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Abstract

■ Event-related fMRI studies reveal that episodic memory re-
trieval modulates lateral and medial parietal cortices, dorsal
middle frontal gyrus (MFG), and anterior PFC. These regions
respond more for recognized old than correctly rejected new
words, suggesting a neural correlate of retrieval success. Despite
significant efforts examining retrieval success regions, their role
in retrieval remains largely unknown. Here we asked the ques-
tion, to what degree are the regions performingmemory-specific
operations? And if so, are they all equally sensitive to successful
retrieval, or are other factors such as error detection also impli-
cated? We investigated this question by testing whether activity
in retrieval success regions was associated with task-specific con-
tingencies (i.e., perceived targetness) or mnemonic relevance
(e.g., retrieval of source context). To do this, we used a source
memory task that required discrimination between remembered
targets and remembered nontargets. For a given region, the

modulation of neural activity by a situational factor such as target
status would suggest a more domain-general role; similarly,
modulations of activity linked to error detection would suggest
a role inmonitoring and control rather than the accumulation of
evidence from memory per se. We found that parietal retrieval
success regions exhibited greater activity for items receiving
correct than incorrect source responses, whereas frontal retrieval
success regions were most active on error trials, suggesting that
posterior regions signal successful retrieval whereas frontal re-
gions monitor retrieval outcome. In addition, perceived target-
ness failed to modulate fMRI activity in any retrieval success
region, suggesting that these regions are retrieval specific. We
discuss the different functions that these regions may support
and propose an accumulator model that captures the different
pattern of responses seen in frontal and parietal retrieval suc-
cess regions. ■

INTRODUCTION

Episodic remembering involves the conscious retrieval of
information about previously experienced events, includ-
ing the spatial and the temporal context in which they oc-
curred. Event-related fMRI studies of recognition memory
reveal a set of cortical brain regions whose activity increases
with successful episodic retrieval (Henson, Hornberger,
& Rugg, 2005; Wagner, Shannon, Kahn, & Buckner, 2005;
Kahn, Davachi, & Wagner, 2004; Shannon & Buckner,
2004;Weis, Klaver, Reul, Elger,& Fernandez, 2004;Wheeler
& Buckner, 2003, 2004; Dobbins, Rice, Wagner, & Schacter,
2003; Cansino, Maquet, Dolan, & Rugg, 2002; Dobbins,
Foley, Schacter, & Wagner, 2002; Donaldson, Petersen, &
Buckner, 2001; Donaldson, Petersen, Ollinger, & Buckner,
2001; Konishi, Wheeler, Donaldson, & Buckner, 2000;
McDermott, Jones, Petersen, Lageman, & Roediger, 2000;
Henson, Rugg, Shallice, Josephs, & Dolan, 1999; for a re-
view, cf. Rugg, Otten, &Henson, 2002; Buckner &Wheeler,
2001). Specifically, lateral and medial parietal cortices (pre-
cuneus), posterior cingulate cortex, left dorsal MFG, and
left anterior PFC consistently exhibit a greater response

to old items judged to be old (hits) than to new items
judged to be new (correct rejections). Although the hippo-
campus and the related medial-temporal lobe (MTL) struc-
tures are viewed as central to episodic retrieval (Henson,
2005; Eldridge, Knowlton, Furmanski, Bookheimer, &
Engel, 2000; Stark & Squire, 2000), activation in these re-
gions has been found less consistently in fMRI investiga-
tions of retrieval success (Henson, 2005). Consequently,
we were interested in learning more about how the com-
monly found retrieval success network areas contribute
to episodic retrieval.

Many of the studies identifying retrieval success regions
have used old/new item recognition tasks. According to a
dual process view, recognitionmemory decisions are asso-
ciated with two retrieval processes: recollection, which is
typically characterized as an effortful search-like process
that supports the retrieval of contextual information, and
familiarity, a more automatic process associated with a sim-
ple assessment of trace strength (Yonelinas, 2002; Gardiner
& Java, 1993; Jacoby &Dallas, 1981; Mandler, 1980; Atkinson
& Juola, 1973). Recollection- and familiarity-based memory
judgments have been studied with fMRI, most often with
the remember/know test (Vilberg & Rugg, 2007; Wheeler
& Buckner, 2004; Eldridge et al., 2000; Henson et al.,
1999), but also with source retrieval tasks (Ranganath et al.,
2003; Cansino et al., 2002; Dobbins et al., 2002). Using the
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remember/know test, activity in some old/new retrieval
success regions has been shown to be modulated by
the subjectsʼ phenomenological experience of remem-
bering versus knowing (Vilberg & Rugg, 2007; Wheeler
& Buckner, 2004; Henson et al., 1999). For example,
Wheeler and Buckner (2004; also see Henson et al.,
1999) found that activity near the left intraparietal sulcus
[IPS; Brodmannʼs area (BA) 40/39] was equivalent on R
and K trials, but activity in lateral parietal areas near the
supramarginal gyrus was greater on R than on K trials.
Taken together, the results from these studies suggest
that individual elements of the retrieval success network
found during recognition memory are likely to support
separable (distinct) memory processes.

Other than recollection and familiarity, what other
functions might be subserved by retrieval success re-
gions? One possibility is that regions are recruited by
the demands of carrying out a complex perceptual detec-
tion task, with memory retrieval being an incidental cor-
relate of the general processing required. For example, a
recent study by Herron, Henson, and Rugg (2004) using
an old/new probability manipulation suggests that some
retrieval success regions are modulated by target expec-
tancy or salience. When old items occurred more fre-
quently than new items, the old > new retrieval success
effect found in the superior parietal and frontal lobes dis-
appeared (old = new) or reversed (new> old). An impor-
tant conclusion from this study is that successful retrieval
does not depend on the differential old > new activity in
all areas. A different pattern of results was found in poste-
rior retrieval success areas in or near the inferior parietal
lobe, the posterior cingulate, and the precuneus. These
areas were not modulated by the probability manipula-
tion, so the differential old > new pattern of activity was
present across all three probability conditions. Herron
et al. hypothesized that these posterior areas are more in-
volved in processes leading up to the old/new decision
(e.g., retrieval itself ). Overall, these data suggest that, at
least for some retrieval success regions, activity is depen-
dent upon expectations derived from the numbers of tar-
gets that are present during retrieval.

A number of other attempts have beenmade to discover
whether retrieval success activity is truly related to mem-
ory rather than to nonmemory factors. For example,
Shannon and Buckner (2004), focusing on the role of pa-
rietal cortex, reported a series of recognition experiments
in which they controlled for response contingencies
(among other factors) to investigate whether motor in-
tention could explain the retrieval success effects. In one
task, subjects were presented old and new items and only
responded overtly to the old items, withholding responses
for new items. In a different task, the target was switched,
so that responses were only made for new items. This ma-
nipulation did not influence the retrieval success effect in
parietal areas, suggesting that their function is not depen-
dent upon explicit response contingencies. However, be-
cause this study only examined the role of parietal cortex,

it is unclear whether the rest of the retrieval success net-
work behaves similarly.
Stronger evidence for memory-specific processing in

retrieval success regions per se can be found in studies
that keep the requirement to retrieve constant but ma-
nipulate what is being retrieved. For example, in another
recent investigation, Klostermann, Kane, and Shimamura
(2008) examined whether activity in posterior parietal
cortex was dependent on either the nature of the stimuli
or the modality of testing. In this experiment, participants
were required to remember abstract and concrete stimuli
that were presented auditorily while they had their eyes
closed. Again, retrieval success activity was evident in
all testing conditions, suggesting that it does reflect pro-
cessing related to memory retrieval per se and is not de-
pendent on bottom–up visuospatial processing. Of course,
although manipulations of retrieval content are impor-
tant, in studies of this kind it is difficult to rule out the
possibility that the results reflect little more than inciden-
tal variation in perceptual features (e.g., unintended dif-
ferences in the processing of spatial information in the
case of parietal activity).
Given their apparent ubiquity in fMRI studies, it is there-

fore surprising that there is only recent evidence that
damage to the retrieval success structures, particularly
the bilateral parietal lobes, is associated with impaired
memory. For example, Berryhill, Phuong, Picasso, Cabeza,
and Olson (2007) found impaired autobiographical mem-
ory in patients with bilateral superior and medial parietal
lesions. The degree to which these lesions overlap with
fMRI-defined retrieval success areas is difficult to assess,
however, because no reference comparison was presented
in their report. In contrast, a more recent report failed to
find memory (recall) impairments in patients with unilat-
eral parietal lesions (Simons et al., 2008). In this case, the
locus of the lesions overlapped considerably with fMRI
retrieval success activations reported in healthy control
subjects, but it is unclear whether the lack of memory
deficit simply reflected functioning of the undamaged
hemisphere. Thus, despite the significant advances in
fMRI studies of recognition memory noted above and
the recent attempts to study these regions in patients,
the role that frontal and parietal retrieval success regions
play in memory retrieval remains largely unknown
(Wagner et al., 2005). In part because of the lack of evi-
dence that parietal damage impairs general memory pro-
cessing, recent theories have posited that different areas
of parietal cortex are involved in bottom–up capture
and strategic top–down aspects of attention that are use-
ful, but not imperative, for memory retrieval (Cabeza,
Ciaramelli, Olson, &Moscovitch, 2008; Ciaramelli, Grady,
& Moscovitch, 2008).
The principle aim of the present experiment is to in-

