
any bodies

Initially a body claims a unique identifier by synchronising with the Step control
process. Bodies are normally initialised with no knowledge of other body states, but
if a body is created dynamically during simulation then this information is supplied
to it. In such a case the body immediately enters its updating phase BodyUpdate,
otherwise it enters its waiting phase BodyWait.

In the waiting phase, a body is triggered by an Ether event to compute and
broadcast its new state. The number of active bodies is supplied in this event to all
bodies, although this information is not used in most problem variants. If a body
becomes inactive during simulation (e.g. a cell in the ‘game of life’ dies), its kind

121

Turner

is set to None. It therefore has no state to update and remains in the waiting phase.
Normally the body is active and enters the update phase. While waiting a body
may learn the state of other bodies, broadcast over the Ether gate. An inactive body
may be activated by broadcasting its new state, so there is a check for a matching
identifier in the new state. In the updating phase, the body may broadcast its own
state and then go back to waiting. It may also learn the state of another body while
its state broadcast is pending.

ProcessBody [Ether, Control] (* set up body id, states *)
(kind : Kind, rate, size : Real, pos, vel, head : Vec, path : Path,
states : States) :
NoExit :
Control ? id : Nat; (* get unique body id *)
(

Let state : State = (* set initial state *)
State (id, kind, rate, size, pos, vel, head, path) In
(

[states Ne <>] > (* other states known? *)
BodyUpdate [Ether] (state, states) (* start body states *)

(* or *)
[states Eq <>] > (* other states unknown *)

BodyWait [Ether] (state, states) (* start body with states *)
)

)
ProcessBodyWait [Ether] (* body waiting phase *)
(state : State, states : States) : NoExit :

Ether ? active : Nat; (* get request for updates *)
(

[Kind (state) Ne None] > (* body active? *)
BodyUpdate [Ether] (* broadcast new state *)
(StateNext (state, states), states)

(* or *)
[Kind (state) Eq None] > (* body inactive? *)

BodyWait [Ether] (state, states) (* do not broadcast state *)
)

(* or *)
Ether ? new state : State; (* learn body state *)
(

[Id (new state) Ne Id (state)] > (* for other body? *)
BodyWait [Ether] (* repeat with other’s new state *)
(state, StateUpdate (new state, states))

(* or *)
[Id (new state) Eq Id (state)] > (* for same body? *)

BodyWait [Ether] (new state, states) (* repeat, own new state *)
)

122

Turner

ProcessBodyUpdate [Ether] (* body updating phase *)
(state : State, states : States) : NoExit :

Ether ! state; (* broadcast own new state *)
BodyWait [Ether] (state, states) (* wait for new updates request *)

(* or *)
Ether ? new state : State; (* learn other body state *)
BodyUpdate [Ether] (* repeat with own new state *)
(state, StateUpdate (new state, states))

The Step process is parameterised by the number of active bodies, the next new
body identifier, the count of simulation cycles, and the simulation time. Unless
simulation has yet reached the cycle limit (defined as a specification parameter),
Step can allocate a body identifier on request at the Control gate. If there are one or
more one active bodies, Step can trigger them to update their states using an event
at the Ether gate. The TOPO annotation (*| C ... |*) is used to call code written in C.
Here the function draw sync is called with process parameter 4 (time) to draw the
state of all bodies on the graphical display. The Step process may also be informed
of a new body state by broadcast over the Ether gate. This special situation arises
only if an inactive body is re-activated or if a new body is created dynamically.
The C annotation after this event passes the body state (event parameter 1) to the
draw state function. This simply records the body state for later drawing when
draw sync is called.

The StepUpdate process accepts the broadcast of an updated body state, call-
ing draw state to note this. If the new body kind is None (because it has become
inactive), the count of active bodies is decreased. Normally number of active bod-
ies remains the same, and StepUpdate increments the count of bodies it has seen.
If more body updates are expected, StepUpdate repeats its behaviour. When all
updates have been received, behaviour reverts to the main Step process.

