Table 1. The equations for models discussed in the main text.

Model	Equations	Notes
1	$\begin{split} &\frac{Predator\text{-}prey\ model}{dN/dt} = &r(1\text{-}N/K)N - c_1NP \\ &dP/dt = &cNP - mP \\ &(r,b,K,\theta,m,c_1)_{ave} = &(1.75,1.75,2.0,0.5,0.5,expt) \\ &(r,b,K,\theta,m,c_1)_{ave} = &(0.25,1.5,0.29,0.5,0.5,expt) \end{split}$	N prey, P predator populations a,b prey intrinsic birth, death rates r = a-b prey intrinsic growth rate m predator intrinsic death rate K carrying capacity; c predation parameter θ=c/c ₁ energy conversion efficiency factor
2	$\begin{split} &\frac{SIRS\ model}{dS/dt=aH(1-(r/a)(H/K))-\beta IS+\sigma R-(b+v(t))S}\\ &\frac{dI/dt=\beta IS-(b+\gamma+\alpha)I}{dR/dt=\gamma I-(b+\sigma)R+v(t)S}\\ &v(t)=&Cexp(\delta_2cos(2\pi t/(mp))\ with\ vaccination;\ v(t)=0\ otherwise.\\ &(a,b,K,\alpha,\gamma,\sigma,\beta,\delta_2)_{ave}=&(0.9,0.5,1.0,0.2,0.55,0.1,expt,10.0) \end{split}$	S=susceptible; I = infectious; R=recovered H= S + I + R; d = $(b+\gamma+\alpha)$ a; b; r: intrinsic birth; death; growth rates. β disease transmission rate γ , σ transition rates between stages α infection induced mortality K carrying capacity
3	SEIRS model dS/dt=aH(1-(r/a)(H/K))-βIS+σR-(b+v(t))S dE/dt=βIS-(b+γ)E dI/dt=γE-(b+μ+α)I dR/dt=μI-(b+σ)R+v(t)S (a,b,K,α,γ,σ,μ,β) _{ave} = (0.9.0.5,1.0.0.2,0.3,0.1.0.25 evet)	E = exposed; H= S + E + I + R; a; b; r; H; K; v(t), d as in Model 2. γ,μ,σ transition rates between stages
4	$ \begin{array}{l} (0.9,0.5,1.0,0.2,0.3,0.1,0.25, expt) \\ \hline \underline{(SIS)Host-host-pathogen\ model} \\ dS_1/dt = &a_1H_1(1-(r_1/a_1)(H_1/K_1))-(\beta_{11}I_1+\beta_{12}\ I_2)S_1 - b_1S_1 + \gamma_1I_1 \\ dI_1/dt = &(\beta_{11}I_1+\beta_{12}I_2)S_1-(b_1+\gamma_1+\alpha_1)I_1 \\ host\ 2\ equations\ as\ for\ host\ 1\ with\ 1<->2. \\ \hline (a_1,a_2,b_1,b_2,K_1,K_2,\alpha_1,\alpha_2,\gamma_1,\gamma_2,\beta_{11},\beta_{22},\beta_{12},\beta_{21})_{ave} = \\ (1.0,0.5,0.5,0.25,1.0,2.0,0.75,0.3,0.25,0.31,1.0,0.25,0.063,expt) \end{array} $	Parameters and variables as in Model 3 β_{ij} are the intra- and inter-transmission rates. $d_i = (b_i + \gamma_i + \alpha_i)$
5	$\begin{split} &\frac{Predator\text{-}prey\text{-}prey\ model}{dN_1/dt} = &r_1(1-N_1/K_1)N_1 - c_1N_1P\\ &dN_2/dt = &r_2(1-N_2/K_2)N_2 - c_2N_2P\\ &dP/dt = &c_1N_1P + c_2N_2P - mP \end{split}$ $&(r_1,r_2,K_1,K_2,m,c_1,c_2)_{ave} = \\ &(1.0,0.75,2.0,3.0,0.25,expt,1.1) \end{split}$	N_1,N_2 prey; P predator r_1,r_2 intrinsic growth rates m predator intrinsic death rate K_1, K_2 carrying capacities c_1, c_2 predation parameters

Table 2: Threshold values of predation parameter " c_1 " for predator-prey Model 1.

p	A	В	С	D	Е	F
1	0.485	0.518	1.437	1.494	3.43	4.45
5	0.392	0.690	0.543	1.032	2.84	10.03
10	0.362	0.800	0.384	0.981	2.55	13.81
20	0.350	0.864	0.352	0.937	2.46	16.21
unforced	0.5	0.5	0.5	0.5	3.5	3.5
threshold	lowered	raised	raised/ lowered	raised	lowered	raised
forced	r,K,c	r,K,c	K,c	K,c	b,K,c	b,K,c
fixed	r/K	r/K	r	r	a, r/K	a, r/K
phase	in phase	out of phase	in phase	out of phase	in phase	quarter cycle lag
white noise	0.43	0.59	0.52	0.75		

Table 3: Infection threshold values of transmission rate $\,\beta$ for SIRS Model 2.

p	A	В	С	D	Е	F
1	1.25	1.26	3.95	1.39	3.70	2.25
5	1.14	1.37	3.65	1.52	1.77	1.39
15	0.92	1.95	2.75	2.21	1.42	1.35
30	0.81	2.66	2.55	3.05	1.33	1.33
unforced	1.25	1.25	1.25	1.25	1.25	1.25
threshold	lowered	raised	raised	raised	raised	raised
forced	a, K, β	а, Κ, β	Κ, β	a, K, β	vacc, β	vacc, β
fixed	r/K, b no vacc	r/K, b no vacc	a, b no vacc	r/K, b no vacc	a, b, K	a, b, K
phase	in phase	out of phase	out of phase	out of phase	quarter cycle m = 1	in phase m = 2
					111 — 1	111 – 2

Table 4: Infection threshold for multi-host Model 4.

p	A	В	С	D	Е
1	1.44	1.42	1.43	1.44	10.77
5	1.33	1.03	1.11	1.51	8.42
15	1.12	0.37	0.15	2.39	5.52
unforced	1.44	1.44	1.44	1.44	1.44
threshold	lowered	lowered	lowered	raised	raised
forced	βonly	βonly	r ₁ ,K ₁ ,β	r_1,K_1,β	Κ ₁ ,β
fixed			$r_1/K_1, r_2, K_2$	$r_1/K_1, r_2, K_2$	r_1,r_2,K_2
phase	$\phi_2 = 0$	$\phi_2=\pi$	$\phi_2 = 0, \phi_3 = 0$	$\phi_2 = 0, \phi_3 = \pi$	$\phi_2 = 0, \phi_3 = \pi$

Table 5: Invasion and Resonance in predator-prey-prey Model 5.

p	$A; c_1$	B:N _{1max}	p	$C; c_1$	D:N _{1max}
1	1.33	0.21	1	1.33	0.24
5	1.33	0.35	5	1.33	0.52
10	1.23	1.38	9	1.17	1.75
13	1.28	0.90	12	1.14	1.9
24	1.17	1.60	14	1.25	1.4
28	1.26	1.35	18	1.03	1.77
			23	0.82	1.99
			28	0.90	1.76
unforced	1.33			1.33	
threshold	lowered			lowered	
forced	r_1, r_2			$\mathbf{r}_1, \mathbf{r}_2$	
C' 1	17 17			c_1, c_2	
fixed	$\mathbf{K}_1, \mathbf{K}_2$			$\mathbf{K}_1, \mathbf{K}_2$	
	c_1, c_2				
phase	in			quarter	
	phase			cycle	