vestigate further how retrieval success regions support
recognition performance. In the present study, we used
a source memory task because it provides a more direct
index of episodic recollection than is available using the
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more frequently used item recognition task (e.g., com-
pletely ruling out unconscious priming as a basis for
performance). In the experiment, subjects separately stud-
ied words that were presented entirely in either red or
green letters. At test, old and new words were presented
in white font, and subjects were required to discriminate
between targets (old words seen in one color) and non-
targets (old words seen in the other color and new words)
in an exclusion task (Rugg, Henson, & Robb, 2003; Jacoby,
1991). Importantly, to perform the source memory task
correctly, participants must be able to both recognize stud-
ied items as old (the difference between old and new stim-
uli) and distinguish between different classes of studied
item (the difference between targets and nontarget
stimuli). To be clear, simply recognizing that an item is
familiar is not sufficient to perform a source memory task;
instead accurate discrimination between targets and non-
targets requires the retrieval of contextual (source) infor-
mation, providing a clear operational definition of episodic
recollection.
Using the source memory task, we were able to carry

out several distinct analyses. First, we identified retrieval
success regions, by comparing correctly identified old
and new items; our primary aim was to examine the be-
havior of these retrieval success regions in an attempt to
further characterize their functional significance. We next
examined the extent to which fMRI activity was modulated
by the accuracy of source memory and also examined
whether the status of old items as “targets” of importance
modulated activity in these regions. Finally, because
source memory tests are more difficult than the more typ-
ical item memory test, this task also provides an opportu-
nity to examine memory-related errors. Thus, as a final
step, we used a more exploratory approach to evaluate
the pattern of time courses across the various retrieval
conditions. By doing so, we were able to reveal clear differ-
ences in the role of frontal and parietal retrieval success
regions.

METHODS

Subjects and Materials

Twenty-seven subjects (13 women; mean age = 22 years,
range = 18–33 years; right-handed, native English speak-
ers, with normal vision, and no reported neurological
problems) from the Washington University community
participated for a $50 payment. Informed consent was
obtained in accordance with the guidelines and approval
of the Washington University Human Studies Committee.
Data from one subject were excluded due to excessive
movement artifact. The remaining 26 subjects (13 women)
had a mean age of 22 years (range = 19–33 years). Re-
sponse time (RT) data were lost for two subjects, result-
ing in a reported n= 24 for RT analyses and n= 26 for all
other analyses. Behavioral stimuli consisted of 400 nouns
and verbs (four to eight letter length, mean frequency =

19.1 per million, range = 10–30 per million) selected
from Kucera and Francis (1982). Mapping of stimuli to
item type (old target, old nontarget, and new) was coun-
terbalanced across subjects. Stimuli were presented in
central vision, in Geneva font, and in capital letters on a
black background and subtended approximately 0.5° of
visual angle per letter.

Data Acquisition

MRI data were acquired using a Siemens 1.5-T Vision Sys-
tem (Erlangen, Germany). T1-weighted structural images
were acquired first (MP-RAGE sequence: repetition time=
9.7 msec, echo time = 4 msec, flip angle = 10°, inversion
time = 20 msec, delay time = 500 msec, voxel size = 1 ×
1 × 1.25 mm). Functional images were acquired using an
asymmetric spin-echo echo-planar sequence sensitive to
BOLD contrast (T2*; repetition time = 2.5 sec, T2* evolu-
tion time= 50msec, voxel size= 3.75× 3.75mm in-plane
resolution with 8-mm slice thickness). Pillows and thermo-
plastic facemasks minimized headmovement; headphones
dampened scanner noise and enabled communication. A
power Macintosh computer (Apple, Cupertino, CA) and
Psyscope software (Cohen, MacWhinney, Flatt, & Provost,
1993) controlled stimulus display and recorded responses
froma fiber-optic keypress device. An LCDprojector (AmPro
model LCD-150) projected stimuli onto a screen at the
head of the scanner, viewable via a mirror attached to the
coil. Subjects performed four functional scans during which
110 sets of 16 contiguous slices were acquired parallel to
the anterior/posterior commissure plane. The first four
images in each scan allowed stabilization of longitudinal
magnetization; these images were used to facilitate align-
ment but were excluded from analysis of the functional data.

Behavioral Paradigm

Each of the four functional scans was preceded by an un-
scanned study session, during which subjects generated a
unique sentence for each study word. Subjects were told
that they would have to remember each word and its pre-
sented color. In each study session, 50 words were pre-
sented, half colored red and half colored green. Each
word was displayed for 750 msec, followed by a fixation
cross hair (+) for the remainder of the trial. The study
session was self-paced; to initiate the next trial, subjects
pressed one button for red words, a second button for
green words. A scanned test session was then performed,
in which subjects were presented with 25 old targets,
25 old nontargets, and 25 new words. All stimuli in the
test phase were presented in white font, so the contextual
source was absent. Thus, each subject saw a total of 100 old
targets, 100 old nontargets, and 100 new words. Each word
was presented for 750 msec, followed by a fixation cross
(+) for the remainder of the 2.5-sec trial. The presentation
onset of test items was time locked to the onset of suc-
cessive whole-brain acquisitions. Jitter was included to
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produce a variable interstimulus interval (Miezin, Maccotta,
Ollinger, Petersen,&Buckner, 2000). Trial orderwaspseudo-
randomized so that each type of event (old targets, old
nontargets, new and fixation trials) was equally likely to
follow each other (Miezin et al., 2000).

Each functional scan lasted approximately 4.6 min
(110 acquisitions, 1 acquisition every 2.5 sec), separated
by a 5-min break during which the next study session was
performed. During the scanned test session, subjects
were instructed to discriminate as quickly and accurately
as possible between targets and nontargets. A single class
of old item (red or green words) was designated as tar-
gets, counterbalanced across subjects, with the other
class of old item and new items designated as nontargets.
Responses were made using the index fingers of the left
and right hands on a fiber-optic response bar, and the
mapping of fingers to responses was counterbalanced
across subjects. Subjects were given a short practice ses-
sion (i.e., 20 items at study, 30 items at test) before the
first scan to familiarize them with the procedures.

Data Analysis

Imaging data from each subject were preprocessed to re-
move noise and artifacts, including (a) correction for
movement within and across runs using a rigid-body rota-
tion and translation algorithm (Snyder, 1996), (b) whole-
brain normalization to a common mode of 1000 to allow
for comparisons across subjects (Ojemann et al., 1997),
and (c) temporal realignment (using sinc interpolation)
of all slices to the temporal midpoint of the first slice,
accounting for differences in the acquisition time of each
individual slice. Data were then resampled into 2-mm
isotopic voxels, warped into standardized atlas space
(cf. Talairach & Tournoux, 1988), and smoothed with a
Gaussian filter (4-mm FWHM).

Preprocessed data were analyzed using the general lin-
ear model (GLM; Miezin et al., 2000; Friston, Jezzard, &
Turner, 1994) on a voxel-by-voxel basis, in which all scans
were collapsed into a single time series. Statistical analyses
were carried out using in-house software coded in IDL
(Research Systems, Inc., ITT Visual Information Solutions,
Boulder, CO). Estimates of the time course of effects
were derived from the model for each response category
by coding the seven time points (17.5 sec) immediately
following each stimulus onset. Response categories con-
sisted of correct and incorrect responses to each type of
test item, resulting in six categories: correct target (T+),
incorrect target (T−), correct nontarget (NT+), incorrect
nontarget (NT−), correct new (N+), and incorrect new
(N−). Factors were also coded to account for within-scan
linear trend and mean signal. All effects are described in
terms of percent signal change, defined as signal magni-
tude divided by the mean signal intensity across all scans
after removing the components of linear drift and coded
effects. This mean is given by the average over all scans of
the intercept term of the linear trend.

Group z-statistical maps were derived from the GLM
based on a repeated measures ANOVA approach, investi-
gating the pattern of the hemodynamic response over
time. For a single response category, this reveals regions
of the brain that exhibit a temporal profile that is not flat
(i.e., zero) over the analyzed period. This method does
not assume the shape of the BOLD response. For compar-
isons between response categories, this reveals regions
that exhibit different temporal profiles over the analyzed
period. Our goal was to identify retrieval success regions
and to determine how signal modulated according to tar-
getness and source accuracy. Retrieval success regions
were identified using a 2 × 7 repeated measures ANOVA
with levels of correct old (T+ and NT+ combined) and
correct new (N+) and seven levels of time. This analysis
produced an interaction map identifying voxels in which
activity on correct old and correct new trials differed over
time (see Figure 1).