ProcessStep [Ether, Control] (* run simulation steps *)
(active, nextid, cycles : Nat, time : Real) : NoExit :

[cycles Le Limit] > (* cycles left? *)
(

Control ! nextid; (* give new body id *)
Step [Ether, Control] (* repeat with new active, id *)
(active + 1, nextid + 1, cycles, time)

(* or *)
[nextid Gt 0] > (* at least one body? *)

Ether ! active (* issue updates request and draw bodies *)
(*| C draw sync ($4); |*);

StepUpdate [Ether, Control] (* allow state updates *)
(0 Of Nat, active, nextid, cycles, time)

(* or *)
Ether ? state : State (* note re-activated/new body state *)
(*| C draw state ($!1); |*);

(

123

Turner

Let active : Nat = (* increment if re-activated *)
If (active Lt nextid, active + 1, active) In
Step [Ether, Control] (* repeat with new active *)
(active, nextid, cycles, time)

)
)

(* or *)
[cycles Gt Limit] > (* cycle limit reached? *)

Stop (* finish simulation *)
ProcessStepUpdate [Ether, Control] (* allow state updates *)
(count, active, nextid, cycles : Nat, time : Real) : NoExit :

Ether ? state : State (* note new body state *)
(*| C draw state ($!1); |*);

(
Let (* modify active and count *)
active : Nat = If (Kind (state) Ne None, active, active − 1),
count : Nat = If (Kind (state) Ne None, count + 1, count) In
(

[count Lt active] > (* more bodies for updating? *)
StepUpdate [Ether, Control] (* repeat updates *)
(count, active, nextid, cycles, time)

(* or *)
[count Eq active] > (* all bodies updated? *)

Step [Ether, Control] (* repeat step *)
(active, nextid, cycles + 1, time + Tick)

)
)

EndSpec(* AnyBody *)

3 Simulation Support

Figure 3 shows the overall flow of information among the tools. The LOTOS spec-
ification can be executed using a standard simulator such as the LOLA (LOTOS

Laboratory) simulator from TOPO, or alternatively the CADP simulator. This can
be done manually, either step-by-step or automatically according to some crite-
rion such as search depth. However the aim is to run the simulation automatically.
The TOPO LOTOS-to-C compiler is therefore used to generate fully executable
code. The compiled LOTOS is supplemented by implementations of naturals and
reals, and also by an interface to the graphical display. The approach is essentially
platform-independent. However graphical display necessarily varies as it depends
on the supporting system. In the author’s environment (OpenStep), graphics are
handled by a Display PostScript interpreter. Bodies are drawn using PostScript,
which is fairly widely supported. Normally each animation frame is sent to the
screen, but the drawing functions can also divert each frame to a file. This can be

124

Turner

Compile

Animate
Online

Animate
Offline

Run-Time
C Library

ExecutableProblem
Description

LOTOS
Framework

LOTOS
Specification

Preprocess

Analyse
Other

Analyses

Fig. 3. Toolset Support

converted to an animated GIF (Graphics Interchange Format) file using the public
domain pstogif and whirlgif tools.

The specification framework in section 2.2 needs to be instantiated for the var-
ious problem variants. For convenience, the framework is held as a single template
that is filled in using a macro processor – m4 [10] in this case. This allows one
specification framework to be used for all the variants. Since the goal is graphi-
cal simulation, it would be preferable to enter the initial configuration of bodies
graphically. This is quite feasible, but has not yet been done. The general features
of m4 (such as define for a macro) may also be used in the problem description.
For example, the n-body macro library includes randint and randreal for random
integers and reals.

A small number of macros are pre-defined: body (body attributes), control
(control procedure), param (specification parameter), update (update procedure),
and vec (vector value). Parameters for body may be omitted, and default to sensi-
ble values. For example the velocity, heading and path parameters are not used for
cells in the ‘game of life’, and default to empty lists. The various macros accumu-
late information about the bodies and their attributes. Finally, update inserts this
information into the specification framework and generates the complete LOTOS

file.
The specification parameters are mainly used to control the simulation. Vari-

ous parameters are pre-defined and may be re-defined if necessary. These include
Limit (number of simulation steps), Mode (drawing mode), Pause (time between
animation frames), Scale (drawing scale), and Tick (simulation time step). Other
specification parameters control only how bodies are drawn (e.g. the Diameter of
a planetary body or particle). Parameters controlling the specification may also be
defined (e.g. the Impulse delivered to a particle in Brownian motion). The parame-
ters, plus other numerical constants, are accumulated in any params for inclusion
in the final specification.

The LOTOS specification is essentially complete and can be used for other anal-
yses such as verification and validation. The only external support is for numbers.
Although this ‘cheats’ slightly, numbers have well-known theories that can be used
for more formal analysis. The implementation of numbers makes use of a GLAD
file that describes how to implement data. Although GLAD annotations can be
given directly as special comments in the LOTOS specification, this tends to clutter
up the specification. A separate GLAD file is therefore provided. As an example,

125

Turner

here is a fragment of how real numbers are implemented:
Specification(* Real *) => (* implementation of reals *)

(*| ldc #include ”real.h” |*) (* header file for reals *)
(*| ldcinit Real = ud sort (”Real”); |*);(* initial code for reals *)

Sorts
Real => (* basic functions for reals *)

(*| extern |*) (*| draw Real Draw |*) (*| equal Real Check |*)
(*| free Real Free |*) (*| parseReal Parse |*);

Opns
Any : forall > Real => (* prefix for functions producing reals *)

(*| using Real |*);
1 : > Real => (* implementation of constant 1 *)

(*| constructor |*) (*| extern |*) (*| call Real Make (1.0) |*);
+ : Real, Real > Real => (* implementation of real addition *)
(*| extern |*) (*| nameAdd |*);

EndSpec(* Real *);

This requires the C header file real.h and initialises the sort code for reals. An
external sort must be provided with functions to draw (print) values of the sort,
check for equality, free allocated space, and parse textual values of the sort. To
avoid clashes of overlead function names in the generated C, the using pragma
can be used to define a prefix for the C functions (here Real for any operation that
yields a real). The constant 1 is implemented by calling the function Real Make
with 1.0 as argument. Real addition calls the function Real Add. These functions
are defined using standard C (with some additional macro definitions and standard
libraries). For example, addition of two real numbers (of type udatum – user datum)
is carried out by:

udatum Real Add (udatum r1, udatum r2) { /* add reals r1 and r2 */
udatum r; /* result is r */
SETREAL (r); /* allocate space for r */
REAL (r) = REAL (r1) + REAL (r2); /* perform the addition */
FREEREAL (r1); FREEREAL (r2); /* free the space for r1 and r2 */
return r; /* return the result */

}

4 The Problem in Particular

Section 2 has presented the overall strategy for simulating the n-body problem and
its variants. The following notes explain how the specification framework is instan-
tiated in each case. An informal rather than LOTOS explanation is given. Sections 5
and 6 give details of the n-body and brownian motion applications.

The N-Body Problem: There is only one kind of body, the mass. Masses are ini-
tialised with values for their mass, diameter, position and velocity. To update
the state of a mass m, its distance d to each other mass mi is calculated. The

126

Turner

gravitational force acting on the mass is then given by Gmmi

d2 where G is the
gravitational constant. The force is a vector quantity directed towards the other
mass. The force vectors for all masses are summed and divided by the mass m.
This gives the instantaneous acceleration due to gravitational attraction as a vec-
tor quantity. The simulation time-step uses the acceleration to determine the new
position and velocity. The masses often move in surprisingly complex ways.

Orrery: An orrery is a simulation of the solar system. This is just the n-body
problem with particular values for the inner planets as bodies (and, in principle,
for all planets, planetoids and planetesimals). The bodies are initialised with the
relevant mass, diameter, distance from the sun, and orbital velocity. The body
kinds generate the labels during drawing.

Space Game:The inspiration for this example is an early computer game. It is
rather similar to the n-body problem. There are two stars, considered fixed be-
cause of their comparatively high mass and separation. There are two space-
ships that, in the original game, are controlled by users. However since the LO-
TOS model is closed, the effect of user control is simulated by strategic changes
in the velocity and heading of each space-ship. Each space-ship may also ran-
domly launch a missile; this is given a fixed velocity relative to the heading of the
space-ship. The space-ships and the missiles are governed by the gravitational
attraction of the stars, as in the n-body problem. If a collides with another body,
the simulation stops and the remaining space-ship wins (unless it collides with
the other space-ship).

Pendulum: There is only one kind of body, a weight, and only one of these. The
vectors are one-dimensional as there is only one degree of freedom. The pen-
dulum weight is characterised by its off-vertical angle θ and its angular velocity
ω. The pendulum is initialised with a mass, length for the suspension, and initial
angle; the initial velocity is zero. For mass m and acceleration due to gravity g,
the tangential force on the weight is mgsinθ. This gives the instantaneous accel-
eration as a vector with magnitude gsinθ. The simulation uses this to determine
the new angular position and velocity. The pendulum weight therefore moves,
and in fact oscillates indefinitely since the system is assumed to be lossless.