ROI Criteria and Time-Course Extraction

ROIs were defined from the retrieval success map follow-
ing steps described previously (Wheeler et al., 2006).
Briefly, the uncorrected retrieval success image (not
shown) was smoothed using a 4-mm sphere kernel. An
automated algorithm searched for the location of peaks
exceeding p< .001 significance, and those less than 10mm
apartwere consolidated by averaging coordinates. A second
retrieval success statistical map was computed (Figure 1)
with corrections for sphericity and multiple comparisons
based on Monte Carlo simulations ( p < .05 at a 45 voxel
extent; McAvoy, Ollinger, & Buckner, 2001). Regions were
defined by including all voxels in the uncorrected retrieval
success image that were within a 10-mm radius of each
peak, then excluding voxels in that region that failed to pass
multiple comparisons and sphericity corrections. The reli-
able peaks passing these screens are listed in Table 3.
For each response category except incorrect new

items, the hemodynamic response (mean percent signal
change) was extracted at each of seven poststimulus time
points from each ROI. There were too few incorrect new
items to provide a reliable estimate of the BOLD response,
so this category was excluded from the imaging analyses.
Within each ROI, signal was averaged across voxels. Fol-
lowing previous procedures (Wheeler et al., 2006; Wheeler
& Buckner, 2004; Donaldson, Petersen, Ollinger, et al.,
2001) for random-effects ROI-based statistical analysis, the
estimated peak response was extracted for each region
for each subject, based on the average value of the third
(5.0 sec) and fourth (7.5 sec) timepoints. These timepoints
were selected because they represent the peak signal
change across a wide range of ROIs. Specific comparisons
among peak estimates were performed using two-tailed
t tests. For some analyses, peak estimates were analyzed
using ANOVA and post hoc Tukey honestly significant dif-
ference (HSD) comparisons.
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To determine how “source accuracy” and “targetness”
modulated activity, we sorted trials using two methods.
In the source coding approach, T+ and NT+ trials were
combined into a source correct condition, whereas T−
andNT− trials were combined into a source incorrect con-
dition (Table 1). To examine activity related to the target-
ness criterion (target coding), we sorted trials instead
by target accuracy (target correct and target incorrect;
see Table 1).

RESULTS

Behavioral

Source information was accurately remembered. Under
source classification, 74.3% of old items received correct
judgments and 94.7% of new items were correctly re-
jected. RTs were significantly faster for old items receiv-
ing correct than incorrect source judgments (means of
1154 ± 128 and 1225 ± 144 msec, respectively), t(23) =
3.98, p < .001, with correct responses to new items

(mean 1037 ± 122 msec) being significantly faster than
source responses to old items, source correct versus cor-
rect rejection, t(23) = 7.29, p < .0001, and source incor-
rect versus correct rejection, t(23)= 9.47, p< .0001. Two
data sets were lost due to technical problems, and one
was excluded from RT analysis due to a zero false alarm
rate.

When separated as a function of the target status of old
items (i.e., target coding), 75.1% (SD = 11.9) of targets
and 73.4% (SD = 13.8) of nontargets received correct re-
sponses. RT data were entered into a 3 × 2 ANOVA, with
factors of trial type (target, nontarget, and new) and ac-
curacy (correct and incorrect). This analysis revealed a
main effect of accuracy, F(1,44) = 28.48, p < .0001),
and a Type × Accuracy interaction, F(2,44) = 12.03,
p < .0001, indicating that the longer RTs on incorrect
trials varied as a function of trial type (see Table 2). No
other effects were significant. Pairwise comparisons
of correct responses revealed slower RTs to old target
(1131 ± 136 msec) and old nontarget (1179 ± 130 msec)
than new item trials (1037 ± 122 msec), t(23) = 4.80,
p < .0001 and t(23) = 8.85, p < .0001, respectively. RTs
were also slower for old nontargets than old targets,
t(23) = 2.81 p < .01.

Note that chance performance is not well characterized
by 50% correct; only one third of the items presented at test
should receive a “target” response, and subjectsmust there-
fore overcome a strong bias toward responding “nontarget/

Figure 1. Statistical activation maps show regions of significantly greater transient activity for old items correctly judged old compared with
correct new judgments. Functional maps are superimposed onto horizontally sliced structural brain images of the average anatomy. Talairach
atlas z coordinates are listed below each slice. Significant activation peaks are listed in Tables 2 and 3. Reliability in terms of Z score is denoted
by the color scale. AI/FO = anterior insula/frontal operculum; AG = angular gyrus; CN = caudate nucleus; dACC = dorsal anterior cingulate
cortex; IPS = intraparietal sulcus; mMFG = mid-middle frontal gyrus; aMFG = anterior MFG; MTG = middle temporal gyrus; PCC = posterior
cingulate cortex; Pre = precuneus; Th = thalamus; L = left hemisphere.

Table 1. Trial Type Designations for Source and Target
GLM Coding

Response Old Target Old Nontarget New

Item Status—Source Coding

Target Source correct Source incorrect False alarm

Nontarget Source incorrect Source correct Correct
rejection

Item Status—Target Coding

Target Target correct Miss False alarm

Nontarget Miss Nontarget correct Correct
rejection

Table 2. Mean Reaction Times (and SD) for Each Response
Category

n = 23 New Old: Target Old: Nontarget

Correct 1036 (124) 1126 (137) 1173 (129)

Incorrect 1283 (265) 1241 (156) 1214 (185)
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new.” Although it is impossible to rule out some contami-
nation of performance by guessing, performance measures
suggest that guessing wasminimal. More importantly, there
is no evidence for systematic differences between the re-
sponses to target and nontarget items that would compli-
cate interpretation of the fMRI data.

Imaging Analysis Overview

To identify retrieval success regions, we computed a voxel-
wise repeated measures ANOVA contrasting correct old

(T+, NT+) and new (N+) trials, independently of target-
ness (see Methods). Regions associated with retrieval
success were located in MTLs near the parahippocampal
gyrus (HG), lateral parietal cortex near the IPS, medial
parietal cortex near the precuneus (Pre), and left dorso-
lateral prefrontal (DLPF) cortex near the MFG. The
retrieval success image (cf. Figure 1) also included a num-
ber of other regions that are less commonly reported:
anterior insula/frontal operculum (AI/FO), dorsal ante-
rior cingulate cortex (dACC), thalamus, posterior cingu-
late cortex, and caudate nucleus. Table 3 lists the most

Table 3. Activation Peaks for Regions Showing a Significantly Greater Response to Correct Old (T+ and NT+) Than Correct
New (N+) Trials

ROI Hemisphere Anatomic Label ∼BA x y z Z Score No. of Voxels

1 L Posterior precuneus 7 −6 −70 32 9.4 526

2 L Inferior parietal lobule 40 −34 −64 39 8.7 520

3 R Precuneus 31 13 −64 24 7.2 428

4 L Posterior cingulate 23/30 −6 −56 11 7.2 439

5 L Thalamus −7 −17 8 7.1 395

6 L Caudate −12 1 12 6.9 305

7 L MFG 46/44 −39 20 25 6.8 474

8 R Caudate 10 2 11 6.7 282

9 L MFG 9 −44 7 37 6.7 446

10 R Inferior parietal lobule 40 55 −27 32 6.1 379

11 L Medial frontal gyrus 9/6 −3 24 45 6.1 293

12 R Posterior cingulate 30/23 10 −54 11 6.1 371

13 L Superior frontal gyrus 8 −5 13 48 6 277

14 L White matter—tapetum −25 −51 16 6 300

15 R Postcentral gyrus 1/2 41 −17 23 6 371

16 R Supramarginal gyrus 40 50 −39 31 6 447

17 L Claustrum −29 18 1 5.9 324

18 L Cingulate gyrus 23/31 −2 −36 33 5.9 272

19 L MFG 6 −30 −4 59 5.9 414

20 R Pyramis—cerebellum 35 −68 −31 5.8 429

21 L Medial frontal gyrus 6 −5 0 57 5.8 250

22 L Posterior cingulate 23 −3 −43 25 5.7 285

23 R White matter—tapetum 19 −43 16 5.5 280

24 L Precuneus 7 −19 −50 47 5.3 263

25 R Inferior parietal lobule 40 35 −63 39 5.1 352

26 L Red nucleus −6 −25 −6 5.1 210

27 L White matter −18 0 31 5.1 309

28 L Cuneus 17 −23 −77 6 5 349

Coordinates are listed in Talairach and Tournoux (1988) atlas space. BA is the Brodmannʼs area nearest to the coordinates and should be considered
approximate.
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reliably activated regions by peak coordinate and ap-
proximate BA.