Newton’s Cradle: This is a development of the pendulum. A number of balls are
suspended by V-shaped threads that allow them to swing in one plane. When
the end ball collides with its neighbour, it stops but its momentum is passed
on. In the simulation, the velocity of the originally moving ball is passed to its
neighbour. This is then considered to collide with the next ball, and so on down
the line. Finally, the outermost ball is launched on its arc with this velocity. The
specification correctly describes other situations such as several balls on each
side being in motion.

Brownian Motion: In this example there are multiple instances of one kind of
body, the particle. These are initialised with values for their diameter and posi-
tion; velocities are initially zero. The weight of a particle is disregarded since the
effect of gravity is considered negligible. The state update process simply adds

127

Turner

a random amount to the velocity of the particle, simulating the effect of collision
with a fluid molecule. Particle motion is subject to viscous drag. Over time, each
particle follows a random walk.

Gas Motion: This is similar to Brownian motion. There are gas molecules con-
fined within a box. Drag is not relevant. If a molecule collides with another or
with the edge of the box, it bounces off elastically.

Game of Life: This example of a cellular automaton was defined by J. H. Conway.
There is a single kind of body, the cell. It is initialised with its width (solely for
drawing purposes) and a fixed position on a two-dimensional grid. Only occu-
pied cells are modelled (since, the overall space is generally sparse). To update
the state of a cell, the occupancy of its orthogonal and diagonal neighbours is
checked. An occupied cell with zero or one neighbours is considered to die from
loneliness; it becomes vacant. An occupied cell with two or three neighbours re-
mains occupied. An occupied cell with more than three neighbours is considered
to die from overcrowding. A vacant cell with three neighbours is born (becomes
occupied); it remains vacant in all other cases. From the initial configuration of
occupied cells, cells are born or die in complex patterns. The behaviour may
reach a static state that does not evolve, may enter a repeated cycle, or may
evolve indefinitely.

Air Traffic: At the time of writing, this problem variant has been designed but not
yet implemented. The two kinds of body in this system are aircraft and waypoints
(fixed points in three-space used to define the path of an aircraft). In practice the
wind (e.g. the jetstream) is an important factor in flight, but this is ignored in the
model. An aircraft is initialised with its maximum speed, length (for drawing
purposes only) and position; its velocity is initially zero. An aircraft is given
a list of waypoints as its flight plan – its point of origin, the points along its
path, and its destination. The waypoint identifier is used during drawing, while
the aircraft identifier is used to generate a fictitious call-sign on the PPI (Plan-
Position Indicator – a radar display). The x and y coordinates of the aircraft’s
position determine its location on the display. The z coordinate dictates how its
flight level is displayed (the height in hundreds of feet shown next to the aircraft
position).

The state update process is rather crude; a full air traffic simulation would
be an immense amount of work. In isolation an aircraft adjusts its velocity in
increments, subject to a maximum speed. This maximum decides the size of any
changes in velocity. The adjustment is made to send the aircraft towards its next
waypoint. When the final waypoint is reached, the aircraft is removed from the
simulation. The aircraft also checks its position relative to other aircraft. There
is no problem if they are separated by at least 1000 feet vertically, one nautical
mile to either side, and five nautical miles ahead. If two aircraft approach closer
than this, the upper one climbs. (Clearly this simple rule can lead to conflicts
and collisions!)

Sailing Race: At the time of writing, this problem variant has been designed but

128

Turner

not yet implemented. The sailing race resembles the air traffic system but in
two dimensions. There are moving yachts and fixed marks (the buoys used to
indicate a racing course). The wind is a further kind of ‘body’. Unlike the
aircraft simulation, yachts have a heading and are subject to the wind. Yachts are
normally be initialised to begin near a start line (in practice a line between the
starting mark and some fixed position). A yacht completes a course by crossing
a finishing line (between the finishing mark and some fixed position).

A mark is drawn as a fixed body. A yacht is drawn according to its length,
position and heading. The position of its sail is determined automatically from
its heading relative to the wind, varying from close to the centre line of the yacht
(when sailing upwind) to extending at right angles to the centre line (when sailing
with the wind behind). The wind is drawn according to its position (point of
origin) and velocity (which determines the length and direction of the arrow).

This simulation has the most complex state update rules. For a given heading,
the speed of a yacht is determined by the relative direction of the wind, the
wind strength and the rating of the yacht. Yachts are given a PYH (Portsmouth
Yardstick Handicap) rating that is inversely proportional to their estimated speed.
The speed of a yacht varies in a complex way according to the angle to the
wind. This is approximated by a cardioid function (r = d(1 + cosθ) in polar
coordinates). The speed is used to update the yacht’s position during a simulation
time-step.

In isolation, a yacht aims to complete the course subject to wind conditions.
This is non-trivial because yachts cannot sail much closer to the wind than about
45 degrees. When sailing upwind (the angle between the bearing to the next mark
and the wind origin is less than 90 degrees), yachts typically have to tack (zig-zag
through 90 degree turns) in order not to sail too close to the wind. Their strategy
depends on the relative bearings of the wind and the next mark. When a yacht
reaches a mark, this is removed from its path list so that the next mark determines
the heading. In pseudo-code, the state update process does the following:

if sailing upwind
then

if current tack is more favourable
then set heading to 45 degrees off the wind
elsetack

elseset heading to next mark

The notion of a favourable tack depends on the wind direction relative to the
bearing of the next mark. Basically a yacht aims to sail no further than 45 degrees
off the course to an upwind mark.

When a yacht approaches another body, rules defined by ISAF (the Interna-
tional Sailing Federation) dictate which yacht has priority. The full set of rules is
complex, so only the most basic are specified. Proximity is taken as being within
two boat-lengths of another body (a yacht or a mark). A yacht is said to be on
a starboard tack if its sail is out to port (left), or on port tack if its sail is out to
starboard (right). Yachts are said to overlap if neither is astern (behind) the other.

129

Turner

An inside yacht is one whose course leads closer a mark. A downwind yacht is
further away from where the wind originates.

In pseudo-code, the state update process does the following in the case of
conflict:

if one yacht is close to a mark
then

if the yacht is sailing upwind
then

if both yachts are on the same tack
then the inside yacht has priority
elsethe yacht on starboard tack has priority

elsethe inside yacht has priority
else

if both yachts are on the same tack
then

if the yachts overlap
then the downwind yacht has priority
elsethe yacht ahead has priority

elsethe yacht on starboard tack has priority

The yacht without priority must take avoiding action (e.g. turn away from the
other yacht). Clearly there are still possibilities for conflict and collision (which
is why the full racing rules are so complex).

5 Sample Application: N-Body

The n-body application is used to illustrate the overall approach. The problem
description gives various simulation parameters:

param(Limit, 1500) # simulation step limit
param(Mode, Shape) # drawing mode
param(Scale, 0.4) # drawing scale

Body definitions are given as their kind (all Mass), mass (in units of 1024 kilo-
grams), diameter (in units of 106 metres), initial position and velocity (in units of
109 metres):

body(Mass, 14.0E17, 100.0, vec(100.0, 550.0), vec(0.0, 0.0))
body(Mass, 1.2E16, 30.0, vec(100.0, 950.0), vec(12.0, 0.0))
body(Mass, 2.1E16, 50.0, vec(350.0, 250.0), vec(−9.2, −9.2))
body(Mass, 4.5E16, 60.0, vec(600.0, 50.0), vec(−7.0, −7.0))

This problem variant computes the next state of a mass by adjusting its position
and velocity according to the gravitational acceleration. The new position p and
velocity v depend on the mass of the other body m, the distance to the other body
d, the gravitational acceleration a, the gravitational constant G, and the time step
∆t. As a first approximation, these are related by the formulae:

130

Turner

p′ =p + ∆tv +
1

2
∆ta2

v′ =v + ∆ta

a= G
m

|d|3d
However this is inaccurate because the formulae hold only if the acceleration

is constant during the time-step. This is reasonable if the masses are distant, but
as they approach each other (or if the time step is large) the acceleration changes
during the time-step. A better approximation is to allow for half the change in
velocity when calculating the new position:

p′ =p + ∆tv +
1

2
∆ta +

1

2
∆ta2

The problem description gives these formulae in LOTOS terms as the update
procedure: 3

update((* update macro *)
Type Update Is StatesOps (* update procedure *)