Targetness Did Not Modulate Activity in Retrieval
Success Regions

To determine whether activity in retrieval success regions
was related to target detection, we compared BOLD time
courses on T+ and NT+ trials using repeated measures
ANOVA. Targetness did not reliably modulate activity in
any of the ROIs, indicating that perceived targetness
was not a factor underlying retrieval success effects.
Figure 2 illustrates results from four of the retrieval

success ROIs from Table 3, including mid-MFG near
BA 9 (Talairach atlas x, y, z peak coordinate: −44, +07,
+37), anterior MFG near BA 46 (−39, +30, +25), medial
parietal cortex near BA 7 (posterior precuneus; −06,
−70, +36), and lateral parietal lobe near BA 40 (IPS;
−34, −64, +39). Although there were clear differences
in time courses between old and new items, there were
no differences between T+ and T− items in any of the
ROIs. To determine whether targetness modulated ac-
tivity in voxels not included in the retrieval success re-
gions, we conducted an additional exploratory voxelwise
ANOVA directly contrasting T+ and T− trials. This analysis
identified just one region in medial posterior parietal cor-
tex (not shown) with differential activity between T+ and
T− trials, suggesting that perceived targetness was not

an important factor in retrieval modulations. Given that
our primary aim is to examine the behavior of retrieval
success regions behave, we do not consider this addi-
tional region further.

Frontal and Parietal Regions Modulated Differently
on Error Trials

In contrast to targetness, activity in many of the ROIs
modulated according to source accuracy. Figure 3 displays
results from six ROIs, including the two frontal and the two
parietal ROIs displayed in Figure 2, a third frontal ROI
located along posterior MFG near BA 6 (−30, −04, +59;
Figure 3A), and a right parietal ROI located near right IPS
(+55, −27, +32; Figure 3F).

Source accuracy did not appear to modulate activity in
the left posterior MFG (Figure 3A). This observation was
supported by statistical comparison of peak BOLD re-
sponse estimates (averaged across time points 5.0 and
7.5 sec) of correct and incorrect source trials, t(25) =
−1.45, p = .16. Activity in mid-MFG and anterior MFG
ROIs appeared to increase to the same degree on incor-
rect and correct source trials, but with a longer duration
on incorrect trials (as illustrated in Figure 3B and c, time
points 5.0 and 7.5 sec). Note that the time courses show
the measured data at each time point and are not fitted
functions. In support of this observation, when signal
changes at time points 5.0 and 7.5 sec were averaged,

Figure 2. Frontal and parietal
ROIs and associated time
courses from the targetness
analysis. ROIs include left
(A) mid-middle frontal gyrus
near BA 9, (B) anterior MFG
near B 46, (C) precuneus near
BA 7, and (d) intraparietal
sulcus near BA 40 (Talairach
coordinates are listed in text;
see Table 3). Time courses
begin at stimulus onset,
denoted by time zero. Dashed
horizontal lines at 0% signal
change reflect baseline. Trial
types are color coded according
to the legend. Horizontal slice
atlas coordinates are listed
below each ROI image.
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differences between correct and incorrect source trials
were significant in both regions, mid-MFG, t(25) = −2.38,
p < .05, and anterior MFG, t(25) = −2.75, p < .05.

In contrast, the three parietal ROIs were more active
on source correct than on source incorrect trials. The dif-
ference was significant at time points 5.0 and 7.5 sec in
precuneus and left IPS and marginally significant in the
right IPS; precuneus, t(25) = 2.18, p < .05, two-tailed;
L IPS, t(25) = 2.21, p < .05; R IPS, t(25) = 1.99, p = .06
(Figure 3D–F). No parietal ROI differed as a function of
targetness when correct old targets were compared with
correct old nontargets; precuneus, t(25) = −0.53; L IPS,
t(25) = 0.09; R IPS, t(25) = −0.42, all p > .60 (Figure 2,
right panels).

We tested whether the two MFG ROIs with significant
source accuracy effects (mid-middle frontal gyrus and
anterior MFG) differed reliably from parietal ROIs. The
peak BOLD responses in the two MFG ROIs and the three
parietal ROIs were averaged separately. This procedure
created an MFG and a parietal signal average for correct
and incorrect source trials (Figure 4). We then entered
the averaged data into a 2 × 2 ANOVA, with location
(MFGand parietal) and accuracy (source correct and source
incorrect) as fixed factors and subject as a random factor.
The analysis produced a main effect of location, F(1,25) =
17.95, p< .0001, indicating that activity was greater in MFG
than in parietal ROIs. Importantly, we also found a highly
significant location by accuracy interaction, F(1,25) =
40.30, p < .0001, supporting the observation that MFG
and parietal ROIs were differentially engaged by source
accuracy. The main effect of accuracy was not significant
( p > .92).

Due to its critical role inmemory encoding and retrieval,
we also examined time courses in the two ROIs located
near the HG (Figure 1) and found relatively weak modu-

lations (<0.1%) and differing patterns of response in the
left and right HG. In the left HG (−23, −41, −6), modu-
lations in signal were observed only at time point 5.0 sec
(T+ = −0.01% signal change, T− = −0.06, NT+ =
−0.04, NT− = −0.03, and N+ = −0.07). Despite the
modest signal changes, an ANOVA with five levels of condi-
tion (T+, T−, NT+, NT−, and N+) on time point 5.0-sec
signal magnitudes (% from baseline term) revealed a signif-
icant main effect of condition, F(1,25) = 6.98, p < .0001.
Post hoc Tukey HSD tests revealed that only the T+ versus
N+ and the T+ versus T− comparisons differed signifi-
cantly ( p < .05). In the right HG (+30,−35,−9), ANOVA
revealed significant effect of condition, F(1,25) = 3.30, p<

Figure 3. Frontal and parietal
ROIs and associated time
courses from the source
accuracy analysis. Regions
include (A) left posterior
MFG near BA 6, (B) mid-MFG
near BA 9, (C) anterior
MFG near BA 46, (D) precuneus
near BA 7, (E) left IPS near
BA 40, and (F) right IPS near
BA 40. Four of the ROIs
appear in Figure 2. Time
courses begin at stimulus
onset, denoted by time zero.
Dashed lines at zero signal
change reflect baseline. Units
are in percent signal change
from baseline. Horizontal slice
atlas coordinates are listed
below each ROI image.

Figure 4. Average peak signal change values from the two MFG
and three parietal ROIs, displayed in Figure 3, for source correct
and incorrect trials. Error bars reflect SEM. Note that the MFG average
includes posterior MFG, a region in which activity differences between
correct and incorrect source trials did not reach significance.
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.05, but only the NT− versus NT+ comparison differed
using the Tukey HSD method.

Retrieval Success Regions Signal Success and Error

The preceding analyses support a number of conclusion:
(1) We replicated the finding that a set of frontal and pa-
rietal brain regions is modulated as a function of retrieval
success; (2) we replicated previous findings that parietal
regions are not modulated by the status of test items as
targets and extended this finding to include the entire
set of retrieval success regions; and (3) we demonstrated
a novel dissociation between frontal and parietal re-
trieval success regions, based on the finding that left
frontal retrieval success regions were more active on in-
correct than correct source judgments, whereas medial
and lateral parietal regions were more active on correct
than incorrect source judgments. To further evaluate
the functions of the retrieval success regions, we con-
ducted additional exploratory analyses to more carefully
examine the pattern of activity across the retrieval suc-
cess network. We extracted the time course of BOLD
response for all five conditions from each ROI. This pro-
cess led to the formation of two broad characterizations
of the function of a subset of the retrieval success re-
gions (Figure 5).
Notably, precuneus and IPS were most active when old

items were judged old (T+, NT+, and NT− trials), least
active when new items were judged new (N+ trials), and
intermediate when there was the possibility of a mixture
of old and new judgments to old items (T− trials). In ad-
dition, T− trials were associated with an intermediate re-
sponse (Figure 5A), with the right and left IPS patterns
being similar (right IPS not shown). To test the reliability
of the observed differences, we compared BOLD re-
sponses across precuneus, left IPS, and right IPS by first
computing a one-way ANOVA with five levels of response
category (T+, T−, NT+, NT−, and N+) on the estimated
peak data from each ROI. This analysis identified a signif-
icant main effect of response category in each ROI; pre-
cuneus, F(1,25) = 35.49, p < .0001; left IPS, F(1,25) =
28.42, p < .0001; right IPS, F(1,25) = 10.68, p < .0001.
Pairwise comparisons (using Tukey HSD) confirmed that
the observed differences in activity (T+ = NT+ = NT−
> T− > N+) were statistically significant ( p < .05; see
Figure 5A). The one exception was activity in the right
IPS on T− trials, which did not differ significantly from
T+ and NT+ trials.
In contrast, regions in AI/FO and dACC/medial frontal

gyrus (meFG) showed a pattern of activity that was simi-
lar to the MFG regions. In AI/FO and dACC/meFG, activ-
ity increased the most on incorrect source judgments,
the least for correct new items, and was intermediate
for correct source judgments (Figure 5B). To test the sig-
nificance of the effects, we computed a one-way ANOVA
on the estimated peak BOLD responses in the right and
left AI/FO and dACC/meFG, with category of response as

the only factor. This set of analyses revealed significant
differences among categories in all three ROIs; right AI/
FO, F(1,25) = 33.29, p < .0001; left AI/FO, F(1,25) =
23.68, p < .0001; dACC/meFG, F(1,25) = 18.78, p <
.0001. Post hoc comparisons using the Tukey HSD ( p <
.05) method indicated a difference in activity between