Opns (* operations for updating *)
Accel : Vec, State, States > Vec (* add accelerations for state *)
StateNext : State, States > State (* calculate next state *)

Eqns
ForAll

id : Natural, pos, acc : Vec, mass : Real,
st, st1, st2 : State, sts, sts1, sts2 : States
OfSort Vec

Accel (acc, st, <>) = acc; (* use gathered acceleration *)
Accel (acc, st1, st2 & sts) = (* add up acceleration *)

Accel (acc +
((BigG * Rate (st2) / Cube (Mag (Pos (st2) − Pos (st1)))) *

(Pos (st2) − Pos (st1))), st1, sts);
OfSort State

StateNext (st, sts) = (* next state for mass *)
State (

Id (st), Kind (st), Rate (st), (* same id/kind/rate *)
Size (st), (* same size *)
Pos (st) +
(Tick * (Vel (st) + (0 5 * Tick * Accel (<>, st, sts)))) +
(0 5 * Square (Tick) * Accel (<>, st, sts)),

Vel (st) + (Tick * Accel (<>, st, sts)),
Head (st), Path (st)); (* same heading/path *)

EndType (* Update *))

The problem description is given in the file nbody.any. It is translated and
simulated by the command anybody nbody. Figure 4 shows partial screen shots

3 In general, macro bodies should be given in single quotes to prevent their premature expansion
and to protect exposed commas and parentheses.

131

Turner

Fig. 4. Partial Screen Shots for N-Body Simulation

of the animation. The left-hand diagram shows the Label drawing mode, the right-
hand diagram shows the Trail drawing mode.

6 Sample Application: Brownian Motion

Brownian motion is used as another example of the overall approach. The problem
description gives various simulation and specification parameters:

define(Diameter, 8) # particle diameter
define(PosMax, 300) # largest initial position
param(Drag, 0.02) # drag coefficient for particle
param(Impulse, 2.) # maximum impulse from impact
param(Limit, 600) # simulation step limit
param(Mode, Shape) # drawing mode

The description uses m4 to instantiate a random number of particle bodies of
kind Particle, the given particle Diameter, and a random position. Macros are
defined in m4 by giving their name and expansion. Macro parameters are identified
as $1, etc.

define(randpos, # calculate random position
randreal(−PosMax, +PosMax)) # within ± given maximum

define(particles, # define given number of particles
ifelse($1,0,, # finish if particle number 0

body(Particle, 0., Diameter., # otherwise instantiate particle body
vec(randpos, randpos))

particles(decr($1)))) # repeat for decremented particle count
particles(randint (20,30)) # define random number of particles

This problem variant computes the next state of a particle by adding a random
impulse to its velocity during each time step. The new position p and velocity v
depend on the drag factor f, the drag coefficient d (based on the particle shape shape
and the density of the medium), the random change in velocity ∆v, and the time
step ∆t. These are related by the formulae:

p′ =p + ∆tv

v′ = fv + ∆v

f = 1 − d∆t|v|2

132

Turner

Fig. 5. Partial Screen Shots for Brownian Motion Simulation

The problem description gives these formulae in LOTOS terms as the update
procedure:

update((* update macro *)
Type Update Is StatesOps (* update procedure *)

Opns (* operations for updating *)
StateNext : State, States > State (* calculate next state *)
DragFactor : State > Real (* calculate drag factor *)

Eqns (* equations for updating *)
ForAll st : State, sts : States (* global state, states variables *)

OfSort State (* operations that produce a state *)
StateNext (st, sts) = (* next state for particle *)

State (
Id (st), Kind (st), Rate (st), (* same id/kind/rate *)
Size (st), (* same size *)
Pos (st) + (Tick * Vel (st)), (* new position *)
(DragFactor (st) * Vel (st)) + (* new velocity *)

(((2*Random − 1) * Impulse) &
Vec ((2*Random − 1) * Impulse)),

Head (st), Path (st)) (* same heading/path *)
OfSort Real (* operations that produce a real *)

DragFactor (st) =
1 − (Drag * Square (Mag (Vel (st))) * Tick)

EndType (* Update *))

The problem description is given in the file brownian.any. It is translated and
simulated by the command anybody brownian. Figure 5 shows partial screen
shots of the animation display. The left-hand diagram shows the Shape drawing
mode, the right-hand diagram shows the Trail drawing mode.

133

Turner

7 Conclusion

As has been seen, the n-body problem can be generalised to an interesting range
of applications. Some of these are obvious variations on the original problem,
while others are more radical interpretations. Nonetheless it has been possible to
develop a specification and simulation framework in LOTOS that encompasses the
full gamut of examples. The specification framework is instantiated with the par-
ticulars of the kinds of bodies, their initial setup, and how interactions update their
states. A pre-processor takes this information and creates a specific instance of the
n-body problem specification. Standard LOTOS tools (with the help of C annota-
tions) then simulate the behaviour of the system. Each simulation step is animated
graphically by a drawing tool, either on-screen or in an animated GIF file.

The n-body problem has certainly stretched LOTOS, and has shown its appli-
cation in a non-traditional domain. An obvious future development is to provide a
graphical front-end for initial configuration of objects and subsequent online dis-
play of their behaviour. A more challenging objective is to use the formal nature of
the specifications to establish properties of the systems. For example an air traffic
collision avoidance strategy might be shown to avoid conflicts, or planetary bodies
might be shown to orbit without collision.

References

[1] Clark, R. G., Using Lotos in the object-based development of embedded systems, in:
C. M. I. Rattray and R. G. Clark, editors, The Unified Computation Laboratory (1992),
pp. 307–319.

[2] Fernández, J.-C., H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu,
CADP (Cæsar/Aldébaran Development Package): A protocol validation and
verification toolbox, in: R. Alur and T. A. Henzinger, editors, Proc. 8th. Conference
on Computer-Aided Verification, number 1102 in Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, 1996 pp. 437–440.

[3] Garavel, H. and R.-P. Hautbois, Experimenting Lotos in aerospace industry, in:
T. Rus and C. M. I. Rattray, editors, Theories and Experience for Real-time system
Development, World Scientific, 1994 .

[4] Gibson, J. P., A Lotos-based approach to neural network specification, Technical
Report CSM-112, Department of Computing Science and Mathematics, University
of Stirling, UK (1993).

[5] ISO/IEC, “Information Processing Systems – Open Systems Interconnection – Lotos

– A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour,” ISO/IEC 8807, International Organization for Standardization, Geneva,
Switzerland, 1989.

[6] Ji He and K. J. Turner, Specification and verification of synchronous hardware using
Lotos, in: J. Wu, S. T. Chanson and Q. Gao, editors, Proc. Formal Methods for

134

Turner

Protocol Engineering and Distributed Systems (FORTE XII/PSTV XIX) (1999), pp.
295–312.

[7] Mañas, J. A., T. de Miguel Moro, T. Robles Valladares, J. Salvachua, G. Huecas and
M. Veiga, Topo user manual (version 3R6), Technical report, Department of Telematic
Systems Engineering, Polytechnic University of Madrid, Spain (1995).

[8] McClenaghan, A., Experience of using Lotos within the CIM-OSA project, in: K. R.
Parker and G. A. Rose, editors, Formal Description Techniques IV (1992), pp. 109–
116.

[9] Reade, C. M. P., Process algebra in the specification of graphics standards, Technical
Report CSTR-92-1, Department of Computer Science, Brunel University, Middlesex,
UK (1992).

[10] Seindal, R., GNU m4 (version 1.4), Technical report, Free Software Foundation
(1997).

[11] Thomas, M. H., The story of the Therac-25 in Lotos, High Integrity Systems Journal
1 (1994), pp. 3–15.

[12] Turner, K. J., A. McClenaghan and C. Chan, Specification and animation of reactive
systems, in: V. Atalay, U. Halici, K. İnan, N. Yalabik and A. Yazici, editors, Proc.
International Symposium on Computer and Information Systems XI (1996), pp. 355–
364.

[13] Yasumoto, K., A. Kitajima, T. Higashino and K. Taniguchi, Hardware synthesis
from protocol specifications in Lotos, in: S. Budkowski, E. Najm and A. Cavalli,
editors, Proc. Formal Description Techniques XI/Protocol Specification, Testing and
Verification XVIII, Chapman-Hall, London, UK, 1998 .

135