Figure 5. Regions of interest from the exploratory analysis are
projected over horizontal slices of the average anatomic image.
Timecourses of BOLD responses for correct (solid) and incorrect
(dashed) items are displayed. Regions include (A) precuneus and left
intraparietal sulcus (L IPS) and (B) left anterior middle frontal gyrus
(L anterior MFG), left anterior insula (L AI/FO), and doral anterior
cingulate/medial frontal gyrus (dACC/meFG). Peak atlas coordinates
(x, y, z) are displayed below the ROI images. Horizontal slices were
located near the z atlas coordinate for each ROI.
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incorrect and correct old trials in the right AI/FO and
dACC/meFG (Figure 5E and F). In the left AI/FO, the
pattern of responses was similar but the difference be-
tween T− and T+ failed to reach significance after correc-
tion for multiple comparisons (Figure 5B, middle panel).
Overall, AI/FO and dACC/meFG were most active when old
items were given an incorrect response and least active
on N+ trials.

As indicated by the RT analysis reported earlier, error
trials were associated with significantly longer RTs than
correct trials. This raises the possibility that AI/FO and
dACC/meFG activities correlated with RT. To explore this
possibility, we computed a regression analysis for the
frontal and parietal ROIs using the mean RT and the es-
timated peak signal change (time points 5.0 and 7.5 sec)
for each subject. This analysis revealed a significant corre-
lation between RT and signal change (%) in the left AI/FO
(R2 = .12), F(1,118) = 15.65, p < .0001, and right AI/
FO (R2 = .04), F(1,118) = 5.00, p < .05, but not in dACC/
meFG (R2 = .02), F(1,118) = 1.91. Regression analysis in
the three MFG and three parietal ROIs showed no rela-
tionship between signal change and RT (all p> .09). When
trial type was included as a covariate in the model, the cor-
relation in the left AI/FO was marginally significant ( p =
.08), but no other ROIs approached significance. Thus,
the pattern of response magnitudes in AI/FO tended
to track with RT, increasing most at time points 5.0 and
7.5 sec on trials with the longest mean RT and the least
on trials with the shortest mean RT. We note, however,
that the effect size was small, indicating that other sources
of variance were left unexplained by the RT analysis.

DISCUSSION

Brain imaging studies of retrieval success have consistently
revealed a set of regions (including frontal and parietal
cortices) that have not historically been associated with
episodic memory processes. The present study examined
the functional significance of these retrieval success re-
gions using a source memory task and event-related fMRI.
Source memory tasks provide one of the strongest means
of operationally defining episodic retrieval because, in
theory, the requirement to “remember the source” neces-
sitates that subjects recollect contextual information about
personal study episodes. We found that parietal retrieval
success regions exhibited a graded “oldness” response; a
larger transient response for old items receiving correct
source judgments than for those responded to incorrectly
(relative to a baseline response provided by correctly re-
jected new items). That is, the magnitude of the response
correlated with subjectsʼ ability to retrieve source informa-
tion (Figures 3 and 5). In contrast, a set of frontal regions
exhibited an error-related response, such that activity in-
creased the most on error trials (which have the longest
RTs; Figures 3 and 5). Subsequently we discuss possible
functions performed by retrieval success regions and offer

an accumulator model to account for the pattern of activity
observed across the network.

None of the Retrieval Success Regions Are
Modulated by Target Status

Although they were sensitive to the accuracy of source
memory, regions exhibiting retrieval success effects (Fig-
ure 1) were not selectively sensitive to the retrieval of
“target” items per se; old target and nontarget items ex-
hibited equivalent responses. This is important because
one interpretation of findings from studies of item recog-
nition is that retrieval success effects simply emphasize
identification of a particular type of stimulus (i.e., the
old stimuli are “targets” during item recognition), inde-
pendently of retrieval. One advantage of our experimental
design was that it allowed us to compare source retrieval
and targetness simultaneously, firmly ruling out an expla-
nation in terms of targetness. Instead our results extend
those of Shannon and Buckner (2004), in which parietal
regions where shown to exhibit retrieval success effects
regardless of whether subjects were instructed to respond
only to old, new, or both old and new items. The current
data demonstrate that this behavior is not unique to pa-
rietal cortex, confirming that the entire set of regions that
produce old/new retrieval success effects respond regard-
less of the target status of old stimuli.
We highlight one potential complication in finding that

target status does not modulate retrieval success regions;
the failure to find effects in this kind of analysis could in
part reflect the composite nature of the conditions. For
example, based on electrophysiological evidence Herron
and Rugg (2003; see also Rugg et al., 2003) noted that,
during source memory tasks, correct responses to non-
targets could consist entirely of correctly recollected old
items, or could reflect items that are not recollected at
all because participants are able to successfully orient to-
ward target information only, or some mixture of the two
strategies. Similarly, in theory, responses to nontargets
could be made based on familiarity in the absence of re-
collection (as per Jacobyʼs, 1991, original characterization)
or even on the basis of forgetting (where participants
genuinely believe the nontarget items are new). Thus,
although the source memory paradigm provides a very
strong operational definition of episodic recollection per
se, no single task can rule out individual differences in
memory. While we do not believe that this renders the
present findings any less compelling and behavioral evi-
dence rules out some possibilities (e.g., forgetting seems
unlikely to play a large role in the current study), further
studies that separate individual differences in retrieval
strategy may be useful.
Taken together, the evidence suggests that retrieval

success regions in both frontal and parietal cortices track
the recovery of information from episodic memory in-
dependent of task demands that direct the remember to-
ward a particular type of information. Note, however, that

386 Journal of Cognitive Neuroscience Volume 22, Number 2



this conclusion does not rule out other influential factors.
For example, the probability manipulation by Herron
et al. (2004) influenced the retrieval success effect in
some areas (notably superior parietal cortex; close, but
not identical to, the common more lateral and ventral
posterior parietal retrieval success areas) but not in others.
Quite why stimulus probability plays such an important
role for superior parietal cortex remains unclear at present.
What is clear, however, is that the retrieval success regions
are consistently found to be sensitive to episodic memory
across a range of studies, and any attempt to characterize
their functional role must now account for a number of
empirical findings provided by fMRI.

Source Retrieval Errors

Relative to correct source judgments (T+ and NT+),
errors in source retrieval (T− and NT−) were associated
with increased activity in lateral and medial regions of
frontal cortex. Our findings are consistent with a number
of studies that associate frontal activity with strategic
processing during episodic retrieval and working mem-
ory (Kahn et al., 2004; Ranganath, 2004; Buckner, 2003;
Velanova et al., 2003; Dobbins et al., 2002; Rugg et al.,
2002; Buckner & Wheeler, 2001; Donaldson, Petersen,
& Buckner, 2001; Donaldson, Petersen, Ollinger, et al.,
2001; Ranganath, Johnson, & DʼEsposito, 2000; Buckner,
Koutstaal, Schacter, Dale, et al., 1998; Buckner, Koutstaal,
Schacter, Wagner, & Rosen, 1998; Cabeza et al., 1997).
The heightened response on error trials suggests that
retrieval monitoring occurs in a distributed set of regions,
including dACC, MFG, and AI/FO. Later we consider two
functional accounts of the activity seen in the present
study during error trials.
Studies of response uncertainty and decision mak-

ing have implicated AI/FO and medial frontal cortex, in-
cluding cortex spanning dACC and medial frontal gyrus
(Thielscher & Pessoa, 2007; Fleck, Daselaar, Dobbins, &
Cabeza, 2006; Grinband, Hirsch, & Ferrera, 2006; Huettel,
Song, & McCarthy, 2005; Critchley, Mathias, & Dolan,
2001). For example, in a recent fMRI study of perceptual
decision making, Ploran et al. (2007) examined timing-
dependent perceptual recognition responses and found
that the onset of activity in AI/FO and medial frontal areas
occurred at the time of, or just after, decisions about object
identity. This late response occurred even when recogni-
tion was incorrect (Wheeler, Petersen, Nelson, Ploran, &
Velanova, 2008). In the task, drawings of objects were
revealed gradually over 16 sec from under a white noise
mask until they were fully revealed. Subjects noted the
timing of recognition by pressing a button then noted their
accuracy by pressing it again when the object was fully re-
vealed. The revelation task produced a significant variability
in the timing of recognition, which allowed examination of
the temporal profile of the evolving BOLD signal in the
period leading up to, during, and after perceptual recogni-
tion. The present findings in AI/FO and dACC are consis-

tent with a role in decision making (i.e., performance
monitoring) because of the increased activity on error trials.

Dosenbach, Fair, Cohen, Schlaggar, and Petersen (2008)
and Dosenbach et al. (2006, 2007) have introduced a
more specific formulation for the function of AI/FO and
medial frontal areas. They performed a meta-analysis on
10 imaging studies (n = 183) that used a mixed block/
event-related approach across a range of cognitive tasks
(Dosenbach et al., 2006). Among other findings, they iden-
tified a small set of “core” task-set regions that displayed
(1) transient responses related to task onset, (2) sustained
activity throughout (but not between) task blocks, and
(3) robust error-related responses. The proposed func-
tion of task set regions is to interpret and to maintain over
time task instructions that configure and monitor trial-
related processes. This core set consisted exclusively of
AI/FO and dACC/meFG. Interpreted from within the
task-set framework, heightened AI/FO and dACC/meFG
activity on error trials in the present study could be related
to an increased need for control during uncertainty or for
feedback processing related to performance monitoring.

Although no external feedback was provided in the
current study, error trials can be associated with a correc-
tive response in which the initial (erroneous) response
is later deemed to be incorrect. Thus, the increase in ac-
tivity could have been due to internally generated error
awareness. Or the increase in activity could have been re-
lated to other sources such as a general level of increased
uncertainty, having pressed the wrong button by acci-
dent, or to increased attentional demands. At present,
we cannot dissociate among these alternatives.

Parietal Activity Was Associated with
Old/New Evidence

We found that precuneus and anterior IPS were most ac-
tive for items judged to be old and least active for items
judged to be new (Figure 5A). We also observed an inter-
mediate level of activity in the T− condition, which was
most likely associated with a mixture of old (large signal
change) and new (small signal change) judgments. This
pattern of activity is consistent with prior reports indicating
that some regions of parietal cortex modulate according to
the outcome of the old/new decision, independently of
accuracy. For example, Kahn et al. (2004) and Wheeler
and Buckner (2003) have both reported that left IPS was
more active for items judged to be old than items judged
to be new, regardless of whether they were actually old or
new (see Wagner et al., 2005). Thus, by this view, activity
in IPS and precuneus tracks the outcome of the old/new
decision rather than the true item status.

Interestingly, the perceptual decision-making study by
Ploran et al. (2007; Wheeler et al., 2008) identified a left
parietal region, located in or near the IPS, in which ac-
tivity accumulated before the moment of recognition at
a rate that correlated positively with recognition timing.
That is, when recognition occurred early, activity in IPS
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(and in 10 other regions) increased rapidly after onset.
However, when recognition occurred later in the revela-
tion process, activity increased significantly more slowly,
a neural accumulation process that may be functionally re-
lated to the pattern of “old”> “new” decision-related activ-
ity we have observed in the present study. One problem
with this comparison, however, is that in the current study,
no significant correlation was found between the size of ac-
tivity and the behavioral RTs. There are of course consider-
able differences between the two studies that could have
functional consequences; Ploran et al. used a slow reveal
procedure designed to tease apart differences based on rec-
ognition timing, and only new items were present with no
source or target task demands. Moreover, the additional
monitoring and control processes demanded by memory
tasks (compared with perceptual tasks) may inherently re-
duce the correlation between accumulated evidence and
overt behavior. In either case, it will be of considerable in-
terest to discover whether equivalent correlations with RT
are evident within these regions in memory studies that are
designed with this purpose in mind.

An Accumulation Model of Mnemonic Decisions

Here we present a conceptual model that relates the pat-
terns of frontal and parietal neural activity to processes
underlying episodic memory decisions. Our view is de-
rived from detailed examination of the different roles that
these regions appear to play in the current study, which
suggests an accumulation of evidence toward memory

decisions for parietal regions and a role in decision pro-
cesses for frontal regions. The concepts are derived from
accumulator models of memory and decision making
(Usher & McClelland, 2001; Ratcliff & McKoon, 1982;
Ratcliff, 1978). Similar models have recently been used
to account for neural responses to motion detection in
Macaque IPS (Gold & Shadlen, 2007; Shadlen, Britten,
Newsome, & Movshon, 1996; Shadlen & Newsome, 1996)
and Dorsolateral Prefrontal Cortex (Kim & Shadlen, 1999)
as well as in motor cortex during initiation of motor be-
havior (Hanes & Schall, 1996) and superior colliculus dur-
ing distance discrimination (Ratcliff, Cherian, & Segraves
2003). Our model (Figure 6) consists of four levels of pro-
cessing, including an early stage of stimulus analysis and
a final stage of response generation. Stimulus analysis is
not limited to sensory processing, as it would include
mnemonic information possibly supplied by MTL struc-
tures. Between stimulus input and response output, de-
cisions are formed based on accumulated evidence about
the mnemonic status of items relative to a criterion param-
eter (derived from task instructions and other motiva-
tional factors).
On the basis of our data, we propose that evidence ac-

cumulation for old and new information occurs (at least
in part) in parietal retrieval success regions. By this view,
the level of BOLD signal change in these regions reflects
the on-line accumulation of information about the stimu-
lus that is relevant to the task judgment, and the amount
of activity directly reflects the current balance of evidence in
favor of a goal-directed response. For example, evidence ac-
cumulation could be related to degree of temporal context,

Figure 6. An accumulation
model for parietal activity in old/
new decisions. Different levels
of processing are depicted,
from stimulus processing to
response output. Each of the
levels depicted is intended to
reflect a cortical region (or set
of regions), and as such the
interactions between regions
are likely to be bidirectional
(allowing feed-forward and
feedback mechanisms to
operate). State-related control
or bias signals are also
highlighted, which could
potentially operate at each
level of the system to modulate
behavior depending on the
current task context (e.g.,
gating which input variables
are relevant, biasing outputs
toward a particular response,
etc.). Alternative formulations
of the model are plausible
given currently available data
(e.g., a single accumulator that is flexibly sensitive to different types of information) and some aspects of the model are difficult to test with
fMRI (e.g., on-line iterations between decision making and accumulation). The “accumulation of oldness” component is shown in bold,
highlighting the correspondence with the posterior parietal “retrieval success” regions investigated in the present study.
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level of familiarity, or recollected detail accompanying a
particular memory. Importantly, by “goal directed,” we do
not simply mean the amount of prior exposure per se;
rather, we assume that this evidence is context dependent
and task relevant.
Viewing the anterior IPS and precuneus regions in

terms of an accumulation model has several implications.
First, the neural counter must receive inputs (property or
feature information) from earlier stages of the processing
chain. A large number of regions (including hippocam-
pus and related medial-temporal structures) could be in-
volved, reflecting different aspects of the processing of a
stimulus. It also seems likely that different sets of regions
could provide an input depending on the particular type
of stimulus being processed (e.g., verbal vs. nonverbal).
Second, if evidence is only meaningful in the context of a
given task, mechanisms must exist to delineate what vari-
ables (stimulus properties) are considered relevant. This
is likely to be dependent on both the particular proper-
ties currently available and the application of top–down
state-related “control” or “biasing” signals. Such strategic
control can influence neuronal processing at many levels
by biasing activity (Miller & Cohen, 2001; Desimone &
Duncan, 1995; Posner & Petersen, 1990) and may be evi-
dent as state-related modulations of activity seen in fMRI
studies of memory (Velanova et al., 2003; Donaldson,
Petersen, Ollinger, et al., 2001). Third, the counter must,
in turn, provide an output that is available to later stages
of the processing chain, allowing generation of an overt
response. Such decision-making processes presumably
either read the current count directly (e.g., comparing
it to a threshold) or use the count as one of many con-
tributing factors in a decision. One key aspect of decision
processing is clearly the detection of errors, and evidence
suggests that frontal retrieval success regions are likely to
play a role in the overall decision process (see Dosenbach
et al., 2006, 2008; Wheeler et al., 2008; Ploran et al., 2007).
Furthermore, because decision processes can clearly be
adapted in real time, we note that the counter must be
adjustable on a trial-by-trial basis (Logan & Gordon, 2001).
One reason for making this model explicit is to raise

questions and to produce testable hypotheses. For exam-
ple, can state-related control processes influence all or
just some levels of the system, from gating which stimu-
lus properties are relevant to biasing the decision making
toward a particular response? Which stages of process-
ing correlate with measures of overt behavior (e.g., RTs),
and do some operations specifically interrupt or interfere
with this relationship? Would a parietal accumulation
mechanism (whether related to RT or not) generalize to
other tasks or is it specialized for old/new decisions? To
what extent is it consistent with outcomes predicted by
recent attentional accounts? The model also highlights
aspects of retrieval that are extremely difficult to examine
with fMRI because of the low temporal resolution of the
data. For example, the rapid on-line operation of this sys-
tem is likely to involve multiple iterative interactions be-

tween lower level feature detection/counters and higher
level control and decision-making processes.

Here we consider one potential problem for our mod-
el. If no neural evidence is accumulating for new items,
how is a response generated? One explanation can be
ruled out; a time-out mechanism is not in operation. If
it were, correct rejection responses would take longer
than source recognition responses when in fact they
are typically quicker. We offer two speculative explana-
tions. First, a minimum threshold, which when combined
with an iterative decision-making process, allows stimuli
producing no “counts” to be rejected relatively quickly.
Second, a separate novelty detection system, either as a
first stage (serially) that allow new items to be rejected
before “oldness” is assessed, or as an alternative counter
(in parallel) that contributes information to the broader
decision-making process (as depicted in Figure 6). Future
studies identifying how sources of evidence contribute
to decision outcome should help distinguish between
these competing possibilities.

Finally, we note that the accumulation model could be
viewed as a mechanism that exclusively supports recol-
lection. Equally, however, it may reflect a central memory
index, providing information that supports evidence de-
rived from familiarity and recollection, with the distinc-
tion between these processes depending on the type of
information being retrieved, the current task context, and/or
the employment of postretrieval monitoring and control
processes (for a similar view based on behavioral data, see
Leboe & Whittlesea, 2002). Regardless, one reason for pro-
posing themodel is that it need not necessarily map directly
onto familiarity or recollection. To our minds, it seems un-
likely that indices of memory retrieval provided by fMRI will
fit exactly with the traditional discrete memory constructs,
particularly when the distributed multicomponent nature
of brain processing is taken into account.

Acknowledgments

We thank Steve Nelson, Laura Williams, Margaret Sheridan, Ariel
Singer, Francis Miezin, Randy Buckner, and several anonymous
reviewers for their helpful comments and advice. This work was
funded by an NIH grant NS32979 (S. E. P.) and a Wellcome Trust
International Traveling Research Fellowship (D. I. D.). D. I. D. is a
member of the SINAPSE Collaboration (www. sinapse.ac.uk), a
Pooling Initiative funded by the Scottish Funding Council and the
Chief Scientist Office of the Scottish Executive.

Reprint requests should be sent to David I. Donaldson, Depart-
ment of Psychology, University of Stirling, Stirling, FK9 4LA,
Scotland, UK, or via e-mail: d.i.donaldson@stir.ac.uk or Mark E.
Wheeler, University of Pittsburgh, 608 LRDC, 3939 OʼHara Street,
Pittsburgh, PA 15260, or via e-mail: wheelerm@pitt.edu.

REFERENCES

Atkinson, R. C., & Juola, J. F. (1973). Factors influencing
speed and accuracy of word recognition. In S. Kornblum
(Ed.), Fourth international symposium on attention &
performance (pp. 583–612). New York: New York
Academic Press.

Donaldson, Wheeler, and Petersen 389



Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson,
I. R. (2007). Parietal lobe and episodic memory: Bilateral
damage causes impaired free recall of autobiographical
memories. Journal of Neuroscience, 27, 14415–14423.

Buckner, R. L. (2003). Functional–anatomic correlates of
control processes in memory. Journal of Neuroscience,
23, 3999–4004.

Buckner, R. L., Koutstaal, W., Schacter, D. L., Dale, A. M.,
Rotte, M. R., & Rosen, B. R. (1998). Functional–anatomic
study of episodic retrieval: II. Selective averaging of
event-related fMRI trials to test the retrieval success
hypothesis. Neuroimage, 7, 163–175.

Buckner, R. L., Koutstaal, W., Schacter, D. L., Wagner, A. D.,
& Rosen, B. R. (1998). Functional–anatomic study of
episodic retrieval using fMRI: I. Retrieval effort versus
retrieval success. Neuroimage, 7, 151–162.

Buckner, R. L., & Wheeler, M. E. (2001). The cognitive
neuroscience of remembering. Nature Reviews
Neuroscience, 2, 624–634.

Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008).
The parietal cortex and episodic memory: An attentional
account. Nature Reviews Neuroscience, 9, 613–625.

Cabeza, R., Mangels, J., Nyberg, L., Habib, R., Houle, S.,
McIntosh, A. R., et al. (1997). Brain regions differentially
involved in remembering what and when: A PET study.
Neuron, 19, 863–870.

Cansino, S., Maquet, P., Dolan, R. J., & Rugg, M. D. (2002).
Brain activity underlying encoding and retrieval of source
memory. Cerebral Cortex, 12, 1048–1056.

Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top–down
and bottom–up attention to memory: A hypothesis (AtoM)
on the role of the posterior parietal cortex in memory
retrieval. Neuropsychologia, 46, 1828–1851.

Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993).
PsyScope: A new graphic interactive environment for
designing psychology experiments. Behavioral Research
Methods, Instruments, and Computers, 25, 257–271.

Critchley, H., Mathias, C., & Dolan, R. (2001). Neural activity
in the human brain relating to uncertainty and arousal
during anticipation. Neuron, 29, 537–545.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of
selective visual attention. In M. Cowan (Ed.), Annual
review of neuroscience (Vol. 18, pp. 193–222). Palo Alto,
CA: Annual Reviews, Inc.

Dobbins, I. G., Foley, H., Schacter, D. L., & Wagner, A. D.
(2002). Executive control during episodic retrieval:
Multiple prefrontal processes subserve source memory.
Neuron, 35, 989–996.

Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L.
(2003). Memory orientation and success: Separable
neurocognitive components underlying episodic
recognition. Neuropsychologia, 41, 318–333.

Donaldson, D. I., Petersen, S. E., & Buckner, R. L. (2001).
Dissociating memory retrieval processes using fMRI:
Evidence that priming does not support recognition
memory. Neuron, 31, 1047–1059.

Donaldson, D. I., Petersen, S. E., Ollinger, J. M., & Buckner,
R. L. (2001). Dissociating state and item components
of recognition memory using fMRI. Neuroimage, 13,
129–142.

Dosenbach, N., Fair, D., Miezin, F., Cohen, A., Wenger, K.,
Dosenbach, R., et al. (2007). Distinct brain networks for
adaptive and stable task control in humans. Proceedings
of the National Academy of Sciences, U.S.A., 104,
11073–11078.

Dosenbach, N., Visscher, K., Palmer, E., Miezin, F., Wenger, K.,
Kang, H., et al. (2006). A core system for the implementation
of task sets. Neuron, 50, 799–812.

Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L.,
& Petersen, S. E. (2008). A dual-networks architecture of
top–down control. Trends in Cognitive Sciences, 12,
99–105.

Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer,
S. Y., & Engel, S. A. (2000). Remembering episodes:
A selective role for the hippocampus during retrieval.
Nature Neuroscience, 3, 1149–1152.

Fleck, M. S., Daselaar, S. M., Dobbins, I. G., & Cabeza, R.
(2006). Role of prefrontal and anterior cingulate regions
in decision-making processes shared by memory and
nonmemory tasks. Cerebral Cortex, 16, 1623–1630.

Friston, K., Jezzard, P., & Turner, R. (1994). Analysis of
functional MRI time-series. Human Brain Mapping,
1, 153–171.

Gardiner, J. M., & Java, R. I. (1993). Recognising and
remembering. In A. Collins, S. E. Gathercole, M. A. Conway,
& P. E. Morris (Eds.), Theories of memory (pp. 163–188).
Hillsdale, NJ: Erlbaum.

Gold, J., & Shadlen, M. (2007). The neural basis of decision
making. Annual Review of Neuroscience, 30, 535–574.

Grinband, J., Hirsch, J., & Ferrera, V. (2006). A neural
representation of categorization uncertainty in the human
brain. Neuron, 49, 757–763.

Hanes, D. P., & Schall, J. D. (1996). Neural control of
voluntary movement initiation. Science, 274, 427–430.

Henson, R. (2005). A mini-review of fMRI studies of human
medial temporal lobe activity associated with recognition
memory. Quarterly Journal of Experimental Psychology,
Series B, 58, 340–360.

Henson, R. N., Hornberger, M., & Rugg, M. D. (2005).
Further dissociating the processes involved in recognition
memory: An fMRI study. Journal of Cognitive Neuroscience,
17, 1058–1073.

Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O., &
Dolan, R. J. (1999). Recollection and familiarity in
recognition memory: An event-related functional magnetic
resonance imaging study. Journal of Neuroscience, 19,
3962–3972.

Herron, J. E., Henson, R. N., & Rugg, M. D. (2004). Probability
effects on the neural correlates of retrieval success: An
fMRI study. Neuroimage, 21, 302–310.

Herron, J. E., & Rugg, M. D. (2003). Strategic influences on
recollection in the exclusion task: Electrophysiological
evidence. Psychonomic Bulletin and Review, 10, 703–710.

Huettel, S., Song, A., & McCarthy, G. (2005). Decisions under
uncertainty: Probabilistic context influences activation of
prefrontal and parietal cortices. Journal of Neuroscience,
25, 3304–3311.

Jacoby, L. L. (1991). A process dissociation framework:
Separating automatic from intentional uses of memory.
Journal of Memory and Language, 30, 513–541.

Jacoby, L. L., & Dallas, M. (1981). On the relationship between
autobiographical memory and perceptual learning. Journal
of Experimental Psychology: General, 110, 306–340.

Kahn, I., Davachi, L., & Wagner, A. D. (2004). Functional–
neuroanatomic correlates of recollection: Implications
for models of recognition memory. Journal of
Neuroscience, 24, 4172–4180.

Kim, J.-N., & Shadlen, M. N. (1999). Neural correlates of
a decision in the dorsolateral prefrontal cortex of the
macaque. Nature Neuroscience, 2, 176–185.

Klostermann, E. C., Kane, A. J., & Shimamura, A. P. (2008).
Parietal activation during retrieval of abstract and concrete
auditory information. Neuroimage, 40, 896–901.

Konishi, S., Wheeler, M. E., Donaldson, D. I., & Buckner,
R. L. (2000). Neural correlates of episodic retrieval
success. Neuroimage, 12, 276–286.

390 Journal of Cognitive Neuroscience Volume 22, Number 2



Kucera, H., & Francis, W. M. (1982). Frequency analysis of English
usage: Lexicon and grammar. Boston: Houghton Mifflin.

Leboe, J., & Whittlesea, B. (2002). The inferential basis of
familiarity and recall: Evidence for a common underlying
process. Journal of Memory and Language, 46, 804–829.

Logan, G. D., & Gordon, R. D. (2001). Executive control
of visual attention in dual-task situations. Psychological
Review, 108, 393–434.

Mandler, G. (1980). Recognizing: The judgment of previous
occurrence. Psychological Review, 87, 252–271.

McAvoy, M. P., Ollinger, J. M., & Buckner, R. L. (2001).
Cluster size thresholds for assessment of significant
activation in fMRI. Neuroimage, 13, S198.

McDermott, K. B., Jones, T. C., Petersen, S. E., Lageman,
S. K., & Roediger, H. L., III (2000). Retrieval success is
accompanied by enhanced activation in anterior prefrontal
cortex during recognition memory: An event-related fMRI
study. Journal of Cognitive Neuroscience, 12, 965–976.

Miezin, F., Maccotta, L., Ollinger, J., Petersen, S., & Buckner, R.
(2000). Characterizing the hemodynamic response: Effects
of presentation rate, sampling procedure, and the
possibility of ordering brain activity based on relative
timing. Neuroimage, 11, 735–759.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annual Review of Neuroscience,
24, 167–202.

Ojemann, J. G., Akbudak, E., Snyder, A. Z., McKinstry, R. C.,
Raichle, M. E., & Conturo, T. E. (1997). Anatomic localization
and quantitative analysis of gradient refocused echo-planar
fMRI susceptibility artifacts. Neuroimage, 6, 156–167.

Ploran, E. P., Nelson, S. M., Velanova, K., Donaldson, D. I.,
Petersen, S. E., & Wheeler, M. E. (2007). Evidence
accumulation and the moment of recognition: Dissociating
perceptual recognition processes using fMRI. Journal of
Neuroscience, 27, 11912–11924.

Posner, M. I., & Petersen, S. E. (1990). The attention system
of the human brain. Annual Review of Neuroscience,
13, 25–42.

Ranganath, C. (2004). The 3-D prefrontal cortex: Hemispheric
asymmetries in prefrontal activity and their relation to
memory retrieval processes [comment]. Journal of
Cognitive Neuroscience, 16, 903–907.

Ranganath, C., Johnson, M. K., & DʼEsposito, M. (2000).
Left anterior prefrontal activation increases with demands
to recall specific perceptual information. Journal of
Neuroscience, 20, RC108.

Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom,
S. M., & DʼEsposito, M. (2003). Dissociable correlates of
recollection and familiarity within the medial temporal
lobes. Neuropsychologia, 42, 2–13.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59–108.

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of
macaque behavior and superior colliculus neuronal activity to
predictions from models of two-choice decisions. Journal of
Neurophysiology, 90, 1392–1407.

Ratcliff, R., & McKoon, G. (1982). Speed and accuracy in the
processing of false statements about semantic information.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 8, 16–36.

Rugg, M., Otten, L., & Henson, R. (2002). The neural basis of
episodic memory: Evidence from functional neuroimaging.
Philosophical Transactions of the Royal Society of London,
Series B, Biological Sciences, 357, 1097–1110.

Rugg, M. D., Henson, R. N. A., & Robb, W. G. K. (2003).
Neural correlates of retrieval processing in the prefrontal
cortex during recognition and exclusion tasks.
Neuropsychologia, 41, 40–52.

Shadlen, M., Britten, K. H., Newsome, W. T., & Movshon,
J. A. (1996). A computational analysis of the relationship
between neuronal and behavioral responses to visual
motion. Journal of Neuroscience, 16, 1486–1510.

Shadlen, M. N., & Newsome, W. T. (1996). Motion perception:
Seeing and deciding. Proceedings of the National
Academy of Sciences, U.S.A., 93, 628–633.

Shannon, B., & Buckner, R. (2004). Functional–anatomic
correlates of memory retrieval that suggest nontraditional
processing roles for multiple distinct regions within
posterior parietal cortex. Journal of Neuroscience, 24,
10084–10092.

Simons, J. S., Peers, P. V., Hwang, D. Y., Ally, B. A., Fletcher,
P. C., & Budson, A. E. (2008). Is the parietal lobe necessary
for recollection in humans? Neuropsychologia, 46,
1185–1191.

Snyder, A. Z. (1996). Difference image versus ratio image
error function forms in PET–PET realignment. In D. Bailey
& T. Jones (Eds.), Quantification of brain function
using PET. San Diego: Academic Press.

Stark, C. E., & Squire, L. R. (2000). Functional magnetic
resonance imaging (fMRI) activity in the hippocampal
region during recognition memory. Journal of
Neuroscience, 20, 7776–7781.

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic
atlas of the human brain (M. Rayport, Trans.). New York:
Thieme.

Thielscher, A., & Pessoa, L. (2007). Neural correlates
of perceptual choice and decision making during
fear-disgust discrimination. Journal of Neuroscience,
27, 2908–2917.

Usher, M., & McClelland, J. L. (2001). The time course of
perceptual choice: The leaky, competing accumulator
model. Psychological Review, 108, 550–592.

Velanova, K., Jacoby, L. L., Wheeler, M. E., McAvoy, M. P.,
Petersen, S. E., & Buckner, R. L. (2003). Functional–anatomic
correlates of sustained and transient processing
components engaged during controlled retrieval. Journal
of Neuroscience, 23, 8460–8470.

Vilberg, K. L., & Rugg, M. D. (2007). Dissociation of the neural
correlates of recognition memory according to familiarity,
recollection, and amount of recollected information.
Neuropsychologia, 45, 2216–2225.

Wagner, A., Shannon, B., Kahn, I., & Buckner, R. L. (2005).
Parietal lobe contributions to episodic memory retrieval.
Trends in Cognitive Sciences, 9, 445–453.

Weis, S., Klaver, P., Reul, J., Elger, C. E., & Fernandez, G.
(2004). Temporal and cerebellar brain regions that support
both declarative memory formation and retrieval. Cerebral
Cortex, 14, 256–267.

Wheeler, M. E., & Buckner, R. L. (2003). Functional dissociation
among components of remembering: Control, perceived
oldness, and content. Journal of Neuroscience, 23,
3869–3880.

Wheeler, M. E., & Buckner, R. L. (2004). Functional–anatomic
correlates of remembering and knowing. Neuroimage, 21,
1337–1349.

Wheeler, M. E., Petersen, S. E., Nelson, S. M., Ploran, E. J.,
& Velanova, K. (2008). Dissociating early and late error
signals in perceptual recognition. Journal of Cognitive
Neuroscience, 20, 2211–2225.

Wheeler, M. E., Shulman, G. S., Buckner, R. L., Miezin, F. M.,
Velanova, K., & Petersen, S. E. (2006). Evidence for
separate perceptual reactivation and search processing
during remembering. Cerebral Cortex, 16, 949–959.

Yonelinas, A. P. (2002). The nature of recollection and
familiarity: A review of 30 years of research. Journal of
Memory and Language, 46, 441–517.

Donaldson, Wheeler, and Petersen 391


